EXPLORATION IN BRITISH COLUMBIA 1987

Part A — Overview of Exploration Activity

Part B — Geological Descriptions of Selected Properties

Part C — Assessment Report Summaries, Minerals and Coal
FORWARD

The first Minister of Mines of the Province of British Columbia was appointed in 1874. One of his responsibilities was "the duty of collecting information on the subject of the mining industries of the Province". This material, which consisted of reports by the Gold Commissioners and the Mining Recorders of the province, was published in the Annual Report of the Minister of Mines.

A Bureau of Mines was established by Parliamentary authority in 1895 and in 1896 was staffed by a Provincial Mineralogist and an assayer/chemist. Technical reports on mines and mining activities were prepared by them and published in the Annual Report, together with reports contributed by the Mining Recorders and Gold Commissioners.

Over the years, with the expansion of the mining industry, the staff of the Department of Mines grew, as did the number and size of the technical reports on geology and mining that were still published in the Annual Report of the Minister of Mines. Over a period of nearly 75 years the Annual Report became known as the authoritative record of mining in the province.

However, because of the size to which the Annual Report had grown, it was decided in 1969 to publish all geological and technical reports dealing with solid minerals in a separate volume entitled Geology, Exploration and Mining in British Columbia. Thus a new annual publication was initiated with chapters on exploration and mining related to metals, placer, structural materials and industrial minerals, and coal. In 1975 a revised format was introduced for Geology, Exploration and Mining in British Columbia to allow the three main sections to be released as soon as prepared with the whole to be eventually bound together as a volume. The separate sections are Mining in British Columbia - a record of mining in the province plus the Chief Inspector's report; Exploration in British Columbia - a record of the performance of the industry in exploration; and Geology in British Columbia - a record of the mapping and research of the Geological Survey Division of the Mineral Resources Branch. The Geology in British Columbia section has been discontinued with the final edition covering 1977-1981.

In the 1981 to 1984 editions of Exploration in British Columbia, a computerized format based only on assessment reports submitted, was introduced to further improve the timeliness of information release. Since 1985, Exploration in British Columbia has been divided into three parts: Part A is an exploration overview; Part B contains short geological writeups on properties mapped by Ministry geologists; and Part C is a computer listing of exploration work on properties, based on assessment reports submitted.

Assessment reports are confidential for one year from date of submission. Permission was requested from companies to publish the information submitted on the "Assessment Report Title Page and Summary" in Part C of the volume, prior to the expiry of the confidential period. Where this was refused the entry is blank and the information will be published in Exploration in British Columbia 1988.
PART A
OVERVIEW
PART A
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>OVERVIEW</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A5</td>
</tr>
<tr>
<td>Exploration Highlights</td>
<td>A5</td>
</tr>
<tr>
<td>Gold-bearing Skarns</td>
<td>A6</td>
</tr>
<tr>
<td>Epithermal Deposits</td>
<td>A6</td>
</tr>
<tr>
<td>Volcanic and Clastic-hosted Massive Sulphide Deposits</td>
<td>A7</td>
</tr>
<tr>
<td>Vein Deposits Transitional to Porphyry Deposits</td>
<td>A8</td>
</tr>
<tr>
<td>Other Deposits of Interest</td>
<td>A9</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>A10</td>
</tr>
<tr>
<td>TABLE A1 Exploration and Development in British Columbia</td>
<td>A12</td>
</tr>
<tr>
<td>TABLE A2 Active Mines in British Columbia</td>
<td>A35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORTHWESTERN DISTRICT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A38</td>
</tr>
<tr>
<td>Trends</td>
<td>A38</td>
</tr>
<tr>
<td>Highlights</td>
<td>A39</td>
</tr>
<tr>
<td>Summary of Exploration Activities</td>
<td>A40</td>
</tr>
<tr>
<td>Minerals</td>
<td>A40</td>
</tr>
<tr>
<td>Coal</td>
<td>A46</td>
</tr>
<tr>
<td>Placer</td>
<td>A46</td>
</tr>
<tr>
<td>Development</td>
<td>A47</td>
</tr>
<tr>
<td>Operating Mines</td>
<td>A48</td>
</tr>
<tr>
<td>Exploration Opportunities</td>
<td>A51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRAL DISTRICT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A52</td>
</tr>
<tr>
<td>Highlights</td>
<td>A52</td>
</tr>
<tr>
<td>Summary of Exploration Activities</td>
<td>A52</td>
</tr>
<tr>
<td>Metallic Minerals</td>
<td>A52</td>
</tr>
<tr>
<td>Placer</td>
<td>A55</td>
</tr>
<tr>
<td>Industrial Minerals</td>
<td>A55</td>
</tr>
<tr>
<td>Operating Mines</td>
<td>A55</td>
</tr>
<tr>
<td>Trends and Opportunities</td>
<td>A56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NORTHEASTERN DISTRICT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Exploration Activities</td>
<td>A57</td>
</tr>
<tr>
<td>Coal Exploration</td>
<td>A57</td>
</tr>
<tr>
<td>Coal Potential</td>
<td>A58</td>
</tr>
<tr>
<td>Metallic Minerals</td>
<td>A58</td>
</tr>
<tr>
<td>Industrial Minerals</td>
<td>A59</td>
</tr>
<tr>
<td>Operating Mines</td>
<td>A59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOUTHEASTERN DISTRICT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A60</td>
</tr>
<tr>
<td>Summary of Exploration Activities</td>
<td>A60</td>
</tr>
<tr>
<td>Metallic Minerals</td>
<td>A60</td>
</tr>
<tr>
<td>Coal</td>
<td>A60</td>
</tr>
<tr>
<td>Coal Developments</td>
<td>A61</td>
</tr>
<tr>
<td>Operating Mines</td>
<td>A61</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONTINUED)

<table>
<thead>
<tr>
<th>District</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEST KOOTENAY DISTRICT</td>
<td>A62</td>
</tr>
<tr>
<td>Introduction</td>
<td>A62</td>
</tr>
<tr>
<td>Summary of Exploration Activities</td>
<td>A62</td>
</tr>
<tr>
<td>Operating Mines</td>
<td>A65</td>
</tr>
<tr>
<td>SOUTH-CENTRAL DISTRICT</td>
<td>A67</td>
</tr>
<tr>
<td>Introduction</td>
<td>A67</td>
</tr>
<tr>
<td>Trends and Highlights</td>
<td>A67</td>
</tr>
<tr>
<td>Summary of Exploration Activities</td>
<td>A68</td>
</tr>
<tr>
<td>Conclusion</td>
<td>A71</td>
</tr>
<tr>
<td>SOUTHWESTERN DISTRICT</td>
<td>A73</td>
</tr>
<tr>
<td>Introduction</td>
<td>A73</td>
</tr>
<tr>
<td>Trends, Highlights and Potential Targets</td>
<td>A73</td>
</tr>
<tr>
<td>Mineral Exploration Activities</td>
<td>A74</td>
</tr>
<tr>
<td>Conclusion</td>
<td>A80</td>
</tr>
<tr>
<td>INDUSTRIAL MINERALS</td>
<td>A81</td>
</tr>
<tr>
<td>FAME: FINANCIAL ASSISTANCE TO MINERAL EXPLORATION</td>
<td>A84</td>
</tr>
<tr>
<td>Introduction</td>
<td>A84</td>
</tr>
<tr>
<td>FAME Objectives</td>
<td>A84</td>
</tr>
<tr>
<td>FAME Promotion</td>
<td>A84</td>
</tr>
<tr>
<td>Industry Liaison</td>
<td>A85</td>
</tr>
<tr>
<td>FAME Components</td>
<td>A85</td>
</tr>
<tr>
<td>FAME - Impact on Economy</td>
<td>A87</td>
</tr>
<tr>
<td>FAME - Results and Conclusions</td>
<td>A87</td>
</tr>
</tbody>
</table>
OVERVIEW
By V.A. Preto, Manager, District Geology and Coal Resources

INTRODUCTION

Mineral exploration in British Columbia reached record levels in 1987, driven by strong interest in precious metals, flow-through financing, continued exploration successes, and the opening of another new gold mine, at Hedley. The provincial government Financial Assistance for Mineral Exploration (FAME) program was continued for a second year providing $5 million in funding, and contributed significantly to the attainment of such high levels of exploration activity and expenditures.

Major diamond-drilling programs were up 68 per cent, to 150 in 1987 from 89 in 1986. The number of lode and placer claims staked during the year was 89 185, up 37 per cent from the 65 215 claims staked in 1986. Exploration expenditures reached an all-time high of $189 million, double the $94.2 million spent in 1986 and 2.5 times the $80 million spent in 1985 (Figure A1). Fully two-thirds of these expenditures were funded by flow-through shares, with more than 50 companies spending in excess of $1 million each.

Figure A1. Mineral exploration expenditures and number of claims recorded, 1974-1987.
Recent estimates are that 1987 gold production was 11,925,000 grams or 383,400 ounces, up 27 per cent from the 9,391,519 grams or 301,900 ounces produced in 1986. By 1990 production is expected to exceed 18,700,000 grams or 600,000 ounces and thus surpass the peak annual production of 18,000,000 grams achieved in 1939.

There were at least 25 major underground exploration projects in British Columbia during 1987, and at least 50 properties can be listed as having meaningful reserves that are, or are close to being, economically viable. At present, a total of 31 projects have formally entered the government permitting process; 26 of these are for precious metals.

The Nickel Plate mine of Mascot Gold Mines Ltd. officially opened August 17. Mill throughput and gold production to date have exceeded design specifications. Operations continued very successfully at the Blackdome mine which reached full payback within nine months of its opening in May 1986, and at the Brenda, Bell and Endako porphyry mines, all of which re-opened in 1987. A continued strengthening of the price of copper in the year brought welcome relief to all the porphyry copper operations in the province, including the Highland Valley Copper, Island Copper and Similkameen mines.

EXPLORATION HIGHLIGHTS

As in previous years, gold, silver and polymetallic deposits with precious metal values continue to be found in four main environments, with a sprinkling of deposits that are transitional between these models. A summary of exploration highlights by deposit type is given below, followed by more detailed accounts by each of the seven District Geologists.

GOLD-BEARING SKARNS

The importance of this deposit type was emphasized earlier in the year by the opening of the Nickel Plate mine near Hedley. This old mine, now in its third life, has already produced 48.4 million grams of gold from 3.6 million tonnes of underground ore between 1902 and 1957. Pittable reserves are 9.0 million tonnes grading 4.56 grams per tonne with an additional 1.8 million tonnes of similar grade mineable underground. Together with the past production, this brings the known gold content of this deposit to roughly 90 tonnes, with excellent prospects for discovering additional reserves.

British Columbia has more than 300 other recorded skarn occurrences, roughly one-third of which are known to contain gold. Some of these have produced in the past and others are potential producers, for example, the Tillicum Mountain property of Esperanza Explorations Ltd. and deposits at Zeballos on Vancouver Island, on Banks Island and on Texada Island.

Another deposit which is generally regarded as a porphyry system, but which has skarn affinities, is the QR deposit of Placer Dome
Inc., west of Likely. Gold occurs associated with intense propylitic alteration in Upper Triassic volcanics and sediments cut by a consanguineous differentiated syenitic stock. This deposit is at the feasibility stage. The favourable geology that hosts the QR deposit continues to the northwest along the axis of the Quesnel trough where intrusions similar to the QR stock are known to occur in an area of poor exposures. These are obvious targets for deposits similar to the QR, but are also a challenge to the explorationist.

EPITHERMAL DEPOSITS

The search for gold-bearing epithermal systems has continued at a brisk pace for several years with considerable success. The Blackdome mine, located 250 kilometres north of Vancouver, began production in May 1986 at 165 tonnes per day from a classic, high-level epithermal vein system hosted in Eocene subaerial volcanic flows and pyroclastics.

The Toodoggone camp, located 300 kilometres north of Smithers, has been one of the hottest exploration areas in the province for several years. More than $10.6 million were spent in this camp in 1987, compared to $3.5 million the previous year. This increased activity is due to three factors:

* The completion of road access to the area, funded in good part by a $4.5-million government loan.
* The decision by Cheni Gold Mines Inc. to go ahead at a planned production rate of 450 tonnes per day on its Lawyers deposit.
* The considerable success of other projects in the area.

Significant developments in the Toodoggone this year have been the discovery of above-average grade gold-silver mineralization at depths of more than 330 metres at the Lawyers Cliff Creek zone; the tracing of mineralization by drilling and trenching over a strike length in excess of 750 metres at the A1 deposit; and the discovery of gold-bearing skarn at Cheni Gold’s Acapulco prospect.

Another very promising deposit is the Mount Washington property of Better Resources Ltd. on Vancouver Island. Mineralization is associated with a Tertiary quartz porphyry and breccia eruptive centre cutting Cretaceous Nanaimo Group sediments and Triassic Karmutsen volcanic rocks and occurs in tabular, shallow-dipping alteration zones locally up to 30 metres thick. Sulphides are mainly pyrite and arsenopyrite.

Resources (Canada) Ltd. has completed a thorough re-assessment of the Cinola deposit which represents the exposed middle to upper levels of a Tertiary epithermal hot-spring-type precious metal system.

VOLCANIC AND CLASTIC-HOSTED MASSIVE SULPHIDE DEPOSITS

Another important target is massive sulphide mineralization
with precious metal values. On Vancouver Island, Abermin Corporation has continued an aggressive exploration program on its Lara property near Chemainus, and has announced its decision to go underground with a decline early in 1988.

The Adams Lake area, 65 kilometres northeast of Kamloops, has been the focus of intense exploration activity since late 1983, when A. Hilton discovered gold-bearing massive sulphides (Rea Gold) near Johnson Lake. The discovery in late 1985 of the Samatosum silver deposit by Minnova Inc. has opened up a new target in this area. This project has just entered the government permitting process. Mineralization is localized in tuffaceous sediments of the Paleozoic Eagle Bay assemblage, that lie on top of a thick sequence of mafic volcanics of similar age. Sulphides include tetrahedrite, galena, sphalerite, chalcopyrite and pyrite. Recently released reserve estimates are 595 000 tonnes of open-pitiable ore, grading 1097 grams per tonne silver, 1.78 grams per tonne gold, 3.5 per cent zinc, 1.7 per cent lead and 1.2 per cent copper. Similar mineralization is being explored on the nearby Twin and Kamad properties by Esso Minerals Canada.

In the extreme northwestern corner of the province, Geddes Resources Ltd. is carrying out a major underground program at the 300-million-tonne plus Windy Craggy copper-gold-cobalt massive sulphide deposit.

VEIN DEPOSITS TRANSITIONAL TO PORPHYRY DEPOSITS

A number of gold deposits that can be classified as transitional between epithermal and porphyry systems occur in northwestern British Columbia and are in the advanced exploration and development stage.

Underground development work continued at the Dome Mountain property of Teeshin Resources Ltd. 40 kilometres east of Smithers. Gold-silver mineralization occurs in a number of mesothermal, sheeted quartz veins in Early to Middle Jurassic volcanics and sediments. This deposit is at the feasibility stage.

The Stewart - Iskut River gold belt is one of the busiest, most exciting and promising areas in the province. At the southeast end of this belt, near Stewart, Westmin Resources Limited has decided to proceed with its Premier gold project. Quartz stockwork mineralization occurs in Early Jurassic andesitic volcanics intruded by the subvolcanic Premier porphyries. An open-pit operation at 1800 tonnes per day, with capital costs in excess of $80 million, is anticipated. If past production is added to the 21 million grams of gold and 615 million grams of silver represented by the current reserves, the total known mineable precious metals contained in the Silbak Premier and Big Missouri deposits is 76 tonnes of gold and about 1875 tonnes of silver.

Forty-two kilometres northwest of Silbak Premier, another very active camp is the Sulphurets area, where at least 18 separate mineralized zones have been located in Early Jurassic volcanics intruded by syenites. Mineralization in these zones ranges from copper-molybdenum-gold to disseminated gold to complex gold-silver vein and
stockwork systems to simple epithermal veins. The West zone at Brucejack Lake continues to be the target of an aggressive underground development program by Newhawk Gold Mines Ltd. Drill-indicated and inferred reserves are 1.36 million tonnes grading 17.35 grams per tonne gold and 692 grams per tonne silver.

Perhaps the most exciting developments are occurring 50 kilometres to the northwest, at the Iskut River end of the belt, where Skyline Explorations Ltd. is moving ahead with production plans for its Stonehouse (Reg) deposit. Gold-silver-copper mineralization here occurs in a number of lenses or veins along a fracture system in Lower Jurassic volcanioclastic and sedimentary rocks and has been traced for a strike length of 1.5 kilometres. This deposit is transitional between a porphyry system at depth and a mesothermal vein system above.

The Iskut camp was one of the busiest areas in the province in 1987 with exploration expenditures of roughly $10 million and at least 15 companies carrying out major programs. Most notable amongst these is the Cominco Ltd. - Delaware Resources Corp. joint venture’s Snip property, where a major drilling program has produced drill-indicated reserves of 1.1 million tonnes grading 24 grams per tonne gold in a system of well-defined quartz veins over a strike length of 900 metres and a vertical extent of more than 300 metres. Facilities at this property are being upgraded and a major underground program is underway. This property is one of the two most significant and promising developments in the province in 1987.

West of Dease Lake, the North American Metals Corporation - Chevron Minerals Ltd. joint venture continued with underground development work on the Golden Bear deposit. Gold mineralization occurs in silicified and breccia zones along a major fault zone between Permian limestone and upper Triassic andesites. This deposit is vein type with epithermal characteristics. The best mineralization is in flexures or rolls in the fault system. Proven reserves in the Bear main zone are approximately 625 000 tonnes grading 18.6 grams per tonne gold. The project is at the feasibility stage.

Southeast of Revelstoke, near the old mining town of Camborne, very promising results have been obtained by Granges Exploration Ltd. from extensive drilling on the Goldfinch property. Native gold and tetrahedrite occur in structurally controlled quartz veins in Paleozoic metasedimentary and metavolcanic rocks of the Broadview and Jowett formations.

OTHER DEPOSITS OF INTEREST

A number of other gold deposits of different types are highlights on the British Columbia scene. Some are at the advanced underground development stage, for example, the Abo deposit of the Bema Industries Ltd. - Kerr Addison Mines Limited joint venture at Harrison Lake and the Willa property of Northair Mines Limited near Slocan.

On Vancouver Island, Westmin Resources Limited, in joint venture with Nexus Resources Corporation and Angle Resources Limited, has begun a major underground exploration program on the Debbie
property, southeast of Port Alberni. This large property ranks with the Snip as one of the two most significant developments in the province in 1987. Gold mineralization occurs in Sicker Group rocks near the old Thistle mine, a massive sulphide deposit, and is found in at least three different zones:

* The 900 zone: a magnetite-jasper-sulphide-bearing chert with quartz-vein stockwork in footwall basalt.

* The Mineral Creek zone: an area of extensive quartz-carbonate alteration associated with north-trending faults that may be related to Tertiary thrusts or steep reverse faults.

* The Linda zone: consisting of separate quartz vein structures.

ACKNOWLEDGMENTS

The articles which follow provide more detail of the activity in each of the seven District Geologist's areas. A separate section is devoted to industrial minerals exploration. Details of exploration work completed are provided, on a project by project basis, in Table A1 and key statistics for operating mines are listed in Table A2. Both tables are referenced to location maps (Figures A2 and A3) and in the text of the reports that follow. Information on mineral exploration programs was supplied to the District Geologists, either directly or through press releases, by the many exploration companies active throughout the province. Mineral claims and exploration expenditure statistics were supplied by the ministry's Mineral Titles Branch and by the British Columbia and Yukon Chamber of Mines. Input was by Debbie Bulinckx and Sherry Dick, and editing by John Newell. The cooperation and contributions of these individuals and agencies are gratefully acknowledged.
Figure A2. Selected exploration and development projects in British Columbia, 1987.
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Windy-Craggy (Geddes Resources)</td>
<td>114P-002</td>
<td>Atlin</td>
<td>114P/7E</td>
<td>Ag, Au, Cu, Pb, Zn, Ba</td>
<td>volcanogenic massive sulphide</td>
<td>> 1000 m of underground development; 2 ddh, 587 m; geological mapping</td>
</tr>
<tr>
<td>2</td>
<td>Tats (Geddes Resources)</td>
<td>114P-003</td>
<td>Atlin</td>
<td>114P/12E</td>
<td>Cu, Co, Au</td>
<td>massive sulphide</td>
<td>3 ddh, 346 m; geological mapping</td>
</tr>
<tr>
<td>3</td>
<td>Rime (St. Joe Canada)</td>
<td>114P-064, 114P-068</td>
<td>Atlin</td>
<td>114P/11, 7W, 8W</td>
<td>Au, Ag, Cu, Pb, Zn, Ba</td>
<td>vein and volcanogenic massive sulphide</td>
<td>2 ddh, approx. 700 m; 5 ddh, 1433 m; sampling</td>
</tr>
<tr>
<td>4</td>
<td>Low Herbert, Grizzly Heights (Stryker Resources/Freeport Resources)</td>
<td>104N-009</td>
<td>Atlin</td>
<td>104N/11W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>8 ddh, 1778 m; geological mapping; geochem.; VLF-EM, mag.</td>
</tr>
<tr>
<td>5</td>
<td>Engineer (Total Erickson Resources)</td>
<td>104M-014</td>
<td>Atlin</td>
<td>104M/8E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>rcrd, 3000 m</td>
</tr>
<tr>
<td>6</td>
<td>Pictou (Homestake Mineral Development)</td>
<td>104N-044</td>
<td>Atlin</td>
<td>104N/12E</td>
<td>Au</td>
<td>vein</td>
<td>15 ddh, 2550 m; rcrd</td>
</tr>
<tr>
<td>7</td>
<td>Yellowjacket (Homestake Mineral Development)</td>
<td>104N-043</td>
<td>Atlin</td>
<td>104N/12E</td>
<td>Au</td>
<td>vein</td>
<td>10 ddh, 1399 m; mag., VLF-EM</td>
</tr>
<tr>
<td>8</td>
<td>Spruce Creek/Shuksan (Placer Dome)</td>
<td>104N-098</td>
<td>Atlin</td>
<td>104N/11W</td>
<td>Au</td>
<td>vein</td>
<td>11 ddh, 1250 m; geological mapping; geochem.; mag., VLF-EM, IP; bulk sampling</td>
</tr>
<tr>
<td>9</td>
<td>Lakeview (Cream Silver Mines)</td>
<td>104N-009</td>
<td>Atlin</td>
<td>104N/11W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>12 ddh, 1128 m; geological mapping; geophys.</td>
</tr>
<tr>
<td>10</td>
<td>Ruby Mountain (Cream Silver Mines)</td>
<td>104N-006</td>
<td>Atlin</td>
<td>104N/11W</td>
<td>Pb, Zn, Sn, W</td>
<td>skarn</td>
<td>approx. 7 ddh, approx. 4000 m; geological mapping</td>
</tr>
<tr>
<td>11</td>
<td>Tulsequah Chief (Cominco)</td>
<td>104K-002</td>
<td>Atlin</td>
<td>104K/11, 12</td>
<td>Ag, Au, Pb, Zn, Cu</td>
<td>volcanogenic massive sulphide</td>
<td>Trenching; geological mapping; 40 ddh, 3509 m on all Chevron properties</td>
</tr>
<tr>
<td>12</td>
<td>Outlaw (Chevron Canada Resources/Diamet Minerals/Lightning Creek Mines)</td>
<td>104K/083</td>
<td>Atlin</td>
<td>104K/10W</td>
<td>Au, Ag, Mn, Pb, Zn</td>
<td>vein</td>
<td>ddh (see above)</td>
</tr>
<tr>
<td>13</td>
<td>Nis (Chevron Canada Resources/Diamet Minerals/Lightning Creek Mines)</td>
<td>104K-081</td>
<td>Atlin</td>
<td>104K/8W</td>
<td>Au</td>
<td>vein</td>
<td>ddh (see above)</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name (Owner/Operator)</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>14</td>
<td>Tot (Chevron Canada Resources/ Diamet Minerals/ Lightning Creek Mines)</td>
<td>104K/037</td>
<td>Atlin</td>
<td>104K/8W</td>
<td>Sb, Au</td>
<td>vein</td>
<td>ddh (see above)</td>
</tr>
<tr>
<td>15</td>
<td>Tut (Chevron Canada Resources/ Diamet Minerals/ Lightning Creek Mines)</td>
<td>104K/080</td>
<td>Atlin</td>
<td>104K/8W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>ddh (see above)</td>
</tr>
<tr>
<td>16</td>
<td>Slam (Chevron Canada Resources/ Diamet Minerals/ Lightning Creek Mines)</td>
<td>104K/082</td>
<td>Atlin</td>
<td>104K/1E</td>
<td>Au, Ag, Sb</td>
<td>vein</td>
<td>ddh (see above)</td>
</tr>
<tr>
<td>17</td>
<td>Golden Bear/Muddy Lake (North American Metals B.C./Chevron Canada Resources)</td>
<td>104K/079</td>
<td>Atlin</td>
<td>104K/1W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>77 underground ddh, 3490 m; 1124 m underground development; road survey; feasibility study</td>
</tr>
<tr>
<td>18</td>
<td>Silverknife (Reg Resources/Terly Resources/Chevron Canada Resources)</td>
<td>Liard</td>
<td>1040/16W</td>
<td>Ag, Pb, Zn</td>
<td>manto</td>
<td></td>
<td>17 ddh, 1800 m</td>
</tr>
<tr>
<td>19</td>
<td>McName (Cassiar Mining)</td>
<td>104P-084</td>
<td>Liard</td>
<td>104P/5E</td>
<td>Asbestos</td>
<td>ultramafic</td>
<td>212 m underground development; feasibility study</td>
</tr>
<tr>
<td>20</td>
<td>Erickson Gold (Total Erickson Resources)</td>
<td>104P-019, 070, 029</td>
<td>Liard</td>
<td>104/4E</td>
<td>Au</td>
<td>vein</td>
<td>23 ddh, 2300 m; trenching; soil sampling; geological mapping</td>
</tr>
<tr>
<td>21</td>
<td>Taurus Mine/Cornucopia (Taurus Resources)</td>
<td>104P-012</td>
<td>Liard</td>
<td>104/5E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>Underground drifting; 400 m drilling on Snowy Creek; 1 ddh, 76 m in Sable area; Hopeful adit</td>
</tr>
<tr>
<td>22</td>
<td>Thibert Creek (Equity Silver Mines)</td>
<td>104J-007</td>
<td>Liard</td>
<td>104J/13E</td>
<td>Au, Pt</td>
<td>alteration zone</td>
<td>ddh, 762 m</td>
</tr>
<tr>
<td>23</td>
<td>Discovery (Duke Minerals)</td>
<td>104G-023</td>
<td>Liard</td>
<td>104G/2W</td>
<td>Au</td>
<td></td>
<td>4 ddh, 457 m</td>
</tr>
<tr>
<td>24</td>
<td>Paydirt (Long Reach Resources)</td>
<td>104G-023</td>
<td>Liard</td>
<td>104G/3W, 4E</td>
<td>Au</td>
<td>vein</td>
<td>4 ddh, 61 m; 65.5 m adit</td>
</tr>
<tr>
<td>25</td>
<td>Bank (Lac Minerals)</td>
<td>104G-107</td>
<td>Liard</td>
<td>104G/1W, 2E</td>
<td>Au, Cu, Ag</td>
<td>vein, porphyry</td>
<td>9 ddh, 1067 m; IP</td>
</tr>
<tr>
<td>26</td>
<td>Bam (Radcliffe Resources)</td>
<td>104G-027</td>
<td>Liard</td>
<td>104G/2W</td>
<td>Au, Cu, Ag</td>
<td>porphyry?</td>
<td>9 ddh, 851 m; geological mapping; IP; trenching</td>
</tr>
<tr>
<td>27</td>
<td>McClymont (Gulf International Minerals)</td>
<td>104G-126</td>
<td>Liard</td>
<td>104G/15W</td>
<td>Cu, Ag, Au</td>
<td>vein</td>
<td>39 ddh, 3400 m; trenching; geological mapping; geophys.</td>
</tr>
<tr>
<td>No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>28</td>
<td>Sky 5 (Hector Resources)</td>
<td>104B/107 Liard</td>
<td>104B/10E</td>
<td>Au,Ag,Cu</td>
<td>vein</td>
<td>15 ddh, 621 m; geological mapping; sampling; airborne mag., EM</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Reg/Johnny Mountain (Skyline Explorations)</td>
<td>104B/107 Liard</td>
<td>104B/11E</td>
<td>Au,Ag,Cu</td>
<td>vein</td>
<td>157 ddh, 13 665 m; 226 m raise development; 551.4 m drifting; airstrip extended to 1700 m; mill site prepared</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Snip/Bron (Cominco/Delaware Resources)</td>
<td>104B/004 Liard</td>
<td>104B/11</td>
<td>Au,Ag,Zn</td>
<td>vein</td>
<td>Cu</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Waratah (Tungco Resources)</td>
<td>104B/10W Liard</td>
<td>104B/10E</td>
<td>Au</td>
<td>vein</td>
<td>11E</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Hemlo West (Delaware Resources/American Ore/Golden Bend Resources)</td>
<td>104B/11E Liard</td>
<td>104B/11E</td>
<td>Au</td>
<td>vein</td>
<td>8 ddh, 956 m; trenching; geological mapping; soil sampling</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Handel (Winslow Gold)</td>
<td>104B/10W Liard</td>
<td>104B/10W</td>
<td>Au</td>
<td>vein</td>
<td>11E</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Inel (Inel Resources)</td>
<td>104B-113 Liard</td>
<td>104B/10W</td>
<td>Cu,Zn,Pb, Au,Ag,Mo</td>
<td>vein</td>
<td>Underground development</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Gossan (Western Canadian Mining)</td>
<td>104B/10W Liard</td>
<td>104B/10W</td>
<td>Au,Ag,Cu</td>
<td>massive sulphide</td>
<td>18 ddh, 2219 m; trenching; geological mapping; geochem.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Snip (Teck Corporation)</td>
<td>104B-116 Liard</td>
<td>104B/10W</td>
<td>Cu,Au</td>
<td>vein</td>
<td>8 ddh, 1115 m; geological mapping; mag.</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Doc/Globe (Magna Ventures)</td>
<td>104B-015 Skeena</td>
<td>104B/8W</td>
<td>Au,Ag,Pb</td>
<td>vein</td>
<td>300 m drifting; underground dd; soil sampling</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Konkin Gold Zone/Treaty Creek (Teuton Resources)</td>
<td>104B-078 Skeena</td>
<td>104B/9E</td>
<td>Au,Cu,Ag, Pb,Zn</td>
<td>skarn</td>
<td>3 ddh, 183 m</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Sulphurets/Red River (Newhawk Gold Mines, Lacana Mining/Granduc Mines)</td>
<td>104B-118, 022 Skeena</td>
<td>104B/8E</td>
<td>Ag,Au</td>
<td>vein</td>
<td>94 ddh, 10 668 m; decline advanced 157 m; 59 m underground development; access road completed; Underground development started; 43 ddh, 4117 m; trenching</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Gold Wedge (Catear Resources)</td>
<td>104B/105 Skeena</td>
<td>104B/8E</td>
<td>Au,Ag</td>
<td>vein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>41</td>
<td>Kerr (Western Canadian Mining)</td>
<td>104B-100</td>
<td>Skeena</td>
<td>104B/8E</td>
<td>Au, Ag, Cu</td>
<td>porphyry, vein</td>
<td>14 ddh, 1450 m; trenched; geochem.</td>
</tr>
<tr>
<td>42</td>
<td>Mount Madge (Bighorn Development/Cedar Resources)</td>
<td>104B-074</td>
<td>Skeena</td>
<td>104B/8E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>6 ddh, 650 m; geological mapping; geochem.</td>
</tr>
<tr>
<td>43</td>
<td>Scottie (Royal Scot Resources)</td>
<td>104B-083</td>
<td>Skeena</td>
<td>104B/1E</td>
<td>Ag, Au, Cu</td>
<td>vein</td>
<td>Underground 5 ddh, 1524 m</td>
</tr>
<tr>
<td>44</td>
<td>Silver Butte (Tanajon Silver)</td>
<td>104B-046</td>
<td>Skeena</td>
<td>104B/1E</td>
<td>Ag, Au</td>
<td>vein</td>
<td>23 ddh, 3810 m; >365 m edit started</td>
</tr>
<tr>
<td>45</td>
<td>Big Missouri (Westmin Resources/Silbak Premier Mines)</td>
<td>104B-054</td>
<td>Skeena</td>
<td>104B/1E</td>
<td>Au, Ag, Cu</td>
<td>vein</td>
<td>92 ddh, 7292 m</td>
</tr>
<tr>
<td>46</td>
<td>Silbak Premier (Westmin Resources/Silbak Premier Mines)</td>
<td>104A-001</td>
<td>Skeena</td>
<td>104A/4,5</td>
<td>Au, Cu</td>
<td>vein</td>
<td>Phase I, 44 ddh, 5238 m underground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>geological mapping; feasibility study</td>
</tr>
<tr>
<td>47</td>
<td>Todd Creek (Noranda Exploration/Golden Nevada Resources)</td>
<td>104A-0372</td>
<td>Skeena</td>
<td>104A/4W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>6 ddh, 1036 m; access road; trenched</td>
</tr>
<tr>
<td>48</td>
<td>Joutel/Red Cliff? (Joutel Resources)</td>
<td>104A-0377</td>
<td>Skeena</td>
<td>104A/4W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>5504 m underground development; 1488 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>underground ddh</td>
</tr>
<tr>
<td>49</td>
<td>Dolly Varden (Dolly Varden Minerals)</td>
<td>103P-188</td>
<td>Skeena</td>
<td>103P/11W</td>
<td>Ag, Pb, Zn, Cu</td>
<td>vein</td>
<td>5 ddh, 720 m; UTBM and mag.</td>
</tr>
<tr>
<td>50</td>
<td>Kit (Cominco)</td>
<td>104P-245</td>
<td>Skeena</td>
<td>103P/11W</td>
<td>Ag</td>
<td>shear zone</td>
<td>6 ddh, 1517 m; 30 km UTBM and mag.</td>
</tr>
<tr>
<td>51</td>
<td>Anyox/Hidden Creek (Cominco)</td>
<td>103P-021</td>
<td>Skeena</td>
<td>103P/5W</td>
<td>Cu, Au, Ag, Zn</td>
<td>volcanic massive sulphide</td>
<td>approx. 15 ddh; geochem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7 ddh, 464 m; VLP-RM</td>
</tr>
<tr>
<td>52</td>
<td>Porcher Island (Imperial Metals)</td>
<td>103J-002</td>
<td>Skeena</td>
<td>103J/1W</td>
<td>Au</td>
<td>vein</td>
<td>71 ddh, 8018 m; trenching</td>
</tr>
<tr>
<td>53</td>
<td>Keech/Banker (Gold Ventures)</td>
<td>103K-010</td>
<td>Skeena</td>
<td>103H/5W</td>
<td>Au, Zn</td>
<td>shear</td>
<td>1 ddh, 155 m; detailed rock sampling;</td>
</tr>
<tr>
<td>54</td>
<td>Yellow Giant (Trader Mines)</td>
<td>103G-024</td>
<td>Skeena</td>
<td>103G/5W</td>
<td>Au</td>
<td>vein</td>
<td>geological mapping; mag.</td>
</tr>
<tr>
<td>55</td>
<td>Skarn (Trader Resources)</td>
<td>Skeena</td>
<td>103G/8E</td>
<td></td>
<td>V, Ti, Pt</td>
<td>ultramafic</td>
<td>3 ddh, 395 m; trenched</td>
</tr>
<tr>
<td>56</td>
<td>Burn/Portland (Terracamp Development)</td>
<td>103I-019</td>
<td>Skeena</td>
<td>103I/10W, 15W</td>
<td>Au, Ag, Cu</td>
<td>vein</td>
<td>6 ddh</td>
</tr>
<tr>
<td>57</td>
<td>Kalum (Cannon Exploration)</td>
<td>103I-118</td>
<td>Skeena</td>
<td>103I/15W, 15W</td>
<td>Au</td>
<td>vein</td>
<td>4 ddh, 210m; geo-phys.; geochem.</td>
</tr>
<tr>
<td>58</td>
<td>Kitimat (BP Resources Canada)</td>
<td>Skeena</td>
<td>103I/2B</td>
<td></td>
<td>Au</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINEFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS No.</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>59</td>
<td>Al (Energex Minerals)</td>
<td>94E-091</td>
<td>Skeena</td>
<td>94E/6W</td>
<td>Au</td>
<td>vein</td>
<td>122 ddh, 8667 m; 165 trenches, 12 000 m; soil sampling</td>
</tr>
<tr>
<td>60</td>
<td>Mets (Manson Creek Resources)</td>
<td>94E-093</td>
<td>Omineca</td>
<td>94E/6E</td>
<td>Au,Ag</td>
<td>vein</td>
<td>40 ddh, 6060 m; geological mapping; geochem.; trenching 1 ddh, 84 m; 3 trenches</td>
</tr>
<tr>
<td>61</td>
<td>Metsantan (American Ore)</td>
<td>94E-064</td>
<td>Omineca</td>
<td>94E/6W</td>
<td>Au,Ag</td>
<td>alteration zone</td>
<td>11 ddh, 1067 m; VLF-EM, IP; geochem.</td>
</tr>
<tr>
<td>62</td>
<td>Moosehorn (Cyprus Metals Canada)</td>
<td>94E-086</td>
<td>Omineca</td>
<td>94E/6E, 7W</td>
<td>Au,Ag</td>
<td>vein</td>
<td>18 ddh, 1859 m</td>
</tr>
<tr>
<td>63</td>
<td>Golden Stranger (Western Horizon Resources)</td>
<td>94E-076</td>
<td>Omineca</td>
<td>94E/6</td>
<td>Au,Ag</td>
<td>vein</td>
<td>49 ddh, 10 432 m; millite preparation; Omineca Mine Road extension; development adit started</td>
</tr>
<tr>
<td>64</td>
<td>Lawyers (Cheni Gold Mines)</td>
<td>94E-066, 067, 074</td>
<td>Omineca</td>
<td>94E/6E, 7W</td>
<td>Ag,Au</td>
<td>vein</td>
<td>99 ddh, 12 935 m; trenching</td>
</tr>
<tr>
<td>65</td>
<td>Silver Pond (St. Joe Canada)</td>
<td>94E-069</td>
<td>Omineca</td>
<td>94E/6</td>
<td>Au,Ag</td>
<td>vein</td>
<td>28 ddh, 3616 m; VLF-EM</td>
</tr>
<tr>
<td>66</td>
<td>Perry Mason (Cheni Gold Mines)</td>
<td>94E-068, 069</td>
<td>Omineca</td>
<td>94E/6E</td>
<td>Au,Ag</td>
<td>vein</td>
<td>8 ddh, 1123 m</td>
</tr>
<tr>
<td>67</td>
<td>Chappelle/Baker (Multinational Mining)</td>
<td>94E-026</td>
<td>Omineca</td>
<td>94E/6E</td>
<td>Ag,Au</td>
<td>vein</td>
<td>8 ddh; access road; 38 trenches</td>
</tr>
<tr>
<td>68</td>
<td>Shasta/Shas (Esso Minerals Canada)</td>
<td>92E-050</td>
<td>Omineca</td>
<td>94E/2,3, 6,7</td>
<td>Au,Ag,Pb,</td>
<td>vein</td>
<td>24 ddh, 220 m; trenching soil and rock sampling</td>
</tr>
<tr>
<td>69</td>
<td>Brenda (Canasil Resources)</td>
<td>94E-058</td>
<td>Omineca</td>
<td>94E/7W</td>
<td>Au,Ag</td>
<td>vein</td>
<td>5 ddh, 856 m; mag.</td>
</tr>
<tr>
<td>70</td>
<td>Acapulco (Cheni Gold Mines)</td>
<td>94E-058</td>
<td>Omineca</td>
<td>94E/2W</td>
<td>Cu,Zn,Pb, Ag</td>
<td>skarn</td>
<td>2 ddh, 323 m</td>
</tr>
<tr>
<td>71</td>
<td>Marmot (Cheni Gold Mines)</td>
<td>94E-073</td>
<td>Omineca</td>
<td>94E/6E</td>
<td>Au,Ag,Pb</td>
<td>vein</td>
<td>5 ddh, 883 m</td>
</tr>
<tr>
<td>72</td>
<td>Wrich (Cheni Gold Mines)</td>
<td>94E-082</td>
<td>Omineca</td>
<td>94E/2E</td>
<td>Au,Ag,Pb, Zn,Cu</td>
<td>vein</td>
<td>10 ddh, 914 m</td>
</tr>
<tr>
<td>73</td>
<td>Motase Lake (Prolific Petroleum)</td>
<td>94D-001</td>
<td>Omineca</td>
<td>94D/3E</td>
<td>Au,Ag</td>
<td>vein</td>
<td>25 ddh, 1690 m; geochem. mag.</td>
</tr>
<tr>
<td>74</td>
<td>Tommy Jack/Goodridge and Bish</td>
<td>94D-031, 036</td>
<td>Omineca</td>
<td>94D/4E</td>
<td>Au,Ag,Pb, Zn</td>
<td>vein</td>
<td>16 ddh, 1883 m; geological mapping</td>
</tr>
<tr>
<td>75</td>
<td>Bell (Noranda)</td>
<td>93M-001</td>
<td>Omineca</td>
<td>93M/1W</td>
<td>Cu,Au</td>
<td>porphyry</td>
<td>10 ddh; geochem.; max-min, mag.</td>
</tr>
<tr>
<td>76</td>
<td>Danny Boy (Gold Canyon Resources)</td>
<td>93L-220</td>
<td>Omineca</td>
<td>93L/16E</td>
<td>Cu</td>
<td>massive sulphide</td>
<td>16 ddh, 1883 m; geological mapping</td>
</tr>
</tbody>
</table>

A16
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINEFILE Name (Owner/Operator)</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>Skilokis Creek (Noranda Exploration/Atna Resources)</td>
<td>Omineca</td>
<td>93M/3</td>
<td></td>
<td>Ag, Au, Cu, vein</td>
<td></td>
<td>3 ddh, 185 m; geochem.</td>
</tr>
<tr>
<td>79</td>
<td>Lucky Boy (AJM Metals)</td>
<td>103T/1461</td>
<td>Omineca</td>
<td>103I-9W</td>
<td>Au</td>
<td>vein</td>
<td>> 4 ddh, > 399 m; geochem.; mag., VLF-EM</td>
</tr>
<tr>
<td>80</td>
<td>Red Rose (Freeport Resources)</td>
<td>93M-007</td>
<td>Omineca</td>
<td>93M/4E</td>
<td>Au, Ag, W, vein</td>
<td>Cu, Mo, U</td>
<td>2 ddh, 457 m; ungraded access road</td>
</tr>
<tr>
<td>81</td>
<td>Free Gold/SK (Total Erickson Resources)</td>
<td>93L-023</td>
<td>Omineca</td>
<td>93L/15E</td>
<td>Au, Ag, Pb, vein</td>
<td>Zn, Cu</td>
<td>4 ddh, 349 m</td>
</tr>
<tr>
<td>82</td>
<td>Dome Mountain (Teeshin Resources, Canadian United Minerals, Total Erickson Resources)</td>
<td>93L-022</td>
<td>Omineca</td>
<td>93L/10, 15E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>428 m underground work; 43 ddh</td>
</tr>
<tr>
<td>83</td>
<td>Emerson (Lornex Mining)</td>
<td>93L-032</td>
<td>Omineca</td>
<td>93L/7W</td>
<td>Ag, Au, Pb, vein</td>
<td>Zn</td>
<td>5 ddh, 327 m; IP</td>
</tr>
<tr>
<td>84</td>
<td>Canyon (Lacana Mining)</td>
<td>93L-031</td>
<td>Omineca</td>
<td>93L/7W</td>
<td>Cu, Au</td>
<td>skarn</td>
<td>6 ddh, 914 m; trenching; geological mapping; geochem.</td>
</tr>
<tr>
<td>85</td>
<td>Mineral Hill (Dafrey Resources)</td>
<td>Omineca</td>
<td>93L/10E</td>
<td></td>
<td>Ag, Cu, Mo, transitional Zn, Pb</td>
<td>vein</td>
<td>305 m ddh</td>
</tr>
<tr>
<td>86</td>
<td>Topley (Bishop Resources)</td>
<td>93L-015, 016</td>
<td>Omineca</td>
<td>93L/9E</td>
<td>Ag, Cu, Pb, vein</td>
<td>Zn, Au</td>
<td>3 ddh</td>
</tr>
<tr>
<td>87</td>
<td>Richfield (Esso Minerals Canada)</td>
<td>93L-018</td>
<td>Omineca</td>
<td>93L/9E</td>
<td>Ag, Au, Zn, vein</td>
<td>Cu</td>
<td>4 ddh, 1134 m; 75 rodh, 5485 m</td>
</tr>
<tr>
<td>88</td>
<td>Bob Creek/Gold Brick (Jard Silver and Gold)</td>
<td>93L-009</td>
<td>Omineca</td>
<td>93L/7E</td>
<td>Au, Ag, Zn</td>
<td>vein</td>
<td>ddh</td>
</tr>
<tr>
<td>89</td>
<td>Silver Queen (Houston Metals)</td>
<td>93L-002</td>
<td>Omineca</td>
<td>93L/2</td>
<td>Au, Ag, Pb, vein</td>
<td>Zn, Ga, Ge</td>
<td>26 surface ddh, 2864 m; 39 underground ddh, 1668 m; 283 m decline; 300 m crosscut; 764 m drifting; metallurgical studies</td>
</tr>
<tr>
<td>90</td>
<td>Sam (Faraway Gold Mines)</td>
<td>93L-260</td>
<td>Omineca</td>
<td>93L/1W</td>
<td>Ag, Cu, Zn, Pb</td>
<td></td>
<td>36 ddh, 5927 m</td>
</tr>
<tr>
<td>91</td>
<td>Equity Silver mine (Equity Silver Mines)</td>
<td>93L-001</td>
<td>Omineca</td>
<td>93L/1W</td>
<td>Ag, Au, Cu</td>
<td>transitional</td>
<td>13 000 m ddh</td>
</tr>
<tr>
<td>92</td>
<td>Gaul (Teck Corp./Equity Silver Mines)</td>
<td>93L-256</td>
<td>Omineca</td>
<td>93L/1W</td>
<td>Ag, Au, Cu</td>
<td>transitional</td>
<td>6 ddh, 914 m</td>
</tr>
<tr>
<td>93</td>
<td>Dee (Normine Resources)</td>
<td>Omineca</td>
<td>93L/1E</td>
<td></td>
<td>Pb, Zn, Mo,</td>
<td>transitional</td>
<td>4 ddh, 653 m</td>
</tr>
</tbody>
</table>

A17
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name (Owner/Operator)</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTZ</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>New Moon (Newmont Exploration)</td>
<td>93E-011</td>
<td>Omineca</td>
<td>93E/13</td>
<td>Pb,Zn,Au,Ag</td>
<td>vein</td>
<td>13 ddh, 1075 m; surface sampling and geological mapping</td>
</tr>
<tr>
<td>95</td>
<td>Coles Creek (Westbank Resources)</td>
<td>93E-041?</td>
<td>Omineca</td>
<td>93E/11</td>
<td>Pb,Zn,Cu,Ag</td>
<td></td>
<td>914 m ddh</td>
</tr>
<tr>
<td>96</td>
<td>Lean-To (Landsdowne Oil and Minerals)</td>
<td>93E-105</td>
<td>Omineca</td>
<td>93E/11E</td>
<td>Cu,Ag,Au</td>
<td>transitional</td>
<td>5 ddh, 610 m</td>
</tr>
<tr>
<td>97</td>
<td>Troitsa (Alpine Explorations)</td>
<td></td>
<td>Omineca</td>
<td>93L/11E</td>
<td>Au</td>
<td>vein</td>
<td>5 ddh, 900 m; EM</td>
</tr>
<tr>
<td>98</td>
<td>Klappan (Gulf Canada Resources)</td>
<td></td>
<td>Omineca/Liard</td>
<td>104/H/1,2, 3,6,7,8, 9,10,11</td>
<td>Coal</td>
<td></td>
<td>34 ddh, 5000 m; Stage II submission; detailed geological mapping</td>
</tr>
<tr>
<td>99</td>
<td>Bulkley (Atna Resources)</td>
<td>93M-095</td>
<td>Omineca</td>
<td>93M/3W</td>
<td>Coal</td>
<td></td>
<td>2 ddh</td>
</tr>
</tbody>
</table>

CENTRAL DISTRICT

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name (Owner/Operator)</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTZ</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>QR (Placer Dome)</td>
<td>93A-040</td>
<td>Cariboo</td>
<td>93A/12W</td>
<td>Au</td>
<td>transitional</td>
<td>porphyry</td>
</tr>
<tr>
<td>101</td>
<td>G (Gabriel Resources)</td>
<td>93G-004, 007, 008</td>
<td>Cariboo</td>
<td>93G/1E</td>
<td>Au</td>
<td>remobilized</td>
<td>volcanicogenic massive sulphide phyllite-hosted gold</td>
</tr>
<tr>
<td>102</td>
<td>Frasergold (Eureka Resources joint venture)</td>
<td>93A-150</td>
<td>Cariboo</td>
<td>93A/7E</td>
<td>Au</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>CPW (Fundata Gold Corp. joint venture)</td>
<td>93A-061, 141</td>
<td>Cariboo</td>
<td>93A/12E</td>
<td>Au</td>
<td>phyllite-hosted gold</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>AK (International Rhodes/Noranda)</td>
<td>93H-133</td>
<td>Cariboo</td>
<td>93H/6</td>
<td>Au,Ag</td>
<td>replacement veins</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>May Be (Gibraltar Mines)</td>
<td></td>
<td>Cariboo</td>
<td>93A/14</td>
<td>Ag,Pb,Zn</td>
<td>replacement vein</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Cariboo Hudson (Cathedral Gold)</td>
<td>93A-071, 093</td>
<td>Cariboo</td>
<td>93A/14W</td>
<td>Au</td>
<td>mesothermal veins</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Takla-Rainbow (Cathedral Gold)</td>
<td>93N-082</td>
<td>Omineca</td>
<td>93N/11W</td>
<td>Au</td>
<td>mesothermal vein</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Axelgold (Cathedral Gold)</td>
<td>93N-196</td>
<td>Omineca</td>
<td>93N/13W</td>
<td>Au</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Tas (Noranda joint venture)</td>
<td>93K-080</td>
<td>Omineca</td>
<td>93K/16E</td>
<td>Au</td>
<td>porphyry related</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Snowbird (X-Cal Resources)</td>
<td>93K-036</td>
<td>Omineca</td>
<td>93K/7E, 8W</td>
<td>Au</td>
<td>quartz-stibnite veins</td>
<td></td>
</tr>
</tbody>
</table>

A18
<table>
<thead>
<tr>
<th>No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Indata (Eastfield Resources)</td>
<td>93N-192</td>
<td>Omineca</td>
<td>93N/6W</td>
<td>Au, Ag</td>
<td>vein</td>
<td>IP; 5 ddh</td>
</tr>
<tr>
<td>112</td>
<td>Bob (Lac Minerals)</td>
<td>93B-054</td>
<td>Cariboo</td>
<td>93B/13E</td>
<td>Au</td>
<td>epithermal</td>
<td>29 ddh, 200+ m; geophys.</td>
</tr>
<tr>
<td>113</td>
<td>Trout (Kerr Addison/Welcome North)</td>
<td>93F-044</td>
<td>Omineca</td>
<td>93F/10</td>
<td>Au</td>
<td>epithermal</td>
<td>15 ddh; 15 trenches</td>
</tr>
<tr>
<td>114</td>
<td>WTM (Chromick Mineral)</td>
<td></td>
<td>Clinton</td>
<td>920/9</td>
<td>Au</td>
<td>epithermal?</td>
<td>24 pdh, 730 m; geophys.</td>
</tr>
<tr>
<td>115</td>
<td>Apex (Kleena Kleene Gold Mines)</td>
<td>92N-010, 012</td>
<td>Cariboo</td>
<td>92N/14</td>
<td>Au</td>
<td>epithermal</td>
<td>160 m adit</td>
</tr>
<tr>
<td>116</td>
<td>Pellaire (Lord River/Cathedral Gold)</td>
<td>920-045</td>
<td>Clinton</td>
<td>920/4E</td>
<td>Au, Ag</td>
<td>epithermal</td>
<td>11 ddh, 1325 m; 50 m drift</td>
</tr>
<tr>
<td>117</td>
<td>Taylor Windfall (Welcome North Mines)</td>
<td>920-028</td>
<td>Clinton</td>
<td>920/3</td>
<td>Au, Ag</td>
<td>epithermal</td>
<td>8 ddh, 700 m</td>
</tr>
<tr>
<td>118</td>
<td>Tasako-Palisados (Westmin Resources joint venture)</td>
<td>920-005, 006</td>
<td>Clinton</td>
<td>920/3</td>
<td>Au, Ag</td>
<td>epithermal</td>
<td>25 ddh; 10 trenches; geophys.</td>
</tr>
<tr>
<td>119</td>
<td>Wingdam (Gold Ridge Resources)</td>
<td>93H-012</td>
<td>Cariboo</td>
<td>93H/4</td>
<td>Au</td>
<td>placer</td>
<td>in situ leach tests</td>
</tr>
<tr>
<td>120</td>
<td>Lightning Creek (Lightning Creek Mines)</td>
<td>93H-001, 002</td>
<td>Cariboo</td>
<td>93H/4</td>
<td>Au</td>
<td>placer</td>
<td>25 ddh; air and ground geophys.</td>
</tr>
<tr>
<td>121</td>
<td>C North (Ezekiel Exploration/Mark Management)</td>
<td>93J-007</td>
<td>Cariboo</td>
<td>93J/14</td>
<td>Au</td>
<td>volcanogenic massive sulphide</td>
<td>5 ddh, 150+ m; geochem.; geophys.</td>
</tr>
<tr>
<td>122</td>
<td>Cariboo (E & B Explorations)</td>
<td>93A-121</td>
<td>Cariboo</td>
<td>93A/12</td>
<td>Au</td>
<td>porphyry related</td>
<td>25 ddh; 10 trenches</td>
</tr>
<tr>
<td>123</td>
<td>Mouse Mountain (Quesnel Mines)</td>
<td>93G-003</td>
<td>Cariboo</td>
<td>93G/1</td>
<td>Au</td>
<td>porphyry related</td>
<td>10 ddh, 100+ m; 15 trenches</td>
</tr>
<tr>
<td>124</td>
<td>Cat, Dog (Placer Domo)</td>
<td>93A-127</td>
<td>Cariboo</td>
<td>93A/11, 12</td>
<td>Au</td>
<td>porphyry related</td>
<td>10 ddh, 300+ m</td>
</tr>
<tr>
<td>125</td>
<td>Nixon Creek (Golden Rule/Noranda)</td>
<td>93G-014, 015</td>
<td>Cariboo</td>
<td>93G/7, 8</td>
<td>Au</td>
<td>volcanogenic massive sulphide</td>
<td>2 ddh; geochem.; geophys.</td>
</tr>
<tr>
<td>126</td>
<td>Phil (Lincoln Resources)</td>
<td></td>
<td>Omineca</td>
<td>93N/1</td>
<td>Au, Cu</td>
<td>porphyry related</td>
<td>15 ddh; 7 trenches; geophys.</td>
</tr>
</tbody>
</table>

NORTHEASTER DISTRICT

<table>
<thead>
<tr>
<th>No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>Transfer (Quintette Coal)</td>
<td></td>
<td>Liard</td>
<td>93J/14E, 3E</td>
<td>coal</td>
<td></td>
<td>8 ddh, 1254 m; 46 rdh, 5169 m; 3 adits</td>
</tr>
<tr>
<td>133</td>
<td>Grizzly (Quintette Coal)</td>
<td></td>
<td>Liard</td>
<td>93P/3E</td>
<td>coal</td>
<td></td>
<td>4 ddh, 593 m; 21 rdh, 3075 m; 3 adits</td>
</tr>
<tr>
<td>134</td>
<td>Perry Creek (Quintette Coal)</td>
<td></td>
<td>Liard</td>
<td>93P/3</td>
<td>coal</td>
<td></td>
<td>5 rdh, 260 m</td>
</tr>
<tr>
<td>135</td>
<td>Mesa Extension (Quintette Coal)</td>
<td></td>
<td>Liard</td>
<td>93P/3E</td>
<td>coal</td>
<td></td>
<td>36 rdh, 8736 m; 1 ddh, 267 m</td>
</tr>
<tr>
<td>136</td>
<td>Bullmoose (Teck Corp.)</td>
<td></td>
<td>Liard</td>
<td>93P/4</td>
<td>coal</td>
<td></td>
<td>8 rdh, 400 m</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks;</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>135</td>
<td>Cay</td>
<td></td>
<td>Liard</td>
<td>94G/12</td>
<td>Ga, Ge, Pb, Zn</td>
<td></td>
<td>13 ddh, 1050 m; geochem.; geophys.; geologic mapping</td>
</tr>
<tr>
<td></td>
<td>(Beaty Geological)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Coral</td>
<td></td>
<td>Liard</td>
<td>94B/3</td>
<td>Pb, Zn</td>
<td></td>
<td>10 ddh, 500 m</td>
</tr>
<tr>
<td></td>
<td>(Northgate Exploration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Mount Selwyn</td>
<td></td>
<td>Omineca</td>
<td>94B/3</td>
<td>Au</td>
<td></td>
<td>4 ddh, 1500 m?</td>
</tr>
<tr>
<td></td>
<td>(Alina International)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOUTHEASTERN DISTRICT

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks;</th>
</tr>
</thead>
<tbody>
<tr>
<td>138</td>
<td>Eagle Mtn.</td>
<td>82J/SE-012</td>
<td>Fort Steele</td>
<td>82J/W</td>
<td>coal</td>
<td></td>
<td>12 rdh, 3382 m; 2 HQ ddh, 877 m</td>
</tr>
<tr>
<td></td>
<td>(Fording Coal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Greenhills Mine-North End</td>
<td>82J/SE-007</td>
<td>Fort Steele</td>
<td>82J/W</td>
<td>coal</td>
<td></td>
<td>28 rdh, 4301 m</td>
</tr>
<tr>
<td></td>
<td>(Westar Mining)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Greenhills Mine-Bighorn Pit</td>
<td>82J/SE-007</td>
<td>Fort Steele</td>
<td>82J/W</td>
<td>coal</td>
<td></td>
<td>11 rdh, 1323 m</td>
</tr>
<tr>
<td></td>
<td>(Westar Mining)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Line Creek, Lower South Pit</td>
<td>82G/NE-020</td>
<td>Fort Steele</td>
<td>82G/15W</td>
<td>coal</td>
<td></td>
<td>52 rdh, 6095 m; 6 ddh, 745 m</td>
</tr>
<tr>
<td></td>
<td>(Crows Nest Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Line Creek Extension, Top-of-the-Ridge</td>
<td>82G/NE-020</td>
<td>Fort Steele</td>
<td>82G/15W</td>
<td>coal</td>
<td></td>
<td>22 rdh, 3032 m; 13 ddh, 1120 m</td>
</tr>
<tr>
<td></td>
<td>(Crows Nest Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Horeshoe Ridge</td>
<td>82G/NE-020</td>
<td>Fort Steele</td>
<td>82G/15W</td>
<td>coal</td>
<td></td>
<td>16 rdh, 2641 m</td>
</tr>
<tr>
<td></td>
<td>(Crows Nest Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Line Creek Extension, 2-seam Pit</td>
<td>82G/NE-020</td>
<td>Fort Steele</td>
<td>82G/15</td>
<td>coal</td>
<td></td>
<td>47 rdh, 2213 m</td>
</tr>
<tr>
<td></td>
<td>(Crows Nest Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Line Creek, Mine Service Area</td>
<td>82G/NE-020</td>
<td>Fort Steele</td>
<td>82G/15W</td>
<td>coal</td>
<td></td>
<td>7 rdh, 1184 m</td>
</tr>
<tr>
<td></td>
<td>(Crows Nest Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Lussier Gypsum/United (Donmar Inc.)</td>
<td>82J/SW-009</td>
<td>Fort Steele</td>
<td>82J/4E</td>
<td>gypsum</td>
<td>sedimentary</td>
<td>32 ddh, 1125 m; approx. 15 rdh, approx. 150 m; trenching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Mt. Brussilof Magnesite/Rok, Mag (Baymag Mines)</td>
<td>82J/NW-001</td>
<td>Golden</td>
<td>82J/15E</td>
<td>magnesite</td>
<td>stratabound carbonate host</td>
<td>34 ddh, 2700 m;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>geological mapping; rock and soil geochem.; trenching</td>
</tr>
<tr>
<td>148</td>
<td>Flathead, Howe/Howell (Placer Dome)</td>
<td>82G/SR-048</td>
<td>Fort Steele</td>
<td>82G/2E</td>
<td>Au</td>
<td></td>
<td>10 ddh, 1262 m; geological mapping; rock and soil geochem.; trenching</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Division</td>
<td>NTFS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------</td>
<td>----------</td>
<td>------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>WEST KOOTENAY DISTRICT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Goldfinch (Granges Exploration)</td>
<td>82K/NW-076</td>
<td>Revelstoke</td>
<td>82K/13E</td>
<td>Au,Ag</td>
<td>vein</td>
<td>ddh, 8719 m; 158.7 Kt 8.5 g/t Au; 50 tpd pilot mill planned 28 ddh, 3000 m; 33.7 Kt 3.2 g/t Au, 171 g/t Ag, 4.22% Pb, 5.77% Zn</td>
</tr>
<tr>
<td>151</td>
<td>Spyder (K-2 Resources/Ram Exploration)</td>
<td>82K/NW-045</td>
<td>Revelstoke</td>
<td>82K/13E</td>
<td>Ag,Pb,Zn,</td>
<td>vein</td>
<td>Au</td>
</tr>
<tr>
<td>152</td>
<td>Eclipse (Triple M Mining/Ram Exploration)</td>
<td>82K/NW-044</td>
<td>Revelstoke</td>
<td>82K/13E</td>
<td>Ag,Au,Pb,</td>
<td>vein</td>
<td>Zn</td>
</tr>
<tr>
<td>153</td>
<td>John L/Maggie May (Progressive Minerals)</td>
<td>82K/NW-103</td>
<td>Slocan</td>
<td>82K/6E</td>
<td>Au,Ag</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Foggy Day (Progressive Minerals/Skyworth Resources)</td>
<td>82K/NW-117</td>
<td>Revelstoke</td>
<td>82K/11W</td>
<td>Au,Au,Pb,</td>
<td>vein</td>
<td>Zn,Cu</td>
</tr>
<tr>
<td>155</td>
<td>King Jack (King Jack Resources)</td>
<td>82F/NW-136</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Au,Ag</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Meteor, Payday (Yukon Minerals)</td>
<td>82F/NW-137</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Au,Ag,Zn,</td>
<td>vein</td>
<td>Pb,W</td>
</tr>
<tr>
<td>157</td>
<td>Alpine (Granges Exploration/Cove Energy)</td>
<td>82F/NW-127</td>
<td>Nelson</td>
<td>82F/11W</td>
<td>Au,Au,Pb,</td>
<td>vein</td>
<td>Zn</td>
</tr>
<tr>
<td>158</td>
<td>Kerville, Granite (Algoma Industries)</td>
<td>82F/SW-086</td>
<td>Nelson</td>
<td>82F/6W</td>
<td>Au,Au,Pb,</td>
<td>vein</td>
<td>Zn,Cu,W</td>
</tr>
<tr>
<td>159</td>
<td>Great Western Group (Lectus Development)</td>
<td>82F/SW-071</td>
<td>Nelson</td>
<td>82F/6W</td>
<td>Au,Cu</td>
<td>volcanic</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Willa (Northair Mines/Rio Algom/BP Canada)</td>
<td>82F/NW-076</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Au,Cu,Au</td>
<td>diatreme</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Blackcock (O'Hara Resources)</td>
<td>82F/SW-076</td>
<td>Nelson</td>
<td>82F/6W</td>
<td>Au,Au,Pb,</td>
<td>vein</td>
<td>Zn</td>
</tr>
<tr>
<td>162</td>
<td>Nugget (Gunsteel Resources)</td>
<td>82F/SW-040</td>
<td>Nelson</td>
<td>82F/3E</td>
<td>Au,Au,Pb,</td>
<td>vein</td>
<td>Zn</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>163</td>
<td>Goldbelt (Lightning Minerals)</td>
<td>82F/SW-044</td>
<td>Nelson</td>
<td>82F/3E</td>
<td>Au, Ag, Pb, Zn, Cu</td>
<td>vein</td>
<td>ddh, 2439 m; geo-chem.; geophys.; geological mapping; 21 Kt 13.7 g/t Au; 14.3 g/t Ag; 0.5% Pb, 3% Zn</td>
</tr>
<tr>
<td>164</td>
<td>Crown (Kettle River Resources/Noranda Exploration)</td>
<td></td>
<td>Grand Forks</td>
<td>82E/2</td>
<td>Au, Ag, Cu</td>
<td>vein</td>
<td>trenched</td>
</tr>
<tr>
<td>165</td>
<td>Golden Crown (Consolidated Boundary Exploration)</td>
<td>82E/3B-032</td>
<td>Grand Forks</td>
<td>82E/2E</td>
<td>Au, Ag, Cu</td>
<td>vein</td>
<td>adit, 622 m</td>
</tr>
<tr>
<td>166</td>
<td>Dentonia (Kettle River Resources)</td>
<td>82E/5E-055</td>
<td>Grand Forks</td>
<td>82E/2E</td>
<td>Au, Ag, Pb, Zn, Cu</td>
<td>vein</td>
<td>underground development</td>
</tr>
<tr>
<td>167</td>
<td>Union (Sumac Ventures)</td>
<td>82E/18-003</td>
<td>Grand Forks</td>
<td>82E/9W</td>
<td>Au, Ag, Cu, Pb</td>
<td>heap</td>
<td>heap leach operation</td>
</tr>
<tr>
<td>168</td>
<td>Platinum Blonde (Placer Dome/Longreach Resources)</td>
<td></td>
<td>Grand Forks</td>
<td>82E/9W</td>
<td>Au, Pt, Pd, Cd</td>
<td>dykes</td>
<td>9100 m dd program in progress</td>
</tr>
<tr>
<td>169</td>
<td>Standard (Silver Ridge Resources)</td>
<td>82F/NW-050</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Ag, Pb, Zn, Cd</td>
<td>vein</td>
<td>underground exploration</td>
</tr>
<tr>
<td>170</td>
<td>Silver Cup, Comstock (Dragoon Resources)</td>
<td>82F/NW-077</td>
<td>Slocan</td>
<td>82F/14E</td>
<td>Ag, Pb, Zn, Au</td>
<td>vein</td>
<td>mine rehab.</td>
</tr>
<tr>
<td>171</td>
<td>Skylark (Viscount Resources)</td>
<td>82E/8E-011</td>
<td>Slocan</td>
<td>82E/2E</td>
<td>Au, Ag, Pb, Zn, Cu</td>
<td>vein</td>
<td>ddh; underground development, 78.7 Kt 605.6 g/t Au; 2.7 g/t Au</td>
</tr>
<tr>
<td>172</td>
<td>Black Colt (Dragoon Resources)</td>
<td>82F/NW-011</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Ag, Pb, Zn, Au</td>
<td>vein</td>
<td>diamond drilling</td>
</tr>
<tr>
<td>173</td>
<td>Abbott (Mikado Resources/Turner Energy)</td>
<td>82E/SW-056</td>
<td>Slocan</td>
<td>828/11E</td>
<td>Ag, Pb, Zn, Au</td>
<td>replacement</td>
<td>adit, 152 m; 66.4 Kt 294.7 g/t Au; 1.45 g/t Au; 14.22% Zn; 11.08% Pb</td>
</tr>
<tr>
<td>174</td>
<td>Sullivan (Cominco)</td>
<td>82F/NE-052</td>
<td>Fort Steele</td>
<td>82F/9E</td>
<td>Pb, Zn, Ag, Au, Cu, Cd</td>
<td>sedex</td>
<td>diamond drilling</td>
</tr>
<tr>
<td>175</td>
<td>Tillicum (Esperanza Explorations)</td>
<td>82F/NW-234</td>
<td>Slocan</td>
<td>82F/13E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>24 ddh, 3126 m; 182 Kt 20.5 g/t Au; 2.7 Mt 2.0 g/t Au; 100 tpd mill planned</td>
</tr>
<tr>
<td>176</td>
<td>Strebe (Esperanza Explorations)</td>
<td></td>
<td>Slocan</td>
<td>82F/13E</td>
<td>Au, Ag</td>
<td>skarn</td>
<td>8 ddh</td>
</tr>
<tr>
<td>177</td>
<td>Star/Ron (Ryan Exploration)</td>
<td>82F/SW-083</td>
<td>Nelson</td>
<td>82F/6W</td>
<td>Au, Ag, Cu</td>
<td>porphyry?</td>
<td>roddh; large low-grade Cu-Au deposit</td>
</tr>
<tr>
<td>178</td>
<td>L.H. (Noranda Exploration)</td>
<td></td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Au, Ag</td>
<td>vein/skarn</td>
<td>2 ddh, 795 m</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory Mining No.</td>
<td>Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>182</td>
<td>Grasshopper</td>
<td>Similkameen</td>
<td>92H/10W</td>
<td>PGE</td>
<td>magmatic</td>
<td>magmatic</td>
<td>surface work, mapping, trenching, rock sampling</td>
</tr>
<tr>
<td>183</td>
<td>Samatosum JV</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>Ag, Au, Cu, Pb, Zn</td>
<td>volcanoogenic massive sulphide</td>
<td>132 ddh, 19,085 m; 1 km road construction; pre-feasibility study; 600 Kt @ 1100 g/t Ag, 3.5% Zn, 1.2% Cu, 1.7% Pb, 1.8 g/t Au (250 g/t Ag cut-off)</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Rea Concession (Discovery Zone)</td>
<td>Kamloops</td>
<td>82M-191</td>
<td>Cu, Pb, Zn, Au, Ag</td>
<td>volcanoogenic massive sulphide</td>
<td>1450 t ore processed at Dankoe mill and treated at Mascot Gold Mines Ltd. (As-rich sulphides); commenced adits on L98 lens for underground bulk sampling and drilling.</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Comstock</td>
<td>Kamloops</td>
<td>82L/13E</td>
<td>Au, Ag, Cu, Pb, Zn</td>
<td>stratabound massive sulphide</td>
<td>EM, mag.; geochem.; 8 trenches</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>CK</td>
<td>Kamloops</td>
<td>82M/13E</td>
<td>Zn, Pb, Cu</td>
<td>stratiform massive sulphide</td>
<td>95 ddh, 8,999 m in 6 zones; IP; geochem.</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Steep</td>
<td>Kamloops</td>
<td>82M/4W, 4E</td>
<td>Pb, Zn, Au, Ag</td>
<td>stratabound massive sulphide</td>
<td>6 ddh, 1450 m; 1 trench, 3 km road construction</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Biere</td>
<td>Kamloops</td>
<td>82M/5W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>Mag., VLF-EM; geochem.; 1 ddh, 150 m</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Adam</td>
<td>Kamloops</td>
<td>82M/4E</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>55 ddh, 5101 m; 1 km road; 40 trenches; IP; geochem.</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Cana</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>11 ddh, 1575 m</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>Wiki</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>volcanoogenic massive sulphide</td>
<td>1 ddh, 148 m</td>
<td></td>
</tr>
</tbody>
</table>

A23
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory Mining No.</th>
<th>Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td>Tia</td>
<td>82M-239</td>
<td>Kamloops</td>
<td>82M/12W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>10 ddh, 1000 m (approx.); 1.5 km road construction; IP, mag., VLF-EM</td>
</tr>
<tr>
<td></td>
<td>(G. Belik/Nu Crown Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>OK</td>
<td></td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>15 ddh, 1230 m; geological survey; geochem.; IP, VLF-EM, AEM</td>
</tr>
<tr>
<td></td>
<td>(Algo Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>Birk Creek</td>
<td></td>
<td>Kamloops</td>
<td>82M/5W</td>
<td>Pb, Zn, Cu, Au, Ag</td>
<td>volcanogenic massive sulphide</td>
<td>13 rodd, 1400 m; 6 trenches; geochem.; 20 km road construction; 2 ddh, 275 m; VLF-EM, mag.</td>
</tr>
<tr>
<td></td>
<td>(Noranda Exploration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>Windpass</td>
<td>92P-039</td>
<td>Kamloops</td>
<td>92P/8E</td>
<td>Au</td>
<td>vein</td>
<td>6 ddh, 2000 m; 20 trenches; mag.</td>
</tr>
<tr>
<td></td>
<td>(Kerr Addison)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>Fortuna</td>
<td>92P-044, 046</td>
<td>Kamloops</td>
<td>92P/1E</td>
<td>Au</td>
<td>volcanogenic massive sulphide</td>
<td>2 ddh, 250 m; 7 trenches; mag., IP, max-min; geochem.</td>
</tr>
<tr>
<td></td>
<td>(BP Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>CM</td>
<td></td>
<td>Kamloops</td>
<td>92P/8E</td>
<td>Cu, Au</td>
<td>massive sulphide</td>
<td>5 ddh, 600 m; geochem.</td>
</tr>
<tr>
<td></td>
<td>(BP Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>Water</td>
<td>82M-121</td>
<td>Kamloops</td>
<td>82M/12W</td>
<td>Cu, Au, Ag</td>
<td>mesothermal</td>
<td>5 ddh, 600 m; geochem.</td>
</tr>
<tr>
<td></td>
<td>(BP Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>JC</td>
<td></td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>6 ddh; 6 trenches</td>
</tr>
<tr>
<td></td>
<td>(Celebrity Energy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Cad</td>
<td>82M-222</td>
<td>Kamloops</td>
<td>82M/5W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>3 ddh, 400 m; VLF-EM</td>
</tr>
<tr>
<td></td>
<td>(J.D. Graham/ J.M. Ashton)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Tahoolla</td>
<td>92P-008</td>
<td>Kamloops</td>
<td>92P/9W</td>
<td>Au</td>
<td>intrusive</td>
<td>3 ddh, 305 m</td>
</tr>
<tr>
<td></td>
<td>(Rat Resources/ SMD Mining)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>associated</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Comet-Davenport</td>
<td>92I/9W-026, 028, 030</td>
<td>Kamloops</td>
<td>92I/9W</td>
<td>Cu, Au</td>
<td>porphyry</td>
<td>27 ddh, 3321 m; geochem.</td>
</tr>
<tr>
<td></td>
<td>(CID, Rainbow)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Afton Operating Corp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Mosquito King</td>
<td>82M-007, 016,138, 139</td>
<td>Kamloops</td>
<td>82M/4E</td>
<td>Pb, Zn, Ag, Au</td>
<td>massive sulphide</td>
<td>1.8 Kt bulk sampling; 50 tpd mill and camp built; trenching; EM</td>
</tr>
<tr>
<td></td>
<td>(Killick Gold)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Bar</td>
<td>82M-062</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>massive sulphide</td>
<td>10 ddh, 830 m; mapping; trenching; max-min; geochem.</td>
</tr>
<tr>
<td></td>
<td>(Minnova)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Chu Chu</td>
<td>92P-140</td>
<td>Kamloops</td>
<td>92P/8E</td>
<td>Cu, Au, Zn, Ag</td>
<td>volcanogenic massive sulphide</td>
<td>6 ddh, 850 m; max-min; geochem.; mapping</td>
</tr>
<tr>
<td></td>
<td>(Minnova)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Twin</td>
<td>82M-020</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>polymetallic</td>
<td>volcanogenic massive sulphide</td>
<td>18 ddh, 2269 m; 400 m trenching; VLF-EM</td>
</tr>
<tr>
<td></td>
<td>(Esso Minerals Canada)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Kamad</td>
<td>82M/4W</td>
<td>Kamloops</td>
<td>82M/4W</td>
<td>Ag, Pb, Zn, Au, Ba</td>
<td>volcanogenic massive sulphide</td>
<td>18 ddh, 3026 m; VLF-EM; geochem.</td>
</tr>
<tr>
<td></td>
<td>(Homestake)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A24
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>Canoe</td>
<td>83D-14W</td>
<td>Cariboo</td>
<td>83D/14W</td>
<td>muscovite</td>
<td>mica schist</td>
<td>6 dcdh, 304.5 m; 1986 bulk sampling (approx. 2400 t); reserves: 2.074 Mt @ 60.6% mica</td>
</tr>
<tr>
<td>209</td>
<td>Summit</td>
<td>83D-004</td>
<td>Kamloops</td>
<td>83D/12W</td>
<td>Au</td>
<td>vein</td>
<td>20 cdh, 1820 m; 3 dcdh, 185 m; 15 trenches, 125 m; VLF-EM; geochem.</td>
</tr>
<tr>
<td>210</td>
<td>Dove/Ingrid</td>
<td></td>
<td>Kamloops</td>
<td>83D/11E</td>
<td>Au</td>
<td>vein</td>
<td>14 dcdh, 263 m; mag.; geochem.; 600 m road construction; stripping; geological mapping</td>
</tr>
<tr>
<td>211</td>
<td>Reliance</td>
<td>92J/NE-033</td>
<td>Lillooet</td>
<td>92J/15W</td>
<td>Au,Ag,Sb</td>
<td>vein</td>
<td>53 dcdh, 8474 m; trenching; 8 km road construction</td>
</tr>
<tr>
<td>212</td>
<td>Tyex</td>
<td>Lillooet</td>
<td></td>
<td>92J/15W</td>
<td>Au</td>
<td>vein</td>
<td>16 dcdh, 1736 m; 10 trenches, 500 m</td>
</tr>
<tr>
<td>213</td>
<td>Wayside</td>
<td>92J/NE-030</td>
<td>Lillooet</td>
<td>92J/15W</td>
<td>Au,Ag,Cu,Zn</td>
<td>vein</td>
<td>7 dcdh, 1050 m; 10 trenches</td>
</tr>
<tr>
<td>214</td>
<td>Golden Sidewalk</td>
<td>Lillooet</td>
<td></td>
<td>92J/15</td>
<td>Au</td>
<td>vein</td>
<td>4 rdh, 2500 m</td>
</tr>
<tr>
<td>215</td>
<td>Congress</td>
<td>92J/NE-029</td>
<td>Lillooet</td>
<td>92J/15W</td>
<td>Au,Ag</td>
<td>vein, replacement</td>
<td>600 m drift, 100 m raises; underground dcdh, 1000 m</td>
</tr>
<tr>
<td>216</td>
<td>REX</td>
<td>92J/NE-020-025</td>
<td>Lillooet</td>
<td>92J/15W</td>
<td>Au</td>
<td>vein, replacement</td>
<td>70 trenches</td>
</tr>
<tr>
<td>217</td>
<td>Standard Creek</td>
<td>92J/NE-015</td>
<td>Lillooet</td>
<td>92J/10E</td>
<td>Au,Cu,Pb,Zn</td>
<td>vein</td>
<td>24 dcdh, 5514 m; 135 m u/g development; pad 126 m; adit rehab.; geochem.; mapping, VLF-EM; 6 km road construction</td>
</tr>
<tr>
<td>218</td>
<td>Veritas</td>
<td>92J/NE-031</td>
<td>Lillooet</td>
<td>92J/15W</td>
<td>Au</td>
<td>vein, replacement</td>
<td>13 dcdh, 1586 m</td>
</tr>
<tr>
<td>219</td>
<td>Eva-Ave</td>
<td>Lillooet</td>
<td></td>
<td>920/2W</td>
<td></td>
<td></td>
<td>1 dcdh, 185 m; geochem.; mag.</td>
</tr>
<tr>
<td>220</td>
<td>Watson</td>
<td>920-054, Clinton</td>
<td>920/1E</td>
<td></td>
<td></td>
<td></td>
<td>4 dcdh, 450 m; 4 trenches; mapping; geochem.</td>
</tr>
<tr>
<td>221</td>
<td>Relay Creek</td>
<td>920-059, Clinton</td>
<td>920/2W</td>
<td>Au,Ag</td>
<td></td>
<td>vein, replacement</td>
<td>5 cdh, 750 m; 5 trenches; IP; geochem.</td>
</tr>
<tr>
<td>222</td>
<td>Rex (Poison Mtn.)</td>
<td>Clinton</td>
<td>920/2E</td>
<td>Au,Cu</td>
<td></td>
<td>porphyry</td>
<td>10 dcdh, 3048 m</td>
</tr>
<tr>
<td>No.</td>
<td>Property/MINEFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>223</td>
<td>Yalakom</td>
<td>223</td>
<td>Clinton</td>
<td>920/2E</td>
<td>Au</td>
<td></td>
<td>underground drilling</td>
</tr>
<tr>
<td>224</td>
<td>Taylor-Windfall</td>
<td>224</td>
<td>Clinton</td>
<td>920/3E</td>
<td>Au, Ag, Cu, Pb, Zn</td>
<td>epithermal</td>
<td>8 rcdh, 799 m</td>
</tr>
<tr>
<td>225</td>
<td>Galaxy</td>
<td>225</td>
<td>Kamloops</td>
<td>921/9W</td>
<td>Cu, Au</td>
<td>porphyry</td>
<td>7 rcdh, 367 m</td>
</tr>
<tr>
<td>226</td>
<td>Corona & Bob</td>
<td>226</td>
<td>Kamloops</td>
<td>921/7E</td>
<td>Au</td>
<td></td>
<td>4 ddh, 365 m</td>
</tr>
<tr>
<td>227</td>
<td>Mustang</td>
<td>227</td>
<td>Kamloops</td>
<td>921/10E</td>
<td>Au</td>
<td></td>
<td>6 pdh, 760 m</td>
</tr>
<tr>
<td>228</td>
<td>Kam & Jeff</td>
<td>228</td>
<td>Kamloops</td>
<td>927/5W</td>
<td>Au</td>
<td></td>
<td>10 dh (percussion and diamond)</td>
</tr>
<tr>
<td>229</td>
<td>Getty (Krain)</td>
<td>229</td>
<td>Kamloops</td>
<td>927/10W</td>
<td>Cu</td>
<td>porphyry</td>
<td>16 dh; 6 trenches; 20 test pits</td>
</tr>
<tr>
<td>230</td>
<td>Thom-Fehr</td>
<td>230</td>
<td>Kamloops</td>
<td>921/10W</td>
<td>Au</td>
<td>epithermal</td>
<td>7 rcdh, 645 m; mag., VLF-EM, IP</td>
</tr>
<tr>
<td>231</td>
<td>Mara</td>
<td>231</td>
<td>Kamloops</td>
<td>921/9W</td>
<td>Au, Cu, Ag, Pb</td>
<td>epithermal</td>
<td>17 rcdh, 1489 m; geochm.; VLF-EM, geochem.; VLF-EM, mag.</td>
</tr>
<tr>
<td>232</td>
<td>Bonaparte</td>
<td>232</td>
<td>Kamloops</td>
<td>92P/1W</td>
<td>Au, Ag, Cu, Mo</td>
<td>vein</td>
<td>24 ddh, 1874 m; trenching</td>
</tr>
<tr>
<td></td>
<td>(Central)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Hughes-Lang Group/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-Pacific Resources/MineQuest)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>Ajax</td>
<td>233</td>
<td>Kamloops</td>
<td>921/9</td>
<td>Cu, Au</td>
<td>porphyry</td>
<td>77 ddh, 11 582 m</td>
</tr>
<tr>
<td>234</td>
<td>Makoo</td>
<td>234</td>
<td>Kamloops</td>
<td>921/9</td>
<td>Cu, Au</td>
<td>porphyry</td>
<td>underground mapping, sampling</td>
</tr>
<tr>
<td></td>
<td>(BF-Selco/Makoo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>International)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>Elk</td>
<td>235</td>
<td>Similkameen</td>
<td>92H/16W</td>
<td>Au</td>
<td>vein</td>
<td>30 trenches; geochm.; IP</td>
</tr>
<tr>
<td>236</td>
<td>Hit & Miss</td>
<td>236</td>
<td>Similkameen</td>
<td>92H/10E</td>
<td>Au</td>
<td>vein</td>
<td>6 ddh, 550 m; approx;</td>
</tr>
<tr>
<td></td>
<td>(Canadian Nickel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>Sadim</td>
<td>237</td>
<td>Nicola</td>
<td>92H/10E</td>
<td>Au</td>
<td>vein</td>
<td>15 ddh, 2072 m; VLF-EM, mag.; trenching; geochem.; mapping</td>
</tr>
<tr>
<td></td>
<td>(Laramide Resources/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I.M. Watson Associates)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Snowflake</td>
<td>238</td>
<td>Nicola</td>
<td>92I/2</td>
<td>Au</td>
<td>vein, replacement</td>
<td>16 ddh, 1217 m</td>
</tr>
<tr>
<td></td>
<td>(Gerrie Gold/Quilchena)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NT8</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>239</td>
<td>Red Star</td>
<td>92H/SE-067</td>
<td>Similkameen</td>
<td>92H/2E</td>
<td>Au</td>
<td>replacement</td>
<td>35 trenches, 1100 m geochem.; IP, VLF-EM</td>
</tr>
<tr>
<td>240</td>
<td>Rabbitt-Boulder</td>
<td>92H/NE-018-020,122,123</td>
<td>Similkameen</td>
<td>92H/10W</td>
<td>Cu,Au,Ag</td>
<td>vein</td>
<td>12 ddh, 660 m</td>
</tr>
<tr>
<td>241</td>
<td>Treasure Mtn.</td>
<td>92H/SW-016,018,019</td>
<td>Similkameen</td>
<td>92H/6E</td>
<td>Ag,Pb,Zn</td>
<td>vein</td>
<td>10 redh; bulk sampling from trenches; 320 m drifting, 125 m raising</td>
</tr>
<tr>
<td>242</td>
<td>Whipsaw Creek</td>
<td>92H/SW-097</td>
<td>Similkameen</td>
<td>92H/7</td>
<td>Cu,Pb,Zn</td>
<td>vein, breccia</td>
<td>27 ddh, 3057 m; 10 trenches; geochem.</td>
</tr>
<tr>
<td>243</td>
<td>Voight Zone (Frisco, Automatic)</td>
<td>92H/SE-018</td>
<td>Similkameen</td>
<td>92H/8W</td>
<td>Cu,Au</td>
<td>vein</td>
<td>19 ddh, 2592 m; 300 m trenches; geochem.; mag., IP</td>
</tr>
<tr>
<td>244</td>
<td>Cahill</td>
<td>Osoyoos</td>
<td>92H/8E</td>
<td>Au</td>
<td>skarn</td>
<td></td>
<td>7 ddh, 1020 m; VLF-EM, mag.</td>
</tr>
<tr>
<td>245</td>
<td>New Hope</td>
<td>Osoyoos</td>
<td>92H/8E</td>
<td>Au</td>
<td>skarn</td>
<td></td>
<td>5 ddh, 1000 m; 10 trenches; geochem.; VLF-EM, mag.</td>
</tr>
<tr>
<td>246</td>
<td>Canty, French, Good Hope, Mascot Fr.</td>
<td>Osoyoos</td>
<td>92H/8E</td>
<td>Au,Au,Ag,Cu,Zn</td>
<td>skarn</td>
<td>Canty: 13 ddh, 2466 m; Good Hope: 4 ddh, 595 m; Mascot Fr.: 33 underground ddh, 3735 m</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Nickel Plate</td>
<td>Osoyoos</td>
<td>92H/8E</td>
<td>Au,Au,Ag,Cu,Zn</td>
<td>skarn</td>
<td>surface 69 ddh, 15 758 m; underground 10 ddh, 2166 m</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Similkameen Project: Rice, Cammill, Lost Horse, etc. (Chevron Resources)</td>
<td>Osoyoos</td>
<td>92H/8E</td>
<td>Au</td>
<td>skarn</td>
<td></td>
<td>2 ddh, 305 m; trenching, 1140 m; geochem.; geological mapping; 1140 m road trenches</td>
</tr>
<tr>
<td>249</td>
<td>Maple Leaf, Pine</td>
<td>Osoyoos</td>
<td>92H/SE-046</td>
<td>Au,Cu,Pb,Zn</td>
<td>vein</td>
<td>skarn target</td>
<td>8 ddh, 1676 m; geochem.</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILZ Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Mining/Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>250</td>
<td>Fairview Camp:</td>
<td>82E/SW-</td>
<td>Osoyoos</td>
<td>82E/4E</td>
<td>Au, Ag, Si, Cu, Pb</td>
<td>vein</td>
<td>Fairview mine; underground rehab., 23 m drifting; 6 underground dh, 418 m; mapping and sampling on 5 and 6 levels; metallurgical testing; 4 surface ddh, 525 m; Brown Bear, Susie, Standard; underground mapping and sampling. VLF-EM; geochem.</td>
</tr>
<tr>
<td>251</td>
<td>PDL</td>
<td>Osoyoos</td>
<td>82E/SW</td>
<td></td>
<td></td>
<td></td>
<td>VLF-EM; geochem.</td>
</tr>
<tr>
<td>252</td>
<td>Oka</td>
<td>82E/NW-</td>
<td>Osoyoos</td>
<td>82E/13W</td>
<td>Au, Ag, Cu, Pb</td>
<td>vein</td>
<td>28 trenches; mag.; geochem.; 1 km road construction</td>
</tr>
<tr>
<td>253</td>
<td>Camp McKinney</td>
<td>82E/SW-</td>
<td>Greenwood</td>
<td>82E/3E</td>
<td>Au, Ag, Pb, Zn</td>
<td>vein</td>
<td>8 ddh, approx. 600 m; mine rehab.</td>
</tr>
<tr>
<td>254</td>
<td>Yuniman (Old Digging)</td>
<td>Osoyoos</td>
<td>82E/SW-054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Star of Hope</td>
<td>82E/SW-</td>
<td>Osoyoos</td>
<td>82E/5W</td>
<td>Au, Ag, Pb</td>
<td>vein</td>
<td>6 ddh, 380 m; 6 trenches</td>
</tr>
<tr>
<td>256</td>
<td>Orofino Mtn.</td>
<td>82E/SW-</td>
<td>Osoyoos</td>
<td>82E/5E</td>
<td>Au, Ag, Pb, Zn</td>
<td>vein</td>
<td>22 ddh, 1425 m; 30 trenches; mag., VLF-EM; geochem.</td>
</tr>
<tr>
<td>257</td>
<td>Vault</td>
<td>82E/SW-</td>
<td>Osoyoos</td>
<td>82E/5E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>21 ddh, 5411 m</td>
</tr>
<tr>
<td>258</td>
<td>North Brenda</td>
<td>82E/NW-</td>
<td>Nicola/</td>
<td>82E/13W</td>
<td>Cu, Mo</td>
<td>porphyry</td>
<td>9 ddh, 725 m; geochem.; IP</td>
</tr>
<tr>
<td>259</td>
<td>Chaput</td>
<td>82L/SE-</td>
<td>Vernon</td>
<td>82L/7W</td>
<td>Au, Ag, Pb, Zn</td>
<td>vein, shear</td>
<td>32 rocdd, 2130 m; 7 ddh, 900 m; VLF-EM, mag.; geochem.; metallurgical testing; geochem.; geophys.; VLF-EM, IP; geological mapping; 26 km trenching; 10 ddh planned (Nov.-Dec.) underground rehab.. 122 m; 7 ddh, 134 m</td>
</tr>
<tr>
<td>260</td>
<td>Equesis</td>
<td>Vernon</td>
<td>82L/6W</td>
<td></td>
<td>Au, Ag</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>Kalamalka</td>
<td>82L/SW-</td>
<td>Vernon</td>
<td>82L/3E</td>
<td>Au, Ag, Cu, Pb</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>262</td>
<td>Gold Star</td>
<td>82L/4E</td>
<td>Vernon</td>
<td>Au</td>
<td>vein</td>
<td></td>
<td>14 trenches; VLF-EM; geochem.; 2 ddh; planned 10 ddh total.</td>
</tr>
<tr>
<td>263</td>
<td>Brett</td>
<td>82L/SW-6</td>
<td>Vernon</td>
<td>Au,Ag</td>
<td>vein</td>
<td></td>
<td>32 ddh, 2900 m; 10 trenches; geochem.</td>
</tr>
<tr>
<td>264</td>
<td>J & L</td>
<td>82M-003</td>
<td>Revelstoke</td>
<td>Au,Ag,Pb,Zn</td>
<td>volcanogenic massive sulphide</td>
<td>underground 20 ddh, 1913 m; raises, 115 m; 152 m cross-cut, 1100 t bulk sample, metallurgical testing</td>
<td></td>
</tr>
</tbody>
</table>

SOUTHWESTERN DISTRICT

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>Valentine Mtn./Blaze</td>
<td>92B-108</td>
<td>Victoria</td>
<td>Au,Ag</td>
<td>veins</td>
<td></td>
<td>24 ddh, 2691 m; trenching; bulk sampling; geochem.; geophys.; 20 tpd pilot mill constructed; 3 ddh, approx. 1150 m</td>
</tr>
<tr>
<td>266</td>
<td>FF/Cornucopia, Yreka</td>
<td>92B-038</td>
<td>Victoria</td>
<td>Cu, Au, Ag</td>
<td>massive sulphides</td>
<td>6 ddh, 890 m; mapping; geochem.; geophys.</td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>Mt. Sicker/Lenora, Tyee</td>
<td>92B-001</td>
<td>Victoria</td>
<td>Cu, Au, Ag, Zn, Pb</td>
<td>massive sulphides</td>
<td>15 ddh, 4920 m; mapping; geochem.; geophys.</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>Canamera/Copper Canyon</td>
<td>92B-086</td>
<td>Victoria</td>
<td>Cu, Au, Ag</td>
<td>massive sulphides</td>
<td>18 ddh, 6754 m; geophys.</td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>Lara/Coronation</td>
<td>92B-102</td>
<td>Victoria</td>
<td>Cu, Au, Ag, Zn, Pb</td>
<td>massive sulphides</td>
<td>83 ddh, 14 698 m; geophys.</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Chip/Anita</td>
<td>92B-037</td>
<td>Victoria</td>
<td>Cu, Ag</td>
<td>massive sulphides</td>
<td>4 ddh; geophys.; 8 ddh; geophys.;</td>
<td></td>
</tr>
<tr>
<td>271</td>
<td>Striker/Candy, Paula, Wardroper</td>
<td>92C-076</td>
<td>Victoria</td>
<td>Cu, Au, Zn, Pb</td>
<td>massive sulphides</td>
<td>16W rhodolite</td>
<td>4 ddh; geophys.; trenched; mapping; shear zone; geochem.</td>
</tr>
<tr>
<td>272</td>
<td>Heather</td>
<td>92C-127</td>
<td>Victoria</td>
<td>Cu, Au, Zn, Pb</td>
<td>massive sulphides</td>
<td>16W rhodolite</td>
<td>5 ddh, 509 m; trenching; mapping; shear zone; geochem.</td>
</tr>
<tr>
<td>273</td>
<td>Sarita/Doer, Gambler</td>
<td>92C-006</td>
<td>Victoria</td>
<td>Cu, Au, Ag, Zn, Pb</td>
<td>skarns</td>
<td>3 ddh; geophys.; geochem.</td>
<td></td>
</tr>
<tr>
<td>274</td>
<td>Fitzwater</td>
<td>92F/2E</td>
<td>Victoria</td>
<td>Cu, Au, Ag, Zn, Pb</td>
<td>massive sulphides</td>
<td>9 ddh, 869 m; geophys.; geochem.; trenching</td>
<td></td>
</tr>
</tbody>
</table>

A29
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory Mining No.</th>
<th>Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>Holt (Goldenrod Resources, Nexus Resources)</td>
<td>Victoria</td>
<td>92B/12W</td>
<td>12w</td>
<td>Au, Ag, Cu</td>
<td>massive</td>
<td>mapping; geochem.; 10 ddh, 2800 m</td>
</tr>
<tr>
<td>276</td>
<td>West/Jane, Lucky Strike, Sally, Sirius Cow/Pogo (Angle Resources, JB Resources/International Cherokee)</td>
<td>92B-049, Victoria</td>
<td>92B/13E</td>
<td>Cu, Zn</td>
<td>veins, shear zones</td>
<td>massive</td>
<td>sulphides</td>
</tr>
<tr>
<td>277</td>
<td>Chem/Stanley Creek (L. Balak et al./ International Cherokee)</td>
<td>Victoria</td>
<td>92C-074</td>
<td>Cu, Zn</td>
<td>veins, shear zones</td>
<td>2 ddh, 99 m</td>
<td></td>
</tr>
<tr>
<td>278</td>
<td>Debbie/Regina (Westmin Resources, Angle Resources, Nexus Resources)</td>
<td>Victoria</td>
<td>92C-116</td>
<td>Cu, Fe</td>
<td>iron</td>
<td>2 ddh, 213 m</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>Yellow/Victoria (Angle Resources, Reward Resources/Westmin Resources)</td>
<td>Alberni</td>
<td>92P-078</td>
<td>2E</td>
<td>Au, Ag, Cu</td>
<td>altered</td>
<td>94 ddh, 15 000 m (some early 1988); mapping; geophys.; geochem.</td>
</tr>
<tr>
<td>280</td>
<td>High Sierra (H. McMaster/SYMC Resources)</td>
<td>Alberni</td>
<td>92F-079</td>
<td>2E</td>
<td>Au, Ag, Cu</td>
<td>altered</td>
<td>125 ddh, 25 900 m (some 1986 and 1988); mapping; geochem.; geophys.; trenching</td>
</tr>
<tr>
<td>281</td>
<td>Ark/HIM (Ascot Resources/Stetson Resource Management)</td>
<td>Alberni</td>
<td>92F-230</td>
<td>6E</td>
<td>Sb, Hg, Ag, Cu</td>
<td>veins</td>
<td>3 ddh, 270 m; trenching</td>
</tr>
<tr>
<td>282</td>
<td>Tay/MT (Dalmation Resources)</td>
<td>Alberni</td>
<td>92P-212</td>
<td>6W</td>
<td>Au</td>
<td>veins</td>
<td>6 ddh, 465 m; geophys.; geochem.</td>
</tr>
<tr>
<td>283</td>
<td>Snow (Area Explorations/Casau Explorations, Snowfield Resources)</td>
<td>Alberni</td>
<td>92F-033</td>
<td>3W</td>
<td>Au, Ag, Cu</td>
<td>veins</td>
<td>8 ddh, 1656 m; mapping; geochem.</td>
</tr>
<tr>
<td>284</td>
<td>Epic (Geo PC Services/Aintree Resources)</td>
<td>Alberni</td>
<td>92F-052</td>
<td>3W</td>
<td>Ag, Cu, Au</td>
<td>shears, veins</td>
<td>trenching; diamond drilling; geochem.</td>
</tr>
<tr>
<td>285</td>
<td>Prosper (W. Guppy/Tamara Resources)</td>
<td>Alberni</td>
<td>92F-053</td>
<td>5E</td>
<td>Au, Ag, Cu, Pb</td>
<td>veins</td>
<td>underground drifting; sampling;</td>
</tr>
<tr>
<td>No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>288</td>
<td>Kalappa/Syoutl, Iron Cap, Lone Cone</td>
<td>92F-077</td>
<td>Alberni</td>
<td>92F/4W</td>
<td>Au,Ag,Cu,As</td>
<td>veins, massive sulphides</td>
<td>trenching; geophys.; geochem.; mapping</td>
</tr>
<tr>
<td>289</td>
<td>Cypress/Bay Creek, Cat’s Eye</td>
<td>92F-343</td>
<td>Alberni</td>
<td>92F/5W</td>
<td>Cu,Sn,Ag</td>
<td>massive sulphides</td>
<td>5 ddh, 810 m; geophys.; geochem.; mapping</td>
</tr>
<tr>
<td>290</td>
<td>Bedingfield (Cominco)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 ddh, 1100 m; geophys.</td>
</tr>
<tr>
<td>291</td>
<td>Adola/Juno (Adola Mining/Prophesy Development)</td>
<td>92E-018</td>
<td>Alberni</td>
<td>92E/9E</td>
<td>Au,Cu,Pb, Sn,Ag</td>
<td>replacement zones, veins</td>
<td>drilling; geophys.; geochem.</td>
</tr>
<tr>
<td>292</td>
<td>Spud Valley/Goldfield (McAdam Resources)</td>
<td>92L-211</td>
<td>Alberni</td>
<td>92L/2W</td>
<td>Au,Ag</td>
<td>veins</td>
<td>surface drilling, approx. 15 ddh, 3000 m; underground drifting</td>
</tr>
<tr>
<td>293</td>
<td>Electrum/BP, Kyu Easy (BP Minerals/Taywin Resources)</td>
<td>92L-201</td>
<td>Alberni</td>
<td>92L/3W</td>
<td>Au,Ag,Cu,Sn</td>
<td>epithermal veins, skarn</td>
<td>32 ddh, 1108 m; 45 pdh, 233 m; trenching; geochem.</td>
</tr>
<tr>
<td>294</td>
<td>Villalta (Canamin Resources)</td>
<td>92F-384</td>
<td>Nanaimo</td>
<td>92F/1W</td>
<td>Au,Fe</td>
<td>manto, residual?</td>
<td>47 ddh, 1042 m</td>
</tr>
<tr>
<td>295</td>
<td>Emma (Utah Mines)</td>
<td>92F/2E</td>
<td>Nanaimo</td>
<td>Au</td>
<td>veins</td>
<td>12 ddh, approx. 1500 m; geophys.; mapping; geochem.</td>
<td></td>
</tr>
<tr>
<td>296</td>
<td>Cathedral (Reward Resources/Nexus Resources)</td>
<td></td>
<td>Nanaimo</td>
<td>92F/7E</td>
<td>Au</td>
<td>altered shear zone</td>
<td>1500 m</td>
</tr>
<tr>
<td>297</td>
<td>Lupus (Proquest Resource Corp./Cactus West Explorations)</td>
<td>92F-308</td>
<td>Nanaimo</td>
<td>92F/14E</td>
<td>Au,Ag,Sn,Cu,As</td>
<td>vein breccia</td>
<td>14 ddh, approx. 610 m; trenching; geochem.</td>
</tr>
<tr>
<td>298</td>
<td>Dove (J. Paquet/Westmin Resources, Visible Gold)</td>
<td></td>
<td>Nanaimo</td>
<td>92F/11E</td>
<td>Au,Ag,Cu</td>
<td></td>
<td>airborne/ground geophys.; geochem.; 8 ddh, 1116 m</td>
</tr>
<tr>
<td>299</td>
<td>Mt. Washington/Dominer,Murex, Lakeview, (Better Resources)</td>
<td>92F-116</td>
<td>Nanaimo</td>
<td>92F/11E</td>
<td>Au,Ag,Cu,As</td>
<td>epithermal veins, breccias</td>
<td>120 ddh, 8880 m; underground drifting, 300 m; bulk sampling; trenching; mapping</td>
</tr>
<tr>
<td>300</td>
<td>Nat/Contact (Nation River Resources/Lone Jack Resources)</td>
<td>92K-085</td>
<td>Nanaimo</td>
<td>92K/3E</td>
<td>Au,Ag,Cu</td>
<td>skarns, vein</td>
<td>4 ddh, 315 m; geochem.</td>
</tr>
<tr>
<td>301</td>
<td>Bolivar (Rhyolite Resources)</td>
<td>92F-364</td>
<td>Nanaimo</td>
<td>92F/15E</td>
<td>Au,Sn</td>
<td>skarn</td>
<td>trenching; bulk sampling</td>
</tr>
<tr>
<td>302</td>
<td>Holly (Johanson et al., Rhyolite Resources)</td>
<td>92F-321</td>
<td>Nanaimo</td>
<td>92F/10E</td>
<td>Au</td>
<td>shear zone, veins</td>
<td>trenching; bulk sampling</td>
</tr>
<tr>
<td>303</td>
<td>Tew (Rhyolite Resources)</td>
<td></td>
<td>Nanaimo</td>
<td>92F/10E</td>
<td>Au,Ag,Cu</td>
<td>manto, skarn</td>
<td>trenching; geochem.</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Inventory No.</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Work Done; Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>304</td>
<td>Vananda Gold/Little Billie, Cornell, Copper Queen, Iron (Ideal Cement/Vananda Gold)</td>
<td>92F-105, 106,107, 112,271</td>
<td>Nanaimo</td>
<td>92F/10E, Au,Ag,Cu,Pe, skarns,</td>
<td>15E Zn,</td>
<td>wollastonite</td>
<td>trenching; mapping; geochem.</td>
</tr>
<tr>
<td>305</td>
<td>International Maggie Mines/Wray Eagle, ABC, Indian River Copper (International Maggie Mines/Minnova)</td>
<td>92G/NW-024,028</td>
<td>042</td>
<td>92G/10W, Cu,Zn,Pb,Au, sulphide</td>
<td>11E Ag</td>
<td>veins</td>
<td>ddh, 1225 m; geophys.; geochem.; mapping</td>
</tr>
<tr>
<td>306</td>
<td>Baldwin-McVitie (Falconbridge)</td>
<td>92G/NW-006</td>
<td>Vancouver</td>
<td>92G/11E Cu,Zn,Pb,Ag</td>
<td>massive sulphides</td>
<td>9 ddh, approx. 2800 m; geochem.</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>Mineral Hill (R. Riepe/Tri-Sil Minerals)</td>
<td></td>
<td>Vancouver</td>
<td>92G/12W wollastonite, skarn garnet</td>
<td></td>
<td></td>
<td>8 ddh, 742 m; trenching; mapping; bulk sampling; beneficiation tests</td>
</tr>
<tr>
<td>308</td>
<td>Sechelt Carbonate/ MC, Peninsula Lime (Candol Development/Ingot Exploration)</td>
<td>92G/NW-031,035</td>
<td>Vancouver</td>
<td>92G/12W dolomite, marble</td>
<td>sedimentary, metamorphic</td>
<td>6 ddh, 583 m</td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>Lang Bay/GE (Fargo Resources)</td>
<td>92F-137</td>
<td>Vancouver</td>
<td>92F/16W kaolin, Ge, Ga</td>
<td>sedimentary, residual</td>
<td></td>
<td>geophys., incl. seismic; 7 ddh and 27 rcdd; product quality and beneficiation studies</td>
</tr>
<tr>
<td>310</td>
<td>East Thurlow/White Pine, Douglas Pine (Verdstone Gold/Rea Gold)</td>
<td>92K-035, 036</td>
<td>Vancouver</td>
<td>92K/6W Au,Ag,Cu</td>
<td>veins</td>
<td></td>
<td>trenching; geo-phys.; geochem.; mapping</td>
</tr>
<tr>
<td>311</td>
<td>Alexandria/Enid, Julie, Commonwealth (Charlemagne Resources)</td>
<td>92K-024, 025,028</td>
<td>Vancouver</td>
<td>92K/6W, Au,Ag,Cu</td>
<td>veins/shear zone</td>
<td>9 ddh, approx. 825 m</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>Dorothy Morton (New Signet Resources)</td>
<td>92K-023</td>
<td>Vancouver</td>
<td>92K/11W Au,Ag</td>
<td>veins/shear zone</td>
<td>trenching; geochem.; mapping</td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>Sky/Spanar (Skyrocket Exploration)</td>
<td>92G/SE-019</td>
<td>Westminster</td>
<td>92G/8W Au,Ag</td>
<td>veins</td>
<td>2 ddh, 260 m; geophys.</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>Seneca/Harrison, Lov (Chevron Minerals/International Curator Resources)</td>
<td>92H/5W-013,069</td>
<td>Westminster</td>
<td>92H/5W Cu, Zn,Ag,Au</td>
<td>massive sulphides</td>
<td>approx. 12 ddh, 3000 m</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>Fire Creek (Mycroft Resources/Englefield Resources)</td>
<td></td>
<td>New</td>
<td>92G/16E, Au,As,Cu</td>
<td>massive sulphides</td>
<td>8 ddh</td>
<td></td>
</tr>
</tbody>
</table>

A32
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Inventory No.</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Work Done; Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>316</td>
<td>Abo/GEO, RN (Abo Resource Corp./Kerr Addison, Bema International)</td>
<td>92H/SW-092</td>
<td>New Westminster</td>
<td>92H/5E, SW</td>
<td>Au</td>
<td>vein, stockwork</td>
<td>350 m underground drifting and raising; bulk sampling; pilot milling</td>
</tr>
<tr>
<td>317</td>
<td>North Fork (Minnova)</td>
<td>92H/NW-070</td>
<td>New Westminster</td>
<td>92H/12E</td>
<td>Cu, Zn</td>
<td>Massive sulphides</td>
<td>4 ddh, 680 m</td>
</tr>
<tr>
<td>318</td>
<td>Aufeas (Silver Cloud Mines)</td>
<td>92H/SW-036</td>
<td>New Westminster</td>
<td>92H/6W</td>
<td>Au, Ag, Cu, As</td>
<td>Veins</td>
<td>5 ddh, 734 m; geochem.</td>
</tr>
<tr>
<td>319</td>
<td>Master Ace/Newjay (Carlac Minerals/Newjay Resources)</td>
<td>92H/SW-043,143</td>
<td>New Westminster</td>
<td>92H/6E</td>
<td>Au, Ag, Cu</td>
<td>Silicified shear zone</td>
<td>7 ddh, 278 m</td>
</tr>
<tr>
<td>320</td>
<td>Lill/Eagle, Lake, Boulder (Green Lake Resources)</td>
<td>92J/SE-008,009,010 Lillooet</td>
<td>New Westminster</td>
<td>92J/7E</td>
<td>Cu, Zn, Ag, Au</td>
<td>Skarn, massive sulphides?</td>
<td>2 ddh</td>
</tr>
<tr>
<td>321</td>
<td>Nina (Silver Hill Mines)</td>
<td>Lillooet</td>
<td>New Westminster</td>
<td>92J/7E</td>
<td>Au</td>
<td>Veins</td>
<td>3 ddh, approx. 460 m</td>
</tr>
<tr>
<td>322</td>
<td>Snow/IXL, Copper Bay (B. Mickle/Mondavi Resources)</td>
<td>103G-005, Skeena</td>
<td>New Westminster</td>
<td>103G/4W</td>
<td>Au, Cu, Ag</td>
<td>Veins, alteration zones</td>
<td>trenching; geophys.; geochem.; mapping</td>
</tr>
<tr>
<td>323</td>
<td>Southeaster (Mandalla Resources)</td>
<td>103G-004, Skeena</td>
<td>New Westminster</td>
<td>103G/5W</td>
<td>Au, Ag, Pb, Cu</td>
<td>Veins</td>
<td>trenching; geophys.; mapping</td>
</tr>
<tr>
<td>324</td>
<td>Cinula/Babe (City Resources Canada)</td>
<td>103F-034, Skeena</td>
<td>New Westminster</td>
<td>103F/9D</td>
<td>Au</td>
<td>Epithermal vein stockwork</td>
<td>64 rcdh, 6230 m; 30 ddh, 3447 m; 120 m underground drifting; bulk sampling; pre-feasibility studies</td>
</tr>
</tbody>
</table>
Figure A3. Producing mines in British Columbia, 1987.
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Mining Division</th>
<th>NTS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Production and Development Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Cassiar Asbestos</td>
<td>Liard</td>
<td>104F/5E</td>
<td>asbestos</td>
<td>ultramafic</td>
<td>Milled 1.1 Mt asbestos ore at 5300 tpd. Reserves: 3.493 Mt @ C.C.R.G. 6.90% grade</td>
</tr>
<tr>
<td>20</td>
<td>Erickson Gold</td>
<td>Liard</td>
<td>104F/4E</td>
<td>Au</td>
<td>vein</td>
<td>Milled 85.4 kt @ 230 tpd.</td>
</tr>
<tr>
<td>21</td>
<td>Taurus</td>
<td>Liard</td>
<td>104G/5E</td>
<td>Au, Ag</td>
<td>vein</td>
<td>Milled 25.3 kt Au-Ag ore</td>
</tr>
<tr>
<td>75</td>
<td>Bell Copper</td>
<td>Omineca</td>
<td>93M/1W</td>
<td>Cu, Au</td>
<td>porphyry</td>
<td>Milled 5.39 Mt @ 14 750 tpd. Reserves: 12.4 Mt @ 0.528% Cu</td>
</tr>
<tr>
<td>91</td>
<td>Equity Silver</td>
<td>Omineca</td>
<td>93L/1W</td>
<td>Ag, Au, Cu</td>
<td>transitional</td>
<td>Milled 3.32 Mt @ 9100 tpd. Reserves: 14.7 Mt @ 86.5 g/t Ag, 1.08 g/t Au, 0.255% Cu</td>
</tr>
<tr>
<td>127</td>
<td>Endako</td>
<td>Omineca</td>
<td>93K/3E</td>
<td>Mo</td>
<td>porphyry</td>
<td>Milling rate: 9000 tpd. Reserves: 13.7 Mt @ 0.149% MoS₂</td>
</tr>
<tr>
<td>128</td>
<td>Gilbralter</td>
<td>Cariboo</td>
<td>93B/4E</td>
<td>Cu, Mo</td>
<td>porphyry</td>
<td>Milling rate: 40 000 tpd. Reserves: 185.8 Mt @ 0.3% Cu, 0.015% MoS₂. Production: 37 432 kt Cu</td>
</tr>
<tr>
<td>129</td>
<td>Blackdome</td>
<td>Clinton</td>
<td>920/7,0</td>
<td>Au, Ag</td>
<td>epithermal</td>
<td>Milling rate: 180 tpd. Reserves: 254 kt @ 23 g/t Au, 75 g/t Ag. Production: 1452 kg Au, 3935 kg Ag. Some batch milling in 1987</td>
</tr>
<tr>
<td>130</td>
<td>Mosquito Creek</td>
<td>Cariboo</td>
<td>93H/4E</td>
<td>Au</td>
<td>sulphide</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Fresner</td>
<td>Clinton</td>
<td>920/4W</td>
<td>perlite</td>
<td>volcanic</td>
<td>Production rate: >2000 t/year Reserves: 450 kt</td>
</tr>
<tr>
<td>133</td>
<td>Quintette</td>
<td>Liard</td>
<td>93P/3E</td>
<td>coal</td>
<td></td>
<td>Production: 5.0 Mt metallurgical coal, development and production drilling, 178 rdh, 21 193 m</td>
</tr>
<tr>
<td>134</td>
<td>Bullmoose</td>
<td>Liard</td>
<td>93P/4E</td>
<td>coal</td>
<td></td>
<td>Production: 1.7 Mt metallurgical coal, development and production drilling, 80 rdh, 2226 m</td>
</tr>
<tr>
<td>Map No.</td>
<td>Property/MINFILE Name</td>
<td>Mining Division</td>
<td>NTS</td>
<td>Commodity</td>
<td>Deposit Type</td>
<td>Production and Development Data</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>137</td>
<td>Fording River (Fording Coal)</td>
<td>Fort Steele</td>
<td>82J/2W</td>
<td>coal</td>
<td></td>
<td>proven and probable reserves of 300 Mt, predominantly metallurgical coal, 1.5 Mt est. production</td>
</tr>
<tr>
<td>139</td>
<td>Greenhills (Westar Mining)</td>
<td>Fort Steele</td>
<td>82J/2</td>
<td>coal</td>
<td></td>
<td>proven reserves of 104 Mt of metallurgical and thermal coal 3.31 Mt est. production</td>
</tr>
<tr>
<td>140</td>
<td>Line Creek (Crows Nest Resources)</td>
<td>Fort Steele</td>
<td>82G/15W</td>
<td>coal</td>
<td></td>
<td>proven reserves of 50 Mt metallurgical coal and 19 Mt thermal coal 1.5 Mt est. production</td>
</tr>
<tr>
<td>141</td>
<td>Balmer (Westar Mining)</td>
<td>Fort Steele</td>
<td>82G/10, 15</td>
<td>coal</td>
<td></td>
<td>proven reserves of 30 Mt, predominantly metallurgical coal 5.04 Mt est. production</td>
</tr>
<tr>
<td>142</td>
<td>Coal Mountain (Byron Creek Collieries)</td>
<td>Fort Steele</td>
<td>82G/7, 10</td>
<td>coal</td>
<td></td>
<td>proven reserves of 95 Mt of thermal and weak coking coal 0.89 Mt est. production</td>
</tr>
<tr>
<td>143</td>
<td>Lussier Gypsum/United (Comstar)</td>
<td>Fort Steele</td>
<td>82J/4E</td>
<td>gypsum sedimentary</td>
<td></td>
<td>total reserves of 10 Mt</td>
</tr>
<tr>
<td>144</td>
<td>Elkhorn/Windermere Golden (Westroc Industries)</td>
<td>Fort Steele</td>
<td>82J/5W</td>
<td>gypsum sedimentary</td>
<td></td>
<td>total reserves of 30 Mt</td>
</tr>
<tr>
<td>145</td>
<td>Mt. Brussilof Golden Magnesite/Rok, Mag (Baymag Mines)</td>
<td>Golden</td>
<td>82J/13E</td>
<td>magnesite stratabound</td>
<td></td>
<td>proven reserves of 50 Mt</td>
</tr>
<tr>
<td>146</td>
<td>Nicholson, Horse Creek Silica/Hunt (Hanna Mining)</td>
<td>Golden</td>
<td>82N/2W</td>
<td>silica sedimentary</td>
<td></td>
<td>seasonal production of hard quartzite for shipment to Hanna's Wenatchee Ferrosilicon plant</td>
</tr>
<tr>
<td>147</td>
<td>Moberly Silica/ Mt. Moberly (Mountain Minerals)</td>
<td>Golden</td>
<td>82N/7W</td>
<td>silica sedimentary</td>
<td></td>
<td>seasonal production of quartz sand for glass and other industries; plant operates year-round</td>
</tr>
<tr>
<td>149</td>
<td>Silvana (Dickenson Mines)</td>
<td>Slocan</td>
<td>82F/14W</td>
<td>Ag, Pb, Zn, Cd</td>
<td>vein</td>
<td>Reserves: 56 kt @ 442.3 g/t Ag, 6.55% Zn, 4.9% Pb</td>
</tr>
<tr>
<td>174</td>
<td>Sullivan (Cominco)</td>
<td>Fort Steele</td>
<td>82F/9E</td>
<td>Pb, Zn, Fe, Au, Cu, massive sulphides</td>
<td>sedex</td>
<td>Reserves: 26.3 Mt @ 6.9% Zn, 4.6% Pb, 34.28 g/t Ag</td>
</tr>
</tbody>
</table>
SOUTH-CENTRAL DISTRICT

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Mining Division</th>
<th>NSZS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Production and Development Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>177</td>
<td>Lornex/Valley Copper</td>
<td>Kamloops</td>
<td>92I/11E</td>
<td>Cu, Mo</td>
<td>porphyry</td>
<td>Milling rate: 120,000 tpd increase to 130,000 tpd planned. Production: 41.14 Mt @ 0.404% Cu, 84% from Valley pit. Reserves: Lornex, 330 Mt 0.375% Cu, 0.013% Mo. Valley, 481 Mt @ 0.475% Cu</td>
</tr>
<tr>
<td></td>
<td>(Highland Valley Copper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>Brenda</td>
<td>Osoyoos</td>
<td>82E/13E</td>
<td>Cu, Mo, (Au, Ag)</td>
<td>porphyry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Brenda Mines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Copper Mountain</td>
<td>Similkameen</td>
<td>92H/7E</td>
<td>Cu (Au)</td>
<td>porphyry</td>
<td>Milling rate: 19,000 tpd. Reserves: 120 Mt @ 0.394% Cu. Au recovery 6 g/t concentrate</td>
</tr>
<tr>
<td></td>
<td>(Newmont Mines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>Afton</td>
<td>Kamloops</td>
<td>92I/10E</td>
<td>Cu, Au, Ag</td>
<td>porphyry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Teck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Highland Bell</td>
<td>Greenwood</td>
<td>82E/6E</td>
<td>Ag, Pb, Zn</td>
<td>vein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Teck)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>Nickel Plate</td>
<td>Osoyoos</td>
<td>82E/5W</td>
<td>Au, Ag</td>
<td>skarn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mascot Gold Mines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOUTHWESTERN DISTRICT

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property/MINFILE Name</th>
<th>Mining Division</th>
<th>NSZS</th>
<th>Commodity</th>
<th>Deposit Type</th>
<th>Production and Development Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>Lynx, Myra, H-W Alberni</td>
<td></td>
<td>92F/12E</td>
<td>Cu, Zn, Pb, volcanicogenic massive sulphide</td>
<td></td>
<td>Milling rate: 2770 tpd increasing to 4000 tpd. Reserves (Jan '87): 13.88 Mt @ 2.4 g/t Au, 36.7 Ag, 2.35% Cu, 0.25% Pb, 5.35% Zn</td>
</tr>
<tr>
<td></td>
<td>(Westmin Resources)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>Island Copper</td>
<td>Nanaimo</td>
<td>92L/11W</td>
<td>Cu, Mo, Au, Re</td>
<td>porphyry</td>
<td>Milling rate: 45,000 tpd. Exploration including: trenching; geochem.; geophys.; 14 ddh, approx. 3000 m</td>
</tr>
<tr>
<td></td>
<td>(Utah Mines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>Quinsam</td>
<td>Nanaimo</td>
<td>92F/14W</td>
<td>coal</td>
<td></td>
<td>Production: approx. 10 kt thermal coal. Full development on hold pending improved markets</td>
</tr>
</tbody>
</table>
NORTHERN DISTRICT
By D.V. Lefebure, District Geologist, Smithers

INTRODUCTION

Explorationists were very active in 1987 in all parts of northwestern British Columbia. The total number of mineral exploration projects increased by more than 75 per cent from 1986, with nearly twice as many drilling programs. Northwestern British Columbia attracted a disproportionately high number of the exploration programs in the province because many areas of known mineral potential are relatively unexplored. The high level of exploration activity will undoubtedly result in new mine developments over the next few years.

Metals, particularly gold, drew almost all the attention. Coal exploration was limited to three properties and the only major program was carried out by Gulf Canada Resources Inc. on its Mount Klappan project. There were approximately 5 per cent fewer placer operations in the northwest in 1987 relative to 1986. Four metal mines and one asbestos mine operated in the Cassiar and Houston areas.

TRENDS

The resurgence of interest in lode gold deposits in the Atlin placer camp continued to build, with major programs by Homestake Mineral Development Co., Cream Silver Mines Ltd. and Placer Dome Inc. Exploration for Motherlode-style auriferous quartz veins hosted by Cache Creek Group rocks is targeted on areas of listwanitic alteration along ultramafic contacts close to areas of known placer production. To the south, in the Tatsamenie Lake area, there was exploration on numerous properties by Chevron Canada Resources Ltd. and Stetson Resources Ltd. The new access road presently under construction to the Golden Bear deposit definitely makes exploration in the Tatsamenie Lake area more attractive. The typical exploration targets are structurally controlled alteration zones (usually silicification) with gold mineralization in Paleozoic limestones and Triassic volcanics.

A new gold mining camp may soon emerge in the Iskut River area north of Stewart. Skyline Explorations Ltd. plans to mine its Stonehouse gold deposit in 1988 and the Cominco Ltd. Snip property seems destined for production with estimated minimum reserves of 1.15 million tonnes at 24.0 grams per tonne gold.

Deeper drilling in the Toodoggone River area by Cheni Gold Mines Inc. intersected ore-grade gold-silver mineralization at depths of more than 300 metres below surface on the Cliff Creek zone. The possibility that gold-silver deposits in the Toodoggone area extend to depths of more than 300 metres, the typical vertical extent of an epithermal precious metal deposit, may result in larger orebodies than have been commonly predicted. Current reserves for all zones on Cheni's Lawyers property are 1.76 million tonnes grading 6.7 grams gold and 243 grams silver per tonne.
In the Skeena arch many historic quartz veins are being re-evaluated for their precious metal potential, spurred in part by Teeshin Resources Ltd.'s success on the Dome Mountain gold property. These veins are typically hosted by Jurassic Hazleton Group volcanics or sediments. Generally more than one vein is required to establish sufficient reserves to justify the capital costs of mine development.

Companies continued to emphasize exploration of known mineral occurrences rather than "grassroots" projects. Fortunately this latter trend was counteracted by the increasing number of active prospectors. The resurgence of prospecting reflects both the greater demand for properties and the financial assistance program of up to $5000 per individual, available from the provincial government as part of the FAME program.

In the southern half of the Northwestern District prospectors used the improved road access, provided by logging roads built during the 1980s, to their advantage. A number of new mineral occurrences on logging roads were staked and explored in 1987.

Almost all programs continued well into the fall and some have extended through the winter. This contrasts markedly with exploration programs 10 years ago which were commonly restricted to the summer and early fall in northwestern British Columbia.

HIGHLIGHTS

* Adit proceeding towards Windy Craggy orebody.

* Resurgence of exploration in Atlin area for Motherlode-style gold deposits.

* Exploration in the historic Tulsequah mining camp for Kuroko-type volcanogenic massive sulphides.

* Erickson Gold mine will enter its tenth year in production in 1988.

* Snip deposit reserves announced at 1.15 million tonnes grading 24 grams per tonne gold.

* Skyline Explorations Ltd. plans to put Stonehouse gold property into production in 1988.

* Newhawk Gold Mines Ltd. established barge-road link between Sulphurets property and Highway 37.

* Westmin Resources Limited started a pre-development program to prepare for open-pit production in 1989 from the Big Missouri and Silbak-Premier deposits.

* Extension of the Omineca mining road completed to the Lawyers property in the Toodoggone River area.
Plate Al. A view of the Windy Craggy portal showing the access road on the Tats Glacier in the background. The 2100-metre adit is being advanced to test the gold zone in the 300-million-tonne volcanogenic massive sulphide orebody. Photograph courtesy of Geddes Resources Ltd.

* Cheni Gold Mines Inc. started mine construction at the Lawyers deposit and plans production in 1989.

* Bell and Equity Silver mines increased profitability due to rising copper and silver prices.

* Regional Geochemical Survey release of Smithers and Whitesail Lake areas identified new anomalies and includes gold analyses for the first time.

SUMMARY OF EXPLORATION ACTIVITIES

MINERALS

A total of 322 notices of work for mineral exploration were submitted in 1987 for the Northwestern District. Almost one-third of these programs involved significant drilling or underground development. A summary of the 99 drilling or development projects is presented in Table A1.
Plate A2. Looking west towards Atlin along Pine Creek. Homestake’s Yellowjacket gold zone is located beneath the placer gravels near the centre of the photograph.

Tatshenshini River Area

In the extreme northwest part of the province Geddes Resources Ltd. and St. Joe Canada Inc. explored for volcanogenic massive sulphide targets in Triassic sediments and basalts. Geddes completed driving a 2100-metre adit to test the gold zone in the huge Windy Craggy deposit (1) in early 1988 (Plate A1), and also drilled three holes on the Tats massive sulphide showing (2).

East of the Tatshenshini River, Stryker Resources Ltd. and Freeport Resources Inc. continued to explore on their Low Herbert and Grizzly Heights showings (4) for volcanogenic massive sulphide deposits and auriferous quartz veins.

Atlin Region

Mesothermal gold veins were virtually the only exploration target in the Atlin region. Total Erickson Resources Ltd. investigated
the northwest-trending Engineering and Double Decker quartz veins hosted by Jurassic Laberge Group argillites at the old Engineer mine (5). In the Atlin placer camp the Pictou (6), Yellowjacket (7), Spruce Creek (8) and Lakeview (9) lode gold properties were drilled. Homestake Mineral Development Co. has announced the best results to date with definition of a mineralized zone extending 225 metres along strike with ore-grade intercepts to 90 metres, including one intersection of over 2.4 metres of 24.3 grams per tonne gold (Plate A2). Cream Silver Mines Ltd. also drilled a skarn deposit on Ruby Mountain (10), one of a number of similar deposits in the area.

Tulsequah River - Tatsamenie Lake Area

Cominco Ltd. and Northwind Ventures Ltd. explored for Kuroko-type massive sulphides associated with Triassic Stuhini Group felsic volcanic rocks in the Tulsequah River area. Past production from the Tulsequah Chief mine included 1 to 3 grams per tonne gold with the silver, lead and zinc. Cominco drilled deep holes and completed an extensive geological mapping program to establish the stratigraphic sequence in the Tulsequah Chief area (11). This type of information is critical to future systematic exploration of this mining camp.

To the east, in the Tatsamenie Lake area, the Golden Bear project (17) moved to the development stage (see Development). Chevron Canada Resources, with joint venture partners Diamet Minerals Ltd. and Lightning Creek Mines Ltd., diamond drilled 40 holes on five properties searching for gold deposits. Most of the drilling was done on the Nie property (13) which lies on the same major north-trending fault system that controls the Golden Bear orebody.

Cassiar Mining Camp

All three mines in the Cassiar mining camp were explored for new reserves in 1987. Cassiar Mining Corporation completed more underground development (see Development) and a feasibility study on the McDame asbestos deposit (19). Immediately to the east, at the Taurus mine (21), Taurus Resources Ltd. drilled to test auriferous quartz veins in the Snowy Creek and Sable adit areas. Late in the year the Hopeful adit, located several hundred metres west of the Sable adit, was extended to provide underground access to several mineralized quartz veins.

In its ninth year of operation, Total Erickson Resources Ltd. continued an aggressive gold exploration program on its 220-square-kilometre property (20). Trenching, soil sampling and geological mapping were used to identify drill targets on the Cusac, Jade, Hunter, Table Mountain, Main and Katherine veins.

To the north of Cassiar near the Yukon border, Reg Resources Corp. drilled the Silverknife silver-lead-zinc deposit (18) located on claims adjacent to the Midway deposit. South of Cassiar and west of Dease Lake, Equity Silver Mines Ltd. drilled a large alteration zone adjacent to a placer gold occurrence on Thibert Creek (22).
Stikine Area

The Stikine area north of the Iskut River saw renewed interest in exploration as Long Reach Resources Ltd., Lac Minerals Ltd., Radcliffe Resources Ltd. and Gulf International Minerals Ltd. all completed diamond-drilling programs on gold-bearing veins. In the 1970s this area attracted attention for the large copper-gold porphyry deposits such as Schaft Creek and Galore Creek. Current work is focused on vein systems typically hosted by Mesozoic volcanics peripheral to porphyry-style mineralization. On the McClymont property (27), Gulf International intersected high-grade gold mineralization including 28.1 grams per tonne gold over 3.96 metres. Values such as these, coupled with the 1988 release of Regional Geochemical Survey results for NTS map sheet 104G, should spur future exploration in the area.

Iskut River Area

Hector Resources Ltd., Skyline Explorations Ltd., Cominco Ltd., Tungco Resource Corp., Taiga Consultants Inc., Winslow Gold Corp., Western Canadian Mining Corporation and Teck Corporation drilled on their gold properties in the Iskut River area. Underground development work was carried out by Skyline and Inel Resources Ltd. Typically the targets were pyritic shear zones or quartz veins hosted by Mesozoic sediments and volcanics. On Johnny Mountain, Skyline continued to develop its Reg (Stonehouse) deposit (29), (see Development) and announced plans to mine in 1988. On the adjacent Snip property (30), Cominco Ltd. and Delaware Resources Ltd. carried out an extensive drilling program to follow up 1986 intersections. The Twin zone, a calcite-quartz-biotite vein, has been followed for 450 metres and is open to depth. Magna Ventures Ltd. continued underground development to test the Q17 vein on the Doc property (37), located approximately 55 kilometres northwest of Stewart. There are a number of quartz veins with free gold in Hazelton Group sediments on the claims.

Stewart Mining Camp

Numerous companies explored the belt of Hazelton Group volcanic and sedimentary rocks between the Unuk River and Stewart. In the Sulphurets Creek area, Teuton Resources Corp., Newhawk Gold Mines Ltd., Catear Resources Ltd., Western Canadian Mining Corporation and Bighorn Development Corp. were active. Newhawk, Catear and Bighorn explored silver-gold veins and stockworks. During 1987 Newhawk spent $5.1 million to increase the proven reserves (see Table A3) and to build a road and barge link to its property (39). Teuton Resources discovered a gold-bearing skarn on Treaty Creek (38). Western Canadian Mining appears to have found a gold-copper porphyry deposit on the Kerr property (41) including one intersection of 86.7 metres which averages 0.95 per cent copper and 0.34 gram per tonne gold.

In the Stewart mining camp, companies directed their exploration efforts towards well known, precious metal veins. Westmin Resources Limited, Silbak Premier Mines Ltd. and Canacord Resources Inc. started a pre-development program on the Silbak Premier (46) and Big Missouri (45) properties, both past gold-silver producers (see Development). Royal Scot Resources Ltd. drilled underground in the Scottie Gold mine (43). Tenajon Silver Corp., Noranda Exploration
Company and Joutel Resources Ltd. also completed major exploration programs in the area.

Portland Canal Area

The same favourable Hazelton Group lithologies extend southward from Stewart into the Portland Canal area. In the Alice Arm silver camp, Dolly Varden Minerals Ltd. extended underground workings to an area between the Dolly Varden (49) and North Star mines to allow an underground diamond-drilling program. To the north, in the Kitsault valley, Cominco Ltd. drilled a shear zone with silver values. Cominco was also exploring the Anyox area (51) for volcanogenic massive sulphide deposits with contained precious metals.

Hecate Lowlands

Imperial Metals Corporation, Trader Resources Ltd. and Gold Ventures Ltd. completed exploration programs on the islands south of Prince Rupert, looking for high-grade gold deposits characterized by strong structural control. At the Yellow Giant (54), the most advanced project, new reserves of 90 700 tonnes at 17.4 grams per tonne gold were announced for the Tel zone but plans for underground development were put on hold. Trader also examined the Skarn property (55), an ultramafic complex with magnetite layers on the east side of Banks Island, for its vanadium, titanium and platinum potential.

Terrace - Kitimat Area

In the Kitimat area, BP Resources Canada Ltd. (58) carried out a modest drill program on a silicified zone with anomalous gold values. North of Terrace, Terracamp Developments Ltd. (56) and Cannon Explorations Ltd. (57) explored auriferous quartz veins on the shores of Kitsumkalum Lake. AJM Metals Ltd. drilled a similar target on the Lucky Boy property north of the Zymoetz River.

Toodoggone River Area

Gold-silver epithermal to mesothermal veins occur along several major northwest-trending regional faults in the Early Jurassic Toodoggone volcanics. The Al (59), Hats (60), Metsantan (61), Moosehorn (62), Lawyers (64), Silver Pond (65), Perry Mason (66), Chappelle (67) and Marmot (71) properties are all located on, or near, the best developed regional fault. Energex Minerals Ltd., Manson Creek Resources Ltd., Cheni Gold Mines Inc. and Multinational Mining Inc. all published new reserves for their deposits in 1987 (see Table A3). The most exciting results were ore-grade intersections on the Cliff Creek zone on the Lawyers property over a vertical depth of more than 300 metres.

Drilling programs for veins were also completed on the Discovery, Golden Stranger (63), Shastra (68), Brenda (69) and Wrich (72) properties. The Acapulco skarn (70) was drilled by Cheni Gold Mines and returned significant intersections of massive magnetite and chalcopyrite with associated gold values. Over $10 million was spent on exploration in the Toodoggone River area in 1987. The Omineca mine road extension
was completed, providing ground access to the Sturdee airstrip, Baker mine and Lawyers deposit. Cheni Gold Mines started site preparation for mining of the Lawyers deposit in 1989 (see Development). South of the Toodoggone and west of Bear Lake, Prolific Petroleum Ltd. and Noranda Exploration Company drilled precious metal prospects.

Hazelton Area

At the old Red Rose mine Freeport Resources Inc. (80) tested the down-dip extension of the quartz vein which contains pyrite, chalcopyrite, wolframite, scheelite, ankerite, tourmaline, apatite and ferberite. The mine originally produced tungsten and copper with significant gold values reported, but not recovered.

Skeena Arch

At the Bell mine (75) on Babine Lake the search for additional ore reserves continued. Noranda drilled east of the Newman fault, inside and outside the open pit, in an attempt to locate a faulted extension of the copper-gold porphyry orebody. The drilling did not define new ore reserves. Five kilometres to the east of Bell mine, Equity Silver Mines Ltd. drilled a VLF-EM conductor on the Red property (77) and intersected semi-massive pyrrhotite and pyrite over a 30 to 50-metre-wide zone in graphitic mudstones.

On Dome Mountain (82) Teeshin Resources Ltd. drilled on the Boulder vein, Boulder extension, Argillite zone and Chisholm vein. Teeshin drifted along the Boulder vein, opening three sections totalling 130 metres of mineralization averaging 17.1 grams gold and 80.9 grams silver per tonne diluted to a 1.5-metre mining width. Current reserves on the Boulder zone are 289,650 tonnes grading 12.7 grams gold and 68.4 grams silver per tonne. Total Erickson Resources Ltd. drilled on the adjacent Free Gold property (81). Near Walcott, Lacana Mining Corporation tested the gold potential of skarn mineralization on the Canyon property (84) hosted by rhyolite flows and volcaniclastics. Immediately to the north Lornex Mining Corporation drilled a silver-gold-lead-zinc soil anomaly associated with the Barr molybdenum occurrence on the Emerson prospect (83). Across the valley on Grouse Mountain, Dafrey Resources Inc. drilled a similar mineral occurrence for gold on Mineral Hill (85).

Base metal veins with precious metal values attracted attention for their locally high gold values. Exploration programs were carried out at the Victoria, Cronin, Topley (86), Richfield (87) and Silver Queen (89) properties. Expenditures on the Silver Queen property exceeded $1 million with extensive underground development, 65 drill holes, metallurgical tests and environmental studies. Houston Metals Corp. completed a total of 165 metres of drifting in ore, including four new veins not previously accessed underground. A decline was started from the tailings pond area to provide access to a gold-silver-zinc ore shoot on the No. 3 vein below the 2600 level. Approximately 2440 metres of drilling on the newly discovered Camp vein added substantial tonnage to the reserves (see Table A3).
Equity Silver Mines Ltd. continued its aggressive drilling program at the minesite (91). High-grade intersections beneath the Southern Tail and North zones were followed up with more drilling which has established the potential for underground reserves. Underground exploration planned for 1988 will evaluate the potential of these zones. Equity Silver and joint venture partner Teck Corporation drilled on the Gaul property (92) to the south of the minesite, concentrating on the Superstition zone.

Adjacent to the Equity property, Faraway Gold Mines Ltd. and Normine Resources Ltd. explored in areas of extensive overburden for Equity-style transitional deposits. In 1986 Faraway Gold located a broad zone of disseminated sulphides, principally pyrite, on the Sam property (90) with some silver intersections over several metres grading more than 50 grams per tonne with 0.25 to 0.45 per cent copper. The 1987 drilling extended the altered zone and intersected more metre-wide replacement zones with pyrite, tetrahedrite, sphalerite and galena. Normine Resources intersected similar mineralization in a previously unexplored area. These results may spur more exploration for gold deposits in the Houston area.

Morie Lake - Tahtsa Lake Area

Newmont Exploration of Canada Limited, Westbank Resources Ltd., Lansdowne Oil and Minerals Ltd. and Alpine Explorations Ltd. drilled in the Morie Lake and Tahtsa Lake areas looking for precious metal bearing veins. Newmont's New Moon property (94) is the most advanced project with drilling completed on the Misty Day, North, Northeast and Scree zones. The mineralized zones are quartz-carbonate veins, stockworks and broad silicified zones with pyrite and base metal sulphides hosted by Hazelton Group volcanic and volcaniclastic rocks. One of the better intersections from the North zone graded 0.51 per cent lead, 0.98 per cent zinc, 346 grams silver and 3.63 grams gold per tonne over 4.4 metres.

COAL

On its Klappan property (98) in the Bowser Basin south of Dease Lake, Gulf Canada Resources Inc. completed diamond drilling in the eastern part of the proposed open pit and the waste dump area. The drilling was intended to better delineate ore reserves and assist in mine planning. An additional 24 holes were drilled to explore northeast of the proposed pit. Gulf submitted its Stage III report which was under review by the Mine Development Steering Committee at the end of 1987. In the Hazelton area, Atna Resources Ltd. (99) drilled three holes to test bituminous coal seams in Skeena Group sediments.

PLACER

The most active placer area in the Northwestern District was Atlin with a total of 52 notices of work, including several programs on Otter, Pine and Spruce creeks. Near the Yukon border on Squaw Creek, placer miners recovered the largest gold nugget, 2.3 kilograms, found in Canada during this century. A total of 49 notices of work were filed in the Liard Mining Division, up 11 per cent from 1986. Dease Lake,
Hyland River, McDame Creek and Rosella Creek were the busiest placer areas in the division.

DEVELOPMENT

Approximately 140 kilometres west of Dease Lake, North American Metals B.C. Inc. and Chevron Canada Resources Ltd. continued with underground development work on the Golden Bear deposit (17) discovered in 1981 (Plate A3). The companies submitted their Stage I report in 1987 and, in October, received approval-in-principle for the combination open-pit and underground mine from the Environment and Land Use Committee (ELUC) of the provincial cabinet. Current reserves for the Bear zone are 625,400 tonnes grading 18.63 grams per tonne gold. An access road is being built to enable the mine to go into production at 350 tonnes per day.

In Cassiar there was underground development on the McDame asbestos deposit (19) and a mine feasibility study was completed by the Cassiar Mining Corporation. The deposit would be mined from underground and replace the open pit as a source of ore. Current ore reserves at McDame are 32.4 million tonnes with the deposit open to the south (see Table A3). Cassiar Mining has announced plans to develop the deposit, subject to arranging financing.
Skyline Explorations Ltd. completed camp construction, upgraded the airstrip, started mill construction and drove a lower adit in preparation for underground mining of the Reg (Stonehouse) gold-silver deposit (29) in 1988 (Plate A4). The mine is to be supplied by aircraft from Wrangell, Bob Quinn and Terrace. Measured, indicated and inferred reserves at the end of January 1988 were 959,796 tonnes grading 22.08 grams gold per tonne, with significant copper values.

Near Stewart, Westmin Resources Limited, Silbak Premier Mines Ltd. and Canacord Resources Inc. agreed to a $4 million pre-development program of site preparation for a mill, road building and initial work on hydroelectric power development. Current reserves for the Big Missouri (45) and Silbak Premier (46) deposits are listed in Table A3. Both mines will be open-pit operations with the mill located at the Silbak Premier. Initial production is scheduled for 1989.

The Lawyers silver-gold deposit (64) of Cheni Gold Mines Inc. in the Toodoggone River area should be in production in 1989. Cheni Gold Mines completed the access road, prepared the mill site, started to drive the haulage adit on the AGB zone and drilled new reserves on the Cliff Creek zone in 1987. Underground production is planned from the AGB, Cliff Creek and Duke's Ridge zones.

OPERATING MINES

Three mines in the Cassiar area and two in the Houston area operated in the Northwestern District in 1987. These mines employed a total of 1010 people and played an important economic role in the region. Cassiar Mining Corporation maintained production levels at approximately 100,000 tonnes of asbestos per month from its open-pit operation. The mine was closed for five weeks in July and August. The stripping ratio was roughly 1.3:1. The open pit should be mined out in 1990. Immediately to the east the Taurus underground gold mine (21) operated at a rate of 136 tonnes per day with an average grade of 6.9 grams per tonne gold. All production is from the deeper levels of the mine. At the Erickson Gold mine (13), also in the Cassiar camp, the Eileen, Michelle and Vollaug veins were mined from the Vollaug and Cusac underground mines. Some open-pit ore was produced from the Cusac area. The mill operated at approximately 250 dry tonnes per day, with an average head grade of 13.75 grams gold and approximately 7 grams silver per tonne.

On Babine Lake the Bell open-pit mine (75) continued to produce 14,750 tonnes of ore per day for a total production of approximately 5.4 million tonnes at an average grade of 0.50 per cent copper and 0.106 gram per tonne gold.

The Equity Silver mine (91) south of Houston operated at a milling rate of 9000 tonnes per day with a feed grade of 0.35 per cent copper, 103 grams silver and 0.98 gram gold per tonne. The open-pit production came from the Main zone. Current reserves in the Main zone are approximately 10 million tonnes grading 111.6 grams per tonne silver, 1.01 grams per tonne gold and 0.34 per cent copper. Current reserves in the Main and Waterline zones will last until approximately 1992.
<table>
<thead>
<tr>
<th>Map No.</th>
<th>Property</th>
<th>Commodity</th>
<th>Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Windy Craggy</td>
<td>Cu, Co, Au, Zn</td>
<td>317.5 Mt @ 1.5% Cu, 0.08% Co, including 1.8 Mt @ 10.3 g/ta Au</td>
</tr>
<tr>
<td>17</td>
<td>Golden Bear</td>
<td>Au, Ag</td>
<td>Bear zone - 625.4 kt @ 18.63 g/t Au</td>
</tr>
<tr>
<td>19</td>
<td>McDame</td>
<td>asbestos</td>
<td>32.4 Mt @ 5.57% grade (P<sub>1</sub>, P<sub>2</sub>)</td>
</tr>
<tr>
<td>29</td>
<td>Reg (Stonehouse)</td>
<td>Au, Ag</td>
<td>959.8 kt @ 22.08 g/t Au (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>)</td>
</tr>
<tr>
<td>30</td>
<td>Snip</td>
<td>Au, Ag, Zn</td>
<td>1.1 Mt @ 24.0 g/t Au</td>
</tr>
<tr>
<td>39</td>
<td>Sulphurets</td>
<td>Au, Ag</td>
<td>West zone - 1364.8 kt @ 17.35 g/t Au, 691.5 g/t Ag (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>)</td>
</tr>
<tr>
<td>43</td>
<td>Scottie</td>
<td>Au</td>
<td>26.3 kt @ 18.5 g/t Au (P<sub>1</sub>r)</td>
</tr>
<tr>
<td>45</td>
<td>Big Missouri</td>
<td>Au, Ag</td>
<td>68.0 kt @ 3.60 g/t Au, 1.58 Mt @ 29.49 g/t Ag</td>
</tr>
<tr>
<td>46</td>
<td>Silbak Premier</td>
<td>Au, Ag</td>
<td>5.61 Mt @ 2.19 g/t Au, 81.94 g/t Ag</td>
</tr>
<tr>
<td>54</td>
<td>Tel (Yellow Giant)</td>
<td>Au</td>
<td>90.7 kt @ 17.4 g/t Au</td>
</tr>
<tr>
<td>59</td>
<td>Al</td>
<td>Au</td>
<td>223.4 kt @ 9.88 g/t Au mineable</td>
</tr>
<tr>
<td>60</td>
<td>Mets</td>
<td>Au</td>
<td>A zone - 160 kt @ 11.3 g/t Au (P<sub>2</sub>)</td>
</tr>
<tr>
<td>64</td>
<td>Lawyers</td>
<td>Au, Ag</td>
<td>1.76 Mt @ 6.7 g/t Au, 243 g/t Ag</td>
</tr>
<tr>
<td>67</td>
<td>Chappelle</td>
<td>Au, Ag</td>
<td>45.4 kt @ 20.13 g/t Au, 176.91 g/t Ag, 0.75% Cu (P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>)</td>
</tr>
<tr>
<td>82</td>
<td>Dome Mtn.</td>
<td>Au, Ag</td>
<td>289.7 kt @ 12.7 g/t Au, 68.4 g/t Ag (P<sub>1</sub>, P<sub>2</sub>)</td>
</tr>
<tr>
<td>No.</td>
<td>Property</td>
<td>Commodity</td>
<td>Reserves</td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>89</td>
<td>Silver Queen</td>
<td>Ag, Pb, Zn, Au, Cd, Ga?, Ge?</td>
<td>No. 2, 3, 5 Veins - 552.7 kt @ 3.6 g/t Au, 255 g/t Ag, 1.58% Pb, 6.64% Zn, 0.48% Cu (P1) Camp Vein - 140.6 kt @ 1.37 g/t Au, 477 g/t Ag, 0.07% Cu 1.23% Pb 5.16% Zn (P2)</td>
</tr>
<tr>
<td>98</td>
<td>Mt. Klappan</td>
<td>anthracite</td>
<td>1000 Mt</td>
</tr>
<tr>
<td>99</td>
<td>Telkwa</td>
<td>bituminous coal</td>
<td>50 Mt</td>
</tr>
</tbody>
</table>

CLASS OF RESERVES: P₁ - proven, P₂ - probable, P₃ - inferred.

Plate A4. A view looking northwest over Johnny Mountain flats towards the Iskut River. Airstrip for the Stonehouse gold deposit of Skyline Explorations was under construction in August 1987. Camp and ore zones are in the centre of the photograph.
EXPLORATION OPPORTUNITIES

Despite the high levels of exploration activity in the Northwestern District, there are still many unexplored areas with excellent mineral and coal potential. Some of the more significant exploration opportunities are:

* Polymetallic volcanogenic massive sulphide deposits in the Tatshenshini River, Cry Lake and Prince Rupert areas.

* Silver-lead-zinc manto deposits similar to the Mount Hundere and Midway deposits in the Cassiar thrust and fold belt.

* Gold veins on major structures in the Hecate Lowlands south of Prince Rupert.

* Precious metal deposits in Jurassic volcanic and sedimentary rocks (typically Hazelton Group) extending north from the Stewart area to the Stikine River and south from the Toodoggone River area to Whitesail Lake.

* Follow-up of Regional Geochemical Survey results from the 1987 Whitesail Lake release and planned 1988 release for the Iskut River, Telegraph Creek, Sumdum and Tulsequah map sheets.
CENTRAL DISTRICT
By E.L. Faulkner, District Geologist, Prince George

INTRODUCTION

There was a record level of exploration activity in the Central District in 1987, due to improved precious metal prices, the availability of flow-through financing and firmer base metal prices. For the first time in many years, some companies reported difficulties in securing field crews or drilling rigs.

Although precious metals in all deposit types once again dominated exploration targets, there was some interest in base metal deposits. Following is a summary of activity and trends by region, with some details of selected major exploration programs.

HIGHLIGHTS

* Exploration success continued at Blackdome gold mine, with work on two new adit levels.

* The Endako molybdenum mine completed a successful year after re-opening.

* Gibraltar mine benefited from improved copper prices and the success of the heap-leach and copper electrowinning operation.

* Mineable tonnages of ore are indicated at Noranda’s Dominion Creek gold and base metal property and at Cathedral Gold Corporation’s Takla Rainbow gold property.

SUMMARY OF EXPLORATION ACTIVITIES

A total of 164 mineral notices of work were received, up 24 per cent from 1986. Drilling programs, at 63, were up 54 per cent. Placer notices of work, at 437, were down 11 per cent from 1986 levels despite the improved price of gold in 1987. The decrease, however, was mostly in the number of testing and recreational programs. For details of properties and programs, see Table A1 and Figure A2.

METALLIC MINERALS

Quesnel Trough

The majority of programs in the district were once again concentrated on a number of established properties in the Quesnel trough, with targets being gold in volcanogenic massive sulphide deposits, alkali porphyry and porphyry-related deposits, phyllite-hosted deposits, and mesothermal replacement and vein deposits. Among the more significant programs, Placer Dome Inc. continued detailed drilling and
preliminary feasibility studies at the QR porphyry-related gold deposit (100), bringing it a step closer to an expected production decision. New ore reserve figures of 998,000 tonnes grading 7.2 grams gold per tonne were released.

In the Hixon - Cottonwood House area, Gabriel Resources Inc. completed another major drilling and trenching program on the G South property (101), with mixed but encouraging results from the discovery area near Ahbau Creek. Gold occurs with polymetallic sulphides in shear zones cutting augite porphyry breccias and tuffs, and the mineralization may represent remobilized massive sulphides.

A significant development in the exploration for basal-phyllite-hosted gold deposits in the Quesnel trough has come from preliminary metallurgical tests that indicate that this type of mineralization can be treated successfully by gravity or mixed gravity and leach techniques. Eureka Resources Inc. extended the known strike length of the main Jay zone at its Frasergold property (102) to over 800 metres, and Southlands Mining Corporation in a joint venture on the property, completed 180 metres of adit and drifting on this zone. Results of bulk sampling released to date suggest better continuity and slightly higher grades of mineralization than had been indicated by drilling.

Pundata Gold Corporation completed a major program of drilling and trenching on the CPW property (103) on Spanish Mountain, another phyllite-hosted gold deposit. Economic mineralization was found to extend below previously tested depths, and significant gold values were found on the Don claim, 1200 metres north of the CPW zone.

Cariboo Mountains

Results of exploration for "sedex" base metal and silver mineralization in the Upper Hadrynian and Lower Paleozoic metasediments of the Cariboo Mountains have been disappointing. Interest was raised by barium and multi-element anomalies revealed in the 1986 Regional Geochemical Survey for NTS 93G and NTS 93H. Barite mineralization was found, but without significant other values. Increased exploration in this area, largely the result of improved access, has however led to the discovery of apparently conformable quartz replacement veins carrying base metal mineralization with significant precious metal values.

The Noranda Exploration Company, Limited/International Rhodes Resources Ltd. joint venture reported mixed but generally encouraging results at the AK property near Dominion Creek (104). Gold occurs with pyrite and base metal sulphides in quartz veins hosted by arenaceous metasediments; some mineable tonnages grading 5 to 8 grams per tonne gold have been established.

Gibraltar Mines Ltd. drilled the May Be prospect (105), a persistent base metal sulphide vein with some erratic high silver values, hosted by black calcareous sediments. Elsewhere in the Cariboo Mountains - Barkerville area, Cathedral Gold Corporation drilled near the old Cariboo Hudson gold mine (106), to add to the known extent of the Shasta and 605 veins.
Omineca

Rapidly improving access and discovery of gold mineralization at Noranda’s Tas property have lead to increased exploration activity in the Omineca. Targets are volcanogenic massive sulphides, porphyry-related precious metals and mesothermal veins.

Cathedral Gold Corporation continued drilling at the Takla Rainbow property (107). Gold and silver occur with pyrite and chalcopyrite in a steeply dipping northwest-striking shear zone near a border phase of the Hogem batholith. Variable but persistent gold values up to 18.7 grams per tonne over 1 to 2-metre widths and a strike length of 500 metres have been found, and a preliminary reserve estimate of 200 000 tonnes grading 13 grams per tonne has been made. Encouraging intersections of low-grade gold mineralization were also recovered with a portable drill at Cathedral’s Axelgold property to the north (108).

Noranda Exploration identified a number of scattered areas of massive to disseminated gold-bearing pyrite mineralization in fractured tuffaceous sediments and augite porphyry flows near a diorite stock on the Tas property (109).

X-Cal Resources Ltd. continued an extensive program of diamond and percussion drilling, geochemistry and geophysics on the Snowbird property (110), where gold occurs in east-striking quartz-stibnite veins. The main vein zone has now been traced for over 1200 metres and other subparallel targets have been identified by sampling basal till.

Eastfield Resources drilled a 600-metre-long induced polarization anomaly on the Indata property (111) and reported significant precious metal values in four of five holes drilled.

Fraser Plateau

A number of companies, including Newmont Exploration of Canada Limited, Lac Minerals Ltd., Lornex Mining Corporation and Kerr Addison Mines Limited, were active on the Fraser Plateau, and interest in this area is increasing. The target is gold mineralization in either inliers in the Tertiary basalt cover or areas of silicified and brecciated Tertiary basalts. Exploration techniques have included lake sediment, soil and lithogeochemical sampling, and careful ground search, particularly in areas with signs of copper mineralization. Both target types have returned generally low but sometimes widespread gold and silver values associated with minor pyrite, chalcopyrite or both, but with potential for heap-leach processing.

Lac Minerals continued drilling the Bob property (112), a large area of low-grade gold mineralization in late Cretaceous to early Tertiary quartzites and conglomerates near Nazko. The Kerr Addison/Welcome North Mines Limited joint venture found low gold values in a 60 by 300-metre zone of brecciated and silicified basalts on the Trout property (113), and Chromick Mineral Ltd. reported low gold values from percussion drilling at the WTM claims near Dog Creek (114). Here gold occurs in a leucocratic granite and hornfelsed sediments.
Coast Range Marginal Belt

Several companies were active in the interior marginal belt of the Coast Range intrusive complex, looking for epithermal precious metal deposits, especially in volcanic and volcaniclastic rocks of the Kingsvale Group. Exploration techniques included examination of gossans and areas of hydrothermal alteration, and re-examination of gold-quartz vein deposits and porphyry-related precious metal mineralization.

Kleena Kleene Gold Mines Ltd. completed 160 metres of an exploratory adit at the Apex (Perkins Peak) property (115). The Lord River Gold Mines Ltd./Cathedral Gold Corporation joint venture completed over 1300 metres of drilling and 50 metres of drifting at the Pellaire (Lord River) gold mine (116) in the first phase of a program to increase the known reserves of 30 000 tonnes grading 23 grams gold and 65 grams silver per tonne. Welcome North Mines Limited drilled a number of siliceous alteration targets near the old Taylor Windfall gold mine (117), while to the east, a Westmin Resources Limited joint venture continued to test several large areas of gossan, hydrothermal alteration and multi-element geochemical anomalies with a major drilling program at the Taseko-Palisades property (118).

PLACER

Expenditures by placer miners in the district are estimated at over $8 million for the year. A number of companies and individuals are turning their attention to Tertiary channels, as opportunities for exploiting the surface deposits diminish. Gold Ridge Resources continued work on its in situ cyanide leach project for mining the rich buried channel at its Wingdam property (119), and was ready for its first cyanide test at year’s end.

INDUSTRIAL MINERALS

A new vermiculite discovery, in a probable late Jurassic pluton, was staked near Fort St. James (Mag and Frank claims). Ausum Mines Ltd. produced over 2000 tonnes of perlite from its Frenier quarry (131), and there were contract shipments of limestone from two quarries in the district.

OPERATING MINES

Most operating mines in the district have benefited from higher metal prices. The re-opening of the Endako molybdenum mine (127) at a reduced mill rate of 10 000 tonnes per day has been highly successful despite continued weak molybdenum prices. The Gibraltar mine (128) also had a much improved year, with substantially increased copper prices in the second half, the mining of softer and higher grade ore from the upper levels of the Granite Lake pit and production of copper from the heap-leach electrowinning plant, which rose from 11 tonnes per day to over 15 tonnes per day.
The Blackdome mine (124) operated at over 180 tonnes per day and produced 1452 kilograms of gold and 3935 kilograms of silver. Ore reserves were maintained with an aggressive program of over 8000 metres of exploratory drilling and the development of two new adit levels. Most of the exploration and development efforts were concentrated on the southwest extension of the No. 1 and No. 2 vein systems.

Mosquito Creek Gold Mining Company Limited (130) continued to mill small batches of ore during the year. Work was started on a 980-metre adit which will connect with the old Island Mountain mine workings.

TRENDS AND OPPORTUNITIES

Exploration trends in the district are in part related to improved access as logging operations move into new areas. This is especially important in the northern part of the Quesnel trough where a combination of poor access and poor exposure has previously slowed exploration.

Improved access and a better outlook for base metal prices should lead to increased exploration in the Cariboo Mountains, where recent discoveries have shown that the Upper Hadrynian and Lower Paleozoic sedimentary sequences may host "sedex" or conformable replacement mineralization with significant precious metal values. This area may prove to be an important and hitherto overlooked metallogenic province.

The Fraser Plateau clearly has potential for large-tonnage, low-grade gold mineralization. Companies and prospectors are demonstrating that the Tertiary volcanic cover is neither as pervasively thick nor as unaffected by hydrothermal activity as has been previously assumed.

The discovery of carbonatite by Cominco Ltd. at the Aley deposit, and by Teck Corporation near Tacheeda Lake northeast of Prince George, clearly indicates the possibility that other carbonatites may intrude the Lower Paleozoic sedimentary sequences east of the Rocky Mountain Trench.
NORTHEASTERN DISTRICT
By A. Legun, District Geologist, Charlie Lake

SUMMARY OF EXPLORATION ACTIVITIES

COAL EXPLORATION

Coal exploration activity in 1987 was at the same level as in 1986 with four notices of work submitted. As in 1986 most of this activity was close to the two mine sites, Teck Bullmoose and Quintette Coal. Exploration drilling totalled 10,748 metres in 92 holes. This is comparable to 1986 when 9,372 metres were drilled in 86 holes. Almost all activity was in the vicinity of the Quintette mine which accounted for 10,348 metres of drilling in 84 holes.

A summary of exploration statistics is presented in Table A1.

Quinette Coal Ltd.

The Transfer (130) and Grizzly (131) deposits were the focus of Quintette's 1987 efforts outside the main pit areas.

The Transfer deposit is a relatively symmetrical anticline found 2 to 3 kilometres west of the transfer point of the overland conveyor. Exploration work involved eight diamond-drill holes, 46 rotary-drill holes and three adits from which five bulk samples were taken (F, G, J, K₁ and K₂ seams). Reserves in the Gates Formation are in the range of 10 to 12 million product tonnes. A few holes on the west limb of the Transfer anticline were drilled into the Gething Formation and intersected an interesting thickness of coal.

The Grizzly structure, a continuation of the Shikano anticline, lies on the north bank of the Murray River, immediately above the M-19 gravel pit and parallel to the western side of the overland conveyor. Exploration work involved four diamond-drill holes, 21 rotary-drill holes, and three adits from which four bulk samples were taken (F, G, J and K seams). A reserve in the range of 3 to 6 million product tonnes is indicated.

Both of the above programs were supported by a FAME grant. Results of the exploration programs supported interpretations based on 1986 work. Coal seam continuity was good and no significant faulting was found. F seam was found to be a little ashy on the east limb of the Transfer anticline. Total mineable thickness of coal is approximately 13 metres, somewhat less than that found in the main Mesa pit.

Perry Creek (133) is a new exploration area east of Fortress Mountain approximately 9.5 kilometres northwest of the Quintette mine. Gates Formation coal measures are preserved in a synclinal structure with one shallow-dipping limb. The last work done in the area was in 1974. In 1987, five rotary-drill holes intersected 7.5 metres of coal (5.5 metres J₁ and 2 metres J₂). J₁ and J₂ seams correspond to A and B seams of Teck Bullmoose mine. The area is close to the road and rail line and may contain anything from 1 to 10 million tonnes of reserves.
Teck Corporation

The only exploration activity at Teck’s Bullmoose mine (134) relates to Gething Formation coal measures near a proposed dump area. Eight rotary-drill holes have been placed on the 1560 road at the southwest end of the pit. The only seam of significance intersected is the Bird, with a composite thickness of about 3 metres. Work by the writer indicates potential for near-surface preservation of this seam along the axis of the syncline (underlying the pit) across I Creek.

COAL POTENTIAL

Four oil and gas wells located adjacent or within the Foothills coal belt record apparent thick intervals of coal within the lower part of the Gething Formation. Though the coals at the well sites are too deep for surface exploitation, nearby fold structures bring the stratigraphic interval to surface (for example, Waterfall Creek anticline). Coal boreholes in the vicinity did not penetrate the stratigraphic interval of the coal in the wells. For further information see Legun in Geological Fieldwork, 1987 (British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1988-1, pages 459-462).

The logs of other oil and gas wells, within or adjacent to the Foothills coal belt, contain significant information regarding coal seams in the Fort St. John Group and Minnes Group and their use for targeting exploration areas is encouraged.

METALLIC MINERALS

Five notices of work were submitted in 1987 which indicates some interest in the mineral potential of the Peace River district where virtually none existed before.

Probably the most significant mineral property under exploration is the Cay (135). Beaty Geological Ltd. conducted geologic mapping, geochemical and geophysical surveys, and drilling on limestone breccias near the contact between the Stone and Dunedin formations. Galium and germanium associated with barite-lead-zinc mineralization are the commodities sought. The Cay property was targeted after a 2.5-year reconnaissance of lead-zinc showings in northeastern British Columbia and elsewhere. Mineralization is known to occur as a thin, brecciated, stratabound interval and in a crosscutting breccia. The geological controls of mineralization are now better known, in particular the relationship of high galium and germanium values to zones of silicification in the hinge areas of kink folds.

Near Mount Burden, immediately north of Williston Lake, Northgate Exploration Limited conducted a modest drilling program on the Coral property (136), a lead-zinc prospect occurring near the Stone-Dunedin contact. Core from only one of the 10 diamond-drill holes was mineralized.
Other programs included trenching and blasting at Bonanza Creek near the old Churchill Copper mine by Shangri-La Minerals Ltd. in search of cobalt mineralization, and drilling for gold in Proterozoic quartzites by Alina International Industries Ltd. (137).

INDUSTRIAL MINERALS

The Baker Creek limestone quarry was inactive in 1987 except for shipments from the stockpile. Similarly there was no production from the barite quarry at Fireside.

Mandusa Resources Ltd. sampled for china clay in a Tertiary outlier at Coal River, where thin coal measures are preserved.

OPERATING MINES

At the Quintette mine (133), production at the newly opened Shikano pit began in earnest in September 1987, complementing that at the Mesa and Wolverine pits. Quintette produced approximately 5 million tonnes of metallurgical coal in the calendar year, with about 70 per cent of the production from the Mesa subpits, about 20 per cent from Wolverine and 10 per cent from Shikano.

Development and production drilling totalled 21,193 metres in 178 rotary-drill holes. This is considerably reduced from 1986 levels when 35,084 metres were drilled. This is a natural consequence of the structure and seam geometry now being well defined. The Mesa Extension area, in particular, saw a reduction in development drilling (19,996 metres to 9003 metres).

The Bullmoose mine (134) will produce 1.7 million tonnes of metallurgical coal in its contract year. Five seams (A to E) are mined with about 60 per cent of production coming from the thick and extensive A and B seams.
SOUTHEASTERN DISTRICT
By D.A. Grieve, District Geologist, Fernie

INTRODUCTION

The gold exploration boom experienced throughout the province in 1987 was felt to some extent in the Southeastern District, an area better known for coal and industrial minerals. Most significantly, Placer Dome Inc. followed up previous exploration on syenite intrusions in the Howell Creek area southeast of Fernie, with a diamond-drilling program.

The total amount of coal exploration drilling in the district in 1987 was just under 27,000 metres, up from 24,700 metres in 1986. A more negative indicator was that all coal exploration programs were conducted within the immediate vicinity of existing operations. The FAME program again had a positive impact on coal exploration in the district; FAME supported 80 per cent of the total coal exploration drilling, down from 90 per cent in 1986.

SUMMARY OF EXPLORATION ACTIVITIES

METALLIC MINERALS

The total number of notices of work in 1987 was 14, up one from 1986. These include: precious metals, four; base metals, two; gypsum, four; magnesite, one; barite, one; and two for small programs of unclear objective. Some of the larger programs are listed in Table A1. These included 2700 metres of diamond drilling at Baymag Mines operation east of Radium Hot Springs (145), a program designed to increase mineable reserves at this world-class magnesite deposit. Possible future expansions of production are partly behind this exploration effort. In the vicinity of the Domtar Inc. gypsum mine southeast of Canal Flats (143), a total of 1125 metres of diamond drilling and 150 metres of rotary drilling was carried out. This also represents an effort to define new mineable reserves. Another major program included in Table A1 refers to work by Fox Geological Consultants, on behalf of Placer Dome Inc., on two adjacent claim blocks in the Howell Creek area (Flathead River drainage basin) known as Flathead and Howe (148). Previous work outlined several gold geochemical anomalies and some encouraging assays associated with the small, altered syenite bodies known collectively as the Howell Creek intrusions. Work in 1987 included 1262 metres of diamond drilling in the "A" intrusion, as well as extensive geochemical sampling, geological mapping, prospecting and trenching on various parts of the property. Work will continue in 1988 on this interesting new gold find.

COAL

All coal exploration programs are listed in Table A1. Of note, Westar Mining Ltd. continued exploration at its Greenhills operations (139), especially in the northern part of the property. The main target was high-volatile coal (Seam 16 and higher), although considerable
effort was also spent on exploring for 7 and 10-seams, lower in the stratigraphic section. Total drilling at Greenhills was 5700 metres, all of it rotary. Crows Nest Resources Limited (140) was active at two proposed pit sites in the Line Creek Extension, north of the main Line Creek pit, known as Top-of-the-Ridge pit and 2-Seam pit. The former will come into production in early 1988. Total drilling on Line Creek Extension was 6365 metres, of which 1120 metres was diamond drilling. Crows Nest Resources was also active in the new Lower South pit area (see Coal Developments), adjacent to the current Line Creek main pit, where it drilled a total of 6840 metres, of which 745 metres was core drilling. On Horseshoe Ridge, an area east of the main Line Creek pit but within the boundaries of the mining lease, Crows Nest Resources drilled a total of 2641 metres, all of it rotary. Late in the year Crows Nest rotary drilled 1184 metres in the "mine service area", also within the lease. This newly discovered coal prospect is very advantageously located and will be further evaluated in 1988. Fording Coal Ltd. (138) continued to focus on Eagle Mountain, its major long-term production site. Total drilling of 4259 metres included 877 metres of diamond drilling.

COAL DEVELOPMENTS

Westar Mining received Stage I approval for its Greenhills (139) Falcon pit ("west side") proposal. A total of 1.7 million tonnes of 1-seam coal is scheduled to be mined over a 3-year period.

Production began this year from the Lower South pit, adjacent to the main pit at Line Creek mine (140). Current production is entirely from 8-seam.

OPERATING MINES

Poor markets for coal continued to affect the five southeast coal producers in 1987, although there is some optimism in the industry that conditions are improving. Total production (Table A2) was up from 1986, due to increases at Westar’s Balmer (141) and Greenhills (139) operations. A lengthy strike at Balmer in 1986, however, had resulted in artificially low production figures for that mine. Production figures at both Line Creek (140) and Byron Creek (142) were lower in 1987 than 1986, but these reductions were related to the down-sizing of the operations which began in 1986 and took full effect this year. Fording Coal (137) maintained its 1986 production level, and for the second year in a row was the province’s largest coal producer.

The district’s five industrial minerals producers (two gypsum, two silica and one magnesite) are summarized in Table A2.
WEST KOOTENAY DISTRICT
By G.G. Addie, District Geologist, Nelson*

INTRODUCTION

Exploration activity in the West Kootenay District increased by at least two-thirds over 1986, based on the number of notices of work. Some 75 mining and exploration companies are active in the district, with work directed almost entirely toward precious metal targets. Significant results have been obtained in a diversity of geological environments with the main emphasis on gold-bearing quartz veins and silicified zones in Rossland volcanic rocks. Almost every known gold occurrence in the Nelson district is now being explored.

SUMMARY OF EXPLORATION ACTIVITIES

Gold-Bearing Veins

Granges Exploration Ltd. has had considerable success on the Goldfinch property (150) north of Camborne, optioned from Windflower Mining Ltd. Four gold-bearing veins are now being tested from surface by three diamond drills. Approximately 6100 metres of drilling have been completed and reserves are quoted at 158 725 tonnes with an average grade of 8.57 grams per tonne gold. Plans to build a 50 tonne per day pilot mill for bulk testing are in hand. The strong vein systems are related to a major fault zone, the Camborne fault, which extends many kilometres to the southeast and has many mineral showings clustered along it. The Dorothy vein carries high-grade visible gold where conspicuous tension veins are developed in the wallrocks. A second mineralized shoot has been discovered on the Dorothy vein, 150 metres north of the area tested in 1986, and significant veins have been found in both the footwall and hangingwall.

On the Camborne fault system, south of the Incomappleux River, K-2 Resources Inc. (formerly Sunshine Columbia Resources Limited) and Ram Exploration Ltd. have drilled 28 holes, totalling 3000 metres, to increase reserves on the Spyder vein (151). The drill-indicated tonnage is now 33 700 tonnes grading 3.2 grams per tonne gold, 171 grams per tonne silver, 4.22 per cent lead and 5.77 per cent zinc. The lower drill holes are intersecting more pyritic mineralization, thought to be similar to that on the Goldfinch property.

Triple M Mining Corporation and Ram Exploration have also been drilling to increase reserves on the adjoining Eclipse property (152), where mineralization is localized along north-trending carbonate-altered shear zones in metavolcanic and metasedimentary rocks of the Jowett and Broadview formations. Mineralization is described as coarse-grained argentiferous galena, sphalerite and pyrite, with lesser tetrahedrite and free gold, in a gangue of quartz and siderite.

*The author retired early in 1988. For completeness, this article which was published in Exploration Review 1987 (Information Circular 1988-1, February 1988), is included without benefit of significant revision.
In the Slocan mining camp, King Jack Resources Ltd. has rehabilitated the King Jack, Joan and Duplex mine portals (155) and is drilling from surface and underground to test veins carrying argentite and visible gold. Also in the Slocan camp, Noranda Exploration Company, Limited has an option on the L.H. mine (178) and drilled two holes totalling 795 metres during July and August. One hole cut an intercept of 1.4 metres grading 15 grams per tonne gold; the other cut a shear zone containing 40 per cent combined arsenopyrite, pyrite and pyrrhotite, and assaying 2.57 grams per tonne gold over 1 metre. East of Slocan, Yukon Minerals Corporation has re-opened the Payday (Meteor) gold-silver mine (156).

North of Slocan, Yukon Minerals Corporation has re-opened the Payday (Meteor) gold-silver mine (156). In the Slocan mining camp, King Jack Resources Ltd. has

In the Slocan mining camp, King Jack Resources Ltd. has rehabilitated the King Jack, Joan and Duplex mine portals (155) and is drilling from surface and underground to test veins carrying argentite and visible gold. Also in the Slocan camp, Noranda Exploration Company, Limited has an option on the L.H. mine (178) and drilled two holes totalling 795 metres during July and August. One hole cut an intercept of 1.4 metres grading 15 grams per tonne gold; the other cut a shear zone containing 40 per cent combined arsenopyrite, pyrite and pyrrhotite, and assaying 2.57 grams per tonne gold over 1 metre. East of Slocan, Yukon Minerals Corporation has re-opened the Payday (Meteor) gold-silver mine (156).

North of Slocan, Granges Exploration Ltd. has optioned the Alpine mine (157) from Cove Energy Corporation. A new access road has been completed and a diamond-drilling program has been started. Eight to ten holes are planned, with a possible $850 000 program funded by Cove Energy Corporation on a flow-through basis.

South of Nelson, the Kenville mine (158) has been rehabilitated by Algoma Industries and Resources Ltd. and a small mill is under construction. This mine produced considerable free gold in the past, and high-grade scheelite mineralization has recently been discovered. In the same area, Ram Exploration Ltd. has rehabilitated the California mine and Beatty Geological Ltd. is re-examining the Athabaska mine. All three of these old mines lie along northwest-trending magnetic linearis that may reflect shear zones cutting both Nelson plutonic rocks and Rossland volcanics.

In the Ymir mining camp, O'Hara Resources Ltd. is exploring the Blackcock mine (161) where high-grade gold and silver mineralization is associated with massive base metal sulphides in fissure-controlled veins. The granodiorite wallrocks are often strongly silicified and mineralized with auriferous pyrite.

In the Sheep Creek camp, Gunsteel Resources Incorporated (162) has been successful in developing new ore. Reserves now stand at 66 400 tonnes with an average grade of 15.4 grams per tonne gold. On the neighbouring Goldbelt mine (163), Lightning Minerals Inc. has completed 2440 metres of surface diamond drilling and quotes reserves of 21 000 tonnes grading 13.7 grams per tonne gold, 14.3 grams per tonne silver, 0.5 per cent lead and 0.3 per cent zinc.

In the Grand Forks area, Kettle River Resources Ltd. and Noranda Exploration have optioned the Crown property (164) from Consolidated Boundary Exploration Limited and have trenched on a broad gold geochemical anomaly. An assay of 34.28 grams per tonne gold over 1.8 metres was obtained in one trench. On the adjoining Golden Crown property (165), Consolidated Boundary has completed a 622-metre adit to explore a zone of seven parallel gold-bearing veins in diorite. Kettle River Resources has also continued underground exploration in the Dentonia mine (166) north of Greenwood. Sumac Ventures Inc. has started a successful heap-leach operation at the old Union mine (167) north of Grand Forks; a total of 5000 grams of gold and 150 000 grams of silver has been recovered from 13 600 tonnes of tailings and dump material. The company plans to leach an additional 85 000 tonnes in 1988. Total
probable reserves of tailings, dump rock and underground ore are quoted as 99,300 tonnes with a grade of 3.4 grams gold and 143.9 grams silver per tonne. Small amounts of platinum and palladium have been recovered in tests. Placer Dome Inc. and Longreach Resources Ltd. are exploring the adjacent Platinum Blonde claims (168) for platinum group metals and have begun a 9100-metre diamond-drilling program.

Gold-Bearing Silicified Zones In Rossland Volcanic Rocks

The Rossland volcanic rocks are geochemically anomalous in gold. Gold concentrations are found in silicified zones associated with intrusions into the volcanic terrane. Although mineralization controls are undoubtedly complex, and as yet poorly understood, the possibility of finding large, low-grade gold deposits appears good.

Lectus Developments Ltd. (159) is drilling a silicified zone at the contact between Rossland andesites and the Silver King porphyry intrusion near Nelson. The first hole yielded visible gold and drilling continued through December. Other companies and prospectors are active in areas to the south and southeast. Southwest of Salmo, Falconbridge Limited is drilling a silicified zone in Rossland volcanics believed related to Tertiary Coryell intrusions.

Diatreme Deposits

Northair Mines Limited proposes to bring the Willa property (160) near Silverton to production in 1988. Plans call for a 500 tonne per day mill to produce 995,200 grams of gold, an equal amount of silver and 1.4 million kilograms of copper annually. A new portal was established at the 1100-metre elevation during 1987 and two new potential ore zones have been found, but are not included in reserves.

Gold-Bearing Skarn Deposits

Esperanza Explorations Ltd. continues to enjoy success on its Tillicum Mountain property (175) where drill-indicated reserves are now quoted at 182,000 tonnes with an average grade of 20.5 grams per tonne gold. This figure includes 45,500 tonnes grading 34.28 grams per tonne. Twenty-eight holes, totalling 3126 metres of drilling, were completed in 1987. The West Ridge zone, located close to the present workings and estimated to contain 2.7 million tonnes grading 2 grams per tonne gold, will be explored for higher grade shoots during 1988. Installation of a 100 tonne per day mill, with a crushing capacity of 150 tonnes per day, is also planned in 1988.

Esperanza has also acquired the Strebe property (176) several kilometres to the east on Hailstorm Mountain, where visible gold is present in an extensive skarn zone that appears identical to that on Tillicum Mountain. Eight diamond-drill holes have been completed. All holes intersected the gold-bearing skarn zone and five yielded intercepts with visible gold.
Porphyry(?) Gold Deposits

Ryan Exploration Company Ltd., the Canadian exploration arm of U.S. Borax, describes its Star and Ron claim groups (177) near Nelson as having many of the characteristics of a porphyry deposit. The claims cover an extensive gold geochemical anomaly in soils (100 ppb range) over the contact between "pseudodiorite" and Rossland volcanic rocks. A total of 2286 metres of reverse-circulation drilling has been completed over the last three years.

Silver-Lead-Zinc Deposits

At the Standard mine (169) in the Slocan camp, Silver Ridge Resources Inc. has driven into a silver-lead-zinc zone projected downwards from the No. 7 level. A number of veins are present and will be explored by diamond drilling. Silver Ridge Resources is also renovating the Ottawa mill at Slocan.

Dragon Resources Ltd. has rehabilitated the adits at the Silver Cup – Comstock mine (170) on Fennell Creek east of Silverton. A narrow vein of massive galena has been found and is reported to assay 6857 grams per tonne silver. The dumps are considered to be suitable for feed for the company’s mill at Ainsworth, jointly owned with Mikado Resources Ltd.

In the Greenwood area, the Skylark Resources Ltd. – Kettle River Resources Ltd. joint venture has been successful in blocking out ore in the Skylark mine (171). Reserves are quoted as 78 700 tonnes with an average grade of 685.6 grams silver and 2.7 grams gold per tonne, with an additional 27 300 tonnes of possible reserves. A 460-metre decline has been driven into the newly discovered Serp zone which carries higher gold values; one drill hole intersected 4.1 metres of mineralization assaying 14.8 grams per tonne gold.

Carbonate-Hosted Replacement Deposits

Mikado Resources Ltd. and Turner Energy & Resources Ltd. have driven a new adit 152 metres on the Abbott zone (173) in the Trout Lake area. Reserves in this replacement deposit in the Badshot limestone are quoted as 66 400 tonnes with an average grade of 294.7 grams silver and 1.45 grams gold per tonne, 14.22 per cent zinc and 11.08 per cent lead.

OPERATING MINES

Ore reserves at the Cominco Ltd. Sullivan mine (174) are 26.3 million tonnes grading 6.9 per cent zinc, 4.6 per cent lead and 34.28 grams per tonne silver. Exploratory drilling in 1987 totalled 1774 metres and a 2000-metre exploration hole has been started on Mark Creek, north of the Kimberley fault.

Dickenson Mines Limited has been successful in increasing ore reserves in its Silvana mine (149) at Sandon and in its exploration of the adjacent Carnation mine. Ore reserves in the Silvana mine are 56 000 tonnes with an average grade of 442.3 grams per tonne silver,
6.55 per cent zinc and 4.9 per cent lead.

Queenstake Resources Ltd. has enjoyed a successful year with its placer mining operation on the Moyie River, recovering 22,175 grams of gold. This compares with 5660 grams recovered in 1986.
SOUTH-CENTRAL DISTRICT
By R.E. Meyers, District Geologist, Kamloops

INTRODUCTION

Mineral exploration in south-central British Columbia reached an all-time high in 1987. The number of exploration projects increased by 52 per cent and the number of drilling (and/or underground) projects is up by 109 per cent.

TRENDS AND HIGHLIGHTS

Although precious metals remain the most sought-after commodities, the historical mesothermal and epithermal vein targets took a somewhat lower profile to silver and gold-bearing volcanogenic massive sulphides and auriferous skarn deposits.

Since the discoveries of the Rea Gold deposit (184) in 1983 and the Samatosum silver zone (183) in 1985, exploration for polymetallic massive sulphide deposits within the Devon-Mississippian Eagle Bay assemblage and Permian Fennell Formation has been steadily increasing. In excess of 45 000 metres of drilling were completed in the area during 1987, with gross exploration expenditures estimated at well over $5 million. As a consequence, the area will, in all likelihood, see new mine production at Samatosum Mountain before 1990.

In the Hedley camp, Mascot Gold Mines Ltd.'s (247) success, together with new metallogenic models and prospects resulting from current field research, has stimulated a great deal of exploration directed toward Nicola-hosted gold-bearing skarn targets.

A new epithermal gold "province" is beginning to take shape in the Okanagan region. With the recent discoveries of the Vault (257) near Okanagan Falls and the Brett deposit (263) west of Vernon, the Tertiary volcanic sequences which at one time were looked upon as "cover rock" are now being recognized as excellent potential host rocks for high-level hotspring-type gold mineralization.

Elsewhere in the district, the Upper Triassic Nicola Group is again the focus of exploration for gold. Several medium-sized programs were begun in 1986 and are continuing through the 1987-88 field seasons.

The current copper revival has prompted several companies to take another look at the economics of bulk-tonnage deposits, particularly where significant amounts of gold are present. This will be a major factor in determining the future of the Afton mine and other deposits associated with alkaline intrusive rocks.
SUMMARY OF EXPLORATION ACTIVITIES

Adams Lake Area

Most activity was focused west of Adams Lake, with major operators being Minnova Inc., Esso Minerals Canada, BP Canada Inc. and Noranda Exploration Company, Limited. At year-end Minnova submitted a prospectus to the Mine Development Steering Committee for the development of the Samatosum deposit (183). Preliminary reserves are estimated to be 600,000 tonnes grading 1100 grams per tonne silver, 3.5 per cent zinc, 1.2 per cent copper, 1.7 per cent lead and 1.8 grams per tonne gold, using a cut-off of 250 grams per tonne silver. Esso Minerals operated major drilling programs on the Homestake (207) and Twin (206) properties, as well as the smaller Cana (190) and Wiki (191) projects. BP Canada drilled the CM (197), Water (198) and Fortuna (196) claims, and Noranda completed its drilling activities on the Birk Creek (194) property.

Among the junior exploration companies Rea Gold Corporation began underground work on its L98 gold-bearing massive sulphide lens (184), Celebrity Energy Corp. and Algo Resources drilled the JC (199) and OK (193) claims respectively and Nu Crown Resources drilled the Tia prospect (192). Southeast of Adams Lake, Clifton Resources Ltd. and Adams Exploration Inc. operated one of the largest drilling projects in the region on the Adam property (189), while at the Mosquito King property (203), Killick Gold Company Ltd. continued its program of trenching, bulk sampling and mill testing of lead-zinc sulphides.

The potential remains high for new discoveries in the region. National Resource Exploration intersected a new gold-bearing skarn zone on the Steep claims (187) and began work on the Biere property (188). A significant number of sulphide occurrences are distributed throughout the Eagle Bay stratigraphy on the Adams Plateau, many of which have not been systematically mapped or tested by drilling.

Shuswap Complex

Northeast of Clearwater, within the Shuswap metamorphic complex, Rea Gold and Verdiestone Gold Corporation completed an exhaustive 95-hole drilling program in six zones on the CK (186) lead-zinc property. Further north, Azure River Gold Ltd. completed drilling to evaluate the Summit (209) prospect and northeast of Valemount, Redbird Gold Corp. initiated first phase work on the Dove claims (210).

Bridge River Gold Camp

The Gold Bridge - Bralorne district again saw extensive exploration effort on many of the prime historical properties. At many localities new approaches and models are being developed, stimulated by the high level of field and academic research currently ongoing in the region.

The most active projects in the camp include the Levon Resources Ltd. Congress project (215), the Menika Mining Ltd. Reliance property (211), the Armeno Resources Inc. Standard Creek project (217)
and the Chevron Canada Resources Ltd. Wayside property (213). The Standard Creek and Congress properties had extensive underground development work. In addition to the Lower Howard zone, Levon has collared adits on the Upper Howard and Lou zones. Both zones occur within Upper Triassic Pioneer Formation pillow lavas and are spatially associated with Tertiary feldspar porphyry pulaskite dykes. Levon recently submitted a prospectus for production to the Mine Development Steering Committee. Chevron’s work on the Wayside Property concentrated on a faulted block of Bralorne diorite, which is the main intrusive host rock to the Bralorne and Pioneer orebodies. Southwest of Gun Lake, Coral Energy Corp. drilled the Veritas claims (218) and Levon completed a trenching program on the BRX property.

Tyaughton - Yalaklom Area

North of Bridge River, in the Relay Creek area, several companies continued exploration for epithermal gold mineralization in Cretaceous volcanic rocks. Westmin Resources Limited, Esso Minerals Canada and Byron Resources Ltd. completed a major drilling program on their Taseko joint venture, and Welcome North Mines Limited carried out percussion drilling on the Taylor-Windfall property (224). To the east, at Poison Mountain (Rex claims, 222), Lac Minerals Ltd. drilled for bulk-tonnage porphyry copper-gold mineralization.

Current field research in the region suggests that some of the better precious metal targets are likely to be close to the Late Cretaceous to Early Tertiary feldspar porphyries intruding the Cretaceous (Kingsvale) volcanic package, specifically where mercury, arsenic and antimony anomalies occur with open-space carbonate-silica veining and alteration.

Kamloops Region

Activity in the central part of the district focused primarily on extending the potential of copper-gold porphyry mineralization in the Jurassic Iron Mask batholith and on Tertiary epithermal targets in the Kamloops Group volcanic rocks.

Several kilometres southeast of the main open pit, Afton Operating Corp. (Teck) has completed an extensive diamond-drilling program on the Ajax claims (233) and a smaller project on the Comet-Davenport property (202). A Letter of Intent to develop the Ajax property has been submitted by Afton to the Mine Development Steering Committee. In the same area a number of other copper-gold targets are being examined by such operators as BP Canada Inc. and Abermin Corporation on the Makao (234) and Galaxy (225) properties respectively, and there remain several significant targets within the Iron Mask batholith that are worthy of examination.

North of Kamloops, MineQuest Exploration Associates continued work on the Mara (231) and Thom-Fehr (230) properties, funded by the Hughes-Lang Group. On the Bonaparte claims (232), Inter-Pacific Resource Corp. (MineQuest) is working to further delineate gold mineralization discovered in 1986 in a Jurassic diorite pluton.
Nicola Volcanic Belt

South of Kamloops, several companies are concentrating their exploration efforts on gold-bearing quartz-sulphide veins occurring in Upper Triassic Nicola volcano-sedimentary sequences. Many such targets appear to be associated with faults, with localized but strongly developed propylitic alteration.

Laramide Resources Ltd. discovered the Sadim prospect (237) near Missezula Mountain in 1986 and has since completed a substantial program of surface work and diamond drilling. Immediately to the south, Canadian Nickel Co. Ltd. operated a similar project on the Hit and Miss claims (236) along the Summers Creek fault zone, while to the north, near Aspen Grove, Gerle Gold Ltd. obtained several encouraging drill intersections on the Snowflake property (238).

Princeton – Tulameen Area

Newmont Mines Limited’s exploration division has revived interest in the copper-gold potential of the Voigt stock (243), northeast of the Copper Mountain deposit. The Voigt zone is characterized by hematite and carbonate alteration and contrasts with the pyritic ore at Copper Mountain. South of Princeton, Worldwide Minerals drilled the Whipsaw Creek property (242).

In the Tulameen district, west of Princeton, Huldra Silver Ltd. has been encouraged by surface exploration and bulk sampling of a fault-associated high-grade silver vein system at Treasure Mountain (241). The mineralization cuts argillite, arkose and tuffaceous sediments of the Jurassic Dewdney Creek and Cretaceous Pasayten groups. Elsewhere in the area, Newmont completed surface mapping and lithogeochemical sampling at Grasshopper Mountain (182), at the north end of the Tulameen ultramafic complex. This work has defined weak but consistent platinum-bearing chromite segregations within massive dunite. D.K. Platinum Corporation has also been exploring for platinum group metals and, although a few other minor programs have been ongoing, the potential for platinum in the area has yet to be fully realized.

Hedley

Mascot Gold Mines Ltd. continued extensive drilling on the French, Canty and Good Hope properties (246) while its new parent company, Lacana Mining Corporation, explored the New Hope claims (245) east of the minesite. Noranda Exploration continued work on Banbury Gold’s Maple Leaf property (249), concentrating on the contact zone of a Hedley diorite stock. South of Hedley, Chevron Minerals completed preliminary work and limited drilling on its Similkameen project (248). Reports are that skarn mineralization there is likely to be below 200 metres depth.

Okanagan

West of Peachland, Fairfield Minerals Ltd. completed extensive surface exploration on the Oka (252) and Elk (235) gold-bearing skarn
prospects. Both properties occur in pendants of calcareous Nicola sediments within the Pennask batholith and lie on projected extensions of the Triassic Hedley Formation carbonate units.

Further south, near Okanagan Falls, Canadian Nickel continued a deep drilling program on the Vault (257) epithermal gold prospect, discovered in 1986. The deposit occurs in porous trachytic tuff of the Tertiary Lower Marama Formation. Gold values up to 23 grams per tonne over 9 metres have been intersected at depths below 250 metres. The property lies northwest of the Dusty Mac mine, another well-known epithermal gold deposit in the area, which will see exploration work in 1988.

In the Fairview gold camp (250), interest has been re-established by the efforts of two Vancouver-based junior exploration companies that had assistance from FAME grants. Oliver Gold Corporation has completed surface and underground programs at the Fairview mine, and Highland Valley Resources Ltd. drove a 365-metre exploration adit on the Brown Bear (Stemwinder) claims. Results from both projects have been modestly encouraging and Valhalla Gold, which holds the controlling interest in Oliver Gold and Highland Valley Resources, is continuing the two projects in 1988. At Orofino Mountain (256) Grandex Resources completed a substantial drilling and trenching program.

In the northern Okanagan region Huntington Resources Inc. and Lacana Mining jointly operated a major drilling and trenching program on the Brett gold prospect (263), discovered by heavy mineral sampling and prospecting in 1983-84. Gold-silver mineralization in shear zones and quartz veins occurs with intense clay and silica alteration that crosscuts tuffaceous volcanic rocks of presumed Tertiary age. The discovery hole, drilled in 1987, intersected 5.2 metres grading 25 grams per tonne gold. A recently reported percussion-drill hole intersected substantially higher grades in this part of the zone. A similar style of mineralization occurs on the Brican Resources Ltd. Gold Star property (262), immediately west of the Brett claims. Brican carried out surface work and a drilling program on newly defined gold targets.

At the north end of Okanagan Lake, MineQuest Associates is also following up surface work with drilling on its Equesis gold-silver prospect (260). This is another mesothermal vein target in an Upper Triassic Nicola volcanic-sedimentary package.

The Quinto Mining Corp. continued drilling and bulk sampling on its Lumby project (259) Plateau gold zone. Plans are to complete metallurgical tests using a portable mill mobilized to the property. Mineralization in the Plateau zone occurs in a carbonaceous shear zone in Triassic Slocan Group rocks. The company is at Stage I in the Mine Development Review Process.

Revelstoke Area

In contrast with other areas, activity in the eastern part of the district was down slightly from previous years. At the J & L deposit (264), Pan American Minerals Corp. is continuing with
underground drilling and bulk sampling. The company's main objective is to overcome the high-arsenic metallurgical problem by applying the Cashman process, as well as several other processes, in its attempts to precipitate insoluble arsenic compounds, thereby eliminating the main environmental problem attached to the project.

OPERATING MINES

Mascot Gold Mines officially opened the Nickel Plate mine (247) in August 1987. The company is mining from three pits, the South (Bulldog) pit, the Central (Sunnyside) pit and the North (Nickel Plate) pit, with published ore reserves of 9.0 million tonnes grading 4.56 grams per tonne gold. Production rate is 2450 tonnes per day with a 9:1 stripping ratio.

At Logan Lake, Highland Valley Copper Ltd. (177) began operation of a $62 million in-pit crushing and conveying system in the fall of 1987. The system operates from the Valley pit, which produces about 84 per cent of current production, with the remainder made up from the Lornex pit. The new installation boosts daily production by about 6 per cent to 120 000 tonnes per day and will replace the operation of several high-cost haulage trucks.

In the Okanagan region, Brenda Mines Limited (178) continued operations throughout 1987 at a rate of 30 000 tonnes per day. Exploration drilling programs were completed in the south wall of the main pit and on the North Brenda claims (258), with the aid of a FAME grant. At the present production level, the current pit reserves will be near depletion by mid-1990.

Newmont's Copper Mountain operation (179) maintained a steady production rate of about 20 000 tonnes of ore per day, grading 0.43 per cent copper. Appreciable amounts of gold and silver are also recovered in concentrate. With the improved trend in copper prices, there is potential to extend the mine life substantially.

At the Afton mine (180), near Kamloops, production at 7700 tonnes per day continues from the Pothook zone, where reserves stand at 1.54 million tonnes, grading 0.4 per cent copper. The main Afton pit closed in 1987 and the Pothook zone will be depleted by May 1988. However, with the recently successful exploration efforts on the Ajax project, operations should continue well beyond 1990.

Teck Corporation's Highland Bell mine (181) at Beaverdell operated throughout 1987 at about 100 tonnes per day. The company completed a FAME-assisted underground drilling program in 1987, which produced encouraging results and generally improved the ore reserve situation.
INTRODUCTION

Mineral exploration activity in the Southwestern District in 1987 increased by approximately 33 per cent over the 1986 level, as measured by the number of projects identified. Increased expenditures on major drilling programs and underground bulk sampling at some of the more advanced projects suggest that a final tally of total expenditures on mineral exploration in 1987 will show an increase closer to 50 per cent over 1986.

TRENDS, HIGHLIGHTS AND POTENTIAL TARGETS

Gold continued to be the main target commodity at most of the projects and was hunted with considerable success in a variety of geological settings. Other metals, such as the base metals in polymetallic massive sulphides, were generally of interest only as coproducts or pathfinders to the all-important gold values. Increased interest in industrial minerals was evident, particularly on the Sunshine Coast north of Vancouver where a kaolin property, a dolomite prospect and a wollastonite prospect all received attention. For the first time in several years no significant exploration for coal was reported on Vancouver Island. However, by the end of the year, coal licences were again being issued and some major coal projects were being planned for 1988 in the Comox and Nanaimo basins.

The greatest concentration of effort and expenditure, particularly by the major companies, remains in the Sicker Group of Paleozoic volcanic and sedimentary rocks on Vancouver Island. The traditional target in the Sicker rocks has been Kuroko-type polymetallic massive sulphides with significant precious metal values, as exemplified by the Myra Creek deposits at Buttle Lake and the former mines on Mount Sicker. Discovery of the Coronation zone on the Lara property in 1984 by Abermin Corporation and Laramide Resources Ltd. revitalized interest in the traditional target, particularly in the Chemainus River area near Duncan. However, one of the most important exploration successes in British Columbia in 1987 occurred in the Sicker belt near Fort Alberni, on the Debbie property and the contiguous Yellow claim. The Westmin Resources Limited - Nexus Group joint venture reported numerous impressive gold intersections from three separate zones representing three different mineral deposit types, none of which appears to be of the typical Kuroko type. Westmin and its partners have dramatically demonstrated that the Sicker belt contains a variety of types of gold deposit. As a consequence, it is expected that the main Sicker belt between Duncan and Port Alberni will continue to be a hot exploration area through 1988, with a new perspective in which felsic volcanic rocks are no longer the only target.

Polymetallic massive sulphides associated with roof pendants of volcanic rocks in the Coast plutonic belt of the southwestern mainland continued to attract the attention of a few companies, with
particular encouragement reported by Minnova Inc. in the Indian River area and by Englefield Resources on Fire Creek near Harrison Lake. The Coast Range pendants are difficult to access and explore and, in many cases, lack a good regional mapping base. However, they represent a relatively untested target area that should have mineral potential comparable to the more accessible Sicker belt.

Auriferous skarns and manto replacement deposits are rapidly becoming better understood and more aggressively hunted throughout the district. The greatest success so far has occurred on Texada Island where Vananda Gold Ltd. and Rhyolite Resources Inc. both reported new prospects in 1987. There is potential for discovery of significant precious metal concentrations associated with skarn occurrences throughout the Insular Belt.

Other important gold targets that attracted the interest of companies and prospectors in 1987 are the mesothermal and epithermal quartz veins and vein-breccia occurrences that are known or suspected to be of Tertiary age. The most important example on Vancouver Island is at Mount Washington where Better Resources Ltd. continued to expand its drill-indicated reserves in 1987. The gold-silver-arsenic-copper mineralization occurs mainly in tabular, siliceous vein-breccia zones which are localized in a series of flat-lying fractures superimposed on a complex Tertiary eruptive system. Mount Washington is the centre of an epithermal gold camp having a radius of at least 15 kilometres. The probability is high that other similar mineralized Tertiary eruptive systems lie unrecognized on Vancouver Island.

Other active gold camps in which the mineralized quartz veins are hosted by Tertiary rocks include Zeballos and Kennedy River on Vancouver Island, the Harrison Lake area on the mainland and the Graham Island gold belt on the Queen Charlotte Islands. In the latter two camps, the Abo and Cinola properties respectively were subjected to aggressive drilling and underground bulk sampling programs in 1987 and can both be regarded as very promising projects which are near or at the feasibility stage. It is evident that Tertiary mesothermal and epithermal quartz vein and breccia systems occur throughout the Insular Belt and may be hosted by a variety of rock types ranging in age from Paleozoic to Tertiary. Furthermore, widespread quartz-ferrocarbonate-altered shear zones and faults, such as the Mineral Creek zone on the Debbie property, are probably of Tertiary age and represent an associated class of epigenetic gold target.

MINERAL EXPLORATION ACTIVITIES

Vancouver Island

One of the potentially most important exploration successes in the province in 1987 occurred on the Debbie property (279) in the Sicker joint venture reported impressive gold intersections in three separate zones. The Mineral Creek zone is an extensive fault-controlled alteration zone, the 900 zone is a ferruginous chert horizon with an associated quartz-vein stockwork in basaltic rocks, and the Linda zone...
is a system of mineralized quartz veins. The most spectacular intersection was reported from the 900 zone where a core length of 14.4 metres assayed 140.6 grams per tonne gold. The Yellow claim (280), site of the old Vancouver Island mine (Victoria), is completely surrounded by the Debbie claims and contains the southern ends of the Mineral Creek and Linda zones. The owners, Angle Resources Ltd. and Reward Resources Ltd., carried out intensive drilling in late 1986 and early 1987. Westmin Resources then took over as operator and completed approximately 30 000 metres of drilling on the Debbie and Yellow properties through 1987 and early 1988. Early in 1988, Westmin announced plans to access the Mineral Creek and Linda zones with a 2-kilometre tunnel through McLaughlin Ridge.

Elsewhere in the Sicker belt east and southeast of Port Alberni, Crew Minerals drilled nine holes on the Fitzwater property (274) optioned from Ladysmith Minerals Ltd. Au Resources Ltd. drilled twelve holes on the Emma property (295) and Nexus Resource Corporation drilled six holes on the Cathedral property (296) near the west end of Cameron Lake. Noranda (in a joint venture with Umex) returned to its Lizard property which adjoins the south end of the Debbie property and is on strike with the auriferous Mineral Creek structure. Noranda did not drill in 1987 but was encouraged by the results of extensive surface surveys.

Drilling activity and expenditures remained high at the Chemainus River end of the main Sicker belt where traditional Kuroko-type deposits in felsic volcanics are still the main targets. On the Lara property (269), Abermin Corporation and Laramide Resources drilled close to 15 000 metres in 83 holes, most of which was directed toward enlarging the indicated reserves on the Coronation zone. At year-end they reported new reserves of 1 125 000 tonnes grading 0.67 per cent copper, 0.72 per cent lead, 3.59 per cent zinc, 67.9 grams per tonne silver and 2.9 grams per tonne gold, and announced plans to go underground in 1988 with 820 metres of ramping and drifting. Falconbridge Limited and Esso Minerals Canada reported very positive encouragement from their major program on the Chip claims (270) which adjoin the Lara property to the northwest. They drilled 18 holes totalling 6754 metres. Falconbridge also drilled ten holes on the West claims (276) and three on the PF option (266), both of which are located east of Mount Sicker and south of Crofton. At Mount Sicker (267), Minnova Inc. drilled 15 holes totalling close to 5000 metres and an additional six holes on the adjacent Copper Canyon claims optioned from Canamera Explorations Ltd.

Other significant programs carried out within the main belt of Sicker rocks included comprehensive geological mapping followed by some trenching and 12 drill holes by Goldenrod Resources and Technology Inc. and Nexus Resource Corporation on the Holt claims (275) southwest of Duncan. International Cherokee Developments Ltd. completed modest drilling programs early in the year on the Cow (279) and Chem (278) properties in the Chemainus River area. The showings of interest were polymetallic veins and auriferous iron formation respectively. Utah Mines Ltd. carried out an abbreviated program including some geophysics and four drill holes into a sequence of ferruginous cherts on its extensive Striker property (271) between Cowichan Lake and Chemainus
River. At the Heather property (272), optioned from International Cherokee, Minnova Inc. trenched and drilled a shear zone in Sicker volcanics from which an earlier 1-metre chip sample had assayed 105.5 grams per tonne gold. At the Villalta property (294) near Nanaimo Lakes, Canamin Resources Ltd. drilled a total of 47 short, closely spaced holes into a gold-bearing hematite breccia zone and reported revised open-pit reserves of about 19,000 tonnes averaging 4.3 grams per tonne gold.

The only major project on southern Vancouver Island outside the Sicker belt, was the Valentine Mountain gold prospect (265), optioned by Valentine Gold Corp. from Beau Pre Explorations Ltd., located approximately 20 kilometres north of Sooke. Early in the year, 22 drill holes confirmed the presence of erratic high-grade gold in the Discovery zone and a 20 tonne per day pilot mill had been completed to test bulk samples from the same zone. At year-end, a second drilling program had begun to test a new zone of strong geochemical and geophysical anomalies on the Jordan River about 4 kilometres west of the Discovery zone. Precious metals at Valentine Mountain occur in Tertiary quartz veins cutting the Leech River metamorphic complex.

Several small to moderate-sized drilling programs were completed on gold prospects in the area between Alberni Inlet and Tofino. The most ambitious was on the Tommy property (285) at Kennedy River where Kerr Addison Mines Limited, under an option agreement with International Coast Minerals Corporation, drilled a sheeted swarm of narrow, parallel, gold-silver-copper-bearing quartz veins cutting Karmutsen volcanic rocks. On the Taylor River, Casau Exploration Ltd. explored a new gold-silver-lead-zinc prospect called the Snow project (284) where detailed surface sampling of a quartz vein containing free gold and abundant galena and sphalerite indicated a grade of 8.6 grams per tonne gold over an average width of 1.03 metres and a strike length of 22.3 metres. Also on the Taylor River, Dalmation Resources Ltd. carried out extensive geophysical and geochemical surveys, and drilled six holes at the main quartz vein - breccia showing on the Tay claims (283). A private company, SYMC Resources, reported having drilled 10 holes to test a series of gold-silver-copper-bearing quartz veins on the High Sierra property (281) near the mouth of Macktush Creek. Two associated companies, Stetson Resource Management and Aintree Resources, completed modest drill programs on the Ark property (282) south of Great Central Lake and the Epic property (286) near Kennedy Lake respectively. The former is an antimony-mercury showing believed to indicate epithermal gold potential at depth and the latter project involves the testing of anomalous gold in shear zones cutting Tertiary volcanic rocks. Iron River Resources Ltd. carried out an aggressive evaluation of the Kalappa property (288) on Meares Island where potential exists for significant epithermal gold mineralization associated with arsenopyrite veins and a diatreme breccia. The company has also discovered a massive sulphide showing at least 15 metres wide assaying up to 2.88 per cent copper, 2.50 grams per tonne gold and 22.63 grams per tonne silver in silicified volcanic rocks mapped as Sicker Group. On the nearby Bedingfield Peninsula, Utah Mines on the Cypress property (289) and Cominco Ltd. on its large Bedingfield claim group (290) both completed modest drilling programs searching for polymetallic massive sulphides in felsic volcanics of the Sicker Group.
The Mount Washington area west of Courtenay was a focus of interest for several companies searching for epithermal gold-silver mineralization. At Mount Washington (299), Better Resources Ltd. drilled 8880 metres in 120 diamond-drill holes and, at year-end, announced revised ore reserves on the Lakeview-Domineer zone of 1.39 million tonnes averaging 3.9 grams per tonne gold and 23.7 grams per tonne silver. Better Resources also completed 300 metres of underground drilling and has stockpiled a bulk sample from the Lakeview zone. Noranda Exploration Company completed mapping and other surface surveys on the Piggott Creek property of Iron River Resources west of Mount Washington and also in the Murex Creek area on claims optioned from Better Resources. Diatreme breccias and epithermal mineralization occur in both areas. On the Dove property (298) between Mount Washington and Wolf Lake, Westmin conducted airborne and ground geophysical surveys followed by drilling of several anomalies. In the Wolf Lake area, Cactus West Explorations Ltd. drilled 14 short drill holes to test the epithermal gold-arsenic-zinc-silver showings on the Lupus property (297). One of the better intersections reported was 5.1 grams per tonne gold over 2.4 metres in the Creek zone. Falconbridge took advantage of the opportunity to re-examine its Faith Lake and Gem Lake properties on Forbidden Plateau when Recreation Areas were created over mineral claim holdings within Strathcona Park. Both properties were remapped and sampled and geophysical surveys were conducted over the gold-bearing Shev vein-breccia zone at Faith Lake. The Shev vein is very similar to the Lakeview zone at Mount Washington and probably resulted from the same Tertiary epithermal event.

In the larger Strathcona Recreation Area at Buttle Lake, which was created to permit further exploration of existing claims in the Buttle Lake uplift of Sicker Group rocks, Cream Silver Mines Ltd. completed a major geophysical survey on its property adjoining the southeast corner of Westmin Resources' mine property. It reported a string of anomalies in favourable geology on strike with the Westmin orebodies. At year-end Cream Silver was waiting for a resource use permit necessary to carry out a modest preliminary drilling program on the most accessible of the anomalies.

In contrast to the high level of activity on southern Vancouver Island, the northwestern half of the island was very quiet. There was significant exploration on only four properties. Prophesy Developments Ltd. optioned the Adola property (291) at Matchlee Bay near Gold River, did some more trenching and late in the year had begun a modest drilling program. Polymetallic replacement massive sulphides and veins occur in sheared Karmutsen volcanics. At Zeballos, McAdam Resources Inc. drilled at least 15 deep holes from surface on the Spud Valley gold property (292) to further test several veins north of the previously mined Goldfield vein. At year-end a crosscut on the No. 7 level intended to provide underground access to the new target veins was well advanced. One of the better drill intersections reported was 126.5 grams per tonne gold over 1.3 metres on the Linton North vein. Taywin Resources Ltd. drilled 32 short diamond-drill holes and 45 percussion-drill holes at the Electrum property (293) of BP Minerals on the Malksope River near Kyuquot. There are several zones on the property with differing geology but the main targets are epithermal quartz veins with locally very high precious metal values. Finally, Hisway Mining
Corporation has been re-examining a group of silver-rich lead-zinc skarn occurrences on the HPH claims near the east end of Nahwitti Lake between Port Hardy and Holberg. Very late in the year it drilled six holes and reports strong encouragement to continue.

Quadra and Texada Islands

On Quadra Island, Lone Jack Resources Ltd. has acquired a large block of claims (300) extending the full length of the limestone belt between Granite Bay and Open Bay. The claims surround but do not include the former Lucky Jim mine from which 470 tonnes of gold-silver-copper ore were produced from a skarn deposit. Several showings exist on the claims, including a skarn showing near the Lucky Jim mine which assayed 4.5 grams per tonne gold over 7.32 metres, and a newly discovered limestone breccia with possible epithermal mineralization that assayed 1.21 per cent arsenic, 0.13 per cent lead and 16 ppm mercury across 21.3 metres. At the end of the year Lone Jack had completed four out of a proposed sixteen diamond-drill holes.

Exploration on Texada Island was limited mainly to the activities of two companies and a few prospectors at the north end of the island, between Vananda and Gillies Bay. Vananda Gold, which has put together a large property (304) containing most of the known copper-gold and iron skarn deposits on Texada Island, completed limited surface surveys and some trenching. Results are reported to be encouraging and include channel samples averaging 8.0 grams per tonne gold over 1.3 metres from a new zinc-rich manto showing in the Ideal limestone quarry. Rhyolite Resources operated its 100 tonne per day bulk sampling mill periodically through 1987 using gold mineralization from the Bolivar deposit (301) and the Holly (302) vein-shear zone as feed. Late in the year it began testing a siliceous sulphide-magnetite replacement zone on the Yew claims (303) at Priest Lake, a zone originally exposed and drilled by Northair Mines Limited in 1985-86. Rhyolite’s work has significantly increased the known extent of the zone, which is contained within a shallow, horizontal limestone bed in the Karmutsen Formation; sampling has returned gold values ranging from 10.7 to 59.1 grams per tonne.

Southwestern Mainland

Exploration in the southwestern mainland part of the district remained relatively subdued in 1987 compared to the intense activity on southern Vancouver Island. Activity was concentrated mainly in a few small areas such as the Squamish - Indian River area, the Harrison Lake area, the Sunshine Coast and Phillips Arm.

The most advanced project was the Abo gold property (316) near Harrison Hot Springs where Kerr Addison Mines Limited and Bema International Resources Inc. completed 350 metres of underground drifting and raising in the Jenner stock. A small pilot mill was constructed near Agassiz for processing of bulk samples taken from three raises. Mineralization occurs as stockworks of thin quartz-pyrrhotite veins containing free gold and confined within Tertiary quartz diorite stocks. At the Aufeas property (318) on Wardle Creek 5 kilometres
southwest of Hope, Silver Cloud Mines Ltd. drilled five surface holes totalling 734 metres to further test a system of fault-controlled, gold-bearing quartz veins. At Mount Outram, east of Hope, Newjay Resources Ltd. drilled seven short holes to test the Master Ace zone (319), a series of gold-silver-copper-bearing quartz lenses in a major quartz-talc shear zone. The shear zone can be traced for more than 1 kilometre and follows the contact between cherty volcanic rocks and a band of serpentinite.

Three polymetallic massive sulphide prospects were worked on in the Harrison Lake area. Minnova Inc. was encouraged by the results of a drilling program on the North Fork prospect (317) on Cogburn Creek east of Harrison Lake. International Curator Resources Ltd. drilled a total of approximately 3000 metres at the Vent zone on the Seneca property (314) of Chevron Minerals Ltd. on the Chehalis River near Harrison Mills. Polymetallic massive sulphides, including one deposit with 1.5 million tonnes of measured reserves, are associated with felsic volcanics of the Jurassic Harrison Lake Formation. On Fire Creek, near the north end of Harrison Lake (315), Englefield Resources Ltd. was still drilling at year-end on a gold anomaly measuring 900 by 100 metres and assaying up to 9.9 grams per tonne gold in surface rock samples.

In the Indian River area southeast of Squamish, Minnova Inc. drilled 1225 metres in and around the Slumach sulphide vein occurrence on the property of International Maggie Mines Ltd. (305). It reported intersecting two thin but well-mineralized exhalite zones associated with strongly altered felsic to intermediate volcanic rocks of the Lower Cretaceous Gambier Group. One intersection contained 0.45 per cent copper, 10.8 per cent zinc, 4.6 grams per tonne gold and 13.7 grams per tonne silver over a width of 0.6 metre. Minnova also reported considerable geological encouragement from its ongoing program of geological and geophysical surveys on the adjacent and extensive Furry Creek property (the former Anaconda holdings) optioned from Fleck Resources Ltd. Also southeast of Squamish, at Mount Baldwin near the head of Raffuse Creek, Falconbridge drilled nine holes on the Baldwin-McVicar property (306) to investigate the massive sulphide potential of a series of quartz-sulphide vein systems in sericite schists and chert.

As mentioned previously, there were three significant industrial mineral properties on the Sunshine Coast that received attention in 1987. Fargo Resources Ltd. continued aggressive evaluation of its kaolin prospect at Lang Bay (309) south of Powell River. Diamond and reverse-circulation drilling have revealed that both residual and sedimentary kaolin of good industrial quality are present in the deposit. There is already very good potential for a significant open-pit reserve in the small part of the property which has so far been tested. Tri-Sil Minerals Ltd. drilled, trenched and bulk sampled the Mineral Hill wollastonite property (307) just north of Sechelt. This prospect shows good promise of significant mineable reserves of wollastonite and accessory industrial-grade garnet. On the adjoining Sechelt Carbonate property (308) of Candol Developments Ltd., Ingot Exploration Ltd. completed a modest program of definition drilling on one of several dolomite zones occurring within an extensive marble belt.
In the Phillips Arm gold belt, where structurally controlled, auriferous quartz veins cut Coast Range plutonic rocks, Charlemagne Resources Ltd. drilled a few holes to test a geophysical anomaly adjacent to the Commonwealth adits on its Alexandria property (311). Elsewhere in the belt, New Signet Resources Inc. did some trenching in the vicinity of the Doratha Morton mine (312) as did the Rea Gold/Verdstone Gold joint venture at the northern end of East Thurlow Island (310).

Finally, at the north end of Lillooet Lake near Pemberton, Green Lake Resources Ltd. drilled two holes on the Lill claims (320). It reported some good polymetallic massive sulphide intersections which are suspected to be volcanogenic mineralization unrelated to skarn showings which occur elsewhere on the property.

Queen Charlotte Islands

The only major exploration project on the Queen Charlotte Islands in 1987 was at the Cinola Gold property (324) where City Resources (Canada) Ltd. drilled a total of 9677 metres including both diamond and reverse circulation drilling. It also extended the underground workings in order to collect bulk samples for further metallurgical testing. All of the physical exploration work was completed by the end of March and the remainder of the year was devoted to various pre-feasibility tests and studies. By the end of 1987, a feasibility report was completed and development of a mine processing about 6000 tonnes of ore per day was targeted for completion by October 1989. Open-pit reserves were recalculated at 24.8 million tonnes averaging 2.13 grams per tonne gold, using a cut-off grade of 1.10 grams per tonne.

Other significant exploration projects were limited to the Sandspit fault system on Graham Island and northern Moresby Island where the target is epithermal gold mineralization of late Tertiary age as characterized by the Cinola orebody. On the Snow property (322) just south of Sandspit, Mondavi Resources Ltd. did some trenching and other surveys and Mandalla Resources Ltd. completed similar work preparatory to drilling at the old Southeaster vein showing (323) near Skidegate.

CONCLUSION

In summary, 1987 was a very successful year for exploration and prospecting in the Southwestern District. Activity is still focused very heavily on gold, but there is an increasing interest in industrial minerals and coal exploration on Vancouver Island is set to resume in earnest. New discoveries have been made, there are at least five properties that appear to be likely producers in the near future and new geological models are emerging. There are many reasons to expect this accelerating activity to continue through 1988.
INTRODUCTION

Exploration for nonmetallic industrial minerals in British Columbia in 1987 was quite diverse. A number of properties received only token attention from the industry, while a few had significant exploration programs.

Three most important projects were carried out to outline the newly discovered Lang Bay kaolin deposit (with the participation of government exploration incentive program "FAME"), to study the underground mining implications of asbestos in anticipation of a major company decision to open a new orebody by using unconventional mining methods, and a delineation drilling program on a magnesite deposit to outline areas for selective mining of chemical and refractory-grade product. Smaller projects, in step with the government strategy, were aimed at developing new commodities as yet not being produced in the province, for example feldspar, talc, wollastonite and slate. Such products would in part replace imported materials as well as offer export potential. The gypsum market study for the Pacific Northwest was completed with the assistance of Canada/British Columbia Mineral Development Agreement (MDA) and copies may be obtained from Island Blueprint in Victoria.

ASBESTOS

Cassiar Mining Corporation continued work on its McDame orebody. The work consisted mostly of geotechnical and feasibility studies.

CARBONATITES

Teck Corporation has conducted geological mapping and trenching to verify geochemical anomalies on its claims near and to the southeast of Wicheeda Lake, north of Prince George. A complex of carbonatite plugs and sills associated with sodalite syenite dykes and syenite sills contains rare earth elements, yttrium and niobium values.

FULLER'S EARTH

Ekaton Resources Ltd. of Calgary conducted pilot test studies on both raw and calcined extruded and pelletized products from its Red Lake "diatomite" property north of Kamloops. The material is used as a domestic and industrial absorbent.

FELDSPAR

A newly reported pegmatite occurrence near Lumby is presently being studied by Brenda Mines Limited as a potential producer of glass and ceramic-grade feldspar. Mapping and bulk sampling with pilot test processing were carried out in 1987.
GYPSUM

Drilling (32 diamond-drill holes) and trenching was reported by Domtar Inc. on three properties in the Lussier River and Coyote Creek area.

Queenstake Resources Ltd. completed a marketing study and worked on a feasibility study for its gypsum deposit at O'Connor River. The product has the potential to compete with imported gypsum in the Vancouver market.

JADE

Jade West Resources Ltd. reported trenching on its Ogden Mountain property.

KAOLIN

Exploration drilling at the Lang Bay germanium prospect, carried out in 1986 by Fargo Resources Ltd., discovered significant deposits of residual kaolin in basement rocks underlying Upper Cretaceous sediments. In 1987 a seismic survey followed by 33 rotary and diamond-drill holes identified a kaolinized zone in Coast Range intrusive rocks along the eastern limits of the basin, over a length of approximately 1500 metres. There is significant potential to expand the estimated reserves along the strike in both directions. The company reported reserves of 1.6 million tonnes of clay. Laboratory studies were carried out at The University of British Columbia and at industrial facilities in Cornwall, England.

High-kaolin claystone beds were identified adjacent to coal seams on the Quinsam Coal Limited property near Powell River. The claystone is being tested for use in production of refractory bricks.

LIMESTONE

Quesnel Ready Mix Cement Co. Ltd. opened a small quarry near Purden Lake east of Prince George to test the suitability of limestone from the Lower Cambrian Mural Formation for local pulp and paper mills. City Resources (Canada) Ltd. studied a small limestone deposit on Moresby Island. Three drill holes with an aggregate length of 77.4 metres are reported.

On the Sechelt Peninsula, Candol Development Ltd. completed six diamond-drill holes to outline white limestone and dolomite resources.

MAGNESITE

A major diamond-drilling program (34 holes) was undertaken by Baymag Mines Co. Ltd. in the area adjacent to the present open-pit mine.
SLATE

Laboratory testing was carried on and the three holes were drilled by Dome Creek Slate Ltd. to evaluate the suitability of slate for roofing and other applications. The deposit is located near Highway 16 east of Prince George and the project received support from the FAME program.

TALC

Pacific Talc Ltd. carried out sampling and laboratory testing of talc from the J & J claims on the Nahatlatch River north of Boston Bar. The laboratory-scale product meets pulp and paper industry specifications for pitch control.

WOLLASTONITE

A deposit of wollastonite on the Sechelt Peninsula was studied by Tri-Sil Minerals Inc.. Eight drill holes, trenching, geological mapping and laboratory studies were carried out to evaluate the wollastonite potential of local skarn deposits: Wollastonite is used in paints, ceramics and plastics as a filler, other potential applications are in replacing short-fibre asbestos in a variety of industrial uses.
INTRODUCTION

The FAME program, first introduced in the 1986/87 fiscal year, is a provincial initiative with $5 million in funding to promote private sector mineral exploration and development in British Columbia. The program was introduced in response to the recession of the early 1980s and the resulting reduction in mineral exploration and development activity in the province. By 1987 conditions were starting to improve. Metal markets were stronger, the economy was stable with lower inflation, and the mineral exploration sector had become extremely competitive, particularly with regard to raising risk capital. FAME was renewed in the 1987/88 fiscal year in order to maintain growing investor confidence in the province.

Mining is one of British Columbia’s major industries and by encouraging exploration and development the industry will continue to play a key role in the future economic development of the province.

FAME OBJECTIVES

* To promote private sector investment in exploration and development in British Columbia

* To extend the economic lives of operating mines thereby contributing to community stability in existing mining areas.

* To help establish an atmosphere of investor confidence in the British Columbia mineral resources industry.

The FAME program has met these objectives by:

* Providing a portion of the high risk capital required by prospectors and mineral exploration companies to finance exploration and development of mineral resources.

* Providing technical expertise and support to prospectors.

* Establishing a climate of confidence which will encourage private sector financing and development of the province’s mineral resources.

FAME PROMOTION

A descriptive brochure was produced which detailed the aims and intent of the FAME program. It defined eligibility requirements, value of grants, application procedures and reporting requirements. An
initial printing of 6000 copies was distributed to companies and individuals actively engaged in mineral exploration.

A descriptive press release was issued April 22, 1987 by the Ministry and this generated widespread public awareness of the program. Additional releases were made June 29 and July 16 which maintained public interest and response. A paid advertisement was placed in the Northern Miner.

Favourable editorial comment has appeared in the Northern Miner and the program was extensively reviewed in the February 1988 issue of the Canadian Institute of Mining & Metallurgy Bulletin. This latter article was a review of Canada-wide incentive programs, supported by the Federal and/or various provincial governments to promote mineral development within their jurisdictions.

INDUSTRY LIAISON

The management of FAME and the Geological Survey Branch consulted with mineral industry organizations, such as the British Columbia and Yukon Chamber of Mines and the Mining Association of British Columbia, during the period of initial program design and development. The thrust of the 1987 FAME program was also discussed with industry representatives to ensure the most effective allocation of resources in the various program components.

FAME COMPONENTS

The FAME program is a combination of three components, each of which has a distinct budget and major objective:

1. PROSPECTORS ASSISTANCE PROGRAM (PAP)

Objective: To promote grass-roots prospecting activity within the province and to provide technical support and training for prospectors when required.

<table>
<thead>
<tr>
<th></th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>$200 000</td>
<td>$400 000</td>
</tr>
<tr>
<td>Applications received</td>
<td>454</td>
<td>277</td>
</tr>
<tr>
<td>Grants disbursed</td>
<td>72</td>
<td>133</td>
</tr>
<tr>
<td>Average grant value</td>
<td>$2 567</td>
<td>$2 573</td>
</tr>
</tbody>
</table>

Results: The Prospectors Assistance component of the 1987/88 FAME program was successful. Grants of up to $5000 per individual prospector were, in general, well utilized within the terms of the program and a number of exciting discoveries can be credited to the availability of FAME funding. The prospecting programs that received funding were distributed throughout the province and targets included precious metals, base metals and industrial minerals.

The position of a Prospector Training Officer, established in 1987, improved the Ministry's ability to monitor the grant funds. More
assistance and information to individual prospectors regarding their programs and how to achieve their objectives.

2. MINERAL EXPLORATION INCENTIVE PROGRAM (MEIP)

Objective: To promote exploration by companies or individuals on properties which have potential for mineral development.

<table>
<thead>
<tr>
<th></th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>$3 180 000</td>
<td>$3 000 000</td>
</tr>
<tr>
<td>Applications received</td>
<td>256</td>
<td>296</td>
</tr>
<tr>
<td>Grants disbursed</td>
<td>58</td>
<td>73</td>
</tr>
<tr>
<td>Average grant value</td>
<td>$55 017</td>
<td>$38 538</td>
</tr>
</tbody>
</table>

Results: The program provided grants up to a maximum of $150 000 or one-third of the eligible exploration expenses, on properties with identified economic potential.

A total of 19 out of the 73 grant recipients reported results which significantly enhanced the economic potential of their property. At least two of these projects are sufficiently advanced to have entered the Mine Development Review Process and have the potential to become major contributors to the economy and employment in British Columbia.

That so many of these projects have been successful is impressive. Although the success rate in part reflects the efficiency of the project evaluation and selection process for FAME, the success of all projects is fundamentally due to the professional expertise of the participating companies and individuals.

3. ACCELERATED MINE EXPLORATION PROGRAM (AMEP)

Objective: To promote the discovery and development of additional ore reserves at established mine sites and, as a result, to provide stability for existing mining communities.

<table>
<thead>
<tr>
<th></th>
<th>1986</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>$1 5000 000</td>
<td>$1 420 000</td>
</tr>
<tr>
<td>Applications received</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td>Grants disbursed</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Average grant value</td>
<td>$84 444</td>
<td>$70 964</td>
</tr>
</tbody>
</table>

Results: AMEP funding was allocated to mine projects involving such commodities as coal, jade, base metals and industrial minerals. The success of the projects has been encouraging. In the 1987/88 FAME Program, 11 out of the 20 AMEP projects were judged to have made a significant contribution to developing additional ore reserves. Eight of those projects succeeded in extending their mine operating life by at least one year. The impact on the provincial economy by extending the life of an active mine is substantial. The alternative would be premature mine closures with attendant unemployment and loss of income for all local support services.
FAME IMPACT ON ECONOMY

The long term objective of the FAME program has been to ensure that the mineral resources sector maintains a significant role in the economic development of the Province of British Columbia. This role is maintained through the development of new mines to replace those at or near the end of their economic reserves.

In the short term FAME has contributed to new discoveries, helped improve the potential of known mineral occurrences and has assisted in extending the life of several mining operations. The FAME budget of $5 million in 1987 constituted about 13.2 per cent of the eligible expenses reported by MEIP and AMEP grant recipients (Table A4). FAME grants were an important component of about $38 million in eligible mineral exploration expenditures in 1987. In 1986 FAME projects reported total expenditures of about $34.5 million. In addition, a number of companies incurred substantial expenditures which were not eligible for reimbursement under the conditions of the FAME program.

The impact of these eligible exploration expenditures on direct employment, and the purchase of material and support services has been positive. The programs employed approximately 1300 persons for a total of 58 800 man-days and generated about $10 million in direct salaries to British Columbia residents. These statistics do not include the employment of third party contractors by the grant recipients or employment generated under the PAP component of FAME. Support services in British Columbia, such as hotels, restaurants, rotary and fixed-wing aircraft charters, equipment rentals and laboratory services, etc., benefited from FAME-related expenditures by an amount exceeding $10 million.

FAME - RESULTS AND CONCLUSIONS

- FAME has helped to fill an important gap in the ability of the mining industry to raise risk capital during a difficult period and has made an important contribution to stabilizing the industry.

- Response to the 1987/88 FAME program was strong, totalling 600 applicants. These project proposals were reviewed and 266 applicants were given approvals for PAP, MEIP and AMEP grants. Due to various financial and project-related difficulties, only 226 companies or individuals were able to claim all or part of their grants after review and approval of the final reports. To illustrate the difficulties, nine recipients of MEIP grants were unable to start their proposed programs before February 29, 1988 due to the lack of financing as a direct result of the October 1987 stock market crash. On the other hand, a number of prospectors were unable to claim their grants as they were employed by mining companies and were thus unable to carry out their proposed prospecting programs. In comparison, the 1986/87 program received about 741 applications, of which 155 were successful in receiving grants. The slight decrease in applications from 1986 to 1987 is assumed to be a reflection of the improving financial strength of the minerals industry.
Table A4: Financial Assistance for Mineral Exploration (FAME) 1987-88

MEIP and AMEP Grants

<table>
<thead>
<tr>
<th>FAME NUMBER</th>
<th>COMPANY NAME</th>
<th>PROJECT NAME</th>
<th>1987-88 FAME GRANT</th>
<th>ASSESSMENT REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E132</td>
<td>356192 Alberta Inc.</td>
<td>Grub Gulch</td>
<td>$30,000</td>
<td>16773</td>
</tr>
<tr>
<td>E18</td>
<td>Abermin Corporation</td>
<td>Whitewater</td>
<td>$20,000</td>
<td>16758</td>
</tr>
<tr>
<td>M7</td>
<td>Afton Operating Corporation</td>
<td>Ajax</td>
<td>$100,000</td>
<td>16740</td>
</tr>
<tr>
<td>E285</td>
<td>Antelope Resources Limited</td>
<td>Rossland</td>
<td>$60,000</td>
<td>16751</td>
</tr>
<tr>
<td>E264</td>
<td>Ark Energy Ltd.</td>
<td>Camp McKinney</td>
<td>$30,000</td>
<td>16775</td>
</tr>
<tr>
<td>E193</td>
<td>Armeno Resources Inc.</td>
<td>Standard Creek</td>
<td>$60,000</td>
<td>16725</td>
</tr>
<tr>
<td>E192</td>
<td>Asamera Inc.</td>
<td>Jasper</td>
<td>$6,809</td>
<td>16700</td>
</tr>
<tr>
<td>M15</td>
<td>Bell Mine(Noranda Min. Inc.)</td>
<td>Bell Mine</td>
<td>$40,000</td>
<td>16754</td>
</tr>
<tr>
<td>E69</td>
<td>Better Resources Ltd.</td>
<td>Mt. Washington Project</td>
<td>$70,000</td>
<td>16762</td>
</tr>
<tr>
<td>E13</td>
<td>BHP-Utah Mines Ltd.</td>
<td>Cypress</td>
<td>$40,000</td>
<td>16742</td>
</tr>
<tr>
<td>M14</td>
<td>BHP-Utah Mines Ltd.</td>
<td>Island Copper</td>
<td>$100,000</td>
<td>16778</td>
</tr>
<tr>
<td>E246</td>
<td>Big Rock Gold</td>
<td>Megabucks</td>
<td>$24,898</td>
<td>16717</td>
</tr>
<tr>
<td>E89</td>
<td>BP Resources Canada Ltd.</td>
<td>Kitimat</td>
<td>$30,000</td>
<td>16693</td>
</tr>
<tr>
<td>M17</td>
<td>Brenda Mines Ltd.</td>
<td>1987 Brenda Explor.</td>
<td>$50,000</td>
<td>16750</td>
</tr>
<tr>
<td>E52</td>
<td>Canamin Resources Ltd.</td>
<td>Villalta</td>
<td>$30,000</td>
<td>16719</td>
</tr>
<tr>
<td>E125</td>
<td>Carnes Creek Explorations Ltd.</td>
<td>Spruce Creek</td>
<td>$50,000</td>
<td>16703</td>
</tr>
<tr>
<td>M12</td>
<td>Cassiar Mining Corporation</td>
<td>McBamme</td>
<td>$120,000</td>
<td>16776</td>
</tr>
<tr>
<td>E2</td>
<td>Catear Resources Ltd.</td>
<td>Goldwedge</td>
<td>$60,000</td>
<td>16744</td>
</tr>
<tr>
<td>E33</td>
<td>Cathedral Gold Corporation</td>
<td>Takla-Rainbow</td>
<td>$60,000</td>
<td>16759</td>
</tr>
<tr>
<td>E32</td>
<td>Cathedral Gold Corporation</td>
<td>Porcher Island</td>
<td>$40,000</td>
<td>16735</td>
</tr>
<tr>
<td>E34</td>
<td>Cathedral Gold Corporation</td>
<td>Cunningham Creek</td>
<td>$20,000</td>
<td>16743</td>
</tr>
<tr>
<td>E46</td>
<td>Chevron Canada Resources Ltd.</td>
<td>Wayside (M577)</td>
<td>$30,000</td>
<td>16718</td>
</tr>
<tr>
<td>M18</td>
<td>Cominco Ltd.</td>
<td>Sullivan Mine</td>
<td>$150,000</td>
<td>16752</td>
</tr>
<tr>
<td>E283</td>
<td>Cominco Ltd.</td>
<td>Vine</td>
<td>$35,000</td>
<td>16699</td>
</tr>
<tr>
<td>E45</td>
<td>Cominco Ltd.</td>
<td>Shai/Star</td>
<td>$35,000</td>
<td>16769</td>
</tr>
<tr>
<td>E187</td>
<td>Cominco Ltd.</td>
<td>More</td>
<td>$20,000</td>
<td>16752</td>
</tr>
<tr>
<td>E210</td>
<td>Cream Silver Mines Ltd.</td>
<td>Buttle Lake</td>
<td>$60,000</td>
<td>16767</td>
</tr>
<tr>
<td>E35</td>
<td>Crew Minerals Inc.</td>
<td>Fitzwater Group</td>
<td>$40,000</td>
<td>16731</td>
</tr>
<tr>
<td>M20</td>
<td>Crows Nest Resources Limited</td>
<td>Horseshoe Ridge</td>
<td>$30,000 COAL #736</td>
<td></td>
</tr>
<tr>
<td>M21</td>
<td>Crows Nest Resources Limited</td>
<td>North Line Creek</td>
<td>$30,000 COAL #737</td>
<td></td>
</tr>
<tr>
<td>M22</td>
<td>Crows Nest Resources Limited</td>
<td>B Seam Repeat Area</td>
<td>$30,000 COAL #758</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Dalmation Resources Ltd.</td>
<td>Tay Group</td>
<td>$10,000</td>
<td>16705</td>
</tr>
<tr>
<td>E251</td>
<td>Delaware Resources Corp.</td>
<td>Snip</td>
<td>$70,000</td>
<td>16758</td>
</tr>
<tr>
<td>M10</td>
<td>Dickenson Mines Ltd.</td>
<td>Silvana</td>
<td>$75,000</td>
<td>16767</td>
</tr>
<tr>
<td>E9</td>
<td>Equinox Resources Ltd.</td>
<td>Cay</td>
<td>$50,000</td>
<td>16722</td>
</tr>
<tr>
<td>M3</td>
<td>Equity Silver Mines Ltd.</td>
<td>1987 Minesite Exp.</td>
<td>$50,000</td>
<td>16770</td>
</tr>
<tr>
<td>E230</td>
<td>Esso Minerals Canada</td>
<td>Shasta</td>
<td>$60,000</td>
<td>16698</td>
</tr>
<tr>
<td>E228</td>
<td>Esso Minerals Canada</td>
<td>Kamoa</td>
<td>$50,000</td>
<td>16701</td>
</tr>
<tr>
<td>E229</td>
<td>Esso Minerals Canada</td>
<td>Twin</td>
<td>$20,000</td>
<td>16774</td>
</tr>
<tr>
<td>E227</td>
<td>Esso Minerals Canada</td>
<td>Chemainus</td>
<td>$70,000</td>
<td>16710</td>
</tr>
<tr>
<td>E26</td>
<td>Fairfield Minerals Ltd.</td>
<td>Oka</td>
<td>$20,000</td>
<td>16761</td>
</tr>
<tr>
<td>E153</td>
<td>Fargo Resources Limited</td>
<td>Lang Bay</td>
<td>$60,000</td>
<td>16734</td>
</tr>
<tr>
<td>E147</td>
<td>FreeGold Recovery Inc.</td>
<td>Quesnel Canyon Placer</td>
<td>$30,000</td>
<td>16736</td>
</tr>
<tr>
<td>E126</td>
<td>Geddes Resources Limited</td>
<td>Tats</td>
<td>$60,000</td>
<td>16694</td>
</tr>
<tr>
<td>E27</td>
<td>Geostar Mining Corp.</td>
<td>Ascot</td>
<td>$10,000</td>
<td>16696</td>
</tr>
<tr>
<td>E245</td>
<td>Gold Ventures Ltd.</td>
<td>Keech</td>
<td>$20,000</td>
<td>16707</td>
</tr>
</tbody>
</table>
Table A4: Financial Assistance for Mineral Exploration (FAME) 1986-87

MEIP and AMEP GRANTS

<table>
<thead>
<tr>
<th>FAME NUMBER</th>
<th>COMPANY NAME</th>
<th>PROJECT NAME</th>
<th>1986-87 ASSESSMENT</th>
<th>FAME GRANT REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E75</td>
<td>Abermin Corporation</td>
<td>Lara</td>
<td>$66,667</td>
<td>15737</td>
</tr>
<tr>
<td>E24</td>
<td>Afton Operating Corp.</td>
<td>Pothook Zone</td>
<td>$30,000</td>
<td>15713</td>
</tr>
<tr>
<td>E223</td>
<td>All Star Resources Ltd.</td>
<td>Canyon Mine</td>
<td>$60,000</td>
<td>15768</td>
</tr>
<tr>
<td>E77</td>
<td>Auro Resources Ltd.</td>
<td>Hail-Harper Creek</td>
<td>$15,000</td>
<td>15738</td>
</tr>
<tr>
<td>M11</td>
<td>Bar-Well Resources Ltd.</td>
<td>Elkhorn</td>
<td>$10,000</td>
<td>15706</td>
</tr>
<tr>
<td>E206</td>
<td>Better Resources Ltd.</td>
<td>Mt. Washington</td>
<td>$50,000</td>
<td>15765</td>
</tr>
<tr>
<td>M18</td>
<td>Bishop Resources Development</td>
<td>Sil-Van Mine</td>
<td>$15,000</td>
<td>15709</td>
</tr>
<tr>
<td>E126</td>
<td>Brenda Mines Ltd.</td>
<td>LH Property</td>
<td>$50,000</td>
<td>15747</td>
</tr>
<tr>
<td>E6</td>
<td>Candorado Mines Ltd.</td>
<td>Hedley</td>
<td>$60,000</td>
<td>15714</td>
</tr>
<tr>
<td>E27</td>
<td>Cassiar Mining Corporation</td>
<td>McDame Asbestos</td>
<td>$115,000</td>
<td>15702</td>
</tr>
<tr>
<td>E191</td>
<td>Charlemagne Resources Ltd.</td>
<td>Alexandria</td>
<td>$110,000</td>
<td>15763</td>
</tr>
<tr>
<td>E23</td>
<td>Cominco Ltd.</td>
<td>Aley</td>
<td>$90,000</td>
<td>15721</td>
</tr>
<tr>
<td>M5</td>
<td>Cominco Ltd.</td>
<td>Sullivan</td>
<td>$50,000</td>
<td>15703</td>
</tr>
<tr>
<td>E147</td>
<td>Consol. Silver Standard Mines</td>
<td>Paydirt</td>
<td>$14,000</td>
<td>15753</td>
</tr>
<tr>
<td>E13</td>
<td>Corp. Falconbridge Copper</td>
<td>Rea Gold</td>
<td>$50,000</td>
<td>15718</td>
</tr>
<tr>
<td>E12</td>
<td>Corp. Falconbridge Copper</td>
<td>Chu Chu</td>
<td>$25,000</td>
<td>15717</td>
</tr>
<tr>
<td>E15</td>
<td>Corp. Falconbridge Copper</td>
<td>Mt. Sicker</td>
<td>$160,000</td>
<td>15719</td>
</tr>
<tr>
<td>M27</td>
<td>Crows Nest Resources Ltd.</td>
<td>Line Creek</td>
<td>$20,000</td>
<td>COAL #728</td>
</tr>
<tr>
<td>E33</td>
<td>Crows Nest Resources Ltd.</td>
<td>Burnt Ridge Ext.</td>
<td>$20,000</td>
<td>COAL #729</td>
</tr>
<tr>
<td>E44</td>
<td>David A Ward</td>
<td>General</td>
<td>$2,000</td>
<td>15727</td>
</tr>
<tr>
<td>E37</td>
<td>Ekaton Industries</td>
<td>Blue River Marble</td>
<td>$12,000</td>
<td>15725</td>
</tr>
<tr>
<td>E71</td>
<td>Energex Minerals Ltd.</td>
<td>AL</td>
<td>$70,000</td>
<td>15735</td>
</tr>
<tr>
<td>M19</td>
<td>Equity Silver Mines Limited</td>
<td>Equity Silver Mine</td>
<td>$150,000</td>
<td>15710</td>
</tr>
<tr>
<td>M1</td>
<td>Esperanza Explorations Ltd.</td>
<td>Tillicum Gold</td>
<td>$50,000</td>
<td>15700</td>
</tr>
<tr>
<td>E148</td>
<td>Esso Minerals Canada</td>
<td>Kamad</td>
<td>$50,000</td>
<td>15744</td>
</tr>
<tr>
<td>E149</td>
<td>Esso Minerals Canada</td>
<td>Tyaughton Trough</td>
<td>$50,000</td>
<td>15735</td>
</tr>
<tr>
<td>E8</td>
<td>Eureka Resources Inc.</td>
<td>Frasergold</td>
<td>$35,000</td>
<td>15715</td>
</tr>
<tr>
<td>E62</td>
<td>F & B Silver</td>
<td>D.V. Property</td>
<td>$30,000</td>
<td>15733</td>
</tr>
<tr>
<td>E153</td>
<td>Falconbridge Limited</td>
<td>Eastall River</td>
<td>$80,000</td>
<td>15756</td>
</tr>
<tr>
<td>M17</td>
<td>Foraging Coal Limited</td>
<td>Forging River</td>
<td>$50,000</td>
<td>COAL #726</td>
</tr>
<tr>
<td>E103</td>
<td>Gabriel Resources Inc.</td>
<td>G South</td>
<td>$500,000</td>
<td>15744</td>
</tr>
<tr>
<td>E101</td>
<td>Gallant Gold Mines Ltd.</td>
<td>Georgia</td>
<td>$30,000</td>
<td>15743</td>
</tr>
<tr>
<td>E129</td>
<td>Geddes Resources Ltd.</td>
<td>Windy Craggy</td>
<td>$20,000</td>
<td>15748</td>
</tr>
<tr>
<td>M22</td>
<td>Gibraltar</td>
<td>Gibraltar</td>
<td>$100,000</td>
<td>15712</td>
</tr>
<tr>
<td>E192</td>
<td>Gibraltar Mines Ltd.</td>
<td>20 Group</td>
<td>$7,000</td>
<td>15764</td>
</tr>
<tr>
<td>E26</td>
<td>Golden Eye Minerals Ltd.</td>
<td>Redbird</td>
<td>$80,000</td>
<td>15722</td>
</tr>
<tr>
<td>M10</td>
<td>Gunsteel Resources Inc.</td>
<td>Sheep Creek Gold</td>
<td>$30,000</td>
<td>15705</td>
</tr>
<tr>
<td>M16</td>
<td>Hecla Mining of Canada Ltd.</td>
<td>Mosquito Creek</td>
<td>$150,000</td>
<td>15708</td>
</tr>
<tr>
<td>E244</td>
<td>Highland Valley Resources Ltd.</td>
<td>Stemwinder</td>
<td>$75,000</td>
<td>15770</td>
</tr>
<tr>
<td>E86</td>
<td>Homestake Mineral Devel. Co.</td>
<td>Yellowjacket</td>
<td>$25,000</td>
<td>15760</td>
</tr>
<tr>
<td>E89</td>
<td>Houston Metals Corp.</td>
<td>Silver Queen Camp</td>
<td>$110,000</td>
<td>15742</td>
</tr>
<tr>
<td>E158</td>
<td>Hughes Lang Corp.</td>
<td>Bonaparte</td>
<td>$50,000</td>
<td>15757</td>
</tr>
<tr>
<td>E110</td>
<td>Kerr Addison Mines Ltd.</td>
<td>ABO</td>
<td>$75,000</td>
<td>15745</td>
</tr>
<tr>
<td>E218</td>
<td>Lacana Mining Corp.</td>
<td>Kena</td>
<td>$45,000</td>
<td>15767</td>
</tr>
<tr>
<td>E21</td>
<td>Laramide Resources Ltd.</td>
<td>Lara</td>
<td>$33,333</td>
<td>15737</td>
</tr>
</tbody>
</table>
Table A4: Financial Assistance for Mineral Exploration (FAME) 1987-88

<table>
<thead>
<tr>
<th>Code</th>
<th>Company Name</th>
<th>Location</th>
<th>Assistance Amount</th>
<th>COAL #</th>
</tr>
</thead>
<tbody>
<tr>
<td>E43</td>
<td>Granges Exploration Ltd.</td>
<td>Windflower</td>
<td>$60,000</td>
<td>16753</td>
</tr>
<tr>
<td>E72</td>
<td>Gulf International Minerals L.McLymont</td>
<td></td>
<td>$40,000</td>
<td>16695</td>
</tr>
<tr>
<td>M16</td>
<td>Gunsteel Resources Inc.</td>
<td>Nugget Mines</td>
<td>$40,000</td>
<td>16704</td>
</tr>
<tr>
<td>E140</td>
<td>Highland Valley Resources Ltd.</td>
<td>Stemwinder</td>
<td>$30,000</td>
<td>16779</td>
</tr>
<tr>
<td>E87</td>
<td>Homestake Mineral Development</td>
<td>Yellowjacket</td>
<td>$60,000</td>
<td>16712</td>
</tr>
<tr>
<td>E82</td>
<td>Houston Metals Corp.</td>
<td>Silver Queen</td>
<td>$40,000</td>
<td>16715</td>
</tr>
<tr>
<td>E23</td>
<td>IGF Metals Inc.</td>
<td>Beaverdell</td>
<td>$30,000</td>
<td>16712</td>
</tr>
<tr>
<td>E39</td>
<td>Kerr Addison Mines Limited</td>
<td>Kennedy River</td>
<td>$30,000</td>
<td>16729</td>
</tr>
<tr>
<td>E40</td>
<td>Kerr Addison Mines Limited</td>
<td>Windpass</td>
<td>$50,000</td>
<td>16764</td>
</tr>
<tr>
<td>E223</td>
<td>Kidd Creek Mines Ltd.</td>
<td>Northair Option</td>
<td>$20,000</td>
<td>16709</td>
</tr>
<tr>
<td>E226</td>
<td>Kidd Creek Mines Ltd.</td>
<td>Ecstall</td>
<td>$30,000</td>
<td>16711</td>
</tr>
<tr>
<td>E133</td>
<td>K-2 Resources Inc.</td>
<td>Pool Ck. (Spider Claim)</td>
<td>$50,000</td>
<td>16724</td>
</tr>
<tr>
<td>E202</td>
<td>Leask, John M.</td>
<td>Bar</td>
<td>$5,000</td>
<td>16697</td>
</tr>
<tr>
<td>E208</td>
<td>Lightning Creek Mines Ltd.</td>
<td>Northern Gold</td>
<td>$40,000</td>
<td>16726</td>
</tr>
<tr>
<td>E204</td>
<td>Lightning Minerals Inc.</td>
<td>Goldbelt</td>
<td>$50,000</td>
<td>16728</td>
</tr>
<tr>
<td>E166</td>
<td>Magna Ventures Ltd.</td>
<td>Doc</td>
<td>$60,000</td>
<td>16708</td>
</tr>
<tr>
<td>E67</td>
<td>Manson Creek Resources Inc.</td>
<td>Mags</td>
<td>$70,000</td>
<td>16692</td>
</tr>
<tr>
<td>E66</td>
<td>Minnova Inc.</td>
<td>Brittania Option</td>
<td>$22,800.60</td>
<td>16756</td>
</tr>
<tr>
<td>E65</td>
<td>Minnova Inc.</td>
<td>Twin</td>
<td>$60,000</td>
<td>16716</td>
</tr>
<tr>
<td>E13</td>
<td>Multinational Mining Inc.</td>
<td>Chappelle Gold</td>
<td>$40,000</td>
<td>16741</td>
</tr>
<tr>
<td>E99</td>
<td>Newjay Resources Ltd.</td>
<td>Master Ace</td>
<td>$20,000</td>
<td>16730</td>
</tr>
<tr>
<td>E84</td>
<td>Newmont Expl. of Cda Limited</td>
<td>New Moon</td>
<td>$50,000</td>
<td>16757</td>
</tr>
<tr>
<td>M5</td>
<td>Newmont Mines Limited</td>
<td>Similkameen</td>
<td>$85,000</td>
<td>16745</td>
</tr>
<tr>
<td>E143</td>
<td>Noranda Expl. Company, Limited</td>
<td>Banbury</td>
<td>$40,000</td>
<td>16746</td>
</tr>
<tr>
<td>E144</td>
<td>Noranda Expl. Company, Limited</td>
<td>L.H. Property</td>
<td>$20,000</td>
<td>16738</td>
</tr>
<tr>
<td>E110</td>
<td>Noranda Expl. Co.Ltd./Brenda</td>
<td>TAS</td>
<td>$50,000</td>
<td>16763</td>
</tr>
<tr>
<td>E36</td>
<td>Oliver Gold Corporation</td>
<td>Fairview</td>
<td>$40,000</td>
<td>16723</td>
</tr>
<tr>
<td>E129</td>
<td>Poschner, Michael</td>
<td>Sugar and Alice Creek</td>
<td>$30,000</td>
<td>16755</td>
</tr>
<tr>
<td>E11</td>
<td>Queenstake Resources Ltd.</td>
<td>Moyie River</td>
<td>$60,000</td>
<td>16706</td>
</tr>
<tr>
<td>M19</td>
<td>Quintette Coal Limited</td>
<td>Transfer/Grizzly/Perry</td>
<td>$100,000</td>
<td>COAL #739</td>
</tr>
<tr>
<td>E124</td>
<td>Rhyolite Res Inc/Bolivar Gold</td>
<td>Texasa</td>
<td>$50,000</td>
<td>16702</td>
</tr>
<tr>
<td>E47</td>
<td>Rogac, A.J./MacDonald R.E.</td>
<td>Dome Slate/Cariboo</td>
<td>$5,000</td>
<td>16760</td>
</tr>
<tr>
<td>M6</td>
<td>Royal Scot Resources Ltd.</td>
<td>Summit Lake</td>
<td>$100,000</td>
<td>16768</td>
</tr>
<tr>
<td>E61</td>
<td>Southern Gold Resources Ltd.</td>
<td>Mad</td>
<td>$5,000</td>
<td>16713</td>
</tr>
<tr>
<td>E60</td>
<td>Southern Gold Resources Ltd.</td>
<td>Rocher Deboule</td>
<td>$18,891.29</td>
<td>16714</td>
</tr>
<tr>
<td>E59</td>
<td>Southern Gold Resources Ltd.</td>
<td>Cronin</td>
<td>$10,000</td>
<td>16721</td>
</tr>
<tr>
<td>E122</td>
<td>Southlands Mining Corporation</td>
<td>Frasergold</td>
<td>$60,000</td>
<td>16765</td>
</tr>
<tr>
<td>M13</td>
<td>Taurus Resources Ltd.</td>
<td>Taurus Gold Mine</td>
<td>$60,000</td>
<td>16777</td>
</tr>
<tr>
<td>M1</td>
<td>Teck Corporation</td>
<td>Beaverdell Mine</td>
<td>$110,000</td>
<td>16771</td>
</tr>
<tr>
<td>M23</td>
<td>The Continental Jade Ltd.</td>
<td>Ogden Mountain</td>
<td>$19,178.74</td>
<td>16737</td>
</tr>
<tr>
<td>E242</td>
<td>Tungco Resources Corporation</td>
<td>Waratah</td>
<td>$30,000</td>
<td>16720</td>
</tr>
<tr>
<td>E107</td>
<td>Vananda Gold Ltd.</td>
<td>Texada Island</td>
<td>$50,000</td>
<td>16749</td>
</tr>
<tr>
<td>E86</td>
<td>Welcome North Mines Ltd.</td>
<td>Trout</td>
<td>$20,000</td>
<td>16733</td>
</tr>
<tr>
<td>M8</td>
<td>Westar Mining Ltd.</td>
<td>1987 Greenhills Mine E</td>
<td>$90,000</td>
<td>COAL #735</td>
</tr>
<tr>
<td>E115</td>
<td>Western Canadian Mining Corp.</td>
<td>Gossan</td>
<td>$70,000</td>
<td>16727</td>
</tr>
<tr>
<td>E51</td>
<td>X-Cal Resources Ltd.</td>
<td>Snowbird</td>
<td>$50,000</td>
<td>16766</td>
</tr>
</tbody>
</table>
Table A4: Financial Assistance for Mineral Exploration (FAME) 1986-87

<table>
<thead>
<tr>
<th>Code</th>
<th>Company Name</th>
<th>Project Name</th>
<th>Amount ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E47</td>
<td>Levon Resources</td>
<td>Congress</td>
<td>$100,000</td>
</tr>
<tr>
<td>E114</td>
<td>Longreach Resources Ltd.</td>
<td>Franklin Camp</td>
<td>$25,000</td>
</tr>
<tr>
<td>E169</td>
<td>Lumberton Mines Ltd.</td>
<td>Hellroaring Creek</td>
<td>$34,000</td>
</tr>
<tr>
<td>E235</td>
<td>MacDonald (RE)/Rogac (AJ)</td>
<td>Slate</td>
<td>$5,000</td>
</tr>
<tr>
<td>M21</td>
<td>Maclaren Forest Products</td>
<td>Bell Mine</td>
<td>$50,000</td>
</tr>
<tr>
<td>E11</td>
<td>Mt Calvery Resources Ltd.</td>
<td>Cariboo-Likely</td>
<td>$35,000</td>
</tr>
<tr>
<td>E32</td>
<td>Mt Grant/Twin Eagle/Scorpion</td>
<td>Gold Mount</td>
<td>$39,000</td>
</tr>
<tr>
<td>M3</td>
<td>Multinational Resources Inc.</td>
<td>Chappelle Au</td>
<td>$50,000</td>
</tr>
<tr>
<td>E36</td>
<td>Newhawk Gold Mines Ltd.</td>
<td>Sulphurets</td>
<td>$100,000</td>
</tr>
<tr>
<td>E87</td>
<td>Newmont Exploration of Canada</td>
<td>New Moon</td>
<td>$55,000</td>
</tr>
<tr>
<td>E50</td>
<td>Normine Resources Ltd.</td>
<td>Pacific Eastern</td>
<td>$60,000</td>
</tr>
<tr>
<td>E134</td>
<td>North American Metals Corp.</td>
<td>Bear-Totem</td>
<td>$100,000</td>
</tr>
<tr>
<td>E38</td>
<td>Northair Mines Ltd.</td>
<td>Willa</td>
<td>$100,000</td>
</tr>
<tr>
<td>E78</td>
<td>Placer Development Ltd.</td>
<td>Good Hope Resources</td>
<td>$30,000</td>
</tr>
<tr>
<td>E214</td>
<td>Queenstake Resources Ltd.</td>
<td>Moyie River</td>
<td>$90,000</td>
</tr>
<tr>
<td>E171</td>
<td>Queenstake Res/Haines Gypsum</td>
<td>O'Connor River Gypsum</td>
<td>$70,000</td>
</tr>
<tr>
<td>M8</td>
<td>Quintette Coal Limited</td>
<td>Transfer/Mesa Ext.</td>
<td>$150,000</td>
</tr>
<tr>
<td>E67</td>
<td>Selco Div-BP Resources Canada</td>
<td>Seneca</td>
<td>$60,000</td>
</tr>
<tr>
<td>E16</td>
<td>Signet Resources Inc.</td>
<td>Doratha Morton</td>
<td>$30,000</td>
</tr>
<tr>
<td>E52</td>
<td>Skylark Resources Ltd.</td>
<td>Skylark Group</td>
<td>$80,000</td>
</tr>
<tr>
<td>E73</td>
<td>Skyline Explorations</td>
<td>Reg</td>
<td>$100,000</td>
</tr>
<tr>
<td>E159</td>
<td>Stryker Res/Freeport Res</td>
<td>Tsirku/Jarvis</td>
<td>$90,000</td>
</tr>
<tr>
<td>M6</td>
<td>Teck Corporation</td>
<td>Beaverdell</td>
<td>$200,000</td>
</tr>
<tr>
<td>E138</td>
<td>Tenajon Silver Corp.</td>
<td>Cons. Silver Butte</td>
<td>$20,000</td>
</tr>
<tr>
<td>E161</td>
<td>Trader Resource Corp</td>
<td>Yellow Giant</td>
<td>$100,000</td>
</tr>
<tr>
<td>E48</td>
<td>Trifco Minerals Ltd.</td>
<td>Sovereign Talc Mine</td>
<td>$3,000</td>
</tr>
<tr>
<td>E131</td>
<td>Utah Mines Ltd.</td>
<td>JRM</td>
<td>$35,000</td>
</tr>
<tr>
<td>M14</td>
<td>Utah Mines Ltd.</td>
<td>Island Copper Mine</td>
<td>$150,000</td>
</tr>
<tr>
<td>E133</td>
<td>Vananda Gold Ltd.</td>
<td>Texaco Island</td>
<td>$25,000</td>
</tr>
<tr>
<td>M20</td>
<td>Westar Mining Ltd.</td>
<td>High Volatile Coal</td>
<td>$150,000</td>
</tr>
<tr>
<td>E177</td>
<td>Westmin Resources Ltd.</td>
<td>Silbak Premier</td>
<td>$100,000</td>
</tr>
<tr>
<td>E55</td>
<td>X-Cal Resources Ltd.</td>
<td>Snowbird</td>
<td>$10,000</td>
</tr>
</tbody>
</table>
- The success of the FAME program is due entirely to the professional abilities, entrepreneurial spirit and dedication of the individuals and companies who participated in the program.

- FAME helped create a more favourable mineral investment climate in British Columbia. This climate assisted in diverting private sector exploration funds to the province from other jurisdictions.

The FAME program has met its objective of promoting mineral resource development in British Columbia. The further developments of FAME-supported projects will have a positive impact, in both the short and long terms, on the economy of the province.

REFERENCES

PART B

GEOLOGICAL DESCRIPTION

OF

PROPERTIES
PART B
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>METALS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penticton 82E</td>
<td>B5</td>
</tr>
<tr>
<td>Fairview Mine, 82E/7W</td>
<td>B7</td>
</tr>
<tr>
<td>Vernon 82L</td>
<td>B15</td>
</tr>
<tr>
<td>Brett, 82L/4E</td>
<td>B15</td>
</tr>
<tr>
<td>Lumby Project (Chaput), 82L/7W</td>
<td>B23</td>
</tr>
<tr>
<td>Alberni 92F</td>
<td>B28</td>
</tr>
<tr>
<td>Debbie, 92F/2E</td>
<td>B28</td>
</tr>
<tr>
<td>Pemberton 92J</td>
<td>B35</td>
</tr>
<tr>
<td>Wayside, 92J/15W</td>
<td>B35</td>
</tr>
<tr>
<td>Nechako River 93F</td>
<td>B45</td>
</tr>
<tr>
<td>Trout, 93F/10</td>
<td>B45</td>
</tr>
<tr>
<td>McLeod Lake 93J</td>
<td>B46</td>
</tr>
<tr>
<td>Windy, 93J/13W</td>
<td>B46</td>
</tr>
<tr>
<td>Fort Fraser 93K</td>
<td>B47</td>
</tr>
<tr>
<td>Snowbird, 93K/7E,8W</td>
<td>B47</td>
</tr>
<tr>
<td>Tas, 93K/16</td>
<td>B48</td>
</tr>
<tr>
<td>Smithers 93L</td>
<td>B50</td>
</tr>
<tr>
<td>Topley Richfield, 93L/9</td>
<td>B50</td>
</tr>
<tr>
<td>Boulder Creek Vein, 93L/10E</td>
<td>B53</td>
</tr>
<tr>
<td>Hazelton 93M</td>
<td>B58</td>
</tr>
<tr>
<td>Bell Copper, 93W/1</td>
<td>B58</td>
</tr>
<tr>
<td>Manson River 93N</td>
<td>B65</td>
</tr>
<tr>
<td>Takla Rainbow, 93N/11W</td>
<td>B65</td>
</tr>
<tr>
<td>Terrace 103I</td>
<td>B67</td>
</tr>
<tr>
<td>Kitimat Project, 103I/2</td>
<td>B67</td>
</tr>
<tr>
<td>Iskut River 104B</td>
<td>B71</td>
</tr>
<tr>
<td>Gold Lithogeochemistry of Bronson Creek Area, 104B/10W,11E</td>
<td>B71</td>
</tr>
<tr>
<td>Tulsequah 104K</td>
<td>B78</td>
</tr>
<tr>
<td>Tulsequah Chief, 104K/12</td>
<td>B78</td>
</tr>
<tr>
<td>Skagway 104M</td>
<td>B83</td>
</tr>
<tr>
<td>Engineer Mine, 104M/8</td>
<td>B83</td>
</tr>
<tr>
<td>Atlin 104N</td>
<td>B87</td>
</tr>
<tr>
<td>Yellowjacket, 104N/12</td>
<td>B87</td>
</tr>
<tr>
<td>McDame 104P</td>
<td>B95</td>
</tr>
<tr>
<td>Cornucopia (Taurus Mine), 104P/5</td>
<td>B95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDUSTRIAL MINERALS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelson 82F</td>
<td>B107</td>
</tr>
<tr>
<td>Hellroaring Creek Pegmatite, 82F/9</td>
<td>B109</td>
</tr>
<tr>
<td>Vernon 82L</td>
<td>B117</td>
</tr>
<tr>
<td>Lumby Pegmatite, 82L/2W,7W</td>
<td>B117</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REGIONAL GEOCHEMICAL SURVEY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Geochemical Survey Results for Smithers (93L) and Whitesail Lake (93E) Map Sheets</td>
<td>B127</td>
</tr>
</tbody>
</table>

B3
Figure B1. Index map of properties described in Part B.
METALS
FAIRVIEW MINE (Fig. B1, No. 1) By R.E. Meyers

LOCATION: Lat. 49°12' Long. 119°38' (82E/4E)
OSOYOOS MINING DIVISION. 6.5 kilometres northwest of Oliver and about 35 kilometres south of Penticton. Elevations on the property range from 670 metres in the southeast to 1460 metres in the northwest.

ACCESS: Approximately 6 kilometres by all-weather road west from Oliver, thence 1 kilometre via Fairview mine access road.

OWNERS: Cominco Ltd., Oliver Gold Corporation.

OPERATOR: OLIVER GOLD CORPORATION.

COMMODITIES: Gold, silver.

DESCRIPTION:

GEOLOGICAL SETTING AND STYLE OF MINERALIZATION AT THE FAIRVIEW MINE

INTRODUCTION

The Fairview mine is part of an historical gold mining camp located 6 kilometres west of Oliver and about 300 kilometres east of Vancouver (Figure B2). The camp includes the Fairview, Stemwinder, Morning Star and several smaller properties, all of which are situated on a northwest-trending quartz-vein system that extends discontinuously for about 3 kilometres in strike length (Figure B3).

HISTORY

Gold exploration and mining in the area began in the late 1890s and continued intermittently until 1961 (Netolitzky, 1986). The earliest active period of development and production took place from 1895 to 1904 on the Stemwinder and Fairview properties by Dominion Consolidated Mines Ltd. In the 1930s and 1940s Fairview Amalgamated Gold Mines Ltd. and The Consolidated Mining and Smelting Company of Canada Ltd. (Cominco) respectively operated the Fairview mine, Cominco using the ore as flux for the Trail smelter until 1961. In the 1960s and again in the early 1980s Cominco carried out extensive exploration work that covered the Fairview, Stemwinder and Morning Star properties, ultimately concluding that the vein system was likely continuous between the Stemwinder and Fairview workings.
Figure B2. Regional geology of the Oliver area.

Total production from the camp is summarized as follows (Fletcher, 1986):

<table>
<thead>
<tr>
<th></th>
<th>Tonnes</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairview</td>
<td>440 000</td>
<td>3.84</td>
<td>47.99</td>
</tr>
<tr>
<td>Stemwinder</td>
<td>25 400</td>
<td>5.83</td>
<td>59.43</td>
</tr>
<tr>
<td>Morning Star</td>
<td>7 500</td>
<td>19.20</td>
<td>43.54</td>
</tr>
<tr>
<td>Total</td>
<td>472 900</td>
<td>4.19</td>
<td>48.53</td>
</tr>
</tbody>
</table>
CURRENT WORK

In early 1986 Oliver Gold Corporation optioned the Fairview and Morning Star properties from Cominco Ltd. and Highland Valley Resources optioned the Stemwinder property from Asarco Ltd. Since then, the two companies have independently carried out aggressive exploration on the Fairview and Stemwinder mines. Oliver Gold undertook a comprehensive surface and underground mapping, sampling and diamond-drilling program at Fairview, while Highland Valley Resources drove a 365-metre exploration adit from the Brown Bear claim to access the underground workings of the Stemwinder mine. Results at both sites have been encouraging and the two companies are continuing operations in 1988.
FAIRVIEW MINE
6 LEVEL PLAN

FAIRVIEW VEIN SYSTEM
(Qtn, Py-Cyp, Ag-Ch-Au Ag-Au; quartz veins, veinlets)

3 FELIC to INTERMEDIATE SILLS & DYKES

2 CHLORITE-BIOTITE SCHIST
(Metasedimentary?)

1 FOLIATED METASEDIMENTS
(Neocararel?; foliation)

S-1 Cleavage
Trend and plunge of F-1 folds

Figure B4. Fairview mine, Level 6 plan. Geology simplified from mapping by D. Mehner. Courtesy Oliver Gold Corporation.

GEOLOGICAL SETTING

The Fairview belt (Figure B2) is underlain by an elongate section of complexly deformed metasedimentary and metavolcanic rocks of the mid-Paleozoic Kobau Group (Cockfield, 1935; Bostock, 1940). The section is wedged between two Jura-Cretaceous intrusions, the Oliver granite to the north and the Fairview granodiorite to the south, dated at 160 Ma (rubidium-strontium) and 111 Ma (potassium-argon) respectively, although the younger age is suspect (White et al., 1968; Sinclair et al., 1984). The entire assemblage flanks the southwestern edge of the Shuswap-Monashee metamorphic complex and lies west of Tertiary extensional faults in the Okanagan valley (Tempelman-Kluit and Parkinson, 1986). Regional correlation and structural studies by Okulitch (1969, 1973) and others tentatively dated the Kobau as pre-Pennsylvanian, suggesting that it is roughly time-equivalent to the Permo-Carboniferous Anarchist Group. However, recent research and comparisons with other units of similar lithology in the region suggest that the assemblage may be part of an accreted oceanic or arc terrane and that some parts of the Kobau could be as young as Triassic (A.V. Okulitch, personal communication, 1988).

The Fairview mine sequence comprises foliated brownish and greenish grey impure micaceous quartzites and dark greyish green chloritic quartz-feldspar-mica schists of probable volcanic origin.
Plate Bl. Isoclinally folded miaceous quartzites. White areas are folded intrafolial quartz veins.

(Figure B4). The sequence has undergone middle greenschist metamorphism, multi-phase folding (Plate Bl; Okulitch, 1969) and is transected by minor felsic to intermediate dykes and sills. Subsequent brittle fracture produced normal and reverse faults and a complex system of joints and fractures.

The quartzites contain variable amounts of muscovite, biotite, carbonate, hornblende, feldspar and pyrite. S_1 cleavage planes are accentuated by the parallel orientation of micas, elongate strained quartz grains and microscopic bands of fine granular quartz. In some samples quartz annealing is evidenced by crudely formed triple junctions.

The chloritic schists or "greenstones" typically contain remnant sericitized and saussuritized plagioclase, chlorite, actinolite, calcite, quartz, remnant hornblende and minor epidote.

MINERALIZATION

Gold and silver mineralization occurs in a deformed system of milky grey and white sulphide-bearing quartz veins. Sulphides include pyrite, galena, sphalerite and chalcopyrite. The quartz veins are generally conformable to penetrative fabrics developed in the Kobau host rocks and display a variety of early ductile and later brittle deformation features. Tight to isoclinal folds (D_1), (Plates B2 and B3) are the earliest and correspond with a number of fold-related structures that include axial planar cleavage (S_1), mullion structures and boudinage (L_1), (Plate B4). At some localities, where the veins are dramatically thickened in fold hinges, precious metal bearing sulphides have been remobilized and concentrated in axial cleavage planes.
Plate B2. S-fold in quartz vein and metasediments. Micaeous minerals and sulphides are distributed along shear planes within the quartz veins. Entire vein is about 1.2 metres wide.

Plate B3. Isoclinal folded quartz vein. Obliquely oriented fold hinge at lower right is offset along a minor fault. Pencil magnet at upper right for scale.

Plate B5. Kink folds in micaceous quartzites in the footwall of a fault zone. Light areas are intrafolial quartz veins.
Subsequent brittle deformation produced normal and reverse faults, minor kink folds in the metasediments (Plate B5) and a distinct cross-fracture cleavage in the ore-bearing quartz veins. Major segments of the vein system have been dissected and juxtaposed by faulting (Figure B4) and exploration has been further complicated by localized shears and offsets.

SUMMARY AND CONCLUSIONS

The geological setting and style of mineralization at the Fairview mine are comparable, in several respects, with the setting and characteristics of many Archean lode gold deposits. Archean deposits are considered to be syntectonic with plutonism, contemporaneous with ductile deformation, and mineralizing fluids are considered to be "metamorphic" in origin (Colvine et al., 1984; Barley et al., 1986).

The Fairview mine occurs in a deformed and metamorphosed mid-Paleozoic sedimentary-volcanic sequence, intruded by Jura-Cretaceous plutonic rocks and subsequently faulted and fractured during a period of brittle deformation. Textural and structural features suggest that, at least on a local scale, ore-bearing quartz veins have been tectonically thickened by folding and ore minerals have been remobilized into axial planar cleavage.

Therefore, as a guide to further exploration, a focus on carefully mapped and projected deformation features, particularly where structural thickening is involved, should be a primary factor in the development of additional ore reserves.

ACKNOWLEDGMENTS

I wish to acknowledge the cooperation and assistance of David Mehner, consultant for Oliver Gold Corporation, for the loan of company maps and underground plans, as well as for several guided tours and fruitful discussions of the geology of the property. D.K. Norris and A.V. Okulitch of the Geological Survey of Canada also offered helpful suggestions and insight into the structure and stratigraphy of the area. Lori Walters worked as my field and research assistant during the project.

REFERENCES

VERNON 82L

BRETT (Fig. B1, No. 2) By R.E. Meyers

LOCATION: Lat. 50°12' Long. 119°39' (82L/4E) VERNON MINING DIVISION. 25 kilometres west of Vernon. Elevations on the property range from 1000 metres in Whiteman Creek valley to 1828 metres, with most exploration concentrated below 1550 metres.

CLAIMS: BRETT 1-4.

ACCESS: From Westside road on Okanagan Lake, via Whiteman Creek logging road for 19 kilometres.

OWNER: Huntington Resources Inc.

OPERATORS: HUNTINGTON RESOURCES INC., LACANA MINING CORPORATION.

COMMODITIES: Gold, silver.

DESCRIPTION:

HISTORY

Placer gold was discovered and exploited to a minor extent along Whiteman Creek in the 1890s and early 1900s. In the late 1930s small gold-silver veins were prospected and sporadic exploration continued from 1940 through to the 1970s. In 1983 C. Brett, a prospector from Kelowna, contracted a heavy minerals geochemical survey, which located gold anomalies that were staked as the Brett 1 and 2 claims.
Figure B4. Surface geology of the south-central part of the Brett claims. Generalized from mapping by W. Gruenwald.
CURRENT WORK

In late 1983 Huntington Resources purchased the property and in 1984 undertook a systematic exploration program. Coincident gold, silver, arsenic and mercury anomalies were outlined in a detailed soil survey and gold and silver-bearing quartz veins were found during geological mapping and prospecting. Road construction and trenching began in 1985 and continued through to 1987. Exploration to date has focused primarily on two areas: the Main shear zone and the Gossan zone. Diamond drilling of these zones in 1986 (792 metres) and 1987 (2900 metres) has produced encouraging results, particularly on the Main shear zone, where most of the current exploration activity has been concentrated. The zone has been traced by drilling for 570 metres along strike and 250 metres down dip.
Plate B6. Amygdaloidal andesite. Most amygdules are lined with quartz and filled with chlorite, zeolite(?), quartz and minor hematite.

Plate B7. Laminated lapilli-ash tuff, DDH 87-1.

Plate B8. Coarse heterolithic lapilli tuff. Subangular and subrounded fragments vary from yellowish, siliceous (cherty), to hematite-stained.

Plate B9. Feldspar porphyry from a dyke located 90 metres east of the Main shear zone. Dark minerals are mainly hornblende with minor magnetite.
GEOLLOGICAL SETTING

The Brett claims are located near the northern end of the Pennask-Okanagan intrusive complex approximately 15 kilometres west of the northern end of Okanagan Lake (Figure B5). The eastern part of the property is underlain by Late Jurassic granitic rocks that are intruded by a Cretaceous to Tertiary syenite stock (Jones, 1959; Okulitch and Woodsworth, 1977; Okulitch, 1979). To the west, the property is underlain by relatively flat-lying basaltic and andesitic flows and volcaniclastic rocks of presumed Eocene age, which unconformably overlie the Mesozoic plutonic rocks. The volcanic rocks are believed to be a northerly extension of the Terrace Mountain Tertiary volcanic outlier mapped by Church (1980).

The volcanic sequence on the Brett claims consists of undeformed interbedded massive flows and volcaniclastic rocks of andesitic to basaltic composition. In general, they are differentially altered, faulted and crosscut by a number of feldspar porphyry dykes (Figure B5).

The massive lavas vary from relatively fresh-looking fine-grained, dark grey-green and weakly plagioclase porphyritic, to more strongly altered amygdaloidal flows (Plate B6). The non-amygdaloidal rocks have a very fine-grained microlitic groundmass, composed primarily of plagioclase and finely disseminated magnetite, with weak but pervasive carbonate and minor chlorite alteration. The more porous amygdaloidal flows are altered to a lighter grey-green colour, with a slightly coarser groundmass. Much of the groundmass magnetite is altered to hematite and relict mafic phenocrysts are replaced by chlorite, hematite and minor quartz.

The volcaniclastic rocks occur in four tuffaceous horizons recognized in drill core. Textures in the tuffs range from finely laminated beds (Plate B7) to coarser, more chaotic heterolithic sections (Plate B8) containing fragments up to 5 centimetres in size. Alteration in the tuffs varies from a weak to moderately developed chlorite-epidote-calcite-hematite assemblage to intense clay-silica alteration that occurs most prominently adjacent to shear zones and feldspar porphyry dykes.

The feldspar porphyry dykes occur at several localities on the property (Figure B5), as a north-northwest-trending swarm of intrusives which appear to have been emplaced along pre-existing shears or fault structures, thereby serving as a guide to locating potential exploration targets. Typically the dykes contain medium to coarse plagioclase and hornblende phenocrysts in a fine-grained microlitic groundmass of plagioclase, magnetite and minor amethystine quartz (Plate B9). They range in width from less than 1 metre to 15 metres and some dykes display alteration features similar to the adjacent volcanic rocks, although usually less intense.

MINERALIZATION

Epithermal-style gold-silver mineralization has been identified at two localities on the Brett property. The Gossan zone,
Plate B10. Silica-flooded breccia from the Gossan zone. Subangular andesitic and basaltic fragments are intensely silicified.

Plate B11. Stockwork quartz veining from an offshoot of the Main shear zone (Trench No.1). Veins have vuggy and cockscomb textures. Wallrock is lapilli-ash tuff.
which is characterized principally by brecciation and silicification, and the Main shear zone, a fault or shear-controlled quartz vein system.

The Gossan zone lies near the contact with the granitic intrusive complex. It is a broad, northerly trending, rusty oxidized and silicified zone of brecciated volcanic rocks, roughly 50 metres wide and 500 metres in length. The rocks are typically yellowish grey and silica flooded with local drusy cavities and stockwork veining. Breccia fragments are angular to subangular and intensely altered to the extent that original volcanic textures, such as amygdules and phenocrysts, are only weakly discernible (Plate B10).

Limited diamond drilling on the zone has produced only modestly encouraging gold values. However, the size and intensity of silicification in the zone suggests that it was a major conduit for epithermal fluids and it is reasonable to assume that significant untested potential remains.

The Main shear zone lies about 1 kilometre southwest of the Gossan zone. It has been traced by trenching and drilling from about 1370 metres elevation to below 1260 metres, with an overall strike length of 570 metres. The zone dips steeply to the west (80 to 85 degrees) and is considered to be open at both ends and at depth. Along the structure, wallrocks are strongly fractured and brecciated to form an appreciable amount of crumbly yellowish fault gouge. Intense clay and silica alteration is associated with a stockwork of bladed and vuggy quartz veins (Plates B11 and B12) that have been re-brecciated in many areas. Adjacent rocks are discoloured by propylitic bleaching and limonite staining.
Visible gold, usually in the form of electrum, has been found in several trenches along the zone, in association with pyrite together with minor galena and argentite. Size fraction analyses indicate that the metal varies from coarse to very fine. At one locality a dendritic lattic texture of wire gold has been collected.

Diamond-drilling information indicates that mineralization is most widely developed where the more porous amygdaloidal and tuffaceous rocks are transected by the Main shear structure. However, Hole 87-29 (Figure B6), now referred to as the "discovery hole", has returned one of the best intersections to date and lies between tuff horizons. The planned 1988 program is intended to continue with fill-in drilling on the Main shear zone and to test anomalies outlined in 1987.

ACKNOWLEDGMENTS

I wish to acknowledge the cooperation and assistance of Werner Gruenwald, consultant for Huntington Resources Inc. Information in this report is derived from several property visits, plus volunteered company maps and data courtesy of Huntington and Lacana.

REFERENCES

LUMBY PROJECT (CHAPUT) (Fig. B1, No.3) By R.E. Meyers

LOCATION: Lat. 50°16' Long. 118°56' (82L/7W)
VERNON MINING DIVISION. Immediately northeast of Lumby, 28 kilometres east of Vernon. Elevations range from 490 metres in Bessette Creek valley to 950 metres at the summit of Saddle Mountain.

CLAIMS: CHAPUT 1-26, B.S. 1-2, B.S. 4-5, D.K. 1, P.S. 2-7, QUIN.

ACCESS: Via mine and logging roads from Highway 6.

OWNER/OPERATOR: THE QUINTO MINING CORPORATION.

DESCRIPTION:

HISTORY

Pre-1960 information on the Lumby (Chaput) property is sketchy at best. Prospecting and hand mining were reportedly carried out by local residents in the early 1900s. During logging operations (Chaput Logging Co.) in the 1960s silver-lead-zinc veins were exposed and in 1968 F.K. Explorations began underground development and built a 50 tonne per day mill. Between 1968 and 1970 approximately 1500 tonnes of ore were shipped to the Trail smelter. In 1971 Alberta Gypsum Ltd. purchased the property and carried out underground exploration. The operation was then acquired by Coast Interior Ventures (1974-78) which increased the mill capacity to 150 tonnes per day. Operations ceased in 1981, likely due to lack of reserves. Estimates of more than 20 000 tonnes have been made for total production, however, detailed production records have not been published.

CURRENT WORK

The Quinto Mining Corporation purchased the Chaput property in 1983 and expanded it with the addition of the B.S., P.S., D.K. and Quin claims. Initially a trenching program, undertaken to test geophysical and geochemical anomalies, exposed brecciated quartz-vein mineralization near the top of Saddle Mountain, which was subsequently named the Plateau shear zone. Encouraging sample results prompted the company to undertake a limited drilling program in 1985, consisting of 10 reverse-circulation-drill holes and one diamond-drill hole. A subeconomic zone 125 metres in strike length and 56 metres down dip was outlined. Later in 1985 an additional 1396 metres of drilling in 13 holes was completed. In 1986 the property was mapped in detail (1:2000), VLF-EM and magnetometer surveys were carried out and 2700 metres were drilled in 22 NQ diamond-drill holes. Early in 1987 the company filed a Letter of Intent to initiate a mining program with the Mine Development Steering Committee. Subsequently, continued exploration has included an additional 32 reverse-circulation-drill holes and 7 diamond-drill holes (3030 metres), together with further VLF-EM, magnetometer and geochemical surveys, and metallurgical testing. Prefeasibility studies have outlined two mineralized zones (Hangingwall and Footwall zones) within the Plateau shear zone. Tonnage and grade calculations applying
Figure B7. Surface geology of the Lumby (Chaput) project on Saddle Mountain, modified from mapping by D.L. Kuran, The Quinto Mining Corporation.
cut-off grades of 2.4 grams per tonne gold and 1.71 grams per tonne gold are tabled below:

<table>
<thead>
<tr>
<th>Cut-off (g/t)</th>
<th>tonnes</th>
<th>Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.4</td>
<td>255 480</td>
</tr>
<tr>
<td>B</td>
<td>1.71</td>
<td>290 270</td>
</tr>
</tbody>
</table>

The project continues with plans to drive an exploration adit along the hangingwall to obtain a 10,000 tonne bulk sample in 1988.

GEOLOGICAL SETTING

The Lumby property is underlain by sedimentary and volcanic rocks of the Sicamous Formation, a part of the Upper Triassic Slocan Assemblage (Okulitch, 1979). Regionally, the package is correlative with the Nicola Group to the west (Wheeler, 1987). At Lumby, the Sicamous rocks include argillite, siltstone, sericitic and chloritic tuff and minor phyllite (Figure B7). The sedimentary-volcanic sequence is well bedded, gently folded about a northwest-trending antiformal axis and crosscut by minor high-angle normal faults. A small granodiorite stock of Cretaceous age (Okulitch, op. cit.) intrudes the package and biotite hornfels is weakly developed in the wallrocks. The Plateau shear zone is a major west-trending fault which dips about 48 degrees to the south (Figure B8) and transects the central part of the claim group. It has been the primary focus of exploration since 1983.

MINERALIZATION

Precious metals mineralization is known in two areas on the property: the Chaput mine zone and the Plateau shear zone (Figure B8). Both zones are spatially related to the same structure.

In the Chaput mine at the western end of the shear, silver-lead-zinc mineralization is associated with a system of quartz-sulphide veins arranged in a step-like pattern. The sulphides are fine to medium grained, intergrown with milky white and grey quartz, and include galena, sphalerite, pyrite, tetrahedrite, pyrrhotite, chalcopyrite and argentite (Plate B13). Chlorite, sericite and clay minerals are the typical wallrock alteration minerals. Most mineralization in the Chaput zone is reported to occur below 600 metres elevation.

Gold mineralization occurs in the Plateau shear zone about 600 metres east of the Chaput zone and generally lies above 700 metres elevation. The zone ranges from 5 to 20 metres in width, with the enclosed quartz veins having up to about 5 metres aggregate width. In most areas within the zone, quartz veins are intensely sheared and brecciated (Plate B14). Gold is associated with disseminated to locally massive pyrite, minor pyrrhotite and chalcopyrite. Sphalerite and galena are generally rare, but carry sporadic silver values. In many parts of the zone, the breccia matrix contains a significant amount of carbonaceous (graphitic) material, where many of the highest gold values have been reported.
ACKNOWLEDGMENTS

I wish to thank D.L. Kuran, project geologist with The Quinto Mining Corporation for property tours, the use of company data and fruitful comments on the geology of the property.

REFERENCES

Plate B13. Sulphide mineralization from the Chaput mine quartz vein system. Sulphides include galena (Gal), sphalerite (Sph), and a fine-grained mixture of pyrite (Py) and chalcopyrite (Cp).

Plate B14. Plateau gold zone mineralization. Angular quartz (vein) clasts in a matrix of finer fragmental quartz, limonite, minor pyrite, clay and carbonaceous material.

DEBBIE
By N.W.D. Massey, T.G. Schroeter and W.J. McMillan
(Fig. Bl, No. 4)

LOCATION: Lat. 49°13' Long. 124°39' (92F/2E)
ALBERNI MINING DIVISION. About 16 kilometres south-
east of Port Alberni. The area being explored extends
southward along Yellows Creek from the confluence with
Cameron River in the area of the old China Creek -
Debbie - Thistle mine.

CLAIMS: DEBBIE 1-3, LUCY 1-3, LINDA 1-2, YELLOW, JENNY and
others.

ACCESS: The property is reached by following the Cameron Main
and Yellow Creek Main logging roads to Yellows Creek,
then a rough four-wheel-drive road up the creek.

OWNERS: Westmin Resources Limited, Nexus Resource Corporation,
Angle Resources Ltd.

OPERATOR: WESTMIN RESOURCES LIMITED.

COMMODITY: Gold.

DESCRIPTION:

REGIONAL SETTING

The Debbie property straddles the northwestern termination of
the Cowichan uplift, one of a series of northwest-plunging geanticlinal
culminations that make up the tectonic fabric of Vancouver Island. The
Cowichan uplift is cored by volcanics and sediments of the Paleozoic
Sicker Group and rimmed by late Triassic basalts of the Karmutsen
Formation. Granodiorites of the middle Jurassic Island intrusions
intrude earlier suites. Clastic sediments of the late Cretaceous
Nanaimo Group unconformably overlie all older rocks and have been
intruded in turn by Tertiary porphyry dykes and stocks.

The uplift has been cut and disrupted by a system of regional
west-northwest-trending contractional faults such as the Cameron River -
Fulford fault and Cowichan Lake faults. Where exposed at the surface,
these are high-angle reverse faults but at depth they flatten and become
listric (Sutherland Brown and Yorath, 1985). They generally place older
rocks over younger and are interpreted to be thrust faults.

Displacements along the faults are uncertain but probably small - of the
order of 1 to 10 kilometres. Consequently, the essential integrity of
the Cowichan uplift is maintained. Movements were probably directed to
the west-southwest, although slickensides on fault planes indicate that
the latest movement was horizontal and westerly directed. Several
vertical north to north-northeast-trending crossfaults, such as the
Yellows Creek - Mineral Creek fault, offset the contractional faults.
These are probably west-side-down normal faults though some strike-slip
motion may also have occurred. The age of faulting is not clearly
defined, though it postdates the Nanaimo Group and probably predates the
Tertiary intrusions.
REGIONAL STRATIGRAPHY

The Sicker Group was first defined as the Mount Sicker Series by Clapp (Clapp, 1912; Clapp and Cooke, 1917) within the Duncan area. Correlative rocks elsewhere on Vancouver Island were mapped by later workers (Gunning, 1931; Stevenson, 1945; Fyles, 1955; Muller and Carson 1969) and identified as the oldest exposed rocks on the island. Stratigraphic studies of the Sicker Group were conducted by Yole (1969) and Muller (1980). Based on regional studies throughout Vancouver Island, Muller proposed four subdivisions, in ascending order: Nitinat Formation, Myra Formation, an informal sediment-sill unit and the Buttle Lake Formation.

A major revision of this stratigraphy has been suggested by Sutherland Brown following mapping in the Alberni area of the Cowichan uplift (Sutherland Brown and Yorath, in preparation; Sutherland Brown et al., 1986); independently, Juras (1987) proposed a revised stratigraphy for the Buttle Lake uplift. In Sutherland Brown’s revised terminology the name “Sicker Group” is restricted to the lower volcanic section and subdivided into the lower Nitinat and upper McLaughlin Ridge formations. Overlying sediments are redefined and assigned to the Buttle Lake Group, comprising Cameron River, Mount Mark and St Mary’s Lake formations. These new formational subdivisions have been traced successfully into the Cowichan and Duncan areas (Massey and Friday, 1987, 1988), although for convenience the older usage of “Sicker Group” was retained. The terminology of Muller is still employed by Westmin Resources Limited and several other companies working in the Cowichan uplift.

PROPERTY GEOLOGY

Much of the Debbie property was shown by Muller (1980) and Sutherland Brown et al., (1986) to be underlain by pyroxene-porphyritic volcanics of the Nitinat Formation and assorted lithologies of the McLaughlin Ridge (or lower Myra Formation). Detailed mapping by Westmin has recognized an important, but discontinuous, package of felsic volcanics and cherts overlying pillowed basalts. Pyroxene-plagioclase-phyric flows and volcaniclastics to the north and west of this horizon, ascribed to the Nitinat Formation by both Muller and Sutherland Brown, are believed by Westmin geologists to be stratigraphically younger than the cherts and rhyolites and hence part of the Myra or McLaughlin Ridge Formation. This stratigraphic question has yet to be resolved.

A major schist zone has been traced by Westmin from Yellows Creek to Rogers Creek (Figure B9). The chloritic schists, apparently derived from a tuffaceous protolith, show a pervasive carbonate-sericite-quartz alteration with a core zone of gypsum and minor sulphides. This zone is interpreted by Westmin as related to massive sulphide mineralization zone and thin beds and lenses of sphalerite-rich massive sulphides are seen in places. Sutherland Brown et al., (1986) ascribe the schistosity of this zone to deformation along one of the strands of the Beaufort Range fault. Perhaps the deformation is imposed upon earlier alteration.
MINERAL PROSPECTS

1. 4400 ANOMALY
2. YELLOW CREEK ZONE
3. UPPER MINERAL CREEK ZONE
4. LINDA ZONE
5. VANCOUVER ISLAND GOLD MINE
6. 900 ZONE
7. REGINA ZONE

NTS 92F/2

Figure B9. Claim map, Debbie property.
MINERALIZATION AND ALTERATION

The contiguous Debbie and Yellow properties occur in the vicinity of the major north-northwest-trending Beaufort Range fault. Local strong north-south faults, such as the Mineral Creek fault, which follows Mineral Creek on the north and extends south across China Creek, are related to mineralization. Structural repeats may exist, for example, the Rogers Creek showing is in a similar setting. The age of the mineralizing event is not certain. Lead isotope analyses suggest post-Jurassic ages and geological data suggest it may be Tertiary (R. Walker, personal communication, 1988).

The favourable belt of McLaughlin Ridge/Myra Formation rocks extends for over 25 kilometres in a north-northwesterly direction through the property and has an estimated thickness greater than 450 metres. On the Debbie claims, three main structurally controlled mineralized zones with vein-type gold mineralization have recently been identified: Mineral Creek, 900 and Linda. The Mineral Creek and Linda zones trend southward toward the old Vancouver Island gold mine on the Yellow property, which operated intermittently between 1896 and 1939 and reportedly yielded 11,044 grams of gold, 1,617 grams of silver and 88 kilograms of copper from 438 tonnes of ore. Other auriferous vein occurrences in the region include the Black Panther, 3-W and Havilah prospects. Elsewhere on the Debbie property, exhalative massive sulphide targets have been identified, most notably at the Regina workings. Regionally, other examples of volcanogenic massive sulphide deposits in similar settings include the Lynx, Myra and H-W deposits at Buttle Lake; the Twin J and Lara on Mount Sicker; and the Thistle near Port Alberni.

To date work on significant showings on the Debbie property has been mainly south of McLaughlin Ridge on or near Mineral Creek. The Mineral Inventory map for map sheet 092F (Alberni) shows only number 092F-079 - the Victoria - which includes the old Vancouver Island gold mine; the new Mineral Creek, Linda and 900 zones are located in the same area.

MINERAL CREEK ZONE (in part, MI 092F-079, Victoria)

The Mineral Creek structure has been traced for several kilometres in a northerly direction along Mineral Creek and Yellows Creek. On the Upper Mineral Creek zone (Debbie property), gold with arsenopyrite is spatially related to the Mineral Creek fault zone, which hosts rocks locally referred to as "gougy cataclasites" (R. Walker, personal communication, 1988). Native gold occurs in discrete quartz veins (Plate B15) and in bordering alteration zones in association with ankerite, sericite, quartz, pyrite and minor arsenopyrite. The zone is characterized by its rusty colour and occasional clots of green fuchsitic material and sulphides, primarily pyrite. Sulphide content may range up to 15 per cent by volume but is generally low. Country rocks outside the alteration zone include pyroxene basalt and mafic volcaniclastics with local lenses of rhyolite. The Mineral Creek zone appears to be on strike with the old Vancouver Island gold mine where mineralization occurs in the hangingwall of the fault.
900 ZONE

The 900 zone is located west of Mineral Creek (Figure B9). Host rocks include pyroxene-aphyric basalt, flow-top breccias, tuff-wackes and banded chert. The mafic volcanic rocks are strongly lineated, and the chert unit, which might be termed a "lean iron formation" with magnetite at the base, is locally isoclinally folded (Plate B15). Fold axes appear to plunge south-southeast. An auriferous quartz-vein stockwork underlies the chert horizon; it has a pipe-like morphology. Native gold, pyrite, magnetite and trace arsenopyrite occur in quartz veinlets in chert and red jasper host rocks, and also in narrow carbonate veinlets that crosscut quartz veinlets.

Diamond-drill hole 50-87 in the 900 zone intersected 13.5 metres grading 39 grams per tonne gold, that includes 7.7 metres grading 61.8 grams per tonne gold (Northern Miner, December 8, 1987).

LINDA ZONE

The Linda zone is located approximately 800 metres east of the Mineral Creek zone. It consists of a series of quartz veins which crosscut the Mineral Creek fault and are truncated in turn by younger shearing (Plate B16). The Linda zone might be the northern extension of the Vancouver Island Gold deposit (R. Walker, personal communication, 1988).

REGINA ZONE (MI 092F-078)

The Regina zone is located south of China Creek on the east side of the southern extension of the Mineral Creek fault. It consists of lenses and veinlets of quartz with pyrite, chalcopyrite and minor galena, carrying gold and silver values. The mineralized zones are in shears in silicified and pyritized basalt. The basalt underlies a rhyolite unit that may have been a felsic dome. A local jasper (chert) unit is present. Lead isotope data suggest that the mineralization is pre-Jurassic and it may be of Sicker age (R. Walker, personal communication, 1988).

ROGERS CREEK ZONE (MI 092F-331, Debbie)

The Rogers Creek zone, located on the north side of McLaughlin Ridge, consists of thin lenses and layers of stratabound sphalerite and galena mineralization in a chlorite-sericite schist succession that is contained within a sequence of mafic volcanic rocks.

WORK DONE

In 1970, Westmin Resources Limited started a search for other massive sulphide/gold deposits in geological environments similar to that of its Buttle Lake mine. One of the areas the company targeted at that time was around the China Creek - Debbie - Thistle mine. A limited program was carried out in the 1970s and in 1979 the company staked the Debbie claims, which cover an area that is roughly 18 kilometers north-
south along the Sicker Belt and 2 to 5 kilometres wide. The discoveries were made during follow-up of a regional soil and stream sediment survey combined with geological mapping and prospecting. Soil sampling has been a successful exploration tool; gold and arsenic are the most distinctive pathfinder elements. The 1986 and 1987 programs comprising some 42,000 metres of drilling in 242 holes, trenching and mapping, have concentrated on the Mineral Creek, Linda-Vancouver Island gold mines and the 900 gold zones. In 1988, it is proposed to collar an exploration adit on Yellows Creek to provide access to the Mineral Creek zone for detailed underground drilling and bulk sampling. The adit will also provide drill access for other veins and structures adjacent to the Yellows Creek fault.
REFERENCES

WAYSIDE (Fig. B1, No. 5) By R.G. Caba and B.N. Church

LOCATION: Lat. 50°52'35" Long. 122°49'40" (92J/15W)

LILLOOET MINING DIVISION. The Wayside mine is on the Carpenter Lake road, 3.2 kilometres north of Gold Bridge at the southwest end of Carpenter Lake at an elevation of 670 metres.

CLAIMS: WAYSIDE Crown grant (Lot 3036), 29 reverted Crown-granted claims and 18 located claims.

ACCESS: From the Carpenter Lake road, 3.2 kilometres north of Gold Bridge.

OWNERS: Amazon Petroleum Corporation Ltd. (50 per cent) and Carpenter Lake Resources Limited (50 per cent).

OPERATORS: CHEVRON MINERALS LIMITED, CHEVRON CANADA RESOURCES LIMITED.

COMMODITIES: Gold, silver (copper, zinc).

DESCRIPTION:

EXPLORATION IN THE VICINITY OF THE WAYSIDE MINE,
BRIDGE RIVER MINING CAMP

INTRODUCTION AND HISTORY OF DEVELOPMENT

The Wayside property is on the north shore of Carpenter Lake 3.2 kilometres north of the town of Gold Bridge. The property was first staked in 1900 by D.C. Paxton. Subsequent development from 1915 to 1937 enabled the recovery of 166 122 grams of gold and 26 064 grams of silver from 36 977 tonnes of ore (National Mineral Inventory 92J/15-AU17). The Wayside mine ranks as the fourth largest gold producer in the Bridge River mining camp.

By 1936 underground mining operations had ceased. The mine workings consist of ten levels with a combined horizontal extent of 366 metres and a vertical extent of 323 metres; this includes an inclined (-56°) internal winze from the No. 5 level (the main working level) to the Nos. 7, 8 and 9 levels (Cairnes, 1937; Lammle, 1974). The workings are accessible by nine adits of which six are now only partly accessible. In addition to the principal workings, the 3T adit explores auriferous fissure-vein quartz at the contact of an albitite dyke cutting soda granite associated with the Bralorne diorite.

Only limited development work was done between 1947 and 1959 (Richmond, 1934). In 1971 Carpenter Lake Resources Limited (formerly Dawson Range Mines Limited) acquired the property and in the following four years completed surface geological and geophysical work, diamond drilling and limited underground rehabilitation and sampling (Lammle, 1974). During the course of this work, the "New Discovery" sulphide zone was explored, together with the "Commodore" and 3T veins. Between
1979 and 1983 the Wayside vein system and the Commodore vein were investigated by twelve diamond-drill holes (1362 metres total) and the New Discovery sulphide occurrence was tested by eight diamond-drill holes (2000 metres total). Further limited underground rehabilitation work was also done.

In 1984 a 50 per cent interest in the property was optioned to Amazon Petroleum Corporation Ltd. and between 1984 and 1985 this company
Figure B11. Geological setting of the Wayside mine (after Lammle, 1974; Elwell, 1980; Morris, 1985; Church and MacLean, 1987). See Figure B10 for map location.
Figure B12. Geological sketch map of the Bralorne mine - Wayside mine area. Apparent sections of strain ellipsoids and direction of maximum compressive stress showing resultant dilations (gold veins) and faults. Inset block diagram of Bralorne mine shows section of plunging strain ellipsoid and resultant gold veins and faults.
completed four diamond-drill holes (551 metres total) on the Wayside vein system, two diamond-drill holes (100 metres total) on the Commodore vein and eleven diamond-drill holes (1766 metres total) on the New Discovery zone.

Early in 1987, Amazon Petroleum Corporation and Carpenter Lake Resources Limited optioned the Wayside property to Chevron Canada Resources Limited. According to the agreement, Chevron Canada Resources Limited may earn a 51 per cent interest in the property by spending $2.3 million over five years. Exploration during the 1987 field season was assisted in part by a grant from the Mineral Exploration Incentive Program of the British Columbia Ministry of Energy, Mines and Petroleum Resources.

GEOLOGICAL SETTING OF THE WAYSIDE MINE

The Wayside mine is within an elongate fault-bounded body of Bralorne diorite (Figures B10, B11). This intrusion is typically mottled grey-green, medium to fine-grained pyroxene-amphibole diorite characterized by a network of felsic stringers. The diorite contains apophyses of sodic granite and fine-grained hybrid diorite, cut by a variety of fine-grained and porphyritic dykes (Cairnes, 1937; Lemmlé, 1974). Bralorne diorite is the oldest plutonic rock type in the Bridge River mining camp [potassium-argon age of 287±20 Ma (Armstrong, unpublished); uranium-lead age of 270±5 Ma (Leitch and Godwin, 1988)] and is host to the most important gold concentrations.

Adjacent rock types in fault contact with the Wayside host diorite include ribbon chert of the Fergusson Group, basalt of the Pioneer Formation, black argillite and siltstone of the Noel Formation and fine to coarse clastic sedimentary rocks of the Hurley Formation (Figures B11). There is a general absence of chilling in the diorite and no strong contact metamorphic effects in adjacent rocks. Ultrabasic rocks partly occupy the fault along the west margin of the diorite body.

Most of the Bralorne diorite in the Bridge River mining camp occurs as elongate, commonly fault-bound lenticular masses within or closely adjacent to the Cadwallader fault system (Figure B10). The Wayside host diorite is the fault-bounded termination of one such diorite lens and is offset from the main mass of the diorite body by a northeast-striking fault, known as the Mount Zola fault (Figure B11). Accordingly, ultrabasic rocks along the west margin of the Wayside host diorite are offset from the once continuous or aligned ultrabasic rocks along the west side of the main diorite body south of the Mount Zola fault.

MINERALIZATION

Auriferous quartz veins at the Wayside mine strike approximately 150 to 160 degrees and dip 35 to 65 degrees northeast. The veins occupy the central part of the Wayside host diorite body within a zone of steeply-foliated diorite approximately 1 to 8 metres wide and continuous for more than 300 metres along strike. Foliated
Diorite persists from uppermost to lowermost workings as well as a considerable distance to the northwest (Kelly, 1972). Vein quartz is milky white and massive to ribbon textured; ribbons are partings of chlorite, sericite and mariposite, and commonly contain metallic minerals. Quartz veins are lenticular masses a few centimetres to a metre in thickness and are discontinuous along strike. Quartz is accompanied by abundant carbonate (dominantly calcite) but contains only a small amount of pyrite and arsenopyrite, and less commonly, sphalerite, galena, pyrrhotite, chalcopyrite, tetrahedrite, stibnite, marcasite and scheelite. Native gold occurs within sulphide mineral concentrations along phyllosilicate folia and disseminations in massive vein quartz (Cairnes, 1937; Kelly, 1972). Host diorite several centimetres to a metre outwards from quartz veins contains abundant carbonate minerals, sericite, mariposite, chlorite and pyrite; wallrocks are only slightly auriferous (Cairnes, 1937; Kelly, 1972).

The Commodore vein is an auriferous quartz vein subparallel to the western faulted margin of the Wāyside host diorite (Figure B11). The vein is up to 1 metre thick and is exposed on surface along its strike for approximately 10 metres. A diamond-drilling program by Amazon Petroleum Corporation and Carpenter Lake Resources in 1984 yielded intersections of 33 grams per tonne gold over 2 metres at a depth of 23 metres, and 336 grams per tonne gold over 1.8 metres at a depth of 36 metres (George Cross News Letter, 1984). The Commodore vein is similar to the veins at the Wāyside mine in geological and general structural setting, morphology and mineral constituents.

The New Discovery zone is not related to the Wāyside auriferous vein system. It consists of pyritic concentrations within the greenstone and chert beds of the Fergusson Group approximately 800 metres south of the Wāyside mine (Figure B11). This sulphide zone, as outlined by more than 1800 metres of diamond-drill core from 12 holes, is estimated to have a dimension of at least 140 metres along strike and a thickness of 4.8 metres. The estimated 150 000 tonnes of massive sulphide is mostly pyrite, with some chalcopyrite and sphalerite, and very minor galena and pyrrhotite; it contains up to 1.76 per cent copper, 3.03 per cent zinc and some ancillary gold (Morris, 1985).

DISCUSSION

Auriferous quartz veins at the Wāyside mine are analagous to those of the Bralorne and Pioneer mines. Wāyside veins also share many similarities with auriferous quartz veins at the Elizabeth-Yalakom prospect (compare Gaba et al., 1988).

The elongate outline of many of the individual diorite bodies and their linear arrangement within the Cadwallader fault zone (with adjacent ultrabasic rocks) suggest emplacement along an old major crustal break (Church, 1987; Church et al., 1988). Geochronological studies indicate that auriferous veins were deposited long after host Bralorne diorite emplacement and therefore no genetic relationship exists between veins and diorite (Leitch and Godwin, 1988).
Soda granite, which occurs as small bodies, apophyses and stringers within Bralorne diorite, has a close spatial relationship to auriferous quartz veins. In addition, gold content of veins is generally greater close to soda granite (Bacon, 1978). The relationship between soda granite and Bralorne diorite is unclear: the soda granite might be a differentiate or an anatectic of the diorite (Leitch and Godwin, 1986). Soda granite is generally thought to be much younger than the diorite. Near the Arizona workings, Pearson (1977) obtained a potassium-argon determination of 62.5±1.8 Ma on white mica in soda granite. This is similar in age to the Coast Complex and Bendor stock.

The occurrence of soda granite within the Wayside host diorite is not as abundant as at the Bralorne and Pioneer mines. The 3T vein is the only auriferous quartz vein noted adjacent to soda granite (Cairnes, 1937). Soda granite is apparently encountered in several areas of underground workings - it is thought to be a general indication of nearby auriferous quartz (Arik, 1984), but no geological maps of the mine workings exist with which to verify this.

The association of auriferous quartz veins and soda granite suggests a genetic relationship. If soda granite is an anatexic segregation of Bralorne diorite brought about by heat from the Bendor pluton [63 to 57 Ma, Early Tertiary (Wanless et al., 1977)], then auriferous quartz veins might have formed by lateral secretion of components from host diorite into dilatant fractures. However, soda granite might be a phase of the Bendor pluton (as indicated by Pearson’s data) with accompanying auriferous quartz veins that are magmatic-hydrothermal in origin.

Stress induced by the intrusion of the Bendor pluton augmented the left-lateral shear couple that acted on Bralorne diorite within the Cadwallader fault zone. The resultant upward and northwesterly directed maximum compressive stress resulted in thrusts and a steep reverse fault component (an attitude similar to cone sheet fractures that develop over some stocks). This stress regime was favourable for the emplacement of steeply dipping parallel en echelon fissure veins within Bralorne diorite at the Bralorne mine (Figure B12). To the north at the Wayside mine, total maximum compressive stress under which veins were emplaced seems to have been more northerly directed: veins were emplaced in a central sheared zone within the diorite rather than as en echelon sets.

EXPLORATION STRATEGY AT THE WAYSIDE PROPERTY

The search for continuation of previously exploited auriferous quartz veins as well as for new orebodies draws heavily on the comparison of the Wayside mine with the Bralorne and Pioneer mines. Both deposits have similar hosts, and gold-bearing quartz veins have comparable character and distribution.

Auriferous veins of the Wayside and Bralorne-Pioneer mines have similar morphology, mineral constituents, textures, host rock association and tectonomagmatic setting to the Motherlode veins of California and many Archean lode deposits. These veins are classified as mesothermal in accordance with their geological characteristics and
most probable depth of formation. As with Motherlode and Archean analogues, auriferous veins of the Bralorne and Pioneer mines are noted for their continuity to great depth, with little or no variation in gold content. The "77" vein at Bralorne mine yielded 1 905 000 tonnes of ore over a vertical range of 1415 metres, but in general few veins exceed 250 metres in length (Barr, 1980); collectively, orebodies were mined to a depth of 1825 metres below the surface. In contrast, the Wayside mine is developed to a depth of only 450 metres (Figure B13). A recent diamond-drill hole (No. 80-S10) by Carpenter Lake Resources Limited, designed to sample the main Wayside vein below and to the east of the ninth level, contains a 3-metre section of vein quartz with 90 grams per tonne gold and 35 grams per tonne silver (George Cross News Letter, 1981). This intersection is an indication that auriferous quartz veins do persist at depth (Dick and Dodson, 1987). Virtually all engineering reports on the Wayside mine suggest that gold content of quartz veins increases with depth (Lammle, 1974).

Continuity of the Wayside veins to the northwest has not yet been adequately tested. The foliated zone that hosts the veins persists to the northwest a considerable distance, but because the veins appear to pinch out, exploration was not pursued in this direction (Kelly, 1972). Pinch-outs are common in mesothermal veins and do not necessarily indicate vein termination; the distribution of orebodies is often irregular (for example, Bralorne mine, Figure B13). Analogous to the Bralorne and Pioneer mines, fracture or shear-zone-hosted auriferous veins may persist into Pioneer Formation greenstone which is in contact with the host diorite to the north and northwest of the Wayside mine.
To the southeast, orebodies persist up to, but apparently not beyond, the Mount Zola fault (Figures B11 and B13). Recognition of the displacement of the Wayside host diorite (Church and MacLean, 1987) has stimulated interest in the search for a continuity of auriferous quartz veins within the main mass of diorite south of Mount Zola fault (Dick and Dodson, 1987).

The close spatial association of soda granite to auriferous quartz veins might be useful as a general guide to ore.

REFERENCES

TROUT (Fig. B1, No. 6) By E.L. Faulkner

LOCATION: Lat. 52°33' Long. 124°44' (93F/10)

OMINECA MINING DIVISION. The property is located 60 kilometres southwest of Vanderhoof.

CLAIMS: TROUT 1, 2, 3, 5, 13, 16.

ACCESS: From Vanderhoof on the Kenney Dam road to the River Ranch, then east 8 kilometres.

OWNER: WELCOME NORTH MINES LIMITED.

OPERATOR: Kerr Addison Mines Limited.

COMMODITY: Gold.

DESCRIPTION:

The property is located on the Nechako Plateau, in an area of heavy glacial till and outwash cover. Rocks in outcrop and trench exposures consist of red to brown andesite porphyry flows, agglomerates and andesitic tuffs, intruded by feldspar porphyry dykes. Some pale brown rhyolitic tuffs and a rhyolite porphyry were seen in the southern part of the claim group. These rocks belong to the lower or basaltic to andesitic part of the Ootsa Lake Group of probable Upper Cretaceous age (Tipper, 1963).

MINERALIZATION

Gold and silver values were first reported from quartz veining on the property in 1984 (Assessment Report 16539). Subsequent work has established a 60 by 300-metre Discovery zone with significant gold and silver mineralization. The rocks in this zone consist of a silicified heterolithic andesite breccia. Clasts are generally rounded, with pale silicified rims, and minor white to occasionally amethystine quartz veining is present. Some fine disseminated pyrite occurs with the silicification. Malachite-stained float was found in the discovery area, although no primary copper mineralization was seen and the results of the soil geochemical survey were low for copper. No visible precious metal mineralization was seen, but Schmidt reports native gold and argentite from a quartz adularia vein (Assessment Report 16539). Soil geochemistry has outlined a number of other zones with anomalous gold values, and mineralization has been reported in bedrock in trenches on two of these. Typical assay results are in the low grams per tonne range, but one section of trench assayed 18 grams per tonne gold over 4.9 metres.

WORK DONE

1987 work included geological mapping, soil geochemistry, 17 trenches (675 metres) and 13 percussion-drill holes (767 metres).
REFERENCES

McCLEOD LAKE 93J

WINDY (Fig. B1, No. 7)

By E.L. Faulkner

LOCATION: Lat. 54°57' Long. 123°45' (93J/13W)
CARIBOO MINING DIVISION. The claims are located approximately 65 kilometres north-northwest of Fort St. James.
CLAIMS: WINDY 1-5.
ACCESS: From Highway 97 via the Manson Creek and Germansen - Cripple Lake forest service roads. At 20 kilometres on the Germansen - Cripple Lake road, a rough 4-by-4 trail leads to the claim group.
OWNER: R. Haslinger.
OPERATOR: PLACER DOME INC.
COMMODITIES: Gold, copper, palladium.

DESCRIPTION:

The claims are located on a broad drift-covered upland area in the upper reaches of the Salmon River, which flows through the claim group. Regionally the area is part of the northern Quesnel trough, an assemblage of volcanic and volcaniclastic rocks belonging to the Takla Group of Upper Triassic to Lower Jurassic age. Locally these rocks are intruded by small stocks that vary in composition from granodiorite to syenite, often showing compositional zoning or differentiation. Outcrops on the claims are limited to the banks of the Salmon River, but bedrock has been exposed in test pits and trenches. All bedrock seen on the property is an intrusive diorite showing varying degrees of shearing and alteration. The alteration is in part chloritic and sericitic, probably reflecting greenschist-grade regional metamorphism, and in part silicification and minor propylitic alteration in areas of mineralization. Shearing ranges in intensity from local fracturing to schistose foliation with steep dips and a strike of 070 degrees.

MINERALIZATION

There are signs of old test pits along the Salmon River banks, probably from placer exploration. The owner reports that fine to very fine gold can be consistently panned from overburden near the river and in the areas of trenching. In the discovery area near the river, malachite-stained float containing disseminated pyrite and chalcopyrite was seen, and similar material is present in test pits. Soil geochemistry has outlined three areas that are anomalous in one or more
of the elements gold, copper and palladium. One of these is the
discovery area, and two others have been outlined to the north. Assays
of trench and test-pit samples from these areas are generally low, but
range up to 1.3 per cent copper, 3 grams per tonne gold and 2.4 grams
per tonne palladium with the best results to date from the discovery
area. The mineralization may be of the alkali porphyry type, with a
high gold:copper ratio and elevated palladium content.

WORK DONE

1987 work included soil geochemistry, bulk soil studies,
geophysics (magnetometer, VLF-EM, I.P.) and five trenches.

REFERENCES

B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment
Reports 14449, 16597.

FORT FRASER 93K

SNOWBIRD (Fig. B1, No. 8) By E.L. Faulkner

LOCATION: Lat. 54°28' Long. 124°31' (93K/7E, 8W)
OMINECA MINING DIVISION. The property is located
on the south shore of Stuart Lake, 15 kilometres
west of Fort St. James.

CLAIMS: SNOWBIRD, SNOWBIRD 1-7, CAMPSITE, BORCHEA, SHAFT
FRACTION.

ACCESS: From Fort St. James to the Sowchea Bay public
campgrounds, then 7 kilometres west on a 4-by-4
access road.

OWNER/OPERATOR: X-CAL RESOURCES LTD.
COMMODITIES: Gold, antimony.

DESCRIPTION:

The property is located on the south shore of Stuart Lake in
an area underlain by cherts, argillites, limestones and greenstones of
the Cache Creek Group of Pennsylvanian to Permian age. Two low ridges,
separated by a broad drift-filled valley, trend northwest - the probable
strike of the host rocks. Outcrop on the property is limited and occurs
mostly on the northerly of the two ridges and in the extensive areas of
stripping and trenching. Massive clastic sedimentary rocks ranging in
composition from a coarse greywacke to argillite are the dominant rock
types. Minor andesite and andesite porphyry dykes outcrop on the
northern ridge.
MINERALIZATION

The property has a lengthy history of exploration and some small scale mining of hand-picked stibnite dating from 1920. The principal mineralization occurs in a northwest-striking quartz-stibnite vein that dips 45 to 50 degrees northeast. The vein is typically 0.5 metre or less in thickness and has been traced by stripping, drilling, trenching and I.P. response for a strike length of over 1200 metres. The stibnite is massive and usually fine grained, but occasionally it occurs as coarse radiating crystal aggregates. It constitutes 5 to 50 per cent of the vein minerals. Minor amounts of pyrite are also present, and visible gold has been reported (X-Cal Resources, Annual Report, 1987).

Wallrock alteration is moderate to strong and consists of quartz-ankerite-mariposite alteration with minor quartz veins and veinlets and disseminated pyrite in a zone up to 30 metres wide, parts of which also contain significant gold values. Gold mineralization is variable, and seems to be related to the quartz veining and alteration rather than to the presence or absence of stibnite. Drill core and trench samples range from 3 to 11 grams per tonne gold over widths from 0.3 to 1.8 metres. Better intersections reported include 9.2 grams per tonne gold over 4.2 metres and 10.2 grams per tonne gold over 3 metres. WORK DONE

1987 work included stripping and trenching, geophysics, 25 diamond-drill holes (2680 metres) and 57 percussion-drill holes for basal till sampling.

REFERENCES

TAS (Fig. B1, No. 9) By E.L. Faulkner

LOCATION: Lat. 54°53' Long. 124°20' (93K/16) Omineca Mining Division. The property is located 50 kilometres north of Fort St. James.

CLAIMS: TAS 1-11.

ACCESS: From Fort St. James north on the Omineca mining road, then west on the Inzana Lake logging road, which passes through the claim group.

OWNER/OPERATOR: NORANDA EXPLORATION COMPANY, LIMITED.

COMMODITY: Gold.

DESCRIPTION:

The property is located in the northern Quesnel trough, and underlain by a mixed volcanic and volcaniclastic assemblage belonging to the Takla Group of Upper Triassic to Lower Jurassic age. On the Tas property an east-trending ridge of massive tuffaceous siltstones and augite porphyry flows is intruded by porphyritic dykes of variable
composition and texture. These dykes are related to a dioritic stock that outcrops at the west end of the ridge and underlies much of the western and southern parts of the claim group. Outcrops are typically moderately to intensely fractured, and bedding attitudes are not apparent.

MINERALIZATION

Minor visible gold was first found associated with pyrite and pyrrhotite in an outcrop of altered diorite on the Inzana Lake logging road. This mineralization proved to be of very limited extent. Irregular disseminated to massive sulphides and sulphide veinlets composed of pyrite, pyrrhotite and minor chalcopyrite occur at several locations on the ridge described above. The sulphides are accompanied by quartz-magnetite-carbonate alteration and minor chloritic and saussuritic alteration. Where overburden is thin, there is generally a good gold soil geochemical anomaly associated with areas of gold-bearing sulphide mineralization. The gold mineralization however, does not appear to be closely related to the type or abundance of sulphide minerals present, nor to the intensity of fracturing or alteration, and it may possibly represent a separate mineralizing episode. Assays from trench and drill samples are in the low grams per tonne range, with the best intersection reported at 6 grams per tonne gold over 9 metres.

WORK DONE

1987 work on the property included geophysics (I.P., magnetometer and EM), geochemistry, stripping, trenching, 17 diamond-drill holes (1188 metres) and 11 percussion-drill holes (390 metres).

REFERENCES

SMITHERS 93L

TOOLEY RICHFIELD (Fig. B1, No. 10) By M.H. Gunning

LOCATION: Lat. 54°34'43" Long. 126°15'30" (93L/9)
OMINECA MINING DIVISION. On the southwest side of Tachek Mountain approximately 10 kilometres north of Topley and 35 kilometres northeast of Houston.

CLAIMS: RICHFIELD 1-5, RICH 1-6, CDF 1-4.

ACCESS: By 7 kilometres of paved road from Topley, then a gravel access road to property.

OWNERS: Esso Resources Canada Limited, Mountain West Resources Incorporated, Sirius Resources Inc.

OPERATOR: ESSO RESOURCES CANADA LIMITED.

COMMODITIES: Silver, gold, lead, zinc, copper.

DESCRIPTION:

HISTORY

The Topley Richfield property (MI 93L-018) has experienced sporadic mineral exploration activity dating back to 1926 (Schroeter, 1976). From 1927 to 1929 the Topley Richfield Mining Company conducted underground development work on two main levels and completed over 1500 metres of drifts and crosscuts although no ore was ever milled. No further work was done on the property until 1951-52 when the Topley Mining Syndicate performed geological mapping, rock sampling and trenching on the property. From 1955 to 1958, Silver Standard Mines Limited dewatered and resampled the underground workings and completed 291 metres of surface drilling. In 1967, Seemar Mines Limited carried out ground magnetic and electromagnetic surveys and over 1100 metres of surface drilling. In 1975, Canadian Superior Exploration Limited completed surface mapping and silt sampling, an induced polarization survey and four diamond-drill holes totalling 405 metres. From 1979 to 1981, Cobre Exploration Limited carried out an extensive exploration program involving ground electromagnetic and magnetic surveys, underground sampling and over 4800 metres of diamond drilling in 28 holes. One percussion-drill hole was also completed. At this time, Cobre Exploration defined reserves of 158 750 tonnes grading 3.5 grams per tonne gold, 159 grams per tonne silver and 2 per cent combined lead-zinc. In 1983, Cominco Ltd. did further exploration on the property using ground electromagnetic and induced polarization surveys and completed 655 metres of diamond drilling in five holes. Esso Resources Canada Limited completed an extensive drilling program on the property in 1987.

GEOLOGICAL SETTING

The Topley-Richfield property is underlain by Lower Jurassic Hazelton Group rocks in the eastern part of the Skeena Arch. Overburden in the area averages 20 metres thick but can be up to 50 metres thick.
The dominant rock type is a feldspar crystal tuff with lesser lithic tuffs, greywackes and thin beds of argillite. These rocks are part of the upper section of the Lower Jurassic Telkwa Formation. Pyroxene-bearing andesitic flows of the Nilkitkwa Formation overlie the sedimentary and pyroclastic rocks of the Telkwa Formation and the contact between them is located on the western portion of the property. This contact is conformable to regional bedding in the area which strikes at 170 degrees and dips 45 degrees to the southwest.

Faulting in the area is significant and at least three major structures transect the property and the north-northwest-striking alteration zones which have been the focus of the exploration and development work (Figure B14). The Richfield fault is located about 1 kilometre south of the main workings and marks the southern limit of the alteration zones. Extensions of the alteration south of the fault have not been identified. A parallel fault, approximately 400 metres north of the main workings, has a right-lateral sense of offset and has displaced the main alteration zones by 100 metres. A third parallel fault occurs approximately 1100 metres north and has a left-lateral sense of offset displacing the alteration zones by 500 metres. Narrow quartz veinlets parallel to these fault systems commonly crosscut the alteration zones.

Exploration and development has been directed at two alteration zones which strike north-northwest and dip 45 degrees to the southwest. Around the main workings, the zones are from 10 to 40 metres wide and are about 25 metres apart. They are characterized by pervasive silicification, brecciation, calcite and quartz veining, and sideritic alteration. Bladed ankerite occurs commonly in calcite vugs. The alteration zones contain only trace amounts of pyrite. Drilling in 1987 has traced this alteration for at least 2 kilometres north of the main workings, although the intensity of alteration is not consistent throughout this length. Alteration in the block between the north and south fault decreases to zones only 1 to 2 metres thick. North of the north fault, alteration increases and is similar to that seen around the main workings. It is uncertain if these alteration zones are structurally controlled by faults.

Lenses containing stronger sulphide mineralization and increased precious metal values occur within the alteration zones. These lenses, called the B/C and D (Figure B14), vary in width from 1 to 5 metres and rake to the southwest. Tetrahedrite, arsenopyrite, galena, sphalerite and chalcopyrite, with traces of visible gold and native silver, occur in stringers and as blebs and disseminations within the two lenses. The mineralization occurs in several narrow bands separated by unmineralized zones and makes up 10 to 15 per cent of the lenses. Two intersections in the B/C lens obtained in 1980 returned assays of 5486 grams per tonne silver over 20 centimetres and 4.8 grams gold and 202 grams silver per tonne over 7.6 metres.

WORK DONE

Esso Resources Canada Limited, in joint venture with Sirius Resources Incorporated to earn an interest from Mountain West Resources
Figure B14. Sketch map of the Topley-Richfield area.
Incorporated, carried out an extensive drilling program in 1987. A total of 1667 metres of reverse circulation drilling in 37 holes and 1680 metres of diamond drilling in 8 holes was completed around the mine and along northerly extensions of the main alteration zones.

REFERENCES

BOULDER CREEK VEIN

by P. Desjardins and D.G. MacIntyre
(Fig. Bl, No. 11)

LOCATION: Lat. 54°44' Long. 126°36' (93L/10E) OMINECA MINING DIVISION. The Boulder vein is located on Dome Mountain 38 kilometres east of Smithers

CLAIMS: Grizzly, Cope 2, No. 2 Claim

ACCESS: The area is accessible from the Chapman Lake logging road east of Smithers.

OWNERS: Teeshin Resources Ltd., option to earn 75%; Canadian United Minerals Ltd. 25% carried interest.

OPERATOR: TEESHIN RESOURCES LTD.

COMMODITIES: Gold, silver, lead, zinc, copper

DESCRIPTION:

INTRODUCTION

The Boulder Creek vein lies within the Dome Mountain gold camp, (Figure B15) which is located in the Babine Range, 38 kilometres east of the town of Smithers in west-central British Columbia. The geology and mineral occurrences of this camp have been described in two previous reports - MacIntyre (1985) and MacIntyre et al., (1987). This report describes recent work on the Boulder Creek vein.

EXPLORATION HISTORY

Canadian United Minerals Inc. discovered the Boulder Creek vein in 1985 when it excavated two trenches to explore anomalous zinc concentrations identified by a soil sampling program. In early 1986, Canadian United drilled 48 diamond-drill holes to test the mineralized zone. This work defined a quartz vein system 350 metres long with a down-dip continuation of 120 metres (Figure B16). The Boulder zone trends approximately east and dips 40 to 60 degrees south. From October
Figure B15. Geological sketch map of the Dome Mountain gold camp (from MacIntyre, 1985).
1986 to April 1987, Teeshin Resources Ltd. drilled 57 holes to test eastern and western continuations of the Boulder zone. This work showed that the Cabin vein (MI 093L-275), located approximately 300 metres along strike to the west, is a continuation of the Boulder Creek vein. A new zone, the "Argillite zone", was intersected to the east and also appears to be a continuation of the Boulder zone.

In 1987, Teeshin Resources completed 150 metres of drifting and 67 metres of raises on the Boulder Creek vein. Total reserves for the Boulder Creek zone are currently 256,700 tonnes grading 14.95 grams per tonne gold and 96.00 grams per tonne silver (C. Stewart, Personnel Communication, 1987)

THE BOULDER CREEK VEIN

The Boulder Creek vein is located on the eastern limb of a southeast plunging open anticline (Figure B15). It cuts across section at an oblique angle, transecting a thick sequence of amygdaloidal flows and lapilli tuffs of the Lower Jurassic Nilkitkwa Formation of the Hazelton Group. Rocks in the hangingwall are sericitized near the vein and grade outward into strong chlorite alteration with local concentrations of epidote, quartz, carbonate and pyrite. Footwall rocks are generally less altered.

The vein has a sharp footwall contact that in most places appears to be sheared. Gouge occurs along it and is coincident with a narrow, weakly developed zone of bleached volcanic rocks (Figure B17). The hangingwall contact is gradational with a zone of pervasive sericite alteration that in places extends several metres into the wallrock. Both barren and galena-sphalerite-bearing quartz stringers occur within this altered zone; they both follow and crosscut the foliation and are both concordant and discordant to the auriferous zone. Quartz stringers, with or without carbonate stringers, are also common within chlorite-altered volcanic rocks away from the main vein; these stringers
Figure B17. Cross-section of the Boulder Creek zone (from Stewart, 1987).
are parallel to an early slaty cleavage. Both the slaty cleavage and quartz veinlets are folded and cut by a younger crenulation cleavage.

The vein and an associated splay are well exposed along a 150-metre exploration drift completed by Teeshin Resources in 1987 (Figure B18). This work showed that the vein strikes east and dips from 40 to 60 degrees south. It is a brecciated to massive quartz-carbonate vein that contains a sulphide assemblage of pyrite, sphalerite, galena, and chalcopyrite. The wallrock adjacent to the vein is pervasively altered to sericite and green mica. The vein is cut and offset by several shear zones that have a similar trend to the vein. It pinches and swells from a thickness of less than 1 metre to a maximum of 15 metres. The widest parts of the vein are apparently tectonically thickened by stacking of small thrust panels. Underground the vein was observed to be folded and offset by axial planar faults. This style of faulting produced a series of en echelon veins that may originally have belonged to one main vein system.

Sulphide minerals occupy fractures or form massive banded concentrations within the quartz vein. Highest grade sections contain as much as 40 per cent sulphide minerals as semi-massive to massive concentrations, coarse-grained crystal aggregates, fracture fillings, and disseminations. The sulphide minerals are 50 to 70 per cent pyrite with up to 10 per cent sphalerite, 5 per cent galena, and less than 1 per cent chalcopyrite. Pyrite crystals are commonly cracked or sheared and filled with other sulphides, suggesting recrystallization and
remobilization has taken place during deformation. Gold occurs as tiny grains along pyrite boundaries or disseminated in quartz-carbonate micro-veinlets.

ARGILLITE ZONE

The Boulder Creek vein extends southeastward into the Argillite zone, an irregular network of auriferous quartz veins within argillite of the Nilkitkwa Formation. This zone is at a higher stratigraphic level than the Boulder Creek vein which is mainly hosted by the underlying mafic volcanic unit. The Boulder and Argillite zones are mineralogically similar; the best gold grades occur where the quartz veins contain sphalerite and galena.

REFERENCES

HAZELTON 93M

BELL COPPER (Fig. B1, No. 12) By M.H. Gunning

LOCATION: Lat. 55°00' Long. 126°14' (93M/1)

CUMINICA MINING DIVISION. Located on Newman Peninsula on the east side of Babine Lake, approximately 50 kilometres north of Topley and 70 kilometres northeast of Houston. Elevation 777 metres.

CLAIMS: Mineral Leases M-134, M-135 and 98 claims and fractions.

ACCESS: About 40 kilometres north from Topley on paved road to Granisle, then 10 kilometres gravel road to landing where a tug and barge provide transport across Babine Lake to the peninsula.

OWNER/OPERATOR: NORANDA MINERALS INC. - BELL MINE.

COMMODITIES: Copper, gold, silver.

DESCRIPTION:
HISTORY

The Bell open-pit mine (MI 093M-001) has been a producer of copper and gold since October 6, 1972. Work in the area was first recorded in 1909 with a brief reference to open cuts being completed along the western shore of the Newman Peninsula. The area received further work in 1913 when two adits, separated by about 200 metres, were driven easterly at lake level along seams of mineralization in andesitic rocks "near a granitic intrusion". The northern and southern adits were 16 and 10 metres long respectively. Mineralization consisted of disseminations and fracture fillings of chalcopyrite, pyrite, pyrrhotite, and minor sphalerite and tetrahedrite. The Babine claim was staked over these showings in 1927 by C. Newman who extended both adits by about 4 metres, sunk a winze from the southern adit and completed a third tunnel. These old workings are still visible today less than 1 kilometre west of the Bell orebody.

In 1962 Noranda Exploration Company, Limited, staked the ground following a reconnaissance geophysical traverse in the area. The next year, Noranda conducted a detailed soil and stream sediment sampling program and completed three short drill holes. The first drill hole of the 1964 program intersected the orebody and subsequent drilling in 1964 and 1965 totalled 13 000 metres in 132 holes. Open-pit reserves were initially estimated at 42 million tonnes grading 0.5 per cent copper. Exploration work continued from 1966 to 1969 and included further geochemical and geophysical surveys and an additional 18 000 metres of diamond drilling. Feasibility studies in 1967 showed that the Bell orebody contained geological reserves of 116 million tonnes grading 0.48 per cent copper and mineable reserves of 42 million tonnes grading 0.5 per cent copper to a depth of 300 metres, with a cutoff grade of 0.3 per cent copper (Hall and Craft, 1969). Recoverable gold was estimated at 0.35 gram per tonne. Construction of a 9000 tonne per day mill began in May of 1970 and production began on October 6, 1972. In 1980 the mill capacity was increased to 15 300 tonnes per day. The mine shut down in October 1982 due to low copper prices and re-opened in September of 1985. Gold currently accounts for roughly one-third of the value of the Bell mine concentrate. Since 1972, production has averaged approximately 5 million tonnes per year with 54 million tonnes having been milled with a recovered grade of 0.44 per cent copper and 0.35 gram per tonne gold. Exploration recommenced in 1986 and 1987 with extensive diamond drilling.

GEOLOGICAL SETTING

The Bell orebody is one of several porphyry copper-gold deposits in the Babine Lake area related to Eocene Babine intrusions. The Granisle mine is located about 8 kilometres to the south and the Morrison deposit about 25 kilometres to the north.

The orebody is hosted primarily within a stock of the Eocene Babine intrusions which has intruded along the contact of the Lower Jurassic Hazelton Group and the Middle Cretaceous Skeena Group (Figure B19).
Figure B19. Geology of the Bell mine area (from Carson et al., 1974).
The oldest rocks in the mine area are exposed east of the orebody and belong to the Lower Jurassic Telkwa Formation of the Hazelton Group. They are composed of well-bedded andesitic tuff and siltstone with lesser andesitic flows and mudstone. Bedding strikes northwest and dips 50 to 60 degrees to the southwest. These rocks have been juxtaposed against Cretaceous sedimentary rocks of the Skeena Group to the west by the northwest-trending Newman fault. This group comprises well-bedded greywackes, siltstones and argillites which also strike northwest and dip to the southwest.

The Babine intrusions form a group of plugs, dykes and dyke swarms which are unique to the Babine Lake area. They are composed of fine-grained, biotite-feldspar-porphyritic granodiorite to quartz diorite and range in age from 49 to 55 Ma (Carter, 1981). The main intrusive body at the mine is composed of a fine-grained, biotite to hornblende-biotite feldspar porphyry dated at 50.2 Ma (Carter, 1981). The stock is pear shaped to circular, 700 metres long and ranges from 200 to 600 metres wide. A narrow, northeast-trending dyke of biotite feldspar porphyry with sheeted biotite was dated at 49.8 Ma (Carter, 1981). The Babine intrusions are thought to mark ancient volcanic centres. Coarse breccias and acidic to intermediate tuffs and flows in the mine area may be their extrusive equivalents. Vertical breccia pipes from 2 to 10 metres in diameter with sharp contacts occur locally along the Newman fault. Breccia fragments are angular to subrounded, up to 10 centimetres across and reflect the composition of the adjacent host rocks.

Numerous faults occur on the Newman Peninsula. Most are northwest-trending normal faults with downdropped western blocks. The most important is the Newman fault along which the Bell mine intrusion was emplaced. The juxtapositioning of the Telkwa Formation and Skeena Group assemblages suggests vertical displacement of 700 to 1300 metres (Carson et al., 1976) along this fault. This is the greatest known displacement on faults in the Bell area. The Bell orebody does not show a significant offset along the Newman fault although shear zones clearly mark the fault trace. Thus, most of the displacement on the fault predates mineralization. Cuddy (1980) indicates that copper grades decrease along the fault and that it was impermeable to mineralizing fluids during emplacement of the stock and subsequent alteration.

MINERALIZATION AND ALTERATION

Approximately three-fifths of the Bell orebody is located within the biotite-feldspar-porphyritic intrusion, with the remainder hosted by rocks of both the Telkwa Formation and Skeena Group. A dyke related to the main biotite feldspar porphyry pluton crosscuts the eastern portion of the orebody and the Skeena Group. The orebody is crescent shaped in plan and is greater than 300 metres deep. The main part of the ore zone comprises pyrite and chalcopyrite mineralization within a zone of very intense quartz-sericite alteration. The zone contains a stockwork of quartz veinlets often mineralized with pyrite, plus or minus chalcopyrite. Chalcopyrite is the principal copper mineral and occurs mainly as finely disseminated grains and to a lesser extent as fracture coatings. Peripheral to the quartz-sericite core is
a halo of chalky white alteration with brown biotite, referred to as the sericite-carbonate zone. The chalky white texture may represent plagioclase phenocrysts altered to kaolinite. The reader is referred to Carson et al. (1976), Cuddy (1980) and Carter (1981) for detailed descriptions of the mineralization and alteration styles at the Bell mine.

Gold is an economically significant byproduct of the Bell mine; it accounted for almost a third of the value of production in 1987. From 1972 to 1985 an average of 0.35 gram per tonne gold has been recovered, representing 50 per cent recovery (Cuddy, 1980).

A sampling program was undertaken by the writer from July 23 to 25, 1987 in order to determine if there is any correlation of gold with silver and base metal mineralization. Sampling was done completely within the open pit and samples were taken both within and outside the biotite feldspar porphyry, and within both the quartz-sericite alteration core and the peripheral sericite-carbonate zone. Seams of massive pyrite and chalcopyrite were sampled as well as the sheeted biotite feldspar porphyry dyke. Analyses of 32 samples are shown below in Table B1.

Figure B20 clearly shows the positive correlation between copper and gold mineralization in the Bell orebody first noted by Cuddy (1980). The higher gold-copper values also correspond with the zone of pervasive quartz-sericite alteration characterized by a stockwork of quartz veinlets and quartz flooding. Silver concentrations are generally low. However, the three highest gold values (Samples MG-87-128a, 128b, 129; Table B1), obtained from samples taken from the centre of the orebody, correspond with three of the highest silver concentrations recorded.

Table B1

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Host Rock</th>
<th>Alteration (most significant first)</th>
<th>Analysis</th>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG-87-100</td>
<td>Biotite feldspar porphyry</td>
<td>Sericite-carbonate</td>
<td></td>
<td>20</td>
<td><1</td>
<td>0.03</td>
<td>5</td>
<td>88</td>
</tr>
<tr>
<td>MG-87-101</td>
<td>Andesite (Telkwa Fm.)</td>
<td>Quartz-sericite, sericite-carbonate</td>
<td></td>
<td>90</td>
<td><1</td>
<td>0.42</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>MG-87-102a</td>
<td>Andesite (Telkwa Fm.)</td>
<td>Quartz-sericite</td>
<td></td>
<td>120</td>
<td><1</td>
<td>0.35</td>
<td>9</td>
<td>42</td>
</tr>
<tr>
<td>MG-87-102b</td>
<td>Shear zone</td>
<td>Massive pyrite</td>
<td></td>
<td>100</td>
<td><1</td>
<td>0.38</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>MG-87-103</td>
<td>Biotite feldspar porphyry</td>
<td>Quartz-sericite, sericite-carbonate</td>
<td></td>
<td>140</td>
<td><1</td>
<td>0.45</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>MG-87-104</td>
<td>Andesite</td>
<td>Quartz-sericite</td>
<td></td>
<td>40</td>
<td><1</td>
<td>0.04</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>MG-87-105</td>
<td>Biotite feldspar porphyry</td>
<td>Quartz-sericite, sericite-carbonate</td>
<td></td>
<td>190</td>
<td><1</td>
<td>0.68</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>MG-87-106</td>
<td>Biotite feldspar porphyry</td>
<td>Quartz-sericite, sericite-carbonate</td>
<td></td>
<td>180</td>
<td><1</td>
<td>0.32</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>MG-87-107</td>
<td>Biotite feldspar porphyry</td>
<td>Sericite-carbonate</td>
<td></td>
<td>20</td>
<td><1</td>
<td>0.05</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>MG-87-108</td>
<td>Biotite feldspar porphyry</td>
<td>Quartz-sericite, sericite-carbonate</td>
<td></td>
<td>270</td>
<td><1</td>
<td>0.69</td>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>
MG-87-109 Tuff (Skeena Group) Sericite-carbonate 30 <1 0.04 8 41
MG-87-110 Shear zone Massive pyrite 20 <1 0.01 8 20
MG-87-111 Tuff (Skeena Group) Sericite-carbonate 20 <1 0.04 16 65
MG-87-112 Shear zone Massive pyrite 100 2 0.03 24 17
MG-87-113 Tuff (Skeena Group) Sericite-carbonate, quartz-sericite 40 0.5 0.12 10 74
MG-87-114 Tuff (Skeena Group) Sericite-carbonate, quartz-sericite 50 <1 0.16 22 102
MG-87-115 Dacite (B.F.P. extrusive equivalent) Quartz-sericite, sericite-carbonate 60 <1 0.21 26 35
MG-87-116 Dacite (B.F.P. extrusive equivalent) Quartz-sericite, sericite-carbonate 60 <1 0.22 32 74
MG-87-117 Biotite feldspar porphyry Quartz-sericite 50 <1 0.47 7 39
MG-87-118 Biotite feldspar porphyry Quartz-sericite, sericite-carbonate 130 <1 0.37 15 14
MG-87-119 Biotite feldspar porphyry Sericite-carbonate 20 <1 0.003 13 9
MG-87-120 Biotite feldspar porphyry dyke Sericite-carbonate 20 <1 0.11 18 10
MG-87-121 Biotite feldspar porphyry Sericite-carbonate 20 0.5 0.03 10 9
MG-87-122 Biotite feldspar porphyry Quartz-sericite, sericite-carbonate 160 1 0.55 18 16
MG-87-123 Biotite feldspar porphyry Sericite-carbonate 50 0.5 0.06 18 23
MG-87-124 Fault zone Fault gouge 70 0.5 0.19 8 72
MG-87-125 Tuff (Skeena Group) Quartz-sericite 70 <0.5 0.22 31 38
MG-87-126 Biotite feldspar porphyry Quartz-sericite 450 <0.5 0.33 25 35
MG-87-127 Biotite feldspar porphyry dyke Sericite-carbonate 20 0.6 0.01 25 92
MG-87-128a Biotite feldspar porphyry dyke Quartz-sericite 640 1 1.2 17 20
MG-87-128b Biotite feldspar porphyry dyke Quartz-sericite, sericite-carbonate 470 1 0.66 20 98
MG-87-129 Biotite feldspar porphyry Quartz-sericite 790 3 1.5 19 70

Vertical shear zones which strike northeast and contain massive fine-grained pyrite are exposed on the western side of the pit; sampling shows that they are not anomalous in either base or precious metals.

Table B2 shows the results of the analysis of a 115-kilogram sample from 370 metres of drill core through the west part of the "high-grade" quartz-sericite-pyrite-chalcopyrite zone (Carson et al., 1976). The sample represents grades from the upper levels of the orebody and comparisons of these grades to those obtained in this study from lower levels suggests correlations of metal concentrations with depth in the orebody.

TABLE B2

ANALYSIS OF 115-KILOGRAM SAMPLE, BELL OREBODY

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>0.72 ppm</td>
</tr>
<tr>
<td>Ag</td>
<td>2.1 ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>0.95%</td>
</tr>
</tbody>
</table>

Mo 0.006%
Fb 200 ppm
Sn 700 ppm

B63
1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Cu (W)

0.8

0.6

0.4

0.2

0.0

Figure B20. Graph showing positive correlation of gold and copper mineralization in the Bell orebody.

The average lead and zinc concentrations from 31 samples (see Table B1) taken from the lower levels in the pit are 16.0 and 51.4 ppm respectively. Although there are many factors which may influence lead and zinc distribution, these results suggest that lead and zinc mineralization decrease with increased depth in the orebody.

The average gold content in the four samples taken from the core of the orebody near the bottom of the pit (Samples MG-87-126, 128a, 128b, 129; Table B1) averaged 0.588 ppm gold as opposed to 0.72 ppm gold in the 115-kilogram sample. This difference (18 per cent decrease) in gold content is small and certainly more sampling is needed to ascertain if there is a consistent decrease in gold content with increased depth in the Bell orebody. The average copper content of these four samples is 0.92 per cent which is very similar to the value shown in Table B2 (0.95 per cent) suggesting that copper grades remain constant relative to depth.

Samples MG-87-128a and 128b were taken from the biotite feldspar porphyry dyke often containing sheeted biotite. The dyke is 0.4 Ma younger than the main pluton (Carter, 1981), is generally barren and lies primarily outside of the quartz-sericite alteration core. These two samples are, however, intensely quartz-sericite altered and
contain ore-grade concentrations of copper and gold (Table B1). This suggests that mineralization and hydrothermal alteration occurred very late in the subvolcanic intrusive history of the Newman Peninsula.

WORK DONE

Exploration work at the Bell mine in 1987 consisted of approximately 2200 metres of diamond drilling attempting to increase mineable reserves in the main orebody. An additional 6.7 million tonnes of ore had already been defined by 1986 drilling, extending the mine life to October 1989.

ACKNOWLEDGMENTS

Much appreciation is due to the staff of Noranda Minerals Inc. at the Bell mine, in particular Brian Anderson (Mine Engineer), for their support and cooperation during this study. The article benefited from discussions with David Lefebure (District Geologist, Smithers) and D.J.T. Carson (Geologist, Noranda Minerals Inc.).

REFERENCES

ACCESS: From the Manson Creek to Takla Landing road, east of the Twin Creek crossing, a 14-kilometre 4-by-4 road leads to the property.

OWNER: Cathedral Gold Corporation Ltd.
OPERATOR: IMPERIAL METALS CORPORATION LTD.

COMMODITIES: Gold, silver.

DESCRIPTION:

The property is located in a broad southeast-trending valley at the headwaters of Twin Creek. Regionally it lies within a northwest-trending tongue of andesitic volcanic rocks belonging to the Takla Group of Upper Triassic to Lower Jurassic age that projects into the eastern border phase of the Hogem batholith. The geology of the batholith and surrounding area has been described in detail by Garnett (1978), who considers the batholith to be largely the intrusive equivalent of the Takla volcanics.

There are no outcrops in the area of current exploration. The geology in this area has been determined from drill core and extrapolation from adjacent claims. The original nature of the rocks is commonly obscured by intense alteration. There has been at least one phase of widespread alteration associated with the intrusive igneous activity and at least one phase of more localized alteration associated with the mineralization.

The principal rock type is a massive to porphyritic andesite that has been moderately to intensely chloritized, with feldspar in phenocrysts and groundmass largely replaced by a mixture of sericite, calcite and chlorite. Minor amounts of chloritized basalt flows, coarse volcanic breccia and lapilli tuffs are also present. Pesalj (Assessment Report 16759) reports that the volcanic rocks are striking southeast, with steep southwest dips and tops facing southwest. Widespread fracture-controlled carbonate alteration affects all rock types to some degree. Disseminated pyrite and rare chalcopyrite occur associated with minor propylitic alteration, but it is not clear if the sulphides and accompanying alteration are part of the main mineralizing event, or related to the more widespread alteration associated with the Hogem batholith.

Intrusive igneous rocks on the property can be related to the border phase of the Hogem batholith. The most common are irregular granitic dykes that appear to roughly parallel the local southeasterly structural trend. They are pale, sericitized and carbonatized, massive to porphyritic dykes that vary from granite to granodiorite in composition. Massive fine-grained diorite dykes are also present and show varying degrees of propylitic alteration. Fresh monzonite dykes represent the latest phase of intrusive activity.

MINERALIZATION

There is a history of placer mining in the region dating from the 1880s, and Twin Creek is currently a producing placer creek. Previous mineral exploration in the area was largely for porphyry
copper-molybdenum deposits and a history of this exploration is given by Pesalj. Current exploration is concentrated on areas of coincident gold and copper soil geochemical anomalies and induced polarization anomalies.

Most of the strongly altered volcanic rocks in the area are geochemically anomalous in gold and silver. Economic mineralization discovered to date occurs in three zones: the West, East and South zones. Within these zones, mineralization occurs in one or more narrow, steeply dipping, southeast-striking shears. The mineralized zones are on or near the contacts of porphyritic granodiorite dykes and the mineralization appears to be genetically and spatially related to this intrusive phase. It consists of veinlet and disseminated quartz with native gold, pyrite and chalcopyrite, minor magnetite, galena, sphalerite and hematite. Local alteration includes silicification and carbonatization within a large well-defined halo of disseminated pyrite.

ORE RESERVES

A preliminary calculation of ore reserves in the most persistent shear zones has been made. Drill-indicated reserves are 200 000 tonnes grading 13 grams per tonne gold over a width of 1.5 metres, uncut and undiluted.

WORK DONE

1987 work included 14 kilometres of road building, 23 diamond-drill holes totalling 6340 metres, soil geochemistry and geophysics (VLF-EM and IP).

REFERENCES

TERRACE 1031

KITIMAT PROJECT (Fig. B1, No. 14) By M.H. Gunning

LOCATION: Lat. 54°08' Long. 128°43' (103I/2)
SKEENA MINING DIVISION. The property is located on the west side of Bowbyes Creek about 9 kilometres northwest of Kitimat. Elevation 600 metres.

CLAIMS: BILLY 1-11 (224 units).

ACCESS: By gravel logging road north from Kitimat to the Little Wedeene River, then west to Bowbyes Creek, then south to
the property, totalling less than 20 kilometres.

OWNER: Laramide Resources Ltd.
OPERATOR: B.P. RESOURCES CANADA LTD. - SELCO DIVISION.
COMMODITIES: Gold, silver.

DESCRIPTION:

HISTORY

Three showings were discovered on the Billy claims (MI 103I-218) by Laramide Resources Ltd. in 1986. Further work was done on the property in 1987 by B.P. Resources Canada Ltd. - Selco Division which revealed a fourth showing.

The Billy claim group is underlain by a sequence of Lower Jurassic volcanic rocks of the Telkwa Formation belonging to the Hazelton Group (Figure B21). These rocks lie completely within the Coast crystalline belt. The host rocks for the two showings are mafic to felsic lapilli tuffs, quartz-feldspar crystal tuffs and volcanic breccias that are often weakly metamorphosed and foliated. The felsic crystal tuffs often have a bleached weathered surface. Foliation is often defined by chlorite and generally strikes northeast, dipping moderately to the northwest parallel to regional bedding. The

Plate B17. An andesite dyke or sill crosscutting bleached crystal tuffs.
surrounding rocks of the Coast crystalline belt consist of granitic to granodioritic plutons of Tertiary age. A suite of Jurassic to Cretaceous diorite and metavolcanic rocks, often metamorphosed to a lower greenschist facies, outcrops between the Tertiary plutons and the Jurassic volcanic rocks.

Dykes are an extremely common feature on the property with at least three lithologies present. The dykes are generally barren and unaltered, and do not have a preferred orientation. They comprise a dark green massive basalt, a hornblende-porphryitic andesite and fine-grained diorite (Plate B17).

The Au, Quartz-sericite and two barite showings have been discovered on the Billy claims. Laramide Resources Ltd. identified a barite showing on a logging landing close to the contact of the diorite and metavolcanic rocks to the west. Semimassive to massive barite was found in float while surrounding outcrops consisted of pyritized rhyolitic tuffs and agglomerates. B.P. Resources Canada Ltd. - Selco Division then located several lenses of massive barite up to 1.1 metres thick and 15 metres long. The footwall of the lenses is composed of
highly altered and recrystallized volcanic rocks and there is a zone of semimassive barite 65 centimetres wide in the hangingwall. The lenses are cut off along strike by dykes and dioritic plugs. Six chip samples from this showing were anomalous in silver, gold, copper and zinc.

Laramide Resources suggested that the barite formed in an environment dominated by intermediate to felsic pyroclastic volcanic rocks that may have been favourable for massive sulphide deposition. B.P. Resources suggests that the barite has a metasomatic origin related to the diorites bordering the volcanic rocks to the west. The barite showings are located 500 and 1500 metres to the northeast of the Au and Quartz-sericite showings respectively.

The Quartz-sericite showing is a zone of pervasive silicification and sericite alteration up to 70 metres wide and contains from 10 to 20 per cent pyrite. The sericite has a distinct foliation which strikes northeast. The hangingwall of the zone consists of quartz-eye lapilli tuffs and dacitic tuffs while the footwall consists of mafic tuffs and lapilli tuffs (Belik, 1986; Assessment Report 15528). The zone appears to be slightly lower stratigraphically than the Au showing located 1 kilometre to the northeast. Samples taken from this zone are not anomalous in gold.

The Au showing comprises a zone less than 5 metres wide which strikes northeast, dips 50 to 60 degrees to the northwest and is characterized by pervasive silicification, epidotization and brecciation. The zone contains minor disseminated pyrite and trace amounts of galena. Two hornblende-porphyritic andesite dykes occur at the margins of the alteration zone. The alteration and mineralization are hosted within, and overlain by, coarse felsic lapilli tuffs to agglomerates. The footwall of the zone comprises intermediate to mafic tuffs and lapilli tuffs.

A chip sample taken across the Au showing in 1987 returned 2.4 grams per tonne gold over a width of 5 metres. Follow-up diamond drilling in the fall of 1987 yielded a 2.04-metre intersection from the Au showing containing 0.27 gram per tonne gold. Diamond drilling downdip and along strike from the showing failed to produce any significant results.

WORK DONE

B.P. Resources Canada Ltd. - Selco Division, under an option agreement with Laramide Resources Ltd., carried out geological mapping, soil and silt sampling, and an induced polarization survey over part of the property. A total of 200 metres of diamond drilling was done in three holes.

REFERENCES

INTRODUCTION

Poor access and rugged terrain has hindered mineral exploration in the mountains north and west of the Stewart mining camp and it has been only in the last decade that precious metal deposits such as Sulphurets, Stonehouse and Snip have been found in this difficult area. Much of the current exploration interest is focused on the area surrounding the lower Iskut River, particularly near Bronson Creek.

The regional geological database for the Iskut River area is limited to mapping by Kerr (1948) based on field work completed from 1927 to 1929 and a compilation map produced as part of Operation Stikine in 1957. Very little data were gathered from the Bronson Creek area during these projects. Grove (1971, 1986a) describes the Stewart complex, however, his maps do not extend as far west as the Iskut River area. Company reports are the principal source of information.

The need for additional geological information has been recognized by both the provincial and federal governments. R.G. Anderson of the Geological Survey of Canada is mapping the Iskut River sheet at a scale of 1:250 000. D.J. Alldrick and J.M. Britton of the British Columbia Ministry of Energy, Mines and Petroleum Resources are currently mapping in the Sulphurets and Unuk River areas and will move west to the Iskut River area when these map sheets are completed. In the Bronson Creek area the senior author is carrying out a mapping project at 1:25 000-scale for the British Columbia Ministry of Energy, Mines and Petroleum Resources.

EXPLORATION HISTORY

The first exploration in the Iskut River area occurred in 1906 or earlier (Kerr, 1930). Nine claims were staked in 1907 to cover some galena-sphalerite veins near Bronson Creek on the north side of Johnny Mountain (L'Orsa, 1974b). In 1909(?) the Red Bluff claim was located on the west side of Bronson Creek and a ton of ore was shipped by the Iskut Mining Company which was reported to have returned $44.41 (Kerr, 1930). The company staked additional claims in 1910 and all claims were surveyed in 1912 and were crown-granted in 1914-1918. The Iskut Mining Company remained the only explorer in the area until 1929 when a total of 48 claims were staked on behalf of The Consolidated Mining and Smelting Company of Canada, Limited, adjacent to the Red Bluff property.

There is no record of subsequent exploration activity until the 1950s when Hudson Bay Mining and Smelting Co. Ltd. discovered the
The 1950s when Hudson Bay Mining and Smelting Co. Ltd. discovered the Pick Axe showing on Johnny Flats (Sevensma, 1981). This discovery was the first of a number of new showings located in the last 35 years in the Bronson Creek area, including the Cloutier (Discovery), 16 Vein, Inel, Gossan and Snip.

GEOLOGY

A northwest-trending belt of Permian to Lower Jurassic volcanic and sedimentary rocks and their metamorphic equivalents trends northward from Alice Arm to Telegraph Creek and forms part of Stikinia. It is bounded to the west by the Coast Complex and is overlapped to the east by the clastic sediments of the Bowser Basin.

The dominant lithologies in the Bronson Creek area are clastic sediments and volcanics with minor carbonate lenses which are intruded by a diverse suite of intrusive rocks, most commonly granitic and syenitic. The sedimentary rocks are sandstones, (typically greywackes), siltstones, shales, argillites, conglomerates and minor limestones. Volcanic rocks vary in composition from mafic to felsic and display a wide variety of igneous, pyroclastic and volcaniclastic textures.

Kerr (1948) correlated most of the rocks along Bronson Creek with Triassic volcanics that he had seen farther to the north and northwest. These volcanics consist of intensely folded and sheared tuffs, agglomerates, lavas, rare pillow lavas and bedded sediments. He believed that the volcanics are overlain by Triassic argillites with lenses of limestone. The lower northern and western slopes of Johnny Mountain are underlain by pre-Permian metamorphosed shale, sandstone and limestone.

Exploration geologists have defined stratigraphic columns for specific properties (Birkeland and Gifford, 1973; Sevensma, 1981) and for the area as a whole (Parsons, 1965; and Bending, 1983). Bending defined a stratigraphic column with black argillite conformably overlain by banded siltstone which underlies a green volcanic unit composed principally of intermediate to felsic rocks. The green volcanic unit has an irregular upper contact with the "Upper Tuffaceous Sedimentary unit," a sequence of limestones, tuffaceous sandstones, argillites and siltstones with lenses of conglomerate near the upper contact. At the top of Bending's sequence is hornblende-biotite andesite tuff and subordinate breccia. Based on descriptions by Kerr (1930, 1948), Bending correlated the basal argillite and siltstone with the upper Paleozoic, the green volcanic unit with the Triassic and the upper tuffaceous sediments with the lower Jurassic. Fossils collected from 350 metres southwest of Snippaker Peak have been determined as Lower Jurassic, probably Toarcian age, by H.W. Tipper of the Geological Survey of Canada (Graf, 1985).

Grove (1986b) subdivided the sedimentary and volcanic rocks on the top of Mount Johnny into the Unuk River and Botty Creek formations of the Hazelton Group, based on correlations with his work to the east.
MINERALIZATION

Several types of mineralization have been identified in the Bronson Creek area.

1. Sulphide veins/shears
2. Quartz-pyrite veins
3. Quartz-galena-sphalerite veins
4. Chalcopyrite-molybdenite veinlets and disseminations
5. Quartz-chlorite veins

The first three types have associated precious metal contents. The fourth is disseminated porphyry-style mineralization on the Inel property (L'Orsa, 1974a) and the fifth type consists of numerous bull quartz and quartz-chlorite veins with no associated alteration halos and which often carry no anomalous precious metal values (Bending, 1983). However, eight grab samples of similar veins collected in 1987 averaged 131 ppb gold with a maximum value of 600 ppb gold. Based on these results, these veins should be routinely sampled even if they hold little apparent potential for gold mineralization.

The first four types of mineralization have associated wallrock alteration halos. The massive sulphide veins are often enveloped by zones of intense alakli metasomatism which typically extend no more than the width of the vein into the wallrock. Carbonate alteration, typically ankeritic, is also common around veins. Local silicification is an important guide to ore.

LITHOGEOCHEMISTRY

Grab samples of rock were collected by the authors, to test for correlations between lithology and gold values. The samples were analysed at the Ministry of Energy, Mines and Petroleum Resources laboratory using fire assay followed by analysis by atomic absorption. The limit of detection for this technique is 20 ppb gold. A total of 174 samples were analysed; gold values are plotted on Figures B35 and B36.

High gold gold values were found in sampling massive sulphide or quartz-sulphide veins. The average gold content is 1676 ppb gold for 24 samples, with a maximum value of 15 300 ppb gold and ten samples exceeding 100 ppb gold. The number of samples collected for most lithologies is too small to characterize their gold content. The sedimentary rocks (35 samples) and intermediate to felsic volcanic rocks (28 samples) contain average gold values of 28.7 and 23.5 ppb respectively. The dispersion of gold into the country rocks appears to be limited as the altered wallrocks typically contain low gold values. Fifteen samples of pyritized rock average 22.9 ppb gold and fourteen samples with potassium feldspar alteration and pyrite average 27.5 ppb gold.
Figure B35. Bronson Creek area (west half) showing location of mineral occurrences and lithogeochemical sampling stations.
Figure B36. Bronson Creek area (east half) showing location of mineral occurrences and lithogeochemical sampling stations. For legend see Figure B35.
CONCLUSIONS

Traditional prospecting will continue to be important in the Bronson Creek area because most mineralized zones discovered to date are easily identified by the presence of sulphides and quartz. Initial data indicate that the dispersion of gold around these zones is limited; altered rocks contain gold values near the limits of analytical detection and close to background values.

ACKNOWLEDGMENTS

The support of Wes Johnson and his staff who provided the analyses is gratefully acknowledged. Cominco Ltd. graciously allowed the authors and their assistants to work out of their camp during the sample collection.

REFERENCES

TULSEQUAH 104K

TULSEQUAH CHIEF (Fig. B1, No. 15)

LOCATION: Lat. 58°44’30" Long. 133°35’20" (104K/12)

ATLIN MINING DIVISION. Located on the east side of the Tulsequah River about 10 kilometres north of its confluence with the Taku River and about 90 kilometres south of Atlin. Elevation 500 metres.

CLAIMS: BULL, CO, SEQ.

ACCESS: By helicopter or float plane about 90 kilometres south from Atlin or about 90 kilometres up the Taku River from Juneau, Alaska.

OWNERS: Cominco Ltd., Redfern Resources Ltd., Comaplex Resources International Ltd.

OPERATOR: COMINCO LTD.

COMMODITIES: Zinc, copper, gold, silver, lead, cadmium.

DESCRIPTION:

HISTORY

The Tulsequah Chief mine (MI 104K-002) was a base and precious metal producer from 1951 to 1957. The property was discovered by a prospector from Juneau, Alaska in 1923 who immediately began underground development with open cuts and a 20-metre adit. In 1928 he optioned the property to a group of prospectors from Juneau who changed the direction of the adit and drifted into the A ore zone. In 1929, the property was optioned to the United Eastern Mining Company which set up the Taku Mines Company. It completed 585 metres of drifting on two levels and 1232 metres of surface drilling. The property lapsed in 1930. The Consolidated Mining and Smelting Company of Canada, Limited, optioned the ground in 1946 and drove a 914-metre haulage tunnel at the 5400 level to the A ore zone. A shaft was raised 210 metres to the 6400 level and seven intermediate levels developed from 1946 to 1951. In 1951, Tulsequah Mines Limited was set up and a 225 tonne per day mill was leased from the Polaris Taku mine across the river and converted to base metal production. Production began in late 1951 and in 1953 the mill was upgraded to 450 tonnes per day. On September 1, 1957 the mine closed due to depressed metal prices and the company was dissolved later that year. From 1951 to 1957, production is estimated at 569 974 tonnes (M. Casselman, personal communication, 1987). In 1970, New Taku Mines Ltd. estimated remaining reserves in the proven and indicated categories at 715 000 tonnes grading 3.1 grams per tonne gold, 99.4 grams per tonne silver, 1.3 per cent copper, 1.6 per cent lead and 8 per cent zinc (New Taku Mines Ltd., Annual Report, 1971). From 1980 to 1983, Comaplex Resources International Ltd. conducted several geophysical surveys over the Seq claims covering areas surrounding the mine, in search of possible extensions of the mineralization. Cominco Ltd. conducted an aggressive geological mapping and sampling program covering both the Tulsequah Chief and Big Bull mines in 1987. This work was followed up by extensive diamond drilling concentrated entirely in the area of the
Figure B22. Geology and mineral occurrences of the Tulsequah area.
Tulsequah Chief mine. The following is a description of the Tulsequah Chief deposit.

GEOLOGICAL SETTING

The Tulsequah Chief orebodies are hosted within a northwest-striking sequence of volcanic and minor sedimentary rocks located just east of the Coast crystalline belt. The hangingwall of the ore deposit is composed of felsic pyroclastic rocks ranging from rhyolitic to dacitic tuffs. The tuffs are light grey, generally fine grained and often contain visible quartz fragments and feldspar grains. This package is underlain by a more massive, darker green, often aphanitic sequence of primarily andesitic flows with minor dacitic phases. This unit immediately below the ore horizon contains a discordant zone of ubiquitous pyrite, sericite and silica. Souther (1971) mapped and identified these rocks as belonging to the Upper Triassic Stuhini Group (Figure B22). Geological mapping in 1987 by Cominco Ltd. revealed a Paleozoic, Rugossan-bearing limestone unit to the north of the mine, however, the complex structure makes it difficult to ascertain the stratigraphic level of the limestone relative to the volcanic package. Regional bedding attitudes in the Tulsequah River area generally strike northwest and dip 60 degrees to the northeast, but these attitudes vary considerably on a local scale, due to folding and faulting.

Felsic dykes are abundant in the mine area and occur almost exclusively along major shear zones or faults. In places the dykes themselves are sheared, suggesting shearing both before and after dyke emplacement. Work in 1987 has identified at least two phases of felsic dykes, the youngest possibly coeval with the Eocene Sloko Group volcanic rocks which are exposed over an extensive area northeast of the mine. Mafic "greenstone" or diabase/diorite dykes and/or sills are also a common feature in the mine area.

The structure in the Tulsequah mine area is complex and there are at least three phases of deformation complicated by faulting and shearing. These events have truncated and displaced the orebodies and made it difficult to trace out the ore horizon along strike. Three roughly north-striking faults occur in the mine area (Figure B23) and have broken up the mine area stratigraphy into four separate fault blocks.

The Tulsequah Chief orebodies comprise several lenses which are stratigraphically controlled and contain varying proportions of zinc, copper, gold, silver and lead. The "ore horizon" hosting the deposits lies within the lower portion of a thick sequence of felsic pyroclastic rocks which forms the hangingwall of the orebodies. This horizon is composed of variably pyritized (5 to 75 per cent), silicified and sericitized dacitic tuffs, cherty tuffs, and minor cherts and lapilli tuffs. It has been traced by Cominco for 700 metres across three fault blocks. The footwall of the deposits is composed of dark green andesitic flows.
Figure B23. Sketch map of the geology and structure of the Tulsequah mine area (from Cominco Ltd., 1987).
The mine area contains two large alteration zones; one underlies the main Tulsequah Chief deposit exposed at the 6400 level (A ore zone, Figure B23), and the other occurs around the 5200 and 5400 level portals (B ore zone, Figure B23) closer to the Tulsequah River. Alteration in the 6400 level area extends in excess of 1000 metres into the footwall andesites. The alteration zones are characterized by silicification, sericitization and pyritization which all increase in intensity closer to the orebodies.

The orebodies contain varying proportions of sphalerite, chalcopyrite, galena, barite, gypsum, gold and silver. Mineralization occurs in two main types. The first as massive lenses of fine-grained pyrite and chalcopyrite with minor galena and sphalerite; the second as semimassive bands, blebs and stringers of sphalerite, galena and pyrite with appreciable barite. The lenses can be up to 10 metres thick and 170 metres long. The main orebodies are open to depth. These sulphide lenses are often highly sheared and are commonly intruded by felsic dykes.

The work of Cominco Ltd. in 1987 concentrated on finding extensions of the known mineralized zones by doing detailed structural and stratigraphic work and using deep, 700-metre diamond-drill holes. Two significant intersections of massive sulphide mineralization were made as a result of this work (Table B3). Both intercepts lie well to the northwest of the main workings. They are separated by 140 metres of strike length and were made at depths 250 metres below the lowest mine workings. All of these factors suggest that there is the potential for a large orebody at the Tulsequah Chief mine which has many of the characteristics of a classic "Kuroko-type" massive sulphide deposit. Although the complex stratigraphy and structure make exploration for the ore zones difficult, geological interpretations made from surface mapping are supported by the geology revealed in drill core, and the intersections shown below provide an indication of the newly discovered potential.

<table>
<thead>
<tr>
<th>Hole</th>
<th>Intercept (m)</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Cu (%)</th>
<th>Pb (%)</th>
<th>Zn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-1</td>
<td>6.3</td>
<td>6.3</td>
<td>223.0</td>
<td>1.37</td>
<td>2.78</td>
<td>8.0</td>
</tr>
<tr>
<td>87-5</td>
<td>4.1</td>
<td>2.6</td>
<td>85.7</td>
<td>1.56</td>
<td>1.03</td>
<td>6.4</td>
</tr>
</tbody>
</table>

WORK DONE

Cominco Ltd., under an option agreement with Redfern Resources Ltd. and Complex Resources International Ltd., carried out regional, property and outcrop-scale geological mapping and sampling over the entire property area shown in Figure B22. Approximately 3500 metres of diamond drilling was completed in five deep holes.
ACKNOWLEDGMENTS

The cooperation of the crew of Cominco Ltd. on the Tulsequah Chief project, in particular Mike Casselman (Project Geologist), is much appreciated.

REFERENCES

SKAGWAY 104M

ENGINEER MINE (Fig. B1, No. 16) By M.H. Gunning

LOCATION: Lat. 59°29’15” Long. 134°14’00” (104M/8)
ATLIN MINING DIVISION. Located on the east side of Tagish Lake about 30 kilometres west of Atlin. Elevation 830 metres.
CLAIMS: SHAUNA, PATTY, TAKU, BEE, GLEAN, ENGIN, BUTLER (94 units).
ACCESS: By air about 30 kilometres west from Atlin or by boat west from Atlin through Graham Inlet to Tagish Lake.
OWNER/OPERATOR: TOTAL ERICKSON RESOURCES LTD.
COMMODITIES: Gold, silver.

HISTORY

The Engineer mine (MI 104M-014) has a long history of exploration activity dating back to 1899 when the property was discovered by a group of surveyors for the White Pass and Yukon Railway. From 1900 to 1902, 100 metres of underground work was done. The property lapsed in 1906 and was restaked by the Northern Partnership Syndicate which constructed a 2-ton stamp mill in 1910. From 1912 to 1918, a 70-metre shaft was sunk and four intermediate levels were developed. In 1923, Engineer Gold Mine Ltd. was incorporated and extended the original crosscut to 300 metres, completed over 1200 metres of development work on a fifth level, and also built a 45 tonne per day concentrator. Two years later, a shaft was sunk from the fifth level to access three more levels in the mine. Operations were limited to summer months only from 1927 until 1930 when work was finally suspended. From
ERICKSON CAMP AND OLD TOWN BUILDINGS

PORTAL FOR BOUNDARY OF TOTAL ERICKSON PROPERTY

MILL

PORTAL FOR MAIN HAULAGE TUNNEL

No. 3 VEIN
No. 6 VEIN
No. 2 VEIN
DOUBLE DECKER VEIN

BOULDER VEIN
BLUE VEIN

SHAFT VEIN

JERSEY LILLY VEIN
No. 7 VEIN
No. 8 VEIN (ENGINEER)

SHEAR ZONE A

SHEAR ZONE B

BOUNDARY OF TOTAL ERICKSON PROPERTY

B-2 VEIN
B-3 VEIN

HUB B

HUB A

A-1 VEIN
A-2 VEIN
A-3 VEIN
A-4 VEIN
A-5 VEIN

TAGISH LAKE

LOWER JURASSIC LABERGE GROUP: WELL-BEDDED SHALE, SILTSTONE, AND GREYWACKE

REGIONAL ATTITUDE OF LABERGE GROUP SEDIMENTARY ROCKS

0 125 250 375 METRES

MAIN ORE-PRODUCING VEINS ARE VERTICAL TO STEEPLY EAST DIPPING

Figure B24. Sketch map of the Engineer mine area.
1932 to 1934, Reginald Brooks selectively mined high-grade ore. The mine received only sporadic exploration work from 1934 to 1980 and no further underground development was done. Estimated production from the Engineer mine from 1913 to 1952 is 15,570 tonnes grading 36 grams per tonne gold and 17.9 grams per tonne silver (National Mineral Inventory, 104M/8-Au 2). In 1979, the Nu-Energy Development Corporation acquired the mine property and rehabilitated the underground workings. Nu-Energy drilled shear zone A on the fifth level with discouraging results. Nu-Lady Gold Mines Ltd. then acquired an option on the property and completed 15 diamond-drill holes in 1980, 11 holes in 1981 and 7 holes in 1983. Total Erickson Resources Ltd. took over the Nu-Energy Development Corporation and completed a systematic exploration program around the mine in 1987.

GEOLOGICAL SETTING

The Engineer mine lies within a northwesterly trending belt of Lower Jurassic Laberge Group sedimentary rocks located between Paleozoic Cache Creek Group rocks to the east and the Coast crystalline belt to the west. The host rocks for the orebody comprise very well bedded shale, siltstone and greywacke. Flame structures, load casts and graded bedding clearly demonstrate that the sedimentary sequence is not overturned. Regional bedding attitudes strike from 150 to 180 degrees and dip moderately to the east. Overlying the Laberge Group is a sequence of pyroclastic volcanic rocks called the "Engineer Mountain volcanics" (Baltman, 1979) which are exposed at the top of Engineer and Glanor mountains to the east of the mine. The rocks are composed mainly of crystal tuffs and may be of a late Cretaceous to early Tertiary age. A large body of medium-grained, equigranular hornblende quartz diorite has intruded the Laberge Group between the mine and the outcrop of Engineer Mountain volcanics. The age of this stock is uncertain.

Numerous phases of dykes crosscut the Laberge Group sedimentary rocks on the Engineer property. The most common are light grey, feldspar-porphyritic dacites which commonly strike north-south, subparallel to the ore-bearing veins. There are also aplitic, granitic and dark green, fine-grained to aphanitic mafic dykes.

Two phases of folding are present in the mine area. The folds are generally on a small scale and do not effect the regional bedding attitudes which tend to form a monoclinal sequence. The oldest event (F_1) is characterized by tight to isoclinal folds which plunge 65 degrees towards 149 degrees, based on minor folds located north of the mine. The hinge zones of these folds are commonly highly sheared and contain a well-developed axial planar cleavage. Some F_1 chevron folds are also present (Plate B18). This phase of deformation is best developed along shale/greywacke bedding contacts. The F_2 folding event is characterized by very open folds or simple "buckles" with vertical axial planes striking 080 degrees, again based on measurements of minor folds north of the mine.

There are two main shear zones (the "A" and "B", Figure B24) which cut across the Engineer property. These zones are generally from
5 to 15 metres wide, roughly concordant to bedding, and laterally continuous for at least 2 kilometres and have a right-lateral sense of offset. The zones are characterized by brecciation, numerous parallel quartz veins, silicification and pyritization. Fragments of Laberge Group sedimentary rocks are often contained within the shear zones. The shear zones are not crosscut by the auriferous quartz veins which are discordant to them. Areas of massive bull quartz up to 20 metres wide, called "Hub A" and "Hub B" (Figure B24) occur where the shear zones intersect other structures. Both the shear zones and "hubs" are unmineralized and no significant gold assays have been reported from them.

MINERALIZATION

The two main ore-producing veins are the Engineer and Double Decker vein systems. These veins strike from 10 to 30 degrees and are vertical to steeply east dipping. They are discordant to both shear zones A and B, and to regional bedding in the Laberge Group. The configuration of the numerous veins in the mine area is shown in Figure B24. The width of the veins varies considerably, from 10 centimetres to over 2 metres. They are locally discontinuous due to pinching and swelling, but have been traced on surface for about 1 kilometre.
The veins are composed largely of drusy quartz with lesser calcite and minor mariposite. Vug and cockscomb textures are common as are narrow graphitic bands which are best developed near the vein margins. Wallrock alteration is minimal and the vein contacts are sharp with no associated shearing or brecciation. Sulphide mineralization in the veins is sparse and the gold content very erratic. Pyrite is the main sulphide with native gold, gold tellurides, chalcopyrite, arsenopyrite, allemontite and needles of berthierite, an iron-antimony sulphide (Schroeter, 1986). Gold and silver are the only economic commodities with a gold:silver ratio of roughly 2:1. The mineralogy and textures of the Engineer veins suggest they formed in a high level, epithermal system.

WORK DONE

Total Erickson Resources conducted a systematic exploration program around the Engineer mine in 1987. A total of 2022 soil samples and 250 rock samples were analysed, 1:1000 and 1:5000-scale geological mapping was performed, 45 line-kilometres of ground magnetometer and VLF-EM surveys run, and 8 diamond-drill holes totalling 1778.5 metres completed.

REFERENCES

ATLIN 104N

YELLOWJACKET (Fig. B1, No. 21) By D.V. Lefebure and M.H. Gunning

LOCATION: Lat. 59°35'40" Long. 133°32'40" (104N/12) ATLIN MINING DIVISION. Located approximately 9 kilometres east-northeast of Atlin. Elevation 966 metres.
CLAIMS: ARENT 1 and 2, CAL 11, TIP, BEAMA, WEDGE FRACTION and surrounding claims.
ACCESS: By gravel road about 12 kilometres east-northeast from Atlin.
Figure B25. Geology and mineral occurrences of the Atlin area (modified from Aitken, 1959).
OWNERS: Homestake Mineral Development Company, Canova Resources Ltd.
OPERATOR: RESOURCES LTD.
COMMODITY: HOMESTAKE MINERAL DEVELOPMENT COMPANY.

DESCRIPTION:

PROPERTY HISTORY

The Yellowjacket property (MI 104M-014) was discovered in 1899 by placer miners working along Pine Creek. Mineral claims were staked by the Nimrod Syndicate which sank a 14-metre shaft and reported visible gold within an alteration zone containing quartz veins. Surface work continued in 1902 and a 35-metre trench was completed along the zone. The North Columbia Mining Company deepened the main shaft to 30 metres the following year. No further work was done on the property until 1983 and all of the surface workings have been destroyed by placer mining on Spruce Creek. The area was staked by local prospectors in 1983 and then optioned to Canova Resources Ltd. which completed ground geophysical surveys, five diamond-drill holes in 1984 and ten reverse circulation rotary-drill holes in 1985. The Homestake Mineral Development Company acquired an option on the Yellowjacket property in 1986 and carried out a soil geochemistry program; an airborne VLF-EM survey; ground VLF-EM, magnetometer and induced polarization surveys; and metallurgical tests on a 15-kilogram sample of drill core. Fourteen diamond-drill holes totalling 2250 metres were completed.

GEOLOGIC SETTING

The Yellowjacket property is located near the western edge of the Atlin terrane in the northern part of the Intermontane Belt of the Canadian Cordillera. The terrane is typically fault bounded against metamorphic rocks of the Omineca Belt and a narrow strip of Lower Mesozoic volcanic and sedimentary rocks to the east, and Lower Jurassic sedimentary rocks and Upper Triassic and older variably metamorphosed strata to the west (Monger, 1975).

The Atlin terrane consists of weakly metamorphosed chert, pelite, carbonate, and basic volcanic and ultramafic rocks of the Cache Creek Group of Pennsylvanian to Permian age. Monger (1975) has divided the volcanic and sedimentary rocks of the Cache Creek Group into the Nakina, Kedahda, Horsefeed, French Range and Teslin formations. In the immediate Atlin area (Figure B25) mafic volcanic rocks belong to the Nakina Formation and the chert and clastic sedimentary rocks with local pods and beds of limestone are part of the Kedahda Formation. Numerous ultramafic intrusions, typically peridotite, are associated with Cache Creek rocks, particularly the Nakina Formation. Typically the ultramafic rocks are in fault contact with the conformable rocks.

Younger granitic intrusions crosscut the Cache Creek Group rocks. A large Early Cretaceous stock outcrops immediately north of Atlin, while the Late Cretaceous Surprise Lake batholith is located 23 kilometres to the east. The latter intrusion consists of monzonite, granite and syenite phases (Christopher and Pinsent, 1982).
Gold placers have been the most important type of mineral deposit in the Atlin area. The first placer claim was staked in 1898 and led to the development of one of the major placer camps in British Columbia. A total of 615,234 ounces (19,135,618 grams) of gold was recovered from placer deposits in the Atlin Mining Division between 1898 and 1982 (Debicki, 1984). More than 96 per cent of this gold was recovered from creeks in the immediate Atlin area.

The source of the placer gold is auriferous quartz veins hosted by altered Cache Creek rocks. The only lode gold production was 245 tonnes of ore grading 13.7 grams per tonne gold from the Imperial mine. It is this disparity between the placer and lode gold production which is stimulating current mineral exploration programs in the Atlin area.

PROPERTY GEOLOGY

Poorly exposed mafic volcanic (Nakina Formation) and ultramafic rocks of the Cache Creek Group crop out on the Yellowjacket property. The ultramafic rocks underlie the north side of the Pine Creek valley, while the volcanic rocks occur on the south side. Pine Creek generally coincides with a fault zone trending 250 degrees which is the contact between the two units. Rocks within the fault zone are often intensely altered and sometimes sheared. Diamond drilling along the fault zone intersected high-grade gold, called the Yellowjacket zone, on the Arent 1 and 2 claims in the vicinity of the old Yellowjacket showing (Ronning, 1986). The mineralization does not outcrop.

Basalt, andesite, serpentinized peridotite, diorite, gabbro and diabase are the principal lithologies in the Yellowjacket zone. Narrow dykes of intermediate to felsic composition described as feldspar porphyry and syenite by Ronning were also intersected in a few diamond-drill holes. All lithologies within the Yellowjacket zone are altered and the volcanic and ultramafic rocks are frequently totally replaced by secondary minerals.

Ultramafic rocks, where recognizable, are typically peridotites altered to serpentinites. The serpentinites consist of antigorite with minor lizardite and chrysotile (Ronning, 1986). Magnetite is an important accessory mineral; most ultramafic rocks, even when altered, are still weakly to moderately magnetic.

The basalts and andesites are typically fine grained with small phenocrysts visible in less altered samples. The basalt is dark green and chloritic with minor amounts of plagioclase and pyroxene phenocrysts in a groundmass of plagioclase and pyroxene microlites. Andesites in the Yellowjacket zone are typically lighter coloured and more obviously porphyritic than the basalts. Phenocrysts of acicular hornblende and plagioclase have been logged (Ronning, 1986). Amygdules filled with chlorite and quartz were noted in one flow.

Diorite, gabbro and diabase are unusually abundant in the Yellowjacket zone. These are typically the least altered rocks and
consist of equigranular plagioclase and pyroxene grains with secondary chlorite, carbonate and serpentine.

Intense alteration of the ultramafic and volcanic rocks is common. It frequently obscures the original rock type. The ultramafic rocks are typically serpentinized with broad zones of carbonate alteration. Locally they are intensely altered to talc and mariposite. Occasionally, the mariposite is associated with carbonate, minor pyrite and silica which forms a listwanite (Boyle, 1979). The volcanic rocks are commonly altered to carbonate, chlorite and sericite. Silicification occurs in both volcanic and ultramafic rocks but is restricted in extent. Sulphides, typically pyrite, are minor.
Figure B27. Schematic cross-section of the Yellowjacket zone along line 12+79E (modified from Homestake Mineral Development Company, 1987).

The Yellowjacket zone (Figures B26 and B27) is 240 metres along strike between holes 86-10 and 87-26 and extends up to 90 metres downdip (D. Marud, personal communication, 1987). The steeply dipping zone is 5 to 10 metres wide and strikes 250 degrees, parallel to the fault zone trending along Pine Creek. Coarse gold occurs in quartz veinlets 1 to 2 centimetres wide which may form stockworks with grades of 3 grams per tonne gold or better over significant widths (Ronning, 1986). Two of the better intersections are 15.1 and 17.9 grams of gold over 4.0 and 3.1 metres in drill holes 87-23 and 86-6 respectively. The gold has a fineness of 767 and is more properly referred to as electrum (B. Ballantyne, personal communication 1987). Minor arsenopyrite, pyrite and gersdorffite (nickel arsenic sulphide) may be associated with the gold mineralization but do not always occur with higher gold values.
Ronning reports that the most significant gold values are hosted by volcanic or dyke rocks.

DISCUSSION

The Yellowjacket zone consists of numerous fault slices of ultramafic and volcanic rocks at the contact between a large ultramafic intrusion and Nakina Formation volcanics. The faults provided pathways for fluids which altered the rocks and carried the gold.

A possible sequence of events to explain the Yellowjacket zone is as follows:

(1) Intrusion of the Atlin ultramafite into the submarine Nakina volcanics, possibly along a pre-existing fault.

(2) Coincident development of alteration of both rock types and fault movement near the contact. Alteration of ultramafic rocks varied from weakly serpentinized peridotite to intensely altered talc-carbonate rock. The altered ultramafic rocks shear easily at this stage and the original contact becomes a series of fault slices.

(3) Gabbro/diabase bodies intrude preferentially along the fault zone. These intrusions may not predate the gold mineralization.

(4) Feldspar porphyry and syenite dykes intrude the Yellowjacket zone. These dykes may be related to the early or late Cretaceous intrusions and may not predate the gold mineralization.

(5) Gold mineralization is introduced with associated quartz veining and minor silicification.

(6) Faults offset the Yellowjacket zone.

If this sequence of events is correct, the talc-carbonate alteration with associated mariposite is a form of ground preparation which is the first step towards the development of gold mineralization. The second step is introduction of gold-bearing hydrothermal fluids which deposited auriferous quartz stockworks.

Ballantyne and MacKinnon (1986) have shown that listwanites in the Atlin area contain no more gold than less-altered ultramafic rocks. Preliminary sampling shows that the only lithology with markedly anomalous gold values is the porphyritic dykes (see Table B4). Indeed, felsic dykes with anomalous gold values have been reported on the Anna, Beavis and Imperial properties. Further research is warranted to establish if the gold-bearing hydrothermal fluids were genetically related to the felsic dykes.
TABLE B4
AVERAGE ANALYSES OF SELECTED ELEMENTS FOR ATLIN AREA LITHOLOGIES

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Cu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volcanic rocks</td>
<td>7</td>
<td>49</td>
<td>0.5</td>
<td>49</td>
<td>10</td>
<td>79</td>
<td>10</td>
<td>88</td>
<td>4.1</td>
<td>39</td>
<td>239</td>
</tr>
<tr>
<td>Sediments</td>
<td>7</td>
<td>91</td>
<td>0.5</td>
<td>36</td>
<td>13</td>
<td>88</td>
<td>12</td>
<td>8</td>
<td>0.9</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Diorite</td>
<td>9</td>
<td>134</td>
<td>0.5</td>
<td>31</td>
<td>11</td>
<td>80</td>
<td>12</td>
<td>2</td>
<td>1.0</td>
<td>38</td>
<td>47</td>
</tr>
<tr>
<td>Felsic dykes</td>
<td>2</td>
<td>420</td>
<td>0.5</td>
<td>10</td>
<td>12</td>
<td>52</td>
<td>10</td>
<td>4</td>
<td>1.0</td>
<td>52</td>
<td>18</td>
</tr>
<tr>
<td>Quartz/carbonate veins</td>
<td>9</td>
<td>42</td>
<td>61.7</td>
<td>94</td>
<td>886</td>
<td>93</td>
<td>265</td>
<td>142</td>
<td>111.1</td>
<td>53</td>
<td>393</td>
</tr>
<tr>
<td>Ultramafic</td>
<td>3</td>
<td><20</td>
<td>0.5</td>
<td>11</td>
<td>15</td>
<td>47</td>
<td>11</td>
<td>3</td>
<td>1.0</td>
<td>94</td>
<td>1902</td>
</tr>
<tr>
<td>Carbonate-43</td>
<td>5.3</td>
<td><0.5</td>
<td>24</td>
<td>13</td>
<td>68</td>
<td>--</td>
<td>64</td>
<td>---</td>
<td>68</td>
<td>1202</td>
<td>1645</td>
</tr>
</tbody>
</table>
* from Ballantine and MacKinnon, 1986

Note: Limit of detection for gold and silver analyses, except those from Ballantyne and MacKinnon (1986), is 20 ppb and 0.5 ppm respectively.

WORK DONE

The Homestake Mineral Development Company completed 15 diamond-drill holes and 2550 metres of reverse circulation drilling on the Yellowjacket property in 1987, under an option agreement with Canova Resources Ltd.

ACKNOWLEDGMENTS

The cooperation of the Homestake Mineral Development Company is greatly appreciated. The assistance of Darcy Marud and Duncan McIvor was essential to the completion of this article.

REFERENCES

McDAME 104P

CORNUCOPIA (TAURUS MINE) (Fig. B1, No. 17)

By M.H. Gunning

LOCATION:
Lat. 59°16'30" Long. 129°41'06" (104P/5)

LIARD MINING DIVISION. Located approximately 8 kilometres east of Cassiar. Elevation 1300 metres

CLAIMS:
COPCO 1-6, ROY FR.

ACCESS:
By paved road, 8 kilometres east-southeast from Cassiar.

OWNER/OPERATOR: TAURUS RESOURCES LTD.

COMMODITIES:
Gold, silver.

DESCRIPTION:

GOLD DISTRIBUTION IN THE TAURUS MINE QUARTZ VEINS

INTRODUCTION

The Taurus mine (MI 104F-012), located 8 kilometres east of Cassiar in northwestern British Columbia, has been a producer of gold and silver since September 1981. Mill throughput has averaged 125 to 135 tonnes per day with ore grades from 5 to 7 grams per tonne gold. Silver concentrations are less than a gram per tonne.

The orebody is hosted by Upper Paleozoic massive to pillowed basaltic flows belonging to the middle thrust sheet of the Sylvester allochthon (Nelson et al., 1988). The auriferous quartz veins at the mine strike east-west, contain ubiquitous zones of sulphide mineralization along their margins and have a distinctive light grey alteration envelope characterized by silicification, carbonate alteration and disseminated pyrite.

This report describes the mineralized quartz veins at the Taurus mine and presents new lithogeochemical data which reveals a
Figure B28. Geological setting of the Taurus gold mine (from Sketchley, 1986).
consistent pattern of gold distribution within them. Sampling also showed significant gold values within a massive pyrite zone contained in a large reverse fault exposed in the lowest level of the mine. These structures may have potential for future ore production.

HISTORY

In 1935, the seven-claim Cornucopia group, which covers the present day Taurus mine, was staked by J.C. Simpson who carried out stripping, trenching and rock sampling on the property until 1944. The property was optioned the following year by Benroy Gold Mines Ltd. which completed in excess of 700 metres of trenching and 1500 metres of surface diamond drilling. The claims then lapsed and were restaked in 1959 by Messrs. Couture and Copeland who carried out selective hand mining of high-grade ore from a short adit. They produced 25 tons of ore which contained 34 ounces of gold and 3 ounces of silver (46.6 grams gold and 4.1 grams silver per tonne).

Cornucopia Explorations Ltd. was incorporated in 1960 to acquire the property and changed its name to Hanna Gold Mines Ltd. in 1961. Exploration and development work was carried out on the 3600 and 4100 levels and included 1180 metres of drifting and crosscutting and 1000 metres of underground diamond drilling. Exploration to the end of 1963 outlined indicated reserves of 72 500 tonnes grading 22.6 grams per tonne gold. Newconex Canadian Exploration Ltd. optioned the property the following year and completed an additional 180 metres of drifting and crosscutting and 210 metres of drilling.

In 1972, Hanna Gold changed its name to Dorchester Resources Ltd., and from 1973 to 1975, rehabilitated and resampled the main 3600 level adit and completed 223 metres of underground diamond drilling. Dorchester Resources became Taurus Resources Ltd. in 1976. In 1978 Ashlu Gold Mines Limited optioned the property and completed 7.2 line-kilometres of magnetometer and electromagnetic surveys. In 1979, United Hearne Resources Ltd. acquired an option on a 60 per cent interest in the property and carried out further drifting, raising and underground drilling on the 3600 level and, early in 1980, confirmed reserves of 60 000 tonnes grading 16.1 grams per tonne gold.

Construction of a 135 tonne per day mill was started in the fall of 1980 and production from the 3600 level began in September 1981. In the same year, a decline was started to access the 3500 and 3400 levels. In the fall of 1986 the decline was extended and a 3300 level was developed. That same year the mine produced 37 145 tonnes of ore grading 5.1 grams per tonne gold from seven main veins. In 1987, it was discovered that extensions of the Number 1 and 2 veins did not reach the 3300 level so an intermediate 3348 level was developed. Exploration work was also started late in 1987 on the Hopeful adit which is located about 1 kilometre south of the mine.

GEOLOGICAL SETTING

The Taurus gold mine is located in the Sylvester allochthon
(Figure B28), an accreted oceanic terrane of Late Paleozoic to Early Mesozoic age. The allochthon was thrust onto Paleozoic miogeoclinal platformal rocks of the North American continental margin. The Cassiar batholith borders the allochthon to the west and is largely composed of quartz monzonite of Late Cretaceous age. Numerous potassium-argon dates from the batholith range from 89 to 109 Ma (Baadsgard et al., 1961; Lowdon, 1961; Wanless et al., 1970, 1972, 1978). The Troutline Creek stock is located east of the town of Cassiar and is largely composed of quartz monzonite. In places it intrudes the main batholith and in others is separated from it by a narrow pendant of metamorphic rocks. Six potassium-argon dates from this stock (Panteleyev, 1983) averaged 72 Ma. The Mount Reed and Mount Haskins stocks are located roughly 15 kilometres west of the Taurus mine and potassium-argon dates obtained from them (Christopher et al., 1972) range from 48.8 to 51.4 Ma. Thus there have been numerous discrete plutonic events in the Cassiar area spanning roughly 40 million years from early Late Cretaceous to Middle Eocene.

Panteleyev and Diakow (1982) obtained a potassium-argon date of 131±5 Ma from hydrothermal white mica from a sample of a tourmaline-bearing auriferous quartz vein in the Snowy Creek area southeast of the Taurus mine; sericite from an auriferous quartz vein in the Taurus mine has been dated at 137±5 Ma (Sketchley, 1986). These Early Cretaceous ages suggest that the formation of the gold-bearing quartz veins at the Taurus mine occurred during events unrelated, and significantly prior to the emplacement of the numerous plutonic phases in the area.

The Sylvester allochthon is composed of numerous discrete fault-bounded lithotectonic slices which form a klippe which has been structurally superimposed onto platformal rocks. The structure of the allochthon comprises numerous stacked, flat fault structures bounding lithologically unique packages of rock. Although some of these faults may have been active in the late Paleozoic, the major events associated with the emplacement of the allochthon in its present position may not have occurred until early Jurassic time. The Sylvester Group is preserved in a broad, northwest-trending synclinorium. It comprises three major divisions (Nelson et al., 1988) with the Taurus mine located in the middle Division II. Division I at the base of the group is largely composed of sedimentary rocks dominated by chert, while Division III at the top comprises subvolcanic intrusives, intermediate pyroclastics and minor greywacke and shale. Division II is primarily composed of basaltic flows with variably altered, narrow bodies of ultramafic rocks. The Taurus quartz veins are hosted in massive to rarely amygdaloidal, medium grey-green basaltic flows. Pillows are present in the mine area and are a common feature of Division II. North-trending lamprophyre and diabase dykes are also common in the mine area and are a prominent feature of Division II.

Several phases of faulting are present in the mine area and are listed below in order of increasing age:

1. north-trending reverse faults,
2. low-angle northwest-trending thrust faults,
3. east-striking faults dipping south.
The auriferous quartz veins at the Taurus mine are structurally controlled by the oldest phase of faulting. These faults strike 80 to 90 degrees and dip 50 to 60 degrees to the south. Chloritic slickensides suggest both right-lateral and reverse movement along the structures. Crosscutting these faults are shallow thrust faults which strike northwest and dip 15 degrees to the southwest. One such structure called the "low-angle fault" is exposed in the lower levels of the mine. The youngest phase of faulting comprises north-striking reverse faults which dip 30 to 40 degrees to the east. This phase is exemplified by a fault exposed at surface just west of the 3600 level portal, and which may correlate with the main north-trending reverse fault exposed at the Erickson mine approximately 8 kilometres to the south. This structure is exposed in the underground workings at the Taurus mine and is referred to as the "reverse fault". It crosscuts all other faults in the mine and structures parallel to it may contain zones of significant gold mineralization (see Pyrite Zone below).

Plate B19. The No. 3 vein on the 3400 level, Taurus mine.

Although the north and northwest-trending faults crosscut, and are therefore younger than the fault systems containing the Cretaceous ore-bearing quartz veins, they may represent reactivated "Sylvester thrusts".
QUARTZ VEINS

There are at least three phases of quartz veining at the Taurus mine and all are structurally controlled by the faults described above. The oldest phase is represented by the ore veins and is characterized by white quartz veins with associated alteration envelopes within massive basaltic wallrock. Ore has been produced from the Number 1, 2, 3, 3 1/4, 3 1/2, 4 and 4 1/2 veins. The veins are usually from 50 to 60 centimetres wide but widths can range from 50 to 150 centimetres. Individual vein widths are relatively consistent along strike. The veins strike from 80 to 90 degrees and dip from 50 to 60 degrees to the south. Vein orientations are also very consistent along strike. Vein margins are often marked by chloritic slickensides indicating both reverse and right-lateral senses of movement. Northwest-trending veins seen occasionally in the mine may be splays off the main ore veins.

The second phase of veining is characterized by northwest-striking veins that dip to the southwest. They are composed of massive bull quartz several metres in thickness with some graphitic banding. The third phase of veins is associated with north-striking reverse faults that dip 30 degrees to the east. Massive white bull quartz veins with graphitic bands are several metres thick and are found within the "thrust fault". Similar quartz veins are not present in the reverse fault hosting the "Pyrite zone". The ore-producing veins are often crosscut and/or offset by these younger vein systems.

ALTERATION, MINERALIZATION AND GOLD DISTRIBUTION

The centres of the gold-bearing veins are composed of white quartz with small patches of clear grey quartz, clay and sericite often giving a mottled texture to the veins. Very symmetric alteration zones and zones of sulphide enrichment occur about the vein centres. Light grey alteration envelopes are typically 40 to 50 centimetres wide extending into both the hangingwall and footwall of the veins. They are characterized by silicification, carbonate alteration and coarse-grained, disseminated pyritohedron crystals, all of which increase in intensity closer to the veins. Chlorite is commonly developed in the host rock along the vein contacts. These vein contacts are generally very clean although wallrock fragments are occasionally seen within the veins producing a brecciated texture. Narrow graphitic bands less than 3 millimetres wide are present in many veins, both in the vein cores and along the margins (Plate B19). Quartz veinlets paralleling the main veins are sometimes present, but are uncommon.

Mineralization in the vein cores is restricted to less than 1 per cent disseminated pyrite and rare visible gold; trace tourmaline has also been observed (T.G. Schroeter, personal communication, 1987). Most sulphide mineralization occurs in narrow zones, typically 10 centimetres wide, along the vein margins. These zones may extend into the wallrock often overprinting the vein contact. The sulphides constitute 10 to 50 per cent of these zones as bands, stringers, blebs and disseminations. Pyrite is the most abundant sulphide with lesser tetrahedrite and arsenopyrite, and minor sphalerite and chalcopyrite. Fine-grained gold is also present.
In 1987, chip samples were taken systematically across the alteration halo, mineralized margin and core of seven of the producing veins. Results from this study (Figure B29) show that the distribution of gold is consistent throughout all of the producing veins. A summary of the data presented in Figure B29 is shown below in Table B5.

<table>
<thead>
<tr>
<th>Alteration Halo</th>
<th>Vein Margin</th>
<th>Vein Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average grade (g/t Au)</td>
<td>2.19</td>
<td>21.38</td>
</tr>
<tr>
<td>Average width (cm)</td>
<td>40.7</td>
<td>9.9</td>
</tr>
<tr>
<td>Percentage of weighted average</td>
<td>23</td>
<td>53</td>
</tr>
</tbody>
</table>

Weighted average of 23 samples from seven veins is 3.81 g/t Au over 100.3 centimetres.

The sampling shows that over half of the gold in the veins and alteration envelopes is contained within the sulphide-rich vein margins. Grades varied from 7.27 grams to 58.97 grams per tonne gold and averaged 21.38 grams per tonne over 9.9 centimetres. This width represents only 10 per cent of the combined width of vein and alteration halo. If only the quartz vein itself is considered, the weighted average for 15 samples from seven veins increases to 5.04 grams per tonne gold over a width of 59.9 centimetres and the relative amount of gold contained within the marginal zone increases to 69 per cent compared with only 31 per cent for the vein centre. Sample 5821 (Figure B29) also shows that zones of graphitic banding within the vein may be elevated in gold relative to the more barren core.

Gold concentrations in the alteration halo averaged 2.19 grams per tonne gold over 40.7 centimetres amounting to about one-quarter of the total gold in the system. Further sampling is needed to determine the distribution of gold within the halo. As noted earlier, alteration and pyrite mineralization within the halo increase in intensity toward the vein and it is possible that the gold distribution follows this pattern.

PYRITE ZONE

The Pyrite zone comprises a 3.1-metre interval of massive to semimassive, fine-grained pyrite located within a major reverse fault parallel to, and structurally higher than, the "thrust fault". Chloritic slickensides indicate a reverse sense of movement on the fault while sheared quartz veinlets within the fault zone indicate a right-lateral sense of shearing.
ALTERATION HALO
TYPICALLY 40-50cm WIDE CHARACTERIZED BY SILICIFICATION, CARBONATE ALTERATION, AND COARSE-GRAINED, DISSEMINATED PYRITOHEDRON CRYSTALS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>VEIN</th>
<th>WIDTH (cm)</th>
<th>g/t Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>5819</td>
<td>1*</td>
<td>50</td>
<td>1.99**</td>
</tr>
<tr>
<td>5801</td>
<td>2</td>
<td>35</td>
<td>6.95</td>
</tr>
<tr>
<td>5823</td>
<td>3</td>
<td>45</td>
<td>1.17</td>
</tr>
<tr>
<td>5804</td>
<td>3 1/4</td>
<td>50</td>
<td>0.62</td>
</tr>
<tr>
<td>5807</td>
<td>3 1/2</td>
<td>45</td>
<td>0.55</td>
</tr>
<tr>
<td>5810</td>
<td>4</td>
<td>30</td>
<td>0.41</td>
</tr>
<tr>
<td>5813</td>
<td>4 1/2</td>
<td>30</td>
<td>4.18</td>
</tr>
<tr>
<td>5816</td>
<td>4 1/2</td>
<td>5</td>
<td>1.44</td>
</tr>
</tbody>
</table>

PARALLEL STRINGER

VEIN MARGIN
TYPICALLY 7-10cm WIDE CHARACTERIZED BY MASSIVE BANDS, STRINGERS, BLEBS, AND DISSEMINATIONS OF FINE-GRAINED PYRITE WITH LESSER ARSENOPYRITE, TETRAHEDRITE, AND MINOR SPHALERITE AND CHALCOPYRITE, AND FINE-GRAINED GOLD

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>VEIN</th>
<th>WIDTH (cm)</th>
<th>g/t Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>5820</td>
<td>1</td>
<td>8</td>
<td>12.62</td>
</tr>
<tr>
<td>5802</td>
<td>2</td>
<td>20</td>
<td>7.27</td>
</tr>
<tr>
<td>5824</td>
<td>3</td>
<td>10</td>
<td>20.71</td>
</tr>
<tr>
<td>5805</td>
<td>3 1/4</td>
<td>7</td>
<td>28.39</td>
</tr>
<tr>
<td>5808</td>
<td>3 1/2</td>
<td>10</td>
<td>11.86</td>
</tr>
<tr>
<td>5811</td>
<td>4</td>
<td>7</td>
<td>58.97</td>
</tr>
<tr>
<td>5814</td>
<td>4 1/2</td>
<td>5</td>
<td>9.81</td>
</tr>
</tbody>
</table>

VEIN CENTRE
TYPICALLY 50cm WIDE CHARACTERIZED BY BLOCKY WHITE QUARTZ WITH RARE NATIVE GOLD

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>VEIN</th>
<th>WIDTH (cm)</th>
<th>g/t Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>5822</td>
<td>1</td>
<td>90</td>
<td>0.62</td>
</tr>
<tr>
<td>5821</td>
<td>1</td>
<td>40</td>
<td>2.06</td>
</tr>
<tr>
<td>5803</td>
<td>2</td>
<td>80</td>
<td>0.41</td>
</tr>
<tr>
<td>5825</td>
<td>3</td>
<td>30</td>
<td>0.55</td>
</tr>
<tr>
<td>5806</td>
<td>3 1/2</td>
<td>55</td>
<td>0.82</td>
</tr>
<tr>
<td>5809</td>
<td>3 1/4</td>
<td>60</td>
<td>8.71</td>
</tr>
<tr>
<td>5812</td>
<td>4</td>
<td>25</td>
<td>0.96</td>
</tr>
<tr>
<td>5815</td>
<td>4 1/2</td>
<td>10</td>
<td>0.62</td>
</tr>
</tbody>
</table>

* No.1, 3 VEINS SAMPLED ON THE 3400' LEVEL
No.2, 3 1/4, 3 1/2, 4, AND 4 1/2 VEINS SAMPLED ON THE 3500' LEVEL
** ANALYSIS BY FIRE ASSAY AT THE TAURUS MINE, SEPTEMBER 28, 29 1987

* VEINS ARE GENERALLY SYMMETRICAL

Figure B29. Gold distribution in quartz veins at Taurus mine.
The fault zone is exposed on the 3300 level and is in excess of 15 metres thick (Figure B30). It strikes 168 degrees and dips 37 degrees to the east. The footwall contact of the zone is sharp and is overlain by a 1.7-metre-wide zone (Zone A) of intense brecciation, clay and chlorite alteration and en echelon, quartz-filled stress fractures.

![Sketch plan of the Pyrite zone on the 3300 level, Taurus mine.](image)

ZONE A. 1.7m interval of fault breccia and quartz-filled stress fractures
ZONE B. 6.2m interval of intense shearing and chlorite-graphite alteration
ZONE C. 3.1m interval of massive to semi-massive pyrite in pervasively clay-altered rocks
ZONE D. 4.6m interval of intense shearing and chlorite-graphite alteration
ZONE E. 1.9m wide footwall alteration zone of intense silicification, carbonate alteration, and disseminated pyrite mineralization

Figure B30. Sketch plan of the Pyrite zone on the 3300 level, Taurus mine.

This zone is overlain by a 6.2-metre interval (Zone B) characterized by clay, chlorite and graphite alteration and disseminated pyrite. The lower half has pervasive clay and chlorite alteration while the upper half contains more graphite and disseminated pyrite. A lamprophyre dyke crosscuts this zone. The Pyrite zone (Zone C) overlies Zone B and is 3.1 metres thick comprising massive to semimassive, fine-grained pyrite within a pervasively clay-altered host rock. The lower contact is sharp although disseminated pyrite in the upper half of Zone B indicates a partially transitional boundary. The Pyrite zone is overlain by a 6.4-metre-wide sequence (Zone D) of clay, chlorite and graphite alteration similar to Zone B. This uppermost zone of the fault is chlorite rich at its base and, like Zone B, contains disseminated pyrite near its contact with the Pyrite zone. Zone E is a light grey alteration zone in the hangingwall of the fault zone that is about 1.8 metres wide. It is composed of variably silicified and carbonate-altered andesite wallrock and contains some disseminated pyrite.

Chip sampling across the reverse fault (Table B6) returned
assays of 2.06 grams per tonne gold over 1.55 metres and 15.01 grams per tonne gold over 1.55 metres across the upper and lower halves of the Pyrite zone respectively. These samples produced a weighted average of 8.53 grams per tonne gold over a width of 3.1 metres. Further sampling is needed to determine the gold distribution pattern within the Pyrite zone more accurately. The reverse fault which hosts the Pyrite zone may also be responsible for the offset of the Number 1 and 2 veins below the 3348 level and their absence on the 3300 level at the bottom of the mine.

A wide zone of semimassive pyrite bounded by zones of chloritic and graphitic alteration is located on the west end of the Number 1 vein drift on the 3400 level. This structure may correlate with the reverse fault hosting the Pyrite zone on the 3300 level. If so, the fault could have significant potential for gold mineralization with substantial lateral continuity.

WORK DONE

Drifting, raising, stoping and crosscutting continued on the 3348 and 3300 levels at the Taurus mine in 1987. Exploration work was also done in two areas away from the mine. A total of 400 metres of diamond drilling was completed in the Snowy Creek area southeast of the mine. About 170 metres of surface diamond drilling was also done in two holes near the old Hopeful adit located about 1 kilometre southwest of the mine. The adit was dewatered, widened from 1.5 by 2 metres to 2.5 by 4 metres, and a decline was driven 180 metres with one 60-metre crosscut. A vein was traced for about 80 metres and the decline has reached the limit of the area tested by surface drilling.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Zone</th>
<th>Sample Width (m)</th>
<th>Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5833</td>
<td>A</td>
<td>1.7</td>
<td>0.34</td>
</tr>
<tr>
<td>5831</td>
<td>B</td>
<td>3.1 Upper half</td>
<td>0.34</td>
</tr>
<tr>
<td>5832</td>
<td>B</td>
<td>3.1 Lower half</td>
<td>0.34</td>
</tr>
<tr>
<td>5829</td>
<td>C</td>
<td>1.55 Upper half</td>
<td>2.06</td>
</tr>
<tr>
<td>5830</td>
<td>C</td>
<td>1.55 Lower half</td>
<td>15.01</td>
</tr>
<tr>
<td>5827</td>
<td>D</td>
<td>2.3 Upper half</td>
<td>0.69</td>
</tr>
<tr>
<td>5828</td>
<td>D</td>
<td>2.3 Lower half</td>
<td>0.69</td>
</tr>
<tr>
<td>5826</td>
<td>E</td>
<td>1.8</td>
<td>0.69</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

The assistance of the mine staff of Taurus Resources Ltd. at Cassiar, in particular John Westra (Mine Manager) and Dan Dumaine (Mining Engineer), is much appreciated. Assays for this article were prepared by the staff of the mine laboratory and their assistance is
gratefully acknowledged. This article benefited from discussions with David Lefebure (District Geologist, Smithers).

REFERENCES

INDUSTRIAL MINERALS
HELLOARING CREEK PEGMATITE (Fig. B1, No. 18)

By G.V. White

LOCATION: Lat. 49°34' Long. 116°10'
FORT STEELE MINING DIVISION. 20 kilometres southwest of Kimberley.

CLAIMS: SARAH, SCOUT, KELLY, CUB, MONECA.

ACCESS: By road from Kimberley.

OPERATOR: LUMBERTON MINES LIMITED.

COMMODITY: Feldspar.

DESCRIPTION:

INTRODUCTION

A 9-day program to evaluate the feldspar potential of the Hellroaring Creek stock was conducted during July 1987. Work consisted of geological mapping, sampling, petrographic examinations and laboratory analyses. The property was originally studied as a beryl prospect, but beryl was found only locally and in trace amounts.

Results indicate the stock contains reserves of glass/ceramic grade feldspar.

GEOLOGY

The Hellroaring Creek pegmatite intrudes Proterozoic Aldridge Formation argillites, quartzites, argillaceous quartzites and mica schists. Metamorphosed Moyie dioritic sills and dykes, which intrude the Aldridge Formation, are cut by the stock emplaced approximately 1260 million years ago during Middle Proterozoic time (Ryan and Blenkinsop, 1971). The stock is exposed over the area of 1.5 by 4 kilometres (Figure B31), and in the area examined (Figure B32), consists of medium (1 to 5 millimetres) to coarse-grained (greater than 5 millimetres) white to light grey pegmatite. In typical samples pegmatite consists of 60 to 70 per cent feldspar, 20 to 30 per cent quartz, 0 to 10 per cent muscovite, 0 to 10 per cent tourmaline and may include garnet and/or pyrite, pyrrhotite and galena. Feldspar occurs in distinct microcline and albite-rich zones (Figure B32). Where feldspar is found with regular intergrowths of quartz the pegmatite has a graphic texture. Quartz occurs locally in massive lenses several metres across and these are noticeably free of feldspar. Muscovite occurs as either fine flakes along fractures or in irregular patches with books up to 13 centimetres across. Thin needle-like tourmaline crystals (3 by 10 millimetres) and blades up to 3 centimetres long occur in patches. Red to pink garnet (1 to 2 millimetres) is observed in drill core (Figure B33) and occasional veinlets of sulphides, including pyrite, pyrrhotite and galena are also
Figure B31. Geology of the Hellroaring Creek stock.
present. Iron and manganese staining is common on outcrops and in drill core.

LABORATORY ANALYSIS

Results of chemical and spectrographic analyses and X-ray diffraction tests on 23 samples are listed in Tables B7, B8 and B9. Major elements in typically feldspathic rock range from:

- \(\text{SiO}_2 \) 64.86 - 76.72%
- \(\text{Al}_2\text{O}_3 \) 12.61 - 19.00%
- \(\text{K}_2\text{O} \) 0.45 - 12.45%
- \(\text{Na}_2\text{O} \) 1.95 - 6.44%
- \(\text{CaO} \) 0.05 - 0.64%
- \(\text{Fe}_2\text{O}_3 \) 0.05 - 4.24%

Samples of massive quartz (HELL-014.5, 049, 077, 094) not included.

Table B7 indicates silica ranges between 65 and 75 per cent with siliceous zones up to 98 per cent. Alumina ranges from 19 per cent in the microcline-rich zones to 13.65 per cent in the albite-rich zone and minor amounts present in siliceous samples. Potash and soda content varies significantly with location, from between 0.45 and 1.97 per cent to between 12.45 and 6.44 per cent respectively.

TABLE B7
MAJOR ELEMENT XRF RESULTS, HELLOGROATING CREEK

<table>
<thead>
<tr>
<th>Field No.</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>LOI</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELL-012</td>
<td>68.86</td>
<td>0.01</td>
<td>19.00</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>2.94</td>
<td>12.45</td>
<td>0.17</td>
<td>0.27</td>
<td>99.86</td>
</tr>
<tr>
<td>HELL-014.5</td>
<td>89.46</td>
<td>0.02</td>
<td>6.60</td>
<td>0.20</td>
<td>0.02</td>
<td>0.00</td>
<td>0.06</td>
<td>1.60</td>
<td>1.70</td>
<td>0.03</td>
<td>0.45</td>
<td>99.14</td>
</tr>
<tr>
<td>HELL-015</td>
<td>74.58</td>
<td>0.02</td>
<td>14.43</td>
<td>1.01</td>
<td>0.08</td>
<td>0.00</td>
<td>0.34</td>
<td>6.25</td>
<td>1.51</td>
<td>0.11</td>
<td>0.56</td>
<td>98.90</td>
</tr>
<tr>
<td>HELL-033</td>
<td>71.76</td>
<td>0.03</td>
<td>16.79</td>
<td>1.56</td>
<td>0.05</td>
<td>0.13</td>
<td>0.42</td>
<td>6.64</td>
<td>0.45</td>
<td>0.10</td>
<td>0.69</td>
<td>98.42</td>
</tr>
<tr>
<td>HELL-043</td>
<td>73.45</td>
<td>0.01</td>
<td>15.27</td>
<td>0.88</td>
<td>0.04</td>
<td>0.00</td>
<td>0.37</td>
<td>5.31</td>
<td>2.92</td>
<td>0.11</td>
<td>0.62</td>
<td>98.68</td>
</tr>
<tr>
<td>HELL-046</td>
<td>78.58</td>
<td>0.02</td>
<td>14.90</td>
<td>0.77</td>
<td>0.02</td>
<td>0.03</td>
<td>0.41</td>
<td>4.63</td>
<td>2.55</td>
<td>0.08</td>
<td>0.78</td>
<td>100.07</td>
</tr>
<tr>
<td>HELL-048</td>
<td>75.98</td>
<td>0.01</td>
<td>12.61</td>
<td>0.21</td>
<td>0.01</td>
<td>0.00</td>
<td>0.19</td>
<td>5.32</td>
<td>2.03</td>
<td>0.10</td>
<td>0.47</td>
<td>96.95</td>
</tr>
<tr>
<td>HELL-049</td>
<td>81.22</td>
<td>0.02</td>
<td>12.02</td>
<td>0.39</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
<td>2.49</td>
<td>2.16</td>
<td>0.04</td>
<td>1.18</td>
<td>99.73</td>
</tr>
<tr>
<td>HELL-054</td>
<td>73.73</td>
<td>0.01</td>
<td>14.12</td>
<td>0.07</td>
<td>0.01</td>
<td>0.00</td>
<td>0.07</td>
<td>2.05</td>
<td>9.07</td>
<td>0.11</td>
<td>0.30</td>
<td>99.54</td>
</tr>
<tr>
<td>HELL-056</td>
<td>71.84</td>
<td>0.01</td>
<td>15.14</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>1.97</td>
<td>9.89</td>
<td>0.13</td>
<td>0.34</td>
<td>99.43</td>
</tr>
<tr>
<td>HELL-065</td>
<td>76.72</td>
<td>0.01</td>
<td>13.65</td>
<td>0.51</td>
<td>0.03</td>
<td>0.00</td>
<td>0.45</td>
<td>5.68</td>
<td>1.54</td>
<td>0.10</td>
<td>0.33</td>
<td>99.03</td>
</tr>
<tr>
<td>HELL-070</td>
<td>69.71</td>
<td>0.01</td>
<td>16.31</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>1.95</td>
<td>11.35</td>
<td>0.15</td>
<td>0.31</td>
<td>99.93</td>
</tr>
<tr>
<td>HELL-072</td>
<td>71.45</td>
<td>0.03</td>
<td>15.98</td>
<td>4.24</td>
<td>1.07</td>
<td>0.11</td>
<td>0.48</td>
<td>4.49</td>
<td>0.79</td>
<td>0.07</td>
<td>0.64</td>
<td>99.36</td>
</tr>
<tr>
<td>HELL-073</td>
<td>74.92</td>
<td>0.02</td>
<td>14.26</td>
<td>0.65</td>
<td>0.03</td>
<td>0.01</td>
<td>0.54</td>
<td>5.50</td>
<td>2.52</td>
<td>0.09</td>
<td>0.48</td>
<td>99.00</td>
</tr>
<tr>
<td>HELL-077</td>
<td>97.95</td>
<td>0.01</td>
<td>0.17</td>
<td>0.04</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>HELL-080</td>
<td>72.57</td>
<td>0.01</td>
<td>14.77</td>
<td>0.27</td>
<td>0.04</td>
<td>0.00</td>
<td>0.25</td>
<td>4.19</td>
<td>3.92</td>
<td>0.10</td>
<td>0.70</td>
<td>96.82</td>
</tr>
<tr>
<td>HELL-086</td>
<td>70.69</td>
<td>0.01</td>
<td>15.77</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>0.07</td>
<td>2.20</td>
<td>10.11</td>
<td>0.15</td>
<td>0.38</td>
<td>99.52</td>
</tr>
<tr>
<td>HELL-087</td>
<td>71.88</td>
<td>0.01</td>
<td>15.23</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
<td>0.10</td>
<td>2.20</td>
<td>9.35</td>
<td>0.14</td>
<td>0.41</td>
<td>99.44</td>
</tr>
<tr>
<td>HELL-094</td>
<td>97.42</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
</tr>
<tr>
<td>HELL-100</td>
<td>73.82</td>
<td>0.02</td>
<td>14.94</td>
<td>0.97</td>
<td>0.09</td>
<td>0.06</td>
<td>0.42</td>
<td>4.75</td>
<td>3.42</td>
<td>0.09</td>
<td>0.44</td>
<td>99.03</td>
</tr>
<tr>
<td>HELL-120</td>
<td>73.49</td>
<td>0.02</td>
<td>15.14</td>
<td>1.48</td>
<td>0.17</td>
<td>0.03</td>
<td>0.64</td>
<td>6.31</td>
<td>0.48</td>
<td>0.15</td>
<td>0.39</td>
<td>98.31</td>
</tr>
<tr>
<td>HELL-148</td>
<td>73.16</td>
<td>0.02</td>
<td>15.14</td>
<td>0.61</td>
<td>0.03</td>
<td>0.08</td>
<td>0.24</td>
<td>3.27</td>
<td>6.15</td>
<td>0.10</td>
<td>0.75</td>
<td>99.55</td>
</tr>
<tr>
<td>HELL-156</td>
<td>73.07</td>
<td>0.02</td>
<td>14.79</td>
<td>0.79</td>
<td>0.04</td>
<td>0.02</td>
<td>0.58</td>
<td>5.35</td>
<td>2.35</td>
<td>0.08</td>
<td>0.54</td>
<td>97.43</td>
</tr>
</tbody>
</table>
Figure B32. Detailed geology and sample locations, Hellroaring Creek pegmatite.
Pegmatite; white, coarse-grained; 70% feldspar, 15-20% quartz, 5-10% muscovite, 1% tourmaline, mica transparent, colourless to light green, minor iron staining, tourmaline occurs in hexagonal blades 25 x 4mm.

30-50% quartz, 30-50% feldspar, 5-10% muscovite, 2-3% tourmaline.

70% feldspar, 20% quartz, 5-10% muscovite, 3% tourmaline, quartz occurs in phenocrysts; increased iron staining.

70% feldspar, 20-25% quartz, minor muscovite, 1% tourmaline, quartz in veins.

70% feldspar, 20-25% quartz, 5-10% muscovite, 2-3% tourmaline, 2-3% iron staining.

70% feldspar, 20-25% quartz, 5% muscovite, 5% tourmaline, tourmaline in needlelike clusters 10 x 8mm long.

65% feldspar, 20-25% quartz, 5-10% tourmaline, 5% muscovite; tourmaline needlelike - 20 x 4mm; heavy iron staining.

70% feldspar, 20-25% quartz, 5-7% muscovite, 1% tourmaline, minor iron staining from muscovite; tourmaline blades 5 x 1mm.

70% feldspar, 20-25% quartz, 3-5% muscovite, 1-2% tourmaline, quartz is glossy, occurring in phenocrysts; minor iron staining.

60-70% feldspar, 20-25% quartz, 5-10% muscovite, 1% tourmaline; minor iron staining.

Coarse white to light grey pegmatite; 70% feldspar, 20-25% quartz, 5-7% muscovite, 1% tourmaline; fine grained pyrite, quartz in 2-3cm stringers; greater than 5% iron staining.

70% feldspar, 20-25% quartz, 7-10% muscovite, 1% tourmaline; pyrite in 7mm x 6cm veinlets, very fine grained; iron staining common.

Coarse white pegmatite, 70% feldspar, 20-25% quartz (glossy), 5% muscovite, 1% tourmaline; minor iron staining.

White to light grey, coarse pegmatite; 70-75% feldspar, 20-25% glassy grey quartz, 3-5% muscovite, 1% tourmaline.

70-75% feldspar, 20-25% quartz, 3-5% muscovite, 1% tourmaline; minor iron staining.

60-70% feldspar, 20-25% quartz, 5% pale green muscovite, 1% pale pink garnet, 1% tourmaline.

DDH 86-9 HELLROARING CREEK

SCALE 1:50

Figure B33. Diamond-drill hole 86-9, Hellroaring Creek (scale 1:50).
X-RAY DIFFRACTION RESULTS, HELLOARING CREEK

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Minerals Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEL-012</td>
<td>Microcline > albite</td>
</tr>
<tr>
<td>HEL-014.5</td>
<td>Quartz >> albite >> microcline > muscovite</td>
</tr>
<tr>
<td>HEL-015</td>
<td>Albite ~ quartz >> microcline > minor muscovite and tourmaline</td>
</tr>
<tr>
<td>HEL-033</td>
<td>Albite > quartz >> tourmaline (Fe-rich?) > minor muscovite and K-feldspar</td>
</tr>
<tr>
<td>HEL-043</td>
<td>Albite > quartz >> microcline >> minor muscovite and tourmaline</td>
</tr>
<tr>
<td>HEL-046</td>
<td>Albite ~ quartz > microcline >> minor muscovite and tourmaline</td>
</tr>
<tr>
<td>HEL-048</td>
<td>Albite > quartz >> microcline >> minor muscovite</td>
</tr>
<tr>
<td>HEL-049</td>
<td>Quartz > albite >> muscovite + trace K-feldspar</td>
</tr>
<tr>
<td>HEL-054</td>
<td>Microcline > quartz > albite >> trace illite and/or muscovite</td>
</tr>
<tr>
<td>HEL-056</td>
<td>Microcline > quartz > albite >> trace muscovite</td>
</tr>
<tr>
<td>HEL-065</td>
<td>Albite > quartz >> microcline >> minor tourmaline and muscovite</td>
</tr>
<tr>
<td>HEL-070</td>
<td>Microcline > quartz > albite >> trace muscovite</td>
</tr>
<tr>
<td>HEL-072</td>
<td>Albite > quartz >> tourmaline >> minor muscovite and trace K-feldspar</td>
</tr>
<tr>
<td>HEL-073</td>
<td>Albite > quartz >> microcline >> tourmaline >> trace muscovite</td>
</tr>
<tr>
<td>HEL-077</td>
<td>Quartz with trace feldspars + smectite</td>
</tr>
<tr>
<td>HEL-080</td>
<td>Albite ~ quartz >> microcline >> muscovite</td>
</tr>
<tr>
<td>HEL-086</td>
<td>Microcline > quartz > albite >> trace muscovite</td>
</tr>
<tr>
<td>HEL-087</td>
<td>Microcline > quartz > albite >> trace muscovite</td>
</tr>
<tr>
<td>HEL-094</td>
<td>Quartz</td>
</tr>
<tr>
<td>HEL-100</td>
<td>Albite ~ quartz > microcline > tourmaline > minor muscovite</td>
</tr>
<tr>
<td>HEL-120</td>
<td>Albite ~ quartz > tourmaline > minor muscovite and trace K-feldspar</td>
</tr>
<tr>
<td>HEL-148</td>
<td>Quartz ~ albite ~ microcline >> minor muscovite and tourmaline</td>
</tr>
<tr>
<td>HEL-156</td>
<td>Albite ~ quartz >> microcline >> minor tourmaline and muscovite</td>
</tr>
</tbody>
</table>

Remarks:
(1) Tourmaline detected in this suite of rocks appears to be iron-rich.

PROCESSING TESTS

Processing tests by CANMET on one representative potassium feldspar sample produced:

<table>
<thead>
<tr>
<th>Product</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slimes</td>
<td>14.2</td>
</tr>
<tr>
<td>Mica concentrate</td>
<td>3.2</td>
</tr>
<tr>
<td>Iron concentrate</td>
<td>0.2</td>
</tr>
<tr>
<td>Feldspar concentrate (magnetic)</td>
<td>1.4</td>
</tr>
<tr>
<td>Feldspar concentrate (non-magnetic)</td>
<td>59.9</td>
</tr>
<tr>
<td>Clean tails</td>
<td>1.9</td>
</tr>
<tr>
<td>Tails</td>
<td>19.4</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>
TABLE B9
SPECTROGRAPHIC RESULTS, HELLROARING CREEK
(per cent)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Si</th>
<th>Al</th>
<th>Hg</th>
<th>Ca</th>
<th>Fe</th>
<th>Pb</th>
<th>Cu</th>
<th>Zn</th>
<th>Mn</th>
<th>Ag</th>
<th>V</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELL-012</td>
<td>>10</td>
<td>8.0<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>HELL-014.5</td>
<td>>10</td>
<td>3.0<0.1</td>
<td><0.1</td>
<td>0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-015</td>
<td>>10</td>
<td>7.0<0.1</td>
<td>0.1</td>
<td>0.6</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-033</td>
<td>>10</td>
<td>7.5</td>
<td>0.1</td>
<td>0.12</td>
<td>1.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>HELL-043</td>
<td>>10</td>
<td>7.0<0.1</td>
<td>0.15</td>
<td>0.3</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-046</td>
<td>>10</td>
<td>7.0<0.1</td>
<td>0.15</td>
<td>0.5</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-048</td>
<td>>10</td>
<td>7.0<0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-049</td>
<td>>10</td>
<td>6.5<0.1</td>
<td>0.1</td>
<td>0.25</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-054</td>
<td>>10</td>
<td>7.0<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-056</td>
<td>>10</td>
<td>7.5<0.1</td>
<td>0.25</td>
<td>0.6</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-070</td>
<td>>10</td>
<td>5.5<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-072</td>
<td>>10</td>
<td>8.0</td>
<td>0.25</td>
<td>0.3</td>
<td>2.0</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>HELL-073</td>
<td>>10</td>
<td>7.0<0.1</td>
<td>0.25</td>
<td>0.25</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-077</td>
<td>>10</td>
<td>6.5<0.1</td>
<td>0.1</td>
<td>0.15</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-086</td>
<td>>10</td>
<td>6.0<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-087</td>
<td>>10</td>
<td>5.5<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-088</td>
<td>>10</td>
<td>6.0<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-100</td>
<td>>10</td>
<td>10.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.6</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>HELL-120</td>
<td>>10</td>
<td>8.5<0.1</td>
<td><0.1</td>
<td><0.1</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELL-148</td>
<td>>10</td>
<td>9.0</td>
<td>0.1</td>
<td>0.15</td>
<td>0.4</td>
<td>T</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>HELL-156</td>
<td>>10</td>
<td>9.0</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td>-</td>
<td>T</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Ni</th>
<th>Co</th>
<th>Na</th>
<th>K</th>
<th>Ga</th>
<th>Zr</th>
<th>Sr</th>
<th>Y</th>
<th>Be</th>
<th>B</th>
<th>Mo</th>
<th>Sn</th>
<th>Cr</th>
<th>Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELL-012</td>
<td>T</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-014.5</td>
<td>T</td>
<td>1.0</td>
<td>0.5</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-015</td>
<td>T</td>
<td>>2.0</td>
<td>0.8</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-033</td>
<td>T</td>
<td>>2.0</td>
<td>0.3</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>>0.5</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-043</td>
<td>T</td>
<td>>2.0</td>
<td>1.2</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.2</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-046</td>
<td>T</td>
<td>2.0</td>
<td>0.7</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.5</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-048</td>
<td>T</td>
<td>>2.0</td>
<td>1.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-049</td>
<td>T</td>
<td>1.5</td>
<td>0.8</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-054</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-056</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-065</td>
<td>T</td>
<td>>2.0</td>
<td>0.7</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.3</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-070</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-072</td>
<td>T</td>
<td>>2.0</td>
<td>0.5</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>>0.5</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-073</td>
<td>T</td>
<td>>2.0</td>
<td>>2.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-077</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>HELL-080</td>
<td>T</td>
<td>>2.0</td>
<td>>2.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.01</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-086</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-087</td>
<td>T</td>
<td>>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-094</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>HELL-100</td>
<td>T</td>
<td>>2.0</td>
<td>>2.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.5</td>
<td>T</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-120</td>
<td>T</td>
<td>>2.0</td>
<td><0.3</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-148</td>
<td>T</td>
<td>2.0</td>
<td>>5.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.25</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HELL-156</td>
<td>T</td>
<td>>2.0</td>
<td>>2.0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.4</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Chemical analysis of the non-magnetic feldspar concentrate is:

<table>
<thead>
<tr>
<th>Major Oxides</th>
<th>Sample as Received (weight %)</th>
<th>Feldspar Concentrate (weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>MnO</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.18</td>
<td>2.43</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.67</td>
<td>12.82</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.0</td>
<td>58.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.7</td>
<td>16.0</td>
</tr>
<tr>
<td>MgO</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>LOI</td>
<td>0.28</td>
<td>0.82</td>
</tr>
</tbody>
</table>

DISCUSSION

Processing tests indicate potential to produce mica and feldspar concentrates that meet industry standards with full liberation at 50 mesh.

ACKNOWLEDGMENTS

I would like to thank John McLeod of Lumberton Mines Limited of Calgary for his permission to examine Hellroaring Creek drill core and for providing company base maps.

REFERENCES

LUMBY PEGMATITE (Fig. B1, No. 19) By G.V. White

LOCATION: Lat. 50°15' Long. 118°47'43" (82L/2W, 7W)
VERNON MINING DIVISION. 13 kilometres east of Lumby.
CLAIMS: BEARCUB 1, 2, BODI 1, 2.
ACCESS: By road from Lumby.
OWNER/OPERATOR: BRENDA MINES LIMITED.
COMMODITY: Feldspar.

DESCRIPTION:

INTRODUCTION

A 7-day program was conducted in August 1987 to determine the size and nature of a 1.25 by 2.65-kilometre stock of pegmatite 13 kilometres east of Lumby (Mineral Inventory 82L/SE-015). Work consisted of geological mapping, sampling, petrographic examinations and chemical analyses.

Field investigations, chemical and spectrographic analyses, and X-ray diffraction and thin-section studies of grab samples indicate the intrusive is a potential source of glass/ceramic grade feldspar.

REGIONAL GEOLOGY

The stock intrudes quartz mica schist of the Okanagan plutonic and metamorphic complex (formerly Monashee Group) and is bounded on the south and west by Tertiary Kamloops volcanics, and on the north and east by granitic rocks of the Shuswap metamorphic complex. Biotite from the stock is currently being analysed to document time of emplacement.

LOCAL GEOLOGY

Four distinct rock types are recognized in the map area (Figure B34) and are briefly described:

Pegmatite: Often crops out as topographic highs, appears fresh, massive and most often white, but ranges from cream through yellow to reddish orange where stained by iron leached from mica.

Typically, the pegmatite consists of 67 to 75 per cent feldspar, 20 to 25 per cent quartz, 5 to 7 per cent muscovite and 5 to 15 per cent mafic minerals, commonly biotite, garnet and rarely tourmaline. Locally, regular intergrowths of quartz and feldspar give the pegmatite a graphic texture. Books of biotite and/or muscovite, up to 5 centimetres across, occur sporadically in clusters throughout the pegmatite or as individual flakes. The two micas may form 5 per cent of total volume, but are seldom found together.
Figure B34. Geology of the Lumby pegmatite.
Red to purple garnet (1 to 3 millimetres) occurs in pockets and constitutes 5 to 15 per cent of the rock. In one location only, small (1 to 2 millimetre) crystals of tourmaline were identified.

In thin section iron oxides occur in biotite and along fractures between grains of feldspar and quartz.

Quartz Diorite: Massive, grey, fine (less than 1 millimetre) to medium-grained (1 to 5 millimetres), weakly foliated quartz diorite crops out as a prominent topographic high immediately north of the pegmatite stock. The diorite is cut by thin pegmatite dykelets and contains small (less than 1 millimetre) red garnets. South of the intrusive, xenoliths of diorite are incorporated in the pegmatite; they are often tens of metres across and similar in appearance to the more massive diorite to the north, but appear to be partially digested.

Quartz Mica Schist: Large (tens of metres across) xenoliths of fine-grained, medium to dark grey quartz mica schist are incorporated in the main pegmatite stock. The schist is foliated, several metres thick, locally intruded by lenses of quartz or pegmatite and often sheared. Small (1 to 3 millimetres) red to purple garnets are common.

Carbonate: Medium to dark grey, fine-grained crystalline limestone occurs as inclusions in the pegmatite stock. The carbonate is found within beds of quartz mica schist and contains stringers of quartz or pegmatite. Small-scale isoclinal folds and boudinage structures are prominent features in the limestone.

LABORATORY ANALYSES

Results of chemical and spectrographic analyses and X-ray diffraction tests are listed in Tables B10, B11 and B12. Major elements are:

<table>
<thead>
<tr>
<th>Element</th>
<th>Major Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>66.26 - 82.37%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.65 - 18.33%</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.85 - 5.43%</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.10 - 12.64%</td>
</tr>
<tr>
<td>CaO</td>
<td>0.07 - 4.31%</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.04 - 2.03%</td>
</tr>
</tbody>
</table>

Feldspar content varies inversely with quartz in distinct zones. A feldspar-rich core zone is flanked by feldspar-poor zones rich in quartz (Figure B34).
TABLE B10
MAJOR E m N T S , LUMBY (BEARCW CULTMS)

Field N o .

?.io2
%

BLUE-004
74.66
BLUE-012
73.13
75.58
BLUE-016
BLUE-022
74.04
BLUE-033
73.89
BLUE-034
75.33
BLUE-041
70.63
77.41
BLUE-043
74.35
BLUE-044
BLUE-047
71.60
BLUE-050
12.39
74.77
BLUE-052
75.58
BLUE-055
BLUE-057
74.68
71.36
BLUE-058
BLUE-062
71.89
74.14
BLUE-065
72.83
BLUE-095
BLUE-099
72.96
BLUE-106
73.52
BLUE-109
72.38
73.89
BLUE-111
BLUE-113
72.93
BLUE-117
74.20
66.26
BLUE-119
BLUE-127
82.37
BLUE-130
70.68
BLUE-137
72.93
73.09
BLUE-142
72.37
BLUE-146
BLUE-190
74.15
76.30
BLUE-191
BLUE-193
72.35
74.03
BLUE-196
BLUE-198
72.96
BLUE-215
71.40
BLUE-221
71.99
BLUE-224
75.22
BLUE-231
75.77
BLUE-234
75.24
BLUE-237
73.15
73.99
BLUE-239
BLUE-242
71.46
BLUE-263
77.72
0.05
11.86
0.39

Ti02
%

0.11
0.02
0.05
0.05
0.01

0.05
0.02
0.02
0.08
0.01
0.02
0.06
0.05
0.15
0.03

0.03
0.02
0.03

0.04
0.05
0.05
0.08
0.04
0.08
0.01
0.04
0.04
0.03
0.03
0.03

0.05
0.05
0.01
0.06

0.01
0.01
0.01
0.03
0.02
0.05
0.04
0.07
0.02

Al203

Be203

MnO

%

%

%

14.58
16.23
14.20
14.81
14.29
13.86
15.90
13.48
14.86
16.09
14.41.
15.34
14.52
14.90
15.50
15.60
15.01
15.81
15.28
15.50
15.53
15.67
14.91
15.13
18.33
10.65
16.72
14.32
14.99
14.96
14.60
15.09
15.48
15.41
14.95
15.42
15.19
15.21
14.45
15.25
15.06
15.40
15.31

0.93
0.60
0.42
0.47
0.13
0.51
0.20
0.26
0.77
2.03
0.14
0.74
0.29
0.94
0.30
0.42
0.25
0.19
0.62
0.49
0.43
0.65
0.72
0.51
0.07
0.13
0.56
0.65
0.28
0.25
0.49
0.83
0.38
0.60
0.22
0.14
0.04
0.43
0.22
0.78
0.50
0.90
0.24

0.01
0.10

0.01
0.04
0.02
0.02
0.01
0.00
0.02
0.53
0.01
0.05
0.01
0.02
0.01
0.05
0.03
0.01

CaO
%

0.14
1.54
3.14
0.03
0.07
0.11
0.02
0.11
0.05

0.01
0.13
0.06
0.05
0.09
0.08
0.21
0.07
0.06
0.03
0.03
0.07
0.12
0.10
0.10
0.05
0.12
0.04

0.06
0.01
0.01
0.01
0.05
0.02
0.01
0.00
0.03
0.01
0.03
0.01
0.04
0.02
0.07
0.01
0.06
0.02
0.13
0.11
0.12
0.03
0.06
0.11
0.01
0.01
0.03
0.01 ' 0 . 0 3
0.02
0.01
0.08
0.04
0.01
0.01
0.09
0.08
0.04
0.08
0.12
0.05
0.02
0.08
0.01
0.09
1.37
2.74
3.59

B120

%

2.93
0.99
0.91
0.19
1.07
0.09
3.80
1.25
1.66
0.27
1.94
2.37
1.41
0.23
0.41
0.90
0.47
1.76
0.95
1.40
4.31
1.21
0.97
0.16
4.26
3.13
0.40
0.71
0.13
1.23
1.10
0.24
1.16
0.15
0.14
0.07
1.57
1.78
1.45
0.28
1.50
0.23

Na20

K20

%

%

4.31
3.00

2.86
1.35
2.76
1.75
3.21
3.51
4.70
1.71
4.14
3.62
3.22
1.86
2.44
3.39
2.24
4.86
3.30
3.81
3.35
3.25
2.74
1.88
0.85
3.49
2.42
2.66
1.61
3.07
2.40
2.00
3.49
2.16
1.61
1.44
4.55
3.98
4.48
2.14
4.61
2.13

4.25
2.34
5.22
5.49
9.72
5.86
10.88
0.18
4.61
2.83
9.52
1.39
2.43
2.92
10.27
8.60
5.91
8.00

2.29
5.00
4.89
1.06
5.72
5.38
0.02
0.58
12.64
0.04
0.39
0.10
3.71
8.21
0.04
0.38
7.70
10.04
5.57
2.72
9.08
4.59
9.16
10.35
10.71
2.54
3.07
2.05
8.14
2.80
9.40

P205
%

0.02
0.03

0.03
0.02
0.04
0.03
0.02
0.05
0.02
0.03
0.03
0.03

0.02
0.02
0.02
0.03

0.02
0.02
0.02
0.04
0.03

0.01
0.03

LO1

SUM

%

%

0.50
0.28
0.53
0.51
0.24
0.26
0.26
0.38
0.42
0.22
0.30
0.50
0.37
0.85
0.28
0.27
0.34
0.52
0.29
0.59
0.32
0.71
0.34

0.02
0.54
0.03

0.48

0.03

0.04

0.26
0.41
0.41
0.83
0.36
0.60
0.28
0.25
0.28
0.38
0.43
0.64
0.67
0.48
0.25

0.05

0.40
98.27

0.03
0.04
0.03
0.05
0.03
0.04
0.02
0.02
0.02
0.06
0.02
0.04
0.03

99.89
99.99
L O O .10
99.30
99.90
99.86
99.81
98.86
L O O . 02
99.76
98.85
99.53
99.33
99.32
99.93
99.80
100.04
100.16
98.26
99.51
98.96
99.84
99.21
99.81
99.83
98.99
98.92
99.43
99.84
99.96
99.76
99.59
100.04
100.09
99.97
99.38
99.78
100.07
99.80
100.13
100.14

99.95
99.17


<table>
<thead>
<tr>
<th>Field No.</th>
<th>Minerals Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE-004</td>
<td>Quartz>plagioclase>K-feldspar (20%)>>trace mica and muscovite (≤ 5%)</td>
</tr>
<tr>
<td>BLUE-012</td>
<td>Quartz>plagioclase>K-feldspar (15-20%)</td>
</tr>
<tr>
<td>BLUE-014</td>
<td>Plagioclase>quartz>K-feldspar (3%)</td>
</tr>
<tr>
<td>BLUE-016</td>
<td>Quartz>K-feldspar>plagioclase</td>
</tr>
<tr>
<td>BLUE-022</td>
<td>Quartz>K-feldspar>plagioclase>minor biotite and muscovite (2-3% each)</td>
</tr>
<tr>
<td>BLUE-033</td>
<td>Quartz(plagioclase,orthoclase)>quartz>plagioclase (10%)</td>
</tr>
<tr>
<td>BLUE-034</td>
<td>Quartz>plagioclase>K-feldspar (4%)</td>
</tr>
<tr>
<td>BLUE-041</td>
<td>K-feldspar>quartz>plagioclase>minor biotite (3%)</td>
</tr>
<tr>
<td>BLUE-043</td>
<td>Quartz (60-65%)>plagioclase (35-40%) (oligoclase with An 25-30%)</td>
</tr>
<tr>
<td>BLUE-044</td>
<td>Quartz~K-feldspar>plagioclase>trace mica (5%)</td>
</tr>
<tr>
<td>BLUE-047</td>
<td>Plagioclase>quartz>K-feldspar</td>
</tr>
<tr>
<td>BLUE-050</td>
<td>K-feldspar>quartz>plagioclase (10%?)>trace muscovite and/or illite (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-052</td>
<td>Plagioclase>quartz<K-feldspar, biotite (5% each)>trace muscovite</td>
</tr>
<tr>
<td>BLUE-055</td>
<td>Quartz>plagioclase>K-feldspar (15%)>>minor biotite (4%)</td>
</tr>
<tr>
<td>BLUE-057</td>
<td>Quartz>plagioclase>mica (≤ 10% with muscovite>>biotite)>minor K-feldspar (5%)</td>
</tr>
<tr>
<td>BLUE-058</td>
<td>K-feldspar (orthoclase)>>quartz>plagioclase (10-15%)>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-062</td>
<td>Plagioclase>quartz>K-feldspar</td>
</tr>
<tr>
<td>BLUE-065</td>
<td>Quartz>K-feldspar>plagioclase</td>
</tr>
<tr>
<td>BLUE-095</td>
<td>Quartz>K-feldspar>plagioclase>minor muscovite>trace biotite + amphibole</td>
</tr>
<tr>
<td>BLUE-099</td>
<td>Quartz>plagioclase>K-feldspar>minor mica + trace muscovite</td>
</tr>
<tr>
<td>BLUE-106</td>
<td>Quartz>plagioclase>K-feldspar</td>
</tr>
<tr>
<td>BLUE-109</td>
<td>Quartz>plagioclase>K-feldspar>trace mica (≤ 3%)</td>
</tr>
<tr>
<td>BLUE-111</td>
<td>Quartz>plagioclase>minor K-feldspar (≤ 10%)>trace mica and amphibole (≤ 3% total)</td>
</tr>
<tr>
<td>BLUE-113</td>
<td>Quartz>K-feldspar~plagioclase>trace mica (≤ 3%)</td>
</tr>
<tr>
<td>BLUE-117</td>
<td>Quartz>plagioclase>K-feldspar>minor muscovite (5%?)>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-119</td>
<td>K-feldspar (orthoclase)>quartz>plagioclase (10-15%)>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-127</td>
<td>Quartz>plagioclase>minor K-feldspar (5-10%)>trace calcite and illite (≤ 3% each?)</td>
</tr>
<tr>
<td>BLUE-130</td>
<td>Quartz>plagioclase>K-feldspar</td>
</tr>
<tr>
<td>BLUE-137</td>
<td>K-feldspar~quartz>plagioclase>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-142</td>
<td>K-feldspar~quartz>plagioclase>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-146</td>
<td>K-feldspar>quartz>plagioclase (10-15%)>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-190</td>
<td>Quartz>plagioclase>K-feldspar>trace mica (≤ 3%)>trace amphibole</td>
</tr>
<tr>
<td>BLUE-191</td>
<td>Plagioclase>K-feldspar>minor muscovite, sillimanite (5% each?)>trace mica + chlorite</td>
</tr>
<tr>
<td>BLUE-193</td>
<td>K-feldspar (orthoclase)>quartz>plagioclase (15-20%)>trace mica + chlorite (3% total)</td>
</tr>
<tr>
<td>BLUE-196</td>
<td>Quartz>plagioclase>K-feldspar>trace mica (3%)>trace mica + chlorite</td>
</tr>
<tr>
<td>BLUE-198</td>
<td>K-feldspar~quartz>plagioclase>trace mica (≤ 2%)>trace mica (≤ 3%)</td>
</tr>
<tr>
<td>BLUE-215</td>
<td>K-feldspar~quartz>plagioclase (10-15%)>trace mica (mainly muscovite), amphibole + mixed-layer clay (≤ 5% total)</td>
</tr>
<tr>
<td>BLUE-221</td>
<td>K-feldspar (orthoclase)>quartz>plagioclase (10%)>trace mica (≤ 3%)</td>
</tr>
<tr>
<td>BLUE-224</td>
<td>Plagioclase>quartz>K-feldspar (15-20%)>trace mica (mainly muscovite, 4%)</td>
</tr>
<tr>
<td>BLUE-231</td>
<td>Quartz>plagioclase>K-feldspar>trace mica (mainly muscovite, 2%)>trace mica + chlorite + mixed-layer clay</td>
</tr>
<tr>
<td>BLUE-234</td>
<td>Quartz~plagioclase>K-feldspar (10-15%)>trace mica (≤ 2%) >trace illite</td>
</tr>
<tr>
<td>BLUE-237</td>
<td>K-feldspar~quartz>plagioclase>trace mica and chlorite (2%)</td>
</tr>
<tr>
<td>BLUE-239</td>
<td>Plagioclase~quartz>K-feldspar (15%)>trace mica (≤ 2%)</td>
</tr>
<tr>
<td>BLUE-242</td>
<td>K-feldspar (orthoclase)>quartz>plagioclase (15-20%)>trace mica + illite + smectite (≤ 5 total)</td>
</tr>
<tr>
<td>BLUE-263</td>
<td>Quartz>plagioclase>K-feldspar>trace mica + chlorite (≤ 2 total)</td>
</tr>
<tr>
<td>Sample</td>
<td>Si</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>BLUE-004</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-012</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-014</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-016</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-022</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-033</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-034</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-043</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-043</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-044</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-047</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-050</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-052</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-057</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-058</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-062</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-065</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-095</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-099</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-106</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-109</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-111</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-113</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-117</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-119</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-127</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-130</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-137</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-142</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-146</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-190</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-191</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-192</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-196</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-198</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-215</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-221</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-224</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-231</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-234</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-237</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-239</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-242</td>
<td>>10</td>
</tr>
<tr>
<td>BLUE-263</td>
<td>>10</td>
</tr>
<tr>
<td>Sample No.</td>
<td>Co</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>BLUE-004</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-012</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-014</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-016</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-022</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-033</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-034</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-041</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-043</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-044</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-047</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-050</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-052</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-055</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-057</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-058</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-062</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-065</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-095</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-099</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-106</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-109</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-111</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-113</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-117</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-119</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-127</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-130</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-137</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-142</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-146</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-190</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-191</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-193</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-196</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-199</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-215</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-221</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-224</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-231</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-234</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-237</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-239</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-242</td>
<td>T</td>
</tr>
<tr>
<td>BLUE-263</td>
<td>T</td>
</tr>
</tbody>
</table>

B123
PROCESSING TESTS

Processing tests by CANMET on one representative sample produced:

<table>
<thead>
<tr>
<th>Product</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20 mesh</td>
<td>3.5</td>
</tr>
<tr>
<td>Slimes</td>
<td>14.0</td>
</tr>
<tr>
<td>Mica concentrate</td>
<td>5.3</td>
</tr>
<tr>
<td>Feldspar concentrate (magnetic)</td>
<td>0.4</td>
</tr>
<tr>
<td>Feldspar concentrate (non-magnetic)</td>
<td>55.6</td>
</tr>
<tr>
<td>Tails</td>
<td>21.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The non-magnetic feldspar concentrate was analysed with the following results:

<table>
<thead>
<tr>
<th>Major Oxides</th>
<th>Sample as Received (weight %)</th>
<th>Feldspar Concentrate (weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>MnO</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.07</td>
<td><0.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.21</td>
<td>0.25</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.03</td>
<td>2.60</td>
</tr>
<tr>
<td>K₂O</td>
<td>10.7</td>
<td>12.9</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.1</td>
<td>62.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.9</td>
<td>17.5</td>
</tr>
<tr>
<td>MgO</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>LOI</td>
<td>0.21</td>
<td>0.19</td>
</tr>
</tbody>
</table>

DISCUSSION

Low iron content and acceptable potassium and alumina content indicate the Lumby pegmatite has good to very good potential to produce a high-quality potash feldspar with liberation of 20 mesh.

ACKNOWLEDGMENT

I wish to acknowledge the cooperation of Brenda Mines Limited and in particular their geologist, Ragnar Bruaset, while working on the Bearcub claims.
REFERENCES

Remarks:
(1) Amorphous alteration materials, notably iron oxides and allophane, are not included in the above estimates.
(2) K-feldspar identified in the suite of rocks appear to be orthoclase while plagioclase is most likely oligoclase with An ~ 25-30 mole %.
REGIONAL GEOCHEMICAL SURVEY
INTRODUCTION

The Smithers and Whitesail Lake regional geochemical surveys (RGS) are part of an ongoing program by the British Columbia Ministry of Energy, Mines and Petroleum Resources to provide industry with a high quality reconnaissance geochemical database to aid in the exploration for mineral deposits. This database can also be utilized to identify metallogenic provinces, to assist in land use decisions, and to provide data for environmental studies.

The results of the stream sediment analyses from these two surveys are reviewed in this report to identify geochemically anomalous areas and to suggest their origin. The correlation between predominant rock type, stratigraphic age and element thresholds is examined to illustrate the potential for using the entire database to define and explain more subtle anomalies.

DATABASE

Each 1:250 000 NTS map sheet (93E and 93L) covers approximately 14 500 square kilometres with an average density of one stream sediment and water sample per 16 square kilometres. Lake sediment and water samples were collected in low lying areas with poorly developed drainage patterns, to complement the stream samples. One kilogram of sediment and 0.25 litre of water were collected at each site. A complete description of the sample preparation and analytical techniques is given in the British Columbia RGS-16 and RGS-17 Open Files (GSC Open Files 1360 and 1361 respectively).

Samples were analysed for the following elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn, Cu, Pb, Ni, Co, Ag, Mn, As, Mo, Fe, Hg, LOI, U, Cd, Sb</td>
<td>all samples</td>
</tr>
<tr>
<td>W, Ba</td>
<td>Whitesail sheet only</td>
</tr>
<tr>
<td>V, F, Au</td>
<td>Smithers sheet only</td>
</tr>
<tr>
<td>W, Ba, Sn</td>
<td>Smithers sheet, stream sediments only</td>
</tr>
<tr>
<td>U, F, pH</td>
<td>Water samples</td>
</tr>
</tbody>
</table>
The data are available in hard copy at 1:250 000 scale and consist of a mineral inventory map, sample location map, symbol and value map for each element and a text of field analytical and statistical data. The geology is shown on all element maps. G.S.C. Open File 708 (Woodsworth, 1980) was used for the geology of the Whitesail Lake area and G.S.C. Open File 351 (Tipper, 1976) was used for the geology of the Smithers area. The data are also available on floppy diskettes separated into files corresponding to 1:250 000 NTS map sheets (Matysek, 1987).

GEOLICAL SETTING

The Whitesail Lake and Smithers areas are, for the most part, within the Intermontane Belt, although the Coast plutonic complex underlies the southwestern corner of the Whitesail map area (Figure B37). The Coast plutonic complex consists of metamorphased pre-Lower Jurassic volcanic and sedimentary rocks of the Gamsby Group and granitic intrusions of Paleozoic (?) to Tertiary age.

In the survey area, the Intermontane Belt is composed of a succession of volcanic and sedimentary rocks cut by plutonic rocks of Triassic to Tertiary age. The stratigraphic succession, consists of: Late Triassic Takla Group, Early to Middle Jurassic Hazelton Group, Late Jurassic Bowser Lake Group, Cretaceous Skeena and Sustut groups, Early Cretaceous Kasalka Group, and Tertiary Ootsa Lake, Endako and Chilcotin groups. The two oldest groups formed in volcanic island arcs. The sedimentary rocks of the Bowser Lake, Skeena and Sustut groups were deposited within successor basins. The Kasalka Group volcanic succession erupted in a continental margin setting. Widespread Tertiary flows erupted in a continental setting.

These stratified rocks have been intruded by Upper Triassic to Lower Jurassic Topley intrusions, Cretaceous Bulkley intrusions, the Tertiary Coast plutonic complex and Eocene Babine and Nanika intrusions. The plutonic rocks are typically quartz monzonite, granodiorite or quartz diorite.

There are numerous mineral occurrences within the study area; virtually all of them in the Intermontaine Belt. The principal deposit types are porphyry copper and molybdenum deposits, mesothermal and epithermal precious metal veins, massive sulphide occurrences and coal seams.

DATA ANALYSIS

In this study 898 and 849 stream sediment analyses are examined from the Whitesail Lake and Smithers areas respectively. Multi-element anomalies and their possible sources are determined from these samples.
The importance of the dominant lithology underlying the drainage basin of the stream from which the sediment sample was collected is also examined.

Given the relatively good access into the study area, contamination of the stream sediments by various human activities such as mining, farming and logging is to be expected. The possibility of contamination was noted at the time of sample collection for 272 samples taken from possibly contaminated streams. Only 60 samples on the Whitesail Lake sheet were taken from possibly contaminated streams.

Two samples in the Smithers area are identified by the authors as probably reflecting contamination by man's activities. High lead, zinc, silver and other metal values in Aldrich Lake (867157) on the west side of Hudson Bay Mountain are due to the leakage of tailings from the Duthie mine. Sample 861109 contained high copper and gold values along the west shore of Babine Lake north of Granisle. This may be due to
contamination from trucks carrying copper-gold concentrate from Bell mine to Topley. High antimony, copper and tungsten values in the Mount Dubose area on the Whitesail Lake sheet may have been caused by contamination from an aqueduct. A comparison of average values from the entire sample population with those from probably contaminated samples reveals little variation. Contamination is assumed to be of relatively minor importance in this study.

ANOMALOUS AREAS

For this study anomalous stream sediment values are defined as those exceeding the 90th percentile, except for the elements silver, molybdenum, tungsten and tin (Table B13). Higher anomalous thresholds were chosen for these elements because background values are close to, or below, the analytical detection limits. A more sophisticated analysis of the data would involve determination of threshold values for each rock type, but this was not done in this study. However, varying geochemical signatures of different lithological suites are discussed later in this paper, under "Lithological and Stratigraphic Variation".

<table>
<thead>
<tr>
<th>Element</th>
<th>Whitetail</th>
<th>Smithers</th>
<th>Whitetail</th>
<th>Smithers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag ppm</td>
<td>0.2(93.1%)*</td>
<td>0.4(93.3%)</td>
<td>Mn ppm</td>
<td>1401</td>
</tr>
<tr>
<td>As ppm</td>
<td>15</td>
<td>13.1</td>
<td>Mo ppm</td>
<td>4(91.6%)</td>
</tr>
<tr>
<td>Au ppb</td>
<td>-</td>
<td>11</td>
<td>Ni ppm</td>
<td>22</td>
</tr>
<tr>
<td>Ba ppm</td>
<td>1081</td>
<td>1051</td>
<td>Pb ppm</td>
<td>17</td>
</tr>
<tr>
<td>Cd ppm</td>
<td>0.3</td>
<td>0.6</td>
<td>Sb ppm</td>
<td>0.9</td>
</tr>
<tr>
<td>Co ppm</td>
<td>16</td>
<td>16</td>
<td>Sn ppm</td>
<td>-</td>
</tr>
<tr>
<td>Cu ppm</td>
<td>53</td>
<td>49</td>
<td>U ppm</td>
<td>5.3</td>
</tr>
<tr>
<td>Fe ppm</td>
<td>-</td>
<td>321</td>
<td>V ppm</td>
<td>-</td>
</tr>
<tr>
<td>Hg ppb</td>
<td>61</td>
<td>81</td>
<td>W ppm</td>
<td>3(91.5%)</td>
</tr>
<tr>
<td>Iron %</td>
<td>5.01</td>
<td>3.90</td>
<td>Zn ppm</td>
<td>136</td>
</tr>
</tbody>
</table>

*Threshold shown in parentheses when above the 90th percentile.

Using these thresholds two types of anomalies can be defined - single sample and multiple sample anomalies. Single-sample anomalies are common and are extremely important to explorationists because the low RGS sample density often results in only one sample being collected in the drainage basin containing a particular mineral occurrence. The true significance of many spot anomalies can only be determined by further geochemical sampling and prospecting. Although less common than single-sample anomalies, multiple sample anomalies may also indicate undiscovered mineral occurrences and help to define metallogenic patterns. Multiple sample anomalies are emphasized in this study.

The multiple sample anomalies, which may cover areas of tens of square kilometres, are typically very coherent, with no internal non-anomalous values. Gold is the exception to this generalization which
probably reflects its low concentrations and the relatively small sample size. Frequently the anomaly pattern for one element is nearly coincident with that of one or more other elements. These coherent multiple element and multiple sample anomalies often define prospective areas.

The results of this study suggest the best indicators for mineralization are gold, silver, copper, lead, zinc, cadmium, antimony, tin, tungsten and uranium. The broadest anomalies are defined by arsenic, silver and copper while gold, cadmium, tin, tungsten and uranium anomalies are less widely dispersed. Cadmium may be one of the more useful pathfinders as it is generally anomalous in areas containing known mineralized occurrences and background values are generally similar for all rock types. Barium is not very useful in defining areas of mineralization as it generally appears to reflect the underlying lithology, although single-sample anomalies may be significant. Mercury and manganese anomalies are not easily related to known mineralization and mercury typically shows poor correlation with other anomalous elements.

WHITESAIL LAKE (93E)

The majority of the geochemical anomalies in the Whitesail Lake area, as defined by this study, are immediately east of the eastern margin of the Coast Complex, in areas with small plugs intruding Jurassic Hazelton Group rocks. Relatively few anomalies occur within the Coast Complex. The selection of threshold values on a regional basis may have resulted in the masking of subtle anomalies within the Coast Complex, where background values are lower than in the adjacent volcano-sedimentary terrain, and in the eastern half of the map where there are abundant outcroppings of Cretaceous and Tertiary volcanic and intrusive rocks.

Twenty-two anomalous areas are identified in the Whitesail Lake area (Table B14, Figure B38). All six of the major porphyry copper-molybdenum deposits have associated anomalies. North of Sibola Peak, Anomaly 8 is probably related to the Bergette deposit. The strongest anomaly (10) on the sheet is in the Tahtsa Lake-Tahtsa Reach area. It is associated with numerous mineral occurrences including the Whiting Creek and Huckleberry porphyry copper-molybdenum deposits. Immediately to the south, another strong anomaly (11) includes the Ox Lake porphyry copper deposit. Within Tweedsmuir Park a multi-element anomaly centered on Red Bird Mountain is related to the Red Bird porphyry molybdenum deposit. Several single-sample anomalies occur in creeks draining the area of the Berg deposit.

Multi-element anomalies coincide with areas of known mineral occurrences south of Troitsa Lake (13), east of Little Whitesail Lake (17) and Mount Prestone (20). Further exploration is warranted in these areas.

Although few anomalous values occur within the Coast Complex, three linear anomalies for base metals and silver are found at Sandifer Lake (12), the Tochquoyalla Ranges (15) and Kinsquit Lake (22). Only one Minfile occurrence is associated with each anomaly. Further exploration of these areas should be considered.
<table>
<thead>
<tr>
<th>#</th>
<th>AREA</th>
<th>ELEMENTS</th>
<th>ASSOC.</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NW of Morice Lake</td>
<td>Pb, Zn, Ba, Cd</td>
<td>4</td>
<td>Spot anomaly is downstream from the New Moon Ag-Pb-Zn showing.</td>
</tr>
<tr>
<td>2</td>
<td>East shore of Morice Lake</td>
<td>Cu, Mo, Pb, Zn, Cd</td>
<td>2</td>
<td>Spot anomaly occurs at the southern tip of a granitic plug of the Upper Triassic - Lower Jurassic Tooley intrusions.</td>
</tr>
<tr>
<td>3</td>
<td>Kidprice Lake/Bergland River</td>
<td>Ag, As, Sb, Hg, Cu, Mo, Pb, Zn, Ba, Cd, Mn, W</td>
<td>2</td>
<td>The Berg deposit of 230 mt at 0.31% Cu and 2.8 g/t Ag falls within the southeastern portion of this anomaly. North end of the anomaly is downstream from area staked immediately after the release.</td>
</tr>
<tr>
<td>4</td>
<td>Hill-Tout Lake</td>
<td>Ag, Cu, Zn, Cd, W</td>
<td>27</td>
<td>Anomaly occurs just west of a small plug of the Upper Cretaceous Bulkley Intrusions.</td>
</tr>
<tr>
<td>5</td>
<td>Nadina Lake</td>
<td>As, Sb, Cu, Pb, Zn, Ba, Mn</td>
<td>3</td>
<td>Strong multi-element anomaly with no apparent lithologic control that occurs in a topographically low area.</td>
</tr>
<tr>
<td>6</td>
<td>Shelford Hills</td>
<td>Ag, Hg, Mo, Pb, Zn, Cd, Mn</td>
<td>4</td>
<td>Large area with not all elements coincidently anomalous. Ag content up to 1.1 ppm.</td>
</tr>
<tr>
<td>7</td>
<td>Rhine Ridge</td>
<td>Ag, As, Cu, Pb, Zn, Mo W, Cd</td>
<td>2</td>
<td>Strong anomaly parallel to the Kidprice Lake (3) zone. Ag up to 1.4 ppm.</td>
</tr>
<tr>
<td>8</td>
<td>North of Sibola Peak</td>
<td>Ag, Cu, Pb, Zn, Ba, Cd, W</td>
<td>42</td>
<td>Anomaly is located 5-10 km downstream from the Bergette Cu-Mo, showing which has no sampling in the immediate area. Possible lithologic control from underlying Upper Cretaceous Bulkley Intrusions and Eocene Endako Group and Coosly Lake volcanics.</td>
</tr>
<tr>
<td>9</td>
<td>Mt. Wells area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Tahtsa Lake/Tahtsa Reach</td>
<td>Ag, As, Sb, Hg, Cu, Mo, Pb, Zn, Cd, Mn, W</td>
<td>2,3</td>
<td>The following deposits lie within the anomalous zone: Emerald Glacier - 40.8 kt @ 9% Zn, 8% Pb, 355 g/t Ag Whiting Creek - 40 mt @ 0.17% Cu, 0.1% MoS₂ Huckleberry - 77 mt @ 0.4% Cu, 0.025% MoS₂ Upstream of the west end of the anomaly was staked the day after release.</td>
</tr>
<tr>
<td>11</td>
<td>South of Tahtsa</td>
<td>As, Sb, Hg, Pb, Zn,</td>
<td>3,4</td>
<td>The Ox Lake deposit of 27.2 Mt at 0.3% Cu and 0.01% MoS₂ falls within the anomalous zone.</td>
</tr>
<tr>
<td>#</td>
<td>AREA</td>
<td>ELEMENTS</td>
<td>ASSOC.</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>-------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>Sandifer Lake</td>
<td>Ag, Cu, Pb, Zn, Cd, W,</td>
<td>4</td>
<td>Strong anomaly which occurs along the eastern boundary of the Coast plutonic complex.</td>
</tr>
<tr>
<td>13</td>
<td>South of Troitsa Lake</td>
<td>Ag, As, Sb, Cu, Mo, Pb, Zn, Cd, Mn, W</td>
<td>2, 3</td>
<td>Very strong anomaly centered about a small plug of the Upper Cretaceous Bulkley Intrusions. Also centered about the Fab properties (Mineral Inventory #41-44) with Cu-Mo-Pb-Zn showings</td>
</tr>
<tr>
<td>14</td>
<td>Fenton Lake-Morgan Lake area</td>
<td>Ag, Pb, Zn, Cd, Mn</td>
<td>4</td>
<td>Highly anomalous zone of samples along the lakes in an area surrounded by much younger intrusive and volcanic rocks.</td>
</tr>
<tr>
<td>15</td>
<td>Tochquonyalla Ranges</td>
<td>Ag, Cu, Mo, Pb, Zn, Cd, Mn, W</td>
<td>2</td>
<td>Strong anomaly which occurs just within the Coast plutonic complex.</td>
</tr>
<tr>
<td>16</td>
<td>Mt. Dubose</td>
<td>Sb, Cu, W</td>
<td></td>
<td>Linear anomaly located well within the Coast plutonic complex that may be the result of contamination related to an above ground aqueduct.</td>
</tr>
<tr>
<td>17</td>
<td>Little Whitesail Lake</td>
<td>Ag, As, Hg, Cu, Mo, Pb, Zn, Ba, Mn, W</td>
<td>2</td>
<td>Area east of Core Mountain staked the day of the release. Anomalous zone is east of the Coast plutonic complex boundary.</td>
</tr>
<tr>
<td>18</td>
<td>Goosefoot Lake</td>
<td>Mo, Zn, Mn</td>
<td>4</td>
<td>The anomaly is located in an area surrounded by younger intrusions and volcanic rocks.</td>
</tr>
<tr>
<td>19</td>
<td>Red Bird Mountain</td>
<td>Ag, As, Sb, Hg, Cu, 3, Pb, Zn, Mn, W</td>
<td>4</td>
<td>The Redbird deposit of 90.7 mt at 0.14% MoS$_2$ lies within this anomalous zone.</td>
</tr>
<tr>
<td>20</td>
<td>Mt. Prestone</td>
<td>Sb, Cu, Mo, Zn, Cd</td>
<td>2</td>
<td>Very strong area of anomalies located west of, and downstream from, an isolated cluster of Mineral Inventory occurrences numbered 76-62 related to Cu-Ag showings centered around Mt. Prestone.</td>
</tr>
<tr>
<td>21</td>
<td>Wahla Mountain</td>
<td>Hg, Mo, W, Mn</td>
<td>2</td>
<td>Strong Mo anomaly associated with a small isolated plug of the Upper Cretaceous Bulkley Intrusions.</td>
</tr>
<tr>
<td>22</td>
<td>Kimsquit Lake</td>
<td>Ag, Cu, Mo, Pb, Zn, Cd, Mn, W</td>
<td>2, 4</td>
<td>Very strong anomaly located along Kimsquit Lake and well within the Coast plutonic complex. The anomaly may be associated with a well-exposed cliff-face gossan in the area.</td>
</tr>
</tbody>
</table>
Multi-sample barium anomalies including the Mount Wells anomaly (9) appear to correlate with the exposures of Tertiary volcanic rocks and Cretaceous Bulkley intrusions. Single-sample barium anomalies occur in several places on the Whitesail Lake sheet and may warrant further evaluation.

Anomalies in the Shelford Hills (6), Fenton Lake (14) and Goosefoot Lake (18) areas are not directly associated with Minfile mineral occurrences although there is a copper-molybdenum showing, the Rip, southwest of the Shelford Hills anomaly. Further exploration should be considered in this area. The other two anomalies are within the boundaries of Tweedsmuir Park and cannot be staked or explored.
Table B15 continued

<table>
<thead>
<tr>
<th>#</th>
<th>AREA</th>
<th>ELEMENTS</th>
<th>ASSOC.</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Grouse Mountain</td>
<td>Ag,Cu,Zn,Pb,Mo,Cd</td>
<td>2,4</td>
<td>Numerous base metals plus Ag mineral occurrences including Grouse Mountain and Hidden Treasure.</td>
</tr>
<tr>
<td>14</td>
<td>Matzentzel Mountain</td>
<td>Mo,Cd,Ag</td>
<td>27</td>
<td>Broad Mo anomaly associated with Jurassic Topley intrusions. Linear Ag and Cd anomaly trends outward towards Golden Eagle and Topley Richfield deposits.</td>
</tr>
<tr>
<td>15</td>
<td>Pillar Peak</td>
<td>Cu,Sn</td>
<td>-</td>
<td>Linear anomaly encompasses scattered Cu+Ag occurrences.</td>
</tr>
<tr>
<td>16</td>
<td>Gosnell Creek</td>
<td>Cu,Sn,V</td>
<td>-</td>
<td>Linear anomaly trends towards known Cu occurrences to the south</td>
</tr>
<tr>
<td>17</td>
<td>Atna Lake</td>
<td>Au,Pb,Cd,U,Sn</td>
<td>47</td>
<td>Correlates with spot anomaly #1 on Whitesail Lake sheet.</td>
</tr>
<tr>
<td>18</td>
<td>Chisolm Lake</td>
<td>Hg</td>
<td>-</td>
<td>Linear anomaly coincident in part with fault.</td>
</tr>
<tr>
<td>19</td>
<td>Owen Lake</td>
<td>Ag,Zn,Pb,Mo,Cd,Mn,U</td>
<td>4,1</td>
<td>NW-trending anomaly which includes Silver Queen Mine.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(893.4kt @ 3.09 g Au/t, 263.0 g Ag/t, 0.75% Cu, 1.5% Pb, 6.83% Zn)</td>
</tr>
<tr>
<td>20</td>
<td>Goosly Lake</td>
<td>Au,Sb,Cu,V</td>
<td>3</td>
<td>Small anomaly probably related to mineral occurrences on north shore of Goosly Lake and possibly Equity Silver mine. Only Au anomaly encompasses Equity Silver.</td>
</tr>
<tr>
<td>21</td>
<td>Klo Creek</td>
<td>Ba,F</td>
<td>-</td>
<td>Large anomaly which reflects higher background Ba and F values in Tertiary volcanic rocks.</td>
</tr>
<tr>
<td>22</td>
<td>Maxan Creek</td>
<td>U</td>
<td>-</td>
<td>Related to unconformity between Goosly Lake volcanics (Ootsa Lake Group) and Buck Creek volcanics (Endako Group).</td>
</tr>
<tr>
<td>23</td>
<td>Allin Creek</td>
<td>Hg,Cd</td>
<td>-</td>
<td>Coincident with westerly trending fault in area of recent exploration activity.</td>
</tr>
<tr>
<td>#</td>
<td>AREA</td>
<td>ELEMENTS</td>
<td>ASSOC.</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Northwest Map Corner</td>
<td>As, Sb, Hg, Pb</td>
<td>3</td>
<td>Scattered Cu-Mo and Ag-Pb mineral occurrences in Cretaceous Skeena Group.</td>
</tr>
<tr>
<td>2</td>
<td>Hankin Lake</td>
<td>Mn, U</td>
<td>-</td>
<td>Related to Late Cretaceous granodioritic intrusions.</td>
</tr>
<tr>
<td>3</td>
<td>Trout Creek</td>
<td>Au, Sb, U</td>
<td>-</td>
<td>Related to Late Cretaceous granodioritic intrusions.</td>
</tr>
<tr>
<td>4</td>
<td>Hudson Bay Mountain</td>
<td>Au, Ag, As, Pb, Zn, Mo, Cd, W</td>
<td>2, 3</td>
<td>Numerous mineral occurrences include Glacier Gulch Mo deposit (30 mt @ 0.26% MoS₂, 0.06% WO₃) and Duthie Mine (Ag-Pb-Zn)</td>
</tr>
<tr>
<td>5</td>
<td>dome Mountain-Mount Cronin</td>
<td>Au, Ag, As, Sb, Hg, Zn, Pb, Mo, Cd, U, F</td>
<td>2, 3</td>
<td>Numerous mineral occurrences include Dome Mountain, Ascot and Cronin vein systems and Big Onion Cu-Mo porphyry deposit.</td>
</tr>
<tr>
<td>6</td>
<td>Blackberry Creek</td>
<td>Ba, Cu, Mo, W, U</td>
<td>1</td>
<td>Related to Jurassic Topley intrusion with scattered mineral occurrences. Large bog-iron deposit on Limonite Creek coincides with southern part of anomaly.</td>
</tr>
<tr>
<td>7</td>
<td>Hazelton Mountains</td>
<td>Au</td>
<td>5</td>
<td>Scattered mineral occurrences of porphyry and vein style showing.</td>
</tr>
<tr>
<td>8</td>
<td>Howson Basin</td>
<td>Ba, Sb, Zn, Pb, Mn, Cd, F</td>
<td>4</td>
<td>Numerous base metal occurrences with associated silver.</td>
</tr>
<tr>
<td>9</td>
<td>Denys Creek</td>
<td>Sn</td>
<td>-</td>
<td>An area of coal occurrences.</td>
</tr>
<tr>
<td>10</td>
<td>Houston Tommy-Cabinet Creeks</td>
<td>Au, Ag, Sb, As, Ba, Cu, Pb, Zn, Mo, Mn, Cd, W, V</td>
<td>2, 3, 4</td>
<td>Large anomaly with most known mineral occurrences near north end More than 70% of immediate post-release staking was on southern half of anomaly.</td>
</tr>
<tr>
<td>11</td>
<td>Knapper Creek</td>
<td>Cd</td>
<td>-</td>
<td>No known mineral occurrences.</td>
</tr>
<tr>
<td>12</td>
<td>Bob Creek</td>
<td>Au, Ag, Sb, As, Zn, Pb, Cd, F</td>
<td>3, 4</td>
<td>Spot anomaly with highest gold value (5400 ppb) on Smithers sheet. Downstream from Gold Brick Au-Ag-Zn occurrence.</td>
</tr>
</tbody>
</table>
Anomalies are found in all areas on the Smithers sheet. Most are underlain by Early to Middle Jurassic Hazelton Group sedimentary and volcanic rocks or by Jurassic to Late Cretaceous granitic intrusions. Within the area underlain by Tertiary volcanic rocks, the younger Endako Group lithologies do not appear to be related to significant geochemical anomalies.

Twenty-three geochemical anomalies have been identified on the Smithers sheet (Table B15, Figure B39). Major multi-element anomalies are found at Hudson Bay Mountain, Grouse Mountain, Howson Basin, Bob Creek, Owen Lake and in the Babine Range (Dome Mountain to Mount Cronin) - all areas of known mineralization.
A large multi-element anomaly (10) extending from Houston Tommy Creek to Cabinet Creek generated the most interest following the 1987 RGS data release because there were six stream sediment samples strongly anomalous in gold in an unclaimed area. The southern portion of this anomaly has several copper + molybdenum + silver + zinc occurrences but no previously reported gold showings.

Another multi-element anomaly (6) in the area of Blackberry and Limonite creeks is associated with a Jurassic Topley intrusion. There are two copper-molybdenum showings and one manganese mineral occurrence in the area. A bog-iron deposit coincides with the southern part of the anomaly. Further exploration for porphyry copper and precious metal deposits in this area appears warranted. Anomaly 6 is within a broader gold anomaly that covers much of the Hazelton Mountains on the Smithers sheet. This is another area that should be prospected.

South of Topley Landing on Babine Lake is a large molybdenum anomaly (14) with scattered high copper values, associated with the Jurassic Topley intrusions. There are several small showings in this area including the Tachi and Totem prospects. Although the area would appear prospective for porphyry deposits, Carter (1981) states that "the Topley intrusions of the Skeena Arch area are not known to contain significant economic mineral deposits". High silver and cadmium values define an elongate zone which trends from the molybdenum anomaly towards the Golden Eagle and Topley Richfield silver-lead-zinc vein deposits. Similar vein deposits may possibly be found peripheral to Topley intrusions by looking for a cadmium-silver geochemical signature in silts.

In the Atna Lake area (17) anomalous values for gold, lead, cadmium and tin cannot be correlated to known Minfile mineral occurrences although there are copper showings to the northeast. The New Moon silver-gold-lead-zinc showings are located to the south, on the Whitesail Lake sheet where there is an RGS anomaly (1).

Smaller anomalies in Hankin Lake (2), Trout Creek (3), Denys Creek (9), Knapper Creek (11) and Maxan Creek (22) are not associated with Minfile showings. Both the Trout Creek and Knapper Creek anomalies have precious metal geochemical signatures which warrant further investigation.

ANOMALOUS MULTI-ELEMENT ASSOCIATIONS

The stream sediment data exhibit some positive correlations greater than 0.5 between various elements (Tables B16 and B17).

These positive correlations are:

Whitesail Lake: Mo-Cu, Mo-Ag, Cu-Ag, As-Sb, As-Pb, As-Zn, Zn-Pb, Zn-Cd, Pb-Ag, Pb-Cd, Co-Ni, Co-Fe

Smithers: Sb-Pb, Sb-Cd, Zn-Pb, Zn-Cd, Pb-Ag, Pb-Cd, Ag-Cd, Ag-Sb, Co-Fe
<table>
<thead>
<tr>
<th></th>
<th>As</th>
<th>Cd</th>
<th>Co</th>
<th>Cu</th>
<th>Hg</th>
<th>Fe</th>
<th>Mn</th>
<th>Mo</th>
<th>Ni</th>
<th>Pb</th>
<th>Sb</th>
<th>U</th>
<th>W</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.316</td>
<td>0.487</td>
<td>0.178</td>
<td>0.604</td>
<td>0.107</td>
<td>0.169</td>
<td>0.101</td>
<td>0.524</td>
<td>0.082</td>
<td>0.624</td>
<td>0.253</td>
<td>0.019</td>
<td>0.188</td>
<td>0.443</td>
</tr>
<tr>
<td>As</td>
<td>0.377</td>
<td>0.340</td>
<td>0.200</td>
<td>0.333</td>
<td>0.277</td>
<td>0.368</td>
<td>0.129</td>
<td>0.137</td>
<td>0.592</td>
<td>0.570</td>
<td>-0.090</td>
<td>0.047</td>
<td>0.572</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.356</td>
<td>0.363</td>
<td>0.179</td>
<td>0.193</td>
<td>0.232</td>
<td>0.323</td>
<td>0.161</td>
<td>0.519</td>
<td>0.227</td>
<td>0.042</td>
<td>0.155</td>
<td>0.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.404</td>
<td>0.212</td>
<td>0.574</td>
<td>0.373</td>
<td>0.111</td>
<td>0.520</td>
<td>0.286</td>
<td>0.258</td>
<td>-0.160</td>
<td>0.106</td>
<td>0.456</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.030</td>
<td>0.234</td>
<td>0.069</td>
<td>0.747</td>
<td>0.145</td>
<td>0.370</td>
<td>0.169</td>
<td>-0.025</td>
<td>0.239</td>
<td>0.388</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.129</td>
<td>0.341</td>
<td>0.057</td>
<td>0.049</td>
<td>0.222</td>
<td>0.307</td>
<td>0.051</td>
<td>0.004</td>
<td>0.251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.304</td>
<td>0.209</td>
<td>0.255</td>
<td>0.261</td>
<td>0.215</td>
<td>-0.042</td>
<td>0.266</td>
<td>0.354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.079</td>
<td>0.104</td>
<td>0.308</td>
<td>0.181</td>
<td>-0.034</td>
<td>0.005</td>
<td>0.481</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0.018</td>
<td>0.358</td>
<td>0.115</td>
<td>0.217</td>
<td>0.381</td>
<td>0.299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.103</td>
<td>0.015</td>
<td>-0.098</td>
<td>0.021</td>
<td>0.244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.445</td>
<td>0.059</td>
<td>0.247</td>
<td>0.687</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>-0.063</td>
<td>0.040</td>
<td>0.333</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.223</td>
<td>-0.026</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As</td>
<td>Cd</td>
<td>Co</td>
<td>Cu</td>
<td>Hg</td>
<td>Fe</td>
<td>Mn</td>
<td>Mo</td>
<td>Ni</td>
<td>Pb</td>
<td>Sb</td>
<td>U</td>
<td>Zn</td>
<td>Au</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Ag</td>
<td>0.330</td>
<td>0.500</td>
<td>0.094</td>
<td>0.043</td>
<td>0.069</td>
<td>0.113</td>
<td>0.063</td>
<td>0.003</td>
<td>0.119</td>
<td>0.703</td>
<td>0.647</td>
<td>0.071</td>
<td>0.445</td>
<td>0.404</td>
</tr>
<tr>
<td>As</td>
<td>0.316</td>
<td>0.251</td>
<td>0.139</td>
<td>0.208</td>
<td>0.332</td>
<td>0.223</td>
<td>0.078</td>
<td>0.137</td>
<td>0.365</td>
<td>0.497</td>
<td>-0.031</td>
<td>0.423</td>
<td>0.365</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.253</td>
<td>0.166</td>
<td>0.090</td>
<td>0.170</td>
<td>0.292</td>
<td>0.020</td>
<td>0.127</td>
<td>0.606</td>
<td>0.539</td>
<td>0.114</td>
<td>0.748</td>
<td>0.117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.415</td>
<td>0.106</td>
<td>0.619</td>
<td>0.334</td>
<td>0.056</td>
<td>0.478</td>
<td>0.110</td>
<td>0.179</td>
<td>-0.004</td>
<td>0.411</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>-0.008</td>
<td>0.168</td>
<td>0.078</td>
<td>0.217</td>
<td>0.063</td>
<td>0.057</td>
<td>0.091</td>
<td>-0.100</td>
<td>0.213</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.265</td>
<td>0.158</td>
<td>-0.026</td>
<td>0.169</td>
<td>0.062</td>
<td>0.238</td>
<td>0.104</td>
<td>0.152</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.378</td>
<td>0.027</td>
<td>0.365</td>
<td>0.137</td>
<td>0.216</td>
<td>-0.091</td>
<td>0.376</td>
<td>0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>-0.013</td>
<td>0.117</td>
<td>0.077</td>
<td>0.073</td>
<td>-0.031</td>
<td>0.424</td>
<td>-0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>-0.054</td>
<td>0.000</td>
<td>0.027</td>
<td>0.096</td>
<td>0.005</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.074</td>
<td>0.122</td>
<td>0.026</td>
<td>0.177</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.811</td>
<td>0.045</td>
<td>0.617</td>
<td>0.127</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.053</td>
<td>0.496</td>
<td>0.123</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.006</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.166</td>
<td></td>
</tr>
</tbody>
</table>
Element associations commonly reflect elements found together in the same source mineral, rock or mineral occurrence.

It is possible to identify multi-element associations for the element values that exceed the threshold values defined in Table B13. These anomalous multi-element associations could be related to mineral occurrences as indicated in Table B18 below.

Table B18. Multi-Element Associations for Anomalous Elements

<table>
<thead>
<tr>
<th>Assoc. Elements</th>
<th>Number of Samples</th>
<th>Whitesail Lake</th>
<th>Smithers</th>
<th>Deposit Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. U, Mo, W</td>
<td>88</td>
<td>79</td>
<td>Porphyry</td>
<td></td>
</tr>
<tr>
<td>2. Mo, Cu, W, Pb, Zn, Cd, As, Sb</td>
<td>53</td>
<td>28</td>
<td>Porphyry</td>
<td></td>
</tr>
<tr>
<td>3. As, Sb, Pb, Zn, Au, Mn</td>
<td>76</td>
<td>68</td>
<td>Vein (Epithermal?)</td>
<td></td>
</tr>
<tr>
<td>4. Zn, Pb, Mn, Cu, Au</td>
<td>41</td>
<td>53</td>
<td>Vein (Mesothermal?)</td>
<td></td>
</tr>
<tr>
<td>5. Au</td>
<td>-</td>
<td>45</td>
<td>Vein</td>
<td></td>
</tr>
</tbody>
</table>

For this study the associations are defined by using the element unique to the association to determine the sample population. Within this population significant numbers of samples with anomalous values for other elements defined the complete multi-element suite. For example, uranium is unique to Association 1 and roughly a quarter of the samples contain anomalous molybdenum and tungsten. Other associations are defined in the same manner and exclude the samples previously selected.

These multi-element associations are not usually explicit in the anomaly patterns because more than one deposit type often occurs in adjacent drainage basins. For example, lead-zinc veins are common peripheral to porphyry copper-molybdenum deposits. Therefore, anomaly patterns frequently consist of elements from two multi-element associations.

Surprisingly, many anomalous gold values in the Smithers area do not correspond with anomalous values for other elements. Anomalous silver values occur with all multi-element associations but do not show a strong correlation with any single one. This partially reflects the difficulty of separating background from anomalous values for silver because the detection limit is close to the background values.

The positive correlation between cobalt-nickel and cobalt-iron noted above corresponds to marginally anomalous samples in the multi-element analysis. This relationship reflects both lithologic controls and hydromorphic processes.
LITHOLOGICAL AND STRATIGRAPHIC VARIATION

All samples are coded to identify the dominant lithology and stratigraphic unit at the sample site. These codes enable manipulation of the data sets to determine statistics for each map unit. In this study mean concentrations and standard deviations for all generalized lithologies and stratigraphic units are listed in Tables B19, B20 and B21. A complete evaluation of the data set would require a more sophisticated approach.

The stratigraphic units have been discussed above. The generalized lithologies are:

intrusive (INT.) - diorite, quartz diorite, gabbro, quartz monzonite, granodiorite, quartz monzodiorite, monzodiorite, syenodiorite, granite syenomonzonite.
volcanic (VOLC.) - basalt, andesite, dacite and rhyolite flows, breccias and pyroclastic rocks; minor sediments.
metamorphic (META.) - granitoid gneiss, migmatite, amphibolite, schist, marble, tuff, volcanogenic sandstone
carbonate (CARB.) - limestone
sedimentary (SED.) - shale, quartzose sandstone, graywacke, conglomerate, siltstone, coal, tuff, flows
till (TILL) - till

Cadmium, cobalt, vanadium and tungsten are four elements that have similar mean concentrations in virtually all generalized lithologies. Cadmium values are higher for the four limestone samples on the Smithers sheet. Tungsten values are generally higher on the Smithers sheet, but only the intrusive rocks of the Whitesail Lake area differ from the other samples from the same map sheet. This reflects higher tungsten values in the Cretaceous and Tertiary intrusions (Table B20).

The stream sediment samples from drainage basins underlain by metamorphic rocks of the Coast Complex have lower mean concentrations of almost all elements than any other generalized lithology on either map sheet. Ten stream samples from areas of Takla Group rocks in the Smithers area contain very high copper and high mercury values.

The most metallogenetically significant rocks in the study area are, however, the Jurassic Hazelton and Bowser Lake rocks. Both groups are associated with stream sediments containing high concentrations of silver, gold, lead and zinc. Copper, manganese and tin are also high in areas underlain by Hazelton Group rocks while arsenic and antimony are anomalous in the sediments associated with Bowser Lake Group rocks. In the Whitesail Lake area higher molybdenum occurs in sediments derived from the Hazelton Group and intrusive rocks.
Table B19. Mean Concentration and Standard Deviation of Each Element for Generalized Rock Type

(a) Whitsail Lake Map Sheet

<table>
<thead>
<tr>
<th></th>
<th>Intrusives</th>
<th>Volcanics</th>
<th>Sediments</th>
<th>Metamorphics</th>
<th>Till</th>
<th>Map Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>Ag</td>
<td>0.12</td>
<td>0.13</td>
<td>0.17</td>
<td>0.10</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>As</td>
<td>2.73</td>
<td>4.72</td>
<td>9.83</td>
<td>14.7</td>
<td>17.5</td>
<td>1.66</td>
</tr>
<tr>
<td>Ba</td>
<td>720</td>
<td>308</td>
<td>749</td>
<td>802</td>
<td>231</td>
<td>640</td>
</tr>
<tr>
<td>Cd</td>
<td>0.16</td>
<td>0.41</td>
<td>0.20</td>
<td>0.16</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Cu</td>
<td>35.4</td>
<td>61.0</td>
<td>40.9</td>
<td>32.9</td>
<td>27.8</td>
<td>33.4</td>
</tr>
<tr>
<td>Fe</td>
<td>28.6</td>
<td>22.6</td>
<td>43.7</td>
<td>34.7</td>
<td>21.1</td>
<td>24.8</td>
</tr>
<tr>
<td>Mg</td>
<td>587</td>
<td>396</td>
<td>1050</td>
<td>839</td>
<td>399</td>
<td>477</td>
</tr>
<tr>
<td>Ni</td>
<td>2.2</td>
<td>3.4</td>
<td>2.2</td>
<td>1.5</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Pb</td>
<td>10.5</td>
<td>6.99</td>
<td>13.0</td>
<td>16.6</td>
<td>14.5</td>
<td>11.3</td>
</tr>
<tr>
<td>Sb</td>
<td>6.15</td>
<td>8.98</td>
<td>10.7</td>
<td>11.4</td>
<td>10.4</td>
<td>2.69</td>
</tr>
<tr>
<td>U</td>
<td>3.84</td>
<td>3.40</td>
<td>2.65</td>
<td>2.48</td>
<td>1.11</td>
<td>2.99</td>
</tr>
<tr>
<td>W</td>
<td>2.18</td>
<td>4.35</td>
<td>1.31</td>
<td>1.30</td>
<td>0.92</td>
<td>1.43</td>
</tr>
<tr>
<td>Zn</td>
<td>66.0</td>
<td>56.3</td>
<td>106.1</td>
<td>99.3</td>
<td>42.6</td>
<td>53.7</td>
</tr>
</tbody>
</table>

* values in ppm unless otherwise noted

(b) Smithers Map Sheet

<table>
<thead>
<tr>
<th></th>
<th>Intrusives</th>
<th>Volcanics</th>
<th>Sediments</th>
<th>Carbonates</th>
<th>Till</th>
<th>Map Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>Ag</td>
<td>0.15</td>
<td>0.14</td>
<td>0.18</td>
<td>0.16</td>
<td>0.30</td>
<td>0.1</td>
</tr>
<tr>
<td>As</td>
<td>5.4</td>
<td>6.6</td>
<td>7.0</td>
<td>10.4</td>
<td>9.57</td>
<td>8.0</td>
</tr>
<tr>
<td>Au</td>
<td>8.4</td>
<td>23.9</td>
<td>18.0</td>
<td>8.7</td>
<td>53.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Ba</td>
<td>771</td>
<td>291</td>
<td>812</td>
<td>713</td>
<td>175</td>
<td>637</td>
</tr>
<tr>
<td>Cd</td>
<td>0.26</td>
<td>0.75</td>
<td>0.23</td>
<td>0.25</td>
<td>0.59</td>
<td>0.32</td>
</tr>
<tr>
<td>Co</td>
<td>9.19</td>
<td>4.86</td>
<td>10.5</td>
<td>10.7</td>
<td>3.46</td>
<td>7.25</td>
</tr>
<tr>
<td>Cu</td>
<td>31.6</td>
<td>22.4</td>
<td>34.3</td>
<td>27.6</td>
<td>20.3</td>
<td>28.5</td>
</tr>
<tr>
<td>F</td>
<td>251</td>
<td>77.1</td>
<td>242</td>
<td>213</td>
<td>63.7</td>
<td>171</td>
</tr>
<tr>
<td>Hg</td>
<td>36.3</td>
<td>29.2</td>
<td>40.9</td>
<td>61.6</td>
<td>52.5</td>
<td>50.0</td>
</tr>
<tr>
<td>Fe</td>
<td>2.75</td>
<td>0.86</td>
<td>2.98</td>
<td>3.34</td>
<td>0.66</td>
<td>2.75</td>
</tr>
<tr>
<td>Mn</td>
<td>678</td>
<td>623</td>
<td>926</td>
<td>730</td>
<td>623</td>
<td>3006</td>
</tr>
<tr>
<td>Mo</td>
<td>1.2</td>
<td>1.0</td>
<td>1.23</td>
<td>1.14</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>12.2</td>
<td>6.6</td>
<td>17.5</td>
<td>22.0</td>
<td>10.6</td>
<td>10</td>
</tr>
<tr>
<td>Pb</td>
<td>9.2</td>
<td>6.2</td>
<td>11.4</td>
<td>12.1</td>
<td>17.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Sb</td>
<td>0.66</td>
<td>0.74</td>
<td>0.80</td>
<td>1.19</td>
<td>1.72</td>
<td>0.52</td>
</tr>
<tr>
<td>Sn</td>
<td>2.54</td>
<td>1.38</td>
<td>2.88</td>
<td>2.65</td>
<td>1.46</td>
<td>2.25</td>
</tr>
<tr>
<td>U</td>
<td>2.56</td>
<td>2.15</td>
<td>1.79</td>
<td>2.01</td>
<td>0.78</td>
<td>1.57</td>
</tr>
<tr>
<td>V</td>
<td>49.0</td>
<td>21.5</td>
<td>53.9</td>
<td>45.3</td>
<td>12.7</td>
<td>42.2</td>
</tr>
<tr>
<td>W</td>
<td>1.73</td>
<td>1.71</td>
<td>1.75</td>
<td>1.70</td>
<td>1.79</td>
<td>1.25</td>
</tr>
<tr>
<td>Zn</td>
<td>87.7</td>
<td>60.4</td>
<td>102.0</td>
<td>97.3</td>
<td>68.3</td>
<td>60.5</td>
</tr>
</tbody>
</table>
Table B21. Mean Concentration and Standard Deviation for Each Element According to Map Unit

<table>
<thead>
<tr>
<th>ELEMENT GROUP VOLUMES</th>
<th>COTTA LAKE GROUP VOLUMES</th>
<th>SCOTIA GROUP VOLUMES</th>
<th>THEMA LAKE GROUP VOLUMES</th>
<th>TITAN GROUP VOLUMES</th>
<th>GOOLGA LAKES AND ASSOCIATED STRUCTURES</th>
<th>CONFLUENT LAKES AND ASSOCIATED STRUCTURES</th>
<th>TIDAL LAKE CONSTRUCTION</th>
<th>FOREST LAKE CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Mean (S.D.)</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>9</td>
<td>0.15</td>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>25</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>25</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>10</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>35</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table B20. Mean Concentration and Standard Deviation for Each Element According to Map Unit

<table>
<thead>
<tr>
<th>ELEMENT GROUP VOLUMES</th>
<th>COTTA LAKE GROUP VOLUMES</th>
<th>SCOTIA GROUP VOLUMES</th>
<th>THEMA LAKE GROUP VOLUMES</th>
<th>TITAN GROUP VOLUMES</th>
<th>GOOLGA LAKES AND ASSOCIATED STRUCTURES</th>
<th>CONFLUENT LAKES AND ASSOCIATED STRUCTURES</th>
<th>TIDAL LAKE CONSTRUCTION</th>
<th>FOREST LAKE CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Mean (S.D.)</td>
</tr>
<tr>
<td>20</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>15</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>20</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

* values in ppm unless otherwise noted.
Stream sediments from drainage basins underlain by Cretaceous and Tertiary volcanic rocks have low gold and copper, and high barium mean concentrations. Sediments related to the Ootsa Lake Group have high uranium values while those derived from the Chilcotin Group have high nickel, cobalt and uranium and low lead concentrations. In the Whitesail Lake area the sediments overlying the Endako Group have high mercury values.

Higher mean concentrations of fluorine and uranium and lower values of arsenic, mercury, manganese and antimony compared to the other generalized rock types are common for the intrusive rocks. Intrusions of different ages display appreciable variation. The Paleozoic (?) diorite intrusions contain higher concentrations of nickel and iron and lower concentrations of virtually all the other elements. Sediments derived from the Topley intrusions and the Mesozoic/Cenozoic granodiorites in the Whitesail Lake area are similar in composition to the average analysis for sediments associated with all intrusive rocks. The Cretaceous Kasalka and Bulkley intrusions contain high values of arsenic, mercury, lead, antimony and zinc. In the Whitesail Lake area the highest mean concentrations for molybdenum are associated with Kasalka and Bulkley intrusions in the Whitesail Lake area.

The mean concentrations of the elements for the two map sheets are similar (Table B19). The principal differences are higher iron, molybdenum, tin, uranium and tungsten, and lower mercury, nickel, lead and antimony values for the Whitesail Lake samples. The similarities undoubtedly reflect the large proportion of both map areas underlain by the same lithologies.

Mean concentration values for 18,953 stream sediment analyses from British Columbia have been published by Johnson (1984). A comparison of the Whitesail Lake and Smithers samples to these values emphasizes the similarities between these two areas compared to the variation shown throughout the province (Figure B40). It should be noted that samples from different map sheets have been analysed at a number of laboratories, sometimes with different techniques. Therefore, any comparison of map sheets is limited to broad generalizations. Both map sheets have unusually low uranium values and higher than average manganese, copper and zinc mean concentrations. The Smithers sheet has surprisingly low mean concentrations of molybdenum compared to the rest of the province.

CONCLUSIONS

Numerous single and multiple sample RGS anomalies occur in the Whitesail Lake and Smithers areas. A total of 45 anomalous areas are identified in this study. Many of them are related to known mineralized areas such as Hudson Bay Mountain, Skeena Mountains, Howson Basin, Cabinet Creek area, Bob Creek, Grouse Mountain, Owen Lake area, Sibola Peak, Tahtsa Lake, Tahtsa Reach, Red Bird Mountain and Mount Prestone. Others such as Trout Creek, Houston Tommy Creek, Knapper and Shelford Hills require further investigation to explain their source.
Figure B40. Diagrams display mean concentrations for selected elements for entire 1:250 000 National Topographic System map sheets for RGS stream sediment samples. Map sheet averages for different lithologies, as well as the entire sheet, are represented by the different columns. The bars on the vertical lines show the maximum, average and minimum map sheet mean concentrations for 17 sheets from throughout British Columbia (Johnson, 1984). Johnson's data are compared to map sheet mean concentrations for the more recently sampled Whitesail Lake (X) and Smithers (dots) areas. Codes for lithologies are explained in the text.
Many of the anomalous areas are characterized by five anomalous multi-element associations: U-Mo-W, Mo-Co-W, As-Sb-Pb-Zn, Zn-Pb-Mn and Au. These associations are believed to reflect the porphyry and vein deposits which are common throughout the study area.

The best indicator elements for mineralization in the Smithers and Whitesail Lake areas are gold, silver, copper, lead, zinc, cadmium, antimony, tin, tungsten and uranium. Cadmium, less often used as a pathfinder, targets many mineral occurrences and mean concentrations are generally the same for sediments associated with all rock types.

Stream sediments derived from different lithologies exhibit varying mean concentrations and standard deviations. These values are presented in several tables in this study and should be used to identify more subtle anomalies that are not apparent if thresholds are calculated for the entire RGS map sheet sample population, as in this study.

ACKNOWLEDGMENTS

We wish to acknowledge the assistance of Paul Matysek who provided the computer data files and valuable advice on multi-element associations. John Gravel, Stephen Day, Paul Matysek and John Newell read the paper and their suggestions were most helpful.

REFERENCES

PART C
MINERALS
AND COAL
EXPLORATION
PART C
MINERALS AND COAL EXPLORATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>C5</td>
</tr>
<tr>
<td>MINERALS EXPLORATION</td>
<td>C13</td>
</tr>
<tr>
<td>COAL EXPLORATION</td>
<td>C408</td>
</tr>
<tr>
<td>INDICES</td>
<td>C416</td>
</tr>
</tbody>
</table>

FIGURE

C1 Exploration in British Columbia, 1987
Index Map of Assessment Work in pocket
The following outline of the organization of Part C will assist the user in understanding the material it contains.

SOURCES OF INFORMATION

Assessment reports on geology, geophysics, geochemistry, drilling, and prospecting submitted by the mineral exploration and development industry are the primary sources of detailed technical data. Ministry staff geologists prepare reports on mineralized areas, deposits, and mines which may be extracted from this volume.

The data are believed to be reliable as far as the many individual sources and interpretations permit. Entries have been proofread, but do not conform to normal Geological Survey Branch editorial standards for publications.

ORGANIZATION

The property descriptions that form the body of Part C are presented in two sections: minerals and coal.

The minerals section has been computer-sorted. Initially properties are grouped in ascending order of 1:250 000 scale NTS map sheets (for example, 82E) and further subdivided by 1:50 000 east and west half-sheets (for example, 82E/2E).

Each page of text for the property descriptions represents two pages of computer printout, which have been reduced to save space and costs.

The coal property descriptions are grouped by coalfield and assigned a sequential number (C1-C7). The minerals and coal sections have separate indices of property names, operators and authors, with the page number as the location key.

A computer-plotted index map (back pocket) at a scale of 1:2 000 000 shows the location of exploration projects as described in the assessment reports. The map legend relates NTS areas, assessment report numbers, page numbers in text and property names. In congested areas on the index map assessment work locations only are shown without report numbers. The coal assessment reports are indicated by sequential item number.

Appreciation is due to Laura deGroot and Kim Passmore for the completion of data input and generation of the index map.
Explanations of the various components of each property description follow:

NAME

Most often the name given to a property is that used in the Mineral Inventory--MINFILE. This is often the name by which the property was originally known (for example, Glacier Gulch, Magnum). If there is no Mineral Inventory name associated with the project described in the assessment report, a claim name is used as the property name.

ASSESSMENT REPORT

The number listed is assigned to the report when it is accepted under the Mineral Act and Mineral Act Regulations.

INFORMATION CLASS

The reports are classified on a relative scale as to information value. "Info Class" values range from 1, the highest, to 4, the lowest.

LOCATION

The latitude and longitude given is either the centre of the property or the area where most of the work was done. Mining Division and NTS designations are keyed to the location of the main showing(s) or the majority of the claims. In cases where claims are located on more than one NTS sheet, up to four NTS designations are given.

CLAIMS

Up to 15 claim names may be listed on which work has been performed.

OPERATOR

The individual or the company that completed and paid for the work is listed. A company name may be followed by abbreviations:

ASSOC. (ASSOCIATES or ASSOCIATION) INV. (INVESTMENTS)
CAN. (CANADIAN or CANADA) FIN. (FINANCIAL)
CONS. (CONSOLIDATED) MANUF. (MANUFACTURING)
CONSTRU (CONSTRUCTION) MIN. (MINING/MINERALS)
CONSUL. (CONSULTANT) MINES (IN FULL)
DEV. (DEVELOPMENT) PARTN. (PARTNERSHIP)
ENG. (ENGINEERING) PETR. (PETROLEUM)
ENT. [ENTERPRISE(S)] PROS. (PROSPECTING)
EX. [EXPLORATION(S)] RES. (RESOURCES)
IND. (INDUSTRY or INDUSTRIES) SYND. (SYNDICATE)
INF. (INFORMATIONAL) VENTURES (IN FULL)
INT. (INTERNATIONAL)

CO., LTD., CORP., AND INC. are omitted.
AUTHOR

The authorship (up to two persons) of the assessment report that forms the basis of the property description is listed.

COMMODITIES

The commodities named are those associated with the Mineral Inventory—MINFILE property name. When a claim name is used as a substitute property name, commodities are not listed.

DESCRIPTION

A capsule geological description of the property may include lithology, age, structure, mineralization, and alteration.

WORK DONE

A brief summary of the type and amount of exploration work reported is listed. The following examples illustrate the abbreviations and codes used:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAD 355M;3 HOLES,NQ</td>
<td>Surface diamond drilling totalling 355 metres in holes of NQ size</td>
</tr>
<tr>
<td>SOIL 250;CU,AG</td>
<td>250 soil samples analysed for copper and silver</td>
</tr>
<tr>
<td>MULTIELEMENT</td>
<td>Samples analysed for more than 6 elements</td>
</tr>
<tr>
<td>GEOL/PROS 1:5000</td>
<td>Indicates scale/detail of geological/prospecting mapping</td>
</tr>
<tr>
<td>KM</td>
<td>Total linear kilometres</td>
</tr>
</tbody>
</table>

REFERENCES

Only related MINFILE and assessment report references describing work done on or near the claims are listed in this volume. Mineral Inventory—MINFILE names and numbers are listed where they occur on the claims worked and described in the report. Data sources are coded as:

A.R. Assessment Report
M.I. Mineral Inventory
<table>
<thead>
<tr>
<th>TYPE OF WORK</th>
<th>CODE</th>
<th>TYPE OF WORK</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOLOGY</td>
<td></td>
<td>DRILLING</td>
<td></td>
</tr>
<tr>
<td>Geological mapping</td>
<td>GEOL</td>
<td>Diamond</td>
<td>DIAD</td>
</tr>
<tr>
<td>Photo interpretation</td>
<td>FOTO</td>
<td>Percussion</td>
<td>PERD</td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td></td>
<td>Rotary</td>
<td>ROTD</td>
</tr>
<tr>
<td>Geophysics, general</td>
<td>GEOP</td>
<td>Becker hammer</td>
<td>BHDR</td>
</tr>
<tr>
<td>Dip needle</td>
<td>DPN</td>
<td>Overburden, see Geochemistry</td>
<td>UNDD</td>
</tr>
<tr>
<td>Magnetometer, ground</td>
<td>MAGG</td>
<td>Underground</td>
<td>UNDD</td>
</tr>
<tr>
<td>Magnetometer, airborne</td>
<td>MAGA</td>
<td>Churn</td>
<td>CHUD</td>
</tr>
<tr>
<td>Electromagnetic, ground</td>
<td>EMGR</td>
<td>PROSPECTING</td>
<td>PROS</td>
</tr>
<tr>
<td>Electromagnetic, airborne</td>
<td>EMAB</td>
<td>RELATED TECHNICAL</td>
<td></td>
</tr>
<tr>
<td>Induced polarization</td>
<td>IPOL</td>
<td>Sampling and assaying</td>
<td>SAMP</td>
</tr>
<tr>
<td>Self potential</td>
<td>SPOT</td>
<td>Petrography</td>
<td>PETR</td>
</tr>
<tr>
<td>Seismic</td>
<td>SEIS</td>
<td>Mineralography</td>
<td>MNGR</td>
</tr>
<tr>
<td>Gravity</td>
<td>GRAV</td>
<td>Metallurgy</td>
<td>META</td>
</tr>
<tr>
<td>Resistivity (alone)</td>
<td>REST</td>
<td>PREPARATORY</td>
<td></td>
</tr>
<tr>
<td>Mise-a-la-masse</td>
<td>MALM</td>
<td>Linecutting or grid</td>
<td>LINE</td>
</tr>
<tr>
<td>Radiometric, ground</td>
<td>RADG</td>
<td>establishment</td>
<td></td>
</tr>
<tr>
<td>Radiometric, airborne</td>
<td>RADA</td>
<td>Topographic mapping</td>
<td>TOPO</td>
</tr>
<tr>
<td>Scintillometer, ground</td>
<td>SCGR</td>
<td>Underground surveying</td>
<td>USUR</td>
</tr>
<tr>
<td>Scintillometer, airborne</td>
<td>SCAB</td>
<td>PHYSICAL</td>
<td></td>
</tr>
<tr>
<td>Gamma ray spectrometer, ground</td>
<td>GRSG</td>
<td>Trenching</td>
<td>TREN</td>
</tr>
<tr>
<td>Gamma ray spectrometer, airborne</td>
<td>GRSA</td>
<td>Small pits</td>
<td>PITS</td>
</tr>
<tr>
<td>Radiometric drill hole</td>
<td>RADP</td>
<td>Stripping</td>
<td>STRI</td>
</tr>
<tr>
<td>probed</td>
<td></td>
<td>Road work</td>
<td>ROAD</td>
</tr>
<tr>
<td>Radon gas scintillometry</td>
<td>RGAS</td>
<td>Underground development</td>
<td>UNDV</td>
</tr>
<tr>
<td>Airborne infra-red</td>
<td>INFRI</td>
<td>Land surveying</td>
<td>LSUR</td>
</tr>
<tr>
<td>Radar</td>
<td>RADR</td>
<td>Reclamation</td>
<td>RECL</td>
</tr>
<tr>
<td>GEOCHEMISTRY</td>
<td></td>
<td>Trail</td>
<td>TRAL</td>
</tr>
<tr>
<td>Soil</td>
<td>SOIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stream sediment</td>
<td>SILT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy minerals</td>
<td>HMIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock chip</td>
<td>ROCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>HYDG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overburden drilling</td>
<td>OBDR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogeochemistry</td>
<td>BIOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fission track etch</td>
<td>ETCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DETAILED DATA

Detailed property and technical data are described in the assessment reports which are confidential for a period of one year from the date of affidavit. The confidentiality period may be extended up to three years for regional surveys, and up to five years for drill-core assays upon request. All non-confidential assessment reports may be viewed at the Geological Survey Branch in Victoria, Senior Regional Geologist’s office in Vancouver, and District Geologists’ offices in Smithers, Prince George, Kamloops and Nelson. Locally, partial sets of non-confidential assessment reports on microfiche are also available for viewing at most Gold Commissioners’ offices. Photocopies of the reports may be obtained from:

Geological Survey Branch
Mineral Resources Division
Ministry of Energy, Mines and Petroleum Resources
Room 121, 525 Superior Street
Victoria, BC
V8V 1X4

Telephone: 356-2278

Microfiche copies and photocopies may be obtained from:

Victoria Microfilm Company Ltd.
538 Culduthel Road
Victoria, BC
V8Z 1G1

Telephone: 381-4222
MINERALS EXPLORATION
**** ****

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:

MINING DIV: Greenwood
LOCATION: LAT: 49 02 00 LONG: 118 09 30 NTS: CLAIMS: basic
OPERATOR: Nitro Res.
AUTHOR: Johnston, R.
DESCRIPTION: The claim is underlain by Jurassic Rossland Group volcanics and sediments which enclose the tectonically emplaced Castle Mountain ultramafic body. Soil geochemistry identified anomalous multielement values.

REFERENCE:
Penticton

DESCRIPTION:
Geological mapping on the claims has recognized three major rock units: Permin (7) Anomalist Group metavolcanics and metasediments; Tertiary Corvall Intrusions, primarily syenite; and Phoenix volcanics consisting of andesite and trachyite.

WORK DONE: 753.0 m. 9 holes. 60 SAMP. 87 multi-element.

REFERENCES: A. OS10 28664 1984
W. OS2E5E072-LUCKY JOHN: OS2E5E179-HEK

**** Monas ****

MINING DIV: ***
LOCATION: LAT. 49°10'06" LONG. 118°28'00" NTS:
CLAIMS: Monas (L.2465)
OPERATOR: Flanagan, P.
AUTHOR: Lucke, J.
COMMODITIES: Gold, Silver.

DESCRIPTION:
The claim is underlain by metasediments and volcanics variously intruded by granitic rocks. Mineralization consists of (1) quartz hydrothermal veins containing magnetite and sulfides and (2) a number of quartz veins containing sulfides. The former appear to be in no specific pattern but are scattered randomly over the property and the latter strike in a northerly direction.

WORK DONE: ROCK 1,000 PROD 1,2000, 1,500

REFERENCES: A. OS10 28664
M. OS2E5E076-MONAD

**** Sara ****

MINING DIV: Greenwood
LOCATION: LAT. 49°15'36" LONG. 118°30'18" NTS:
CLAIMS: Sara
OPERATOR: Normand, Ex.
AUTHOR: Blyth, J.

DESCRIPTION:
The area is within a swarm of Tertiary dykes. Rocks older than mineralization are metasediments and metamorphosed cherts and greenstones of the upper part of the Knob Hill Group which are cut by granodiorite notably belonging to the Cretaceous-Jurassic. Nels Van Zyl. Intrusions, both of which are intruded by coarse-grained syenite along the southern margin of the Tertiary Corvall Batholith.

WORK DONE: GEOG 1,10000

REFERENCES:

**** Beauf ****

MINING DIV: Greenwood
LOCATION: LAT. 49°01'36" LONG. 118°39'12" NTS:
CLAIMS: Beauf
OPERATOR: Kuehner, J.
AUTHOR: Krepinsky, R.

DESCRIPTION:
The Beauf claims are underlain by Permin Anomalist Group rocks. These rocks have been intruded by Intrusion/Serpentine bodies.

C18

Penticton

DESCRIPTION:
Mineralization and quartz veins are frequently found in shear zones associated with these serpentine intrusions.

WORK DONE: SUL 60; Au Ag

REFERENCES:

**** Combination (L.1458) ****

MINING DIV: Greenwood
LOCATION: LAT. 49°07'24" LONG. 118°40'12" NTS:
CLAIMS: Combination
OPERATOR: Kileman, P.
AUTHOR: Taylor, R.
COMMODITIES: Silver, Lead.

DESCRIPTION:
The claim is underlain by granodiorite and microgranites. Quartz veins occur in the granodiorite.

WORK DONE: ROCK 1,000 PROD 2,000

REFERENCES: M. OS2E5E185-COMBINATION

**** Crown ****

MINING DIV: OS2E
LOCATION: LAT. 49°05'06" LONG. 118°36'18" NTS:
CLAIMS: Crown 5-9, Crown 17-19, Mirra, No 11e Cotton
OPERATOR: Normand, Ex.
AUTHOR: Gill, G.

DESCRIPTION:
The claims are mainly underlain by rocks and greenstones of the Carboniferous-Permian Knob Hill Group with the Sharpstone member of the Triassic Brooklyn Formation lying unconformably above the latter. The southern portion of the claims are underlain by pre-Carboniferous quartz-chlorite-biotite-muscovite schists and metagabbros of the Permian-Carboniferous Attwood Formation. The structural trend is approximately 130 to 160 degrees and dips moderately to deeply to the north and east.

WORK DONE: GEOG 1,2500
LINE 14,7 KM
ROCK 28; Multi-element

REFERENCES:

**** Eagle ****

MINING DIV: Greenwood
LOCATION: LAT. 48°30'30" LONG. 118°24'00"
CLAIMS: Alpha, Connection, Cressant, Eagle, Homesteak-Eagle, Myrtle Fr.
OPERATOR: The Lawcoyer, R.B.
AUTHOR: Normand, Ex.

DESCRIPTION:
The property is underlain by a package of Carboniferous-Permian sediments unconformably overlying a Jurassic metavolcanic volcanic assemblage of Triassic Brooklyn Formation. These rocks have been intruded by Jurassic Serpentinites and Eocene diorites and syenites. Small replacement deposits of pyrrhotite, pyrite and minor calc-silicate occur in Brooklyn limestones and shales associated with Porphyry dykes.

WORK DONE: GEOG 1,2500

C18
REFERENCES: A.R. 15080

**** Golden Crown, Winnipeg ****
MINING DIV: *** ASSESSMENT REPORT 16090 INFO CLASS 3
LOCATION: LAT. 49 04 24 LONG. 118 34 18 NTS:
CLAIMS: Calumet
OPERATOR: Cons. Boundary Ex.
AUTHOR: Kim, H.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Permo-Carboniferous-Triassic metavolcanic and intrusive rocks. The predominant rock types are green-dark green metavolcanics.
WORK DONE: DIAD 420, 9 holes, BO
REFERENCES: A.R. 08482, 68851
M.I. 082E5032-ODDEN CROWN; 082E5033-WINNIPEG

**** Hamilton ****
MINING DIV: Greenmod
LOCATION: LAT. 49 11 18 LONG. 118 40 48 NTS:
CLAIMS: Hamilton, Mundy
OPERATOR: Nahl, Pny.
AUTHOR: Nahl, Pny.
COMMODITIES: Silver
DESCRIPTION: Positively intrusive rocks. The claims appear to be underlain by volcanics, sediments and possibly intrusive rocks.
WORK DONE: SOIL 25, THM
REFERENCES: A.R. 13135, 15388

**** Lexington, City of Paris ****
MINING DIV: *** ASSESSMENT REPORT 16417 INFO CLASS 2
LOCATION: LAT. 49 00 54 LONG. 118 37 12 NTS:
CLAIMS: Knob Hill
OPERATOR: Keating, J.
AUTHOR: Keating, J.
COMMODITIES: Copper, Silver, Platinum
DESCRIPTION: Regionally the area is largely underlain by Knob Hill Group (Jurassic) andesites which are faulted and the serpentine of unknown age. Potential for gold mineralization is indicated by anomalous gold values in drill samples (1981) and weak coincident VLF electromagnetic/magnetic anomalies sub-parallel to the trend.
WORK DONE: LINES 4.0 km
EMGR 4.0 km: VLF
MAG 4.0 km
SOIL 392: multielement
REFERENCES:

**** Rb 1 ****
MINING DIV: *** ASSESSMENT REPORT 15805 INFO CLASS 3
LOCATION: LAT. 49 05 00 LONG. 118 33 00 NTS:
CLAIMS: Aaa Alki, Harold Fr.
OPERATOR: Keating, J.
AUTHOR: Keating, J.
COMMODITIES: Copper, Silver, Platinum
DESCRIPTION: The oldest rocks on the boundary creek grid are believed to be Knob Hill Group (Jurassic) andesites which may in fact be members of the Triassic Brooklyn Formation. These rocks are unconformably overlain by a package of Tertiary volcanics and sediments which have been intruded and/or overlain by a massive dioritic unit.
WORK DONE: SOIL 198: multielement
REFERENCES:

**** Sappho (Cabin) ****
MINING DIV: *** ASSESSMENT REPORT 16215 INFO CLASS 3
LOCATION: LAT. 49 02 12 LONG. 118 43 06 NTS:
CLAIMS: Asa Aki, Harold Fr.
OPERATOR: Keating, J.
AUTHOR: Keating, J.
COMMODITIES: Copper, Silver, Platinum
DESCRIPTION: The property is underlain by Permo-Ancestral Group rocks with Cretaceous ultramafic exposures and Triassic sediments. DIP workings occur on mineralized quartz veins containing pyrite, byrrnolite, magnetite, arsenopyrite, galena, sphalerite and chalcopyrite.
WORK DONE: EMGR 19.0 km: VLF

**** Sunnyside ****
MINING DIV: Sunnyside
LOCATION: LAT. 49 03 00 LONG. 118 37 00 NTS:
CLAIMS: Bv 2, Sunnyside, Sun.
OPERATOR: Sunnyside Res.
AUTHOR: Sooconoff, L.
COMMODITIES: Gold, Copper, Silver, Lead, Zinc
DESCRIPTION: The property is underlain by Permo-Ancestral Group rocks with Cretaceous ultramafic exposures and Triassic sediments. DIP workings occur on mineralized quartz veins containing pyrite, byrrnolite, magnetite, arsenopyrite, galena, sphalerite and chalcopyrite.
WORK DONE: EMGR 19.0 km: VLF

M.I. 082E5041-LEXINGTON; 082E5042-CITY OF PARIS
REFERENCES: A.R. 00809
M.I. 082ESE059-FANNY JOE:082ESE060-SUNNYSIDE

MINING DIV:*
ASSESSMENT REPORT 15500 INFO CLASS 3
LOCATION: LAT. 49 14 00 LONG. 118 31 00 NTS:
CLAIMS: W.2
OPERATOR: Great Central Mines
DESCRIPTION: The area prospected is underlain by granite, andesite porphyry, and quartzite. These rocks are silicic and pyritic.
WORK DONE:
REFERENCES:

****** W2 ******

MINING DIV: ***
ASSESSMENT REPORT 15496 INFO CLASS 3
LOCATION: LAT. 49 04 18 LONG. 118 35 24 NTS:
CLAIMS: Buna Vista, Legal Tender, Ranger, Winner, Wren
OPERATOR: Silver Lady Res.
DESCRIPTION: The claims are underlain by Perno-Carboniferous-Triassic metavolcanics, clastics and a 511-1,140 m thick body of serpentinite. Mineralization consists of gold-bearing quartz veins that occur along multiple, parallel, northwest trending structures. Geophysical survey results identified numerous VLF electromagnetic conductors.
WORK DONE:
REFERENCES:

****** Winner ******

MINING DIV: Greenwood
ASSESSMENT REPORT 16172 INFO CLASS 3
LOCATION: LAT. 49 05 00 LONG. 118 58 00 NTS:
CLAIMS: Bee 2-3
OPERATOR: Silver Falls Res.
DESCRIPTION: Just north of the property, northwest trending shear zones within anachristic schist contain silvery white gold-bearing quartz veins and breccia veins. Magnetometer survey results indicate a northwest-northeast trending shear zone.
WORK DONE:
REFERENCES:

****** Belair ******

MINING DIV: Osoyoos
ASSESSMENT REPORT 16225 INFO CLASS 2
LOCATION: LAT. 49 11 12 LONG. 119 12 18 NTS:
CLAIMS: Ray 1-4
OPERATOR: Grandex Ex.
DESCRIPTION: The claims cover a northwest trending alpine peridotite dyke, 100 metres by 1000 metres, which intrudes quartzites and greenstone of the Anachrist Group. Chromite occurs as disseminated sulphides or as coarse segregations up to 1.5 metres wide and 30 metres long, parallel to northwest foliation and near vertical shear planes.
WORK DONE:
REFERENCES:

****** Fontenoy ******

MINING DIV: Greenwood
ASSESSMENT REPORT 16226 INFO CLASS 2
LOCATION: LAT. 49 07 42 LONG. 119 10 48 NTS:
CLAIMS: Fontenoy, Kettle, Knight Rambler, Last Chance
OPERATOR: Bravo Res.
DESCRIPTION: The claims are underlain by siliceous argillites trending northwest with dips to the northeast. Intercalated bands of silicified greenstones were observed within the sediments. Pyrite, sphalerite and galena occur in quartz veins carrying variable precious metal values. Faulting and accompanying shearing were also observed.
WORK DONE:
REFERENCES:

****** Gold Hill ******

MINING DIV: ***
ASSESSMENT REPORT 16168 INFO CLASS 3
LOCATION: LAT. 49 05 54 LONG. 119 12 18 NTS:
CLAIMS: B11,11,12
OPERATOR: Wadditt Ex.
DESCRIPTION: East-trending quartz figue-filling cut greenstones and quartzites of the Anachrist Group west of Camp McKinney. Veins are up to 1.5 metres wide and carry pyrite, galena, sphalerite and free gold. VLF-electromagnetic conductors coincide with vein structures.
WORK DONE:
REFERENCES:

****** Ho ******

MINING DIV: Greenwood
ASSESSMENT REPORT 15405 INFO CLASS 4
LOCATION: LAT. 49 11 12 LONG. 119 12 18 NTS:
CLAIMS: Ho
OPERATOR: Wadditt Ex.
DESCRIPTION: The claims are underlain by siliceous argillites trending northwest with dips to the northeast. Intercalated bands of silicified greenstones were observed within the sediments. Pyrite, sphalerite and galena occur in quartz veins carrying variable precious metal values. Faulting and accompanying shearing were also observed.
WORK DONE:
REFERENCES:
LOCATION: LAT. 49 07 42 LONG. 119 07 18 NTS:
CLAIMS: NO
OPERATOR: Hook, A.
AUTHOR: Hook, A.
DESCRIPTION: The claim appears to be underlain by volcanic rocks.
WORK DONE: PROS 1:10 000
REFERENCES:

*** Jolly ***

MINING DIV: *** ASSESSMENT REPORT 16290 INFO CLASS 3
LOCATION: LAT. 49 07 18 LONG. 119 03 24 NTS:
CLAIMS: Jolly IV
OPERATOR: Park Res.
AUTHOR: Sookochnoff, L.
DESCRIPTION: The property is underlain by the Tertiary Anchorage Group consisting of greenstone, argillite and chert. Phyllitic schist, graphitic schist and limestone occur in the northwestern part of the claim. A regional north-south fault zone underlies a variable degree of structural patterns on rocks in the area. Siltified black argillite with quartz veins hosts anomalous gold values, 51.4 grams per tonne silver and over 1 per cent lead.
WORK DONE: SOIL 157; multielement
REFERENCES:

*** Lenox ****

MINING DIV: Greenwood ASSESSMENT REPORT 18918 INFO CLASS 2
LOCATION: LAT. 49 08 06 LONG. 119 01 24 NTS:
CLAIMS: Bev 1-2, Dave 1-3, Lenox, Norm 1-8
OPERATOR: Monte Carlo Res.
AUTHOR: Mark, D.
DESCRIPTION: The property is underlain by metasedimentary and metavolcanic rocks of the Tertiary Anchorage Group. Minor intrusions belonging to the Cretaceous Vallesian plutonic rocks occur as well as some Tertiary dykes. Mineralization is associated with shear zones located in both the metasedimentary (argillite/quartzite) and the metavolcanic (greenstone) rocks. Pyrite, chalcopyrite, galena, and sphalerite were observed.
WORK DONE: NAGC 47.6 km
S3IL 1926; P, Zn, Ag, Cu, As
EMGR 47.6 km; KLF
REFERENCES: A.R. 12759

*** Lou ****

MINING DIV: *** ASSESSMENT REPORT 18519 INFO CLASS 4
LOCATION: LAT. 49 07 10 LONG. 119 12 18 NTS:
CLAIMS: Billie, Lou
OPERATOR: Craney, J.
AUTHOR: Dupras, A.
DESCRIPTION: East-trending quartz fissure-fillings cut greenstones and quartzites of the Anchorage Group west of Camp McKinney. Veins are 0.3 to 1.5 metres wide and carry pyrite, galena, sphalerite and free gold.

C21

Penticton

LOCATION: LAT. 49 07 04 LONG. 119 13 48 NTS:
CLAIMS: Minv. Minv 1-2
OPERATOR: Stussnoff, J.
AUTHOR: Stussnoff, J.
DESCRIPTION: Widely scattered outcrops of Late Jurassic granite are in contact with sediments to the west and altered by ultramafic rocks to the east.
WORK DONE: LINE 12.0 km
ROCK 3; multielement
SOIL 10; multielement
PROS 1:3333
REFERENCES:

*** Victoria-Old England ****

MINING DIV: Greenwood ASSESSMENT REPORT 16683 INFO CLASS 4
LOCATION: LAT. 49 06 45 LONG. 119 08 12 NTS:
CLAIMS: AH, CH, HD, Lenox, Old England, Sadow, Stan, Stan 4-5, Victoria
OPERATOR: Minnow
AUTHOR: Kyba, B.
COMMODITIES: Gold, Zinc
DESCRIPTION: The property is underlain by Tertiary volcanic and sedimentary rocks of the Anchorage Group that have been intruded by Cretaceous stocks and plutons. Tertiary volcanic rocks overlie all rock types in the eastern portion of the property. One large fault and several small fault zones trend north-northeasternly through the property. Mineralization occurs as gold, galena and sphalerite in pyrite-rich veins and as gold disseminated in sheared and altered granite.
WORK DONE: GED 1:5000
ROCK 52; multielement
GEOLOGICAL MAP 1:15 000
REFERENCES: A.R. 07826.08448.15266
M.I. 08265621-VICTORIA-OLD ENGLAND

*** W.S. Boomrang ****

MINING DIV: Greenwood ASSESSMENT REPORT 16671 INFO CLASS 3
LOCATION: LAT. 49 15 05 LONG. 119 02 35 NTS:
CLAIMS: BC, Chaperone, Eagle Fm., Icconblast, W.S.
OPERATOR: Logan Mines
AUTHOR: Visser, S.; Hopper, D.
COMMODITIES: Silver, Gold
DESCRIPTION: Granite is intruded by quartz and quartz breccia structures. A grey dyke (andesite porphyry) trends with the quartz fracture-filling veins.
WORK DONE: GED 1:2000
SOIL 245; Au, Ag, Cu
Penticton

082E

REFERENCES:

- A.R. 00621, 082ESW083-BUCK, 082ESW117, 082ESW083-BOOMERANG, 082ESW083-WS

Kruger **

MINING DIV:

- **Osoyoos**

LOCATION:

- Lat 49 01 12 Long 119 31 30 NTS

CLAIMS:

- Bertha Fr., Blue Bell, Gold Hill, Kruger Mt., Lakeview, Molk, Ronne Fr., Maker Res.

AUTHOR:

- Carpenter, T.H.; Crowe, G.G.

DESCRIPTION:

- Sheared schists, greenstones, and sillified volcanics arc segments of the Kruger schists are intruded by Jurassic-Cretaceous Osoyoos Batholith granite porphyrites. Skarn deposits carrying gold and copper are developed proximal to a northwest trending limestone unit which hosts the Lakeview and Dividend post-producers. Numerous quartz veins that are also developed. A large skarn zone ranks the contact between the volcanics and intrusive, low, but anomalous gold values have been recovered from this skarn zone.

WORK DONE:

- Geol 1:8000
- Emgr 9.0 km.VLF
- Soil 401: Multi-element
- Rock 84: Multi-element

REFERENCES:

Ronne Fr. (L.2676), CHUHAR, MOLKA (L.2675) **

MINING DIV:

- **Osoyoos**

LOCATION:

- Lat 49 00 18 Long 119 29 06 NTS

CLAIMS:

- Bertha Fr., Blue Bell, Dividend 2, Gold Hill, Kruger Mountain, Lakeview, Molk, Ronne Fr., Whistler

OPERATOR:

- Maker Res.

AUTHOR:

- Di Spinoto, F.; Kronman, D.

DESCRIPTION:

- Paleozoic volcanics and sediments are intruded by Jurassic granite porphyrite. Shear zones within the greenstone are variably mineralized by pyrrhotite, pyrite, chalcopyrite, magnetite, and enargite, and veins of pyrite. Small skarns contain pyrrhotite, pyrite, chalcopyrite, and gold.

WORK DONE:

- Emgr 25.0 km.VLF
- Geol 1:8000
- Line 93.5 km
- Mag 50.0 km
- Peg 96 twin sections
- Rock 116: Multi-element

REFERENCES:

- A.R. 0558, 00970, 01228, 02021, 04130, M.I. 082ESW083-BOOMERANG, 082ESW117-BOOMERANG, 082ESW083-WS

MINING DIV:

- **Osoyoos**

LOCATION:

- Lat 49 01 36 Long. 119 35 30 NTS

CLAIMS:

- Nepheline Res.

OPERATOR:

- Nepheline Res.

AUTHOR:

- Payne, J.

COMMODITIES:

- Nepheline Syenite

DESCRIPTION:

- Sills of nepheline syenite-syenite occur in Carboniferous Kockau Group metasedimentary and metavolcanic rocks which are cut by Cretaceous plutonic rocks of granitic to quartzite composition. The sills are zoned mineralogically and dip steeply southwest. The results indicate that the sills are tabular bodies with thicknesses of at least 170 metres.

WORK DONE:

- Geol 1:2000

- Mag 2.9 km

- Peg 96 twin sections

REFERENCES:

- A.R. 00677, 00970, 01228, 02021, 04130
- M.I. 082ESW106-BUCK

MINING DIV:

- **Osoyoos**

LOCATION:

- Lat 49 00 35 Long. 119 30 50 NTS

CLAIMS:

- Gold

OPERATOR:

- Stewart, R.

AUTHOR:

- Stewart, R.

COMMODITIES:

- Gold

DESCRIPTION:

- The claim is located on the northern edge of the Osoyoos Batholith mass of pegmatitic coarse-grained granodiorite of Jurassic and Cretaceous age intruding a series of sheared schists, greenstones, and quartzites known as the Kruger schists. Native gold blebs were observed in thin section.

WORK DONE:

- Mag 5.5 km
- Rock 46: multi-element
- Peg 96

REFERENCES:

MINING DIV:

- **Osoyoos**

LOCATION:

- Lat 49 15 42 Long. 119 41 56 NTS

CLAIMS:

- King, King 1-4 Mo

OPERATOR:

- Granex Res.

AUTHOR:

- Christopher, P.

COMMODITIES:

- Gold

DESCRIPTION:

- Mineralization on the Groffino Mountain property consists of quartz veins with pyrrhotite, chalcopyrite, galena, and free gold. Gold values of up to 375.2 grams per tonne have been obtained from the lower king area. Metasedimentary and volcanic rocks are intruded by Mesozoic granite bodies varying in composition from granite to diorite.
Penticton

WORK DONE: SOIL 2013: Au
LINE 51.3 km
EMGR 44.3 km; VLF
MAGS 44.3 km
REFERENCES: A. D. 04204, 09833, 11480, 12705, 13976, 15078
M. I. 082ESW13-HILL

*** Kruger Mt. Horn Silver ****

MINING DIV: ***
ASSESSMENT REPORT 16629 INFO CLASS 3

LOCATION: LAT. 49 03 37 LONG. 119 40 13 NTS:
CLAIMS: Unam
OPERATOR: Laronth Eng.
AUTHOR: M. Redie, E.
COMMODITIES: Silver, Gold, Copper, Lead, Zinc, Nepheline, Syenite
DESCRIPTION: The property is underlain by Kruiger syenite and is bordered to the south by granodiorite (Jurassic or younger) and to the north by Carboniferous Kabou Group quartzites and schists. The main mineral, silver, is found in quartz veins up to 1.3 metres wide. Numerous small faults are evident as well as two major faults.

WORK DONE: GEOL 1:5000
LINE 35.5 km
EMGR 32.5 km; VLF
MAGS 32.5 km
REFERENCES: A. R. 05293

MINING DIV: ***
ASSESSMENT REPORT 15920 INFO CLASS 2

LOCATION: LAT. 49 06 30 LONG. 119 41 12 NTS:
CLAIMS: Allen (L. 2974), Apex (L. 1038), Bobbs (L. 2960), Butler (L. 2965), Butler 1 Crown (L. 2968), Eclipse Fr. (L. 2976), French (L. 2976), Kitchener (L. 2977), Mak Siscoar, Otter (L. 2970), Strethenone (L. 2978)
OPERATOR: Chulp Res.
AUTHOR: O1 Spiritus, E.; Maixner, H.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: Quartz veins 5 to 150 centimetres wide occur in a shear zone which traverses a small granodiorite stock within greenstone schists. The shear zone strikes 030 degrees east and dips 60 degrees to the west.

WORK DONE: SOIL 233: multielement
EMGR 61.0 km; VLF
MAGS 62.0 km
GEOL 1:5000
LINE 71.7 km
ROCK 68: multielement
REFERENCES: A. R. 08996

MINING DIV: ***
ASSESSMENT REPORT 15413 INFO CLASS 3

LOCATION: LAT. 49 11 00 LONG. 119 34 00 NTS:
CLAIMS: McT.
OPERATOR: Kronex Res.
AUTHOR: Tuck, P.
DESCRIPTION: The claims are underlain by a thick sequence of metamorphosed sedimentary rocks belonging to the Carboniferous Kabou Group. Weak VLF-electromagnetic conductors and magnetic anomalies coincide with anomalous gold soil zones.

WORK DONE: SOIL 233: multielement
EMGR 18.2 km; VLF
MAGS 18.2 km
GEOL 1:1000

REFERENCES:

*** Nove ****

MINING DIV: ***
ASSESSMENT REPORT 15124 INFO CLASS 4

LOCATION: LAT. 49 13 42 LONG. 119 34 30 NTS:
CLAIMS: Nove
OPERATOR: Golden webb Res.
AUTHOR: Barlette, P.
DESCRIPTION: The property is underlain by Precambrian Monshee Group metasediments which have been intruded by Carboniferous-Jurassic Nelson Intrusions. There are at least three quartz veins with anomalous gold values located in the plutonic rocks at or near the Monshee Group contact. The veins are 1 to 3 metres wide, have a northerly strike, dip 40 east and display limonite and malachite staining.

WORK DONE: GEOL 1:250
MAGS 7.7 km
EMGR 7.7 km; VLF

REFERENCES:

*** Standard ****

MINING DIV: ***
ASSESSMENT REPORT 15833 INFO CLASS 3

LOCATION: LAT. 49 12 06 LONG. 119 34 48 NTS:
CLAIMS: Snowflake
OPERATOR: Kronex Res.
AUTHOR: Callaghan, B.; Combes, S.
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: The claims are underlain by Carboniferous calc-alkaline Velhelma intrusives of quartz monzonite composition. Mineralization consists of galena, sphalerite and lesser chalcopyrite and gold telluride hosted in quartz veins.

WORK DONE: SAMP, 404, Au, Ag, OIAA 610, Smp. to holes, NO
REFERENCES: A. R. 12971
M. I. 082ESW91-STANDARD

*** White ****

MINING DIV: ***
ASSESSMENT REPORT 16267 INFO CLASS 3

LOCATION: LAT. 49 00 24 LONG. 119 33 24 NTS:
CLAIMS: Knight, white

C26
OPERATOR: Stewart, R.
AUTHOR: Stewart, R.
DESCRIPTION: The claims are located on the western edge of the Osoyoos Batholith, a mass of medium to coarse-grained granodiorite with a series of sheared lenses, greenstones and quartzites known as the Kuskanak Complex. Work done: ROCK 6: multi-element.

REFERENCES:

**** Cliffs ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 10 00 LONG 119 51 00 NTS:
CLAIMS: Cliffs.
OPERATOR: Goldcliff Res.
AUTHOR: Rockel, E.; Reading, C.
DESCRIPTION: The claims are underlain by a Jurassic ultramafic stock which has intruded marine sedimentary and volcanic rocks of the Triassic Snoecker Formation. Gold mineralization is associated with brecciation, quartz stockworks and carbonatization.

REFERENCES:

**** Daily ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 13 42 LONG. 119 46 36 NTS:
CLAIMS: Daily. Daily 1
OPERATOR: Grand National Res.
AUTHOR: Freeze, J.
DESCRIPTION: The claims are underlain by Triassic metasediments and metavolcanics of the Snoecker Formation. Locally these rocks have been intruded by diorites belonging to the Cretaceous-Jurassic Nelson Batholith. Precious metal mineralization is localized in tiny cherts and stringers of the Snoecker Formation.

REFERENCES:

**** H111, MD ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 15 40 LONG. 119 41 42 NTS:
CLAIMS: H111, MD
OPERATOR: Grandex Res.
AUTHOR: Christopher, P.

C27

Penticton 082E

COMMODITIES: Gold, Rhodochrosite
DESCRIPTION: Narrow quartzite bands of the Triassic Snoecker Formation occur as pockets in an intrusive complex that varies from gabbro to granite. Mineralization consists of 1 metre wide steeply dipping quartz veins containing pyrite, chalcopyrite, galena and free gold.

REFERENCES:

**** Vault ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 22 46 LONG. 119 36 12 NTS:
CLAIMS: Vault 1, Vault 4
AUTHOR: Greener, W.; Hunter, E.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by porphyritic trachyte flows of the Narrow Formation, trachytic pyroclastics and flows of the Warano Formation, and lavas, volcanic flows and tuffs of the White Lake Formation. All formations are of Cretaceous age. The rocks are folded into a east plunging syncline and a gentle east trending anticline. A major northeast fault zone cuts through the centre of the property. Other northeast and northwest trending faults occur in the northeast part of the Vault 1 claim. Parts of the lower Warano Formation have been silicified and locally contain low gold-silver values.

REFERENCES:

**** Fuji Logan ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 25 42 LONG. 119 30 48 NTS:
CLAIMS: Fuji Logan
OPERATOR: Icenhawen Ent.
AUTHOR: D'Alonzo, F.; Grenam, J.C.
DESCRIPTION: The claims are underlain by porphyritic trachyte flows of the Triassic Snoecker Formation, with porpyritic trachyte and flows of the Warano Formation, and lavas, volcanic flows and tuffs of the White Lake Formation. All formations are of Cretaceous age. The rocks are folded into a east plunging syncline and a gentle east trending anticline. A major northeast fault zone cuts through the centre of the property. Other northeast and northwest trending faults occur in the northeast part of the Vault 1 claim. Parts of the lower Warano Formation have been silicified and locally contain low gold-silver values.

REFERENCES:

**** Jennifer's Gold ****

MINING DIV: Osoyoos
LOCATION: LAT. 49 18 CO LONG. 119 57 30 NTS:
CLAIMS: Jennifer's Gold

C28
Penticton

OPERATOR: Toby Creek Res.

DESCRIPTION: The property geology is composed of Upper Triassic Nicola Group chert and intermediate volcanics which trend northerly. Strong magnetic responses indicate a linear feature, probably a fault trending 080 degrees, and an anomaly which has been interpreted as a diorite stock.

WORK DONE: GEOL 1:5000
ROCK 15:multielement
MAGA 81.8 km
EMAR 81.8 km:VLF

REFERENCES:

**** Lisa ****

MINING DIV: *** ASSESSMENT REPORT 16432 INFO CLASS 3
LOCATION: LAT. 49 17 30 LONG. 119 58 30 NTS:
CLAIMS: Lisa 1
OPERATOR: Tymar Res.
AUTHOR: Coffin, S.
DESCRIPTION: The claim is underlain by greenstone, chert and tuff of the Triassic Independence, Shoemaker and Old Tom Formations.
WORK DONE: SOIL 102:multielement
ROCK 164:multielement
EMGR 50.0 km:VLF
LINE 5.3 km

REFERENCES:

**** Assessment Report 15517 INFO CLASS 3

MINING DIV: *** ASSESSMENT REPORT 15517 INFO CLASS 3
LOCATION: LAT. 49 18 18 LONG. 119 48 00 NTS:
CLAIMS: Golden Plus
OPERATOR: Green Lake Res.
AUTHOR: Day, W.C.
COMMODITIES: Stone
DESCRIPTION: Eocene andesite-basalt pyroclastics are intruded by rhyolitic to rhyodacitic rocks. Extensive clay alteration occurs in the rhyolitic intrusive.
WORK DONE: DIAZ 307 y:3:3 holes.NQ
SAMP 54:multielement

REFERENCES: A.R. 13611 M.I. OB2ESWOS-NORTHWESTERN QUARRIES

**** PDL ****

MINING DIV: *** ASSESSMENT REPORT 16674 INFO CLASS 3
LOCATION: LAT. 49 22 18 LONG. 119 48 20 NTS:
CLAIMS: Ford 1:PDL
OPERATOR: DPX Min.
AUTHOR: Lee, L.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain primarily by cherts and greenstones of the Triassic or older Old Tom and Shoemaker Formations. Tertiary conglomerates (Springbrook Formation) and lavas (Morrison Formation)

REFERENCES: A.R. 13199-14002 M.I. OB2ESW130-PDL

**** Ritsuko ****

MINING DIV: *** ASSESSMENT REPORT 15932 INFO CLASS 3
LOCATION: LAT. 49 20 42 LONG. 119 56 42 NTS:
CLAIMS: Motami Ritsuko
OPERATOR: Petrotex Res.
AUTHOR: Di Spirito, F.
DESCRIPTION: The claims are underlain by post-Triassic granidiorite, part of a large body which intrudes Triassic Independence Formation volcano-sedimentary strata.
WORK DONE: ENG 30.0 km:VLF
TREN 40.0 m:1 trench
SOIL 8:multielement
ROCK 164:multielement
LINE 10.3 km
MAGA 9.0 km
SILT 3:multielement
GEOL 1:10 000
SAMP 4:multielement

REFERENCES: A.R. 14499

**** Yuniman ****

MINING DIV: *** ASSESSMENT REPORT 15849 INFO CLASS 2
LOCATION: LAT. 49 18 24 LONG. 119 56 30 NTS:
CLAIMS: Little Basset, Big Old Pointhouse, Truine
OPERATOR: Tony Creek Res.
AUTHOR: Gale, N.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Triassic cherts, basalt, andesite, argillite and limestone which are intruded by diorite and narrow dykes of intermediate to felsic composition. Gold, silver and arsenopyrite in quartz veins are associated with northwest trending dykes and fracture systems. Silica, carbonate and scapolite alteration is present.
WORK DONE: GEOL 1:1300,1:500
ROCK 493:multielement
MAGA 5
SOIL 802:multielement
SAMP 215:multielement
IPOL 2.3 km
TOEN 450.0 m:25 trenches
DIAZ 356.0 m:8 holes.NQ

REFERENCES: M.I. OB2ESW180-YUNIMAN
**** Dollar ****
MINING DIV: Greenwood
LOCATION: LAT. 49 27 18 LONG. 119 07 50
CLAIMS: W 1-2
OPERATOR: Morrison, M.
DESCRIPTION: Massive granodiorite of the Westkettle Batholith (Cretaceous-Jurassic Nelson Intrusions) is cut by a strong 1 to 2 metre wide shear zone crossing the property for at least 300 metres at 080 degrees vertically. Vuggy quartz veins 5 to 30 centimetres in width fill the shear zone locally. Mineralization consists of pockets of pyrite, galena and sphalerite within or adjacent to the quartz vein material. Silver assays range from 60 to 300 grams per tonne, while gold assays range from 2 to 45 grams per tonne. Sulfurization extends 0.5 metres on either side of the shear zone while chlorite alteration extends up to 3 metres.
WORK DONE: S100; 36-multielement
REFERENCES: A. 05194; LG106
M. 1. 0260000-DOtLAR (INW/ACKWORTH:ESTER)

**** Nona ****
MINING DIV: Osasco
LOCATION: LAT. 49 22 24 LONG. 119 19 48
CLAIMS: Nona 1-2
OPERATOR: Norende Ex.
AUTHOR: G11. D.
DESCRIPTION: The claims may be underlain by Cretaceous ValhallA and Nelson Intrusions
WORK DONE: LINE 10.6 km
REFERENCES: ASSESSMENT REPORT 16346
INFO CLASS 4

**** Green ****
MINING DIV: Greenwood
LOCATION: LAT. 49 22 24 LONG. 118 40 24
CLAIMS: Green 4
OPERATOR: Bolton, C.
AUTHOR: Bolton, C.; La Rue, J.
DESCRIPTION: The claim is underlain by a complex series of intrusive rocks of the Cretaceous ValhallA Intrusions and Eocene Coryell Intrusions.
WORK DONE: SOIL 47; Cu.C0.Zn.Au,As
REFERENCES: A.R. 06617; 07164; 07946; 08951; 10036; 13379; 14342

**** Seage ****
MINING DIV: ***
LOCATION: LAT. 49 22 42 LONG. 118 56 36
CLAIMS: Seage
OPERATOR: Seage Res.
AUTHOR: Partridge, A.
DESCRIPTION: The claim is underlain by Cretaceous-Jurassic Nelson granodiorite, Tertiary Coryell Intrusives and Persian Anarchist Group rocks.
WORK DONE: MAGS 131.0 km EMAB 131.0 km; VLF
REFERENCES: ASSESSMENT REPORT 15964
INFO CLASS 3

**** Basic.Mafic ****
MINING DIV: Greenwood
LOCATION: LAT. 49 20 48 LONG. 118 26 00
CLAIMS: Basic.Mafic
OPERATOR: Bukers Res.
AUTHOR: Bukers, F.; Grapes, U.
DESCRIPTION: The claims are believed to be underlain by Cretaceous-Jurassic Nelson granodiorite, Tertiary Coryell Intrusives and Persian Anarchist Group rocks.
WORK DONE: MAGS 14.5 km
SOIL 249; Ag.Au,As
PROS 1:5000
LINE 14.5 km
REFERENCES: ASSESSMENT REPORT 16161
INFO CLASS 3

**** Buffalo.Averill ****
MINING DIV: ***
LOCATION: LAT. 49 35 00 LONG. 118 23 36
CLAIMS: Pt
OPERATOR: Placer Dev.
AUTHOR: Clark, A.
COMMODITIES: Copper,Silver,Gold
DESCRIPTION: A pyroxenite dyke or sill occurs within a body of Tertiary augite syenite with anadigmatic volcanics along the contacts.
WORK DONE: SAMP; 508-multielement
U1AD 225.0; 13.5 miles, BC
REFERENCES: A.R. 09584
M. 1. 082EN007-AVERILL; 082EN008-BUFFALO

**** GH.Gloucester ****
MINING DIV: Greenwood
LOCATION: LAT. 49 35 35 LONG. 118 22 12
CLAIMS: G.H.Gloucester
OPERATOR: Mack1100, R.
AUTHOR: Mack1100, R.
COMMODITIES: Copper,Gold, Iron, Volcanic, Silver
DESCRIPTION: Paleozoic to Mesozoic Franklin Group rocks are intruded by Cretaceous-Jurassic granodiorite of the Nelson Batholith. Copper-silvert mineralization occurs along the intrusive contact with a strike of approximately 240 degrees and dip of nearly 70 degrees southeast.
WORK DONE: PROS 1:3600
C32
REFERENCES: 4.R. 06228, 07335 M.I. 082ENE005-GLOUCESTER; 082ENE006-CH

**** Kingfisher ****

MINING DIV: ** ASSESSMENT REPORT 15981 INFO CLASS 2
LOCATION: LAT 118 21 05 NTS:
CLAIMS: DAOG 1-4 Dodge Spring 4
OPERATOR: Placek Dev.
AUTHOR: Clark, A.
COMMODITIES: Copper, Lead, Zinc, gold, Silver, Cadmium, Fluorite
DESCRIPTION: The claims are underlain by a pyroxenite/syenite intrusion with platinum-palladium mineralization.
WORK DONE: SAMP. 69;Cu.Ag.Au.Pt.Pd
DIAD 1570.7 m; 19 holes, 80
REFERENCES: 4.R. 07335 M.I. 082ENE009-KINGFISHER

**** Plaat Pal ****

MINING DIV: ** GREENWOOD ASSESSMENT REPORT 15981 INFO CLASS 3
LOCATION: LAT 118 29 00 NTS:
CLAIMS: Plaat, Plaat
OPERATOR: Potter, A.
AUTHOR: Clark, A.
DESCRIPTION: Outcrops prospected include pyroxenite, granite and granodiorite. Soil samples taken along a single line include anomalous values of precious and base metals.
WORK DONE: GOLD 1-8000
REFERENCES:

**** Auriferous ****

MINING DIV: ** ASSESSMENT REPORT 15639 INFO CLASS 4
LOCATION: LAT 118 29 12 NTS:
CLAIMS: Auriferous 1
OPERATOR: Morrison, M.
DESCRIPTION: The claim is underlain by northwest trending and northeast dipping metavolcanic and metasedimentary rocks of the Copper Creek Group, which are intruded by the Cretaceous-Jurassic Nelson Batholith. Biogeochemistry survey results identified anomalous multielement values.
WORK DONE:
REFERENCES:

**** Fox ****

MINING DIV: ** ASSESSMENT REPORT 15636 INFO CLASS 4
LOCATION: LAT 118 11 30 NTS:
CLAIMS: CA 2-5 PFC 3
OPERATOR: Dynamic Oil
AUTHOR: Leary, G.
REFERENCES: 8 0 0203 030204 05430 05519 05860 06023 06276 06302 07413 07683 M.I. 082ENG36-00E (IVY, FAN)

**** Jess (Hen, Mun) ****

MINING DIV: ** ASSESSMENT REPORT 15647 INFO CLASS 3
LOCATION: LAT 118 55 45 NTS:
CLAIMS: Dale Ross Rose 2-3
OPERATOR: Bannan Res.
AUTHOR: Burns, D. Watt, D.
COMMODITIES: Copper, Molybdenum, Zinc
DESCRIPTION: A highly oxidized north trending shear-zone, 400 metres long by 20 metres wide, cuts amphibolite basement rocks enveloped by a granodiorite intrusion. The shear zone hosts hornblendites and altered gneisses. These are cut by quartz veins and quartz-carbonate veins carrying pyrite, chalcopyrite and minor galena with low values in gold and silver.
WORK DONE: DIAD 1-68 9 m; 1 hole, NO
REFERENCES: 8 0 02108 04691 05445 10718 11518 13931 15047 M.I. 080ENG48-FAP

Penticton 082E

COMMODITIES: Molybdenum, Copper, Flourite
DESCRIPTION: Extensive drilling has indicated an open pit reserve of 20.7 million tonnes grading 0.158 per cent molybdenum in two zones, "A" zone and "B" zone with potential for 26.3 million tonnes. A higher grade steeply north-dipping lens in "A" zone breccia (subsequent work) has an average width of 8.5 metres and an average grade of 0.33 per cent molybdenum has potential for 4.8 million tonnes. Mineralization occurs in Cretaceous-Jurassic Nelson and Tertiary Valhalla rocks.
WORK DONE:
REFERENCES: 8 0 0203 030204 05430 05519 05860 06023 06276 06302 07413 07683 M.I. 082ENG36-00E (IVY, FAN)

**** Jubilation ****

MINING DIV: ** ASSESSMENT REPORT 15604 INFO CLASS 4
LOCATION: LAT 118 42 26 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
COMMODITIES:
DESCRIPTION:
WORK DONE:
REFERENCES: 8 0 03119 03399 05598 10434 11927 M.I. 082ENG21-JUBILEATION (HEN, MUN)

**** Vernon ****

MINING DIV: ** ASSESSMENT REPORT 15604 INFO CLASS 4
LOCATION: LAT 119 42 26 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
COMMODITIES:
DESCRIPTION:
WORK DONE:
REFERENCES: 8 0 03119 03399 05598 10434 11927 M.I. 082ENG21-JUBILEATION (HEN, MUN)
CLAIMS: Jovialtion 1-2
AUTHOR: Cheyvan Min.

DESCRIPTION: Persian-Pennsylvanian Cache Creek Group metasediments striking westerly and dipping steeply north are intruded by a hornblende gabbro stock on the northeast side of the property. Some nonfelsic and semivariation of the lime-rich sediments has resulted. Gold, silver, and arsenic values occur in anomalous amounts associated with pyrite-bearing quartz veins cutting through fractures, bleached, limonite and manganese stained liny metasediments. Northwest faulting (333 degrees) of possible Tertiary age appears to control the emplacement of the quartz veins.

WORK DONE: PROS: 2500
ROCK: 16: multielement
SOIL 9: multielement

REFERENCES:

**** Shear ****

MINING DIV: Shear 1-7
LOCATION: LAT. 49 59 42 LONG. 119 34 12 NTS:
CLAIMS: Shear 1-7
OPERATOR: Grenad Mining
AUTHOR: Shear 1-7
DESCRIPTION: The property is underlain by Persian-Pennsylvania Cache Creek Group metasediments and monzogranite locally intruded by minor dioritic-mafic dykes with satellite quartz veins and stockworks. The wallrocks are chloritized, pyritized, and phyllicized. Strong potassic alteration is found in some dykes. Auriferous, pyritic quartz veins occur with occasional free gold.

WORK DONE: GEO 1: S333
REFERENCES: A.R. 14764

**** Barn ****

MINING DIV: Nicola
LOCATION: LAT. 49 59 42 LONG. 119 34 12 NTS:
CLAIMS: Nicola
OPERATOR: Brunsat, R.
AUTHOR: Nicola
DESCRIPTION: Porphyritic quartz diorite of the Jurassic Brandon stock is fractured and weakly mineralized with calcite, pyrite, and molybdenite in wallrock fractures and occasionally the same minerals in quartz veins. Potassic alteration occurs in the form of chloritization of mafics, potassium feldspar vein selvages and epidote.

WORK DONE: QDAD 298.1 m, 1 hole, SG
SAMP 579: Mo, Cu, Pb, Fe, Ca

REFERENCES:

**** Iron Horse, Blue Bell (Ted), Blue Bell (Patricia) ****

MINING DIV: Osyovos
LOCATION: LAT. 49 48 18 LONG. 118 53 24 NTS:
CLAIMS: Cap, Iron Horse, Ozyvos
DESCRIPTION: The property is underlain by calc-alkaline, intermediate rock in quartz veins altered in altered intrusives.

WORK DONE: SOIL 1:5000
EXPL 7: 1063, Au, Cu, Zn, As, rock 381, Au, Cu, Zn, As, LINE 58 km
REFERENCES: 41. 0007572, 00718, C1110, C0040, 08143, 09261
M.I. 082EN056-IRON HORSE, 082EN058-BLUE BELL, 082EN060-082EN062-BLUE BELL

**** Director 5 ****

MINING DIV: Vernon
LOCATION: LAT. 49 55 36 LONG. 118 34 06 NTS:
CLAIMS: Vernon
OPERATOR: Amulet Res.
AUTHOR: Mark D. Von Hauen, C.
COMMODITIES: Zn-Cu, Lead, Silver, Gold
DESCRIPTION: The claims are underlain by Cretaceous-Jurassic Nelson Intrusion granite-type rocks as well as Persian-Anarchist Group argillites. Mineralization consists of gold and silver with associated pyrite within siliceous epithermal veins along north and east shear zones. Jesseau Min.

WORK DONE: IDOL 2.1 km
SOIL 1:2000
TREN 2100.0 m, 6 trenches
SAMP 37: multielement
REFERENCES: M.I. 082EN012-DIRECTOR 5

**** Split ****

MINING DIV: Split
LOCATION: LAT. 49 52 30 LONG. 118 43 30 NTS:
CLAIMS: Split 1-2
OPERATOR: Triple Star Res.
AUTHOR: M.R. 08143, D.
DESCRIPTION: The property is underlain by felsic intrusives of the Lower Cretaceous Nelson Batholith.

WORK DONE: SOIL 52: Au, Ag
SILT 8: Au, Ag
ROCK 2: Au, Ag
HMIN 28: Au, Ag

REFERENCES:
**** Kid 3,Kid 12 ****
MINING DIV: Nelson
LOCATION: LAT. 49 12 24 LONG. 116 15 14 NTS:
CLAIMS: 1-2,Star 12,Star 4-5,Star 7
OPERATOR: Cominco
AUTHOR: Piggott, D. Vygarsen, J.
COMMODITIES: Lead,Zinc,Silver
DESCRIPTION: The Star claims are underlain by steeply dipping, east facing Proterozoic Middle Aldridge Formation sediments. These sediments are dominantly medium to thin bedded wackes and quartzitic wackes and lesser quartzwacke. Gabbro sills and dykes are found on the property. The property is bounded by steeply dipping major north trending faults. At least 4 other minor faults that are parallel to the major north trending faults occur on the property.
WORK DONE: EMGR 33.6 km;HEM SOIL 755:multielement
REFERENCES: ROAD 3.5 km;TREN 17.6 km
**** Option ****
MINING DIV: **
LOCATION: LAT. 49 09 12 LONG. 116 13 54 NTS:
CLAIMS: Sky
OPERATOR: Wiltuna, D.
AUTHOR: Davies, W.
COMMODITIES: Copper,Gold,Tungsten
DESCRIPTION: The claims are underlain by Proterozoic Aldridge Formation quartzites and shales. Quartz veins occur in diorite sills.
WORK DONE: LINE 1.8 km SOIL 1355:multielement
REFERENCES: A.R. 12895
**** Blackmore ****
MINING DIV: Fort Steele
LOCATION: LAT. 49 00 54 LONG. 116 17 00 NTS:
CLAIMS: Shin 19-20,Shin 22-25
OPERATOR: Cominco
AUTHOR: Kinder, A.
COMMODITIES: Silver,Lead
DESCRIPTION: The Shin claims are underlain by moderately east dipping Precambrian Middle Aldridge Formation sediments composed predominately of bedded wackes, quartzitic wackes and quartzwackes intruded by gabbro sills and dykes. The area is bounded by two major north trending faults, the Iron Mountain fault on the west and the Kidd Creek fault on the east. Other minor northeast and northwest striking left lateral normal faults have been mapped.
**** Blackmore ****
MINING DIV: **
LOCATION: LAT. 49 00 36 LONG. 116 19 36 NTS:
CLAIMS: Sha 10
OPERATOR: Cominco
AUTHOR: Heggen, A.
COMMODITIES: Silver,Lead
DESCRIPTION: The Sha claims cover east dipping Precambrian Middle Aldridge Formation beds. These beds are composed dominantly of bedded wackes, quartzitic wackes and quartzwackes intruded by gabbro sills and dykes. The area is bounded by two major north trending faults, the Iron Mountain fault on the west and the Kidd Creek fault on the east. Other minor northeast and northwest striking left lateral normal faults have been mapped.
**** Blackmore ****
MINING DIV: **
LOCATION: LAT. 49 11 30 LONG. 116 28 00 NTS:
CLAIMS: Row 1-3
OPERATOR: Essco Res
AUTHOR: Waskett-Myers, M.
DESCRIPTION: The claims are underlain by Precambrian Middle Aldridge Formation greywacke and slate dipping 30 degrees to the west. A north-northwest trending normal fault occurs along the west claim boundary.
WORK DONE: SOIL 2455:multielement
**** Sha ****
MINING DIV: **
LOCATION: LAT. 49 11 30 LONG. 116 19 12 NTS:
CLAIMS: Sha 24,Sha 28,Sha 28
OPERATOR: Cominco
AUTHOR: Heggen, A.
DESCRIPTION: The Sha claims are underlain by moderately east dipping Precambrian Middle Aldridge Formation sediments. These sediments are dominantly medium to thin bedded wackes and quartzitic wackes and lesser quartzwacke. Gabbro sills and dykes are found on the property. The property is bounded by steeply dipping major north trending faults. At least 4 other minor faults that are parallel to the major north trending faults occur on the property.
WORK DONE: SOIL 345,Pb,Zn
REFERENCES: A.R. 13109
C38
**** Jon ****

MINING DIV: Jon ASSESSMENT REPORT 16037 INFO CLASS 4
LOCATION: LAT: 49 02 54 LONG: 116 35 42 NTS:
CLAIMS: Jon Jon 2-5
OPERATOR: O’Grady, F.
AUTHOR: O’Grady, F.
DESCRIPTION: The claims are underlain by the Proterozoic Aldridge Formation.
WORK DONE: GEOLOGICAL CANDLE
SOIL: 18-Pb, Zn
REFERENCES:

***** Sullivan ****

MINING DIV: Sullivan ASSESSMENT REPORT 16243 INFO CLASS 3
LOCATION: LAT: 49 02 48 LONG: 116 07 30 NTS:
CLAIMS: Sullivan Two
OPERATOR: O’Grady, F.
AUTHOR: O’Grady, F.
DESCRIPTION: Galene and sphalerite occur as stratiform layers in the Proterozoic Aldridge Formation, accompanied by tournaminalization, mobilization and tectonic alteration.
WORK DONE: GEOLOGICAL CANDLE
LINE: 2.3 km
REFERENCES: A.R. 19856

***** Black Rock South, Black Rock North *****

MINING DIV: Nelson ASSESSMENT REPORT 16873 INFO CLASS 3
LOCATION: LAT: 49 02 48 LONG: 117 13 00 NTS:
CLAIMS: Black Rock 5-7 Fr., Black Rock 10-12 F.
OPERATOR: Source Res.
AUTHOR: Sullivan
COMMODITIES: Lead, Zinc
DESCRIPTION: The Black Rock claims cover lead, zinc, silver and copper mineralization within Cambrian limestones of the Labre Formation. Pyrite and sphalerite, and argentite occur within the sequence. These rocks are underlain by quartzites of the Renf Formation, and to the south are intruded by a granite stock. Gold-silver and copper mineralization results range to 28.8 ppm silver, 330 ppm gold, 1.4 per cent lead, 14.9 per cent zinc and 187 ppm germanium.
WORK DONE: GEOLOGICAL CANDLE
SOIL: 517 Cu, Pb, Zn, As, W, Ag
LINE: 2.5 km
ROCK: 36 Cu, Pb, Zn, As, W, Ag
REFERENCES: A.R. 07215, 08132

***** Bonanza *****

MINING DIV: Nelson ASSESSMENT REPORT 16035 INFO CLASS 4
LOCATION: LAT: 49 07 42 LONG: 117 07 30 NTS:
CLAIMS:
OPERATOR: Nelson
AUTHOR: Nelson
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: Galene and sphalerite occur as stratiform layers in the Proterozoic Aldridge Formation, accompanied by tournaminalization, mobilization and tectonic alteration.
WORK DONE: GEOLOGICAL CANDLE
LINE: 2.3 km
REFERENCES: M.J. 082FSW055-BONANZA

***** Ace in the Hole *****

MINING DIV: Nelson ASSESSMENT REPORT 16567 INFO CLASS 4
LOCATION: LAT: 49 07 06 LONG: 117 22 30 NTS:
CLAIMS: Ace in the Hole
OPERATOR: Falconbridge
AUTHOR: Van Piren, N.
COMMODITIES: Gold
DESCRIPTION: Mafic volcaniclastic basaltic deposits are interbedded with argillite, ash tuff and pyritic, cherty ash tuff. Several small bodies of fine-grained rhyolite were mapped within the mafic volcanics.
WORK DONE: GEOLOGICAL CANDLE
SAMPLE: 43 Au, Ag, Cu, Pb, Zn
**GEOLOGICAL CANDLE
REFERENCES: A.R. 14934

***** Arnold, Rosa, Drum Lummon, Hattie, Ben Hassen *****

MINING DIV: Nelson ASSESSMENT REPORT 16510 INFO CLASS 4
LOCATION: LAT: 49 15 54 LONG: 117 23 42 NTS:
CLAIMS: Ben Hassen, June 2-6, Insurance 1, Insurance 3-5, Rosa, Copper King, Homestake, Arnold, Maude S, Ontario, Westminster Fr., Gordon, St. Louis, Rosa
OPERATOR: Kootenay King Res.
AUTHOR: Arnold, V.
COMMODITIES: Copper, Molybdenum, Lead
DESCRIPTION: The claims are centred on a complex swarm of Eocene porphyritic felsic to intermediate dykes which intrude sedimentary rocks of the Lower-Middle Jurassic Hattie Formation of the Jurassic Rosland Group. Molybdenite, scheelite and chalcopyrite occur in a quartz-calcite vein stockwork associated with an aplite stock. Silver-lead-zinc mineralization in quartz veins occur peripherally to the stockwork zone.
WORK DONE: GEOLOGICAL CANDLE
REFERENCES: A.R. 01620, 06803, 07778, 07756, 07793, 08735, 08753, 08753, 08770

***** C4C *****
**** Gus.Swift ****

MINING DIV: Nelson
LOCATION: LAT. 49 07 00, LONG. 117 21 12
CLAIMS: Gus 1-13,Swift 1-6
OPERATOR: Falchukrige
AUTHOR: Hendrickson, G.J.; Von Fersen, N.
DESCRIPTION: The claims are underlain primarily by a sequence of mafic volcaniclastic rocks and volcaniclastic rocks of basaltic composition, which are part of the Lower Jurassic Elise Formation of the Rossland Group. Work evaluation consists of pyrite and ilvor chalcopyrite, asbylite, trace galena, hematite and traces of gold and silver which are hosted by quartz-carbonate veinlets.

WORK DONE:
- MAGG 4.3 km
- LINE 4.3 km
- EMGR 4.3 km
- VLF
- ISOI 1008: Au,Ag

REFERENCES:

**** Lone Silver ****

MINING DIV: Nelson
LOCATION: LAT. 49 02 30, LONG. 117 20 00
CLAIMS: Lone Silver 2-3
OPERATOR: Abbott-Brown, G.
AUTHOR: Blanchet, D.
DESCRIPTION: The property is located southwest of the Lone Silver Mine. A highly schistose granodiorite related to the Nelson Batholith is the likely host of numerous mineralized veins presumably related to the Black Bluff fault.

WORK DONE:
- ISOI 187:Cu,Ag
- LINE 16: Cu

REFERENCES: A.R. 08288

C41

Nelson

**

**** Beaver ****

MINING DIV: Trail Creek
LOCATION: LAT. 49 04 42, LONG. 117 45 18
CLAIMS: Beaver
OPERATOR: Bragg, D.
AUTHOR: Bragg, D.
DESCRIPTION: The claim is underlain by Cretaceous-Jurassic Nelson Intrusions monzonite and Middle Jurassic Rossland Group volcanics.

WORK DONE:
- PROS 1: 1000

REFERENCES:

**** Cam ****

MINING DIV: Trail Creek
LOCATION: LAT. 49 04 06, LONG. 117 44 18
CLAIMS: Cam 2-3
OPERATOR: Inland Au-Ag 2as
AUTHOR: Bragg, D.
DESCRIPTION: The claims are underlain by Rossland monzonite that locally varies in grain size, colour and composition and is cut by numerous dykes.

WORK DONE:
- PROS 1: 1000

REFERENCES: A.R. 00025

**** Oriental ****

MINING DIV: Trail Creek
LOCATION: LAT. 49 04 30, LONG. 117 43 30
CLAIMS: Oriental (L.1701)
OPERATOR: Bragg, D.
AUTHOR: Bragg, D.
DESCRIPTION: Mineralized zones occur along fault structures within the Mount Roberts Formation (Pennsylvanian), the Rossland Group (Jurassic) and the Rossland monzonite (Jurassic or Cretaceous-Jurassic).

WORK DONE:
- MAGG 1.3 km

REFERENCES:

**** Add. Charleston ****

MINING DIV: Trail Creek
LOCATION: LAT. 49 04 45, LONG. 117 46 42
CLAIMS: Add 2, Add 3, Add 4, Add 6, Apr 11-12
OPERATOR: Bragg, D.
AUTHOR: Bragg, D.
DESCRIPTION: Mineralized zones occur along fault structures within the Mount Roberts Formation (Pennsylvanian), the Rossland Group (Jurassic) and the Nelson Intrusions (Cretaceous-Jurassic).

WORK DONE:
- MAGG 4.3 km

REFERENCES:
**** Big Trout ****

MINING DIV: Trail Creek. ASSESSMENT REPORT 15615 INFO CLASS 4
LOCATION: LAT. 48 06 00 LONG. 117 48 00 NTS:
CLAIMS: Big Trout
OPERATOR: Inland Au-Ag Res.
AUTHOR: Bradt, D.
DESCRIPTION: In the Rossland Mining Camp mineralized stopes or zones occur along fault structures within the Mount Roberts Formation (Penokee-Vanian), the Rossland Group (Lower Jurassic) and the Nelson Plutonic Complex (Lower Cretaceous). Within the survey area three easterly magnetic linears suggest under-lying vein systems.
WORK DONE: LINE 1.8 km MAG 1.8 km
REFERENCES: A.R. 14293; 14882

**** Evening Star, Georgia ****

MINING DIV: Trail Creek. ASSESSMENT REPORT 15442 INFO CLASS 3
LOCATION: LAT. 49 05 24 LONG. 117 47 12 NTS:
CLAIMS: Evening Star, Georgia
OPERATOR: Gallant Gold Mines
AUTHOR: Brown, J.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: Steeply dipping gold-bearing massive sulphide veins are hosted in upper Paleozoic and Lower Jurassic volcanic and sedimentary rocks intruded by the Trail Batholith and Rossland monzonite. Diamond drill results revealed up to 15 per cent finely disseminated iron sulphides over widths up to 7 metres and massive sulphide veins from several centimetres to one metre. The best intersection was 4.8 grams per tonne gold over 0.7 metre massive pyrrhotite vein.
WORK DONE: REL GEO 1.2000 1:1000 BMR 485:multielement DIAM 694.0 m;7 holes NO ROCK 94:multielement
REFERENCES: A.A. 0073; 14236

**** Hillside ****

MINING DIV: Trail Creek. ASSESSMENT REPORT 15425 INFO CLASS 4
LOCATION: LAT. 49 03 24 LONG. 117 46 54 NTS:
CLAIMS: Hillside
OPERATOR: Inland Au-Ag Res.
AUTHOR: Bradt, D.
DESCRIPTION: The claim is underlain by augite porphyry volcanics of the Middle Jurassic Rossland Group which are intruded by intermediate-felsic dykes.
WORK DONE: MAG 5.0 km GEO 1.800
REFERENCES: A.R. 14622

**** Jero ****

MINING DIV: ** ASSESSMENT REPORT 15482 INFO CLASS 3
LOCATION: LAT. 49 02 42 LONG. 117 50 18 NTS:
CLAIMS: Jero 5
OPERATOR: Gunsteel Res.
AUTHOR: Allen, O.; Grevel, J.
DESCRIPTION: Geology: The claims are underlain by open folded, layered volcanics, volcaniclastics and allitites of the Middle Jurassic Rossland Group, which are intruded by syngenetic augite porphyry dykes and plugs and tectonically deformed.
SOIL 375:multielement SILT 1:Au,Ag,Cu,Zn, Pb EMGR 1.2 km;VLF LINE 9.8 km
REFERENCES: A.R. 02045

**** Jero ****

MINING DIV: Trail Creek. ASSESSMENT REPORT 15414 INFO CLASS 4
LOCATION: LAT. 49 02 36 LONG. 117 50 18 NTS:
CLAIMS: Jero 3
OPERATOR: Gunsteel Res.
AUTHOR: Allen, O.
DESCRIPTION: Geology: The property is underlain by volcanic and sedementary rocks of the Middle Jurassic Rossland Group. Survey results are inconclusive.
EMGR 1.2 km;VLF SOIL 31:multielement ROCK 4:multielement
REFERENCES: A.R. 02045, 15482

**** Pine ****

MINING DIV: ** ASSESSMENT REPORT 15481 INFO CLASS 4
LOCATION: LAT. 49 09 24 LONG. 117 48 12 NTS:
CLAIMS: Pine
OPERATOR: Inland Au-Ag Res.
AUTHOR: Bradt, D.
DESCRIPTION: Geology: The claim is underlain in part by Rossland monzonite and Middle Jurassic Rossland Group augite porphyry.
LINE 1.3 km GEO 1.900 MAG 3.3 km
REFERENCES: A.R. 15482

**** Silverite, Iron Colt. Evening Star, Georgia ****

MINING DIV: Trail Creek. ASSESSMENT REPORT 15665 INFO CLASS 3
LOCATION: LAT. 45 06 30 LONG. 117 47 00 NTS:
CLAIMS: Silverite, Iron Colt. Evening Star, Georgia
OPERATOR: Inland Au-Ag Res.
AUTHOR: Bradt, D.
DESCRIPTION: Geology: The property is underlain by volcanic and sedimentary rocks of the Middle Jurassic Rossland Group, which are intruded by Bentonia syngenetic augite porphyry and tectonically deformed.
WORK DONE: LINE 3.3 km
REFERENCES: A.R. 15665
OPERATOR: Gallant Gold Mines
AUTHOR: Welcott, P.E.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: Steeply dipping gold-bearing massive sulphide veins are hosted in Upper Jurassic and Lower Jurassic volcanic and sedimentary rocks, which are pierced by the Trail Batholith and Rossland monzonite.
WORK DONE: IPDL 4.2 km
MAGG 53.6 km
EMGR 30.3 km: HLEM
REFERENCES: A.P. 082FSW14675-14677
M.J. 082FSW102-IRON COLT:082FSW102-EVENING STAR:082FSW149-
GEORGIA:082FSW265-\SILVERINE

MINING DIV: *** ASSESSMENT REPORT 16672 INFO CLASS 3
LOCATION: LAT. 40 06 58 LONG. 117 47 50 NTS:
CLAIMS: Top 1
OPERATOR: Fleeting Ent.
AUTHOR: Ausant, C.
DESCRIPTION: The claim is underlain by Jurassic Intermediate to mafic volcanic rocks of the Rossland Group.
WORK DONE: IPDL 74.0 km
MAGG 36.3 km: VLF
LINE 47.0 km
REFERENCES: ***

Veruna ****

MINING DIV: *** ASSESSMENT REPORT 16220 INFO CLASS 4
LOCATION: LAT. 49 00 54 LONG. 117 50 54 NTS:
CLAIMS: Mitz: Veruna 1
OPERATOR: Sage Res.
AUTHOR: Murton, J.
DESCRIPTION: The claims are underlain by Jurassic Intermediate to mafic volcanic rocks of the Rossland Group.
WORK DONE: IPDL 74.0 km: Cu, Pb, Zn, Au
REFERENCES: A.R. 11723

Vulcan ****

MINING DIV: *** ASSESSMENT REPORT 16165 INFO CLASS 4
LOCATION: LAT. 49 04 12 LONG. 117 49 42 NTS:
CLAIMS: Vulcan Fr. (L.3297)
OPERATOR: Bregg, D.
AUTHOR: Lanais, J.
DESCRIPTION: Mineralized zones occur along fault structures within the Mount Roberts Formation (Pennsylvanian), the Rossland Group (Jurassic) and the Nelson Intrusions (Triassic-Jurassic).
WORK DONE: PROS 1300
MAGG 1.3 km

Blackcock ****

MINING DIV: *** ASSESSMENT REPORT 15844 INFO CLASS 3
LOCATION: LAT. 49 19 30 LONG. 117 06 50 NTS:
CLAIMS: Blackcock
OPERATOR: D'Arcy Res.
AUTHOR: Wainsworth, W.
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: A northeast trending belt of volcanics and sediments of Jurassic age are underlain and cut by granitic plutons of the Nelson Batholith. The trend of flows is from north to northeast with dips steeply to the west. Fissures within the sediments and flows follow the regional pattern but within the granites have an east-west to northeast trend. Gold and silver mineralization associated with base metals, particularly zinc and lead, is contained within pyritic quartz-filled rhyolites.
WORK DONE: DIAL 272.3 m: 6 holes 80
REFERENCES: M.I. 082FSW276-BLACKCOCK

Euprates ****

MINING DIV: Nelson
LOCATION: LAT. 49 23 00 LONG. 117 12 30 NTS:
CLAIMS: Euprates
OPERATOR: Bourdon, K.
AUTHOR: COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: Gold values are associated with argesite-pyrite, pyrite, galena, chalcopyrite and scheelite mineralization disseminated in quartz veins which occur in southwest-going schistose zones in Elise Formation volcanics of Lower Jurassic age.
WORK DONE: SOIL 132: element B: Multielement
REFERENCES: A.R. 02638 03710 05271 09139 14353
M.I. 082FSW186-EUPRATES

MINING DIV: *** ASSESSMENT REPORT 15524 INFO CLASS 3
LOCATION: LAT 49 19 24 LONG. 117 10 12 NTS:
CLAIMS: Golden Horn
OPERATOR: Nu Dawn Res.
AUTHOR: Poillon, J.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by the Lower Jurassic-Triassic Ymir Group consisting of argillites, slates, limestone and quartzite, which are cut by quartz-filled shear zones containing gold, silver, lead and zinc values.
WORK DONE: UNDD 161.2 m 2 holes; BQ Sam 210; Au,Ag,Pe,Zn RQD 297.2 m 6 holes
REFERENCES: A.R. 12562 M.I. 028F52074-YMIR (CONSOLIDATED)

***** Aurous *****

MINING DIV: Nelson
LOCATION: LAT 49 23 48 LONG. 117 23 48 NTS:
CLAIMS: Aurous 1-4
OPERATOR: Golderton, R.
AUTHOR: Santos, P.
DESCRIPTION: The claims are underlain by Jurassic Rossland Group meta-volcanics, alteration includes extensive argyrolitization and silicification. Chalcopyrite, pyrite, and magnetite form zones parallel to the gold. The mineralization trend is almost north-south with a possible thickness of at least 120 metres.
WORK DONE: SOIL 21; Au,Ag,Cu
LINE 2.9 km
REFERENCES:

***** Golomtn Kena *****

MINING DIV: Nelson
LOCATION: LAT. 49 25 33 LONG. 117 16 26 NTS:
CLAIMS: Golomtn 1-3, Kena 19, Kena 7, Gold Mt
OPERATOR: Tournigan Min. Ex.
AUTHOR: Black, P.
COMMODITIES: Gold
DESCRIPTION: The claims appear to be underlain by andesitic tuffs, breccias and flows and Silver King porphyry.
WORK DONE: DIAD 818.6 m 6 holes; NO SAMP 89; Au,Ag,Cu
REFERENCES: A.R. 05222, 08668, 08520, 08946, 08976, 08599, 09348, 14023, 15737

***** Honky Tonk *****

MINING DIV: Nelson
LOCATION: LAT. 49 23 18 LONG. 117 17 42 NTS:
CLAIMS: Honky Tonk, Kena, Venus Fr.
OPERATOR: Geoscience Consult.
AUTHOR: Evans, D.
DESCRIPTION: Copper, gold and silver are hosted in quartz veins/veinlets and silicified zones in Lower Jurassic Elise Formation rocks. Veins range in width from 30 centimetres to 3 metres, dip vertically or C47
WORK DONE: DIAD 15000 SOIL 29; multielement
REFERENCES:

*** Schist, Cottonwood ***

MINING DIV: ***
LOCATION: LAT. 48 34 30 LONG. 117 16 30 NTS:
CLAIMS: Cottonwood, Schist 1-3, Schist Fr.
OPERATOR: Bourdon, R.
AUTHOR: Bourdon, R.
DESCRIPTION: The area prospected is underlain by northwest trending, southwest dipping Elise Formation volcanics, which have been cut by Silver King porphyry. The volcanics generally consist of chlorite gneiss resulting from a regional greenschist facies metamorphism and contain northwest trending zones of argyrolitization and minor silicification which contain anomalous gold values as well as narrow quartz veins containing minor values of copper, lead, zinc, silver and gold.
WORK DONE: PPG 1; SOIL 29; multielement
REFERENCES:

***** Silver 6, Silver 1, Perrier *****

MINING DIV: Nelson
LOCATION: LAT. 49 27 00 LONG. 117 16 00 NTS:
CLAIMS: Big Mac 1-4, Big Mac Fr., Perrier 1, Lizzie "C", Silver Hawk
OPERATOR: Penobba R.
AUTHOR: Jones, W.
COMMODITIES: Gold, Silver, Copper, Lead, Zinc
DESCRIPTION: The property is underlain by argillite, flow breccias, pillow lavas, coarse porphyry-like flows and biotite tuffs of the Rossland Group. Porphyritic biotite granite and adulariact, breccia of the Nelson Batholith outcrop to the west and northwest of the property. Minor feldspar porphyry, baskite feldspar porphyry and leprome are common locally.
WORK DONE: MAGO 15.3 km
LINE 18.2 km
REFERENCES: A.R. 03081, 07307, 07393, 10805 M.I. 028F5207-BERRIER 028F5230-SILVER 1, 028F5231-SILVER 6

***** Star of the East *****

MINING DIV: ***
LOCATION: LAT. 49 26 20 LONG. 117 16 54 NTS:
CLAIMS: Star of the East
OPERATOR: Bourdon, R.
AUTHOR: DEL.
DESCRIPTION: The claim is underlain by northwest trending, steeply southwest dipping andesitic flows and tuffs of the Lower Jurassic Elise Formation near the contact with a Silver King porphyry intrusion.
WORK DONE: MAGG 2.7 km

REFERENCES:

**** Star of the West ****

MINING DIV: Nelson
LOCATION: LAT. 49 46 30 LONG. 116 11 30
CLAIMS: Star of the West
OPERATOR: LACAN Min.
AUTHOR: JOHNSTON, J.
COMMODITIES: Lead, Zinc, Silver
DESCRIPTION: The property is underlain by northwest trending, southwest dipping, andesite flows and tuffs of the Lower Jurassic Ellice Formation, which have been intruded by a 30% of Silver King porphyry and altered diorite which contain spotty gold anomalies. Discontinuous silicified pods containing stringer galena and sphalerite occur in shears.
WORK DONE: TRENCH 200 m; trenched ROCK 250; multielement
REFERENCES: M.I. 082FSW09-STAR OF THE WEST

**** Tough Nut.Aq ****

MINING DIV: Nelson
LOCATION: LAT. 49 46 00 LONG. 117 17 30
CLAIMS: Tough Nut
OPERATOR: ADDIE, G.
AUTHOR: ADDIE, G.
COMMODITIES: Gold, Silver, Copper, Lead, Zinc
DESCRIPTION: The claims are underlain by Middle Jurassic Ellice Formation porphyritic andesites. Soil geochemistry returned anomalous gold values.
WORK DONE: MAGG 3.5 km ROCK 38; multielement
SOIL 78; multielement
REFERENCES:

**** Iva Fern ****

MINING DIV: Nelson
LOCATION: LAT. 49 46 00 LONG. 117 20 30
CLAIMS: Iva Fern
OPERATOR: AGINCOURT Ex.
AUTHOR: SOLOKISKI, L.; SPEARING, G.
COMMODITIES: Gold, Silver, Copper, Lead, Zinc
DESCRIPTION: Two significant showings are separated by a soil covered slope which is a copper, lead, zinc and silver anomaly. The main workings area has five known concordant mineralized zones consisting of galena-zinc-lead-silver veins up to 1.2 metres thick. The workings occur in the Proterozoic Irene Formation.
WORK DONE: LINE 19.9 km MAGG 19.9 km SEED 1:6000 ROCK 21; Cu, Pb, Zn, Ag, Au SOIL 11; 5000 EMGR 19.9 km; VLF

C49

Nelson

SOIL 127; Cu, Pb, Zn, Ag
REFERENCES: M.I. 082FSE007-IVA FERN

**** Cnd ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 26 30 LONG. 116 09 52
CLAIMS: CND 2-5
OPERATOR: Partners D11 & Min.
AUTHOR: BISHOP, S.
DESCRIPTION: The property lies within a north-northeast trending segment of the Proterozoic portion of the Kootenay arc which contains a thick prograding clastic wedge along the western margin of the North American continental plate. Gold mineralization occurs in three geological settings: large quartz veins up to 20 metres wide, small cross cutting quartz veins 2 metres wide and large shear zones.
WORK DONE: MAGG 47.5 km EMGR 47.5 km; VLF SOIL 1050; Au LINE 47.5 km
REFERENCES:

**** Movie River ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 23 42 LONG. 116 09 20
CLAIMS: MOVIE RIVER 1955
OPERATOR: QUEENSTAKE Reg.
AUTHOR: HARRICK, M.
DESCRIPTION: Overburden drilling to delineate a Tertiary channel terminated in porphyry, felsic amygdillite of the Aldridge Formation.
WORK DONE: HWIN 84; Au ROTO 278.1 m; 20 holes
REFERENCES:

**** Pee Pee ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 21 25 LONG. 115 59 40
CLAIMS: 082G05032-Pee Pee
OPERATOR: LACAN Min.
AUTHOR: LAWSON, G.
COMMODITIES: Lead
DESCRIPTION: The showings on the property consist of five parallel shear zones containing galena, sphalerite and accompanying oxides. The host rocks are thin brecciated quartzites of the lower portion of the Proterozoic Middle Aldridge Formation. A diorite sill, believed to be the Huwetha sill, crosses the claim from north to south.
WORK DONE: LINE 6.0 km S1L 11; Pb, Zn SOIL 108; Pb, Zn SEED 1; 5000
REFERENCES: M.I. 082G05032-Pee Pee

C50
**** Perry Creek ****

MINING DIV: ***
LOCATION: LAT. 49 27 30 LONG. 116 07 24 NTS:
OPERATOR: Quartz Creek Standard
AUTHOR: Hardy J.
COMMODITIES: Gold. Silver
DESCRIPTION: Hallikian Creston, Kitschen and Aldridge Formations are intruded by Movie Sills. Quartz veins localized in shear zones and fractures locally contain high grades of gold over restricted widths.
WORK DONE: DIAD 439.0 m: 10 holes, NO
SAMPLES: 394: 4 thin sections
REFERENCES: A. R. 082F-08-13007/14121
M. I. 082F0607-PERRY CREEK

**** Weaver ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 28 18 LONG. 116 04 00 NTS:
CLAIMS: Weaver 2. Weaver 4. Weaver 8
OPERATOR: Fenway Res.
AUTHOR: Morris R.
COMMODITIES: Gold
DESCRIPTION: Movie Sills intrude the Aldridge and Creston Formations (Proterozoic). Major structure is the Bally Fault. Alteration includes Quartz-carbonate. Sericite and chlorite. Mineralization includes pyrite and fine gold.
WORK DONE: DIAD 498.0 m: 19 holes, NO
REFERENCES: A. M. 082F0607-MATWEAVER

**** Leader ****

MINING DIV: ***
LOCATION: LAT. 49 32 42 LONG. 116 07 42 NTS:
CLAIMS: Leader. A. Wellington
OPERATOR: Donnax Res.
AUTHOR: Archer G.
DESCRIPTION: The claims are underlain by argillites and quartzites of the Proterozoic Creston Formation. Gold and argentite are disseminated in a manner typical of the Aldridge Formation regionally.
WORK DONE: DIAD 304.0 m: 1 hole, NO
REFERENCES: A. R. 082F0607-LEADER

**** Mat ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 42 00 LONG. 116 10 55 NTS:
CLAIMS: Mat 265
OPERATOR: Dominion
AUTHOR: Rangon P.
DESCRIPTION: The drill hole reported herein intersected sediments of the Middle Proterozoic Aldridge Formation. Pyrrhotite is locally disseminated in a manner typical of the Aldridge Formation regionally.
WORK DONE: DIAD 504.0 m: 1 hole, NO
REFERENCES: A. R. 082F0607-MAT

**** Mat ****

MINING DIV: ***
CLAIMS: Mat 112
OPERATOR: Dominion
AUTHOR: Rangon. P.
DESCRIPTION: The drill hole intersected sediments of the Middle Proterozoic Aldridge Formation. Pyrrhotite is locally disseminated in a manner typical of the Aldridge Formation regionally.
WORK DONE: DIAD 365.0 m: 1 hole, NO
REFERENCES: A. R. 082F0607-MAT

**** Paris ****

MINING DIV: ***
LOCATION: LAT. 49 43 36 LONG. 116 04 48 NTS:
OPERATOR: Dominion
AUTHOR: Rangon. P.; Visger. S.
DESCRIPTION: The drill hole intersected sedimentary rocks of the Middle Proterozoic Aldridge Formation. Pyrrhotite is locally disseminated in a manner typical of the Aldridge Formation regionally.
WORK DONE: DIAD 365.0 m: 1 hole, NO
REFERENCES: A. R. 082F0607-PARIS

**** Paris ****

MINING DIV: ***
LOCATION: LAT. 49 31 00 LONG. 116 04 00 NTS:
CLAIMS: Paris 1-2
REFERENCES: A. M. 082F0607-PARIS

REFERENCES:
A. R. 08163/13011/14112
M. I. 082F0607-LEADER (WELLINGTON.MASCOT.ECLIPSE)
OPERATOR: Imperial Metals

DESCRIPTION: The claims are underlain by grey, grey-green quartzites and argillaceous quartzites of the Chester Formation (Middle Proterozoic). Gold mineralization on nearby claims is thought to be associated with fault systems located along and parallel to Perry Creek. No mineralization has been discovered to date on the Paris claims.

REFERENCES: A.R. 2928B, 14191

**** Rowan ****

MINING DIV: Fort Steele ASSESSMENT REPORT 16610 INFO CLASS 3
LOCATION: LAT. 49 40 27 LONG. 116 01 24 NTS:
CLAIMS: Rowan
OPERATOR: Cominco
AUTHOR: Ransom, P.
DESCRIPTION: The drill hole intersected sediments of the Middle Proterozoic Alaridge Formation. Pyrrhotite is locally disseminated in a manner typical of the Alaridge Formation regionally.
WORK DONE: ROAD 0.4 km

REFERENCES:

**** The Dean (All Over) ****

MINING DIV: Ft Steele ASSESSMENT REPORT 16608 INFO CLASS 3
LOCATION: LAT. 49 41 19 LONG. 116 01 24 NTS:
CLAIMS: Quarten
OPERATOR: Cominco
AUTHOR: Ransom, P.
DESCRIPTION: The drill hole intersected sediments of the Middle Proterozoic Alaridge Formation. Pyrrhotite is present in numerous cross-cutting veins up to 20 centimetres wide and in veins parallel to bedding up to 3 centimetres wide as well as being disseminated in a manner typical of the Alaridge Formation regionally.
WORK DONE: DIAD 151.5 m:1 hole NO

REFERENCES: M.I. 082FNM35-THE DEAN (ALL OVER)

**** Commonwealth ****

MINING DIV: Sloan ASSESSMENT REPORT 16533 INFO CLASS 2
LOCATION: LAT. 49 40 50 LONG. 116 40 00 NTS:
CLAIMS: Commonwealth Treasure, Hooker, Republic (L 4173)
OPERATOR: Rival Min.
AUTHOR: Verzosa, R.S.
COMMODITIES: Lead, zinc, silver, copper
DESCRIPTION: The property is underlain by Precambrian successions of the Winiwagan and Purcell Series. Quartz stockworks in steeply dipping buff dolomite is accompanied by varying amounts of disseminated or stringers of galena, tetramorite, sphalerite, pyrrhotite and pyrite.
WORK DONE: MAGO 39.8 km

REFERENCES:

**** Ben Derby ****

MINING DIV: Sloan ASSESSMENT REPORT 16150 INFO CLASS 3
LOCATION: LAT. 49 36 01 LONG. 116 45 30 NTS:
CLAIMS: Ford 1-2
OPERATOR: Amerbas Res.
AUTHOR: Lloyd, J.
COMMODITIES: Molybdenum
DESCRIPTION: The Ford claims cover molybdenite mineralization within and adjacent to a Cretaceous granite stock. The stock is intruded into argillaceous siltstones, mica-schists, and quartzites of the Proterozoic Kootenay Creek Group.
WORK DONE: EMGR 168.0 km:VLF

REFERENCES: A.R. 107847/10463, M.I. 082FNE162-COMMONWEALTH

**** Rock of Ages ****

MINING DIV: Sloan ASSESSMENT REPORT 16542 INFO CLASS 3
LOCATION: LAT. 49 41 00 LONG. 116 51 30 NTS:
CLAIMS: Ram
OPERATOR: Lumberton Mines
AUTHOR: McLeod, J.
DESCRIPTION: The claim is uncertain by the Cambrian-Devonian Larder Group of rocks consisting of alternating sequences of schists and quartzites which are intruded by deformed-Cretaceous diorite dykes and 41118. One small showing of molybdenite associated with a diorite intrusive was encountered.
WORK DONE: MAGO 13.8 km

REFERENCES:

**** Piedmont (Hope 2) ****

MINING DIV: Sloan ASSESSMENT REPORT 16063 INFO CLASS 3
LOCATION: LAT. 49.43 30 LONG. 117 24 48 NTS:
OPERATOR: Goldsmith, L.
AUTHOR: Goldsmith, L.
DESCRIPTION: The property is underlain by phylite, argillite, calcareous argillite and limestone of the Jurassic-Triassic Slocon Group. Bedding strike mostly north-northwest and dips steeply northeast but a few north-northeast strikes were noted. Joints and shears strike northeast and dip steeply southeast. There are several old silver-lead-zinc workings in the vicinity, but no mineralization has been found on the property.
WORK DONE: SEDL 1,800O RIB 40' Aa, Pb, Cu, Zn
SDIL 120 Aa, Pb, Cu, Zn
REFERENCES:

*** Condor ****
MINING DIV: Slocon
LOCATION: LAT. 49.55 48 LONG. 117 15 36 NTS:
CLAIMS: Iron Mask, Condor
OPERATOR: Goldsmith, L.
AUTHOR: Goldsmith, L.
DESCRIPTION:
WORK DONE:
REFERENCES:
DESCRIPTION: Clastic sediments of the Triassic-Jurassic Slocan Group are cut by a northeasterly trending shear zone which is exposed on the Iron Mask claim. Sphalerite occurs in the shear zone.

WORK DONE: SOIL 17:Ag,Pb,Sn

REFERENCES:

**** Dorothy ****

WINING DIV: *** ASSESSMENT REPORT 15774 INFO CLASS 4

LOCATION: LAT. 49 38 12 LONG. 117 14 36 NTS:

OPERATOR: Dickenson Mines

AUTHOR: Makepeace, D.

DESCRIPTION: The property is within the Slocan Group sedimentary rocks of the Triassic age. Two lode structures are on the claim. The western lode strikes east-west and dips approximately 30 degrees to the north. The "Dorothy" lode strikes north-south and dips approximately 60 degrees to the east. A 5.1 metre trench was dug in 1986 to expose the "Dorothy" lode. Thirty meters of the trench exposed a combination of "enlarged" and "framental" type lode breccia. No economic mineralization was exposed in the trench.

WORK DONE: TREN 51.0 m trench

SAMP 13:Ag,Pb,Sn

GEO 1:100

REFERENCES: M. I. 082FN081-DOROTHY

**** Payne, Mercury ****

WINING DIV: Slocan ASSESSMENT REPORT 15628 INFO CLASS 3

LOCATION: LAT. 49 50 00 LONG. 117 15 00 NTS:

OPERATOR: Yukon Min.

AUTHOR: Paslier, P. G.; Smith, F.

COMMODITIES: Lead,Zinc,Silver

LOCATION: A series of shear zones traverse the lower Jurassic-Triassic Slocan Group sediments, mainly comprising graphitic schist. The zones are intermittently host quartz-siderite veins carrying silver-lead-zinc mineralization. The Mercury Mine produced 18,844 kilograms of silver, and the adjacent Payne Mine produced 115,070 kilograms of silver.

WORK DONE: SAMP 74:Ag,Au

GEO 1:500

REFERENCES: M. I. 082FN001-MERCURY;082FK000-PAYNE

**** Silver Bear, Index,Silver Bell ****

WINING DIV: Slocan ASSESSMENT REPORT 15857 INFO CLASS 3

LOCATION: LAT. 49 52 00 LONG. 117 08 59 NTS:

CLAIMS: Broughton Silver Bear, Silver Bear 1-2, Silver Bell

OPERATOR: Silver Bear Connection Connection Fr., Hartford, Susquehanna

DESCRIPTION: A series of shear zones traverse the lower Jurassic-Triassic Slocan Group sediments, mainly comprising graphitic schist. The zones are intermittently host quartz-siderite veins carrying silver-lead-zinc mineralization. The Mercury Mine produced 18,844 kilograms of silver, and the adjacent Payne Mine produced 115,070 kilograms of silver.

WORK DONE: SAMP 74:Ag,Au

GEO 1:500

REFERENCES: A. S. 19328,14470

M. I. 082FN000-SILVER BEAR;082FN101-INDEX;082FN185-SILVER BELL

**** Evening Star No 9 ****

WINING DIV: Slocan ASSESSMENT REPORT 15993 INFO CLASS 4

LOCATION: LAT. 49 50 15 LONG. 117 27 33 NTS:

CLAIMS: Evening Star No. 9,Evening Star No. 9 Fr.

OPERATOR: Stewart, R.

AUTHOR:

DESCRIPTION: The claims are located in an alternating sequence of granite and sedimentary contacts of the Slocan Group. Adjacent mines encountered "dry ore" associated with quartz veins. Best results from a soil sample are 182 ppm lead, 719 ppm zinc, 1.4 ppm silver and 6 ppm gold.

WORK DONE: SAMP 2:2500

GEO 1:500

REFERENCES: A. S. 19328,14470

**** Harco ****

WINING DIV: *** ASSESSMENT REPORT 15941 INFO CLASS 4

LOCATION: LAT. 49 50 00 LONG. 117 19 00 NTS:

CLAIMS: Harco 8-9, Harco 5-6

OPERATOR: Blanchet, D.

AUTHOR: Roncin, J.

DESCRIPTION: The entire property is underlain by Nelson intrusives, predominantly a potassium feldspar porphyritic granite with minor quartz diorite and quartz monzonite phases. No mineralization was seen in outcrop.

WORK DONE: PRS 1:10 000

REFERENCES:

**** Harco ****

WINING DIV: Slocan ASSESSMENT REPORT 15782 INFO CLASS 4

DESCRIPTION: A series of shear zones traverse the lower Jurassic-Triassic Slocan Group sediments, mainly comprising graphitic schist. The zones are intermittently host quartz-siderite veins carrying silver-lead-zinc mineralization. The Mercury Mine produced 18,844 kilograms of silver, and the adjacent Payne Mine produced 115,070 kilograms of silver.

WORK DONE: SAMP 74:Ag,Au

GEO 1:500

REFERENCES: A. S. 19328,14470

M. I. 082FN000-SILVER BEAR;082FN101-INDEX;082FN185-SILVER BELL

**** Evening Star No 9 ****

WINING DIV: Slocan ASSESSMENT REPORT 15993 INFO CLASS 4

LOCATION: LAT. 49 50 15 LONG. 117 27 33 NTS:

CLAIMS: Evening Star No. 9,Evening Star No. 9 Fr.

OPERATOR: Stewart, R.

AUTHOR:

DESCRIPTION: The claims are located in an alternating sequence of granite and sedimentary contacts of the Slocan Group. Adjacent mines encountered "dry ore" associated with quartz veins. Best results from a soil sample are 182 ppm lead, 719 ppm zinc, 1.4 ppm silver and 6 ppm gold.

WORK DONE: SAMP 2:2500

GEO 1:500

REFERENCES: A. S. 19328,14470

**** Harco ****

WINING DIV: *** ASSESSMENT REPORT 15941 INFO CLASS 4

LOCATION: LAT. 49 50 00 LONG. 117 19 00 NTS:

CLAIMS: Harco 8-9, Harco 5-6

OPERATOR: Blanchet, D.

AUTHOR: Roncin, J.

DESCRIPTION: The entire property is underlain by Nelson intrusives, predominantly a potassium feldspar porphyritic granite with minor quartz diorite and quartz monzonite phases. No mineralization was seen in outcrop.

WORK DONE: PRS 1:10 000

REFERENCES:

**** Harco ****

WINING DIV: Slocan ASSESSMENT REPORT 15782 INFO CLASS 4

DESCRIPTION: A series of shear zones traverse the lower Jurassic-Triassic Slocan Group sediments, mainly comprising graphitic schist. The zones are intermittently host quartz-siderite veins carrying silver-lead-zinc mineralization. The Mercury Mine produced 18,844 kilograms of silver, and the adjacent Payne Mine produced 115,070 kilograms of silver.

WORK DONE: SAMP 74:Ag,Au

GEO 1:500

REFERENCES: A. S. 19328,14470

M. I. 082FN000-SILVER BEAR;082FN101-INDEX;082FN185-SILVER BELL

**** Evening Star No 9 ****

WINING DIV: Slocan ASSESSMENT REPORT 15993 INFO CLASS 4

LOCATION: LAT. 49 50 15 LONG. 117 27 33 NTS:

CLAIMS: Evening Star No. 9,Evening Star No. 9 Fr.

OPERATOR: Stewart, R.

AUTHOR:

DESCRIPTION: The claims are located in an alternating sequence of granite and sedimentary contacts of the Slocan Group. Adjacent mines encountered "dry ore" associated with quartz veins. Best results from a soil sample are 182 ppm lead, 719 ppm zinc, 1.4 ppm silver and 6 ppm gold.

WORK DONE: SAMP 2:2500

GEO 1:500

REFERENCES: A. S. 19328,14470

**** Harco ****

WINING DIV: *** ASSESSMENT REPORT 15941 INFO CLASS 4

LOCATION: LAT. 49 50 00 LONG. 117 19 00 NTS:

CLAIMS: Harco 8-9, Harco 5-6

OPERATOR: Blanchet, D.
LOCATION: LAT. 49 52 54 LONG. 117 10 48 NTS:
CLAIMS: Hard 8-17
OPERATOR: Blanchet, D.
AUTHOR:...
DESCRIPTION: The highest results obtained were 95 ppb gold and 0.8 ppm silver in three soil samples taken on two lines along the length of the property.
WORK DONE: SDL 39; Au, Ag
REFERENCES: PRDS 1; 10 000

*** JA ****

MINING DIV: *** ASSESSMENT REPORT 16249 INFO CLASS 3
LOCATION: LAT. 49 48 42 LONG. 117 26 42 NTS:
CLAIMS: JA 2
OPERATOR: Manny Consul.
AUTHOR: Santos, P.
DESCRIPTION: Gold and silver-bearing quartz veins with galena, sphalerite, and tetrahedrite cut altered Cretaceous-Jurassic Nelson Intrusives and altered Early Mesozoic anesises of the Milford Group. Veins trend northwest and old to the northeast. Three gold anomalous areas with associated high lead, zinc, silver, arsenic, and copper values were identified in a soil sampling study.
WORK DONE: SDL 1; 2500
SDL 302: multielement

**** Jumbo (Mary) ****

MINING DIV: Slocan ASSESSMENT REPORT 16336 INFO CLASS 4
LOCATION: LAT. 49 48 24 LONG. 117 17 06 NTS:
CLAIMS: Jumbo
OPERATOR: Ontora Res.
AUTHOR: Comer, S.
COMMODITIES: Gold, Silver
DESCRIPTION: Gold, silver, lead, and zinc mineralization in carbonate-quartz hydrothermal veins occurs within the Cretaceous-Jurassic Nelson Batholith. Veins trend roughly north and range in width up to one metre.
WORK DONE: ROCK 15; Au, Ag
SDL 1; 1000
PEL 3 thin sections
REFERENCES: A. R. 12688
M. I. 082FNW208-JUMBO (MARY)

**** Kalispel ****

MINING DIV: *** ASSESSMENT REPORT 15801 INFO CLASS 3
LOCATION: LAT. 49 51 42 LONG. 117 24 50 NTS:
CLAIMS: Kalispel-Leona 4
OPERATOR: American Platinum
AUTHOR: Santos, J.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Gold and silver-bearing quartz veins cut highly altered C59

WORK DONE: DLAD 284.5 m 1 hole, NO
SAMP 131; Au, Ag, Cu, Pb, Zn, Mo
REFERENCES: A. R. 19899
M. I. 082FNW166-KALISPEL

**** LH ****

MINING DIV: Slocan ASSESSMENT REPORT 16665 INFO CLASS 3
LOCATION: LAT. 49 53 30 LONG. 117 19 56 NTS:
CLAIMS: LH
OPERATOR: Noranda Ex.
AUTHOR: Keating, J. M.; Mitchell, J.
COMMODITIES: Gold, Copper
DESCRIPTION: The property is underlain by a roof pendant of Jurassic Roseland Group rocks (volcanics, calcs and sediments) within the granodiorite intrusives of the Cretaceous-Jurassic Nelson Batholith. A number of small, thin, tuffaceous pyritic stocks of syenitic to maficic composition have intruded the older rocks resulting in widespread fracturing, hydrothermal alteration and sulphide mineralization. The gold occurrences on the property are associated with pyrrhotite-
pyrite-pyrite mineralization in minor shear zones which have been variably silicified, chloritized and/or clay altered.
WORK DONE: DLAD 284.5 m 1 hole, NO
SAMP 228; Au, Ag, Cu, Pb, Zn, Mo, As
REFERENCES: A. R. 15747
M. I. 082FNW212-LH

**** Riverside ****

MINING DIV: *** ASSESSMENT REPORT 16636 INFO CLASS 4
LOCATION: LAT. 49 48 36 LONG. 117 18 45 NTS:
CLAIMS: Autumn-Riverside
OPERATOR: Strath Geological Eng.
AUTHOR: Butler, S.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Cretaceous-Jurassic Nelson Batholith porphyry granodiorites underlie the claim area. Mineralogy consists mainly of quartz, feldspar, and biotite. Mineralization occurs in veins within shear and fractures. In the vicinity of adit 1, the granite is much altered and several small shear zones are found in the walls of the adit.
WORK DONE: SDL 1; 1000
SDL 45: Cu, Pb, Zn, As, Cd, Au
SAMP 111: Cu, Pb, Zn, As, Cd, Au
REFERENCES: A. R. 08913
M. I. 082FNW144-RIVERSIDE

**** Rxy-Oky ****

MINING DIV: Slocan ASSESSMENT REPORT 15600 INFO CLASS 2
LOCATION: LAT. 49 49 00 LONG. 117 24 00 NTS:
CLAIMS: Rxy, Rxy
OPERATOR: Trad Res.
AUTHOR: Santos, P.

granodiorite belonging to the Mesozoic Nelson Intrusions.
WORK DONE: DLAD 359.8 m 2 holes, NO
SAMP 131; Au, Ag, Pb, Zn, Mo
REFERENCES: A. R. 08299
M. I. 082FNW166-KALISPEL

**** Riverside ****

MINING DIV: Riverside ASSESSMENT REPORT 16636 INFO CLASS 4
LOCATION: LAT. 49 48 36 LONG. 117 18 45 NTS:
CLAIMS: Autumn-Riverside
OPERATOR: Strath Geological Eng.
AUTHOR: Butler, S.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Cretaceous-Jurassic Nelson Batholith porphyry granodiorites underlie the claim area. Mineralogy consists mainly of quartz, feldspar, and biotite. Mineralization occurs in veins within shear and fractures. In the vicinity of adit 1, the granite is much altered and several small shear zones are found in the walls of the adit.
WORK DONE: SDL 1; 1000
SDL 45: Cu, Pb, Zn, As, Cd, Au
SAMP 111: Cu, Pb, Zn, As, Cd, Au
REFERENCES: A. R. 08913
M. I. 082FNW144-RIVERSIDE

**** Rxy-Oky ****

MINING DIV: Slocan ASSESSMENT REPORT 15600 INFO CLASS 2
LOCATION: LAT. 49 49 00 LONG. 117 24 00 NTS:
CLAIMS: Rxy, Rxy
OPERATOR: Trad Res.
AUTHOR: Santos, P.
Silver Ridge **

MINING DIV: *** ASSESSMENT REPORT 16444 INFO CLASS 4
LOCATION: LAT. 49 59 36 LONG. 117 16 00 NTS:
CLAIMS: Silver Ridge
OPERATOR: Skylark Res.
AUTHOR: Krause.
DESCRIPTION: The claims are underlain by Triassic Slocan Group massive argillites and quartzites. These sedimentary rocks are intruded by porphyry and rhyolite veins. The drill hole intersected massive argillites with interbedded quartzites.

Speculator **

MINING DIV: Slocan ASSESSMENT REPORT 18216 INFO CLASS 3
LOCATION: LAT. 49 48 12 LONG. 117 20 30 NTS:
CLAIMS: Gam-2
OPERATOR: Lightning Creek Mines
AUTHOR: Loeb, Silver, Zinc, Barium
DESCRIPTION: Silver mineralization occurs in veins, shears and replacements usually with lead and/or zinc mineralization.

Verna (Dorothy) **

MINING DIV: *** ASSESSMENT REPORT 16793 INFO CLASS 3
LOCATION: LAT. 49 47 18 LONG. 116 55 12 NTS:
CLAIMS: Verna, Dorothy 3
OPERATOR: Cascadia Mines & Res.
AUTHOR: Timmins, W.
COMMODITIES: Gold, Silver, Zinc, Lead, Copper
DESCRIPTION: The claims are underlain by laminated and impure quartzites of the Cambrian Hami Group. Current soil results show a narrow area of anomalous values of zinc and erratic single point zinc and silver anomalies.

Flathead **

MINING DIV: Fort Steele ASSESSMENT REPORT 16676 INFO CLASS 2
LOCATION: LAT. 49 10 17 LONG. 114 36 04 NTS:
CLAIMS: Flathead 1-2 Flathead 8-12
OPERATOR: Dome Ex, Can.
AUTHOR: Cameron, R.; Fox, P.
COMMODITIES: Gold
DESCRIPTION: A block faulted assemblage of Devonian, Mississippian and Permian
Ferntle

WORK DONE:
- Soil 525: multielement
- Geol 1:5000 Line 25.0 km

REFERENCES:
- A.R. 15372

WORK DIV:
- ASSESSMENT REPORT 16256 INFO CLASS 3

LOCATION:
- LAT: 49 11 54 LONG: 114 37 42 NTS:

CLAIMS:
- Howe 1, Howe 4-6

OPERATOR:
- Dome Ex. Can.

AUTHOR:
- Cameron, S.

DESCRIPTION:
- A thrust fault brings Elko Formation limestones to the top of a sequence of Triassic Spray River Formation sandstones and siltstones, Permian Rocky Mountain Formation quartz arenites and Mississippian Runnolds Group limestones. Clay altered trachyte intrusions are present in the hanging wall of the fault and may be the source for the geochemical anomalies.

WORK DONE:
- Soil 525: multielement
- Geol 1:5000 Line 25.0 km

REFERENCES:
- A.R. 15372

Ferntle

WORK DONE:
- Soil 525: multielement
- Geol 1:5000 Line 25.0 km

REFERENCES:
- A.R. 15372

WORK DIV:
- ASSESSMENT REPORT 16681 INFO CLASS 3

LOCATION:
- LAT: 49 15 27 LONG: 115 30 43 NTS:

CLAIMS:
- MLM 62

OPERATOR:
- Cameco

AUTHOR:
- Anderson, D.

DESCRIPTION:
- The Sandy and Ald claims are underlain by Proterozoic Middle C63.

WORK DONE:
- Road 5.0 km

REFERENCES:
- A.R. 15372

Ferntle

WORK DONE:
- Soil 525: multielement
- Geol 1:5000 Line 25.0 km

REFERENCES:
- A.R. 15372

WORK DIV:
- ASSESSMENT REPORT 16221 INFO CLASS 4

LOCATION:
- LAT: 49 23 48 LONG: 116 13 42 NTS:

CLAIMS:
- Cedar 1, Cedar 3, Cedar 5

OPERATOR:
- Stanfield, R.

AUTHOR:
- Allen, A.

DESCRIPTION:
- The claims apre to be underlain by Proterozoic Alridge Formation sediments. The sediments are predominantly quartzitic wackes turbidites argillaceous packages. A major structure is a major, open, gently north-plunging anticline.

WORK DONE:
- Road 5.0 km

REFERENCES:
- A.R. 15372

Ferntle

WORK DONE:
- Soil 525: multielement
- Geol 1:5000 Line 25.0 km

REFERENCES:
- A.R. 15372

WORK DIV:
- ASSESSMENT REPORT 16225 INFO CLASS 4

LOCATION:
- LAT: 49 24 00 LONG: 115 12 42 NTS:

CLAIMS:
- Dogwood 1, Dogwood 8

OPERATOR:
- Stanfield, R.

AUTHOR:
- Allen, A.

DESCRIPTION:
- Proterozoic Alridge Formation argillite, argillaceous quartzite and quartzite underlies the claims. Folding is minimal and the strata incline to the northeast. Limited intrusions include diorite, granodiorite and leucotroctolite. Mineralized shears and disseminations include pyrite, pyrrhotite, chalcopyrite and galena.

WORK DONE:
- Road 5.0 km

REFERENCES:
- A.R. 15372
**** Elderberry ****

MINING DIV: ***
LOCATION: LAT. 49 20 18 LONG. 115 09 30 NTS:
CLAIMS: Elderberry 6
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims are underlain by Mississippian Evaweh and Seniff Formation limestone, shale and siltstone, Mississippian Rundle Group limestone and siltstone, Upper Devonian Fairholme, Fairholme and Algoma Formation limestone and dolomite, Upper Cambrian Jubilee and Elko dolomite, Middle Cambrian Burton shale, limestone, sandstone and conglomerate and Precambrian Rodeville quartzite, limestone and argillite.
WORK DONE: 80TD 122.8 m:2 holes
REFERENCES: RTD 122.8 m:2 holes

**** Elderberry ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 20 06 LONG. 115 09 12 NTS:
CLAIMS: Elderberry 4
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The Elderberry 3 and 4 claims are underlain by Upper Devonian limestone, argillaceous limestone and sandstone, and Mississippian limestone, tuff siltstone and black shale. The well bbeded strata strike north and dip 20 to 30 degrees west.
WORK DONE: 80TD 74.0 m:2 holes
REFERENCES: RTD 74.0 m:2 holes

**** Elderberry ****

MINING DIV: ***
LOCATION: LAT. 49 20 30 LONG. 115 07 42 NTS:
CLAIMS: Elderberry 13-14
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: Proterozoic Eldraide and Creston Formations are faulted over Devonian Fairholme Formation limestone, dolomite, quartzite, argillite and siltstone. Barite lizards within an altered and northwest striking shear zone with copper mineralization.
WORK DONE: 80TD 141.1 m:1 hole
REFERENCES:

**** Elderberry ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 20 30 LONG. 115 07 42 NTS:
CLAIMS: Elderberry 4
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The Elderberry 3 and 4 claims are underlain by Upper Devonian limestone, argillaceous limestone and sandstone, and Mississippian limestone, tuff siltstone and black shale. The well bbeded strata strike north and dip 20 to 30 degrees west.
WORK DONE: 80TD 74.0 m:2 holes
REFERENCES: RTD 74.0 m:2 holes

**** Aspen ****

MINING DIV: ***
LOCATION: LAT. 49 27 18 LONG. 115 24 42 NTS:
CLAIMS: Aspen 6
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The drill cuttings are composed of light to dark grey limestone similar to the Upper Devonian limestone with outcrops within the Rocky Mountain Trench to the east of the drill site.
WORK DONE: 80TD 147.2 m:1 hole
REFERENCES:

**** Aspen ****

MINING DIV: ***
LOCATION: LAT. 49 29 30 LONG. 115 23 00 NTS:
CLAIMS: Aspen 9
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The property is located on the east side of the northwesterly trending Rocky Mountain Trench fault. Outcrops are evident to the west and are composed of Rundle Group limestone. Similarly, to the east are exposed Proterozoic Eldraide Formation quartzite and argillite.
WORK DONE: 80TD 462.0 m:4 holes
REFERENCES:

**** Aspen ****

MINING DIV: Fort Steele
LOCATION: LAT. 49 28 06 LONG. 115 20 12 NTS:
CLAIMS: Aspen 2
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: Small outcrops north and southwest of the drill hole expose Devonian and Mississippian strata. The structure is complex and major faults strike northwesterly with cross faults trending east to north and northwest.
WORK DONE: 80TD 71.9 m:1 hole
REFERENCES:

**** Aspen ****

MINING DIV: ***
LOCATION: LAT. 49 29 54 LONG. 115 25 42 NTS:
CLAIMS: Aspen 11
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims may be underlain by the contacts between Proterozoic Eldraide, Creston, Kitchener and Silver Formation rocks.
WORK DONE: 80TD 131.0 m:4 holes
REFERENCES:

**** Aspen ****

MINING DIV: ***
LOCATION: LAT. 49 26 36 LONG. 115 23 18 NTS:
CLAIMS: Aspen 10
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims may be underlain by the contacts between Proterozoic Eldraide, Creston, Kitchener and Silver Formation rocks.
WORK DONE: 80TD 131.0 m:4 holes
REFERENCES:
Fernie

CLAIMS: Aspen 3
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claim is underlain by Mississippian Rundle Group limestone that strikes west and dips south. Drill results are inconclusive.
WORK DONE: DIAM. 57.0 M, 1 HOLE, N.D.
REFERENCES: A.R. 12998, 15030

MINING DIV:*
ASSESSMENT REPORT 15853
INFO CLASS 4
LOCATION: LAT. 49 20 30 LONG. 115 00 00 MTS:
CLAIMS: Aspen 11
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims are underlain by the Precambrian Aldridge Formation and granitic intrusions. To the west are Devonian and Mississippian limestone and sandstone which are intruded by quartz monzonite and granite dikes.
WORK DONE:
REFERENCES:
RDT: 51.5 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 16260
INFO CLASS 3
LOCATION: LAT. 49 26 48 LONG. 115 18 54 MTS:
CLAIMS: Balsam 7
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims are underlain by flat-lying Proterozoic Aldridge Formation grey to black banded argillite, siltstone and quartzite. Narrow siderite-quartz veins with pyrite, pyrrhotite and chalcopyrite occur in thin fractures and disseminations.
WORK DONE:
REFERENCES:
PERD: 122.8 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 16261
INFO CLASS 3
LOCATION: LAT. 49 26 48 LONG. 115 19 42 MTS:
CLAIMS: Balsam 8
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
DESCRIPTION: The claims are underlain by Proterozoic Aldridge Formation grey to black banded argillite, siltstone and quartzite. Narrow siderite-quartz veins with pyrite, pyrrhotite and chalcopyrite occur in thin fractures and disseminations.
WORK DONE:
REFERENCES:
PERD: 115.2 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 16222
INFO CLASS 3
LOCATION: LAT. 49 26 42 LONG. 115 16 00 MTS:
CLAIMS: Cedar 10
OPERATOR:
AUTHOR:
DESCRIPTION:
WORK DONE:
REFERENCES:
RDT: 501.0 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 15868
INFO CLASS 3
LOCATION: LAT. 49 30 08 LONG. 115 22 42 MTS:
CLAIMS: Steeples 12
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: The claims are underlain by flat-lying Proterozoic Aldridge Formation grey to black banded argillite, siltstone and quartzite. Mineralization consists of narrow veins of siderite-quartz with pyrite, pyrrhotite and chalcopyrite and thin fractures filled with pyrrhotite and pyrite.
WORK DONE:
REFERENCES:
RDT: 501.0 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 16257
INFO CLASS 3
LOCATION: LAT. 49 16 18 LONG. 114 41 18 MTS:
CLAIMS: Dome Ev. Can.
OPERATOR: Cameron, R.
AUTHOR:
DESCRIPTION: Rocks present are a sequence of Triassic Spray River Formation siltstone and siltstone. Pertinent Rocky Mountain Group quartz arenite and Mississippian Rundle Group limestone. Clay-altered schist and diabase intrude the sequence. Source rocks for the geochronological anomalies appear to be clay-altered volcanic rocks.
WORK DONE:
REFERENCES:
RDT: 15000 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 15471
INFO CLASS 3
LOCATION: LAT. 49 30 08 LONG. 115 22 42 MTS:
CLAIMS: Steeples 12
OPERATOR: Stanfield, R.
AUTHOR: Allen, A.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: The claims are underlain by flat-lying Proterozoic Aldridge Formation grey to black banded argillite, siltstone and quartzite. Narrow siderite-quartz veins with pyrite, pyrrhotite and chalcopyrite and thin fractures filled with pyrrhotite and pyrite.
WORK DONE:
REFERENCES:
RDT: 501.0 M, 1 HOLE

MINING DIV:*
ASSESSMENT REPORT 15471
INFO CLASS 3
LOCATION: LAT. 49 35 48 LONG. 115 26 00 MTS:
CLAIMS: Axe, Beaver, Box, Three, Box, Emerald, Foster, Last Chance, Lynx
RE...
Fennie 082C

OPERATOR: F. & B. Silver
AUTHOR: Gilgert, E. C.
COMMODITIES: Copper, Silver, Gold, Lead
DESCRIPTION: Structurally controlled mineralization occurs in quartz veins in the Steeple Group. The Steeple Group is composed of phyllite, slate, and quartzite with minor pyrite and disseminated gold. The mineralization is hosted in the Steeple Group and is located in the eastern part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 088A4, 088B1, 088C1, 088D1

**** Steeplees ****

MINING DIV: Fort Steele ASSESSMENT REPORT 15691 INFO CLASS 3
LOCATION: LAT. 51 22 32 LONG. 115 30 48 NTS:
CLAIMS: Steeplees 1, Steeplees 2, Steeplees 5, Steeplees 7, Steeplees 10, Steeplees 26, Steeplees 30
OPERATOR: Allen, A.
AUTHOR: Kitchener, J. H. and Nielson, J. H.
DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 088A4, 088B1, 088C1, 088D1

**** Victor ****

MINING DIV: Fort Steele ASSESSMENT REPORT 16956 INFO CLASS 3
LOCATION: LAT. 49 36 32 LONG. 115 30 48 NTS:
CLAIMS: An Lynx, Pis 1-11, Vic 1-2
OPERATOR: Monfleur, Jr.
AUTHOR: Leduc, H. A.
DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 088A4, 088B1, 088C1, 088D1

Fennie 082C

**** Big Bend Boy, Honeycomb ****

MINING DIV: Fort Steele ASSESSMENT REPORT 16444 INFO CLASS 4
LOCATION: LAT. 49 44 42 LONG. 115 30 48 NTS:
CLAIMS: Big Bend Boy, Honeycomb
OPERATOR: Luke, W.
AUTHOR: Morris, R.
DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 13200

**** Dardanelle ****

MINING DIV: Fort Steele ASSESSMENT REPORT 18327 INFO CLASS 3
LOCATION: LAT. 49 42 30 LONG. 115 30 48 NTS:
CLAIMS: Dardanelle
OPERATOR: Justice, W.
AUTHOR: Groves, W.
DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 13200

**** Jeff 3 ****

MINING DIV: Fort Steele ASSESSMENT REPORT 15019 INFO CLASS 4
LOCATION: LAT. 49 38 30 LONG. 115 30 48 NTS:
CLAIMS: Jeff 3
OPERATOR: Governor, R.
AUTHOR: Groves, W.
DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

DESCRIPTION: The claims are underlain by Precambrian rocks, including metavolcanic and metasedimentary rocks. The mineralization consists of quartz veins and stockworks, which are hosted in the metavolcanic and metasedimentary rocks. The mineralization is located in the central part of the property.

WORK DONE: Silica stockwork

REFERENCES: A. R. 13200

C70
**** Mutt 1 ****

MINING DIV: *** ASSESSMENT REPORT 15912 INFO CLASS 3
LOCATION: LAT. 49 41 00 LONG. 115 35 00 NTS:
CLAIMS: Mutt 1
OPERATOR: Governor Res.
AUTHOR: Groves, W.
DESCRIPTION: The property is underlain by a folded and northerly trending, faulted sequence in Precambrian Purcell Supergroup sediments. Aldridge dark argillites (east margin) and stratigraphically higher Lower Creton micaceous quartzites (Hogback Ridge). The claim straddles the major north-northeast fault followed by the Wild Horse River. Narrowankerite (illite) is injected into the graphitic argillites of the fault zone to intimate minor quartz-carbonate/sulfide tension fracture veins.

WORK DONE: DUG 97.4 m; 2 holes, NO
REFERENCES: SAMP 27, Au

**** Mutt 2 ****

MINING DIV: *** Fort Steele ASSESSMENT REPORT 15901 INFO CLASS 4
LOCATION: LAT. 49 44 00 LONG. 115 31 00 NTS:
CLAIMS: Mutt 3
OPERATOR: Governor Res.
AUTHOR: Groves, W.
DESCRIPTION: Lower elevations of the property are underlain by Precambrian Creton Formation (green, purple and white argillaceous quartzite) and overstep at higher elevations by the Kitchener Formation (green, grey and purple buff weathering dolomitic argillite). Much of the property area is obscured by timber.

WORK DONE: DUG 150.00 SILT 1; multielement
REFERENCES: ***

**** ****

MINING DIV: Skeena ASSESSMENT REPORT 99998 INFO CLASS 1
LOCATION: LAT. 52 05 05 LONG. 114 11 11 NTS:
CLAIMS: Wait 6
OPERATOR: Wait 6
AUTHOR: Harry, Bill, George
DESCRIPTION: Drilling intersected rocks of the Proterozoic Aldridge Formation.

WORK DONE: DUG 40.0 m; 1 hole, NO
REFERENCES: SAMP 298; multielement

***** Wait *****

MINING DIV: *** Fort Steele ASSESSMENT REPORT 15873 INFO CLASS 3
LOCATION: LAT. 49 43 00 LONG. 115 48 00 NTS:
CLAIMS: Wait 11
OPERATOR: Nominine Res.
AUTHOR: Klenchuck, P.
DESCRIPTION: The claims are underlain by Proterozoic Aldridge Formation metamorphosed fine-grained clastic sedimentary rocks. Faulting occurs with chloritic and argillitic alteration.

WORK DONE: DUG 469.8 m; 2 holes, NO
REFERENCES: SAMP 163; multielement

***** Wait *****

MINING DIV: *** Fort Steele ASSESSMENT REPORT 15824 INFO CLASS 3
LOCATION: LAT. 49 42 00 LONG. 115 49 00 NTS:
CLAIMS: Wait 2-3, Wait 5-13
OPERATOR: Nominine Res.
AUTHOR: Mark, C.
DESCRIPTION: The general area is underlain by Purcell Supergroup sedimentary rocks of Precambrian age that is cut by block faulting. Most of the Wait claims are covered with glacial and fluvial overburden. The underlying rock-types are probably of Creton, Aldridge and Kitchener Formations. Rock-types are predominantly argillites, siltstones and quartzites with some dolomite. Three antiformal hinge zones are intersected consisting of steeply-bounded pyrite, pyrrhotite, sphalerite galena and arsenopyrite.

WORK DONE: ENR 19.3 km, HOLE 20.3 km
REFERENCES: ***

***** Wait *****

MINING DIV: *** Fort Steele ASSESSMENT REPORT 15496 INFO CLASS 3
LOCATION: LAT. 49 41 42 LONG. 115 47 30 NTS:
CLAIMS: Wait 2, Wait 6
OPERATOR: Nominine Res.
AUTHOR: Klenchuck, P.
DESCRIPTION: The claims are underlain by Proterozoic Aldridge Formation metamorphosed, fine-grained clastic sedimentary rocks. Chloritic and argillitic alteration with iron and minor base metal sulphides occur on the property.

WORK DONE: DUG 97.2 m; 2 holes, NO
REFERENCES: SAMP 298; multielement

C72
REFERENCES:

DIFFERENT MINING DIV.

LOCATION:
LAT: 40 48 40
LON: 115 28 00

REFERENCES:

DIFFERENT MINING DIV.

LOCATION:
LAT: 41 0.5
LON: 115 54 10

REFERENCES:

DIFFERENT MINING DIV.

LOCATION:
LAT: 40 47 12
LON: 115 35 30

REFERENCES:

DIFFERENT MINING DIV.

LOCATION:
LAT: 39 54 40
LON: 115 47 52

REFERENCES:

DIFFERENT MINING DIV.

LOCATION:
LAT: 42 41 40
LON: 115 47 52

REFERENCES:
**** St. Patrick ****

MINING DIV: Slocan
LOCATION: LAT. 50 13 30 LONG. 116 56 00 NTS:
OPERATOR: Security Environmental Systems
COMMODITIES: Silver, Lead, Zinc

WORK DONE:
- SOIL 100: multielement

REFERENCES: A.R. 12941

M.I. 082K5DG26 - ST. PATRICK

**** Aspen ****

MINING DIV: ***
LOCATION: LAT. 50 02 30 LONG. 117 14 00 NTS:
OPERATOR: Goldsmith, L.
AUTHOR: Devlin, D.: Mitchell, I.
DESCRIPTION: The property is underlain by Triassic Slocan Group rocks which consist of argillites, slates and phyllites with units of limestone, quartzite and calcareous horizons. These rocks have been intruded by quartz-feldspar porphyry sills and dykes. The rocks strike northwest with steep southwesterly dips and have undergone extensive folding and faulting.

WORK DONE:
- GEODE: 1:5000, 1:2500, 1:1250
- ROCK: 97: Ag, Pb, Zn
- SOIL: 29: 21-La

REFERENCES: A.R. 14434, 15472

C75

**** Merit ****

MINING DIV: Slocan
LOCATION: LAT. 50 01 30 LONG. 117 14 00 NTS:
CLAIMS: Merit South
OPERATOR: Goldsmith, L.
AUTHOR: Chung, P.
DESCRIPTION: Metasedimentary units belonging to the Triassic Slocan Group are altered and deformed by repeated folding and faulting with planar and linear elements trending northwest along apparent fold axes. A stockwork of rocks near an adit consists of quartz vein material mineralized with galena and sphalerite.

WORK DONE:
- SOIL: 238: Cu, Pb, Zn, Ag
- MASS: 111: Ag, Cu, Pb, Zn

REFERENCES: A.R. 14434

C76

**** Merit Rich ****

MINING DIV: Slocan
LOCATION: LAT. 50 01 24 LONG. 117 11 48 NTS:
CLAIMS: Merit Rich
OPERATOR: Goldsmith, L.
AUTHOR: Chung, P.
DESCRIPTION: Triassic-Jurassic Slocan Group sedimentary rocks are cut by granitic dykes and sills. Anomalously high silver and zinc values occur in soils. No mineralization has been observed in-place.

WORK DONE:
- SOIL: 176: Ag, Pb, Zn
- ROCK: 1: Au, Ag

REFERENCES: A.R. 14343, 15472

**** People, Lucky Jim ****

MINING DIV: Slocan
LOCATION: LAT. 50 02 24 LONG. 117 12 24 NTS:
CLAIMS: NR 3-8, Besigie, Non Pariel Fr., Blackbird, St. George, Isis, Highland
OPERATOR: Petrofianco Int. Res.
AUTHOR: Butters, S.: Hunter, A.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: The claims are underlain by Jurassic-Triassic Slocan Group slaty argillites with interbedded calcareous zones. The Lucky Jim limestone 1A-2 is a highly fractured and brecciated. Sphalerite and pyrite with some galena and chalcopyrite occur within the brecciated zones.

WORK DONE:
- EMGS: 5.0 km: VLF
- LINE: 3.4 km
- SOIL: 3.4 km
- ROCK: 6: Cu, Pb, Zn, Ag, Co, Au

REFERENCES: A.R. 14343, 15472

C76
I***
X-Ray ****
MINING DIV: Slocan
LOCATION: LAT. 50 0.2 30 NTS:
CLAIMS: Silver-Silver Chalice, Silver Shadow, Silver Spirit
OPERATOR: Goldsmith, L.
AUTHOR: Goldsmith, L. Kallack, P.
DESCRIPTION: Triassic-Kazoa Group volcanics underlie the claim. Quartz veining is evident in rubble but none was observed in place.
WORK DONE: GEDL 55000
REFERENCES: SOIL 593; Ag, Pb, Zn

**** Silver ****
MINING DIV: Slocan
ASSSESSMENT REPORT 15973 INFO CLASS 2
LOCATION: LAT. 50 0.5 30 NTS:
CLAIMS: Alamo, Alamo 2-3, Lynn
OPERATOR: Silver Res.
AUTHOR: Meyer, B.
DESCRIPTION: Silver Lead, Zinc, Molybdenum, Gold
COMMODITIES: Silver Lead, Zinc, Molybdenum, Gold
DESCRIPTION: The claims are underlain by Jurassic-Triassic phylite and dolomite. The metasediments are Cretaceous and Jurassic(?), and these intrusions are Cretaceous and Jurassic(?). The contacts are granitic and make up to 3.5% of the sedimentary rocks. No gold values were encountered in this area.
REFERENCES: ASSESSMENT REPORT 15973 INFO CLASS 2

**** A, Victim ****
MINING DIV: Slocan
ASSSESSMENT REPORT 16248 INFO CLASS 4
LOCATION: LAT. 50 0.6 30 NTS:
CLAIMS: A-1, Anton 2-5, Bobbie 1, Moly 5, Moly 1, North, Victor 1, Moly 4
OPERATOR: Silver Res.
AUTHOR: Meyer, B.
DESCRIPTION: The claims are underlain by Jurassic-Triassic phylite and dolomite. The metasediments are Cretaceous and Jurassic(?), and these intrusions are Cretaceous and Jurassic(?). The contacts are granitic and make up to 3.5% of the sedimentary rocks. No gold values were encountered in this area.
REFERENCES: ASSESSMENT REPORT 16248 INFO CLASS 4

Florence ****
MINING DIV: Slocan
ASSSESSMENT REPORT 15992 INFO CLASS 4
LOCATION: LAT. 50 0.6 30 NTS:
CLAIMS: Florence (L.5764)
OPERATOR: Stewart, R.
AUTHOR: Stewart, R.
DESCRIPTION: The claim is underlain by a Cretaceous-Jurassic Nelson Batholith granitic structure.
REFERENCES: ASSESSMENT REPORT 15992 INFO CLASS 4

C78
REFERENCES:

**** Sunshine, Done ****

MINING DIV: Slocan

LOCATION: LAT. 50 05 12 LONG. 117 39 00 NTS:

CLAIMS: Done Sunshine

OPERATOR: T11123m Gold Mines

AUTHOR: George J.

DESCRIPTION: The claims are underlain by Carboniferous-Permain Milford Group and Triassic-Lower Jurassic Slocan Group metavolcanics and metasediments. Soil geochemistry returned low gold values.

WORK DONE:

REFERENCES:

**** Prince ****

MINING DIV: Slocan

LOCATION: LAT. 50 15 24 LONG. 117 48 54 NTS:

CLAIMS: Prince

OPERATOR: Harris, J.

AUTHOR: John A. Speechley, C.

COMMODITIES: Silver, Lead, Zinc

DESCRIPTION: The northwest part of the property is underlain by andesitic volcanics of the Cambrian-Devonian Index Formation. The southwest part of the property is underlain by basalts in metasediments of the Broadview Formation. The Comstock workings located near the centre of the property explored several quartz veins up to 1 metre wide that are mineralized with argentiferous galena and minor amounts of silver. Mineralization occurs as disseminations of sulphide crystals in milky quartz and smoky quartz.

WORK DONE:

REFERENCES:

**** Comstock ****

MINING DIV: Slocan

LOCATION: LAT. 50 19 24 LONG. 117 09 24 NTS:

CLAIMS: Comstock 3-4

OPERATOR: Ambrosie Ex.

AUTHOR: J. Harris, C. Speechley, A.

COMMODITIES: Silver, Lead, Zinc

DESCRIPTION: The northwestern part of the property is underlain by andesitic volcanics of the Cambrian-Devonian Index Formation. The southwest part of the property is underlain by basalts in metasediments of the Broadview Formation. The Comstock workings located near the centre of the property explored several quartz veins up to 1 metre wide that are mineralized with argentiferous galena and minor amounts of silver. Mineralization occurs as disseminations of sulphide crystals in milky quartz and smoky quartz.

WORK DONE:

REFERENCES:

**** Gallo ****

MINING DIV: Slocan

LOCATION: LAT. 50 25 00 LONG. 117 11 00 NTS:

CLAIMS: Gallo, Calumet, Calumet 2-3, Coronation, Gallo, Nirny, Nobs

OPERATOR: Calumet Mines, L.

AUTHOR: Calumet Mines, L.

COMMODITIES: Silver, Copper

DESCRIPTION: The claims are underlain by grey-black and green andesite of the Cambrian-Devonian Lower and Upper Index Formation. The schists are folded and faulted by regional tectonics, and now form part of the mapped Kootenay Lake anticline. All rocks have undergone regional metamorphism of low to medium grades. A fracture-controlled quartz vein at the old Gallo workings hosts local pyrite-chalcopyrite and tetrahedrite mineralization. The vein has been traced for 60 metres north and south in a 175/90 degree fault zone.

WORK DONE:

REFERENCES:

**** Grizzly ****

MINING DIV: Slocan

LOCATION: LAT. 50 18 54 LONG. 117 00 42 NTS:

CLAIMS: Grizzly, Grizzly 2-3

OPERATOR: Muraline Mines

AUTHOR: Muraline Mines

COMMODITIES: Silver, Copper

DESCRIPTION: The claims are underlain by grey-black and green andesite of the Cambrian-Devonian Lower and Upper Index Formation. The schists are folded and faulted by regional tectonics, and now form part of the mapped Kootenay Lake anticline. All rocks have undergone regional metamorphism of low to medium grades. A fracture-controlled quartz vein at the old Grizzly workings hosts local pyrite-chalcopyrite and tetrahedrite mineralization. The vein has been traced for 60 metres north and south in a 175/90 degree fault zone.

WORK DONE:

REFERENCES:

**** Slave ****

MINING DIV: Slocan

LOCATION: LAT. 50 26 24 LONG. 117 11 35 NTS:

CLAIMS: Slave

OPERATOR: Komombo, L.

AUTHOR: Komombo, L.

DESCRIPTION: Palaeozoic phyllite and metavolcanics are part of a large regional fold and are slightly to moderately metamorphosed. Mineralization consisting of pyrite, gold, and silver are predominantly associated with stress fractures.

WORK DONE:

REFERENCES:

**** White Eagle ****

MINING DIV: Slocan

LOCATION: LAT. 50 26 24 LONG. 117 11 35 NTS:

CLAIMS: White Eagle

OPERATOR: White Eagle

AUTHOR: White Eagle

DESCRIPTION: Palaeozoic phyllite and metavolcanics are part of a large regional fold and are slightly to moderately metamorphosed. Mineralization consisting of pyrite, gold, and silver are predominantly associated with stress fractures.

WORK DONE:

REFERENCES:

**** CBO ****

MINING DIV: Slocan

LOCATION: LAT. 50 26 24 LONG. 117 11 35 NTS:

CLAIMS: CBO

OPERATOR: CBO

AUTHOR: CBO

DESCRIPTION: Palaeozoic phyllite and metavolcanics are part of a large regional fold and are slightly to moderately metamorphosed. Mineralization consisting of pyrite, gold, and silver are predominantly associated with stress fractures.

WORK DONE:

REFERENCES:
WDRK DONE.

REFERENCES:

MINING DIV:

A** 4SSESSMENT REPORT 16149 INFD CLASS 4

LOCATION: LAT. 50 23 48 LONG. 116 19 00 NTS:

CLAIMS: one Laay.~wo Lady DPER4TOR: AUTHDR:

DESCRIPTION:

H81mila. R.

WORK DONE:

The claims are underlain by Carbonaceous sediments and pyrite
minerals.

REFERENCES:

naim3ln. R.

MINING DIV: Golden

ASSESSMENT REPORT 16149 INFO CLASS 4

LOCATION: LAT. 50 22 48 LONG. 116 26 48 NTS:

CLAIMS: Toby 1-2, Toby 4

OPERATOR: graf. C.

AUTHOR:

DESCRIPTION:

The claims are underlain by Palaeozoic and/or Lower
Paleozoic sediments consisting of black argillites. Quartzites.
complomements and Carbonates. Numerous Zinc-Lead-Silver +-
barite deposits occur in a dolomite sequence along the major
regional N1 Forster thrust fault.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Golden

ASSESSMENT REPORT 16477 INFO CLASS 4

LOCATION: LAT. 50 24 54 LONG. 116 18 30 NTS:

CLAIMS: TC

OPERATOR: J.C. Van Der: Lee.

AUTHOR:

COMMODITIES: SilveP,~eBd,zinc,~aPp~i.

DESCRIPTION: The claim is underlain by quartzite, dolomite and pyrite
of the Dutch Creek Formation.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16005 INFO CLASS 4

LOCATION: LAT. 50 35 36 LONG. 117 24 36 NTS:

CLAIMS: Silver. Slipper

OPERATOR: York L

AUTHOR:

COMMODITIES: Silver. Lead.Zinc. Cold

DESCRIPTION:

The claim appears to be underlain by quartzites and argillites.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16077 INFO CLASS 4

LOCATION: LAT. 50 35 24 LONG. 117 20 00 NTS:

CLAIMS: Cat 1-2

OPERATOR: Tri County Holdings

AUTHOR:

DI Spirito, F.; Graham, J.C.

DESCRIPTION:

The claims are underlain by pyrrhotites, greenstone and
quartzites.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16645 INFO CLASS 3

LOCATION: LAT. 50 35 00 LONG. 117 34 00 NTS:

OPERATOR: Bryson Ventures

AUTHOR:

COMMODITIES: Gold. Lead.Zinc.Silver

DESCRIPTION:

The pyrrhotites and schistose greenstones of the Jowett Formation
(Largeau Group) are host rocks to the Gilman and Silver Dollar vein
systems. Both are situated in C20 degree fault zones and dip 40-70
degrees northeast. In both, massive Quartz veins in up to 2 metres
thick occurs in the shear zone, carrying pyrrhotite, galena, sphalerite
and fine gold veins.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16775 INFO CLASS 4

LOCATION: LAT. 50 35 00 LONG. 117 34 00 NTS:

OPERATOR:

AUTHOR:

COMMODITIES: Gold-Lead.Zinc.Silver

DESCRIPTION:

The pyrrhotites and schistose greenstones of the Jowett Formation
(Largeau Group) are host rocks to the Gilman and Silver Dollar vein
systems. Both are situated in C20 degree fault zones and dip 40-70
degrees northeast. In both, massive Quartz veins in up to 2 metres
thick occurs in the shear zone, carrying pyrrhotite, galena, sphalerite
and fine gold veins.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16829 INFO CLASS 4

LOCATION: LAT. 50 35 00 LONG. 117 34 00 NTS:

OPERATOR:

AUTHOR:

COMMODITIES: Gold-Lead.Zinc.Silver

DESCRIPTION:

The pyrrhotites and schistose greenstones of the Jowett Formation
(Largeau Group) are host rocks to the Gilman and Silver Dollar vein
systems. Both are situated in C20 degree fault zones and dip 40-70
degrees northeast. In both, massive Quartz veins in up to 2 metres
thick occurs in the shear zone, carrying pyrrhotite, galena, sphalerite
and fine gold veins.

WORK DONE:

REFERENCES:

naim3ln. R.

MINING DIV: Revelstoke

ASSESSMENT REPORT 16867 INFO CLASS 4

LOCATION: LAT. 50 35 00 LONG. 117 34 00 NTS:

OPERATOR:

AUTHOR:

COMMODITIES: Gold-Lead.Zinc.Silver

DESCRIPTION:

The pyrrhotites and schistose greenstones of the Jowett Formation
(Largeau Group) are host rocks to the Gilman and Silver Dollar vein
systems. Both are situated in C20 degree fault zones and dip 40-70
degrees northeast. In both, massive Quartz veins in up to 2 metres
thick occurs in the shear zone, carrying pyrrhotite, galena, sphalerite
and fine gold veins.
Laradeau

MOUNTAIN BDY:082K 136-IRON DOLLAR

Murray Mine

MINING DIV: REVELSTOKE

LOCATION: LAT. 50 37 00 LONG. 117 38 42 NTS:

CLAIMS: Murray 1

OPERATOR: E.W.R. Res.

DESCRIPTION: Copper-Silver-Gold

DESCRIPTION: Intermediate to felsic volcanics of the Shuswap terrane have been intruded by Galena Bay granodiorite. Disseminated to massive sulphides (copper enriched) with precious metal values are found over a strike length of 2.4 kilometer. Sulphide occurrences are continuous to bedding. The target is polymetallic massive sulphide bodies of possible Cambro-Ordovician origin.

WORK DONE: EMGR 25.0 km, VLF

REFERENCES:

Independence, Goldfinch Mine

MINING DIV: REVELSTOKE

LOCATION: LAT. 50 49 30 LONG. 117 39 46 NTS:

CLAIMS: Independence

OPERATOR: Grange Exp.

DESCRIPTION: The claims are underlain by metamorphic rocks of the Cambrian-Devonian Lardeau Group. Gold occurs in quartz veins and altered wall rock. Drilling results intersected significant widths of gold bearing rock.

WORK DONE: SAMP 2429, Au Ag.

REFERENCES:

Lost Cup Mine

MINING DIV: REVELSTOKE

LOCATION: LAT. 50 50 01 LONG. 117 39 46 NTS:

CLAIMS: Lost Cup, Nina, Phyllite

OPERATOR: Grange Exp.

DESCRIPTION: The claims are underlain by metamorphic rocks of the Cambrian-Devonian Lardeau Group.

WORK DONE: SOIL 1:485:multielement

REFERENCES:

Teddy Glacier Mine

MINING DIV: Slocan

LOCATION: LAT. 50 45 36 LONG. 117 10 36 NTS:

CLAIMS: Fox 3

OPERATOR: BIP 1 Dev.

DESCRIPTION: The claims are underlain by metavolcanics, quartz monzonite, metasediments and metagabbro.

WORK DONE: SAMP 52:multielement

REFERENCES:

Horne Mine

MINING DIV: REVELSTOKE

LOCATION: LAT. 50 45 21 LONG. 117 26 47 NTS:

CLAIMS: Horne

OPERATOR: Golden Range Res.

DESCRIPTION: The claims are underlain by metavolcanics, chlorite schists and minor limestone of the Cambrian-Devonian Index Formation.

WORK DONE: SOIL 1:multielement

REFERENCES:
**** Lackburn, Glenside ****

MINING DIV: ***
LOCATION: LAT. 50 45 32 LONG. 117 26 55 NTS:
CLAIMS: Circle City
OPERATOR: Golden Range Res.
AUTHOR: Haave, M.
COMMODITIES: Lead, Silver, Gold
DESCRIPTION: The claim is underlain by Cambrian-Devonian Index Formation phyllites, gneissic schists and minor limestone.
WORK DONE:
- GEOL 110,000
- SILT 6: multielement
- ROCK 11: multielement
REFERENCES: M.J. OB2KNW141; GLENSIDE; OB2KNW175-LACKBURN

Vernon

OB2L

**** Aim ****

MINING DIV: Vernon
LOCATION: LAT. 50 07 30 LONG. 118 32 24 NTS:
CLAIMS: Aim 1
OPERATOR: K.O. Res.
AUTHOR: Neilson, D.
DESCRIPTION: Tertiary plateau basalts underlie most of the claim.
WORK DONE:
- SILT 13: multielement
REFERENCES:

**** Echo, Humo ****

MINING DIV: ***
LOCATION: LAT. 50 10 36 LONG. 118 46 30 NTS:
CLAIMS: Bonn-I, II, Echo I-V, Echo I-IV, Moss I-VIII
OPERATOR: GPX Min.
AUTHOR: Gasse, G.
DESCRIPTION: The Precambrian Shuswap Metamorphic Complex is overlain by unmetamorphosed volcanics and sediments. Paleozoic rocks underlie a portion of the property.
WORK DONE:
- GEOL 110,000
- SILT 43: multielement
- ROCK 21: multielement
- PEBB 22: multielement
REFERENCES:

**** Pita ****

MINING DIV: ***
LOCATION: LAT. 50 08 49 LONG. 118 34 29 NTS:
CLAIMS: Pita 1-18, Pita 10-15, Pita 20-29
OPERATOR: Approach Res.
REFERENCES:

**** Pita ****

MINING DIV: ***
LOCATION: LAT. 50 08 30 LONG. 118 33 00 NTS:
CLAIMS: Pita 1-8, 9-14, 22-26, 26-39
OPERATOR: Approach Res.
AUTHOR: Christopher, P.
DESCRIPTION: The Pita property is underlain by rocks of the "Slocan Assembly" (Triassic) and "Thompson Assembly" (Cache Creek equivalent) which are intruded by granitic rocks of the Nelson Batholith. Rock types include tuffs, andesitic lavas, limestone, chert and argillaceous sedimentary units. A prominent sericitized and sheared pyritic alteration zone cuts the sedimentary rock sequence. Soil contains up to 1.020 ppm gold and banned sediments contain up to 21.500 ppm gold.
WORK DONE:
- SOIL 1048: Cu, Ag, Zn, Pb, Au
- LIME 3: Cu, Ag, Zn, Pb, Au
- ROCK 53: Cu, Ag, Zn, Pb, Au
- GEOL 15,000
- EMGR 1 1.2 Am: VLF
REFERENCES:

**** Pita ****

MINING DIV: Vernon
LOCATION: LAT. 50 06 08 LONG. 118 30 34 NTS:
CLAIMS: Pita 20
OPERATOR: Approach Res.
AUTHOR: Christopher, P.
DESCRIPTION: Metamorphosed volcanic and sedimentary rocks of the Paleozoic Cache Creek Group are intruded by dioritic and monzonitic phases of the Cretaceous-Jurassic Nelson Batholith. Elevated nickel values suggest the presence of mafic dykes. East trending structural zones with quartz veins contain precious metal values in chalcopyrite, pyrite, galena and sphalerite.
WORK DONE:
- SOIL 65: multielement
REFERENCES:

**** Sean ****

MINING DIV: ***
LOCATION: LAT. 50 14 42 LONG. 118 48 24 NTS:
CLAIMS: Barcou 1-2, 80821 1-2
OPERATOR: Brenda Mines
REFERENCES:

**** Sean ****

MINING DIV: ***
LOCATION: LAT. 50 14 42 LONG. 118 48 24 NTS:
CLAIMS: Barcou 1-2, 80821 1-2
OPERATOR: Brenda Mines
REFERENCES:
Kalamalka (Chance)

MINING DIV: Vernon

LOCATION: LAT. 50 12 00 LONG. 119 06 00 NTS:

CLAIMS: Bus 1-2

OPERATOR: Triple Star Res.

AUTHOR: DeJager, P. G.; Smith, F.

COMMODITIES: Gold, Silver, Copper, Lead, Zinc

DESCRIPTION: Jurasic-Eocene diorite intrusive and sedimentary country rocks are cut by late faulting. Quartz veins in these fault zones carry gold values.

WORK DONE: UND, 100.0 m: rehab, BURK 93-A, Ag, UNDO 133 B m: 8 holes, Ag

REFERENCES: M. I. 082LSW00-KALAMALKA (CHANCE)

British Empire

MINING DIV: Vernon

LOCATION: LAT. 50 16 54 LONG. 119 22 00 NTS:

CLAIMS: British Empire, Dominion Fr.

OPERATOR: Benvenuto, G.

AUTHOR: Benvenuto, G.

COMMODITIES: Gold, Silver

DESCRIPTION: At least 18 narrow, high-grade gold-bearing quartz veins occur within a 220 metre wide interval of a major shear zone in metasedimentary rocks of the Pennsylvanian-Penn Platte Cache Creek Group.

WORK DONE: BURK 54: multielement

REFERENCES: M. I. 082LSW04-BRITISH EMPIRE

Bond

MINING DIV: Vernon

LOCATION: LAT. 50 01 00 LONG. 119 34 00 NTS:

CLAIMS: Bond 1

OPERATOR: Lenard, N.

AUTHOR: Lenard, N.

DESCRIPTION: The claim is underlain by metasediments and andesites of the Pennsylvanian-Penn Platte Cache Creek Group. Locally the rocks are cut by dykes and plugs of diorite-quartz diorite of the Jurasic-Cretaceous Vernon pluot, which contacts the Cache Creek Group along the east and north margins of the property.

WORK DONE: GEO 1:500

REFERENCES: A. R. 12148, 14811

Brett

MINING DIV: Vernon

LOCATION: LAT. 50 14 12 LONG. 119 39 48 NTS:

CLAIMS: Brett 1

OPERATOR: Huntington Res.

AUTHOR: Greenway, W.

COMMODITIES: Gold, Silver

DESCRIPTION: The claims are underlain by Mesozoic granitic intrusive rocks which are overlain in part by Tertiary andesitic and basaltic flows and tuffs. The Tertiary volcanics are several northernly-trending epithermal-type shear zones and silicified zones. These zones and the adjacent host rocks contain significant gold and silver mineralization. Parallel and closely associated with these zones are post-mineralization feldspar porphyry dykes thought to be related to a nearby syenite intrusive.

WORK DONE: QZD, 795.2 m: 16 holes, NO

REFERENCES: A. R. 13489, 13471

Dome

MINING DIV: Vernon

LOCATION: LAT. 50 04 54 LONG. 119 41 00 NTS:

CLAIMS: Dome 1

OPERATOR: Huntington Res.

AUTHOR: Greenway, W.

DESCRIPTION: The property appears to be underlain by Mesozoic granitic intrusive rocks of the nearby Terrace Mountain Outlier, which are overlain by Tertiary volcanic rocks of the nearby Tertiary volcanic rocks of the nearby Terrace Mountain Outlier.

WORK DONE: QZ, 3: Au

REFERENCES: GEO 1:500

Expo

MINING DIV: Vernon

LOCATION: LAT. 50 12 34 LONG. 119 39 19 NTS:

CLAIMS: Expo 1, Expo 7-8

OPERATOR: Pacific Northwest Res.

AUTHOR: McLeod, J.

COMMODITIES: Gold

DESCRIPTION: The claims are underlain by Tertiary Klamath Group volcanics and Jurasic-Cretaceous granitic plutons of the Valhalla Intrusives.

WORK DONE: DOIL 90: multielement

REFERENCES: DOIL 253: multielement
REFERENCES:

**** Tara ****

MINING DIV: Vernon
LOCATION: LAT. 50 00 06 LONG. 119 37 36 NTS:
CLAIMS: Tara 4-7
OPERATOR: Cox, P.
AUTHOR: Willmot, A.
DESCRIPTION: The claims are underlain by Permain-Pennsylvanian Cache Creek Group andesitic tuffs and Tertiary conglomerates.
WORK DONE: SOIL 136:Cu,Ag

REFERENCES:

**** White Elephant ****

MINING DIV: Vernon
LOCATION: LAT. 50 08 45 LONG. 119 33 00 NTS:
CLAIMS: Blyth 1, dem 1-11, Pine
OPERATOR: Blyth, W.
AUTHOR: Mulquin, B.
COMMODITIES: Gold, Silver, Tungsten, Bismuth, Tellurium, Sillies
DESCRIPTION: The claims are underlain by faulted granodiorites and porphyritic basalts.
WORK DONE: LINE 10.2 km

REFERENCES:

**** Young ****

MINING DIV: Vernon
LOCATION: LAT. 50 11 00 LONG. 119 39 12 NTS:
CLAIMS: Zuman 2, Zumar 4
OPERATOR: Skyworld Res. & Dev.
AUTHOR: Willmot, A.
COMMODITIES: Gold, Silver
DESCRIPTION: A quartz vein occurs in Permain-Pennsylvanian Cache Creek Group basalt and andesite. Late felsite dikes and quartz stringers are also evident. Mineralization consists of pyrite and chalcopyrite with C89.

REFERENCES:

**** Zuman ****

MINING DIV: Vernon
LOCATION: LAT. 50 00 42 LONG. 119 38 12 NTS:
CLAIMS: Zuman 2, Zumar 4
OPERATOR: Skyworld Res. & Dev.
AUTHOR: Willmot, A.
COMMODITIES: Gold, Silver
DESCRIPTION: A quartz vein occurs in Permain-Pennsylvanian Cache Creek Group basalt and andesite. Late felsite dikes and quartz stringers are also evident. Mineralization consists of pyrite and chalcopyrite with C89.

REFERENCES:

**** EXPO ****

MINING DIV: Nicola
LOCATION: LAT. 50 19 30 LONG. 119 48 39 NTS:
CLAIMS: Expo 8, Expo 9-10, Expo 14-16, Expo 22
OPERATOR: Pacific Northwest Res.
AUTHOR: McIona, J.
DESCRIPTION: The property appears to be underlain by Tertiary Kamloops Group volcanic-sedimentary rocks.
WORK DONE: SILT 8:Ag, Au, Ni, Co, Mn, Cr

REFERENCES:

**** Ron ****

MINING DIV: Vernon
LOCATION: LAT. 50 14 30 LONG. 119 49 00 NTS:
CLAIMS: Ron 1-2
OPERATOR: Huntington Res.
AUTHOR: Gruemwald, W.
DESCRIPTION: The claims are underlain by metavolcanic and metasedimentary rocks of the Pliensboian Chappeller Group. These rocks are intruded by a large Permain serpentinitized ultramafic dyke and numerous Mesozoic granitic dykes. Overlying the entire sequence in the northern portion of the claims are flat lying Tertiary volcanic rocks. Anomalous base and precious metal values occur in all rocks except Tertiary volcanics. Some stream sediments contain visible gold.
WORK DONE: SILT 28:Au, Cu, Pb, Zn, Ag
MIN 20:Au, Cu, Pb, Zn, Ag
GEOL 19:Zn, Ag

REFERENCES:

**** Expo ****

MINING DIV: Kamloops
LOCATION: LAT. 50 20 06 LONG. 119 38 00 NTS:
CLAIMS: Expo 3
OPERATOR: Pacific Northwest Res.
AUTHOR: McIona, J.
DESCRIPTION: The claim is underlain by Tertiary Kamloops Group volcanic-clastics.
WORK DONE: SILT 11:multielement

REFERENCES:
**** Nugget ****

MINING DIV: Nicole
LOCATION: LAT 50 20 16 LONG. 119 46 24 NTS:
CLAIMS: Nugget 1
OPERATOR: Huntington Res.
AUTHOR: Gruenwald W.
DESCRIPTION: The property is underlain by Tertiary volcanic rocks cemented predominantly of basalt flows, pyroclastics and minor felsic volcanic. Transverse the property is a strong north trending topographic linear (fault zone).
WORK DONE: SOIL 1: Au
REFERENCES:

**** Greg ****

MINING DIV: Vernon
LOCATION: LAT 50 22 12 LONG. 119 28 54 NTS:
CLAIMS: Greg
OPERATOR: Tournigan Min. Ex.
AUTHOR: Jenks. J.
DESCRIPTION: The claim is underlain by Permian-Pennsylvanian Cache Creek Group volcanics and argillites.
WORK DONE: LINE 8.6 km
REFERENCES: A.R. 14906

**** Hidden Treasure, Grand Times ****

MINING DIV: Penny
LOCATION: LAT. 50 23 00 LONG. 119 20 30 NTS:
CLAIMS: Penny
OPERATOR: Goldstone Ex.
AUTHOR: Menner. D.
COMMODITIES: Gold
DESCRIPTION: Hornblende diorite intrudes Triassic and Palaeozoic argillites, alluvium and anesite tuffs. Crowded feeder and porphyry, possibly a Tertiary decile plug occurs at the southwest corner of the claim. A northwest shear containing quartz veins to 5.5 metres in width cuts the hornblende diorite. The quartz 15 highly fractured, sulphide poor, but contains traces of visible gold. Irregular quartz veins to 50 centimetres wide containing minor sulphides and anomalous gold values occur elsewhere on the claim - often along a northeast linear.
WORK DONE: LINE 15.0 km
REFERENCES: A.R. 02592, 10031, 14305

**** Peak, Irish ****

MINING DIV: Vernon
LOCATION: LAT 50 23 36 LONG. 119 19 18 NTS:
CLAIMS: Peak Irish 2
OPERATOR: Goldquest Min.
AUTHOR: Gourlay. A.
DESCRIPTION: The claims are underlain by the Jurassic-Triassic Slocan Group and Upper Triassic Nicola Group rocks which are intruded by anesite dikes. Tertiary mafic rocks. Eroded remnants of Tertiary basalt and other rocks at higher elevations.
WORK DONE: MAGG 7.5 km
REFERENCES:

**** Laff ****

MINING DIV:***
LOCATION: LAT 50 27 36 LONG. 119 31 06 NTS:
CLAIMS: Laff 711
OPERATOR: Gerle Gold
AUTHOR: Mrkac. C.
COMMODITIES: Copper, Zinc
DESCRIPTION: The claims are quartz and quartzite of the Monashee Group have been intruded by large, flat lying diorite sills. Locally this series of rocks is underlain by Proterozoic metasediments and volcanics of the Sushwap Metamorphic Complex.
WORK DONE: GEOX 1:20,000
REFERENCES: M. 1. 062LS056-LAF

**** B.S. ****

MINING DIV: Vernon
LOCATION: LAT 50 18 00 LONG. 119 55 30 NTS:
CLAIMS: B. S. 3
OPERATOR: Zicton Gold
AUTHOR: Allen. A.
DESCRIPTION: Proterozoic greisite and pyrrhotite of the Sushwap Metamorphic Complex. Pennsylvanian-Pennsylvanian Cache Creek Group and Upper Triassic Nicola Group argillite, shale, tuff and anesite are intruded by two small diorite stocks. Major faults and folds occur. Mineralization in and associated with fault zones, include gold, silver, minor galena, chloropyrite and pyrrhotite.
WORK DONE: MAGG 26.0 km
REFERENCES:

**** P.S. B.S. ****

MINING DIV:***
LOCATION: LAT 50 17 36 LONG. 119 58 30 NTS:
CLAIMS: B. S. 4-6, DK 1, PS 4-6
REFERENCES:
MINING DIV: Kamloops ASSESSMENT REPORT 16211 INFO CLASS 3
LOCATION: LAT 50 59 42 LONG. 119 33 18 NTS:
CLAIMS: Constock
OPERATOR: Lacos Min.
AUTHOR: Wells, R.
DESCRIPTION: The property is underlain by a mixed assemblage of Devonian-Mississippian Eagle Bay Formation pyrrhotite and schists that strike northeast and dip 30-60 degrees northeast. North trending faults are commonly filled by tertiary feldspar porphyry dikes. Copper-lead-zinc and silver mineralization occurs on the property as high grade float and as anomalous values in a mafic unit.
WORK DONE:
SOIL 1160 Au, Ag, Cu, Pb, Zn
EMRG 28.8 km, VLF, HLEM
MAG 2,200 linear sections
LINE 26.8 km
REFERENCES:

MINING DIV: Ford ASSESSMENT REPORT 15503 INFO CLASS 3
LOCATION: LAT 51 00 54 LONG. 119 38 48 NTS:
CLAIMS: Ford 2, Ford 4-5, Ford 2-3
OPERATOR: Adams Ex.
AUTHOR: Lloyd, J.
DESCRIPTION: The claims are underlain by a northeast trending belt of intermediate to felsic volcanics dipping at 30 degrees to the north. The volcanics are of Devonian age and several units contain pyrite, pyrrhotite, chalcopyrite, sphalerite and galena mineralization which are considered to be of volcanogenic origin.
WORK DONE:
IPDL 12.9 km
REFERENCES: R. R. 13400

MINING DIV: Kamloops ASSESSMENT REPORT 16601 INFO CLASS 2
LOCATION: LAT 51 00 56 LONG. 119 44 47 NTS:
CLAIMS: Adam 1, Slick 1, Bush 1-2, Cidero 1, Shrub 1, Step 1, Step 2, Step 3
OPERATOR: National Res. Ex.
AUTHOR: Wynne, F.
COMMODITIES: Copper, Asbestos, Iron, Zinc, Lead, Gold

DESCRIPTION: The claims lie along the contact of Devonian-Mississippian Eagle Bay Formation felsic to intermediate volcanics to the north, with Siancon Formation impure carbonates to the south. A strong pyrrhotite-rich skarn about 200 metres thick extends across the property at the contact, which dips about 50 degrees north. Low grade gold intersections have been made at the structural base of the skarn section.
WORK DONE:
MAGS 48.4 km
EMGR 48.4 km, HLEM
GDR 3.5 km
SOIL 338 multielement
DIAG 1399.0 m, 7 holes, NC
SAMP 403 multielement
LINE 48.8 km
NAG 25.4 km
RENS 285.0 m, 3 trenches
REFERENCES: A. R. 98321

MINING DIV: Scotton ASSESSMENT REPORT 16176 INFO CLASS 4
LOCATION: LAT 50 57 00 LONG. 119 29 30 NTS:
CLAIMS: Scotton
OPERATOR: Scottish Res.
AUTHOR: Dauntry, K.
COMMODITIES: Zinc, Copper
DESCRIPTION: Disseminated to massive pyrrhotite, pyrite, chalcopyrite and sphalerite occur in zones of stratabound mineralization in felsic intermediate to felsic volcanic rocks of the Eagle Bay Formation near its contact with younger arenaceous limestone and argillite of the Siancon Formation.
WORK DONE:
MAGS 4.3 km
GRV 6.0 km
EMGR 4.3 km, HLEM
LINE 4.9 km
REFERENCES: A. R. 08273, 08419, 07691, 12216, 14998
M. I. 021LW48-SCOTCH

MINING DIV: Kamloops ASSESSMENT REPORT 15523 INFO CLASS 4
LOCATION: LAT 50 48 00 LONG. 119 03 16 NTS:
CLAIMS: LG
OPERATOR: Leishman, D.
AUTHOR: Lemaster, G. Cruzenwala, W.
COMMODITIES: Lead, Zinc, Silver, Copper
DESCRIPTION: The claim is underlain by Arcane Nora Formation (Mt. Ida Group) quartzites and micaceous quartzites with graphitic non-carbonaceous massive to semi-massive sulfides are found in bands parallelizing local schistosity. Grades of up to 12 per cent combined lead-zinc and 17 grams per tonne of silver are found. Copper and gold values are low. There is no correlation between geophysics and visible mineralization.
WORK DONE:
LINE 3.0 km

DESCRIPTION: The claim is underlain by Archean Lava Formation (Mt. Ida Group) quartzites and micaceous quartzites with graphitic non-carbonaceous massive to semi-massive sulfides are found in bands parallelizing local schistosity. Grades of up to 12 per cent combined lead-zinc and 17 grams per tonne of silver are found. Copper and gold values are low. There is no correlation between geophysics and visible mineralization.
WORK DONE:
LINE 3.0 km
Vernon

082L

EMGR 2.2 km; VLF
MAG 2.8 km

REFERENCES:
A. R. 04433, 05884

**** Metal: Crest ****

MINING DIV:
LOCATION: LAT. 50 57 00 LONG. 119 26 00
CLAIMS:
OPERATOR: Tomsam Energy
AUTHOR: Hawkins, T.
COMMODITIES: Lead, Zinc, Gold
DESCRIPTION:
The claims are underlain by a west-northwest trending sequence of Devonian-Mississippian Eagle Bay Formation, basic to felsic meta-volcanics and volcanoclastic, quartzite, silicified carbonate rocks, interbedded black arkamites, conglomerate and sandstone. Oxidized chalcopyrite is found in most rock types locally and finely disseminated pyrite is also common. Ankerite, montmorillonite, chlorite and sericite alteration are widespread. Soil and rock chip geochemistry identified anomalous multi-element values.

WORK DONE:
ROCK: 6-multiplet
SOIL: 250 Au, Cu, As, Zn, Pb
SURVEY: 6000
REO: 20 000

REFERENCES:
A. R. 14620
M. J. 082LW014-METAL CREST

**** Perris ****

MINING DIV:
LOCATION: LAT. 50 53 21 LONG. 119 21 19
CLAIMS:
OPERATOR: National Res. Ex.
AUTHOR: Wynne, F.
DESCRIPTION:
The claims are astride the contact between Sinioma Formation and the upper Devonian. The Eagle Bay Formation is mainly gneiss, and in places with a section of probably felsic volcanic "pilot" gneiss at the contact. The sequence is monoclinal and north dipping.

WORK DONE:
ROCK: 7.6 km
EMGR: 7.6 km; VLF
SOIL: 0.4 km
LINE: 7.6 km
PIT: 56.0 m; 2 trenches

REFERENCES:

**** Shuswap ****

MINING DIV:
LOCATION: LAT. 50 54 00 LONG. 119 28 42
CLAIMS:
OPERATOR: Nexus Res.
AUTHOR:

REFERENCES:

**** Vimy ****

MINING DIV:
LOCATION:
CLAIMS: Vimy
OPERATOR: Petro, P.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION:
The property is underlain by the Devonian-Mississippian Eagle Bay Formation. A pyritic ferruginous chert horizon has been traced and tested by diamond drilling over a strike length of at least 1.3 kilometres. It has been folded and refolded into a northwest plunging overturned anticline. Gold grades increase towards the hinge.

WORK DONE:
DIAG: 5 polished sections
GEO: 1.280 km
LINE: 1.280 km
EMGR: 300 multiplet
SOIL: 47 multiplet
PET: 13 thin sections

REFERENCES:
A. R. 14872
M. J. 082LW016-SHUSWA

Vernon

AUTHOR: Coze, G.; Hawkins, T.
COMMODITIES: Lead, Gold, Silver
DESCRIPTION:
The property is underlain by the Devonian-Mississippian Eagle Bay Formation. A pyritic ferruginous chert horizon has been traced and tested by diamond drilling over a strike length of at least 1.3 kilometres. It has been folded and refolded into a northwest plunging overturned anticline. Gold grades increase towards the hinge.

WORK DONE:
DIAG: 5 polished sections
GEO: 1.280 km
LINE: 1.280 km
EMGR: 300 multiplet
SOIL: 47 multiplet
PET: 13 thin sections

REFERENCES:

**** Vimy ****

MINING DIV:
LOCATION:
CLAIMS: Vimy
OPERATOR: Petro, P.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION:
The property is underlain by the Devonian-Mississippian Eagle Bay Formation. A pyritic ferruginous chert horizon has been traced and tested by diamond drilling over a strike length of at least 1.3 kilometres. It has been folded and refolded into a northwest plunging overturned anticline. Gold grades increase towards the hinge.

WORK DONE:
DIAG: 5 polished sections
GEO: 1.280 km
LINE: 1.280 km
EMGR: 300 multiplet
SOIL: 47 multiplet
PET: 13 thin sections

REFERENCES:

**** Golden Eagle ****

MINING DIV:
LOCATION:
CLAIMS: Golden Eagle, Golden Eagle II
OPERATOR: Mineta Res.
COMMODITIES: Copper, Lead, Zinc
DESCRIPTION:
The property is underlain by the Devonian-Mississippian Eagle Bay Formation. A pyritic ferruginous chert horizon has been traced and tested by diamond drilling over a strike length of at least 1.3 kilometres. It has been folded and refolded into a northwest plunging overturned anticline. Gold grades increase towards the hinge.

REFERENCES:

Seymour Arm

082M

**** Golden Eagle ****

MINING DIV:
LOCATION:
CLAIMS: Golden Eagle, Golden Eagle II
OPERATOR: Mineta Res.
COMMODITIES: Copper, Lead, Zinc
DESCRIPTION:
The property is underlain by the Devonian-Mississippian Eagle Bay Formation. A pyritic ferruginous chert horizon has been traced and tested by diamond drilling over a strike length of at least 1.3 kilometres. It has been folded and refolded into a northwest plunging overturned anticline. Gold grades increase towards the hinge.

REFERENCES:

C96
WORK DONE: SOIL 244 Au, Ag, Cu, Pb, Zn
REFERENCES: A.R. 11836; 13024; 13815
M.I. 082M 209; GOLDEN EAGLE

Kamloops *** Golden Eagle ****
LOCATION: LAT. 51 03 30; LONG. 119 27 30
OPERATOR: Loonel, R.
AUTHOR: Lutjen, L.
DESCRIPTION: The claim is underlain by Cretaceous biotite granite and limestone.
WORK DONE: PROS 1:12 500
REFERENCES: A.R. 15513

Kamloops *** Golden Eagle ****
LOCATION: LAT. 51 03 30; LONG. 119 27 35
OPERATOR: Barnes Creek MIn.
AUTHOR: Lutjen, L.
DESCRIPTION: The claim is underlain by schists, greenstones, limestones, and granites of Cretaceous age (7) and older.
WORK DONE: PROS 1:12 500
REFERENCES: A.R. 15513

Rusty, Patches ****
LOCATION: LAT. 51 02 00; LONG. 119 27 00
OPERATOR: Bristow, J.
REFERENCES: LGR 15514
DESCRIPTION: Geology in the area of study consists mainly of a shallow westerly dipping sequence of intercalated sediments and volcanics.

Axel 1 ****
LOCATION: LAT. 51 02 36; LONG. 119 37 48
OPERATOR: Clifton Res.
AUTHOR: Spencer, B.E.
DESCRIPTION: The property is underlain by intermediate-felsic volcanics of the Devonian-Mississippian Eagle Bay Formation. The rocks strike northeast and dip 30 degrees to the northwest. Stratiform massive and disseminated pyrite, pyrrhotite, sphalerite, chalcopyrite and galena mineralization occur in felsic volcanics.
WORK DONE: GNDL 3500
REFERENCES: A.R. 15514
M.I. 082M 215-AD 1

Axel 1, Wed-Second ****
LOCATION: LAT. 51 02 54; LONG. 119 36 30
OPERATOR: Adams Silver Res.
AUTHOR: Spencer, B.E.
DESCRIPTION: The claims are underlain by a northeast trending belt of intermediate-felsic volcanics and sediments of the Devonian-Mississippian Eagle Bay Formation. Pyrite, pyrrhotite, chalcopyrite, sphalerite and galena mineralization occur in felsic volcanics and at a contact. A 500 metre strike length of low grade massive sulphide style mineralization.
REFERENCES: A.R. 06546; 06549; 07019; 11521; 11533; 12724; 13142; 13192; 13542; 14716.
M.I. 15808
M.I. 082M 212-AXL 3

Big Ben 2 Lucky Con. Elsie ****
LOCATION: LAT. 51 04 24; LONG. 119 37 12
OPERATOR: Essa Min. Can.
AUTHOR: Holbeck, P.; Thierson, P.
Severn Arm

COMMODITIES: Lead, Zinc, Copper, Silver, Gold, Arsenic, Cadmium

DESCRIPTION: Stratiform massive sulfide mineralization occurs along a 2.5-kilometre strike length at a volcanic-sediment contact. The rocks are part of the Devonian-Mississippian Eagle Bay Formation and have been folded to form a northwest plunging synform which dips some 35 degrees to the northwest.

WORK DONE: SOIL: 465: multielement

**** Chris.Ceasar ****

MINING DIV: *** ASSESSMENT REPORT 15429 INFO CLASS 3

LOCATION: LAT 51 07 00 LONG. 119 43 16 NTS:

CLAIMS: Frog's 1-2, Chris's 1-2, Eric's 1, JR's 1, Set 1-3

OPERATOR: Omni Res.

AUTHOR: Butterworth, B.; Freeze, J.

DESCRIPTION: The claims are predominantly underlain by a metamorphosed assemblage of Devonian-Mississippian sedimentary and intermediate-basic volcanic and volcaniclastic rocks of the Eagle Bay Formation.

Geophysical survey results identified several strong PEM conductors.

WORK DONE: DIAD 122.8 m: 1 hole, NG

REFERENCES: A.R. 12376

**** Fogs ****

MINING DIV: Kamloops ASSESSMENT REPORT 15678 INFO CLASS 3

LOCATION: LAT 51 07 00 LONG. 119 37 00 NTS:

CLAIMS: Frog's 3

OPERATOR: Guay, H.

AUTHOR: Perkins, D.

DESCRIPTION: The claims are underlain by Devonian-Mississippian Eagle Bay Formation rocks. At least three phases of folding and faulting are present. Silver-lead-zinc stratiform mineralization has been found in this Formation.

WORK DONE: DIAD 122.8 m: 1 hole, NG

REFERENCES: ********

**** Hut ****

MINING DIV: Kamloops ASSESSMENT REPORT 15431 INFO CLASS 3

LOCATION: LAT 51 10 30 LONG. 119 39 30 NTS:

CLAIMS: Hut's 1-3

OPERATOR: Beryl Lynn Res.

AUTHOR: Butterworth, B.; Freeze, J.

DESCRIPTION: The property is underlain by Devonian-Mississippian meta-sedimentary and metavolcanic rocks of the Eagle Bay Formation. Foliation attitudes in chlorite schist, the principal lithology, are east-northeast with moderate northerly dips. No sulfide mineralization was observed.

WORK DONE: SOIL: 465: multielement

REFERENCES: ********

**** Qwi ****

MINING DIV: Kamloops ASSESSMENT REPORT 16809 INFO CLASS 3

LOCATION: LAT 51 03 18 LONG. 119 41 00 NTS:

CLAIMS: Qwi 1-4

OPERATOR: Big Ben Res.

AUTHOR: Addison, R.

DESCRIPTION: The property is underlain by Devonian-Mississippian meta-sedimentary and metavolcanic rocks of the Eagle Bay Formation. Foliation attitudes in chlorite schist, the principal lithology, are east-northeast with moderate northerly dips. No sulfide mineralization was observed.

WORK DONE: SOIL: 465: multielement

REFERENCES: ********

**** Rose ****

MINING DIV: Kamloops ASSESSMENT REPORT 15670 INFO CLASS 4

LOCATION: LAT 51 07 42 LONG. 119 41 00 NTS:

CLAIMS: Del 1-Del 4

OPERATOR: G & D Diamond Drilling

AUTHOR: Sorensen, J.

COMMODITIES: Zinc

DESCRIPTION: Quartz veins occur in limestone of the Devonian-Mississippian Eagle Bay Formation.

WORK DONE: DIAD 33.8 m: 10 holes, BG

REFERENCES: A. 10792, 14046

M.I. O82, 057-ROSE

**** Bar ****

MINING DIV: Kamloops ASSESSMENT REPORT 15681 INFO CLASS 3

LOCATION: LAT 51 10 34 LONG. 119 56 34 NTS:

CLAIMS: Bar 4-9, Bar 11, Bar 12

OPERATOR: Falconbridge Cooper

AUTHOR: Evans, G.

DESCRIPTION: The claims are underlain by deformed mafic-felsic volcanics and associated sedimentary rocks of the Devonian-Mississippian Eagle Bay Formation.

The drill holes intercepted a section of submarine mafic flows and pyroclastics interbedded with argillites and cherts. Two PEM conductors were drilled and found to be argillitic argillites.

WORK DONE: DIAD 90.6 m: 13 holes, NG
REFERENCE: A.R. 12057

*** Bay ****

MINING DIV: *** ASSESSMENT REPORT 18209 INFO CLASS 2

LOCATION: LAT. 51 08 18 LONG. 119 46 00 NTS:

CLAIMS: Bay 1-2, Bay 11-18, Bay 5-7

OPERATOR: Kidd Creek Mines

AUTHOR: Hassaan, F.

DESCRIPTION: The Bay property is underlain by mafic and felsic metavolcanics of the Devonian-Mississippian Eagle Bay Formation. Lithologies strike northwesterly and the felsic and mafic assemblages are separated by a thrust fault.

WORK DONE: LINE 67.5 km

SOIL 2992: Multielement

REFERENCES: A.R. 13067

*** Kamloops ****

MINING DIV: Kamloops ASSESSMENT REPORT 16564 INFO CLASS 3

LOCATION: LAT. 51 06 12 LONG. 119 46 00 NTS:

CLAIMS: Bay 1-2, Bay 13-14, Bay 5-7

OPERATOR: Kidd Creek Mines

AUTHOR: Hendriksen, G.A.

DESCRIPTION: The Bay property is underlain by mafic and felsic metavolcanics of the Devonian-Mississippian Eagle Bay Formation. Lithologies strike northwesterly and the felsic and mafic assemblages are separated by a thrust fault.

WORK DONE: ENGR 70.0 km: VLF, HLEM

REFERENCES: A.R. 13067

 *** Cam ****

MINING DIV: *** ASSESSMENT REPORT 15473 INFO CLASS 3

LOCATION: LAT. 51 08 24 LONG. 119 57 00 NTS:

CLAIMS: Kam 1-3

AUTHOR: Kersy, R.

DESCRIPTION: The Kam claims are located within the Eagle Bay Formation of Upper Devonian age. These metavolcanic-sedimentary rocks consist of black phyllites, chloritic and sericite-quartz phyllites, quartzites and limestones. Bedding and foliation trend southeasterly with dips to the southeast. An overturned fold axis plunge at 10-20 degrees in a northwesterly direction.

WORK DONE: GEDL 1:2500

REFERENCES: A.R. 12700

C101

Seymour Arm

REFERENCE: CB2M

AUTHOR: Marq, J.

DESCRIPTION: The claim area is underlain by Tertiary basalt and glacial till.

WORK DONE: LINE 6.5 km

SOIL 131: Ag, Cu, Zn, Pb

REFERENCES: A.R. 12700

*** JM ****

MINING DIV: *** ASSESSMENT REPORT 15480 INFO CLASS 3

LOCATION: LAT. 51 11 54 LONG. 119 51 06 NTS:

CLAIMS: JM 1-5

AUTHOR: Marq, J.

DESCRIPTION: The JM claims are underlain by Tertiary basalt and extensive surficial deposits.

WORK DONE: ENGR 70.0 km: VLF, HLEM

REFERENCES: A.R. 12700

*** Kamad ****

MINING DIV: Kamloops ASSESSMENT REPORT 16230 INFO CLASS 3

LOCATION: LAT. 51 08 24 LONG. 119 48 12 NTS:

CLAIMS: Kamad 7

AUTHOR: Marq, J.

DESCRIPTION: A poorly exposed mafic volcanic-sedimentary contact zone with minor to significant pyrite occurs in a series of cherts, sericite-cherts and sericite phyllites. The sequence trends northwest and dips at moderate angles to the northeast.

WORK DONE: SAMP 60: Multielement

REFERENCES: TOAS 788.8 m: 6 holes, NO
**** Lith ****

MINING DIV: Kahloops ASSESSMENT REPORT 16862 INFO CLASS 3
LOCATION: LAT. 51 04 11 LONG. 119 57 32 NTS:
CLAIMS: Lith 1-45
OPERATOR: National Res. Ex.
AUTHOR: Wynn, L.
DESCRIPTION: The claims are underlain by a homoclinal, north dipping sequence of interlayered felsic volcanics and impure, 1:my, sediments near the southern edge of the lower felsic sediments on the southern edge of the property and forms the cliffs on Fader Mountain.

REFERENCES:

**** Ok ****

MINING DIV: *** ASSESSMENT REPORT 16802 INFO CLASS 3
LOCATION: LAT. 51 08 00 LONG. 119 46 00 NTS:
CLAIMS: OK 1
OPERATOR: Minnova B.
AUTHOR: Pirie, I.
COMMODITIES: Copper, Lead, Zinc, Gold, Silver, Barium
DESCRIPTION: The property lies within the Paleozoic Eagle Bay Formation. It is bordered by northwest striking major faults, which dip at 30-50 degrees to the northeast. Moderate amounts of chlorite and sericite alteration are present and trace amounts of galena and mica have been noted.

REFERENCES:

**** Pine ****

MINING DIV: Kahloops ASSESSMENT REPORT 15830 INFO CLASS 3
LOCATION: LAT. 51 08 00 LONG. 119 45 00 NTS:
CLAIMS: SBS 1-6
OPERATOR: Minnova B.
AUTHOR: Dabrowski, Z.
COMMODITIES: Lead, Zinc, Silver, Copper, Barium
DESCRIPTION: The claims are underlain by a sequence of Devonian-Mississippian sedimentary and intermediate/mafic volcanic and volcaniclastic rocks of the Eagle Bay Formation.

REFERENCES:

**** S.B.L. ****

MINING DIV: *** ASSESSMENT REPORT 15850 INFO CLASS 4
LOCATION: LAT. 51 10 42 LONG. 119 48 00 NTS:
CLAIMS: SBL 1-9
OPERATOR: Butternut, B.
AUTHOR: Freeze, J.
DESCRIPTION: The claims are underlain by a metamorphosed assemblage of Devonian-Mississippian sedimentary and intermediate/mafic volcanic and volcaniclastic rocks of the Eagle Bay Formation.

REFERENCES:

**** Twin Mountain ****

MINING DIV: Kahloops ASSESSMENT REPORT 15888 INFO CLASS 3
LOCATION: LAT. 51 08 00 LONG. 119 47 30 NTS:
CLAIMS: Twin 1-9
OPERATOR: Lincoln Res.
AUTHOR: Blanchflower, J.; Dabrowski, Z.
COMMODITIES: Lead, Zinc, Silver, Copper, Gold, Barium
DESCRIPTION: The claims are underlain by mafic volcanic flows and pyroclastics, and sedimentary units of the Devonian-Mississippian Eagle Bay Formation. These rocks trend northwesterly and dip 45-60 degrees northeastward. Strike-slip faults are common and are parallel with and perpendicular to the tonalities and bedding. All rocks have undergone regional lower greenschist facies metamorphism.

REFERENCES:

**** Wiki ****

MINING DIV: *** ASSESSMENT REPORT 15485 INFO CLASS 3
LOCATION: LAT. 51 13 12 LONG. 119 52 34 NTS:
CLAIMS: Wiki 1-3
AUTHOR: Dabrowski, Z.; Marr, J.
DESCRIPTION: The contact of Devonian-Mississippian Eagle Bay Formation volcanic and sedimentary rocks is inferred to be present on the claims. It is not exposed. Only felsic basalt and extensive surficial deposits are evident.

REFERENCES:

C104
TREN 150.0 m; 3 trenches
SOIL 357: Ag, Cu, Pb, Zn
REFERENCES: A. R. 14613

**** Win ****
MINING DIV: Kenloons
LOCATION: LAT 51 04 00 LONG 119 49 54 NTS:
CLAIMS: Win 3, Win 6
OPERATOR: Ashton, J.
AUTHOR: Dobrzyński, Z.
DESCRIPTION: The claims are underlain by schists, phyllites and greenstones derived from sedimentary and volcanic rocks of the Devonian-Mississippian Bay Formation. These rocks strike northwesterly and dip moderately northeastward. Fracture and shear structures parallel the foliation or crosscut the lithologies. White fracture-filling quartz veins host local pyrite mineralization with minor chalcopyrite, galena and sphalerite. Geophysical survey results identified four MLN conductors.
WORK DONE: ENGR 14.4 m; 3 holes, NO
REFERENCES: A. R. 13147, 14409

**** Anna ****
MINING DIV: Kenloons
LOCATION: LAT 51 04 18 LONG 119 49 36 NTS:
CLAIMS: Anna 1-2, Anna 7-8
OPERATOR: Falconstone Copper
AUTHOR: Evans, G.
DESCRIPTION: The property is underlain by volcanic, volcanioclastic and sedimentary rocks belonging to the Devonian-Mississippian Bay Formation. These rocks strike northwesterly and dip moderately northeastward. Fracture and shear structures parallel the foliation or crosscut the lithologies. White fracture-filling quartz veins host local pyrite mineralization with minor chalcopyrite, galena and sphalerite. Geophysical survey results identified four MLN conductors.
WORK DONE: ROCK 137; multielement
GEOLOG 1:2500
C105

**** Cad ****
MINING DIV: Kenloons
LOCATION: LAT 51 18 06 LONG 119 51 42 NTS:
CLAIMS: Cad 198, Cad 8
OPERATOR: Graham, J.C.
AUTHOR: Blatchflower, J.
COMMODITIES: Zn, Cu, Lead, Silver
DESCRIPTION: The property is underlain by a shallow dipping, thinly-beded sequence of marine sediments belonging to the Devonian-Mississippian Bay Formation. All rocks have undergone lower greenschist facies metamorphism, which pyrite and numerous chalcopyrite, galena and sphalerite mineralization is associated with white, quartz veins, controlled by the bedding and schistosity of the host rocks.
WORK DONE: DIAD 389.1 m; 3 holes; NO
SAMP 21; Cu, Pb, Zn, Ag, Au
REFERENCES: A. B. 13118, 14397
N. J. 082M 222-CAD

**** Fortuna 1 ****
MINING DIV: Kenloons
LOCATION: LAT 51 21 00 LONG 119 56 24 NTS:
CLAIMS: Kidzicks
OPERATOR: Norman, G.
AUTHOR: Leach, B.
COMMODITIES: Lead, Silver
DESCRIPTION: The property is underlain by Devonian-Mississippian enderite tuffs of the Eagle Bay Formation which trend northwest with shallow southwest dips.
WORK DONE: ROCK 5; multielement
GEOLOG 1; 5000
REFERENCES: N. J. 082M 072-FORTUNA 1

**** Harper ****
MINING DIV: Kenloons
LOCATION: LAT 51 20 38 LONG 119 52 00 NTS:
CLAIMS: NE 1-2
OPERATOR: Westech Res.
AUTHOR: Dawson, J.
COMMODITIES: Copper, Zn, Lead, Silver, Gold
DESCRIPTION: Weakly metamorphosed intermediate volcanics and sediments of the Devonian-Mississippian Bay Formation are intruded by granitic rocks of the Cretaceous Beltway Batholith. Conformable sulphide bands consisting of pyrite, pyrrhotite and lesser chalcopyrite are found at two separate localities and have been investigated by drilling.
WORK DONE: GEOLOG 1:800
ENGR 24.0 km; VLF
C106
MINING DIV: Kamloops
LOCATION: LAT 51 15 24 LONG. 119 48 08 NTS:
CLAIMS: V.S.O.
OPERATOR: Titan Res.
COMMODITIES: Silver, Lead, Zine, Copper
DESCRIPTION: The claims are underlain by volcanic and associated sedimentary units of the Devonian-Mississippian Eagle Bay Formation. Two significant types of mineralization have been found to date. Structurally controlled base metal sulphides replacing limestone or sandy sediments and stratiform pyrrhotite-pyrite-chalcopyrite hosted in a quartz-sericite schist unit.
WORK DONE: SOIL 42: 42.0 km
SAMPLING: 12 samples, 2 holes
EMI SPECTRUM: 24.4 kHz.
REFERENCES:

MINING DIV: Kamloops
LOCATION: LAT 51 17 42 LONG. 120 00 00 NTS:
CLAIMS: SC 2-3
OPERATOR: Falconbridge Copper
COMMODITIES: Silver, Gold
DESCRIPTION: The claims are underlain by Devonian-Pennsylvanian Fennel Formation, felsic volcanics and marine sediments that strike 340 degrees. Felsic volcanic centres host quartz-pyrite stockwork which carry precious metal values.
WORK DONE: DIAD 919.9 m: 4 holes, NO
SAMPLING: 178 samples, multi-element
REFERENCES:

MINING DIV: Kamloops
LOCATION: LAT 51 17 54 LONG. 119 54 00 NTS:
CLAIMS: White Rock (L.4023), White Rock 1
OPERATOR: National Res. Ex.
COMMODITIES: Lead, Silver, Zine, Copper, Gold
DESCRIPTION: A large area of sheared and stockwork quartz veins cut meta-
C107

MINING DIV: Revelstoke
LOCATION: LAT 51 26 48 LONG. 118 26 54 NTS:
CLAIMS: Key 1, Key 3
OPERATOR: Noranda Ex.
COMMODITIES: Zine, Copper
DESCRIPTION: The claims are underlain by Precambrian quartzites and cherts. The quartzite schist and metavolcanic-cherty divisions are connected with the band east of Revelstoke and are considered to be Paleozoic.
WORK DONE: MASS 12.5 km
SAMPLING: 11.2 km: HLEM
LINE 12.5 km
REFERENCES:

MINING DIV: Revelstoke
LOCATION: LAT 51 38 18 LONG. 118 30 00 NTS:
CLAIMS: G-3, G-4, G-5, G-9, G-10, G-10, G-11, G-12, G-13, G-14, G-15
OPERATOR: Noranda Ex.
COMMODITIES: Copper, Zinc, Talc
DESCRIPTION: The claims are underlain by Paleozoic and metamorphic rocks. Banding in the quartzite schist, chlorite schist, talc schist, quartz-talc-schist, and quartzite.
WORK DONE: GEM 125,000
REFERENCES:

MINING DIV: Revelstoke
LOCATION: LAT 51 32 00 LONG. 118 38 12 NTS:
CLAIMS: Caribou
OPERATOR: Leerik, J.
COMMODITIES: Zine, Lead, Silver
DESCRIPTION: Sulphide replacement 'Manto' mineralization occurs in white, feldspar-carbonate and the Mantle Group. Mineralization consists of spatharite, galena, pyrite with minor chalcopyrite and tetrahedrite.
WORK DONE: GEM 125,000
REFERENCES:
The property is underlain by quartzites and mica schists of the Eagle Bay Formation along the south limb of an east-west syncline. The property is apparently overturned. Outcrops are rare on the property - sericite schist and limestone, and schistose quartz-veined wackes.

WORK DONE:
- Soil sampling

REFERENCES:
- bloom35.0161

The claim is underlain by Devonian-Mississippian Eagle Bay Formation deformed metasedimentary and metavolcanic rocks. It includes a thick unit of pyritic quartz-sericite schist that contains intercalated lenses of massive sulphide. Some of these lenses contain commercial amounts of lead, zinc, and silver.

WORK DONE:
- EMAR
- SALT: multimetal
- SOIL: multimetal
- ROCK: multimetal
- MAGG: 2.8 km

REFERENCES:
- bloom35.0161

The claim is underlain by a strongly foliated and linearly assembled metasedimentary gneiss, schist, and marbles of the Shuswap Metamorphic Complex. Numerous dykes and sills of pegmatite intrude the metasedimentary rocks. The strata trends northward and dips eastward. Stratiform galena, galena, pyrrhotite, and/or pyrite occur within a continuous sulfide-bearing horizon which has been traced for 20 kilometres. There are twelve known showings of zinc, lead, and silver mineralization.

WORK DONE:
- DTD: 1392.8 m, 13 holes, 2.3 km

REFERENCES:
- bloom35.0161

The claims are underlain by metasedimentary rocks of the Cretaceous Knowne formation which are intruded by mid-Cretaceous quartz monzonite and early Tertiary andesite. Tungsten mineralization is localized within silicious marne-sand.
Seymour Arm

LOCATION: LAT. 51 51 12 LONG. 118 31 00 NTS:
CLAIMS: Mica 39, Mica 47, Mica 53-54
OPERATOR: B & B Ex.
AUTHOR: Tingall, W.
DESCRIPTION: Pelitic metasediments of Lower Paleozoic age are host to a stratiform lead-zinc massive sulphide occurrence on the Rift and Mica 12 claims.
WORK DONE: ROCK 1: multielement
SILT 5: multielement
SOIL 170: multielement

REFERENCES:

Golden

**** Iron Cap (Allco Silver) ****

MINING DIV:
LOCATION: LAT. 51 13 36 LONG. 117 58 48 NTS:
**CLAIMS: Limestone Dyke 1, Limestone Dyke 19, Limestone Fracture, Wedas 1-7
OPERATOR: Gunsteel Res.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Massive galena-sphalerite-chalcopyrite-tetrahedrite veins and pods occur in and along a fault contact between Cambrian Radsnot Formation limestone and Cambrian-Devonian Larder Group argillites.
WORK DONE: SILT 16: multielement
LINE 32: 0 km
SOIL 84: multielement
ROCK 49: multielement
GEO 1: 15,000
EMG 12: 0 km: VLF, MLEM
REFERENCES: A. R. 12041, 13288, 14403
M. I. 082N, 016-IRON CAP (ALLCO SILVER)

**** Sheed, Grizzly ****

MINING DIV: Golden
LOCATION: LAT. 51 41 18 LONG. 117 20 30 NTS:
**CLAIMS: Dispute, Grizzly, Sheed
OPERATOR: Miner, E.
**AUTHOR: Dispo.
DESCRIPTION: The claims are underlain by thin-bedded grey and green-brown limestone and argillaceous limestone which may be correlated with the Middle Cambrian Chancellor Formation.
WORK DONE: SAMP 14: multielement
MNDR 14
PET 4: thin sections
DIA 770: 8 m: holes, HQ
REFERENCES: M. I. 082N, 088-JACK

Canoe River

**** Bend 1 Canyon Zone ****

MINING DIV: Golden
LOCATION: LAT. 51 54 00 LONG. 117 07 24 NTS:
**CLAIMS: Bend 1-2, Punch 1-7
OPERATOR: Robinex
**AUTHOR: Rower A.
COMMODITIES: Zinc, Lead, Silver
DESCRIPTION: The claims are underlain by a mixed assemblage of Lower-Middle Cambrian sediments consisting of quartzite, limestone and calcareous garnet-_Staurolite schists. The units strike north- westerly, dip steeply west and are isoclinally folded with 10 degree northerly plunge.
WORK DONE: PET 1: 5000: 1:2500
ROAD 1: 4 km
REFERENCES: A. R. 12673, 02800, 02814, 02891, 02992, 09994, 11965, 12155, 15251
M. I. 083D, 001-BEND 1 CANYON ZONE

**** Punchbowl ****

MINING DIV: Golden
LOCATION: LAT. 53 29 06 LONG. 118 10 15 NTS:
**CLAIMS: Punch 1-2, Punch 1-7
OPERATOR: Gaman Res.
**AUTHOR: Foster, S.
COMMODITIES: Gold, Lead
DESCRIPTION: Cambrian Goog Group meta-arenite with interbedded metasiltite lenses strike northwest and dip moderately east. Mineralization is hosted within quartz veins which occupy silty bearing breccias and includes abundant pyrite, sparse galena, sphalerite(7) and native gold.
WORK DONE: GEO 1: 50 000
PET 18: Au
ROCK 43: Au, Ag
PET 2 thin sections
REFERENCES: M. I. 083D, 003-PUNCH BOWL

C112
**** Cariboo ****

MINING DIV: Cariboo
LOCATION: LAT. 52 39 06 LONG. 119 08 42 NTS:
CLAIMS: Cariboo 1-2
OPERATOR: Tpgo/Au
AUTHOR: Hewitt, W.
DESCRIPTION: The Cariboo property is underlain by metamorphosed sedimentary rocks of the Malton Gneiss of possible Precambrian age which are followed by a northwest trending axis with dips to the south. Several phases of folding are believed to have occurred and this generalization may be simply the last phase.
WORK DONE: ROCK 10: Au,Ag,Cu
SOIL 88: Au,Ag,Cu
SILT 8: Au,Ag,Cu

REFERENCES:
**** Dove. Ingrid ****

MINING DIV: Kamloops
LOCATION: LAT. 52 37 18 LONG. 119 07 30 NTS:
CLAIMS: Ingrid 1-4
OPERATOR: Ramberg Gold
AUTHOR: Rea, W.
DESCRIPTION: Gold and copper mineralization occur in fracture zones in highly metamorphosed rocks of the Malton Gneiss complex.
WORK DONE: LINE 11.0 km
SOIL 322: Au,Ag,Cu
SILT 6: Au,Ag,Cu

REFERENCES:
**** Expo ****

MINING DIV: Expo
LOCATION: LAT. 52 36 00 LONG. 119 05 30 NTS:
CLAIMS: Expo 1-2
OPERATOR: Tpgo/Au
AUTHOR: Hewitt, W.
DESCRIPTION: The Expo claims are underlain by metamorphosed sedimentary rocks of the Malton Gneiss of possible Precambrian age. The area appears to be folded along a northwest trending axis with dips to the south. Several phases of folding have resulted in complex geology.
WORK DONE: SOIL 52: Au,Ag,Cu
SILT 16: Au,Ag,Cu

REFERENCES:
**** Victoria ****

MINING DIV: Victoria
LOCATION: LAT. 48 30 00 LONG. 123 33 24 NTS:
CLAIMS: Tunnel Hill I-VIII
OPERATOR: Rea, W.
AUTHOR: Cominco Ltd.
DESCRIPTION: Peatfield, G. River Complex consists of hornblende, saussuritized plagioclase and minor quartz and magnetite. Anomalous gold values in soil are generally associated with shear zones.
WORK DONE: SOIL 127: multielement

REFERENCES:
**** Bananza ****

MINING DIV: Bananza
LOCATION: LAT. 48 34 04 LONG. 123 44 48 NTS:
CLAIMS: Bananza, Sonanza 2
OPERATOR: Bollard, C.
AUTHOR: Soochoff, D.
DESCRIPTION: The Bananza property is underlain by well-metamorphosed rocks of the Malton Gneiss complex forming part of the Jurassic-Cretaceous? Leech River Complex. Several zones of narrow quartz veins with locally spectacular gold mineralization. South of the Leech River shear zone. the

REFERENCES:
**** Bonanza ****

MINING DIV: Victoria
LOCATION: LAT. 48 30 35 LONG. 123 58 00 NTS:
CLAIMS: Bear
OPERATOR: M. Wardens-Yates, D.
AUTHOR: Wardens-Yates, D.
DESCRIPTION: The Bear claim is situated on the Bonanza property which consists of hornblende, saussuritized plagioclase and minor quartz and magnetite. Anomalous gold values in soil are generally associated with shear zones.
WORK DONE: SPOT 3.0 km

REFERENCES:
**** Bleez, Peg, Bear Creek ****

MINING DIV: ***
LOCATION: LAT. 48 30 35 LONG. 123 54 30 NTS:
CLAIMS: Bleez 3-4, Bleez 3-6, Bleez 9, Bleez 12, P.C. 1, Bleez 1-4, Jordan Gold 5, Luster 1-2
OPERATOR: G. G. Pre, Ex.
AUTHOR: Peatfield, G.
DESCRIPTION: Gold, Silver, Lead, Beryl, Feldspar, Diopside, Amphibole, and Mica are present in the clastic rocks of the Jurassic-Cretaceous? Leech River Complex. The property consists of narrow quartz veins within the locally spectacular gold mineralization. South of the Leech River shear zone. the

REFERENCES:
Victoria

0928

MINING DIV: Victoria
LOCATION: LAT. 48 42 48 LONG. 123 51 12 NTS:
CLAIMS: Holt 1-15
OPERATOR: Nexus Res.
AUTHOR: Gunning, W. & Sketchley, D.
COMMODITIES: Silver, Gold, Copper, Zinc
DESCRIPTION: The claims are underlain by Paleozoic Shick Group volcanic and sedimentary rocks with lesser Upper Triassic to Lower Cretaceous and Upper Cretaceous Nanaimo Group rocks. The Shick Group is covered in a northwesterly trending syncline. Gold mineralization is continuous across the entire claim group. An argillite, chert, and tuff unit contains up to 20 per cent pyrite. Gold, silver, arsenic and barium anomalies are common.
WORK DONE:
- SOIL 3068: multielement
- SILT 134: multielement
- TOPO 1:10 000
- SAMP 39: multielement
- PETR 11: thin sections
- TREN 750.0 m: 2 trenches
REFERENCES: M.I. 0928 134-HOLT EAST; 0929 135-HOLT WEST

0929

MINING DIV: Victoria
LOCATION: LAT. 48 33 30 LONG. 123 54 00 NTS:
CLAIMS: Au 2-3, West 1-3
OPERATOR: Klaa Creek Mines
AUTHOR: Arnold. R.
DESCRIPTION: The claims are underlain by metamorphosed pelitic rocks.
WORK DONE:
- SOIL 152: multielement
- SILT 153: multielement
- GSDL 1:6000
REFERENCES: A.R. 14691

0925

MINING DIV: Victoria
LOCATION: LAT. 48 42 48 LONG. 123 51 12 NTS:
CLAIMS: Holt 1-15
OPERATOR: Nexus Res.
AUTHOR: Gunning, W. & Sketchley, D.
COMMODITIES: Silver, Gold, Copper, Zinc
DESCRIPTION: The claims are underlain by Paleozoic Shick Group volcanic and sedimentary rocks with lesser Upper Triassic to Lower Cretaceous and Upper Cretaceous Nanaimo Group rocks. The Shick Group is covered in a northwesterly trending syncline. Gold mineralization is continuous across the entire claim group. An argillite, chert, and tuff unit contains up to 20 per cent pyrite. Gold, silver, arsenic and barium anomalies are common.
WORK DONE:
- SOIL 3068: multielement
- SILT 134: multielement
- TOPO 1:10 000
- SAMP 39: multielement
- PETR 11: thin sections
- TREN 750.0 m: 2 trenches
REFERENCES: M.I. 0928 134-HOLT EAST; 0929 135-HOLT WEST

0929

MINING DIV: Victoria
LOCATION: LAT. 48 33 36 LONG. 123 54 00 NTS:
CLAIMS: VG 1-3, Va 1-3
OPERATOR: Expedition Res. Group
AUTHOR: Peart, P.
DESCRIPTION: The claims are underlain by the Leech River Complex.
WORK DONE:
- SOIL 152: multielement
REFERENCES: A.R. 14691

0924

MINING DIV: Victoria
LOCATION: LAT. 48 33 36 LONG. 123 54 00 NTS:
CLAIMS: VG 1-3, Va 1-3
OPERATOR: Expedition Res. Group
AUTHOR: Peart, P.
DESCRIPTION: The claims are underlain by the Leech River Complex.
WORK DONE:
- SOIL 152: multielement
REFERENCES: A.R. 14691

0926

MINING DIV: Victoria
LOCATION: LAT. 48 50 24 LONG. 123 39 00 NTS:
CLAIMS: PF
OPERATOR: Kids Creek Mines
AUTHOR: Money, D.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by mafic to andesitic volcanic flows and tuffs with minor felsic flows and felsic tuffs of the Upper Devonian Myra Formation. The Myra Formation rocks are crosscut by Saltzspring Intrusive dykes and displaced by mafic sills. The rocks have been subjected to lower greenschist metamorphism. The strike is at about 110 degrees. The mafic rocks host up to 20 per cent pyrite and trace chalcopyrite locally with up to 30 per cent pyrite. Gold mineralization is localized in late fracture controlled quartz veins in both the hanging wall and footwall portions of andesites.
WORK DONE:
- ROCK 15: whale rock rare earth
- SAMP 318: multielement
- DIAD 1083.0 m: 3 holes
REFERENCES: A.R. 02391

0929

MINING DIV: Victoria
LOCATION: LAT. 48 50 18 LONG. 123 38 00 NTS:
CLAIMS: Glassburn 1-I, John Travers, John Travers 1-I, PF, P.F. 111
OPERATOR: Paloonbridge
AUTHOR: Booth, K.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by mafic volcaniclastic sills with minor felsic flows and ash tuffs of the Upper Devonian Myra Formation which is part of the Paleozoic Shick Group. These rocks are intruded by the Paleozoic Saltzspring Intrusion and Jurassic dykes. Schistosity

0930

MINING DIV: Victoria
LOCATION: LAT. 48 50 18 LONG. 123 38 00 NTS:
CLAIMS: Glassburn 1-I, John Travers, John Travers 1-I, PF, P.F. 111
OPERATOR: Paloonbridge
AUTHOR: Booth, K.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by mafic volcaniclastic sills with minor felsic flows and ash tuffs of the Upper Devonian Myra Formation which is part of the Paleozoic Shick Group. These rocks are intruded by the Paleozoic Saltzspring Intrusion and Jurassic dykes. Schistosity

0931

MINING DIV: Victoria
LOCATION: LAT. 48 50 18 LONG. 123 38 00 NTS:
CLAIMS: Glassburn 1-I, John Travers, John Travers 1-I, PF, P.F. 111
OPERATOR: Paloonbridge
AUTHOR: Booth, K.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by mafic volcaniclastic sills with minor felsic flows and ash tuffs of the Upper Devonian Myra Formation which is part of the Paleozoic Shick Group. These rocks are intruded by the Paleozoic Saltzspring Intrusion and Jurassic dykes. Schistosity

0932

MINING DIV: Victoria
LOCATION: LAT. 48 50 18 LONG. 123 38 00 NTS:
CLAIMS: Glassburn 1-I, John Travers, John Travers 1-I, PF, P.F. 111
OPERATOR: Paloonbridge
AUTHOR: Booth, K.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by mafic volcaniclastic sills with minor felsic flows and ash tuffs of the Upper Devonian Myra Formation which is part of the Paleozoic Shick Group. These rocks are intruded by the Paleozoic Saltzspring Intrusion and Jurassic dykes. Schistosity
is moderately developed and has a strike ranging from 110-130 degrees and dips steeply to the north and south. One analysis of a quartz vein yielded 0.36 per cent copper. Two pyritic zones occur on the property. The zones contain up to 7 per cent pyrite and up to 0.08 per cent copper. The rocks on this property have been affected by regional low-grade greenschist metamorphism.

WORK DONE:
SOIL: 269:Cu, Pb, Zn, Ag
LINE: 8.0 km
ROCK: 2:multi-element
GEO: 1:5000, 1:2500

REFERENCES:
A. R. 11881
M. 1: 092B 08-CORNICOPIA: 092B 09-YREKA

**** Plume ****

MINING DIV: Victoria
LOCATION: LAT. 48 50 00 LONG. 123 45 30 NTS:
CLAIMS: Bick 1-8
OPERATOR: Falcbridge Copper
AUTHOR: Gray, W.
DESCRIPTION: The claims are underlain by the Upper Devonian Myra Formation which is intruded by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
ROCK: 3:multi-element
GEO: 1:5000

REFERENCES:

**** Rocky ****

MINING DIV: Victoria
LOCATION: LAT. 48 51 42 LONG. 123 44 48 NTS:
CLAIMS: Bick 2-5
OPERATOR: Falcbridge Copper
AUTHOR: Burge, C.
DESCRIPTION: The claims are underlain by the Upper Devonian Myra Formation which is intruded by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
GEO: 1:5000

REFERENCES:
A. R. 11841, 13907

**** Bet ****

MINING DIV: Victoria
LOCATION: LAT. 48 49 42 LONG. 123 47 06 NTS:
CLAIMS: Bet 1-8
OPERATOR: Int. Field Services
AUTHOR: Handsworth, W.
DESCRIPTION: The claims are underlain by the Upper Devonian Myra Formation which is intruded by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
GEO: 1:5000

REFERENCES:

**** Bick ****

MINING DIV: Victoria
LOCATION: LAT. 48 47 12 LONG. 123 58 00 NTS:
CLAIMS: Bick 1-5
OPERATOR: Bick
AUTHOR: Wong, R.
DESCRIPTION: The claims are underlain by the Upper Devonian Myra Formation which is intruded by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
ROCK: 3:multi-element
GEO: 1:5000, 1:2500
SILT: 10:multi-element

REFERENCES:

**** Bob ****

MINING DIV: Victoria
LOCATION: LAT. 48 40 54 LONG. 123 48 48 NTS:
CLAIMS: Bob
OPERATOR: Consort Energy
AUTHOR: Jones, T.
DESCRIPTION: The claims are underlain by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
ROCK: 2:multi-element
GEO: 1:10,000
SILT: 2:multi-element

REFERENCES:

**** Brenton ****

MINING DIV: Victoria
LOCATION: LAT. 48 55 15 LONG. 123 51 18 NTS:
CLAIMS: Brenton
OPERATOR: Vancouver Venture
AUTHOR: Wang, H.
DESCRIPTION: The claims are underlain by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
GEO: 1:5000

REFERENCES:

**** Bud ****

MINING DIV: Victoria
LOCATION: LAT. 48 50 30 LONG. 123 63 48 NTS:
CLAIMS: Bud 3-6
OPERATOR: Decker, J.
AUTHOR: Decker, J.
DESCRIPTION: The claims are underlain by the Upper Cretaceous Nanaimo Group siltstones and sandstone. Alteration consists of weak chlorite related to regional metamorphism.

WORK DONE:
GEO: 1:5000

REFERENCES:
WORK DONE: P8OS 1:14 1977
REFERENCES:

** Chip ****

** MINING DIV: **

** LOCATION: **

** CLA1MS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **

** MINING DIV: **

** LOCATION: **

** CLAIMS: **

** OPERATOR: **

** AUTHOR: **

** DESCRIPTION: **

** WORK DONE: **

** REFERENCES: **
**** Mural ****
MINING DIV: Victoria
LOCATION: LAT. 48 51 06 LONG. 123 52 30 NTS:
CLAIMS: Mural 1
OPERATOR: Decker, J.
AUTHOR: Allen
DESCRIPTION: The claim is underlain by conglomerate of the Upper Cretaceous
WORK DONE: PROS 1:15 790
REFERENCES: A.R. 795

**** Never Sweat ****
MINING DIV: Victoria
LOCATION: LAT. 48 51 48 LONG. 123 56 36 NTS:
CLAIMS: Never Sweat
OPERATOR: Allen
AUTHOR: Allen
DESCRIPTION: The property is underlain by northwest trending fine-grained pyroclastics of the Upper Cretaceous Nenana Group and varicolored sediments of the Eocene Oligocene Nanaimo Group. The conglomerate is underlain by Triassic gabbro and Jurassic quartz-diorite.
WORK DONE: GED 1:10 000, 1:2500
REMARKS: 7 meter element
REMARKS: EMGS 7.9 km VLF
REFERENCES: A.R. 8213 M.I. 0928 137-NYRA:0928 138-NEVER SWEAT

**** Orn ****
MINING DIV: Victoria
LOCATION: LAT. 48 56 18 LONG. 123 53 12 NTS:
CLAIMS: Orn 1-4
OPERATOR: Hayes, E
AUTHOR: Nester, T.
DESCRIPTION: The property is underlain by conglomerate of the Eocene Oligocene Nanaimo Group and varicolored sediments of the Eocene Oligocene Nanaimo Group. The conglomerate is underlain by Triassic gabbro and Jurassic quartz-diorite.
WORK DONE: GED 1:10 000
REMARKS: SILT 2: multielement
REMARKS: ROCK 2: multielement
REFERENCES: M.I. 0928 112-ORN

**** Pogo ****
MINING DIV: Victoria
LOCATION: LAT. 48 59 48 LONG. 124 00 30 NTS:
CLAIMS: Pogo 1-48
OPERATOR: Int. Cherokee Dev.
AUTHOR: Allen
DESCRIPTION: The property is underlain by conglomerate of the Eocene Oligocene Nanaimo Group and varicolored sediments of the Eocene Oligocene Nanaimo Group. The conglomerate is underlain by Triassic gabbro and Jurassic quartz-diorite.
WORK DONE: GED 1:10 000, 1:2500
REMARKS: EMGS 7 meter element
REMARKS: ROCK 2: multielement
REFERENCES: A.R. 0566 14482 M.I. 092C 074-POGO

**** Poly ****
MINING DIV: Victoria
LOCATION: LAT. 48 51 36 LONG. 123 55 00 NTS:
CLAIMS: Poly
OPERATOR: Specogna, E.
AUTHOR: Specogna, E.
DESCRIPTION: The claims are underlain by rocks of the Pennsylvania-Silurian formations including the Upper Devonian Myra Formation and Middle Devonian Nittit formation. The conglomerate is underlain by Triassic gabbro and Jurassic quartz-diorite.
WORK DONE: OZAD 20.7 m; 4 holes, EX
REMARKS: TREN 3.0 m; 1 trench
REFERENCES: A.R. 14919

**** Ridgestake ****
MINING DIV: Victoria
LOCATION: LAT. 48 57 12 LONG. 123 58 24 NTS:
CLAIMS: Ridgestake
OPERATOR: Vancouver Venture
AUTHOR: Wahl, M.
DESCRIPTION: The claims are underlain by Paleozoic Sicker Group volcanic and sedimentary rocks. Preliminary prospecting and reconnaissance work
Victoria

has shown frequent pyritic float with copper staining and other sulphide mineralization.

REFERENCES:

**** Kinsley ****

MINING DIV:

LOCATION:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claim is underlain by Upper Cretaceous Nansimo Group conglomerate.

WORK DONE:

REFERENCES:

Cape Flattery

**** Red Dog ****

MINING DIV:

LOCATION:

CLAIMS:

OPERATOR:

AUTHOR:

COMMODITIES: Copper, Silver, Gold.

DESCRIPTION: The area is underlain by Upper Triassic Karmutsen Formation basalts and andesites and Upper Triassic massive grey Quatsino Formation limestone. These rocks are intruded to the east and north by Jurassic Island intrusion granodiorite-granite and to the south by Upper Paleozoic and/or Triassic and Jurassic rocks of the west coast complex. Hornet’s zones appear to develop proximal to dioritic intrusions. Small podiform skarns with chalcopyrite, magnetite and lesser monazite develop locally.

WORK DONE:

REFERENCES:

**** Kinsley ****

MINING DIV:

LOCATION:

CLAIMS:

OPERATOR:

AUTHOR:

COMMODITIES: Gold.

DESCRIPTION: The claims are underlain by metamorphosed, folded and faulted Triassic-Cretaceous Leach River Complex sedimentary rocks which have been intruded by east-west trending felsic assemblages of greenstone facies. This sequence is dominated by slate, cherty and quartzitic intercalations of greywacke which hosts sulphide mineralization.

**** Owl.Terr ****

MINING DIV:

LOCATION:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claims are underlain by sediments of the Upper Triassic Quatsino and Paragon Bay Formations and volcanics of the Lower Jurassic Bandon Group and Tertiary Late Cretaceous Formation. These rocks are intruded by Triassic to Cretaceous quartz-diorite, granodiorite and gabbro. Contact zones are host to disseminated copper-gold sulphides.

WORK DONE:

REFERENCES:

**** CR ****

MINING DIV:

LOCATION:

CLAIMS:

OPERATOR:

AUTHOR:

COMMODITIES: Copper.

DESCRIPTION: The property is underlain by the Upper Triassic Karmutsen Formation composed mainly of volcanics with minor interbeds of limestone/marble and argillite. The Karmutsen Formation has been intruded by a diorite of the Jurassic Island Intrusions. There is a 200 metre long skarn zone, with copper, lead, silver and zinc values hosted by the Karmutsen Formation rocks near the diorite contact.

WORK DONE:

REFERENCES:

**** Heather ****

MINING DIV:

LOCATION:

CLAIMS:

AUTHOR:

COMMODITIES: Copper.

DESCRIPTION: The property is underlain by the Upper Triassic Karmutsen Formation composed mainly of volcanics with minor interbeds of limestone/marble and argillite. The Karmutsen Formation has been intruded by a diorite of the Jurassic Island Intrusions. There is a 200 metre long skarn zone, with copper, lead, silver and zinc values hosted by the Karmutsen Formation rocks near the diorite contact.

WORK DONE:

REFERENCES:
OPERATOR: Minnova
AUTHOR: Wells, G.
DESCRIPTION: The Heather property is primarily underlain by northwesterly trending Paleozoic Sicker Group volcanic rocks. A northwesterly dipping quartz-pyrite shear with gold values up to 3.6 gms per tonne is hosted in diabasic tuffs of the Upper Devonian Kyra Formation.
WORK DONE: SAM 974-61 elements: 70 SAM 974-61 elements: 70
REFERENCES: A. J. 11923 12485 12516 12506
M. 1. 092C 127-HEATHER

*** Silverscross ***
MINING DIV: Alien Minnt.
LOCATION: LAT. 48 57 30 LONG. 124 33 20 NTS:
CLAIMS: Silverscross
OPERATOR: Peyton Ventures
AUTHOR: Hill, A. Lazenea, H.
COMMODITIES: Copper, Silver
DESCRIPTION: The claim is underlain by Jurassic Bonanza Group volcanics (mainly basalt) and a small pit in basalt exposed a 1.5 metre wide mineralized zone, with disseminated massive bornite and molybdenite in a vein system of epidote-calcareous quartz. Several samples assayed up to 98.6 grams of silver per tonne and more than 10 per cent copper. The area is largely unexplored.
WORK DONE: GEO 1 1000
REFERENCES: M. 1. 092C 130-SILVERCROSS

*** Candy, Rocky, Wardroper, Meade Creek ***
MINING DIV: Victoria
LOCATION: LAT. 48 56 18 LONG. 124 13 48 NTS:
CLAIMS: 201-2, Cott 4-6, Footloose 1-3, Footloose 4-5, Ridge 1-3, Striker 1-6
OPERATOR: Shp-Jean Wines
AUTHOR: Couley, P., Bne, R.
COMMODITIES: Copper, Manganese, Rhodochrosite, Chertstones
DESCRIPTION: A Late Paleozoic-Mesozoic sequence of volcanic, sedimentary and intrusive rocks is exposed on the property. A dominant northwest trend is evident in structures and rock fabric and distribution. The Sicker Group rocks have experienced greenschist metamorphism. Mineralization on the property is limited to intrusive-related copper-molybdenum-gold-zinc veins and shear zones, rhodochrosite/jasper/magnetite pods anomalous in molybdenum-gold-copper and syenite-postitional pyrite in argillite anomalous in zinc-silver-molybdenum-arsenic.
WORK DONE: MAG 61 86 km
GEOL 1 1000, 1 2500
C125

Cape Flattery
OPERATOR: Imperial Metals
AUTHOR: Allen, J. Thomas, B.
DESCRIPTION: The claims are underlain by west-northwest striking, mesocratic flows and volcanics and clastic rocks of the Middle Devonian Kite Formation of the Paleozoic Sicker Group. A northwesternly elongate body of Jurassic Island Intrusions quartz diorite and granodiorite intrudes the Kite Formation. Placer gold occurs in Meade Creek and local disseminated pyrite and minor chalcopyrite has been observed on this property.
WORK DONE: GEO 1 10 000
SILT 31-multipurpose
REFERENCES:

*** Imo ***
MINING DIV: Victoria
LOCATION: LAT. 48 56 48 LONG. 124 00 18 NTS:
CLAIMS: 129
OPERATOR: Imperial Metals
AUTHOR: Baker, W., Cato, D.
DESCRIPTION: The claim is underlain by Paleozoic Sicker Group sediments and volcanics (greywackes, cherts, rhyolites) and gabbroic sills and dykes.
WORK DONE: GEO 1 5000
SOIL 31-multipurpose
REFERENCES:

*** J.R. ***
MINING DIV: Victoria
LOCATION: LAT. 48 55 00 LONG. 124 08 06 NTS:
CLAIMS: JA
OPERATOR: Vancouver Venture
AUTHOR: Van, M. J.
DESCRIPTION: The J.R. claim is underlain by Paleozoic Sicker Group volcanic and sedimentary rocks.
REFERENCES:
Case Flattery

REFERENCES:

MINING DIV: Victoria

LOCATION: Lat 48 55 06 Long 124 08 36 NTS

CLAIMS: Mike 1-4

OPERATOR: Int. Cherokee Dev.

COMMODITIES: Gold, Silver, Copper

DESCRIPTION: The claims are underlain by Paleozoic Sicker Group sedimentary rocks which have been folded about a northwest trending axis and intruded by Triassic granites and Jurassic intrusive quartz diorite. Gold and copper mineralization occurs in 5-20 cent-metre east-trending quartz veins along the flanks of a gneissic dike.

WORK DONE:

- SOIL 162: multielement
- EMER 4.3 kmVLF
- SOIL 110: 000: 1, 000
- SOIL 393: 0: 00 M: 000, 600, 800
- TREN 36.0 m: 3 trenches
- ROCK 169: multielement
- SILT 24: multielement
- SAMP 285: Au, Ag, Cu, As

REFERENCES: Mike 1-4

Saganoroo

REFERENCES:

MINING DIV: Victoria

LOCATION: Lat 48 57 12 Long 124 04 18 NTS

CLAIMS: Saganoroo

OPERATOR: Canamin Res.

DESCRIPTION: The eastern portion of the claim has been driven about 100 metres into schist-talayer rocks. Reported mineralization includes minor gold in quartz veins, gold in magnetite, and a fuchsite zone containing a copper-silver-lead-zinc-gold anomaly.

WORK DONE:

- EMER 0.9 kmVLF
- SOIL 1, 000

REFERENCES:

Amore

REFERENCES:

MINING DIV: Victoria

LOCATION: Lat 48 57 42 Long 124 16 48 NTS

CLAIMS: Amore, Amore 2, Amore B, Natella-L

OPERATOR: Canamin Res.

AUTHOR: Hawkins, T.; Thomas, B.

COMMODITIES: Gold, Silver

DESCRIPTION: The claims are underlain by a northwest striking sequence of interbedded agglomeratic tuffs, bands of cherty tuffs and argillites.

REFERENCES:

Gold Dyke

REFERENCES:

MINING DIV: Victoria

LOCATION: Lat 48 52 00 Long 124 22 18 NTS

CLAIMS: Gold Dyke 1

OPERATOR: Greb Ind.

AUTHOR: Payne C.

COMMODITIES: Lead, Zinc, Gold

DESCRIPTION: Lower Jurassic Banzeno Group anesitic and acid volcanic rocks are cut by a quartz-carbonate filled shear zone. The shear zone contains disseminated pyrite, pyrrhotite, galena, sphalerite and trace arsenopyrite.

WORK DONE:

- SOIL 426.8: 6.5 notes, 80
- LINE 0.4 km
- SOIL 169: multielement
- SAMP 300: multielement

REFERENCES:

Joos

REFERENCES:

MINING DIV: Victoria

LOCATION: Lat 48 56 30 Long 124 26 50 NTS

CLAIMS: Joos 1-5

OPERATOR: SH-Union Mines

AUTHOR: Cowley, P.; Robinson, G.

DESCRIPTION: A Eo-Paleozoic-Mesozoic succession of volcanic and sedimentary and granitic rock is exposed on the property. A northwest trending package of alternating anesitic and acid volcanic tuffs, basaltic agglomerate, and flow and cherty ash tuff outcrops on the Joos claims of the upper property. The succession exhibits greenschist metamorphism overprinted by varied schistosity. No significant mineralization has yet been found on the claims.

WORK DONE:

- ROCK 3: multielement
- SOIL 0: 000
- SILT 27: multielement
- SAMP 3: multielement

REFERENCES:

REFERENCES:
**** Shaw Creek ****
MINING DIV: **
LOCATION: LAT 49 00 00 LONG 124 25 00 NTS:
CLAIMS: FIGHT 1 FLIGHT 4-3
OPERATOR: BHP-Cutbank Mines
AUTHOR: Cowley, P.; Grd. R.
COMMODITIES: Rhodochrosite
DESCRIPTION: The property overlies the Nickel and Nyrstar deposits despite the degree of northeast and west-northwest structures, bedrock attitude remains consistent with a northwest dip of 10-45 degrees. No significant mineralization was encountered west of R-5.
WORK DONE: MRCAG 1.6 km, RKD 38:multielement, GEO 1500, SOIL 1:multielement, SMLT 1:multielement, EMGR 1.6 km: VLF
REFERENCES: A.R. 16673, M.I. 092F 185-SHAW CREEK

**** Independence (Harlow) ****
MINING DIV: **
LOCATION: LAT 49 57 54 LONG 126 40 05 NTS:
CLAIMS: Independence
OPERATOR: North American Ventures
AUTHOR: Stevenson, J.; McCintock, J.
COMMODITIES: Gold, Copper, Zinc
DESCRIPTION: The property straddles the northerly trending, moderately dipping contact between the underlying Upper Triassic Kamloops Formation and overlying quartzite formations. Mineralization occurs in the northerly trending, steeply dipping shear zones cutting the host rocks near their contact with overlying limestone of the Quatsino Formation.
WORK DONE: MRCAG 4.4 km, EMGR 3.3 km: VLF, GEO 1500, SOIL 200:multielement, LINE 15.4 km
REFERENCES: M.I. 092E 004-INDEPENDENCE (HARLOW)

**** Tansis Inlet ****
MINING DIV: **
LOCATION: LAT 49 52 36 LONG 126 38 24 NTS:
CLAIMS: Perry 1-6
OPERATOR: Stetson Res. Management
C129

**** Vig ****
MINING DIV: **
LOCATION: LAT 49 48 06 LONG 126 31 12 NTS:
CLAIMS: Vig 3, Vig 6
OPERATOR: Great Keppel Res.
AUTHOR: Amadeo, H.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: An epithermal deposit along strike individual lenses grade up to 201 grams per tonne gold, and the zone averages 4.4 grams per tonne gold across 1.5 metres.
WORK DONE: SMLT 36: Au, Ag, Cu, Pb, Zn, As, TPAD 1.5000, GEO 1500, RKD 182:multielement, EMGR 5.6 km
REFERENCES: A.R. 13158, M.I. 092E 039-TANSIS INLET

**** Jackie ****
MINING DIV: **
LOCATION: LAT 50 00 00 LONG 126 09 54 NTS:
CLAIMS: Jackie, Jackie 2
OPERATOR: Cranbrook Res.
AUTHOR: Hawkins, T.; Thonae, B.
COMMODITIES: Lead, Zinc, Copper, Silver, Gold
DESCRIPTION: The central and western portion of the property is underlain by a northerly striking succession of interbedded argillite, chert, chamositic siltstone and turbidite facies of the Pennsylvanian "Sediment-511" Unit. The overlying Upper Triassic Kamloops Formation comprises meta-volcanic rocks. Both are intruded by Lower-Middle Jurassic Island intrusions. Two showings comprising Copper-Calcium-iron-silver and minor gold mineralization occur within the "Sediment-511" Unit along a common(t?) structural trend.

C130
WORK DONE: GEOL 1:5000
SILT 1:5000
REFERENCES: A. R. 14319, 15223
M. I. O82L 219-JACKIE

Alberni

WORK DONE: GEOL 1:5000
SILT 1:5000
REFERENCES: A. R. 15223
M. I. O82L 219-JACKIE

Bonnell Creek

MINING DIV: Nanaimo
ASSESSMENT REPORT 15885 INFO CLASS 4
LOCATION: LAT. 49 11 00 LONG. 124 12 00 NTS:
CLAIMS: AOK
OPERATOR: Goase, R.
AUTHOR: Doorly, A.
DESCRIPTION: An argillaceous shale belonging to the Myra Formation and basalt
and chert of the kermeuten Formation are juxtaposed by a major
northwest-stru of a quartz-carbonate filled fault breccia. Indications of epigenetic precious metal
mineralization (14.3 and 10.3 grams per tonne silver) are found in
narrow east-northwest trending sheers within the basalt.
WORK DONE: SAMP 10 AU AG PROS 1:10 000
REFERENCES: A. R. 07641, 10572, 11916

Lily

MINING DIV: Naniamo
ASSESSMENT REPORT 15914 INFO CLASS 3
LOCATION: LAT. 49 10 30 LONG. 124 12 30 NTS:
CLAIMS: Gomberg 1-2
OPERATOR: Canadian Energy
&. W. SHORT,
COMMODITIES: Gold, Silver, Copper, Lead
DESCRIPTION: The "Lily" showing consists of localized silicification and
C131

MacMillan

MINING DIV: Nanaimo
ASSESSMENT REPORT 15805 INFO CLASS 4
LOCATION: LAT. 49 08 00 LONG. 124 04 00 NTS:
CLAIMS: T. E. L. 1-4
AUTHOR: Cross, S.
COMMODITIES: Copper
DESCRIPTION: A silicified and highly carbonized as well as hematized
breccia zone is present in Triassic kermeuten Formation basalt near
the unconformable contact with overlying Cretaceous Nanaimo Group
clastic sediments. The breccia zone is approximately 102 metres
by 18 metres in size and the following minerals have been reported in the
breccia: chalcopyrite, bornite, tetrarodite and chalcocite.
WORK DONE: SOIL 12:multielement
REFERENCES: A. R. 12191, 13451, 14486
M. I. O82F 164-MACMILLAN

T. E. L.

MINING DIV: Nanaimo
ASSESSMENT REPORT 15991 INFO CLASS 3
LOCATION: LAT. 49 06 35 LONG. 124 05 20 NTS:
CLAIMS: Jack, T. E. L. 1-4
AUTHOR: Cross, S.
COMMODITIES: Copper
DESCRIPTION: A silicified, highly carbonized and hematized breccia zone
occurs within Triassic kermeuten Formation basalt near the
unconformable contact with overlying Cretaceous Nanaimo Group
clastic sediments. The breccia zone is approximately 102 by
18 metres in size. The following minerals have been reported in the
breccia: chalcopyrite, bornite, tetrarodite and chalcocite.
WORK DONE: SOIL 12:multielement
REFERENCES: A. R. 12191, 13451, 14486, 15805
M. I. O82F 164-T. E. L.

Namako River

MINING DIV: Nanaimo
ASSESSMENT REPORT 1582 INFO CLASS 3
LOCATION: LAT. 49 05 00 LONG. 124 29 42 NTS:
CLAIMS: Bigker 1-2
OPERATOR: Looahsim Min.
AUTHOR: Hawkins, T.; Thomae, B.
COMMODITIES: Limestone

C132
DESCRIPTION: The claims are underlain in part by a westward-dipping succession which includes from east to west: basaltic and andesitic flows of the Pennsylvania Sediment-Sill Unit of the Paleozoic Sicker Group. Pennsylvanian Butte Lake Formation bedded, fine-grained limestone, black mudstone, tuffaceous argillite, and associated with pyritic fracture zones which crosscut the Butte Lake Formation.

WORK DONE: ROCK: multielement
SOIL: 1C: multielement
GEO: 1:10,000

REFERENCES: M. I. 0392 408-NANAIMO RIVER

**** Rush, Nv ****

MINING DIV: Nanaimo
LOCATION: LAT: 49 05 02 LONG: 124 22 44 NTS:
CLAIMS: Rush 1-3, Sicker 1-2
OPERATOR: Road Res.
AUTHOR: Regan, J.; Holtby, M.
COMMODITIES: Copper, Tungsten, Gold, Zinc
DESCRIPTION: The claims are mainly underlain by northwest-trending, west-dipping Paleozoic Sicker Group volcanics and sediments. These are overlain by an in fault contact with Upper Triassic Karmutsen Formation basalts on the west and intruded by Lower-Middle Jurassic Island Intrusions to the east. Pyrite occurs in carbonate-sericite alteration zones with quartz veins. Possible skarn mineralization occurs near the contact of Pennsylvania Butte Lake Formation limestone and the intrusives.

WORK DONE: ROCK: 146 Cu, Zn, Ag, Au, As
SOIL: 848 Cu, Zn, Ag, Au
GEO: 1:10,000

REFERENCES: M. I. 0392 446-RUSH; 0392 447-NAN

**** Skarn, Villaarta ****

MINING DIV: Villaarta
LOCATION: LAT: 49 05 24 LONG: 124 28 30 NTS:
CLAIMS: Villaarta D
OPERATOR: Ceramex Res.
AUTHOR: Lisle, T.; Guin, S.
COMMODITIES: Copper, Tungsten, Gold, Zinc
DESCRIPTION: Upper Devonian Myra Formation rocks of the Sicker Group are exposed at lower elevations in the southern area of the property. These are overthrust by Upper Cretaceous Nanaimo Group sediments. Middle Devonian Nittiat Formation volcanics and Upper Triassic Karmutsen Formation volcanic rocks are locally the Pennsylvania Butte Lake Formation. A limestone is exposed above the Myra Formation. On the Villaarta D claim A, 1.17 m: 47 holes: HC NO.

WORK DONE: ROYAL 448: multielement

**** April ****

MINING DIV: Alberni
LOCATION: LAT: 49 06 00 LONG: 124 39 00 NTS:
CLAIMS: April
OPERATOR: Novus Res.
AUTHOR: Getzinger, J.
DESCRIPTION: The April claim is underlain by Triassic Karmutsen Formation, bedded, basaltic rocks with lesser amounts of Paleozoic Butte Lake Formation and Upper Triassic Karmutsen Formation. Rock samples results indicate multielement anomalies in the southwest corner. Low grade, low to very low grade results indicate multielement anomalies. In the south west corner, 2.94 ppm copper, 39 ppm lead, 210 ppm nickel, and 620 ppm cobalt, plus 0.03 ppm gold. High grade results in the northwestern corner, 2.94 ppm copper, 39 ppm lead, 210 ppm nickel, and 620 ppm cobalt, plus 0.03 ppm gold. High grade results in the northwestern corner.

WORK DONE: SOIL: 39-Au
GEO: 1:6000
SILT: 9-Au
ROCK: 11-Au

REFERENCES: A.R. 12899, 15358

**** Bain ****

MINING DIV: Alberni
LOCATION: LAT: 49 11 07 LONG: 124 42 09 NTS:
CLAIMS: Bain 3-4
OPERATOR: Ashworth Ex.
AUTHOR: Leriche, P.
DESCRIPTION: Paleozoic Sicker Group rocks (flows, tuff, breccia, argillite) are in fault contact with Upper Triassic Karmutsen Formation basalt.

WORK DONE: ROYAL 16: multielement
SILT: 2: multielement
ROCK: 14: multielement
PROS: 1:10,000

REFERENCES:

**** Bain ****

MINING DIV: Alberni
LOCATION: LAT: 49 11 06 LONG: 124 44 00 NTS:
CLAIMS: Bain 1-4
OPERATOR: Ashworth, C.
AUTHOR: Scrogging, E.
DESCRIPTION: The claims are underlain by Upper Devonian Myra Formation, bedded, fine-grained limestone, black mudstone, tuffaceous argillite, and associated with pyritic fracture zones which crosscut the Butte Lake Formation.

WORK DONE: GEO: 1:81,680

REFERENCES:

C134
**** Colonial ****

MINING DIV: Victoria
LOCATION: LAT. 49 01 30 LONG. 124 34 18 NTS.
CLAIMS: Colonial I-VI, Platinum
OPERATOR: Payton Ventures
AUTHOR: Larena, H.
COMMODITIES: Copper, Lead
DESCRIPTION: The claims are largely underlain by Nittine Formation volcanics and Upper Devonian Myra Formation and Pennsylvanian Buffle Lake Formation rocks. A well defined north-northwest trending shear zone containing quartz veins, carbonates and sulphides dissect the property. A number of geochemical anomalies occur with several rock samples assaying up to 1.2 per cent copper and 5.5 grams per tonne silver.

WORK DONE:
- GEOG: 1 3000
- SOIL: 211: multielement
- ROCK: 21: multielement
- LINE: 13.5 km

REFERENCES: M.I. 082F 331-COLUMBIA

**** Cop Creek ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 11 42 LONG. 124 36 36 NTS.
CLAIMS: Arrowsmith 2-3
OPERATOR: Angus, S.
AUTHOR: MacLeod, J.
COMMODITIES: Copper, Silver, Lead
DESCRIPTION: The claims are underlain by Upper Cretaceous Nanaimo Group sediments, Upper Triassic Vancouver Group volcanics and Paleozoic Sicker Group sediments and volcanics. These rocks trend north-northwest and dip to the east and are intruded by Tertiary granite.

WORK DONE:
- GEOG: 7: Au, Ag
- LINE: 12.1 km

REFERENCES: M.I. 082F 233-COP CREEK

**** Golden Slipper ****

MINING DIV: Alberni
LOCATION: LAT. 49 00 42 LONG. 124 38 54 NTS.
CLAIMS: Toto 1
OPERATOR: Apex Ventures
AUTHOR: Lyons, E.
COMMODITIES: Toto
DESCRIPTION: The claims are underlain by andesite of the Upper Triassic Karmutsen Formation and Pennsylvanian Buffle Lake Formation rocks. Mineralization occurs as pyrite and chalcocite stringers in altered volcanics.

REFERENCES: A.R. 12735, 14520, 14987

**** Lofstrom ****

MINING DIV: Alberni
LOCATION: LAT. 49 09 00 LONG. 124 39 30 NTS.
CLAIMS: Toto
OPERATOR: Nexbus Res.
AUTHOR: Lyon, E.
COMMODITIES: Gold, Copper, Silver, Lead
DESCRIPTION: The claims are underlain by basaltic and dacitic rocks of the Paleozoic Sicker Group (Upper Devonian Myra Formation) and minor limestones of the Pennsylvanian Buffle Lake Formation. Mineralization occurs as disseminated pyrite and chalcocite stringers in altered volcanics.

WORK DONE:
- DIAD: 209, 419, 114, 33 holes, 80 m
- SAMP: 384: multielement

REFERENCES: A.R. 08299, 10175, 13759, 14876
- M.I. 082F 078-REGINA

**** PT ****

MINING DIV: Alberni
LOCATION: LAT. 49 01 24 LONG. 124 43 00 NTS.
CLAIMS: PT 5
OPERATOR: Armstar Venture
AUTHOR: Douglas, E.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by anesite of the Upper Triassic Karmutsen Formation. Mineralization consists of disseminated pyrite, chalcocite and malachite in two major fracture zones.

WORK DONE:
- GEOG: 1 9000
- SOIL: 13: multielement
- GEOG: 1 9000
- LINE: 10 km

REFERENCES: A.R. 12735, 14820, 14987
- M.I. 082F 380-LOFSTROM

**** Lofstrom ****

MINING DIV: Alberni
LOCATION: LAT. 49 04 30 LONG. 124 42 42 NTS.
CLAIMS: PT 5
OPERATOR: Armstar Venture
AUTHOR: Douglas, E.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by anesite of the Upper Triassic Karmutsen Formation volcanics and Pennsylvanian Buffle Lake Formation rocks. Mineralization consists of disseminated pyrite, chalcocite and malachite in two major fracture zones. These rocks contain visible sphalerite and malachite.

WORK DONE:
- GEOG: 51: 3000

REFERENCES: M.I. 082F 380-LOFSTROM

**** Pt ****

MINING DIV: Alberni
LOCATION: LAT. 49 04 30 LONG. 124 42 44 NTS.
CLAIMS: PT 5
OPERATOR: Armstar Venture
AUTHOR: Douglas, E.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by anesite of the Upper Triassic Karmutsen Formation volcanics and Pennsylvanian Buffle Lake Formation rocks. Mineralization consists of disseminated pyrite, chalcocite and malachite in two major fracture zones. These rocks contain visible sphalerite and malachite.

WORK DONE:
- GEOG: 51: 3000
- ROCK: 5: Cu, Ag, Au, Pd, Pt
Alperni

MINING DIV: Alperni
LOCATION: LAT. 49 03 00 LONG. 124 40 00 NTS:
CLAIMS: Toby 1-2
OPERATOR: Imperial Metals
AUTHOR: Delaney, P
COMMODITIES: Gold,Silver,Copper, Iron
DESCRIPTION: The claims are underlain by Jurassic Island Intrusions (Muller and Carson, 1968). These rocks are cut by faults and associated skarn and breccia zones. The skarn contains copper mineralization and gossan. The barren contact is mineralized along the fault zones. The shear zones display minor alteration and mineralization along the fault zones.
WORK DONE: Rock 1.4 km, Sulf 1.4 km, Au,Ag,Cu,Pb,Zn
LINE 1.4 km
REFERENCES: M.I. 092F 329-Toby 1:092F 330-Toby 2

C137

ARIO

MINING DIV: Alberni
LOCATION: LAT. 49 11 12 LONG. 124 54 48 NTS:
CLAIMS: Angle 8-6
OPERATOR: Bancor Res
AUTHOR: Poloni, J
DESCRIPTION: Shear zones with sulfides occur in Lower Jurassic Bonanza Group and Lower Triassic Kimmuts Formation volcanics.
WORK DONE: Rock 3.2 km, Sulf 3.2 km, Au,Ag,Cu
SOIL 3.2 km
REFERENCES: Kola

C138
Albern:

CLAIMS: Kola 2
OPERATOR: Amater Venture
AUTHOR: Bockochoff, L.
COMMODITIES: Gold, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation andesite flows. Northerly striking shear zones contain local minor tuff and volcanic breccia. Trenching along a trenched road cut for 300 metres. Carbonate and silica alteration also occur within the shear zone. The claim was tested along a 10 metre strike length and extends to at least 40 metres depth.
WORK DONE: SAMP 221-CN-Au.
REFERENCES: 1A. 0931. JDC.30.02-1399

Albern:

CLAIMS: Skinn
OPERATOR: Alta Management
AUTHOR: Clover
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics. Gold values occur within the shear zone. The rocks are affected by north-south directed shear zones within the Tertiary intrusive and to a lesser extent in the other units. Shear zone alteration consists of sericite, clays and limonite with local chlorite and silicification.
WORK DONE: ROCK 29:multielement.
REFERENCES: 1A. 093F 433-ALPEER:092F 434-ALPEER 3

American Wonder:

CLAIMS: Alber:
OPERATOR: Alber:
AUTHOR:
COMMODITIES: Gold, Copper
DESCRIPTION: The property is underlain by Upper Triassic and older Karmutsen Formation pillow basalt and trachyte breccias. Trenching indicated sulphides and up to 5000 ppm Au in quartz lenses.
WORK DONE: ROCK 9:ts.000.
REFERENCES: 092F 050-BESSIE B (JESSIE B)

Blue Bird:

CLAIMS: Alber:
OPERATOR: Gourley, K.
AUTHOR: Gourley, K.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by Upper Triassic and older Karmutsen Formation pillow basalt and trachyte breccias. Mineralized shear zones cut the Tertiary intrusive.
REFERENCES: 092F 051-BLUE BIRD

Empire:

CLAIMS: Alber:
OPERATOR: Aintree Res.
AUTHOR: Henneberry, R.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by Upper Triassic and older Karmutsen Formation pillow basalt and trachyte breccias. Mineralized shear zones cut the Tertiary intrusive.
MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Lost Canyon, Viva 1-2
OPERATOR: Discovery Gold Ex.
AUTHOR: Keizer, H.
COMMODITIES: Gold, Silver
DESCRIPTION: The property is underlain by Triassic Karmutsen Formation andesite to dacitic rocks. The area is part of the continuous east-west striking fault zone. The Triassic Karmutsen Formation is located in the gold bearing zone.
WORK DONE: TREN 60.0 m; 4 trenches
SILT 6: multielement
LINE 10.0 km
SAMPLING: 48: Au
REFERENCES: A.R. 05807.07691 05807.07692 05807.07693 05807.07694

Alberni

REFERENCES: A.R. 05807.07691 05807.07692 05807.07693 05807.07694

MINING DIV: Alberni
LOCATION: Lat. 49 09 32 Long. 125 28 00 NTS:
CLAIMS: Alberni, 4lTree Res., Henneberry, R.
OPERATOR: Epic
AUTHOR: 4lTree Res., Henneberry, R.
DESCRIPTION: Henryberry R. and Terra Nova diorite intrudes Quatsino Formation limestone. Numerous shear zones transecting limestone carry anomalous gold and silver values. Work done: Soil 12.0 km
REFERENCES: A.R. 05846.15643

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Iron, Copper, Gold
DESCRIPTION: Zones of steeply dipping auriferous quartz veins occur within Upper Triassic Karmutsen Formation andesites and dacites. Work done: Soil 275: Au
REFERENCES: M.I. 092F 031-LEOR4 092F 032-ROSE MARIE

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: A zone of sheeted auriferous quartz veins occurs within the Upper Triassic Karmutsen Formation andesites and dacites. Feldspar porphyry dykes. The steeply dipping zone extends widths of up to 150 metres over a strike length of 1400 metres. Work done: SAMP 956: Au
REFERENCES: M.I. 092F 031-LEOR4 092F 032-ROSE MARIE

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4

MINING DIV: Alberni
LOCATION: Lat. 49 06 12 Long. 125 24 30 NTS:
CLAIMS: Golden Gate, 4lTree Res., Tommy, Waterfall
OPERATOR: Kerr Addison Mines
AUTHOR: Potter, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics and minor sediments. Work done: DIA 211.2 m: 8 holes, BQ, NO
SAMP 48: Au, AG
REFERENCES: A.R. 05711.07665.12557.15842 092F 031-LEOR4
**** Snack, Bear, Gold Queen, Olympic (Titanic) ****

MINING DIV: Alberni

LOCATION: LAT. 49° 10' 00" LONG. 125° 25' 00" NTS:

CLAIMS: Captain Hook, Titanic

OPERATOR: National Gold Mines

AUTHOR: Hennessy, R.

DESCRIPTION: Rocks of KarmutSen and Queen formations are intruded by Island and Snack intrusions. Gold mineralization is localized in quartz veins within regional shear zones/faults. Gold is associated with pyrite, chalcopyrite, pyrrhotite, and sphalerite. Alteration halos of chlorite and stilfitization are associated with the shear zones.

EMG: 4.0 km, VLF
SOIL: 495: Au, Ag, As, Cu, Zn, Fe
SILT: 29: Au, Ag, As, Cu, Zn, Fe
TOPO: 1: 0000
LINE: 39.0 km

REFERENCES:
- A. B. 10548, 11944, 12318
- M.I. 092F 034-RED ROVER (TOQUART)

**** American Wonder, Gen. James M. Iron Duke ****

MINING DIV: Alberni

LOCATION: LAT. 49° 14' 30" LONG. 125° 38' 00" NTS:

CLAIMS: General James M. Lady Franks, Success, Starbuck

OPERATOR: West-MB Res.

AUTHOR: Bouchard. P.

DESCRIPTION: Copper and magnetite occur within gneissic rocks with dyke-like amphibolite.

REFERENCES:
- A. B. 14337

**** Clara ****

MINING DIV: Alberni

LOCATION: LAT. 49° 12' 12" LONG. 125° 36' 30" NTS:

CLAIMS: Clara

OPERATOR: Buckland, P.

AUTHOR: Guddy, W.

DESCRIPTION: Exposed geology consists of pyritic gneissic rocks with dyke-like amphibolite.

REFERENCES:
- A. B. 16220

**** Crash ****

MINING DIV: Alberni

LOCATION: LAT. 49° 14' 00" LONG. 125° 34' 18" NTS:

CLAIMS: Crash

OPERATOR: Buckland, P.

AUTHOR: Buckland, P.

DESCRIPTION: The claim appears to be underlain by greenstones, intrusive rocks and limestone.

REFERENCES:
- A. B. 16421

**** Northern Crown ****

MINING DIV: Alberni

LOCATION: LAT. 49° 11' 12" LONG. 125° 31' 36" NTS:

CLAIMS: Clara-2

OPERATOR: Cuppy, W.

AUTHOR: Cuppy, W.

COMMODITIES: Gold, Silver, Copper

DESCRIPTION: Chalcopyrite-pyrrhotite skarn mineralization is found at or near the contact of Pennsylvanian Buttle Lake Formation limestone with Paleozoic Sicker Group and/or Upper Triassic KarmutSen Formation volcanics.

REFERENCES:
- A. B. 16182

**** Tatina Nickel ****

MINING DIV: Alberni

LOCATION: LAT. 49° 13' 12" LONG. 125° 37' 42" NTS:

CLAIMS: Tatina Nickel 1, Nickel 3, Super 1, Super 3

OPERATOR: Lambourn, P.

AUTHOR: Legoupil, P.

COMMODITIES: Silver, Copper, Nickel

DESCRIPTION: Quartz-feldspathic gneiss and metabasalt, probably derived from the Mid-Paleozoic Sicker Group, are intruded by foliated quartz diorite belonging to the Jurassic Island Intrusions. There are many amphibitized meta-sills in the gneiss, and at the mine showing a uniform meta-silt up to 1.5 metres thick containing disseminated to massive copper-nickel sulphide mineralization extending over...
Alberni: 029F

Free Gold, Maple Leaf **

MINING DIV: Alberni
LOCATION: LAT. 49 16 24, LONG. 125 44 00
CLAIMS: Baycrest, Baycrest 2-3, Exp 1-2
AUTHOR: Guypp, W.
DESCRIPTION: The claims appear to be underlain by Paleozoic Sticker Group volcanics, limestone lenses and diorite.
REFERENCES: A.S. 0318
M.I. 092F 039-MAPIE LEAF; 092F 205-FREE GOLD

Sten **

MINING DIV:
LOCATION: LAT. 49 26 18, LONG. 125 33 48
CLAIMS: Sten 12-13, Stan 15-16, Stan 18, Stan 4
AUTHOR: Gonzalez, R.
DESCRIPTION: The claims cover the southern part of the Buttle Lake structural uplift in which Paleozoic Sticker Group rocks are bounded on the east and west by Upper Triassic Karmutsen Formation volcanics and granitic rocks of the Lower-Middle Jurassic Island Intrusions respectively. Several styles of mineralization have been noted in place and float.
REFERENCES:

Storke, Mio-Pad, Junction **

MINING DIV:
LOCATION: LAT. 49 22 24, LONG. 125 36 36
CLAIMS:
AUTHOR: Snoer, J.
DESCRIPTION: The claims are underlain by the Upper Triassic Karmutsen Formation at fault and intrusive contact with granitoids of the Lower-Middle Jurassic Island Intrusions. Major fault and shear alteration observed. Four showings of pyrite-chalcopyrite with trace sphalerite and galena have been found. Selective samples assayed as high as 29.1 grams per tonne gold, but most average much lower. The Junction showing is a cataclastic zone along Ursus Creek.

Bay Creek **

MINING DIV:
LOCATION: LAT. 49 19 54, LONG. 125 51 00
CLAIMS:
AUTHOR: Duncan, D.; Richmond, J.
DESCRIPTION: Early Paleozoic Sticker Group volcanics occur in several differentiated sequences of mafic to felsic composition. The units dip steeply northeastward with some undulating due to thinning. Each subunit is common with several showings of stratiform sulfides having been discovered in felsic volcanioclastics.
WORK DONE:
REFERENCES:

Bedingfield **

MINING DIV:
LOCATION: LAT. 49 23 00, LONG. 125 57 50
CLAIMS:
AUTHOR: Blackwell, J.
DESCRIPTION: The property comprises an overturned suite of pyroclastic rocks belonging to the mid-Paleozoic Sticker Group. These volcanics are unconformably overlain by the Pennsylvania Sedimentary Unit and Buttle lake Formation limestone. Upper Triassic Karmutsen Formation basaltic locally cap the Buttle Lake Formation.
WORK DONE:
REFERENCES:

Bedingfield **

MINING DIV:
LOCATION: LAT. 49 19 02, LONG. 125 55 51
CLAIMS:
AUTHOR: Jackson, J.
DESCRIPTION: The property comprises an overturned suite of pyroclastic rocks belonging to the mid-Paleozoic Sticker Group. These volcanics

C146
are unconformably overlain by the Pennsylvania sedimentary unit and Buttle Lake Formation limestone. Upper Triassic Karmutsen Formation basalts locally cap the Buttle Lake Formation limestone.

WORK DONE:
EMGR 3.0 km: HLEM

REFERENCES:

---- Cove ----

MINING DIV: Alberni
LOCATION: LAT 49 17 36 LONG. 125 17 06 NTS:
CLAIMS: Cove 2, Cove 4
OPERATOR: James, R.
AUTHOR: Walker, J. Botel, W.
DESCRIPTION: The claims are unconformably overlain by the Pennsylvania Sedimentary Unit and Buttle Lake Formation limestone. The Pennsylvanian sedimentary unit overlies the Paleozoic Sticker Group. Mineralization consists of local pyrite, chalcopyrite, molybdenite and pyrrhotite with minor silver and gold values.

WORK DONE:
GEOLOGICAL, 1:10 000

REFERENCES:

---- Lazy K ----

MINING DIV:
LOCATION: LAT 49 24 00 LONG. 125 59 00 NTS:
CLAIMS: Beach Creek, Lazy K 1-4
OPERATOR: Consort Energy
AUTHOR: Neale, T.
COMMODITIES: Gold, Lead, Copper
DESCRIPTION: The property is mainly unconformable to intermediate volcanics of uncertain age, with lesser Paleozoic Sticker Group(?), Lower-Middle Jurassic Island Intrusions(?), granodiorite and Tertiary(?), diorite also occur. An area of quartz +/- carbonate veining in altered volcanics and associated feldspar porphyry dykes returned up to 2.02 grams per tonne gold with up to 8.413 ppm copper, 5.091 ppm lead, 4.24 ppm zinc and 7.2 ppm silver.

WORK DONE:
SOIL 38: multielement
SILT 43: multielement
ROCK 161: multielement
GEOL 1:5000

REFERENCES:

---- G.C. ----

MINING DIV:
LOCATION: LAT 49 20 12 LONG. 125 12 48 NTS:
CLAIMS:
OPERATOR: Stetson Res. Management
AUTHOR: Anthony, L. M. C.
COMMODITIES: Antimony, Mercury, Gold
DESCRIPTION: The property is underlain by anesicastic volcanics of the Upper Triassic Karmutsen Formation. The Ark vein represents the upper levels of a suspected epithermal system and carries strong antimony and mercury mineralization together with anomalous gold values.

WORK DONE:
SOIL 200: multielement
SILT 16: multielement
ROCK 43: multielement
DIAG 276.5 m-3 holes. EQ
SAX 12: 54.5 dB, Au, Ag
TREN 35.0 m-3 trenches

REFERENCES:

**** hung 16420 15643
M.I. 052F 230-HM

---- Paterson Lake, Round Lake, Stamp River, Road Zone ----

MINING DIV:
LOCATION: LAT 49 20 48 LONG. 125 01 00 NTS:
CLAIMS: Paterson, Paterson 1, Paterson Lake 3-6
OPERATOR: Delta Terra Res.
AUTHOR: Lambert, E. Stephen, J.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by Upper Triassic Karmutsen Formation volcanics. Mineralization has been found in silicified volcanics, shear zones, quartz breccias and veins and in apparent flow tops. A nonplutonic-biotite granite of the intrudes the northwest portion of the property. Low gold and silver values occur with copper mineralization.

WORK DONE:
GEOLOGICAL, 1:10 000
MAG 29.8 km
EMGR 29.8 km
VLF 10.5 km
LINE 44.9 km

REFERENCES:

**** Stamp River, Round Lake, Paterson ****

MINING DIV:
LOCATION: LAT 49 21 12 LONG. 125 00 18 NTS:
CLAIMS: Paterson, Paterson 1, Paterson Lake 3-4
OPERATOR: Delta Terra Res.
AUTHOR: Stephen, J.
COMMODITIES: Copper, Gold, Silver

C148
Albern! 092F

 DESCRIPTION: Upper Triassic Karmutsen Formation volcanics and Jurassic Island Intrusions occur in fault slices and rafts. Predominant east-west faults cut the rocks but many north-south faults exist as well. Fault zones are the loci of quartz-carbonate veins which host pyrite, chalcopyrite, galena and gold mineralization. Veining ranges from 1-50 centimetres wide and is associated with argillic and epithermal alteration.

 WORK DONE: LINE 17.6 km
 GEOL 1,250G
 ENGR 1.5 km:VLF
 MAG 16.7 km
 SOIL 250:multi-element
 PETR 1:thin section

 REFERENCES: M.1. 092F 323-SNOW

 **** Snow ****

 MINING DIV: Albern! ASSESSMENT REPORT 18208 INFO CLASS 2
 LOCATION: LAT. 49 18 30 LONG. 125 25 00 NTS:
 CLAIMS: Sayer 1,2,White 1-2
 OPERATOR: Casey Res.
 AUTHOR: Sayer G. / Stephen, J.
 COMMODITIES: Gold,Silver,Copper,Lead,Zinc

 DESCRIPTION: The claims are underlain by Paleozoic Sicker Group volcanics and sedimentary rocks which predominantly trend northwest. The stratigraphy is quite complex due to many fault blocks and rapid lateral facies changes. Alteration is subtle and not far reaching. Several mineralized zones were located including sulphydride pods and iron-manganese showings.

 WORK DONE: GEOL 1,500G,1,250G
 MAG 33.7 km:VLF
 SOIL 35 km:multi-element

 REFERENCES: M.1. 092F 494-GARY LAKE;092F 246-LACY LAKE;092F 246-CAMERON LAKE;092F 451-MAIN;092F 452-EAST TRACK;092F 453-OLD CU-AG

 **** Horne ****

 MINING DIV: Nanaimo ASSESSMENT REPORT 16116 INFO CLASS 4
 LOCATION: LAT. 49 17 42 LONG. 124 45 46 NTS:
 CLAIMS: Horne 1-4
 OPERATOR: Nexus Res.
 AUTHOR: Cope, G. / Hawking, T.
 DESCRIPTION: The property is underlain by Paleozoic Sicker Group rocks including the upper Devonian Miwa Formation and Middle Devonian Nitinat Formation. A major north-northwest trending regional fault exists across the property. Zones of heavy quartz-carbonate alteration associated with the fault have returned anomalous values in gold, arsenic, silver and zinc from rock sampling.

 WORK DONE: ROCK 25:multi-element
 GEOL 1,10 000
 SILT 4:multi-element

 C180
REFERENCES: A.R. 14941

*** Little Qualicum Falls ****

MINING DIV: *** ASSESSMENT REPORT 16559 INFO CLASS 4
LOCATION: LAT. 49 18 24 LONG. 124 39 18 NTS:
CLAIMS: Can 1-4.GR 2 Heather
OPERATOR: Rosebrough, B.
AUTHOR: Busch, J.
COMMODITIES: Copper, Silver
DESCRIPTION: The claims are underlain by volcanic and intrusive rocks.
WORK DONE: PROS 1/25 000
REFERENCES: M.I. 092F 377-LITTLE QUALICUM FALLS

*** Nero ****

MINING DIV: Nanaimo ASSESSMENT REPORT 15557 INFO CLASS 4
LOCATION: LAT. 49 16 18 LONG. 124 40 48 NTS:
CLAIMS: Nero 1-3
OPERATOR: Nexus Res.
AUTHOR: Getzinger, J.
COMMODITIES: Antimony, Copper, Silver, B.
DESCRIPTION: The property is underlain by Paleozoic Sicker Group rocks
including the Myra Formation and Nitinat Formation. A major north-
northwest trending regional fault structure crosses the property. Quartz veins
within zones of heavy quartz-carbonate alteration associated with the fault
have returned anomalous values in arsenic, gold, silver and
zinc from rock sampling.
WORK DONE: ROCK 47:multielement
SILT 2:multielement
GEOLOGICAL 1:10 000
REFERENCES: M.I. 092F 243-SILVER BELL

*** Roaring ****

MINING DIV: Nanaimo ASSESSMENT REPORT 16141 INFO CLASS 4
LOCATION: LAT. 49 30 30 LONG. 124 52 30 NTS:
CLAIMS: Roaring 1-2
OPERATOR: Biliquist, R.
AUTHOR: Venus, St. Joseph
DESCRIPTION: The claims appear to be underlain by Upper Triassic Karmutsen
Formation basalt and basalt agglomerate. An extensive quartz-carbonate
alteration zone occurs on the property.
WORK DONE: ROCK 12:multielement
SILT 1:multielement
SMu 1:multielement
TOP 1:multielement
MAG 1:multielement
GEOLOGICAL 1:multielement
REFERENCES: M.I. 092F 131-VENUS,092F 132-ST. JOSEPH (HILL 60)

*** Cisco ****

MINING DIV: Nanaimo ASSESSMENT REPORT 16013 INFO CLASS 4
LOCATION: LAT. 49 34 00 LONG. 124 12 00 NTS:
CLAIMS: Boos 1-8,Boos Fr.,Cisco.Ed 1-3,Gen 2-4,May 2 Fr.,May 3-6
OPERATOR: Newman, J.
AUTHOR: Newman, J.
DESCRIPTION: The claims appear to be underlain by Upper Triassic Karmutsen
Formation basalt and basalt agglomerate. An extensive quartz-carbonate
alteration zone occurs on the property.
WORK DONE: ROCK 20:multielement
ROAD 1.3 km
SILT 48:multielement
TREN 8.0 m1 trench
REFERENCES: PITS 4
**** King Mides ****

MINING DIV: Vancouver
LOCATION: LAT. 49 40 00 LONG. 124 00 00 NTS
CLAIMS: W 1/2, 2
AUTHOR: Cucor, D.
COMMODITIES: Silver, Copper, Gold
DESCRIPTION: A skarn contact zone occurs between Jarvis Group (volcanics, calcic sediments, argillite) and Upper Cretaceous Coast Intrusions. Mineralization consists of native copper and chalcocite.

WORK DONE: EMIR 0.5 km; VLF
REFERENCES: A. R. 05444, 0281, 07742, 12104
N. I. 092F 115-KING MIDES

**** New ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 30 24 LONG. 124 00 00 NTS
CLAIMS: New
AUTHOR: Matvyk, V.
COMMODITIES: Copper, Silver, Lead, Zinc, Iron
DESCRIPTION: The claim is underlain by Upper Triassic Karmutsen Formation volcanic, karstic sediments and Paleozoic Kicker Group rocks. The Karmutsen Formation consists of unaltered pillow flows, massive flows of andesitic to basaltic composition and black, altered argillite. The Paleozoic Kicker Group rocks include tuffs, agglomerates, crystalline limestone, conglomerates and flows. The entire assemblage strikes north and dips west.

WORK DONE: LINE 2.4 km
GEOLOG 1:100,000, 1:2000
ENSM 2.0 km; HLEM
SOIL 27: multielement
REFERENCES: A. R. 05077, 08004, 02000, 092F 092F 112-CORNELL; 092F 113-SENTINEL; 092F 268-SECURITY; 092F 271-COPPER QUEEN

**** Copper Queen, Little Billie, Cornell, Sentinel ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 45 00 LONG. 125 12 18 NTS
CLAIMS: Little Billie
AUTHOR: Belloncoll, G.
COMMODITIES: Copper, Silver, Lead, Zinc, Iron
DESCRIPTION: Upper Triassic limestones and volcanics correlated with the Quaternary Karmutsen Formation have been interpreted by Jurassic (?) diorite and quartz diorite plugs and stocks. These intrusive rocks in the limestone are substantial masses of skarn with magnetite-chalcopyrite and chalcopyrite-bornite-gold occurrences, many of which have been mined.

WORK DONE: LINE 4.0 km
GEOLOG 1:2000
SOIL 49H: multielement
C153

**** Idaho ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 49 06 LONG. 124 32 54 NTS
CLAIMS: Idaho
AUTHOR: Western Reg.
COMMODITIES: Copper, Silver, Lead, Zinc, Iron
DESCRIPTION: The property is underlain by Upper Triassic basalt flows of the Karmutsen Formation, upper Cretaceous sandstones of the Nanaimo Group and Tertiary quartz diorite intrusives. These rock units are crystalline limestone and shale (Quatsino Formation) and assemblages of different attitudes characterized by assemblages including quartz, carbonate, pyrite, pyrrhotite, arsenopyrite, stibnite and realgar.

WORK DONE: FDOT 1:37 29C
ROCK 61: multielement
REFERENCES: A. R. 05077, 08004, 02000, 092F 092F 112-CORNELL; 092F 113-SENTINEL; 092F 268-SECURITY; 092F 271-COPPER QUEEN

**** Jo Anne, Domineer, Domineer 22, Murex, Elorna, Laker ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 44 08 LONG. 125 22 00 NTS
CLAIMS: Jo Anne, Domineer 22
AUTHOR: Noranda Ex.
COMMODITIES: Gold, Silver, Copper, Molybdenum, Lead, Zinc
DESCRIPTION: The majority of the area north of Forbidden Plateau and most of the claim area is underlain by Upper Triassic Karmutsen Formation maﬁc sanguine volcanics. Thin lenses of overlying Upper Triassic Quatsino Formation limestone and Lower Jurassic Bambra Group volcanics are seen along the Oyster River. Unconformably overlying the Karmutsen Formation is the Upper Cretaceous Nanaimo Group Haslam and Comox Formations which consist of coarse sediments, they have been intruded by Tertiary quartz diorite-monzonite which in places has split the Haslam and Comox in a gneiss, dyke of 1000m1 in fashion, and brecciates the surrounding rock.

WORK DONE: EMIR 712, 0 km
REFERENCES: M 1 092F 111-DOININEER 22; 092F 117-DOININEER (MUREX CREEK): 092F 306-MUREX; 092F 309-ELNORA; 092F 329-JO ANNE; 092F 330-LAKEVIEW; 092F 365-WMC

**** Bacon Lake ****

MINING DIV: Nanaimo
LOCATION: LAT. 49 58 00 LONG. 125 37 00 NTS
CLAIMS: Bacon
AUTHOR: Brownlee, R.
COMMODITIES: Iron, Cobalt, Gold, Copper, Zinc
DESCRIPTION: Upper Triassic limestone and shale (Quatsino Formation) are
C16
overlain by Triassic and/or Jurassic tuff, andesitic volcanic breccia and lava which are intruded by Jurassic and/or Cretaceous granodiorite. Magnetic-rich skarns have developed in limestone with associated cobalt and gold values.

WORK DONE:
PROS 1:20 000
ROCK 1:4Cu,Ag,Fe,Co
REFERENCES: M.I. 092F 256-BACON LAKE

*** Harmony ***

MINING DIV: ***
LOCATION: LAT. 49 49 00 LONG. 125 14 00 NTS:
CLAIMS: Harmony 1-5
OPERATOR: Paquet, J.
AUTHOR: Paquet, J.
DESCRIPTION: The claims are underlain by the Upper Triassic Kurnhusen Formation.
WORK DONE: PROS 1:20 000
REFERENCES:

*** Chute Creek ***

MINING DIV: Nenalmo
LOCATION: LAT. 49 52 24 LONG. 125 25 54 NTS:
CLAIMS: Spar 1-2, Spar 6
OPERATOR: Nusser Res.
AUTHOR: Fischl, P.
COMMODITIES: Co,
DESCRIPTION: The claims are underlain by Upper Cretaceous Nenalmo Group sediments which are cut by mineralized shear faults.
WORK DONE: ROAD 4.0 km rehab
DIAG 0.0 0.4 holes, EX
REFERENCES: M.I. 092F 316-CHUTE CREEK

*** Dominer 22 ***

MINING DIV: Nenalmo
ASSESSMENT REPORT 15825 INFO CLASS 3

Albern: 092F

LOCATION:
CLAIMS:
OPERATOR:
COMMODITIES:
DESCRIPTION:
WORK DONE:
DIAG:
SAMP:
REFERENCES:

*** Iron River ***

MINING DIV: ***
LOCATION: LAT. 49 55 00 LONG. 125 26 00 NTS:
CLAIMS:
OPERATOR: Firstfund Capital
AUTHOR: Basler, P.G.
COMMODITIES: Iron Copper, Gold
DESCRIPTION: Magnetic mineralization totaling 3.1 million tonnes with associated low grade copper mineralization occurs in a skarn deposit. Some precious metal values are reported in the skarnified rocks. The skarn was formed in Kurnhusen basalts by intrusion of Middle Jurassic quartz dikes.
WORK DONE: PETR 5 samples
ROAD 5.0 km
DIAG 1.0 1.0 holes, EX
SAMP 1.0 1.0 Co,Ag,Au
GEOLOGICAL 0.0 0.0
REFERENCES: A. 0145, 0159, 0145, 0250, 0591, 0591, 0604, 05979, 06407, 06930, 06445
M. I. 092F 19-DOMINER 22

*** Lakeview ***

MINING DIV: Nenalmo
ASSESSMENT REPORT 15827 INFO CLASS 3

LOCATION:
CLAIMS:
OPERATOR: Better Res.
AUTHOR: Brustov J.
COMMODITIES: Gold, Silver
DESCRIPTION: The Mt. Washington area is comprised of Upper Triassic Kurnhusen Formation volcanics overlain by segments of the Upper Cretaceous Comox Formation. Breccia pipes of various sizes, shapes and possible ages pierce both formations and are diversely and west dipping continuous structures accompanied by alteration and sulfidation of the host for gold, silver and arsenic mineralization.
WORK DONE: DIAG 6.0 m 9 holes, EX
SAMP 1.0 1.0 Co,Ag,Au
REFERENCES: A. 0230, 0297
M. I. 092F 078-IRON RIVER

C186
MINING DIV: ***
LOCATION: LAT. 49° 46' 54" LONG. 125° 16' 18" NTS:
CLAIM: MCW 224-226, MWC 228, Stout
OPERATOR: Bristow, J.
AUTHOR: Britton, V.
COMMODITIES: Gold, Silver
DESCRIPTION: The claim area is underlain by Upper Triassic Kamloops Formation Volcanics which are overlain by sediments of the Upper Cretaceous Comox Formation. Breccia pipes of various sizes, shapes and possible ages pierce both formations and are diversely mineralized. Gently west-dipping, unusually continuous structures accompanied by alteration and silification form the host for the gold, silver and arsenic mineralization.

WORK DONE: SOIL 10.5 km
REFERENCES: A. R. 05804.06407, 06930, 11946
M.I. 092F 330-LAKEVIEW

MINING DIV: ***
LOCATION: LAT. 49° 46' 30" LONG. 125° 15' 40" NTS:
CLAIM: BJV 1, MWC 203-204, MWC 206
OPERATOR: Better Res.
AUTHOR: Britton, V.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: The property is comprised of Triassic Kamloops Volcanics which are overlain by sedimentary rocks of the Cretaceous Comox Formation. Breccia pipes of various sizes, shapes and possible ages pierce both formations and are diversely mineralized. Gently west-dipping, unusually continuous structures accompanied by alteration and silification form the host for gold, silver and arsenic mineralization.

WORK DONE: SOIL 216; AU; AS
LINE 7.7 km
REFERENCES: A. R. 05804.06407, 06930
M.I. 092F 330-LAKEVIEW

MINING DIV: ***
LOCATION: LAT. 49° 42' 42" LONG. 125° 26' 48" NTS:
CLAIM: Moon II
OPERATOR: Nolli, R.
AUTHOR: Britton, V.
DESCRIPTION: The claims are underlain by Upper Triassic Vancouver Group basalt, black limestone and shale which are intruded by granitic rocks to the west. The eastern portion is underlain by conglomerate and sandstone.

MINING DIV: ***
LOCATION: LAT. 49° 45' 18" LONG. 125° 15' 18" NTS:
CLAIM: MCW 191
OPERATOR: Better Res.
AUTHOR: Bristow, J.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The Mt. Washington area is comprised of Upper Triassic Kamloops Formation volcanics overlain by sediments of the Upper Cretaceous Comox Formation. Breccia pipes of various sizes and possible ages pierce both formations and are diversely mineralized. Gently west-dipping, unusually continuous structures accompanied by alteration and silification form the host for gold, silver and arsenic mineralization.

WORK DONE: ROAD 0.4 km
SAMP 374; AU; AS
DIAG 155.0 m 2 holes EX
REFERENCES: A. R. 13935, 15424

MINING DIV: ***
LOCATION: LAT. 49° 45' 18" LONG. 125° 21' 42" NTS:
CLAIM: Rina 3
OPERATOR: Nomanda Ex.
AUTHOR: Wilson, R.
DESCRIPTION: The claims are comprised of Upper Triassic Kamloops Formation volcanics overlain by sediments of the Upper Cretaceous Comox Formation. Breccia pipes of various sizes and possible ages pierce both formations and are diversely mineralized. Gently west-dipping, unusually continuous structures accompanied by alteration and silification form the host for gold, silver and arsenic mineralization.

WORK DONE: DIAG 617; multielement
REFERENCES: A. R. 13601
MINING DIV: LDC4TIDN: L4T. 49 48 00 LONG. 122 22 48 NTS:

CL4IMS: New Westminster ASSESSMENT REPORT 14847 INFO CLASS 4

LOCATION: LAT. 49 18 24 LONG. 122 22 48 NTS:

CLAIMS: Sun 2-4

OPERATOR: Witteran R.

AUTHOR: Zastavnikovich, S.

DESCRIPTION: The claims are mainly underlain by Upper Cretaceous Coast Plutonic Complex medium-grained quartz diorite and finer-grained hornblende diorite. The area has been subjected to extensive faulting and shearing. Quartz veining and fracture-filled silicification is present.

WORK DONE: SOIL 12:multielement

MAG 1:0 km

SILT 7:multielement

BOX 16:multielement

EMGR 2:1 km;VLF

REFERENCES: A.R. 08325
Vancouver

--------------- ******* McKinnon Group *******

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** COMMODITIES:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

C161

**** Bacon ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

**** Rim, Euphrates ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

**** Bimdd ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

**** Peninsula Lime, MC ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

**** Copper Bay ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

**** Vancouver ****

** MINING DIV:**
** LOCATION:**
** CLAIMS:**
** AUTHOR:**
** DESCRIPTION:**
** WORK DONE:**
** REFERENCES:**

molybdenum and gold mineralization occurs in a quartz vein up to 1.4 metres wide on the wally iii claim.

** REFERENCES:**

**** Elephant ****
MINING DIV: *** ASSESSMENT REPORT 15430 INFO CLASS 4
LOCATION: LAT. 49 58 42 LONG. 123 28 48 NTS:
CLAIMS: Elephant
OPERATOR: Mazzeck, P.
AUTHOR: Mazzeck, P.
DESCRIPTION: The claim is underlain by hornblende diorite.
WORK DONE: PROS 1:10 000 ROCK 2:multielement SILT 2:multielement SOIL 2:multielement
REFERENCES:

**** GeoWhiz ****
MINING DIV: Vancouver ASSESSMENT REPORT 15486 INFO CLASS 4
LOCATION: LAT. 49 56 24 LONG. 123 27 30 NTS:
CLAIMS: GeoWhiz
OPERATOR: Tenquille Res.
AUTHOR: Robbins, J.
DESCRIPTION: Cretaceous mafic metavolcanics of the Gambier Group are intruded by Upper Cretaceous felsic plutons of the Coast Range Intrusions.
WORK DONE: SOIL 80; Ag, As, Cu, Pb, Sb, Zn, Au
REFERENCES: ASSESSMENT REPORT 16430 INFO CLASS 4

**** Phantom ****
MINING DIV: *** ASSESSMENT REPORT 16131 INFO CLASS 3
LOCATION: LAT. 49 52 00 LONG. 123 29 30 NTS:
CLAIMS: Phantom
OPERATOR: Clowney Min. & Ex.
AUTHOR: O'Neill, D.
DESCRIPTION: Metamorphosed chloritic portions of andesite contain garnet, chlorite-pyrrhotite, pyrrhotite and arsenopyrite.
WORK DONE: SAMP 4: multielement DIAM 264.2 m: 2 holes, NO
REFERENCES: A. R. 11711

**** Tusk ****
MINING DIV: Vancouver ASSESSMENT REPORT 15313 INFO CLASS 4
LOCATION: LAT. 49 57 84 LONG. 123 29 24 NTS:
CLAIMS: Tusk
OPERATOR: Backtrk. W.
AUTHOR: Backtrk. W.
DESCRIPTION: The claims are underlain by rhyolite and quartz diorite.
WORK DONE: DIAM 52.4 m: 1 hole, 4Q
REFERENCES:

C163

Hope

==

**** Lamb, Locke ****
MINING DIV: Osyooco ASSESSMENT REPORT 15882 INFO CLASS 3
LOCATION: LAT. 49 14 42 LONG. 120 07 48 NTS:
CLAIMS: Gold Key, Lamb 2, Locke 1-3
OPERATOR: Adrian Res.
AUTHOR: Falconer, J.; Pawluk, D.
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group metasediments and metavolcanics which are intruded by Jurassic sills and a Late Jurassic or Early Cretaceous granite. Bedding generally trends northerly. Local, petrographic alteration, small amounts of disseminated pyrite, pyrrhotite, and/or chalcopyrite occur on the property.
WORK DONE: ROCK 30: multielement GEOL 1:5000 EMGR 100.3 km: VLF MAGS 94.5 km LINE 113.1 km SOIL 541: multielement
REFERENCES: A. R. 12531

**** Ox ****
MINING DIV: Similkameen ASSESSMENT REPORT 15692 INFO CLASS 3
LOCATION: LAT. 49 15 48 LONG. 120 32 42 NTS:
CLAIMS: Gold 2, Ox 4
OPERATOR: Emerald Star Min. Ex.
AUTHOR: Thompson, W.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group pyritic, granitic and carbonate-rich andesitic tuffs.
WORK DONE: SAMP 2; Au, Ag DIAM 182.4 m: 3 holes, NO
REFERENCES: A. R. 0124601822 10068, 10063 M: 092461059-OX

**** Red Star, Spenn, Krock Hill ****
MINING DIV: *** ASSESSMENT REPORT 15465 INFO CLASS 3
LOCATION: LAT. 49 09 21 LONG. 120 36 43 NTS:
CLAIMS: wine, Ramsar, Wine, Anaconda, Sailor Jack, Hinge 1-8
OPERATOR: Bukara Res.
AUTHOR: Di Sintiti, F.; Grand, H.
DESCRIPTION: CONFIDENTIAL STATUS

(Will be published in Exploration in British Columbia, 1986

C164
**** Mountain Goat ****

MINING DIV: New Westminster
LOCATION: LAT. 49 04 00 LONG. 121 56 42 NTS:
CLAIMS: Chuck 1-2
OPERATOR: Pierce Min. Res.
AUTHOR: George, U.
COMMODITIES: Gold,Copper
DESCRIPTION: Located along the border of the Chilliwack Batholith, granodiorite intrudes metasediments, quartz and serpentinite. Gold is associated with chalcopyrite, pyrrhotite and arsenopyrite in quartz veins which are structurally controlled by high angle thrust faults.
WORK DONE:
REFERENCES: M.I. 092HSW003-MOUNTAIN GOAT (PIERCE MOUNTAIN)

**** Astros ****

MINING DIV: ***
LOCATION: LAT. 48 31 01 LONG. 121 29 23
OPERATOR: Lemana Min.
AUTHOR: Lemana, S.
DESCRIPTION: Upper Paleozoic ultramafic rocks (norphelinites) with associated sulhide mineralization carry low values in gold, platinum and palladium.
WORK DONE:
REFERENCES:

**** Crane, Pride of Emory, Star of Emory 3 ****

MINING DIV: New Westminster
LOCATION: LAT. 49 28 02 LONG. 121 31 24 NTS:
CLAIMS: Aoeex,Blue Bird,Chinook,Dalby,Joe,Leonardo,Nickel Core Fr.,Pioneer
OPERATOR: Masco Gold Mines
AUTHOR: Tangal, M.
COMMODITIES: Nickel,Copper,Chromium,Platinum, Cobalt, Gold, Silver, Palladium
DESCRIPTION: Massive and disseminated nickel and copper sulphides occur in an ultramafic complex.
WORK DONE:
REFERENCES:

**** Pt ****

MINING DIV: ***
LOCATION: LAT. 49 30 54 LONG. 121 41 15
CLAIMS: Pt 23-31
OPERATOR: Gold Min.
AUTHOR: Sadler-Brown, T.
DESCRIPTION: The area is underlain by mafic, volcanic and metasedimentary rocks of the Permian-Pennsylvanian Chilliwack Group which are locally intruded by a system of elongate ultramafic bodies of probable Cretaceous age and by younger (Upper Cretaceous) granodiorites.
WORK DONE:
REFERENCES:

**** Pt ****

MINING DIV: New Westminster
LOCATION: LAT. 49 28 30 LONG. 121 35 45 NTS:
CLAIMS: Pt 1-2
OPERATOR: Gold Min.
AUTHOR: Sadler-Brown, T.
DESCRIPTION: The area is underlain by mafic, volcanic and metasedimentary rocks of the Permian-Pennsylvanian Chilliwack Group which are locally intruded by a system of elongate ultramafic bodies of probable Cretaceous age and by younger (Upper Cretaceous) granodiorites.
WORK DONE:
REFERENCES:

**** RN. GED ****

MINING DIV: ***
LOCATION: LAT. 49 20 00 LONG. 121 44 90
CLAIMS: F.Hot 1-2,Hot 4-6,MB 1,8N
OPERATOR: Kerr-Addison Mines
AUTHOR: Bruland, T.; Clendenan, A.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Lower Pennsylvanian-Lower Permian pelites in the north and south and Middle Jurassic Mysterious Creek Formation gneisses. The Mysterious Creek Formation conglomerates have been intruded by Miocene quartz diorite stocks related to the Hicks Lake Batholith. Six of these stocks have been drilled and were found to contain quartz veins and quartz vein stockworks, some of which carry gold.
WORK DONE:
REFERENCES: A.R. 14710
MINING DIV: New Westminster ASSESSMENT REPORT 15889 INFO CLASS 4
LOCATION: LAT 49 23 30 LONG. 121 52 30 NTS:
CLAIMS: Cloud 1
OPERATOR: Ruano Ent.
AUTHOR: Richards, D.
DESCRIPTION: Jurassic Harrison Lake Formation rocks containing a massive sulfide environment with highly anomalous values in copper, lead, zinc, silver and gold in soils.
WORK DONE: GEO 96; Cu, Pb, Zn, Ag, Au
REFERENCES: Cl 900

**** Jago ****
MINING DIV: Jago ASSESSMENT REPORT 15689 INFO CLASS 4
LOCATION: LAT 49 19 38 LONG. 121 48 48 NTS:
CLAIMS: Jago 1
OPERATOR: Owen Res.
AUTHOR: Trifaux, R.
DESCRIPTION: The claim is underlain by Upper Jurassic Harrison Lake Formation metavolcanics.
WORK DONE: LINE 7.0 km, EMGR 7.0 km; HLEM
REFERENCES: 4.R. 14173

**** Kelko ****
MINING DIV: Kelko ASSESSMENT REPORT 15579 INFO CLASS 3
LOCATION: LAT 49 21 00 LONG. 121 50 30 NTS:
CLAIMS: Kelko 1, Kelko 6
OPERATOR: Trifaux, R.
AUTHOR: Trifaux, R.
DESCRIPTION: The upper Jurassic volcanic rocks of the Harrison Lake Formation host three quartz veins of probable tertiary age. The veins contain anomalous gold values ranging to 614 grams per tonne.
WORK DONE: GEO 1:5000
REFERENCES: A.R. 14173

**** Kuro ****
MINING DIV: Kuro ASSESSMENT REPORT 15462 INFO CLASS 4
LOCATION: LAT 49 21 36 LONG. 121 51 00 NTS:
CLAIMS: Kuro 2, Kuro 4
OPERATOR: Trifaux, R.
AUTHOR: Trifaux, R.
DESCRIPTION: Jurassic Harrison lake Formation trends northwest with moderate occurrence over large areas. Several major northwesterly trending faults cross the property. High zinc and copper values are present in soils.
WORK DONE: GEO 96; Cu, Pb, Zn, Ag, Au
REFERENCES: A.R. 08573, 13031, 15094

**** SF ****
MINING DIV: SF ASSESSMENT REPORT 16238 INFO CLASS 3
LOCATION: LAT 49 25 12 LONG. 121 52 06 NTS:
CLAIMS: SF 96-1, Little Bigfoot 1, 4, woolybooger
OPERATOR: Stacia Ventures
AUTHOR: Hume, N.; St. Pierre, M.
DESCRIPTION: Pyroclastic to dacitic flows and pyroclastic rocks of the Upper Jurassic Harrison Lake Formation trends northwesterly with moderate occurrence over large areas. Several major northwesterly trending faults cross the property. High zinc and copper values are present in soils.
WORK DONE: GEO 96; Cu, Pb, Zn, Ag, Au
REFERENCES: A.R. 02545, 02721, 02358, 04858, 05340, 05610, 05738, 05779, 05888, 05894, 05894

**** Vent, Seneca ****
MINING DIV: Vent, Seneca ASSESSMENT REPORT 16489 INFO CLASS 1
LOCATION: LAT 49 19 48 LONG. 121 57 48 NTS:
CLAIMS: Dorothy 1-10, Dorothy 12-14, 1 Am 50
OPERATOR: BP Res.
AUTHOR: Pegg, R.
DESCRIPTION: The claims are underlain by Jurassic-Cretaceous argillite, slate, arkose, graywacke and tuff with minor conglomerate, limestone and chlorite schist.
WORK DONE: GEO 96; Cu, Pb, Zn, Ag, Au
REFERENCES: 4.R. 14173

C168
DESCRIPTION: The claims are underlain by the Upper Jurassic Harrison Lake Formation which is dominated by pyroclastic rocks and flows of intermediate to felsic composition. The "Kuroko-type" Seneca massive sulfide deposit lies 1.75 kilometres southwest of the vent showing which consist of pyrite-chalcopyrite-pyrrhotite-galena fracture and matrix fillings and fragment rimming subvolcanic mineralization hosted by a felsic porphyry breccia. Block faulting is common and extensive zones of silicification and pyritization are found locally.

WORK DONE: ROAD 0.3 km
RECL 11.0 km
TOP 11.5 km
ROCK 372: multielement
GEO 1 5000
GEO 2671.9 m: 28 holes. 10 holes 12 km
SAMP 164: Cu, Pb, Zn, Ag, Au

*** Mining Div: "KCM, Punch Bowl***

LOCATION: LAT. 49 24.14, LONG. 121 44.50 MTS:
CLAIMS: Tzial, J.
OPERATOR: Punch, J.
AUTHOR: Stevenson, J.
DESCRIPTION: Lower and Middle Jurassic Lagori Rock groups underlie the central and eastern half of the claims. Uralitoides underlie the western half. Sulphides (pyrite) were found in narrow shear zones hosted in serpentinized pyroxenite.

REFERENCES: M.I. 092H5014-KCM: 092H5063-PUNCH BOWL

C169

Hope

*** Master Ace, New Jay ***

LOCATION: LAT. 49 16 48, LONG. 121 47 48 MTS:
CLAIMS: Master Ace I-11
OPERATOR: New Jay Res.
AUTHOR: Cardinal, D.
COMMODITIES: Gold, Silver, Copper, Argilite, Sphalerite, Nickel
DESCRIPTION: The claims are underlain by well bedded sandstone and fine grained conglomerate of the Upper Jurassic(?) Deewey Creek Group. Younger ordovician and granodiorite dykes and plugs intrude these sandstones and have localized sulfide bearing quartz veins in both the northwest trending fault structures. Values up to 7200 ppm lead, >100 ppm silver and 215 ppm gold have been returned from rock samples.

WORK DONE: GOLD 595, Au, As
ROCK 15.0 km: VLF
GEO 2500. 1.0000
REFERENCES: A.R. 092H5086-MASTER ACE: 092H5143-NEWWAY

Hope

*** AuFees ***

LOCATION: LAT. 49 20 36, LONG. 121 29 06 MTS:
CLAIMS: Mac, WAC B
OPERATOR: Silver Cloud Mines
AUTHOR: Allen, D.
COMMODITIES: Gold, Silver, Copper, Arsenic
DESCRIPTION: Gold, along with arsenopyrite, chalcopyrite and pyrite occurs in quartz veins in shear zones cutting quartz diorite of the Upper Cretaceous Souzam Batholith. Drilling intersected quartz veins where gold assays range from 5.1 to 22.6 grams per ton over a width of 1.0 metres or more.

WORK DONE: GOLD 50: Au, Ag, As
SIL 5: Au, Ag, As
DIAM 628. 8: 8 holes, 40
SAMP 190: Au
UNCO 55: Au, Ag, As
GEO 57: Au, Ag, As
REFERENCES: A.R. 115086-M.I. 092H5036-AUFEEs

Hope

*** Randes ***

LOCATION: LAT. 49 28 00, LONG. 121 23 00 MTS:
CLAIMS: Randes I-V
OPERATOR: RCIG Pl Ltd.
AUTHOR: England, R.; Hunter, A.
DESCRIPTION: Tertiary quartz diorite plugs and metasediments and metavolcanics of the Lower Paleozoic Hozameen Group form the geology. The strike
varies from 150-180 degrees and the dip varies from 20-60

degrees east. Mineralization consists of conformable nickel-copper
rich metavolcanics in the paragneiss and was probably emplaced in
the Tertiary.

WORK DONE:

GEOL: 2500.1,1000

ROCK: 22:Ag,Au,Cu,Ni,Co

SLT: 66:Ag,Au,Cu,Ni,Co

MIN: 3:Au, Pt

MAG: 1.1 km

RAD: 10.0 km

LINE: 1.9 km

SILT: 448;multielement

REFERENCES: A.R. 10997,14562,14857

**** Tax,Toy ****

MINING DIV: New Westminster ASSESSMENT REPORT 16245 INFO CLASS 4

LOCATION: LAT: 49.28 54 LONG: 121 15 24 NTS:

CLAIMS: G.W.N. 2.Toy 7

OPERATOR: Border Res.

AUTHOR: H.B., P.

COMMODITIES: Nickel, Cobalt, Gold, Copper

DESCRIPTION: The conformable serpentinite belt outcrops along ravines and

cleft faces. A discrete cdp usually overlies the serpentinite with

relict mineralization widely dispersed throughout it in microscopic

needle format. Quartz sulford veins occur in places along the

contacts.

WORK DONE:

SOIL: 5:Au

ROCK: 4:Au

REFERENCES: A.R. 06486,06486 10420,12228

M.I. 092H5155-TAX;092H5155-TOY

**** Lan.Wilmac 12 ****

MINING DIV: Similkameen ASSESSMENT REPORT 18857 INFO CLASS 3

LOCATION: LAT: 49.22 54 LONG: 120 40 36 NTS:

CLAIMS: Anka,Anka 2,Anka 3

OPERATOR: Blackberry Gold Res.

AUTHOR: Borovic, I.

COMMODITIES: Copper

DESCRIPTION: The claims are underlain by rocks of the Upper Triassic Nicola

Group, Upper Cretaceous Cretaceous and Triassic-Jurassic

Tulameen Ultramafic Complex.

WORK DONE:

MAG: 10.0 km

EMR: 15.0 km;VLF

RAD: 10.0 km

REFERENCES: A.R. 01855

**** St. Louis Fr., Marquis of Lorne, Motherlode,John

MINING DIV: ASSESSMENT REPORT 18664 INFO CLASS 2

LOCATION: LAT: 49.17 06 LONG: 120 31 06 NTS:

CLAIMS: Alden 1,Burr Oak 1,Boywood 1,Enterprize,Live Oak 1,Pen Mar

PODDER 1,Seablitte,Skagit No. 3 Fr.,Snoqualmie,Sprouse No. 1,Summit Fr.

C171

**** Stevenson Creek ****

MINING DIV: Similkameen ASSESSMENT REPORT 16128 INFO CLASS 3

LOCATION: LAT: 49.24 18 LONG: 120 34 48 NTS:

CLAIMS: P.L 18977-19000

OPERATOR: Key Diversified Min.

AUTHOR: Allen, A.

DESCRIPTION: The placer lease area is underlain by Upper Triassic Nicola

group argillite and andesite schist with Miocene shale, sandstone and

tea seams. To the northwest at higher elevations, massive

pentlandite, pyroxenite and gabbron occur.

WORK DONE:

MAGG: 6.0 km

REFERENCES:

**** Asp ****

MINING DIV: ASSESSMENT REPORT 16661 INFO CLASS 3

LOCATION: LAT: 49 29 35 LONG: 120 51 15 NTS:

CLAIMS: Lode 1-4

OPERATOR: Stewart, D.

AUTHOR: Allen, D.

COMMODITIES: Copper

DESCRIPTION: The property is underlain in part by the Tulameen Ultramafic

Complex.

WORK DONE:

MAGG: 5.6 km

LINE: 15.0 km

REFERENCES: A.R. 02526

M.I. 092H5022-ASHP

**** Lodestone Mountain ****

MINING DIV: Similkameen ASSESSMENT REPORT 15438 INFO CLASS 3

LOCATION: LAT: 49 27 48 LONG: 120 50 06 NTS:

CLAIMS: J.A 1 Fr.,Lodestone 1-3

OPERATOR: Imperial Metals

C172
DESCRIPTION:

The claims are underlain by a Late Triassic ultramafic-gabbro complex, consisting of dunite, peridotite, pyroxenite and gabbro which intrude metasediments and metavolcanics of the Upper Triassic Nicola Group and are unconformably overlain by Tertiary Princeton Group rocks.

WORK DONE:

GEDL 1:20,000, 1:10,000 rock 31:multielement

REFERENCES:

A.R. 12423

M.I. 092HSE094-LODESTONE MOUNTAIN

MINING DIV:

ASSESSMENT REPORT 16579 INFO CLASS 2

LOCATION:

LAT. 49 26 00 LONG. 120 49 00 NTS:

CLAIMS:

J.A. 1 Fr., Lodestone 1-9

OPERATOR:

Dollman Campbell

AUTHOR:

Chamberlain, J.

COMMODITIES:

Iroquois, Titanium

DESCRIPTION:

Late Triassic ultramafic ultramafic-ultramafic complex consisting of dunite, peridotite, pyroxenite and gabbro which intrude metasediments and metavolcanics of the Upper Triassic Nicola Group and are unconformably overlain by Tertiary Princeton Group rocks.

WORK DONE:

SOIL 63.2 km

REFERENCES:

A.R. 12623, 15858

M.I. 092HSE095-4SP:092HSE141-RC

LOCATION:

LAT. 49 18 30 LONG. 120 51 12

**ASSESSMENT REPORT 15441 INFO CLASS 2

CLAIMS:

Agau 1-8

OPERATOR:

Fox Res.

AUTHOR:

Freeze, J.

DESCRIPTION:

The claims are underlain in part by the Tulameen ultramafic complex and Upper Triassic Nicola Group metavolcanics and metasediments. Soil geochemistry identified anomalous multielement values.

WORK DONE:

SOIL 11:9:multielement

REFERENCES:

A.R. 11038

M.I. 092HSE094-LODESTONE MOUNTAIN

MINING DIV:

ASSESSMENT REPORT 16327 INFO CLASS 4

LOCATION:

LAT. 49 18 48 LONG. 120 08 30

CLAIMS:

Agau 1-5

OPERATOR:

Fox Res.

AUTHOR:

Freeze, J.

DESCRIPTION:

The claims are underlain in part by the Tulameen ultramafic complex and Upper Triassic Nicola Group metavolcanics and metasediments. Soil geochemistry identified anomalous multielement values.

WORK DONE:

SOIL 11:9:multielement

REFERENCES:

A.R. 11038

M.I. 092HSE094-LODESTONE MOUNTAIN

MINING DIV:

ASSESSMENT REPORT 15071 INFO CLASS 3

LOCATION:

LAT. 49 18 18 LONG. 120 13 12

CLAIMS:

Boss 1

OPERATOR:

Newfields Min.

AUTHOR:

Tupper, D.

DESCRIPTION:

The claims are mainly unexplored by Quaternary glacial outwash deposits. It is believed to be largely underlain by Upper Triassic Nicola Group volcanic and sedimentary rocks to the west and Jurassic granitic intrusives to the east. No mineralization has been detected to date.

WORK DONE:

BIG 128:multielement

REFERENCES:

A.R. 11038

M.I. 092HSE094-LODESTONE MOUNTAIN

MINING DIV:

ASSESSMENT REPORT 15076 INFO CLASS 3

LOCATION:

LAT. 49 18 48 LONG. 120 02 18

CLAIMS:

Brown 1-4, Juniper 1, Ries 1-4, Camsell 1, Camsell 3-4

OPERATOR:

Beavertail Int. Ex.

AUTHOR:

Timmings, W.

DESCRIPTION:

The claims are mainly unexplored by Upper Triassic Nicola Group volcanic and lesser Upper Cretaceous Coast Intrusives and Triassic Independence, Snoepraker and Old Ion Suspension rocks. Plugs and dykes of gabbro occur in the Nicola Group bands of metamorosised phaneritic and dolerite and gabbroic gneisses also occur.

WORK DONE:

SOIL 195:multielement

EMGR 89.1 km, VLF

MAG 89.1 km

LINE 89.1 km

REFERENCES:
**** Hedley, Goldmine, Gold Hill ****

MINING DIV: Similkameen
LOCATION: LAT. 49 23 54 LONG. 120 08 18 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
DESCRIPTION: Upper Triassic Nicola Group volcanic and sedimentary rocks are intruded by Jurassic Pennask Batholith granodiorite. Soil geochemistry identified moderately anomalous gold values.

WORK DONE: GEOID 1/2500
SOIL 152-multielement
LINE 27.3 km

REFERENCES:
A. R. 11873

**** Hedley ****

MINING DIV: Similkameen
LOCATION: LAT. 49 21 49 LONG. 120 08 42 NTS:
CLAIMS: Gold Hill-Gold Mine
OPERATOR:
AUTHOR:
COMMODITIES: Gold, Zine, Lead, Silver, Copper
DESCRIPTION: Interbedded argillite and tuff, with minor chert and limestone of the Upper Triassic Nicola Group are intruded by diorite and andesite dikes. Small stocks within the sediments are one of more pyritic and breccia zones and one large zone of slump breccia (Copperfield conglomerate). Minor disseminated pyrite and pyrrhotite occur throughout. The carbonate breccias zones are heavily mineralized with pyrite and locally contain significant gold values.

WORK DONE: GEOID 1/2500
SOIL 123-multielement
REFERENCES: A. R. 08080, 10882

M. I. 092HSE084-GOLD HILL:092HSE138-HEDLEY, GOLMINE

**** Hedley North, Winter’s Gold, Step Fr., Sweden, Re ****

MINING DIV: Similkameen
LOCATION: LAT. 49 20 30 LONG. 120 02 00 NTS:
CLAIMS: Hedley North, Hedley South, Kirkfield Fr., Powell, Gleniston Fr., Redtop Fr., Sweden Fr., Tower Fr., Victoria Fr., Winter’s Gold
OPERATOR:
AUTHOR:
COMMODITIES: Gold, Silver, Copper, Lead, Zine
DESCRIPTION: The claims are underlain by sedimentary and volcaniclastic rocks of the Upper Triassic Nicola Group which have been intruded by andesites, dikes and plutons of mid-Jurassic to Tertiary age. Mineralization consists of massive sulfides containing gold in vein structures and skarn in limestone/boulder conglomerate containing lead, copper, zinc and minor amounts of precious metal.

WORK DONE: GEOID 1/5000, 1/200

C176

**** Ice ****

MINING DIV: Similkameen
LOCATION: LAT. 49 21 48 LONG. 120 13 00 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
COMMODITIES: Copper, Zinc
DESCRIPTION: The Claims are underlain by Upper Triassic Nicola Group volcanic and sedimentary rocks with Upper Cretaceous tuff and intrusions occurring in the southwestern corner. The northwestern corner is underlain by Tertiary volcanics.

WORK DONE: SILT 81-multielement
REFERENCES: A. R. 03559

M. I. 092HSE108-ICE

**** JM ****

MINING DIV: Okanagan
LOCATION: LAT. 49 27 54 LONG. 120 08 36 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
COMMODITIES: Molybdenum, Copper
DESCRIPTION: The claims are underlain by andesite tuffs of the Upper Triassic Nicola Group which are intruded by Middle Jurassic Okanagan Batholith rocks. Geophysical and geochemical surveys identified anomalous results.

WORK DONE: SOIL 239-multielement
MAG 22.9 km
ROAD 27.2 km
LINE 205.0 km
GEOID 1/5000
EMGR 29.9 km: VLF
TDL 18.5 km

REFERENCES:
A. R. 01925, 01915, 01617, 04421
M. I. 092HSE113-JM

**** Jan, Mary ****

MINING DIV: Similkameen
LOCATION: LAT. 49 22 12 LONG. 120 07 36 NTS:
CLAIMS: Franklin 1-9, Jan Mary 1, Omega 1, Turf 1-3
OPERATOR:
AUTHOR:
DESCRIPTION: The claim area is underlain by highly deformed Upper Triassic Nicola Group sedimentary and volcaniclastic rocks. Major anomalies were obtained from the geophysical and geochemical surveys.

C176
WORK DONE: SOIL 462: multielement
IPDL 10.5 km
EMGR 10.5 km: VLF
LINE 41.6 km
MAG 10.5 km
ROCK 16: multielement
GEDL 1:2500

REFERENCES:

 **** LM ****

MINING DIV: *** ASSESSMENT REPORT 16147 INF Cl A S3
LOCATION: LAT 49 15 36 LONG. 120 15 00 NTS:
CLAIMS: LM
OPERATOR: Hidden Valley Mines
AUTHOR: Crocker, G.
DESCRIPTION: The claim is underlain by Upper Triassic Nicola Group volcanic
and/or sedimentary rocks.
WORK DONE: EMGR 15.7 km: VLF
LINE 16.7 km

REFERENCES:

 **** Maple Leaf ****

MINING DIV: *** ASSESSMENT REPORT 15601 INF Cl A S3
LOCATION: LAT. 49 21 42 LONG. 120 07 18 NTS:
CLAIMS: Pine Knot
OPERATOR: Normand EK
AUTHOR: Sanford, M.
COMMODITIES: Gold
DESCRIPTION: The claims appear to be underlain by Upper Triassic Nicola Group
sediments. The drill hole tested the contact area where Lower
Jurassic heavy clastic intrusive Nicola Group sediments. The contact
zone contains several small quartz-sulphide veins carrying gold
values.
WORK DONE: DIAI D 0; mi. hole, NO
REFERENCES: A R. DOB 01.14B12
M. I. 092HSE048-MAPLE LEAF

 **** Mission, Flint ****

MINING DIV: *** ASSESSMENT REPORT 15810 INF Cl A S3
LOCATION: LAT. 49 19 30 LONG. 120 06 30 NTS:
CLAIMS: Alpha, Flint, Iron, Gamma
OPERATOR: Abel RRS.
AUTHOR: Peto, P.
COMMODITIES: Silver, Gold
DESCRIPTION: A north-trending shear zone 3 to 5 metres wide cuts granodiorite
of the Can/l Pluton. From which numerous narrow east-trending
fractures carry arsenopyrite, pyrite and sphalerite and silver
values. The granodiorite shows extensive phyllic alteration
Mineralization occurs near the contact with the Hazel Formation
rocks.
WORK DONE: EMGR 30.0 km: VLF

C177

 MODE

REFERENCES: A R. 03904.09222
M. I. 092HSE052-MISSION

 **** Nickel Plate ****

MINING DIV: *** ASSESSMENT REPORT 16654 INF Cl A S3
LOCATION: LAT. 49 22 30 LONG. 120 02 00 NTS:
CLAIMS: Wellington, Bulldog, Territor
OPERATOR: Masco Gold Mines
AUTHOR: Simpson, R.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: Near the top of Nickel Plate Mountain, interbedded siltstones
and argillite of the Upper Nicola Group have been altered to sulphide bearing skarn. Gold occurs as minute blebs
and as disseminations with heazly clastic limestones. Sulphides within and around
grains of arsenopyrite and gersdorffite. Electrum also occurs
associated with later stage intergrowths of pyrrhotite, chalcopyrite
and sphalerite.
WORK DONE: PERO 297.0 m, 8 holes
REFERENCES: A R. 13977
M. I. 092HSE038-NICKEL PLATE

 **** Patsy No. 2, Patsy No. 1 ****

MINING DIV: *** ASSESSMENT REPORT 16654 INF Cl A S3
LOCATION: LAT. 49 22 12 LONG. 120 09 30 NTS:
CLAIMS: Ivanhoe, Patsy 1
OPERATOR: Kirk, T.
AUTHOR: Krensosky, R.
COMMODITIES: Gold, Silver, Zinc
DESCRIPTION: The property is underlain by Upper Triassic Nicola Group cherty
argillites with minor limestone and quartzites. These have been
intruded by diorite. Gold associated with arsenopyrite
mineralization occurs in thin quartz veins and shear zones in the
argillites. General attitude is northeastly with steeply northeastly
direction.
WORK DONE: GEDL 1:1000
ROCK SAV
SOIL 168.3
REFERENCES: A R. 11901.13197
M. I. 092HSE087-PATSY NO. 1:092HSE048-PATSY NO. 2

 **** Tigov, Erie ****

MINING DIV: *** ASSESSMENT REPORT 18334 INF Cl A S4
LOCATION: LAT. 49 16 00 LONG. 120 05 30 NTS:
CLAIMS: Tigov 1-2
OPERATOR: Samson Gold Mines
AUTHOR: Sanford, M.
DESCRIPTION: The claims are underlain by mineralized, altered Upper
Triassic Nicola Group sediments and volcaniclastic. Pyrrhotite

C178
and pyrite are the main sulphides.

WORK DONE:
LINE 18.4 km
GEO 1:2000

REFERENCES:

**** Bud ****

MINING DIV: Similkameen
LOCATION: LAT 45 25 30 LONG. 120 26 48 NTS:
CLAIMS: Bud 526
OPERATOR: D & V Ex.
AUTHOR: McLeod, J
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: Upper Triassic eugeosynclinal volcanic and minor sedimentary rocks are intruded and enveloped by plutonic rocks of varying younger ages. The general area has undergone faulting. Alteration comprises minor skarns, quartz-carbonate (ankerite?), epidote and secondary (?) magnetite, biotite and potash-feldspar.
Mineralization consists of pyrite, chalcopyrite, malachite, bornite, chalcocite and blumohinite.

WORK DONE:
GEO 1:2000
DIAD 212.2 m; 3 holes AQ
SAMP 30; multielement

REFERENCES: M. I. 092HSE123-BUD

**** Skarn 4 ****

MINING DIV: Similkameen
LOCATION: LAT 49 15 30 LONG. 120 17 00 NTS:
CLAIMS: Skarn 4
OPERATOR: Mark, D
AUTHOR: Mark, D
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: The property is mostly underlain by sediments and volcanics of the Nicola Group (Upper Triassic). Coast intrusive granites (Middle Jurassic-Upper Cretaceous) occur along the western border. The structure is unknown and there is no known mineralization.

EMM 21.9 km; VLF

WORK DONE:
GEO 1:10,000; 1:2500

REFERENCES: M. I. 092HSE17-ELK (SLEEPER)

**** Elk (Sleeper) ****

MINING DIV: Similkameen
LOCATION: LAT 49 39 42 LONG. 120 27 12 NTS:
CLAIMS: Rats, Rats 1
OPERATOR: Nyeam, L.
AUTHOR: St. Louis, R.
COMMODITIES: Copper, Silver
DESCRIPTION: The claims are underlain by volcanic rocks of the Upper Triassic Nicola Group and Upland intrusions composed mainly of granodiorite and monzonite, with minor granite. To the southwest the Tertiary Princeton Group basaltic and sedimentary rocks occur.

EMM 180; multi element

WORK DONE:
GEO 1:2000
DIAD 37 holes.

REFERENCES: M. I. 092HNE176-ELK (SLEEPER)

**** Lucky Strike (Bonacci, FH) ****

MINING DIV: Similkameen
LOCATION: LAT 49 33 42 LONG. 120 26 00 NTS:
CLAIMS: Lucky, Lucky 2
OPERATOR: Mingopa Res.
AUTHOR: Taylor, K
COMMODITIES: Gold, Copper
DESCRIPTION: Dacites and andesites of the Upper Triassic Nicola Group have been altered and intruded by Middle Jurassic Osprey Lake granodiorite. Porphyry-type copper mineralization has been developed with accompanying low values in gold. Size and attitude of the mineralized zone are presently unknown.

EMM 233; multi element

WORK DONE:
DIAD 37 holes.

REFERENCES: M. I. 092HNE24-LUCKY STRIKE (BONACCI; FH)

**** Paco, June ****

MINING DIV: Similkameen
LOCATION: LAT 49 44 42 LONG. 120 20 00 NTS:
CLAIMS: Hawk, June 1, June 2, Pat 1-4.31, Skye 1-3
OPERATOR: Westron Venture
AUTHOR: Livgard
COMMODITIES: Silver, Lead, Copper, Zinc, Gold
DESCRIPTION: The claims are underlain by granite related to the Upper Cretaceous-Early Tertiary Otter Intrusions. Widespread silver mineralization is associated with breccia zones and silified fracture zones periphereral to a large porphyry mineralizing system, and associated with propylitic and argillic alteration. Geophysical survey results identified several VLF-electromagnetic conductors.

TREN 199.0 m; 12 trenches
MAG 44.2 km
EMG 44.2 km; VLF
DIAD 11 holes.

REFERENCES: A. B. 01800, 02005, 02389, 02798, 03282, 04347, 04969, 07547, 07992, 08926
M. I. 092HNE098-PACO: 092HNE178-JUNE

**** Rum ****

MINING DIV: Similkameen
LOCATION: LAT 49 44 12 LONG. 120 32 00 NTS:
CLAIMS: Coke 1-8
OPERATOR: Petro, P.
AUTHOR: Yarrow, E.
COMMODITIES: Copper, Gold
DESCRIPTION: The claims are underlain by Upper Triassic microdiorite and Nicola Group volcanics and sediments. Chalcopyrite-bornite occur in fractures and veins.

DIAD 195; Cu-Au

REFERENCES: A. B. 0127, 0139, 0288, 03865, 6036, 6352, 14304, 14507
M. I. 092HNE99-RUM

C180
Platinum is associated with chromite pods and lenses which show no systematic distribution in the dunite mass. Serpentinization is common.

REFERENCES:

- Bonanza, D.
- chromium, platinum, copper
- dunite core surrounded by shells of pyroxenite and gabbro.

**** Sadim 3-4 ****

MINING DIV: Similkameen

LOCATION: Lat. 49° 43' 0" Long. 120° 32' 30" NTS: Sadim 3-4

CLAIMS: Sadim 3-4

OPERATOR: Laronde Res.

AUTHOR: Watson, I.

COMMODITIES: gold, silver, lead, copper

DESCRIPTION: Upper Triassic Nicola Group alkalic and calc-alkalic basalt and derived monolithic and polylithic breccias, tuffs and minor sediments occur within northerly trending fault bounded belts. The volcanic-sedimentary rocks are intruded and propylitized by coeval plutonic rocks. Fracture controlled copper mineralization occurs in alteration zones. Gold has been found locally in quartz-vein stockworks within faulted altered volcanics.

WORK DONE:
- SAMP 225:Cu,Ag 55 Cu
- TREN 775:O 1:4 trenches
- DIAG 392:O 0:4 holes, NO
- ROCK 361:Cu,Ag, Pb, Cu
- GED 1:1,200, 2:1,000

REFERENCES:

- M.I. 092-NE095-SADIM 3-4

**** Bonanza ****

MINING DIV: Similkameen

LOCATION: Lat. 49° 32′ 30″ Long. 120° 54′ 00″ NTS:

CLAIMS: Mun

OPERATOR: Newmont Ex.

AUTHOR: Bonne, D.

COMMODITIES: copper

DESCRIPTION: The property is underlain by three principal lithologies: the Coast Intrusion Eagle granodiorite of Jurassic to Cretaceous age, the Nicola Group metasediments and metavolcanics of Triassic age, and the Tulameen Ultramafic Complex of Late Triassic age. Platinum is associated with chromite pods and lenses which show no systematic distribution within the dunite mass of the Tulameen Complex. Serpentinization is common.

WORK DONE:
- MAg 3:2 km

REFERENCES:

- A.R. 02345, 07944
- SILT 4:multielement
- GEOL 1:200, 1:1,000
- M.I. 092-NE012-BONANZA

**** Bonanza, Grasshopper Mountain ****

MINING DIV: Similkameen

LOCATION: Lat. 49° 32′ 30″ Long. 120° 53′ 48″ NTS:

CLAIMS: Grasshopper 1-2

OPERATOR: Newmont Ex.

AUTHOR: Bonne, D.

COMMODITIES: chromium, platinum, copper

DESCRIPTION: The claims are underlain by intrusive rocks of the Middle Jurassic Tulameen Ultramafic Complex with minor mixed metavolcanic rocks of the Upper Triassic Nicola Group. The Ultramafic Complex is a dunite core surrounded by shells of pyroxenite and gabbro.

**** Brandy ****

MINING DIV: Similkameen

LOCATION: Lat. 49° 34′ 48″ Long. 120° 51′ 30″ NTS:

CLAIMS: Black Knight Res.

OPERATOR: Chirstensen, L.

DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group greenstones and breccia intrusions. Discontinuous lenses of arsenopyrite, representing sedimentary interbeds within the Nicola Group were also noted. A small body of hydrothermally altered ultramafic, probably part of the Tulameen Complex, was found in the southeast claim area.

WORK DONE:
- SOIL 207:multielement
- Silt 21:multielement
- EMGR 19.5 km:VLF
- LINE 19.5 km
- GED 1:10,000, 1:2,500
- ROCK 3D:multielement
- MAGO 19.5 km

REFERENCES:

**** Chicago, St. George (Law's), St. Lawrence (Law) ****

MINING DIV: Similkameen

LOCATION: Lat. 49° 34′ 48″ Long. 120° 53′ 34″ NTS:

CLAIMS: Chicago, Grand Trunk, Michelle, Morning Sun, Murphy, Ramler, Shelby

OPERATOR: Boosbey Res.

AUTHOR: Englund

COMMODITIES: copper, zinc, gold, silver

DESCRIPTION: The claims are underlain by northwest striking Upper Triassic Nicola Group metacarbonates and metavolcanics intruded by Jurassic Eagle granodiorite. Mineralization consists of massive to disseminated pyrite, pyrrhotite, chalcopyrite, molybdenite and pyrargyrite in the metacarbonates and metavolcanics. Soil geochemistry identified an irregular zone of anomalous gold-silver-copper-zinc values.

WORK DONE:
- ROCK 8:multielement
- Silt 12:multielement
- GED 1:1,000

REFERENCES:

- A.R. 02345, 14717
**** Cousin Jack ****

MINING DIV: ***

LOCATION: LAT 49 36 36, LONG 120 47 48 NT S:

CLAIMS: Boulder 1, Cousin Jack, Ymir

OPERATOR: Calais Res.

AUTHOR: MacFarlane, H.

COMMODITIES: Lead, zinc, gold, silver

DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group complexly bedded southwest dipping volcanics. The rocks have undergone low grade metamorphism. High gold and silver values associated in lead and silver values occur in siliceous andesite zones with minor carbonate.

WORK DONE: SAMP 15B: Au, Ag, Pb, Zn, Cu

REFERENCES: A.R. 0994-0999, 09908

W: J. 099H-099E-099COSIN JACK

**** Den ****

MINING DIV: ***

LOCATION: LAT 49 35 18, LONG 120 52 42 NT S:

CLAIMS: Den, Den 1

OPERATOR: Fortress Res.

AUTHOR: Christenson, L.

DESCRIPTION: The claims are underlain by Upper Triassic Nicola metavolcanics and interbedded sediments. Two units intrude the Nicola Group within the claim block: a pyroxenite of the Tulameen Ultramafic Complex and a felsic volcanic which likely relates to the Eagle granodiorite.

WORK DONE: GEO 1:2500C EMGR 9.4 km: VLF ROCK 26: multielement LINE 9.4 km SOIL 103: multielement SILT 28: multielement NAGG 9.4 km

REFERENCES:

**** Glory ****

MINING DIV: ***

LOCATION: LAT 49 33 00, LONG 120 49 42 NT S:

CLAIMS: Glory, Love, Key

OPERATOR: Precious Res.

AUTHOR: Christenson, L.

DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group volcanics and interbedded and red argillites of the Early Tertiary Otter Intrusions. Surficial alteration is generally limited. Small quartz stringers and a hydrothermally altered area contain pyrite and chalcopyrite.

WORK DONE: LINE 17.0 km SOIL 17: multielement C183

REFERENCES:

**** Hah ****

MINING DIV: ***

LOCATION: LAT 49 31 30, LONG 120 52 30 NT S:

CLAIMS: Eastside 170B, Eastside 2700-2701, M & H 128, M & H 265 westsite 1747-1748

OPERATOR: North American Platinum

AUTHOR: Greaves, J.

DESCRIPTION: The H & H claim group overlies the northeastern margin of the Tulameen Ultramafic Complex - a zoned "Alaskan type" ultramafic body. A dunite core forms Elinga Mountain in the southeast corner of the claim group. Alternating bands of felsic and mafic dykes, clinoxyroxenite and syenogabbro and gabbro trending northwest underlie most of the claim group. Nicola Group rocks are found in the northeast corner of the property.

WORK DONE: LSR 19 B km ROCK 14: multielement SOIL 434: multielement

REFERENCES:

**** Indy ****

MINING DIV: ***

LOCATION: LAT 49 38 00, LONG 120 57 36 NT S:

CLAIMS: Indy

OPERATOR: Crocker, G.

AUTHOR:

DESCRIPTION: Eagle granodiorite of Upper Triassic-Lower Cretaceous age intrudes Upper Triassic Nicola Group volcanics. Copper, gold and molybdenum mineralization occur within a complex network of intrusive, breccias and quartz veins along the contact zone. Widespread sulfide mineralization is present.

WORK DONE: LINE 3.8 km SOIL 67: multielement

REFERENCES:

**** J&L ****

MINING DIV: ***

LOCATION: LAT 49 38 00, LONG 120 54 24 NT S:

CLAIMS: J & L 1, J & L 2 Fr., J & L 3 Fr.

OPERATOR: Imperial Metals

AUTHOR: Wright, R.

DESCRIPTION: The claims are underlain by the Triassic zoned Tulameen Ultramafic Complex which intrudes Upper Triassic Nicola Group volcanics and sediments. Principal rock types on the property are dunite/peridotite, pyroxenite and metavolcanics which include scattered chroellite and asbestos occurrences.

WORK DONE: HMIN 1: multielement

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Glori Py ****

MINING DIV: ***

LOCATION: LAT 49 31 30, LONG 120 52 30 NT S:

CLAIMS: Eastside 170B, Eastside 2700-2701, M & H 128, M & H 265 westsite 1747-1748

OPERATOR: North American Platinum

AUTHOR: Greaves, J.

REFERENCE:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:

**** Similkameen 4SSESSMENT REPORT 16015 INFO CLASS 3****

DESCRIPTION: Similar Assessment Report 16015

REFERENCES:
REFERENCES:

- Lawless ****

MINING DIV: *** ASSMNT REPORT 1605 INFO CLASS 4
LOCATION: LAT: 49 37 O6 LONG: 120 83 24 NTS:
CLAIMS: Placer Lease 19162
OPERATOR: Nightingale, A.
AUTHOR: N., M.
DESCRIPTION: The area is underlain by Triassic Tulameen Ultramafic Complex rocks and Jurassic intrusives.
WORK DONE: MAg 3.0 km
REFERENCES:

- Mary Jensen ****

MINING DIV: *** ASSMNT REPORT 16129 INFO CLASS 3
LOCATION: LAT: 49 30 48 LONG: 120 52 00 NTS:
CLAIMS: HAMM HAM 5
OPERATOR: D. K. Platinum
AUTHORS: Fox, P., Goodell, G.
COMMODITIES: Copper, Platinum
DESCRIPTION: The property is situated on the dunite core of the Tulameen Ultramafic Complex of Late Triassic age. The complex forms a steeply dipping, concentrically zoned sequence of ultramafic rock units ranging from dunite to pyroxenite and gabbro. Platinum is found in the dunite core of the complex associated with chrome-rich segregations and serpentinitized zones.
WORK DONE:

- Placer Leese 19162

REFERENCES:

- Rabbitt ****

MINING DIV: *** ASSMNT REPORT 16950 INFO CLASS 2
LOCATION: LAT: 49 39 12 LONG: 120 52 00 NTS:
CLAIMS: Gold, Silver, Copper, Lead, Zinc
OPERATOR: Twin Eagle Res.
AUTHORS: Christenson, L.
COMMODITIES: Copper, Silver, Lead, Zinc
DESCRIPTION: Upper Triassic volcanics and sedimentary rocks of the Nicola Group underlie the claims. The Late Triassic Tulameen Ultramafic Complex underlies the southeast claim area and the Lower Cretaceous Eagle Group is to the north. Intrusions are found just west of the property. The Nicola Group has been foliated, intruded and faulted. Numerous quartz veins carry precious and base metal values.
WORK DONE:

- Open-pit sample

REFERENCES:

- Rabbitt ***

MINING DIV: *** ASSMNT REPORT 16276 INFO CLASS 3
LOCATION: LAT: 49 57 00 LONG: 120 50 30 NTS:
CLAIMS: Sable, B.
OPERATOR: Sable
AUTHORS: Sable
DESCRIPTION: The claim is underlain by Upper Triassic Nicola Group vari.-
coloured basalts, argillite, tuff, limestone and chlorite-sericite breccia.
WORK DONE:

REFERENCES:

- Tina, Cathy ****

MINING DIV: *** ASSMNT REPORT 16891 INFO CLASS 3
LOCATION: LAT: 49 31 08 LONG: 120 53 00 NTS:
OPERATOR: Chapman, R.
AUTHORS: Chapman, R.
COMMODITIES: Chromium, Platinum, Asbestos, Copper, Palladium, Gold
DESCRIPTION: The area is underlain by a Mesozoic Alaska-type ultramafic intrusion in which peridotite-pyroxenite rocks are concentrically zoned about a dunite core. Platinun mineralization has been inferred in exhalation blebs in chromite and dunite as significant placer deposits situated within and downstream from the ultramafic complex.
WORK DONE:

REFERENCES:

- White Gold, Red Gold ****

MINING DIV: *** ASSMNT REPORT 15928 INFO CLASS 4
LOCATION: LAT: 49 30 30 LONG: 120 56 31 NTS:
CLAIMS: Blue Gold, Golden Bell 1-4, Golden Bell, Red Gold, White Gold
OPERATOR: Blast Res.
AUTHORS: Campbell, N.; Gravel, J.
DESCRIPTION: The claims cover the contact zone between Eagle granodiorite to the west and Nicola metasedimentary roks to the east. Rock samples taken from outcrops of hornblende pyroxenite, peridotite, pyritic volcanics and quartz veins do not contain significant amounts of gold, silver, copper, platinum or palladium. However, soil and sediment...
samples taken along Champion and Mcgill Creeks contain modest enviroiment of gold (up to 88 ppb), platinum (98 ppb), and palladium (293 ppb).

Work Done:
- Soil 16: multielement
- Soil 34: multielement
- Soil 10: multielement

References:

092H

Work Done:
- Rock 26: multielement
- Soil 22: multielement
- Soil 95: multielement
- MIN 9: multielement

References:

Pt

Mining Div: Nicola
Location: LAT: 49 43 54, LONG: 121 03 54
Claims: Nicola
Operator: Crocker, G.
Author:
Commodities: Molybdenum, Gold, Silver
Description: Quartz veins and a quartz stockwork breccia occur within Upper Triassic-Lower Cretaceous Eagle granodiorite breccia. Pyrite with lesser chalcopyrite and molybdenite occur within the quartz veins and quartz stockwork breccia. Values in gold and silver occur within the structures.

Work Done:
- Soil 28: multielement
- Rock 10: multielement

References:
- A.R. 06698, 06795, 04174, 04173, 04371, 04816, 06658, 06758, 07195, 07771, 08863 09648
- M.I. 092-NW025-JM (SEC. ROVER)

Dig Here

Mining Div: New Westminster
Location: LAT: 49 33 19, LONG: 121 28 04
Claims: Dig Here, Dig Here & Dig Here, Dig Here & Dig Here
Operator: Leisman, D.
Author: Page, Jr.
Description: Upper Paleozoic ultramafic rocks (hornblendites) with sulfide mineralization are found within the claims. Narrow shear zones with precious metal values have recently been discovered.

Work Done:
- Soil 120 000, 1:10 000
- Soil 187: multielement
- Rock 10: multielement
- MIN 19: multielement
- LINE 24: 8 km

References:
- Cog, Talc

092H

Work Done:
- Rock 28: multielement
- Soil 82: multielement
- Soil 95: multielement
- MIN 9: multielement

References:

Au

Mining Div: Nicola
Location: LAT: 49 30 18, LONG: 121 41 12
Claims: American 1-4, Cog. Mafic 1-4, Talc
Operator: Technigen Platinum
Author: Page, Jr.
Description: The claims cover several gabbro and ultramafic intrusions along Pennsylvanian-Pennalvaian Chilnualna Greenstone Belt. These intrusions surround the Giant Mount Nickel Mine.

188

Work Done:
- Soil 26: multielement
- Soil 52: multielement
- Soil 95: multielement

References:

Strike, Lorna

Work Done:
- Rock 28: multielement
- Soil 82: multielement
- Soil 95: multielement
- MIN 9: multielement

References:

16439

Mining Div: Strike, Lorna
Location: LAT: 49 47 00, LONG: 120 32 42
Claims: Log 1-4
Operator: Paul, I.
Author: Elliott, I.
Commodities: Copper, Silver
Description: Tight monzonite intrusions are enclosed in Upper Triassic volcano-trend trending Mississippian syncline. Weak copper mineralization was noted in trenches or drill holes.

Work Done:
- Soil 016, 616, 04174, 04227, 04709, 05391, 05601, 08824, 07543, 08305
- M.I. 092-HNE115-STRIKE, LORNA: 092-HNE128-MDA: 092-HNE152-LOG 1

C188
******** A1 ****

MINING DIV: Nicola
ASSESSMENT REPORT 19652
INFO CLASS 3
LOCATION: LAT. 50 07 24 LONG. 120 35 12
CLAIMS: Gal l Tar
OPERATOR: Iote Ex.
AUTHOR: Witter, D.; Morral, D.
COMMODITIES: Copper
DESCRIPTION: Copper and gold mineralization is associated with microdiorite intrusions which cut upper Triassic Nicola Group volcanic rocks. The microdiorite pinches out to the north but widens to the south. Near the current drill holes the microdiorite strikes northerly, dips steeply easterly, and is about 125 metres thick.
WORK DONE: MAGA 9.0 km
EMGR 8.0 km: VLF
DIAG: 244.5 m: 2 holes, NO
SAMP: 170: Au
REFERENCES: A.R. 08494, 12256
M.I. 09216135-AI

******** GAG ****

MINING DIV: Nicola
ASSESSMENT REPORT 15872
INFO CLASS 4
LOCATION: LAT. 50 07 30 LONG. 120 32 34
CLAIMS: Iote 1, Soletter 2, Sunnyboy 1-3, Sunnyboy 7-8
OPERATOR: Iote Ex.
AUTHOR: Elliott, G.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: The claim is underlain by volcanic rocks of the Upper Triassic Nicola Group consisting of reddish-greenandesite and basaltic flows. These rocks exhibit carbonate, quartz, epidote and chlorite alteration.
WORK DONE: SAMP 28: multi-element
REFERENCES: PROS 1:5555

******** Sunnyboy (Cliff) ****

MINING DIV: Nicola
ASSESSMENT REPORT 19666
INFO CLASS 3
LOCATION: LAT. 50 08 00 LONG. 120 31 30
CLAIMS: Iote 1, Sunnyboy 1-3, Sunnyboy 7-8
OPERATOR: Iote Ex.
AUTHOR: Elliott, G.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: Varicoloured Triassic porphyriticandesites have been intruded by Jurassic intrusives causing widespread alteration of quartz veins. Massive sulphides occur with diorite intrusions.
WORK DONE: ROCK 9: Au, Cu, Ag
ROAD 0.2 km
TREN 445.5 m: 8 trenches
SOIL 424: multi-element
LINE 16.3 km
REFERENCES: A.R. 02780, 05091, 05092, 07662
C186

******** Diane ****

MINING DIV: Nicola
ASSESSMENT REPORT 19658
INFO CLASS 3
LOCATION: LAT. 50 02 30 LONG. 120 47 50
CLAIMS: Diane 1-5
OPERATOR: Int. Macle Leaf Petr.
AUTHOR: CAVBY, G.
COMMODITIES: Gold, Copper, Zinc
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group volcanic rocks consisting of an easterly facing sequence of calc-alkaline flows, pyroclastics and sediments.
WORK DONE: EMAG 174.0 km: VLF, AEM
LINE 43.0 km
TREN 287.0 m: 15 trenches
ROCK 52: Cu, Pb, Zn, Ag, Au
SOIL 342: Cu, Zn, Ag, Au
ROAD 3.4 km
SAMP 546: Cu, Zn, Ag, Au, Po
GEOP 1: 4000
PETR 28: thin sections
MAGA 174.0 km
REFERENCES: A.R. 12799, 13112
M.I. 09216208-DIANE

******** Gus ****

MINING DIV: Nicola
ASSESSMENT REPORT 19692
INFO CLASS 3
LOCATION: LAT. 50 12 36 LONG. 120 59 42
CLAIMS: Gus
OPERATOR: Better Res.
AUTHOR: Bristow, J.
DESCRIPTION: The property is underlain by a complex suite of steadily dipping Upper Triassic Nicola Group rocks composed of basaltic-andesite framework, flows, felsiclastic dikes, felsic plutons and several calcareous bands. These are in contact with a multistage Upper Triassic intrusive (Caucho Batholith).
WORK DONE: DIAD 227.1 m: 3 holes, SO
REFERENCES: C190

******** Kwatek ****

MINING DIV: Kamloops
ASSESSMENT REPORT 15866
INFO CLASS 4
LOCATION: LAT. 50 07 24 LONG. 121 43 30
CLAIMS: Kwatek 3
OPERATOR: Hainsworth, W.
AUTHOR: Kwatek 3
DESCRIPTION: The claim is underlain by Triassic phyllite schists or dark amphibolite. Geophysical survey results identified three VLF-electromagnetic conductors.
WORK DONE: EMGR 6.1 km: VLF
LINE 6.6 km
REFERENCES: A.R. 10873, 11699, 13599, 14604
C190
**** Kwoiek ****
MINING DIV: *** ASSESSMENT REPORT 16485 INFO CLASS 4
LOCATION: LAT. 50 07 08 LONG. 121 43 12 NTS: Kwoiek
CLAIMS: Kwoiek
OPERATOR: Changi Res.
AUTHOR: Heinzworth, W.
DESCRIPTION: The claim is underlain by granodiorite and altered Triassic sediments consisting of pyritic limestone, limestone and greenstone. Some ultramafics are peripherally located to the metasedimentary rocks.
WORK DONE: WAGG 6.1 km
REFERENCES:

**** Green Glacier ****
MINING DIV: *** ASSESSMENT REPORT 16545 INFO CLASS 4
LOCATION: LAT. 50 09 24 LONG. 121 49 36 NTS: Claim
CLAIMS: Green Glacier
OPERATOR: Rawhide
AUTHOR: Carinai, D., Carinai, O.
COMMODITIES: Gold, Silver, Jade, Asbestos
DESCRIPTION: The property is underlain by predominantly phyllites and argilites with minor greenstone schists of Triassic (?) age. The metasediments are in fault contact with a serpentilitized ultramafic body. Bedrock foliation and fault structures trend northwesterly.
WORK DONE: ROCK 1-multielement
REFERENCES: A.R. 04718, 08527, 08554, 07455, 03627, 09542, 10680, 14715, 15311
M.I. 09215051-GREEN:09215053-GLACIER

**** Bin Noranda (Rio) Nox ****
MINING DIV: *** ASSESSMENT REPORT 16518 INFO CLASS 3
LOCATION: LAT. 50 22 00 LONG. 120 42 30 NTS: Bin Noranda (Rio)
CLAIMS: Bin Noranda
OPERATOR: Teck
AUTHOR: Carinai, P., Carinai, M.
COMMODITIES: Copper
DESCRIPTION: Bethlehem and Bethsaida Phases of the Guichon Creek batholith underlie the property and are offset by the southern extension of the Lorne Fault. Sparse malachite and chalcocite mineralization has been located previously in Bethsaida rocks on the eastern claims.
WORK DONE: IPOL 52.5 km
REFERENCES: A.R. 00780, 00997, 01973, 02058, 02629, 03116
M.I. 09215023-BIN NORANDA (RIO)

**** A.C. ****
MINING DIV: *** ASSESSMENT REPORT 15506 INFO CLASS 3
LOCATION: LAT. 50 16 00 LONG. 120 40 50 NTS: A.C.
CLAIMS:
REFERENCES:

**** JHC ****
MINING DIV: *** ASSESSMENT REPORT 16189 INFO CLASS 4
LOCATION: LAT. 50 28 30 LONG. 120 41 36 NTS: JHC
CLAIMS: Div 4, Div 6
OPERATOR: Teck
AUTHOR: Carinai, P.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group sediments and volcanics. Peripheral rocks are intrusives with gabbro-gneiss and younger segments and volcanics. Some intrusive stocks and plugs can be found within the Nicola Group rocks.
WORK DONE: ROCK 2-multielement
REFERENCES: A.R. 00553
M.I. 09215013-A:09215014-A

**** Sohia ****
MINING DIV: Nikola
LOCATION: LAT. 50 18 14 LONG. 120 43 30 NTS: Sohia
CLAIMS: Sohia
OPERATOR: Baterra, C.
AUTHOR: La Rue, J.
COMMODITIES: Lead, Zinc, Copper
DESCRIPTION: The claim area is underlain by Upper Triassic Nicola Group volcanics and tuffs intercalated with minor tuffaceous argillite and conglomerate. The northerly trending Nicola Group rocks are bounded to the east and west by granite.
WORK DONE: IPOL 5.1 km
REFERENCES: A.R. 08441, 07031, 07488
M.I. 09215017-SOHWIA

**** Fiddler (Aug) ****
MINING DIV: *** ASSESSMENT REPORT 16481 INFO CLASS 4
LOCATION: LAT. 50 25 00 LONG. 120 50 54 NTS: Fiddler
CLAIMS: Fiddler
OPERATOR: Gunnow, R.
AUTHOR: Bramow, W.
COMMODITIES: Copper, Mo, V, Y, Zr
DESCRIPTION: The general geology of the region shows it to be underlain by the Lower Jurassic Guichon Batholith. This is a multi-stage felsic intrusive complex. The intrusive is composed mainly of granitoids and granodiorites with porphyritic, pegmatic, keamorphic, and gneissic gneiss.
C192
Asncroft

V821

morphic phases. The showings visited appear to be located near the boundary between the Dulson Batholith and the granitized and nonfelled metasedimentary rocks.

WORK DONE: SAMP 5.0 mm Au,Ag
DIAP 13.7 g/t Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Nap ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Stump
OPERATOR: Leishman, D.
AUTHORS: Bourne, D.
COMMODITIES: Copper
DESCRIPTION: A pyritic, altered unit of Upper Triassic Nicola Group volcanics (silicified, sericitized) is centred along a strong shear. A coincident copper-zinc soil anomaly has been discovered to have erratic gold values.

WORK DONE: SAMP 5.0 mm Au,Ag
SOIL 35.7 Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Redbird ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Clun, Microgolds
OPERATOR: Asahara
AUTHORS: Bourne, D.
COMMODITIES: Gold, Molybdenum, Silver, Fluorite
DESCRIPTION: The claims are predominantly underlain by andesite flow brachytes belonging to the Upper Triassic Nicola Group. South of the Kullalon Stock, three large silicified zones may represent the silica caps of epithermal systems. These zones are geochemically enriched in gold. The drilling encountered several thin sillimanite zones similar to those mapped on surface but no economic mineralization was encountered. The best assay was 700 ppb gold over 2.5 metres.

WORK DONE: SAMP 5.0 mm Au,Ag
DIAP 17.7 g/t Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Chance ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 4
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Hume
OPERATOR: Murchy, J.
AUTHORS: Murchy, J.
COMMODITIES: Copper, Lead, Gold
DESCRIPTION: Two gold-bearing structures occur in limy tuff and agglomerate of Upper Triassic Nicola Group volcanics in proximity to a small

**** Edith ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Edith 100
OPERATOR: Tach
AUTHORS: Bourne, W.
DESCRIPTION: The surveyed area is underlain by intermediate volcanic rocks of the Upper Triassic Nicola Group. Crystal and crystal-tuffic rocks of the Upper Triassic Nicola Group, and a small andesite stock. Soil geochemistry returned low gold values.

WORK DONE: SOIL 51.0 Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Edith ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Edith 100
OPERATOR: Tach
AUTHORS: Bourne, W.
DESCRIPTION: The claim is underlain by northwest-trending andesitic pyroclastic rocks of the Upper Triassic Nicola Group, and a small andesite stock. Soil geochemistry returned low gold values.

WORK DONE: SOIL 51.0 Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Evening Star ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Eveniing Star, Rocket 11, Rocket 2, Rocket 4, Rocket 8
OPERATOR: Abernin
AUTHORS: Mathur, G.; Snee, B.
COMMODITIES: Copper, Gold, Silver, Molybdenum
DESCRIPTION: Upper Triassic-Lower Jurassic Iron Mask Batholith is host to copper and minor precious metal mineralization, localized in e.

WORK DONE: SOIL 1.5 km
REFERENCES: M. D. C. 03714, 03762

**** Edith ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Edith 100
OPERATOR: Tach
AUTHORS: Bourne, W.
DESCRIPTION: The claim is underlain by northwest-trending andesitic pyroclastic rocks of the Upper Triassic Nicola Group, and a small

WORK DONE: SOIL 51.0 Au,Ag
REFERENCES: M. D. C. 03714, 03762

**** Eveniing Star ****

MINING DIV: Kamloops
ASSESSMENT REPORT 16213 INFO CLASS 3
LOCATION: LAT. SO 25 O0 LONG. 120 17 36 NTS:
CLAIMS: Eveniing Star, Rocket 11, Rocket 2, Rocket 4, Rocket 8
OPERATOR: Abernin
AUTHORS: Mathur, G.; Snee, B.
COMMODITIES: Copper, Gold, Silver, Molybdenum
DESCRIPTION: Upper Triassic-Lower Jurassic Iron Mask Batholith is host to copper and minor precious metal mineralization, localized in e.

WORK DONE: SOIL 1.5 km
REFERENCES: M. D. C. 03714, 03762
Ascroft
0821

EMGR 2.5 km: VLF
ROCK 15'CU Pb.Zn Au

REFERENCES: 4. R. 04013.04212.05703.06681

SAMP 222: Cu, Ag, Au

PERM 047.1 m: 19 holes

M.I. 0921NEC07-EVENING STAR

**** Lorna, DM ****

MINING DIV: Kamloops

LOCATION: LAT 50 40 00 LONG. 125 20 30 NTS:

CLAIMS: Eid 1

OPERATOR: Comet Ind.

AUTHOR: Volto, N.

COMMODITIES: Copper, Gold

DESCRIPTION: Alkalic porphyry deposits in monzonite and diorite of Triassic age including the Crescent. Au-Cu-Ni zones which strike northeasterly and dip steeply southeast. Mineralization consists of chalcopyrite and pyrite.

WORK DONE: SAMP 38 Cu, Ag, Au

REFERENCES: 4. R. 00060.01141.01512.01587.01610.01677.03554.05679.06209.06245.05266.08079

M.I. 0921NEC25-LORDRA:0921NEC03-DM

**** Marnes ****

MINING DIV:

ASSESSMENT REPORT 15608

LOCATION: LAT 50 45 00 LONG. 120 25 00 NTS:

CLAIMS: Bar I-II, Kam, Kim 1-2, Mars I-IV

OPERATOR: DpX Min.

AUTHOR: Gourley, A.

DESCRIPTION: Eocene Marnes Group tuffs, sediments and volcanic flows are present.

WORK DONE: DSTD 1,800

REFERENCES: 4. R. 06550.01155.06780.12958.14110.15235

**** Afton-Pothook ****

MINING DIV:

ASSESSMENT REPORT 15775

LOCATION: LAT 50 39 18 LONG. 120 30 12 NTS:

CLAIMS: Production Lease L1029

OPERATOR: After Operating

AUTHOR: Bond, D.

COMMODITIES: Copper, Gold

DESCRIPTION: All rock units encountered within the Pothook area are varieties of Triassic Iron Tuff Intrusions or contemporaneous Nicola volcanic rocks. The Pothook deposit 2,893,000 tonnes at 0.39% percent copper. 0.58 grams per tonne gold occurs in fine-grained pyroxene diorite exhibiting typical potassic and granulitic alteration. Copper minerals are bornite, chalcopyrite, chalcocite and native copper.

WORK DONE: SAMP 2462.5 m:21 holes, NC

REFERENCES: 4. R. 06550.01155.06780.12958.14110.15235

**** DC-2 ****

MINING DIV:

ASSESSMENT REPORT 16220

LOCATION: LAT 50 42 00 LONG. 120 40 00 NTS:

CLAIMS: DC 2

OPERATOR: Mercerat Res.

AUTHOR: James, A.

DESCRIPTION: The property is largely underlain by basalt flows and flows breccias of the Triassic Nicola Group, cut by vertical, east-west trending, pyritic quartz-feldspar porphyry dykes of presumed Triassic age. A zone of quartz-carbonate-fusichite alteration trending northwesterly also cuts the basalt. All lithologies are overlain by glacial deposits consisting of sheeted till, kames and eskers. Prospective gold mineralization is associated with the dykes and zones of quartz-carbonate alteration.

WORK DONE: SAMP 673: Cu, Au, Ag

REFERENCES: 4. R. 06550.01155.06780.12958.14110.15235

**** DC-3 ****

MINING DIV:

ASSESSMENT REPORT 15959

LOCATION: LAT 50 43 00 LONG. 120 39 00 NTS:

CLAIMS: DC 1, DC 2-6

OPERATOR: Mercerat Res.

AUTHOR: James, A.

DESCRIPTION: The property is largely underlain by argillite, miltstones and basaltic volcanic rocks of the Nicola Group, intruded by felsic quartz-feldspar porphyry dykes of Cretaceous or Tertiary age, all of which is overlain by flat lying glacial deposits. The Nicola Group rocks strike northwesterly with steeply westersly dips. The dykes are nearly vertical and strike northwesterly and northeasterly. Prospective gold mineralization is associated with quartz-carbonate veinslets in and near the dykes.

WORK DONE: SAMP 3,124

REFERENCES: 4. R. 06550.01155.06780.12958.14110.15235

**** Dominic ****

MINING DIV:

ASSESSMENT REPORT 16598

LOCATION: LAT 50 36 00 LONG. 120 43 42 NTS:

CLAIMS: Dominic North, Dominic South

OPERATOR: Berardo C.

AUTHOR: Large, J.

DESCRIPTION: The claim group is underlain by Upper Triassic Nicola Group greenstones, volcanics and minor sedimentary rocks.

WORK DONE: LINE 19.0 km

REFERENCES: 4. R. 06550.01155.06780.12958.14110.15235
**** Golden Ring, Mustang ****

MINING DIV: Kamloops
LOCATION: LAT 50 42 24 LONG 120 42 42 NTS:
CLAIMS: British 3, Golden Ring 1, Mustang 2, Mustang 7
OPERATOR: Vaultex
AUTHOR: Callaghan, B.
DESCRIPTION: A monoclinal sequence of Upper Triassic Nicola Group volcaniclastic sediments strikes northwest across the property and dips moderately northeast. Carbonate-silica alteration is associated with late vertical faulting cutting the Nicola Group. These zones locally contain anomalous mercury, arsenic and antimony values. Higher level Tertiary intrusives are believed to be responsible for the alteration.
WORK DONE: SAMP 155: multielement
RAD 0.7 km
PER 609.6 m: 9 holes
REFERENCES: A.R. 13677

**** Chief ****

MINING DIV: Kamloops
LOCATION: LAT 50 44 59 LONG 121 00 20 NTS:
CLAIMS: Fehr, V. Jim 1, Thom 1
OPERATOR: OPR Min.
AUTHOR: Gourlay, A.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group intermediate volcanic rocks and sediments, Jurassic Ashcroft Formation conglomerate and Eocene Kamloops Group lacustrine sedimentary rocks and basalts. A Tertiary rhyolite plug is emplaced along a fracture zone, probably a splay off the Deadman Fault.
WORK DONE: MAG 20.0 km
EMGR 20.0 km: VLF
IP 10.0 km
SOIL 250Au, Ag, As, Sb, Bi, Mo, Se
PER 344.2 m: 7 holes
SAMP 250: multielement
LINE 20.0 km
REFERENCES: M.I. 0921NW65-CHEIF

**** Jim, Thom ****

MINING DIV: Kamloops
LOCATION: LAT 50 42 30 LONG 120 59 12 NTS:
CLAIMS: Fehr, V. Jim 1
OPERATOR: OGP Quest Min.
AUTHOR: Gourlay, A.
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group intermediate volcanic rocks and sediments, Jurassic Ashcroft Formation conglomerate and Eocene Kamloops Group lacustrine sedimentary rocks and basalts. A Tertiary rhyolite plug is emplaced along a fracture zone.
WORK DONE: EMGR 34.8 km: VLF
REFERENCES: A.R. 14776

**** CM, ON ****

MINING DIV: Kamloops
LOCATION: LAT 50 37 00 LONG 120 16 18 NTS:
CLAIMS: CM
OPERATOR: Unicor Liberty Res.
AUTHOR: Hunter, A.
COMMODITIES: Copper
DESCRIPTION: The claim is underlain by diorite and quartz diorite of the Grindstone Creek Batholith and by limestones, mudstones, siltstones and graywackes of the Upper Triassic Nicola Group. The sediments have been intruded by the batholith and generally trend 315-360 degrees/25-90 degrees west. Two showings are located on the property where anomalous copper and gold values (copper, chalcocite, covellite) are present in the mudstone and limestone of the Nicola Group.
WORK DONE: EMGR 16.0 km: VLF
REFERENCES: M.I. 0921NW62-CM: 0921NW62-ON

**** Genesis ****

MINING DIV: Kamloops
LOCATION: LAT 50 49 24 LONG 120 34 12 NTS:
CLAIMS: Genesis 11, Genesis 12, Genesis 13
OPERATOR: Semark Res.
AUTHOR: Dragnin, R.
DESCRIPTION: The property is underlain mostly by felsic-mafic pyroclastics of the Nicola Group with minor Cache Creek mafic volcanics and sediments. Also a possible gold-hosting ultramafic occurs on the eastern boundary. Anomalous copper and silver pyritic zones occur in...
Altered rhyolite tuffs and flows. The general trend of the lithology is approximately 160 degrees.

WORK DONE: GEOL 1:5000
D.ER 57.0 km
ENGR 61.9 km; HLEM, VLF
D.ER 45.3 km

REFERENCES: A. R. 03159, 04068, 08929, 09177, 09415

**** Top Hat ****

MINING DIV: Kamloops
LOCATION: LAT 50 37 12 LONG. 121 42 00
CLAIMS: Tophat 4
OPERATOR: Gonzalez, R. L.; Leonow, W.
DESCRIPTION: CONFIDENTIAL STATUS

(Will be published in Exploration in British Columbia, 1988)

**** Tow ****

MINING DIV: Kamloops
LOCATION: LAT 50 22 24 LONG. 121 53 12
CLAIMS: " "
OPERATOR: Southern Gold Res.
AUTHOR: Repaglia, C. M.
COMMODITIES: Mo, V, Au, Gold
DESCRIPTION: Quartz veins cut a small quartz ditorite pluton and hornfelsed sediments of Cretaceous age.

WORK DONE: GR 23.0 km
MAG 35.0 km

REFERENCES: A. R. 07211, 07569, 08347, 09405, 09071, 14971, 149073

**** Maiden Creek ****

MINING DIV: Kamloops
LOCATION: LAT 50 57 12 LONG. 121 31 30
CLAIMS: " "
OPERATOR: " "
AUTHOR: Sanginetti, M.
DESCRIPTION: The claims are underlain by sandstones and conglomerates of the Tertiary Coldwater beds of the Kamloops Group. The strata generally strike northeast to west with shallow dips to the north.

WORK DONE: MAG 35.0 km
ROCK 56.0 Au
SOIL 149.0 Au
LINE 38.5 km

REFERENCES: A. R. 02711, 07569, 08347, 09405, 09427, 14971, 14973

**** Census ****

MINING DIV: Kamloops
LOCATION: LAT 50 48 00 LONG. 121 20 00
CLAIMS: " "
OPERATOR: Gander, M.
AUTHOR: Johnson, M.
COMMODITIES: Chromium
DESCRIPTION: Paleozoic volcanic and basement volcanics and a belt of limestone are intruded by serpentinitized ultramafic rocks. These rocks have undergone repeated folding and faulting. Several pods of massive chrome with very low platinum and gold values occur on the property.

WORK DONE: GRAY 23.0 km
MAG 34.0 km
LINE 87.0 km

REFERENCES: A. R. 00009, M. I. 0921W002-CACHE CREEK (OPENHEIM)

**** Flint ****

MINING DIV: Kamloops
LOCATION: LAT 50 59 24 LONG. 121 23 44
CLAIMS: " "
OPERATOR: " "
AUTHOR: " "
COMMODITIES: Chromium
DESCRIPTION: Pennsylvania-Permian Cache Creek Group marine sediments and volcanics are found in the east by Tertiary Kamloops Group dacites and basalts, and to the west by the Fraser River fault. The Cache Creek ultramafic intrusive is dominantly dunite, and contains irregularly distributed chromite in small lenses, sheets, and disseminations. Minor platinum has been reported.

WORK DONE: LINE 12.7 km
WMIN 44.0 multiplye
SOIL 363.0 multiplye

REFERENCES: S. R.
REFERENCES: A. R. 07859, 10208, M. I. 092INWDD (SCOTTY CR., IRON KING)

**** Plut ****
MINING DIV: Kamloops
ASSESSMENT REPORT 16525
INFO CLASS 3
LOCATION: LAT. 50 58 48
LONG. 121 21 24
NTS:
CLAIMS: Plut I-IV
OPERATOR: Asworth Ex.
AUTHOR: Scoggins, E.; Yacoub, F.
DESCRIPTION: The Plut is composed mainly of granite, gneiss, schist, and volcanic rocks. The property is underlain by Triassic and Jurassic rocks, including granite, gneiss, and volcanic rocks. The granite and gneiss are interpreted as being of Paleozoic age and are unconformably overlain by Triassic volcanics. The gneiss is predominantly biotite and amphibole gneiss, and the granite is porphyry granite. The volcanic rocks consist of andesite, rhyolite, and basalt.
WORK DONE: SOIL 5:multielement
EDG. 1:10,000
ROCK 3:multielement
SILT 88:multielement
ROCK 33:multielement
REFERENCE:

**** Alliex ****
MINING DIV: Kamloops
ASSESSMENT REPORT 16537
INFO CLASS 3
LOCATION: LAT. 50 32 30
LONG. 120 34 06
NTS:
CLAIMS: Alliex 1
OPERATOR: Relay Creek Res.
AUTHOR: Dewun, J.
COMMODITIES: Copper, Lead, Zinc
DESCRIPTION: The property is underlain by Miocene basalt within which a window of Triassic slate and shale is exposed. The Triassic slate and shale are overlying the Miocene basalt. The Triassic slate and shale are interpreted as being of Paleozoic age and are unconformably overlain by Triassic volcanics. The basalt is predominantly biotite and amphibole basalt.
WORK DONE: SOIL 5:multielement
REFERENCE:

**** Dog ****
MINING DIV: Kamloops
ASSESSMENT REPORT 16399
INFO CLASS 4
LOCATION: LAT. 50 58 24
LONG. 120 51 36
NTS:
CLAIMS: Elm 4, Elm 6
OPERATOR: Glitter Gold Mines
AUTHOR: Murphy, J.
COMMODITIES: Lead, Zinc, Molybdenum, Silver, Copper
DESCRIPTION: Mineralization consists of several molybdenite and pyrite bearing quartz veins in sheared conglomerate with parallel bands of arsenopyrite. The zone has an exposed strike length of 80 metres. Veining is cut off to the east by a strong fault striking north-northwest.
WORK DONE: ROCK 45:Ag, Au
EDG. 1:1000
REFERENCE:

**** Hardie Mountain, Lee, Carbine Creek ****
MINING DIV: Kamloops
ASSESSMENT REPORT 16577
INFO CLASS 4
LOCATION: LAT. 50 50 57
LONG. 120 46 15
NTS:
CLAIMS: SYRIL 1-4
OPERATOR: ward, D.
AUTHOR: ward, D.
COMMODITIES: Mercury, Gypsum
DESCRIPTION: The area of variably altered and intruded Upper Triassic(?), calc-alkaline rocks about two kilometres wide trends northerly for about three kilometres through the Syril claims. Plutonic rocks of variable texture and composition, assumed to be Triassic-Jurassic, have intruded the Triassic volcanic rocks. Even though most of the intrusive rocks appear to be quartz deficient, two fine-grained felsic intrusives are present.
Both the felsic intrusives and older volcanic rocks have been locally sheared, brecciated and mineralized to varying degrees with gorceweldite, chalcedonic quartz, calcite and gypsum in some cases. Chalcedonic quartz is more commonly associated with the felsic intrusive while calcite is more commonly associated with the volcanic rocks.
WORK DONE: SOIL 50:Cu, Ag, Ni, Co, Pt, Pb
TREN 5:18, 9:83 trenches
REFERENCES:

**** Jane, Plaza, Rosam, Sabiston Flats ****
MINING DIV: Kamloops
ASSESSMENT REPORT 16212
INFO CLASS 2
LOCATION: LAT. 50 48 54
LONG. 120 50 18
NTS:
CLAIMS: Jeff 1-8, Kam 18, Kam 21, Kam 3-4
OPERATOR: Emerald Star Ex.
AUTHOR: Price, B.
COMMODITIES: Mercury
Ashcroft

DESCRIPTION: Upper Triassic Nicola Group volcanics and sediments are intruded by syenitcized ultramafics along regional northwest trending faults. Alteration consists of carbonate and silicic replacement and is mineralized with chalcopyrite, copper minerals and barite.

WORK DONE: Rock 23: multielement

REFERENCES: A.S. 04213 M. OBZINEO99-SABISHTON FLATS (INDEPENDENT):0921NE060-
JANE, PLUA, AESEM

Penmberton

DESCRIPTION: Rocks noted were andesite, dacite and hornfelsed sediments. Gold occurs in east trending silicified zones mineralized with pyrite.

WORK DONE: Soil 39: multielement

REFERENCES:

Penmberton

DESCRIPTION: The claims are underlain by a pendant of Lower Cretaceous volcanic rocks belonging to the Camack Subgroup. The pendant occurs within the Upper Cretaceous Coast Plutonic Complex. The mineralization and pyritic alteration are in the greenstone and layered quartz-carbonate bands.

WORK DONE: Rock 29: multielement

REFERENCES:

Enea

DESCRIPTION: The claims are underlain by north-northwest striking, steeply east-dipping pyroclastic and volcaniclastic rocks of the Lower Cretaceous Camack Group. Lapilli ash tuff, minor volcanic breccia, tuff-breccia, volcanic sandstone, wacke and conglomerate are present. Production by Northair Mines from ore zones totaled 362,877 tonnes of 12 grams per tonne gold, 1.17 grams per tonne silver, and 0.3 per cent copper, 1.2 per cent zinc and 2.4 per cent lead.

WORK DONE: Mage 212.0 km EMAB 212.0 km; VLF; HLEM
LINE 14.0 km

REFERENCES: A.R. 03279, 04155, 04541 M.J. 0850 012-WARMAN

Gibson

DESCRIPTION: Drilling intersected greenish-grey, coarse-grained quartz diorite and Black slate. Although sulphides are abundant, silver, gold and platinum content is low.

WORK DONE: DIAD 93.6 m: 2 holes, EW

REFERENCES:

Tax

DESCRIPTION: The claim is underlain by pyritic quartz diorite and rhyolite.

WORK DONE: DIAD 30.8 m: 1 hole, AC
**** Lake, Eagle ****

MINING DIV: Lillooet
LOCATION: LAT 50 17 00 LONG 122 36 30 NTS: L111 1, L111 1, L111 1, L111 1
OPERATOR: Green Lake Res.
COMMODITIES: Copper, Iron, Zinc
DESCRIPTION: The claims are underlain by Upper Triassic Cadwallader Group volcanics consisting of rhyolites and andesites. Mineralization is associated with skarns and skarns in volcanic rocks.
WORK DONE: EMER 35.0 km; VLF LINE 35.0 km; MAG 35.0 km
REFERENCES: G. Lake Res.

**** Sylvan ****

MINING DIV: Lillooet
LOCATION: LAT 50 29 00 LONG 122 42 00 NTS: Sylvan
OPERATOR: Mueller, G.
AUTHOR: Mueller, G.: Taylor, D.
COMMODITIES: Copper, Molybdenum, Iron
DESCRIPTION: The claims are underlain by metamorphosed volcaniclastic and plastic rocks of the Upper Triassic Cadwallader Group which are intruded by granodiorite of the Spetch Creek pluton and smaller bodies of biotite and quartz diorite. Copper and molybdenum mineralization along Owl Creek is related to the diorite intrusions and skarn type iron-gold-cobalt-zinc occurs in roof pendants in the granodiorite.
WORK DONE: EMER 11.3 km; VLF 11.3 km; SOIL 1 composite: Au
REFERENCES: 4.R.00500.02600.05200.

**** OwL Creek C Zone, OwL Creek B Zone, J ****

MINING DIV: Lillooet
LOCATION: LAT 50 23 35 LONG 122 47 42 NTS: OwL C 33 OwL 5
OPERATOR: Allen Res.
AUTHOR: Allen Res.
COMMODITIES: Copper, Molybdenum, Iron
DESCRIPTION: The claims are underlain by metamorphosed volcaniclastic and plastic rocks of the Upper Triassic Cadwallader Group which are intruded by granodiorite of the Spetch Creek pluton and smaller bodies of biotite and quartz diorite. Copper and molybdenum mineralization along Owl Creek is related to the diorite intrusions and skarn type iron-gold-cobalt-zinc occurs in roof pendants in the granodiorite.
WORK DONE: EMER 11.3 km; VLF 11.3 km; SOIL 1 composite: Au
REFERENCES: 4.R.00500.02600.05200.

**** Pemberton ****

MINING DIV: Pemberton
LOCATION: LAT 50 19 3 LONG 122 48 18 NTS: Pemb 1
OPERATOR: Cominco
AUTHOR: Blackwell, J.: Fitzmaurice
COMMODITIES: Gold, Silver
DESCRIPTION: The property covers metavolcanic rocks and diorite. Discordant and stringer pyrite mineralization occurs in a sericite and chlorite altered diorite. A copper soil anomaly with peak values of 350 ppm underlies an area of 230 by 50 metres. The anomaly is roughly coincident with a band of sericite diorite projected from the South.
WORK DONE: SOIL 1 composite: Au
REFERENCES: 4.R.00500.02600.05200.

**** Bonanza ****

MINING DIV: Pemberton
LOCATION: LAT 50 38 30 LONG 122 04 00 NTS: Bon 1
OPERATOR: Merlin Res.
AUTHOR: Cardinal, D.
COMMODITIES: Gold, Silver
DESCRIPTION: The property is underlain by the Permo-Triassic Bridge River Group. Locally, the rocks predominantly consist of argillites and argillaceous-calcareous phyllites. The argillite units are locally faulted with tight recumbent folds. Auriferous bearing quartz-schist zones are developed in argillites.
WORK DONE: SOIL 75: Au
REFERENCES: 4.R.00500.02600.05200.

**** Cominco ****

MINING DIV: Pemberton
LOCATION: LAT 50 42 06 LONG 122 42 00 NTS: Cominco
OPERATOR: Newman, P.
AUTHOR: Newman, P.
COMMODITIES: Gold, Copper
DESCRIPTION: The claim is underlain by Upper Triassic sedimentary and volcanic rocks of the Pioneer and Survey formations. North trending quartz veins contain pyrrhotite, pyrite and chalcopyrite.
WORK DONE: SOIL 1 composite: Au
REFERENCES: 4.R.00500.02600.05200.
MINING DIV: L1100et
LOCATION: LAT. 50 44 46
LONG. 122 42 00
NTS: 1-111
CLAIMS: Goldfield 1-111
OPERATOR: Corel Energy
AUTHOR: Sampson, C.
DESCRIPTION: The claims are adjacent to the Corel-Paymaster deposit, and are located within the same geological context. The corel strike appears to be a NE-striking structure that is believed to be a continuation of the Corel-Paymaster deposit.
WORK DONE: LAB: 1200
SAMP 91-11, Au.
REFERENCES:

***** Paymaster ****
MINING DIV: L1100et
LOCATION: LAT. 50 43 18
LONG. 122 43 24
NTS: 1-8, 12-8
CLAIMS: Unicorn 6, Paymaster Ext 1-2-3, Paymaster B
OPERATOR: Lanso Gold
AUTHOR: Butler, S.
COMMODITIES: Gold
DESCRIPTION: The claims are adjacent to the Corel-Paymaster deposit, and are located within the same geological context. The corel strike appears to be a NE-striking structure that is believed to be a continuation of the Corel-Paymaster deposit.
WORK DONE: LAB: 1200
SAMP 91-11, Au.
REFERENCES:

***** Standard (L. 1950), Red Hawk, Royal (L. 1965) ****
MINING DIV: L1100et
LOCATION: LAT. 50 42 18
LONG. 122 38 35
NTS: 1-8, 12-8
CLAIMS: Tom 1-8, Pat 1-8, Peak, Royal 1-11, Royal A Fr., Royal B Fr.
OPERATOR: Aramco B.
AUTHOR: Carpenter, T.H.; Haynes, L.
DESCRIPTION: The claims are adjacent to the Corel-Paymaster deposit, and are located within the same geological context. The corel strike appears to be a NE-striking structure that is believed to be a continuation of the Corel-Paymaster deposit.
WORK DONE: LAB: 1200
SAMP 91-11, Au.
REFERENCES:
associated clay alteration and silicification form numerous small occurrences in fractures, shears and veins.

WORK DONE: Soil: 105: multielement
Rock: 24:Au,Cu,Pb,Zn,Ag,As
Silt: 18:Au,Cu,Pb,Zn,Ag,As

REFERENCES: A.R. 00221.10979.13476

**** B11 Miner’s Gold ****

MINING DIV: *** ASSESSMENT REPORT 16262 INFO CLASS 3
LOCATION: LAT. 50 52 19 LONG. 122 41 19 NTS:
CLAIMS: B11 Miner’s Gold I-II, Lode Gold
OPERATOR: Laforge Res.
AUTHOR: Butler, S.D. Di Spirito, F.

COMMODITIES: Gold

DESCRIPTION: The major rock unit is Permian-Triassic Bridge River Group metabasalt, meta-argillite and chert with some small limestone lenses. Dykes are related to the Upper Cretaceous Bendor or Jasper Triassic-Borromean Intrusions and a stock of Borromean intrusion.

WORK DONE: GEDL 1.10 000, 1.1000
SOIL: 68:multielement
Rock: 13:multielement

REFERENCES: M.J. 092JN139-BILL MINER’S GOLD

**** Lu ****

MINING DIV: Lillooet ASSESSMENT REPORT 18637 INFO CLASS 3
LOCATION: LAT. 50 51 48 LONG. 122 44 04 NTS:
CLAIMS: Lu
OPERATOR: Vov Res.
AUTHOR: Sampson, C.
COMMODITIES: Antimony, Gold, Silver

DESCRIPTION: The claims are underlain by greensands, cherty argillites and greenstones of the Permian-Triassic Bridge River Group. Two mineralized shear zones carrying stibnite, ansoenoyrite and gold are exposed on the southwest corner of the property. Zone 1 strikes 330 degrees, dips 10 to 20 degrees southwest and has been exposed over 11 metres strike length. Zone 2 strikes 030 degrees, dips 50 to 60 degrees northwest and has been exposed over 12 metres strike length.

WORK DONE: GEDL 1.50000
SOIL: 276:Ag,Au,Cu,Pb,Zn,Au
ROAD: 203: Au,Ag,As
TREN: 600.0 m:11 trenches

REFERENCES: A.R. 14161
M.J. 092JN138-LU

**** Mary Mac North Zone, Mary Mac South Zone ****

MINING DIV: *** ASSESSMENT REPORT 18777 INFO CLASS 3
LOCATION: LAT. 50 51 00 LONG. 122 41 00 NTS:
CLAIMS: AJ,HJ 3-6

WORK DONE: SAMP 29:Au
ROAD: 100 km
Rock: 131:Au,Sb,Ag,As
SOIL: 27.9 km
GEDL 1.50000
TREN: 622.0 m:17 trenches
SOIL: 594:Au
EMGR 27.9 km:VLF

REFERENCES: A.R. 08897,09090,09749,11627
M.J. 092JNE087-MARY MAC NORTH ZONE;092JNE088-MARY MAC SOUTH ZONE

**** Mary Mac-South Zone, Mary Mac-Main Zone ****

MINING DIV: Lillooet ASSESSMENT REPORT 18378 INFO CLASS 3
LOCATION: LAT. 50 51 38 LONG. 122 41 00 NTS:
CLAIMS: HJ,JH 5
OPERATOR: Pilgrim Holdings
AUTHOR: Devoeck, V.
COMMODITIES: Gold, Antimony, Wolfram

DESCRIPTION: The property is underlain by highly deformed metasediments and metavolcanics of the Permian-Triassic Bridge River Group and several northwest trending feldspar porphyry dykes at and least two small ultramafic bodies.

WORK DONE: SAMP 392:Au,Ag,As
ROAD: 887.5 m:11 holes:No

REFERENCES: M.J. 092JNE087-MARY MAC-MAIN ZONE;092JNE086-MARY MAC-SOUTH ZONE

**** Rey ****

MINING DIV: Lillooet ASSESSMENT REPORT 16367 INFO CLASS 4
LOCATION: LAT. 50 49 30 LONG. 122 32 42 NTS:
CLAIMS: Roy I-II-Raymond I-II-Raymond 4
OPERATOR: Pilot Res.
AUTHOR: Mack J.; Leighton, D.G.
DESCRIPTION: The property is underlain by Bridge River Group greenstones, cherty argillites, limestone and dolomite intrusives. North-trending shear zones are hydrothermally altered.

WORK DONE: SOIL: 93:multielement
LINE: 9.0 km

REFERENCES:

**** Rock ****

MINING DIV: Lillooet ASSESSMENT REPORT 16698 INFO CLASS 3

WORK DONE: SAMP 29:Au
ROAD: 100 km
Rock: 131:Au,Sb,Ag,As
SOIL: 27.9 km
GEDL 1.50000
TREN: 622.0 m:17 trenches
SOIL: 594:Au
EMGR 27.9 km:VLF

REFERENCES: A.R. 08897,09090,09749,11627
M.J. 092JNE087-MARY MAC NORTH ZONE;092JNE088-MARY MAC SOUTH ZONE

**** Mary Mac-South Zone, Mary Mac-Main Zone ****

MINING DIV: Lillooet ASSESSMENT REPORT 18378 INFO CLASS 3
LOCATION: LAT. 50 51 38 LONG. 122 41 00 NTS:
CLAIMS: HJ,JH 5
OPERATOR: Pilgrim Holdings
AUTHOR: Devoeck, V.
COMMODITIES: Gold, Antimony, Wolfram

DESCRIPTION: The property is underlain by highly deformed metasediments and metavolcanics of the Permian-Triassic Bridge River Group and several northwest trending feldspar porphyry dykes at and least two small ultramafic bodies.

WORK DONE: SAMP 392:Au,Ag,As
ROAD: 887.5 m:11 holes:No

REFERENCES: M.J. 092JNE087-MARY MAC-MAIN ZONE;092JNE086-MARY MAC-SOUTH ZONE

**** Rey ****

MINING DIV: Lillooet ASSESSMENT REPORT 16367 INFO CLASS 4
LOCATION: LAT. 50 49 30 LONG. 122 32 42 NTS:
CLAIMS: Roy I-II-Raymond I-II-Raymond 4
OPERATOR: Pilot Res.
AUTHOR: Mack J.; Leighton, D.G.
DESCRIPTION: The property is underlain by Bridge River Group greenstones, cherty argillites, limestone and dolomite intrusives. North-trending shear zones are hydrothermally altered.

WORK DONE: SOIL: 93:multielement
LINE: 9.0 km

REFERENCES:

**** Rock ****

MINING DIV: Lillooet ASSESSMENT REPORT 16698 INFO CLASS 3

WORK DONE: SAMP 29:Au
ROAD: 100 km
Rock: 131:Au,Sb,Ag,As
SOIL: 27.9 km
GEDL 1.50000
TREN: 622.0 m:17 trenches
SOIL: 594:Au
EMGR 27.9 km:VLF

REFERENCES: A.R. 08897,09090,09749,11627
M.J. 092JNE087-MARY MAC NORTH ZONE;092JNE088-MARY MAC SOUTH ZONE

**** Mary Mac-South Zone, Mary Mac-Main Zone ****

MINING DIV: Lillooet ASSESSMENT REPORT 18378 INFO CLASS 3
LOCATION: LAT. 50 51 38 LONG. 122 41 00 NTS:
CLAIMS: HJ,JH 5
OPERATOR: Pilgrim Holdings
AUTHOR: Devoeck, V.
COMMODITIES: Gold, Antimony, Wolfram

DESCRIPTION: The property is underlain by highly deformed metasediments and metavolcanics of the Permian-Triassic Bridge River Group and several northwest trending feldspar porphyry dykes at and least two small ultramafic bodies.

WORK DONE: SAMP 392:Au,Ag,As
ROAD: 887.5 m:11 holes:No

REFERENCES: M.J. 092JNE087-MARY MAC-MAIN ZONE;092JNE086-MARY MAC-SOUTH ZONE

**** Rey ****

MINING DIV: Lillooet ASSESSMENT REPORT 16367 INFO CLASS 4
LOCATION: LAT. 50 49 30 LONG. 122 32 42 NTS:
CLAIMS: Roy I-II-Raymond I-II-Raymond 4
OPERATOR: Pilot Res.
AUTHOR: Mack J.; Leighton, D.G.
DESCRIPTION: The property is underlain by Bridge River Group greenstones, cherty argillites, limestone and dolomite intrusives. North-trending shear zones are hydrothermally altered.

WORK DONE: SOIL: 93:multielement
LINE: 9.0 km

REFERENCES:
*** Lillooet ***

MINING DIV: Lillooet
LOCATION: LAT. 50 49 09 LONG. 122 45 22 NTS:
CLAIMS: Truex Gold II
OPERATOR: Coral Energy
AUTHOR: Sandson, E.
COMMUNITIES: Anthony, Silver, Gold
DESCRIPTION: The property is underlain by granodiorites of the Upper Cretaceous Bendor Intrusions and Permian-Trississ Bridge River Group cherts and volcanics. Showings consisting of northwest striking, shallow dipping (20-30 degrees northeasterly) shear zones from 10-20 centimetres wide were exposed by trenching. Precambrian green and yellow ochres are derived from arsenic, antimony and copper concentrations.
WORK DONE:
GEO 1: 2600-1: 280
SOIL 720 Ag, As, Cu, Pb, Zn, Au
ROCK 32 Ag, Au
INR 500 B, m: 20 trenches
REFERENCES: M. J. O92J-NEDO50-K00X

*** Silverdale ***

MINING DIV: ***
ASSESSMENT REPORT 16283 INFO CLASS 3
LOCATION: LAT. 50 48 12 LONG. 122 33 42 NTS:
CLAIMS: Silverdale Ext.
OPERATOR: Levon Res.
AUTHOR: Friegan, F. S.
DESCRIPTION: Jurassic-Triassic sediments and volcanics are intruded by granodioritic stocks, which are associated with intrusive rocks related to the Upper Cretaceous Bendor Intrusions.
WORK DONE:
SOIL: 21 multielement
REFERENCES:

*** Ty ***

MINING DIV: Lillooet
ASSESSMENT REPORT 15502 INFO CLASS 4
LOCATION: LAT. 50 56 48 LONG. 122 41 36 NTS:
CLAIMS: Ty
OPERATOR: Botterud, C.
AUTHOR: La Rue, J.
DESCRIPTION: The claim is underlain by rock assemblages of the Permian-Triassic Bridge River Group. The group includes chert, argillite, phyllite, greenstone, minor limestone and scoria.
WORK DONE:
GEO 1: 5000
REFERENCES:
A. R. 14368

*** Will ***

MINING DIV: Will
ASSESSMENT REPORT 16300 INFO CLASS 3
LOCATION: LAT. 50 51 42 LONG. 122 38 00 NTS:
CLAIMS: Will 1-4
OPERATOR: No. 28 Sail View Ventures
AUTHOR: Daweck, R.
DESCRIPTION: The claims are underlain by high density metasediments and metavolcanics of the Permian-Triassic Bridge River Group which are intruded by several types of dykes and sills, some of which are C211

Pemberton

LOCATION: LAT. 50 49 09 LONG. 122 45 22 NTS:
CLAIMS: Truex Gold II
OPERATOR: Coral Energy
AUTHOR: Sandson, E.
DESCRIPTION: The property is underlain by granodiorites of the Upper Cretaceous Bendor Intrusions and Permian-Trississ Bridge River Group cherts and volcanics. Showings consisting of northwest striking, shallow dipping (20-30 degrees northeasterly) shear zones from 10-20 centimetres wide were exposed by trenching. Precambrian green and yellow ochres are derived from arsenic, antimony and copper concentrations.
WORK DONE:
GEO 1: 2600-1: 280
SOIL 720 Ag, As, Cu, Pb, Zn, Au
ROCK 32 Ag, Au
INR 500 B, m: 20 trenches
REFERENCES:

*** Burt, Ernie ***

MINING DIV: Lillooet
ASSESSMENT REPORT 16546 INFO CLASS 3
LOCATION: LAT. 50 56 18 LONG. 122 49 00 NTS:
CLAIMS: AU 1-3
OPERATOR: Petroleum Int. Res.
AUTHOR: Kanchmar, K.
DESCRIPTION: The property is underlain by greenstones and sediments of the Permian-Trississ Bridge River Group that have been intruded by serpentinite bodies, foliated dykes and porphyry stocks. Quartz-carbonate veins containing manganite and pyrite occur.
WORK DONE:
SILT 17 multielement
ROCK 93 multielement
GEO 1: 5000
SOIL 615 multielement
REFERENCES:

*** Emma ***

MINING DIV: Lillooet
ASSESSMENT REPORT 16417 INFO CLASS 3
LOCATION: LAT. 50 48 24 LONG. 122 53 06 NTS:
CLAIMS: Burt, Ernie 1
OPERATOR: Coral Energy
AUTHOR: Cooke, S.; Sandberg, T.
DESCRIPTION: The claims are thought to be underlain by northwest trending, west-dipping cherts and basalts of the Permian-Trississ Bridge River Group and argillites and andesites of the Upper Triassic Hurley Formation. Anomalous geochronal and geophysical results were obtained from the surveys.
WORK DONE:
MAG 32.5 km
ERG 32.5 km: VLF
SOIL 828 multielement
LINE 32.5 km
REFERENCES:

*** Edna ***

MINING DIV: Lillooet
ASSESSMENT REPORT 16457 INFO CLASS 4
LOCATION: LAT. 50 48 36 LONG. 122 49 50 NTS:
CLAIMS: Emma
OPERATOR: Neptune Res.
AUTHOR: Hill, A.; Jones, H.
DESCRIPTION: The claim is underlain by black argillaceous sediments with lesser cherty argillite, volcaniclastic wacke, sandstone and conglomerates of the Noel (?) and Hurley (?) Formations of Upper
Triassic age. They exhibit a wide range of attitudes, suggesting considerable local folding. A number of narrow quartz veins, barren of sulphides, occur at scattered locations. One short suit on the northern edge of the claim exposes a 4 metre wide quartz vein stockwork in argillite. Minor pyrite on vein margins was noted.

WORK DONE: GEOG 1:10 000
SILT 9: Au, Ag, Cu, Zn, As, Sb
ROCK 11: Au, Ag, Cu, Zn, As, Sb

REFERENCES: A. R. O876.10087

**** Eve ****

MINING DIV:

LOCATION:

LAT: 50 56 48 LONG: 122 53 18 NTS:

CLAIMS: Eva 20

OPERATOR: Canmerice Precious Metals

AUTHOR: Fox, N.

DESCRIPTION: The perimeter of Triassic Bridge River Group clastics and argillites are intruded by an extensive ultramafic mass.

WORK DONE: LINE 16.5 Kms

REFERENCES: GEOG 1:10 000

**** G.G. ****

MINING DIV:

LOCATION:

LAT: 50 54 54 LONG: 122 55 24 NTS:

CLAIMS: Pegy.

OPERATOR: Chalice Min.

AUTHOR: Moniac 5.

DESCRIPTION: The claim is underlain by Triassic Bridge River Group clastics and volcanics which are intruded by diorite to sphenodiorite and ultramafic rocks.

WORK DONE: BLOG 120 multielement

REFERENCES: TOPO 1:4000

**** High Tor ****

MINING DIV:

LOCATION:

LAT: 50 54 25 LONG: 122 45 20 NTS:

CLAIMS: Gold Pass 10-14, High Tor 1-12, High Tor B Fr., High Tor B Fr.

OPERATOR: Gore Petro.

AUTHOR: Cuttle v.

DESCRIPTION: The claims are underlain by Triassic Bridge River Group clastics and volcanics which are intruded by intermediate to felsic Jurassic-Triassic Britannia Intrusions.

WORK DONE: GEOG 1:5000
SOIL 48: multielement

REFERENCES: A.R. 14621 14846

**** Holland ****

MINING DIV:

LOCATION:

LAT: 50 46 08 LONG: 122 45 24 NTS:

CLAIMS: Namad.

OPERATOR: Golden Webb Res.

AUTHOR: Laronne, P.: Scruggins, E.

COMMODITIES: Gold, Silver

DESCRIPTION: The claims are underlain by Triassic Bridge River Group clastics and volcanics which include pyrite, arsenopyrite and stibnite. Rock chip geochemistry returned anomalous gold values.

WORK DONE: PROS 1:5000
ROCK 19: multielement

REFERENCES: A.R. 14621 14846

**** Holland ****

MINING DIV:

LOCATION:

LAT: 50 46 06 LONG: 122 45 24 NTS:

CLAIMS: Namad.

OPERATOR: Golden Webb Res.

AUTHOR: Laronne, P.: Scruggins, E.

COMMODITIES: Gold, Silver

DESCRIPTION: The claims are underlain by Triassic Bridge River Group clastics and volcanics which include pyrite, arsenopyrite and stibnite. Rock chip geochemistry returned anomalous gold values.

WORK DONE: PROS 1:5000
ROCK 19: multielement

REFERENCES: A.R. 14621 14846

**** Little Gen ****

MINING DIV:

LOCATION:

LAT: 50 53 48 LONG: 122 57 00 NTS:

CLAIMS: Little Gen 4

OPERATOR: Anvil Res.

AUTHOR: Lemme.

COMMODITIES: Coal, Oil, Uranium

DESCRIPTION: The claim is underlain by hornblende-biotite quartz diorite of the Upper Cretaceous Bend-9 Intrusions. Coal, oil and uranium are present in fault controlled veins.

WORK DONE: DIAD 373.8 m: 2 holes.80

REFERENCES: A.R. 07704

**** Little Gen ****

MINING DIV:

LOCATION:

LAT: 50 53 48 LONG: 122 57 00 NTS:

CLAIMS: Little Gen 4

OPERATOR: Anvil Res.

AUTHOR: Lemme.

COMMODITIES: Coal, Oil, Uranium

DESCRIPTION: The claim is underlain by hornblende-biotite quartz d2iorite of the Upper Cretaceous Bend-9 Intrusions. Coal, oil and uranium are present in fault controlled veins.

WORK DONE: DIAD 373.8 m: 2 holes.80

REFERENCES: A.R. 07704

M.I. 092JNE098-LITTLE GEN

C214
**** Rose Gold ****
MINING DIV: *** ASSESSMENT REPORT 16519 INFO CLASS 4
LOCATION: LAT. 50 30 48 LONG. 122 55 12 NTS:
CLAIMS: Rose Gold
OPERATOR: Interox Res.
AUTHOR: Lanne, J.
DESCRIPTION: The claim is underlain by felsic to intermediate volcanics, Upper Triassic-Boreal Intrusives and serpentinite.
WORK DONE: EMGR 7.2 km; VLF
SOIL 78:multielement
MAGG 5.8 km
ROAD 1.8 km
LINE 3.9 km
REFERENCES:

**** Victory ****
MINING DIV: L11ogot ASSESSMENT REPORT 16004 INFO CLASS 4
LOCATION: LAT. 50 51 00 LONG. 122 55 00 NTS:
CLAIMS: Victory
OPERATOR: Chalice Min.
AUTHOR: Hodgson, S.
DESCRIPTION: Triassic sediments and volcanics have undergone three or more intrusion episodes.
WORK DONE: TOPS 1:4000
SAMP 1:multielement
REFERENCES: A.R. 08234,11980,14692

**** King ****
MINING DIV: *** ASSESSMENT REPORT 16203 INFO CLASS 3
LOCATION: LAT. 50 48 08 LONG. 122 12 24 NTS:
CLAIMS: Gold, Silver
OPERATOR: Kelsa Res.
AUTHOR: Fairley, J.; Kromhans, D.
COMMODITIES: Lead, Zinc, Gold, Silver
DESCRIPTION: The claims are underlain by Tertiary quartz diorite porphyry Intrusives and Permian-Triassic Bridge River Group Sediments and volcannics. The area lies within the Yakonok Fault zone, a series of northwest trending faults.
WORK DONE: ROCK 6:multielement
PROS 1:8200
LINE 2.0 km
REFERENCES: A.R. 12755,14326

W. I. 092JNE12S-KING

**** Eagle, Red Eagle ****
MINING DIV: L11ogot ASSESSMENT REPORT 16280 INFO CLASS 4
LOCATION: LAT. 50 56 00 LONG. 122 16 48 NTS:
CLAIMS: Gold, Silver
OPERATOR: Mess Res.
AUTHOR: Isak, A.
COMMODITIES: Mercury
DESCRIPTION: The area is underlain by 3 main rock groups: (1) Permian-Triassic Bridge River Group, (2) Lower Cretaceous Relief Mountain Group and (3) Lower Jurassic Mountain Group. The area lies within the Yakonok Fault zone, a series of northwest trending faults.
WORK DONE: ROCK 6:multielement
SOIL 904:multielement
EMGR 27.0 km;VLF
LINE 30.9 km
REFERENCES: M.I. 092JNE092-EAGLE;092JNE76-RED EAGLE

**** Lisa, Dawn ****
MINING DIV: *** ASSESSMENT REPORT 16202 INFO CLASS 4
LOCATION: LAT. 50 51 42 LONG. 122 20 12 NTS:
CLAIMS: Lisa, Dawn 1-3
OPERATOR: Hudson, F.
AUTHOR: Brewer, L.
DESCRIPTION: The claims are underlain by Tertiary quartz diorite porphyry Intrusives and Permian-Triassic Bridge River Group sediments and volcanics.
WORK DONE: LINE 8.1 km
REFERENCES:

**** Shulaps ****
MINING DIV: L11ogot ASSESSMENT REPORT 16446 INFO CLASS 3
LOCATION: LAT. 50 54 00 LONG. 122 28 42 NTS:
CLAIMS: Miss Swiss
OPERATOR: Brewer, L.
AUTHOR: Brewer, L.
COMMODITIES: Gold, Silver
DESCRIPTION: An oxidized silver-gold-bearing quartz vein occurs in a quartz diorite. Slaty rocks of the Permian-Triassic Bridge River Group are also evident.
WORK DONE: SOIL 213:Au
SILT 18:Au
ROCK 6:Au
PROS 0:5000
REFERENCES: M.I. 092JNE098-SHULAPS

**** Spokane ****
MINING DIV: *** ASSESSMENT REPORT 15612 INFO CLASS 3
LOCATION: LAT. 50 52 42 LONG. 122 22 18 NTS:
Pemberton

CLAIMS: Columbia (L.1122), Shamrock (L.1123), Golden Stripe (L.1124)
OPERATOR: Maccafr Pract. Susan 4, Jan 1
AUTHOR: Eneco Int.
COMMODITIES: Gold, Silver, Bismuth, Copper, Tungsten
DESCRIPTION: The claims are underlain by the Upper Cretaceous Coast Plutonic Complex and volcanic and sedimentary rocks of the Bridge River Group. Mineralization occurs in dike-like and/or sheet-type quartz veins. Diamond drilling results suggest that the tenor and grade of mineralization may indicate a potential for economic gold-silver mineralization.
WORK DONE: TOTAL: 80.0 m; 12 trenches
ROAD: 6.0 km
REFERENCE: A.R. 11802, 13182
M.I. 092NE024-SPokane

**** Spokane ****

MINING DIV: Lillooet
LOCATION: LAT. 50° 30', LONG. 122° 21', 5C NT5
CLAIMS: Columbia (L.1122), Golden Stripe (L.1121), Shamrock (L.1123), Susan 6, Susan 7
OPERATOR: Eneco Int.
AUTHOR: Brewer, L.
COMMODITIES: Gold, Silver, Bismuth, Copper, Tungsten
DESCRIPTION: Quartz veins occur in fissures and at the contact of rocks of the Bridge River Group and ultramafic units. The quartz veins and skarn are hosts to gold-bearing sulphide mineralization.
WORK DONE: TOTAL: 426.3 km
REFERENCE: A.R. 11802, 13182
M.I. 092NE024-SPokane

**** Val Ore ****

MINING DIV: Lillooet
LOCATION: LAT. 50° 54', LONG. 122° 30', NT5
CLAIMS: Val Ore, Val
OPERATOR: Brew Res.
AUTHOR: Bismark, L.
DESCRIPTION: The Val Ore property is situated on the eastern margin of the Coast Plutonic Complex and is underlain, in part by intrusives of the Cretaceousจำนวนมาก, Granodiorite and hornblende-felspar porphyry intrude metasedimentary rocks of the Bridge River Group and ultramafic units of the Skaguay Ultramafite. Soil samples contain up to 399 ppm gold, 8 ppm platinum, and 1.860 ppm nickel.
WORK DONE: TOTAL: 8.5 km
REFERENCE: SOIL 373: multielement
C217

Bute Inlet

**** YZ. Condor, Gold Exchange ****

MINING DIV: Nensingo
LOCATION: LAT. 50° 09' 12", LONG. 128° 13' 18", NT5
CLAIMS: Net 4, Net 6, Net 7
OPERATOR: Campbell, C.
AUTHOR: Copper, Molybdenum, Gold, Antimony, Mercury
DESCRIPTION: The claims are underlain by Upper Triassic Quatsino Formation limestone with granitic rocks of the Upper Cretaceous Coast Plutonic Complex. The rock and Upper Triassic formation volcanics to the west. Geochronological and geological surveys resulted in the location of significant gold mineralization and an epithermal zone.
WORK DONE: TOTAL: 376.2 km
SOIL 24: multielement
C217
REFERENCE: M.I. 092K 089-CONDOR, 100-GOLD EXCHANGE, 092K 101-YZ

**** Nat 4 ****

MINING DIV: Nensingo
LOCATION: LAT. 50° 12' 42", LONG. 128° 16' 18", NT5
CLAIMS: Net 4, Net 10-12, Net 17, Net 18, Net 20
OPERATOR: Campbell, C.
AUTHOR: Copper, Gold, Silver, Tungsten, Zinc
DESCRIPTION: The claims are underlain by Upper Triassic Quatsino Formation limestone with granitic rocks of the Upper Cretaceous Coast Plutonic Complex. To the west. Geochronological and geological surveys resulted in the location of significant gold mineralization on the Nat 4 mineral claim.
WORK DONE: TOTAL: 80.0 km
WASHINGTON 1.5 km
REFERENCE: M.I. 092K 141-NAT 4

**** White Pine ****

MINING DIV: Vancouver
LOCATION: LAT. 50° 28' 18", LONG. 125° 21' 30", NT5
CLAIMS: Bick 3-4
OPERATOR: Veredolone Gold
AUTHOR: Balsamflower, J.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Paleozoic schists, greenstones, agiutporphyry and gneiss of greenstone belt amphibolite grade metamorphism, and fine to coarse-grained quartz dioritic to granodioritic intrusive rocks of the Upper Cretaceous Coast Plutonic Formation.
Complex. Gold and silver-bearing sulphide mineralization occurs in quartz veins, which are controlled by northerly to northwesterly trending fault and shear structures.

WORK DONE:
- EMGR 5.1 km: VLF
- SOIL 114: multielement
- LINE 8.9 km

REFERENCES: M.I. 092 K06-8-0-B7-0-D1-0-E3-0-F2-0-G1-0

**** Lagoon (Colossus) ****

MINING DIV: *** ASSESSMENT REPORT 15919 INFO CLASS 3
LOCATION: LAT. BC 32 00 LONG. 125 12 00 NTS:
CLAIMS: Sancon Ventures
AUTHOR: D1 Spirito, F. St. Pierre, M.
COMMODITIES: Copper, Silver, Gold, Molybdenum
DESCRIPTION: The property is underlain by Upper Cretaceous Coast Range granodiorite which has been cut by northerly and northwesterly trending mafic dikes and quartz veins. The milky quartz veins, which are up to 5 metres wide, contain byrite, chalcopyrite and molybdenite.

WORK DONE:
- SOIL 167: multielement
- MASS 112.0 km
- EMGR 8.6 km: VLF
- LINE 10.4 km
- EMAG 112.0 km: VLF
- MASS 4.1 km
- RBL 78: multielement

REFERENCES: A.R. 094 K09-3-0-B6-0-D1-0-F2-0-G1-0

**** CornmDnWealth ****

MINING DIV: MINING DIV: MINING DIV:*** ASSESSMENT REPORT 18962 INFO CLASS 3
LOCATION: LAT. BC 32 00 LONG. 125 26 00 NTS:
CLAIMS: Cole
OPERATOR: Charlempine Ret
AUTHOR: Hardy, J.; Holtby, M.H.
COMMODITIES: Gold, Silver
DESCRIPTION: The property is underlain by northwest trending blocks of Triassic and older mixed volcanics and sediments bounded by granitic plutonic complexes of the Coast Plutonic Complex. EXP: 71.1 penetrated quartz-veined granodiorite yielding up to 8.06 grams per tonne gold.

WORK DONE:
- SAMP 102: Au, Ag, Cu, Pb
- DIAM 152: 7 m: 2 holes: 80

REFERENCES: A.R. 125 K77 M.I. 092 K02-8-0-B7-0-D1-0-F2-0-G1-0

Alert Bay: 092L

CLAIMS: Ame1 Gold
OPERATOR: Thomson Gold
AUTHOR: Wares, R.
COMMODITIES: Gold, Copper, Zinc
DESCRIPTION: Northerly trending shear zones that cut Jurassic granodiorite are lacs of silicification and alteration. The shears contain sheeted quartz veins that carry visible gold over widths from 0 to 0.60 metres. The sheeted zones dip more than 75 degrees and exhibit continuity up to 300 metres laterally and 50 metres vertically.

WORK DONE:
- DIAM 549: 8 m: 6 holes: 80
- SAMP 50: Au, Ag

REFERENCES: A.R. 075 K62 143K 18079
M.I. 092 L03-8-0-F1-0-G1-0

**** Scranton Gold ****

MINING DIV: *** ASSESSMENT REPORT 15562 INFO CLASS 4
LOCATION: LAT. BC 08 00 LONG. 127 22 00 NTS:
CLAIMS: Scranton Gold 2
OPERATOR: MineQuest Ex. Assoc.
AUTHOR: Courtesy, A.
DESCRIPTION: The claim is underlain by Lower Jurassic Bonanza Group intermediate volcanic rocks, massive endellite, felsic porphyry, and argillaceous sedimentary rocks.

WORK DONE:
- SAMP 11: 10000
- SILT 34: multielement

REFERENCES: A.R. 14618

**** Easy, On, BP, XU ****

MINING DIV: Altauri: *** ASSESSMENT REPORT 15521 INFO CLASS 2
LOCATION: LAT. BC 08 54 LONG. 127 23 18 NTS:
CLAIMS: Sin 1-5 Sin 6, Lor 3-5, War 2
OPERATOR: Tewati Res.
AUTHOR: Repeault, C.M.
COMMODITIES: Copper, Iron, Zinc, Gold, Silver
DESCRIPTION: Quartz veins, stringers and zones of silicification occur in faults and near the Upper Triassic-Lower Jurassic Porcupine Bay Formation sedimentary contact with overlies Lower Jurassic Bonanza Group greenstones to maroon volcanic and epidioritic rocks. Subvolcanic dacite and quartz diorite dikes intrude the Bonanza Group rocks. Extensive pyrophyllite occurs as local alteration.

WORK DONE:
- RBL 80.0 km: 1 trench
- GEO 1: 50000
- ROCK 104: Au, Ag
- LINE 26: 1 km
- SAMP 20: multielement

REFERENCES: A.R. 030 116K 117K 474
M.I. 092 L20-8-0-YU-092 L20-0-EASY-092 L20-0-ON

**** Tees ****

MINING DIV: Nanaimo: *** ASSESSMENT REPORT 16552 INFO CLASS 4
LOCATION: LAT. BC 23 06 LONG. 127 29 42 NTS:

C220
Alert Bay O92L

CLAIMS: Tetra, 1
AUTHOR: Melnych, W.
DESCRIPTION: The claim is underlain by porphyritic volcanics, tuffaceous sediments and subelastic volcanic conglomerates of the Lower Jurassic Bonanza Group. These rocks have been intruded by granite and hornfelses. The Lower-Middle Jurassic Island Intrusions. Locally, the volcanic and intrusive rocks are weakly pyritic and sericite.
WORK DONE:
- SILT, multi-element
- ROCK, multi-element
REFERENCES:

**** Leo Dor ****

MINING DIV: Nanning
LOCATION: LAT. 50 23 42 LNG. 126 48 00 NTS:
CLAIMS: Leo Dor
OPERATOR: Moodi, M.
AUTHOR: Ryckert, A.
DESCRIPTION: The claim is underlain by Upper Triassic massive marble in places intersected by volcanic dykes 0.3 to 1.8 metres wide. No mineralization was observed.
WORK DONE: PROS 18333
REFERENCES: A.R. 14997

**** Pluto ****

MINING DIV: Nanning
LOCATION: LAT. 50 35 00 LNG. 127 23 00 NTS:
CLAIMS: Pluto
OPERATOR: BHP-Utah Mines
AUTHOR: Clarke, G.
DESCRIPTION: From south to north the underlying succession, dipping gently southward, from top to bottom is the Bonanza Group porphyritic volcanics, Person Bay dolerite intrusions, shales and limestones
- Shale limestones and feldspathic granite.
- Copper mineralization has not been detected in the immediate area.
WORK DONE: SAMP: Cu, Mo, Pb, Zn, Au, Ag
REFERENCES: DIAD 304.8 m; 1 hole, NO

**** Rupert ****

MINING DIV: Nanning
LOCATION: LAT. 50 35 18 LNG. 127 24 42 NTS:
OPERATOR: BHP-Utah Mines
AUTHOR: Fleming, J.
DESCRIPTION: From south to north the underlying succession of the Vancouver and Bonanza groups underlies the area. The Jurassic porphyritic granite of the Rupert Stock underlies the area.

Alert Bay O92L

CLAIMS: Tetra, 1
AUTHOR: Melnych, W.
DESCRIPTION: The claim is underlain by porphyritic volcanics, tuffaceous sediments and subelastic volcanic conglomerates of the Lower Jurassic Bonanza Group. These rocks have been intruded by granite and hornfelses. The Lower-Middle Jurassic Island Intrusions. Locally, the volcanic and intrusive rocks are weakly pyritic and sericite.
WORK DONE:
- SILT, multi-element
- ROCK, multi-element
REFERENCES:

**** Bay 56 ****

MINING DIV: Nanning
LOCATION: LAT. 50 37 42 LNG. 127 31 00 NTS:
CLAIMS: Bay 56
OPERATOR: BHP-Utah Mines
AUTHOR: Clarke, G.; Fleming, J.
DESCRIPTION: CONFIDENTIAL STATUS

**** Bay 70 ****

MINING DIV: Nanning
LOCATION: LAT. 50 38 00 LNG. 127 31 00 NTS:
CLAIMS: Bar, Ber Fr., Bay 60, Bee 1-2, B16 1-4, Car 3, Cork Fr., Fr. 1, Ken 1-8
AUTHOR: Clarke, G.; Fleming, J.
DESCRIPTION: CONFIDENTIAL STATUS

Southern other of the survey area with the contact south of hole
47F-7 which intersected Person Bay sediments. Two main anomaly
groupings resulted from the survey with predominately base metal
multi-element anomalies on the west side around hole H-17 and single
element base metal and gold anomalies on the east side of the survey
area. A nearby source of the anomalies associated with the Rupert
Stock boundary is suggested.
WORK DONE: SOIL, multi-element
REFERENCES: A.R. 05102, 06056, 11460

**** Bay 70 ****

MINING DIV: Nanning
LOCATION: LAT. 50 37 42 LNG. 127 31 00 NTS:
CLAIMS: Bay 70
OPERATOR: BHP-Utah Mines
AUTHOR: Clarke, G.; Fleming, J.
DESCRIPTION: CONFIDENTIAL STATUS
OPERATOR: BHX-Utah Minhs
AUTHOR: FlerninQ. J. Ke
DESCRIPTION: CONFIDENTIAL STATUS

**** Prince's ****
MINING DIV: *** ASSESSMENT REPORT 16139 INFO CLASS 4
LOCATION: LAT. 50 37 16 LONG. 127 43 00 NTS:
CLAIMS: Stat 1-3, Wanda 24, Wanda 8
OPERATOR: Rochester Minhs
AUTHOR: Dasler, P.G.
COMMODITIES: Iron
DESCRIPTION: Jurassic-Cretaceous Intrusives occur within Lower Jurassic
WORK DONE: MIN 1:30 000
REFERENCES: A.R. 02190.03400.03958.04000.04754.05262.05348.11132.12302.13389
M.I. 092.086-PRINCE 6

**** Stat-Wanda ****
MINING DIV: Nanaimo ASSESSMENT REPORT 15876 INFO CLASS 3
LOCATION: LAT. 50 37 00 LONG. 127 45 00 NTS:
CLAIMS: Stat 1-2, Wanda 16-17, Wanda 19-20, Wanda 22-23
OPERATOR: Pearson, B.
AUTHOR: Pearson, B.
DESCRIPTION: The claims are underlain by Jurassic volcanics of the Bonanza
group, which range from andesitic to pyroclastic in composition.
There are extensive zones of propylitic and advanced argillic
alteration and silification. Pyrite is ubiquitous, both as
dissociations and as conformable and vein deposits. Several small
intrusives are of much younger age.
WORK DONE: SUIL 147 multielement
MINING DIV: I
CLAIMS:
LOCATION: LAT. 50 41 30 LONG. 124 43 04 NTS:
OPERATOR: Fleming, J.
AUTHOR:
COMMODITIES: Co, Ni, Pd, Pt
DESCRIPTION: Nickel
WORK DONE: MAG 0.4 km
EMGR 0.4 km: VLF
SAKP 9: P3, Zn, Au
REFERENCES: A.R. 00030.00870.02069.02798.03058.03609.03854.04180.04472.07566

Mount Washington

**** HPH 1, HPH 2, HPH 3 ****
MINING DIV: *** ASSESSMENT REPORT 16347 INFO CLASS 4
LOCATION: LAT. 50 41 30 LONG. 127 47 30 NTS:
CLAIMS: HPH 1-3
OPERATOR: Miswag Minhs
AUTHOR: Wilson, E.; Zimmerman, R.
COMMODITIES: Silver, Lead, Zinc, Iron
DESCRIPTION: Massive galena and monosilite occur as replacements in steeply
southwest dipping limestones. A reserve of approximately 10 000
Tonnes is proven.
WORK DONE: MAG 0.4 km
EMR 0.4 km: VLF
RAPE 0.4 km
SAMP 0.4 km: Pb, Zn, Ag
REFERENCES: A.R. 00030.00870.02069.02798.03058.03609.03854.04180.04472.07566

Mount Washington

**** JPNP ****
MINING DIV: Clinton ASSESSMENT REPORT 15914 INFO CLASS 3
LOCATION: LAT. 51 19 00 LONG. 124 21 00 NTS:
CLAIMS: JPNP 1-3
OPERATOR: Noranda Exh
AUTHOR: Helen, J.
DESCRIPTION: The area consists of andesitic to basaltic breccias and tuffs
(Kingsvale Group) of Cretaceous age, and underlying Triassic
sediments and volcanics. Some pyrite mineralization was found as
dissolution and in stockwork. Some andesite volcanic rocks contain
abundant secondary iron oxides. Arsenides, so far, occur in sediments
end pene plan only.
WORK DONE: SILL 10: Au, Ag, Cu, Pb, Zn
CEIL 1:50 000
ROCK 24 multielement
MINING DIV: I
CLAIMS:
LOCATION: LAT. 51 26 00 LONG. 124 49 04 NTS:
OPERATOR: Fleming, J.
AUTHOR:
COMMODITIES: Co, Ni, Pt
DESCRIPTION: Nickel
WORK DONE: MAG 0.4 km
EMGR 0.4 km: VLF
SAKP 9: P3, Zn, Au
REFERENCES:

**** AT ****
MINING DIV: *** ASSESSMENT REPORT 16688 INFO CLASS 4
LOCATION: LAT. 51 30 26 LONG. 124 49 04 NTS:
CLAIMS:
OPERATOR:
AUTHOR:
COMMODITIES: Co, Ni, Pt
DESCRIPTION: Nickel
WORK DONE: MAG 0.4 km
EMGR 0.4 km: VLF
SAKP 9: P3, Zn, Au
REFERENCES: C224
MINING DIV: Clinton
LOCATION: LAT. 51 10 00 LONG. 122 07 54 NTS:
CLAIMS: E934 1
OPERATOR: Hudson Bay Ex. & Dev.
AUTHOR: Stromsmoe, R.
MINERALS: GOLD
DESCRIPTION: Upper Cretaceous Kingsvale Group volcanics are in fault contact with Lower Cretaceous to Eocene volcanics. Minor quartz-carbonate veins occur in gossanous or argillitically altered zones with values up to 1960 ppm gold and 8.2 ppm silver.
WORK DONE: ROCK 18:multielement
REFERENCES: A.R. 08142
M.I. 0920 081-BIG B AR

MINING DIV: Chisnolm (Sunbeam)
LOCATION: LAT. 51 08 00 LONG. 122 14 54 NTS:
DESCRIPTION: The claims are underlain by sandstone and argillite of the Cretaceous Jackass Mountain Group. Near the eastern margin the sediments are intruded by dykes and sills of quartz feldspar porphyry. Lenses and seams of stibnite occur along and near the contacts of a quartz feldspar porphyry sill.
WORK DONE: SOIL 33:multielement
SOIL 33:multielement
REFERENCES: M.I. 0920 086-Chisnolm (Sunbeam)

MINING DIV: Clinton
LOCATION: LAT. 51 02 34 LONG. 122 03 14 NTS:
CLAIMS: Second 1:7 Second 4-5, Ulver
OPERATOR: Buffled, B.
AUTHOR: McCintock, J.
DESCRIPTION: The property straddles a northerly trending Colour of the Fraser River Fault that is defined in contact clastic sedimentary rocks of the Cretaceous. Jackass Mountain Group with Lower Cretaceous volcanic rocks of Ecocene age and a small plug of Upper Cretaceous-Lower Cretaceous sediments. The faults intrude the Jackass Mountain Group. A 2 3 kilometer by 500 metre wide zone of intact silification and argillization occurs in the Jackass Mountain Group rocks and granodiorite. This area will be the main target area. A 2 3 kilometer by 500 metre wide zone of intact silification and argillization occurs in the Jackass Mountain Group rocks and granodiorite. This area will be the main target area. A 2 3 kilometer by 500 metre wide zone of intact silification and argillization occurs in the Jackass Mountain Group rocks and granodiorite. This area will be the main target area.
WORK DONE: GEDFL 1:5000
SOIL 3:multielement
SILT 3:multielement
MIN 3:multielement
REFERENCES:

MINING DIV: ***
LOCATION: LAT. 51 06 00 LONG. 122 12 00 NTS:
CLAIMS: Stirrup
OPERATOR: Horne, E.
DESCRIPTION: Lower Cretaceous and gold values in soil and cyanogenic plants are known to occur in the general area. The source of the gold is still unknown. The area is underlain by rocks of the Jackass Mountain Group and some intrusive clastics and porphyry.
WORK DONE: SOIL 263:Cu LINE 8, 5 Km
REFERENCES: A.R. 12786, 16176

MINING DIV: Chisnolm (Sunbeam)
LOCATION: LAT. 51 06 46 LONG. 122 12 30 NTS:
CLAIMS: Sven, Stun
OPERATOR: Gadsaor Ex.
AUTHORS: Lambole, C.A.B.
DESCRIPTION: Lower Cretaceous Jackass Mountain Group (Cretaceous) rocks are intruded by laucocrustic quartz feldspar porphyry and several mafic dykes with associated argillization alteration. Possible gold mineralization may occur in faults and fractures.
WORK DONE: SOIL 330:Cu, Ag, As, Pb
REFERENCES:

MINING DIV: Ave
LOCATION: LAT. 51 03 06 LONG. 122 53 36 NTS:
CLAIMS: Ave B
OPERATOR: Hillside Energy
AUTHORS: Croft, S.
DESCRIPTION: The Ave claims are underlain by a complex sequence of Mesozoic basement and volcanic rocks situated between the Yalow and Taseko Fault systems. The sequence is intruded by Ecocene felsite and feldspar porphyry stocks and dykes. Epithermal mineralization along Tourkan shear, contact metasomatism and intense alteration in the vicinity of a steeply dipping northerly trending porphyry dyke system on the north bank of Ytaughton Creek.
WORK DONE: SMP 56:Au
REFERENCES: DIAO 182.9 m; 1 hole, EO.
**** Eve ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 01 24 LONG 122 45 42 NTS:
CLAIMS: Eve 12
OPERATOR: Hillside Energy
AUTHOR: Sandinger, 1.
DESCRIPTION: The claim is underlain by the Taylor Creek Group, a Lower Cretaceous sequence of conglomerate, sandstone and shale. The area is characterized by a number of faults including an inferred arcuate fault system which lies on and near the Eve 12 claim and which may influence deposition of epithermal style gold and other mineralization.
WORK DONE: SOIL Au
REFERENCES:

**** XYZ 8 ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 11 00 LONG 122 57 00 NTS:
CLAIMS: Van 1, Dam 3, Relay 3-5
OPERATOR: Esso Res, Can.
AUTHOR: Melnyk, W.
COMMODITIES: Gold, Copper-Molybdenum
DESCRIPTION: The Relay claims are underlain by Lower Cretaceous Taylor Creek volcanics and sediments, surrounded by and in fault contact with Upper Cretaceous Kingsvale sediments.
WORK DONE:
REFERENCES:

**** Big Creek ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 10 48 LONG 123 09 38 NTS:
CLAIMS: Big Creek 1-2
OPERATOR: Esso Res, Can.
AUTHOR: Britton, R.; Marsgen, F.;
COMMODITIES: Zinc, Gold, Silver, Copper, Argilite
DESCRIPTION: Upper Cretaceous Kingsvale Group andesite pyroclastics host a zone of pervasive quartz-sericite-carbonate-sericite-quartz alteration 200 metres by 700 metres.
WORK DONE:
REFERENCES:

**** Thunder ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 54 LONG 123 18 48 NTS:
CLAIMS: AmMon 3, Bluff 1-2, Bluff 9
OPERATOR: Esso Res, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The Thunder property is underlain by Upper Cretaceous Kingsvale Group andesite flows and pyroclastics intercalated with lesser amounts of sedimentary rocks including argilite and conglomerate widespread zones of intense silification, advanced argillic and pyritic alteration occur on the property.
WORK DONE:
REFERENCES:

**** Battalion Creek ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 54 LONG 123 18 48 NTS:
CLAIMS: AmMon 3, Bluff 1-2, Bluff 9
OPERATOR: Esso Res, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The claim is underlain by Upper Cretaceous Kingsvale Group pyroclastic and porphyry c Vatican rocks of intermediate composition.
WORK DONE:
REFERENCES:

**** Han ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 48 LONG 123 28 30 NTS:
CLAIMS: Han 1-2
OPERATOR: Esso Min, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The claim is underlain by north-stripping Upper Cretaceous Kingsvale Group pyroclastic and porphyry c Vatican rocks of intermediate composition.
WORK DONE:
REFERENCES:

Taseko Lakes 0920

**** Thunder ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 54 LONG 123 18 48 NTS:
CLAIMS: AmMon 3, Bluff 1-2, Bluff 9
OPERATOR: Esso Res, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The Thunder property is underlain by Upper Cretaceous Kingsvale Group andesite flows and pyroclastics intercalated with lesser amounts of sedimentary rocks including argilite and conglomerate widespread zones of intense silification, advanced argillic and pyritic alteration occur on the property.
WORK DONE:
REFERENCES:

**** Battalion Creek ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 54 LONG 123 18 48 NTS:
CLAIMS: AmMon 3, Bluff 1-2, Bluff 9
OPERATOR: Esso Res, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The claim is underlain by north-stripping Upper Cretaceous Kingsvale Group pyroclastic and porphyry c Vatican rocks of intermediate composition.
WORK DONE:
REFERENCES:

**** Han ****

MINING DIV: ASSESSMENT REPORT 10921 INFO CLASS 4
LOCATION: LAT 51 06 48 LONG 123 28 30 NTS:
CLAIMS: Han 1-2
OPERATOR: Esso Min, Can.
AUTHOR: Britton, R.; Melnyk, W.
DESCRIPTION: The claim is underlain by north-stripping Upper Cretaceous Kingsvale Group pyroclastic and porphyry c Vatican rocks of intermediate composition.
WORK DONE:
REFERENCES:

C228
***** Taseko ****

MINING DIV: ***
LOCATION: LAT. 51 06 00 LONG. 123 34 00 NTS:
CLAIMS: Babbling Brook, Flashjack No. 1-2, Perfect Day, Taseko 65-66, Taseko 75-89
AUTHOR: Britten, R. W. Melnyk, W.
DESCRIPTION: The property is underlain by north-dipping Cretaceous Kingsvale group of pyroclastic and porphyritic volcanic rocks of intermediate composition. Broad areas of silicification and advanced argillic alteration occur on the property. Alteration assemblages consist of quartz, kaolinite-dickite, pyrophyllite, sericite, alunite and some soil contains weakly anomalous, sporadically distributed values of gold, silver and arsenic.
WORK DONE: GEDL 1 5000
EMGR 31.0 km:VLF
MAAG 31.0 km
SOIL 429:multielement

REFERENCES:

***** Tsy ****

MINING DIV: Clinton
LOCATION: LAT. 51 06 00 LONG. 123 37 00 NTS:
CLAIMS: Bog Iron, Chilcotin 1, Chilcotin 3, Tsy, I. Vulcan, P. North, Summit 2
AUTHOR: Britten, R. W. Melnyk, W.
DESCRIPTION: The property is underlain by north-dipping Cretaceous Kingsvale group of pyroclastic and porphyritic volcanic rocks of intermediate composition. Broad areas of intense silicification and advanced argillic alteration occur on the property. Alteration assemblages consist of quartz, alunite, pyrophyllite, kaolinite-dickite, pyrite and sericite. The soil contains weakly anomalous values of gold, silver and arsenic. The Taseko River sediments contain up to 710 ppm gold.
WORK DONE: GEDL 1 5000
EMGR 21.1 km:VLF
MAAG 21.1 km
SOIL 376:multielement

REFERENCES:

***** Chilkio ****

MINING DIV: ***
LOCATION: LAT. 51 07 42 LONG. 123 54 12 NTS:
CLAIMS: Chilkio, Chilkio 4, 5
OPERATOR: Sunsteel Res.
AUTHOR: Gravel, J. Brownlee, D.
DESCRIPTION: The project area is underlain by a sequence of Middle Triassic to Upper Cretaceous volcanics and sediments. The sequence lies along the northeasterly margin of the Coast Plutonic Complex. A few north-northeast trending high angle faults are present.
WORK DONE: ROCK 64: Au, Hg

REFERENCES:

***** Taseko ****

MINING DIV: ***
LOCATION: LAT. 51 07 42 LONG. 123 54 12 NTS:
CLAIMS: Chilkio, Chilkio 4, 5
OPERATOR: Sunsteel Res.
AUTHOR: Gravel, J. Brownlee, D.
DESCRIPTION: The project area is underlain by a sequence of Middle Triassic to Upper Cretaceous volcanics and sediments. The sequence lies along the northeasterly margin of the Coast Plutonic Complex. A few north-northeast trending high angle faults are present.
WORK DONE: ROCK 64: Au, Hg

REFERENCES:

***** Tsy ****

MINING DIV: ***
LOCATION: LAT. 51 07 42 LONG. 123 54 12 NTS:
CLAIMS: Chilkio, Chilkio 4, 5
OPERATOR: Sunsteel Res.
AUTHOR: Gravel, J. Brownlee, D.
DESCRIPTION: The project area is underlain by a sequence of Middle Triassic to Upper Cretaceous volcanics and sediments. The sequence lies along the northeasterly margin of the Coast Plutonic Complex. A few north-northeast trending high angle faults are present.
WORK DONE: ROCK 64: Au, Hg

REFERENCES:

***** Tsy ****

MINING DIV: ***
LOCATION: LAT. 51 17 00 LONG. 123 52 42 NTS:
CLAIMS: Tarn 1-2
OPERATOR: Chase, W.
AUTHOR: Grage, B.
DESCRIPTION: The claims are situated between Taseko and Chilkio Lakes where the underlying rocks are Upper Cretaceous Kingsvale group of coloured andesite, dacitic and basaltic pyroclastics, minor flows and volcanic sediments.
WORK DONE: SOIL 124: Au, Ag, Cu, Hg

REFERENCES:

***** Bobcat ****

MINING DIV: ***
LOCATION: LAT. 51 18 00 LONG. 122 32 00 NTS:

REFERENCES:
CLAIMS: Bepcat 1-III
OPERATOR: Lexington Res.
AUTHOR: Seattle, M.
DESCRIPTION: The claims are underlain by Cretaceous-Tertiary volcanics and related feeder dykes. A series of dacitic domes form a southwest trend of volcanic eruptive centres with associated mineralization.
WORK DONE: LINE 32 km MAG 6 km EMGR 24 km VLF ROCK 15 Au Ag SOIL 688:element
GEO 1:5000
REFERENCES: **** Clinton

MINING DIV: Clinton
LOCATION: LAT 51 16 00 LONG 122 31 41 NTS: EH 1 EH 2 EH 3 EH 5
OPERATOR: Beller Ex.
AUTHOR: Seattle, M.
DESCRIPTION: The claims are underlain by basaltic to rhyolitic flows, tuffs and breccias including both subaerial welded tuffs and subaqueous pillow fragments.
WORK DONE: GEO 1:5000 MAG 17.0 km EMGR 117.0 km VLF ROCK 150 Au Ag SOIL 2500 Hg LINE 117.0 km
REFERENCES: A.R. 12885

Taseko Lakes 0820
--
DESCRIPTION: Eocene rhyolite, dacites and basalts are overlain in part by Miocene basalts.
WORK DONE: GEO 1:10 000 SOIL 826:element ROCK 116:element MnIN 13:element
REFERENCES: A.R. 14845

**** Queen,King ****

MINING DIV: Clinton
LOCATION: LAT 51 22 42 LONG 122 32 42 NTS: King 3-4.King VI.Pearl Queen 4-5.Queen VI.Churn 1-2, Ace 1-2
OPERATOR: Blackmore Min.
DESCRIPTION: The area is underlain by gently dipping, north to northeast striking Cretaceous and Tertiary volcanic and volcanlastic rocks. The rocks range in composition from rhyolite to basalt. Alteration and mineralization appears to be related to not spring formations and is characterized by botryoidal chalcedonic quartz.
WORK DONE: GEO 1:10 000 ROCK 4:element
REFERENCES: A.R. 12661

**** Lynx ****

MINING DIV: Clinton
LOCATION: LAT 51 18 36 LONG 122 26 34 NTS: Lynx I Lynx II
OPERATOR: Trans National Res.
AUTHOR: GRIJF, E.
DESCRIPTION: The claims are underlain by gently dipping, north to northeast striking Cretaceous and Tertiary volcanic and volcanlastic rocks and related feeder dykes. The rocks range in composition from rhyolite to basalt. Alteration and mineralization in certain areas appear to be related to not spring formations and is characterized by botryoidal chalcedonic quartz.
WORK DONE: GEO 1:10 000 ROCK 2:element
REFERENCES: C232
Nole Pine ****

MINING DIV: Clinton
LOCATION: LAT. 51 18 48 LONG. 122 18 42 NTS:
CLAIMS: Nole Pine 1-2
OPERATOR: DPX Min.
AL. LOC.
LAB. L.
DESCRIPTION: Eocene rhyolites and rhyolite pyroclastics are cut by a series of northeast trending faults and show local precipitation and weak silicification. No mineralization is associated with this alteration.
WORK DONE:
ROCK 32: multielement
FDO 1 50 000
SOIL 183: multielement
GEOLOGICAL NOTE: 1 10 000
REFERENCES: A.R. 12413, 12483

Pearl Mint ****

MINING DIV: Silver Bullet
LOCATION: LAT. 51 18 48 LONG. 122 18 42 NTS:
CLAIMS: Maplefoot Lynx IV
OPERATOR: MineQuest Ex. Assoc.
AUTHOR: Long J.
DESCRIPTION: Eocene rhyolites, dacites and basalts are covered by Miocene.
WORK DONE:
ROCK 8: multielement
GEOLOGICAL NOTE: 1 10 000
GEOLOGY 39: multielement
REFERENCES:

Bonaparte River ****

MINING DIV: Komloops
LOCATION: LAT. 51 05 03 LONG. 120 02 12 NTS:
CLAIMS: Komloops, Fortune I-3, Fortune 4, Fortuna IV 1
AUTHOR: Farmer R.
COMMODITIES: Gold, Silver, Lead, Copper, Platinum, Nickel
DESCRIPTION: The claims are underlain by impure calcareous sediments that locally grade to graphitic phyllites. The area has extensive overburden cover.
WORK DONE:
MAG 7.7 km
EMGR 7.7 km
GEOLOGY 1/10 000
LINE 7.7 km
TREN 120.0 m: 4 trenches
REFERENCES:

Fortuna, Skookum, Plaito ****

MINING DIV: Komloops
LOCATION: LAT. 51 05 48 LONG. 120 01 24 NTS:
CLAIMS: Fortuna, Fortuna I-3, Fortuna 4, Fortuna IV I
AUTHOR: Farmer R.
COMMODITIES: Gold, Silver, Lead, Copper, Platinum, Nickel
DESCRIPTION: The claims are underlain by Mississippian-Devonian Eagle Bay Formation rocks consisting of chloritoid schist, quartz-eye sericite schist, argillite, grit, conglomerate, quartzite, limestone and serpentinite. The units dip 50 degrees to the northeast. Several large, prominent hydrothermal alteration zones are present which contain massive pyrite-pholhoite mineralization varying from 1 to 2 metres thick. The sulphide zones are enhanced in copper, 1890. Zinc, silver, gold and arsenic values.
WORK DONE:
GEOLOGY 1 10000
GEOLOGY 2 10000
ROCK 2 10000
GEOLOGY 3 10000
GEOLOGY 4 10000
REFERENCES: A.R. 08858, 11000
M.J. 08858 044-FORTUNA; 092P 045-SKOOKUM; 092P 046-PLAITO

Mount Armour ****

MINING DIV: Komloops
LOCATION: LAT. 51 10 00 LONG. 120 06 00 NTS:
CLAIMS: FC
OPERATOR: Falconbridge Copper
AUTHOR: Pine J.
COMMODITIES: Copper, Zinc
DESCRIPTION: The property is underlain by basalts, cherts, sediments and limestones of the Paleozoic Eagle Bay Formation. All units are strongly folded about northwest-southeast axes and plunge moderately to the northwest. Pyritic massive sulphides and sulphide stockworks are hosted by cherts, argillites and sericitic tuffs conformably with the surrounding strata.
WORK DONE:
SAMP 84 Cu, Pb, Zn, Ag, Au
GEOLOGY 410.9 m: 6 notes, 0
REFERENCES: A.R. 13129, 13128
M.J. 082P CB1-MOUNT ARMOUR

C234
**** Rusty ****

MINING DIV: ***
LOCATION: LAT. 51 07 52 LONG. 120 00 56 NTS:
CLAIMS: Rusty 1
OPERATOR: McCreary, L.
AUTHORS: Manseau, W.; McCreary, L.
DESCRIPTION: The claim is underlain by Devonian-Mississippian Eagle Bay Formation rocks.
WORK DONE: PROS 1:20,000
REFERENCES:

**** AJS (Rave), Bonaparte ****

MINING DIV: ***
LOCATION: LAT. 51 00 00 LONG. 120 25 00 NTS:
CLAIMS: Bob 21-24
OPERATOR: MineQuest Ex. Assoc.
AUTHORS: Dickens, M.
COMMODITIES: Molybdenum, Copper, Gold
DESCRIPTION: A series of Mesozoic or Paleozoic pelitic and argillaceous strata has been cut and hornfelsed by a Mesozoic quartz diorite stock and dyke swarm. Both intrusive rocks and hornfels are cut by numerous quartz veins in metre wide carrying pyrite,chalcopyrite, molybdenite and rarely geochemically anomalous gold.
WORK DONE: ROAD 2.5 km
REFERENCES:

**** Tu ****

MINING DIV: ***
LOCATION: LAT. 51 09 48 LONG. 120 42 54 NTS:
CLAIMS: Tu 1-4
OPERATOR: Dickens, M.
AUTHORS: Dickens, M.
DESCRIPTION: Upper Triassic Nicola Group volcanics host a quartz vein near an intrusive contact. The quartz vein carries values in gold, copper and tellurium.
WORK DONE: PROS 1:6250
REFERENCES:

**** EPI ****

MINING DIV: ***
LOCATION: LAT. 51 06 36 LONG. 120 51 48 NTS:
CLAIMS: EPI 2-4
OPERATOR: Dickens, M.
AUTHORS: Dickens, M.
DESCRIPTION: Widespread anomalous arsenic, antimony, mercury and gold values occur over several northnortherly and northwardly striking shear zones in altered and altered Triassic volcanic rocks.
WORK DONE: PITS 12
REFERENCES:

Bonaparte River

REFERENCES: A. R. 04665,08600,15651,16045
M. I. 092P 05C-AJS (RAVE);092P 159-BONAPARTE

**** Bonaparte ****

MINING DIV: ***
LOCATION: LAT. 51 08 36 LONG. 120 51 45 NTS:
OPERATOR: MineQuest Ex. Assoc.
AUTHORS: Dickens, M.
COMMODITIES: Molybdenum, Copper
DESCRIPTION: A series of Mesozoic or Paleozoic pelitic and argillaceous strata has been cut and hornfelsed by a Mesozoic quartz diorite stock and dyke swarm. Both intrusive rocks and hornfels are cut by numerous quartz veins to a metre wide carrying pyrite, chalcopyrite, molybdenite and rarely geochemically anomalous gold.
WORK DONE: ROAD 2.5 km
REFERENCES:

**** EPI ****

MINING DIV: ***
LOCATION: LAT. 51 06 36 LONG. 120 51 48 NTS:
CLAIMS: EPI 2-4
OPERATOR: Dickens, M.
AUTHORS: Dickens, M.
DESCRIPTION: Widespread anomalous arsenic, antimony, mercury and gold values occur over several northnortherly and northwardly striking shear zones in altered and altered Triassic volcanic rocks.
WORK DONE: PITS 12
REFERENCES:

C236
Bonneporte River

K.G.D.

MINING DIV: Clinton

LOCATION: LAT. 51 08 00, LONG. 120 52 00

CLAIMS: K.G.D.

OPERATOR: Dickens, M.

AUTHOR: The claims are underlain by Tertiary plateau basalts and drift. The claims were unprospected in an effort to find exposures of Nicola rocks which on adjoining claims were altered and mineralized. No such exposures were located.

WORK DONE:

REFERENCES: A.R. 13223

Savona Gold (Last Chance), Hamilton Creek, Vide

MINING DIV: Clinton

LOCATION: LAT. 51 11 12, LONG. 120 54 54

CLAIMS: Vigeset 1-2

OPERATOR: Placer Dev.

AUTHOR: Driftsouther, P.

COMMODITIES: Gold, Silver, Copper

DESCRIPTION: The claims are underlain by an extensive sheet of Miocene or Pliocene plateau lavas which have been locally eroded to reveal a window of Upper Triassic Nicola Group volcanics. The Nicola Group is a roof peneplain in the Mesozoic, Mesozoic Tuya Sactaniti. The Nicola volcanics have been eroded and are not present on the Nicola Group volcanics.

WORK DONE:

REFERENCES:

Bonaparte River

Sem. RL

MINING DIV:

LOCATION: LAT. 51 08 43, LONG. 120 47 57

CLAIMS: Precisely 1, Precisely 3, Precisely 7-9, Class 1-2

OPERATOR: Placer Dev.

AUTHOR: Cannon, B.; Pentland, W.

COMMODITIES: Copper

DESCRIPTION: The Precisely property is located in a window of Miocene basalts and is underlain by Upper Triassic Nicola Group volcanics which are impregnated by pyrite and pyrrhotite. The volcanics are a digested sequence of felsic to medium grained andesitic to siliceous tuffs. There is minor brecciation and calcrete alteration.

WORK DONE:

REFERENCES:

Kane

MINING DIV: Kanker

LOCATION: LAT. 51 16 30, LONG. 120 11 30

CLAIMS: D-A.

OPERATOR: Buit F.

AUTHOR: Oskijuk, D.

DESCRIPTION: The claim is underlain by Pennsylvanian-Permain Cache Creek Group metasediments and volcanics and Tertiary Skull Hill Formation, basic to intermediate volcanics. Drilling results returned low gold and silver values.

WORK DONE:

REFERENCES:

LK

MINING DIV:

LOCATION: LAT. 51 18 31, LONG. 120 07 20

CLAIMS: CM 2-3

AUTHOR: Fennan, R.; Hogg, R.

COMMODITIES: Copper, Silver, Zinc, Gold

DESCRIPTION: The claims are underlain by a north-northwest striking, gently dipping sequence of felsic volcanics and sediments of the Devonian-Permain Fennell Formation. The sediments are host to two small massive sulphide occurrences consisting of pyrite, chalcopyrite and magnetite as exposed in old trenches. The
WORK DONE:

- **Bonaparte River 092P**
 - **Geology:**
 - **Drill:** 309.8 m; 3 holes
 - **Soil:** 196; multielement
 - **EMGR:** 6.6 km
 - **Sampling:**
 - **Drill:** 242.9 m; 2 holes
 - **References:**
 - A.R. 0755, 1518C

MINING DIV: Kenloops

ASSESSMENT REPORT 16524 INFO CLASS 3

Location:
- **Lat:** 51 26 54
- **Long:** 120 03 12

Claims:
- **Cedar 1, Cedar 2, Cedar 3, Cedar 5**

Operator:
- **Craven Res.**

Author:
- **Adamson, R.**

Description:
- Upper Triassic Nicola Group andesite flows and augite basalt, slate, phyllite and limestone. An intrusion of ultramafics along the contact consists of peridotite, serpentinite and pentlandite.

Work Done:
- **Diamond:** 2500 m
- **Line:** 7.3 km
- **Soil:** 563; multielement

References:
- A.R. 0755, 1518C

MINING DIV: Kenloops

ASSESSMENT REPORT 16362 INFO CLASS 3

Location:
- **Lat:** 51 28 54
- **Long:** 120 16 51

Claims:
- **Golden Loon V, VI, Golden Loon VIII, Golden Loon IX**

Operator:
- **Lutjen, L.**

Author:
- **Lutjen, L.**

Description:
- Herbaceous sediments and carbonate-chlorite alteration are present and contain anomalous values in copper and zinc.

Work Done:
- **Diamond:** 12500 m; 2 holes

References:
- A.R. 01031, 04089, 09061

MINING DIV: Kenloops

ASSESSMENT REPORT 16042 INFO CLASS 4

Location:
- **Lat:** 51 34 54
- **Long:** 120 25 48

Claims:
- **Niobium-Lead-Molybdenum**

Operator:
- **Rat Res.**

Author:
- **Rebagliati, C.M.**

Description:
- Upper Triassic Nicola Group andesite flows and augite basalt, slate, phyllite and limestone. An intrusion of ultramafics along the contact consists of peridotite, serpentinite and pentlandite.

Work Done:
- **Diamond:** 209.8 m; 3 holes

References:
- A.R. 0287, 0980, 1143, 15221

MINING DIV: Kenloops

ASSESSMENT REPORT 16134 INFO CLASS 4

MINING DIV: Kenloops

ASSESSMENT REPORT 16524 INFO CLASS 3

Location:
- **Lat:** 51 26 54
- **Long:** 120 03 12

Claims:
- **Cedar 1, Cedar 2, Cedar 3, Cedar 5**

Operator:
- **Craven Res.**

Author:
- **Adamson, R.**

Description:
- Upper Triassic Nicola Group andesite flows and augite basalt, slate, phyllite and limestone. An intrusion of ultramafics along the contact consists of peridotite, serpentinite and pentlandite.

Work Done:
- **Diamond:** 2500 m
- **Line:** 7.3 km
- **Soil:** 563; multielement

References:
- A.R. 0755, 1518C

MINING DIV: Kenloops

ASSESSMENT REPORT 16362 INFO CLASS 3

Location:
- **Lat:** 51 28 54
- **Long:** 120 16 51

Claims:
- **Golden Loon V, VI, Golden Loon VIII, Golden Loon IX**

Operator:
- **Lutjen, L.**

Author:
- **Lutjen, L.**

Description:
- Herbaceous sediments and carbonate-chlorite alteration are present and contain anomalous values in copper and zinc.

Work Done:
- **Diamond:** 12500 m; 2 holes

References:
- A.R. 01031, 04089, 09061

MINING DIV: Kenloops

ASSESSMENT REPORT 16042 INFO CLASS 4

Location:
- **Lat:** 51 34 54
- **Long:** 120 25 48

Claims:
- **Niobium-Lead-Molybdenum**

Operator:
- **Rat Res.**

Author:
- **Rebagliati, C.M.**

Description:
- Upper Triassic Nicola Group andesite flows and augite basalt, slate, phyllite and limestone. An intrusion of ultramafics along the contact consists of peridotite, serpentinite and pentlandite.

Work Done:
- **Diamond:** 209.8 m; 3 holes

References:
- A.R. 0287, 0980, 1143, 15221

MINING DIV: Kenloops

ASSESSMENT REPORT 16134 INFO CLASS 4
Bonaparte River

LOCATION: LAT. 51 32 06 LONG. 120 23 12 NTS:
CLAIMS: Fort 9
OPERATOR: Vital Pacific Res.
AUTHOR: Westerman, C.
COMMODITIES: Copper, Gold
DESCRIPTION: Pyrrhotite bearing skarns of the upper Triassic Nicola Group locally contain anomalous gold values.
WORK DONE: ROCK 19-multielement

**** Lake ****

MINING DIV: *** A.ESSEMENT REPORT 15901 INFO CLASS 4
LOCATION: LAT. 51 32 00 LONG. 120 22 36 NTS:
CLAIMS: Lake 1-2, Lake 4
OPERATOR: Slatinskii, V.
AUTHOR: Slatinskii, V.
DESCRIPTION: Oxidized outcrops of magnetite contain sulphides in a belt of limestone. Gold values are associated with the sulphides.
WORK DONE: LINE 6.0 km EMGR 6.0 km;VLF
REFERENCES:

**** Lakeview, PYCU, LV, Fort ****

MINING DIV: Kamloops A.ESSEMENT REPORT 16223 INFO CLASS 3
LOCATION: LAT. 51 31 00 LONG. 120 24 30 NTS:
CLAIMS: Fort 7, Nuf 1, Tun 1-2, Viit 1-8
OPERATOR: Vital Pacific Res.
AUTHOR: Cockell, E. Westerman, C.
COMMODITIES: Copper, Gold
DESCRIPTION: Jurassic volcanic and sedimentary rocks are variably foliated and pyritized. Gold occurs in pyritic calc-silicate units.
WORK DONE: LINE 11.6 km GEOL 1-5000 ROCK 140-multielement IDOL 11.4 km SOIL 428-multielement TREN 300.0 m; 7 trenches
REFERENCES: A.R. 00095, 00907, 00310, 02712, 03439, 03943, 04260, 04278, 04684, 06880, 08842, 08866
M.I. 0920 010-LAKEVIEW (UNITED, TC): 0927 136-PYCU:0929 136-LV; 0929 136-FORT

**** Robo ****

MINING DIV: *** A.ESSEMENT REPORT 16205 INFO CLASS 4
LOCATION: LAT. 51 43 38 LONG. 120 18 00 NTS:
CLAIMS: Robo 5-6
OPERATOR: Hein, G.
AUTHOR: Hein, G.
DESCRIPTION: The claims are underlain by flat-lying or moderately dipping dark grey, fine-grained anastomoses of the Devonian-Permian Fannell formation. Float was found on the property consisting of C241

**** So (Sog) ****

MINING DIV: Kamloops A.ESSEMENT REPORT 16244 INFO CLASS 2
LOCATION: LAT. 51 37 00 LONG. 120 31 42 NTS:
CLAIMS: Sog 1-4, Boog 7-B
OPERATOR: Great Western Capital
AUTHOR: Arther, G.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by Upper Triassic Nicola Group volcanics and associated with the Triassic or Lower Jurassic pyritic thin-bedded tuff is very common.
WORK DONE: SOIL 525;Ag, Au LINE 7.9 km
REFERENCES: A.R. 00793, 00784, 00786, 00952, 01868, 03900, 04025, 04702, 04817, 04836, 05197, 05265, 05481, 05803, 07322, 08147, 10832, 11285, 14446

**** Gold ****

MINING DIV: Clinton A.ESSEMENT REPORT 15929 INFO CLASS 4
LOCATION: LAT. 51 50 24 LONG. 121 19 00 NTS:
CLAIMS: Gold 2, Gold X
OPERATOR: Banyony Gold Mines
AUTHOR: Tonn
DESCRIPTION: The claims are underlain by Tertiary plateau basalts.
WORK DONE: IDOL 3.8 km EWAD 3.8 km;VLF
REFERENCES: A.R. 14787

**** Miracle ****

MINING DIV: *** A.ESSEMENT REPORT 16586 INFO CLASS 3
LOCATION: LAT. 51 57 05 LONG. 121 19 44 NTS:
CLAIMS: Miracle 2-3
OPERATOR: W.G. R.
AUTHOR: White, G.E.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: Porphyry copper-gold is associated with an alkalic stock intruding Upper Triassic-Lower Jurassic volcanic rocks.
WORK DONE: IDOL 3.0 km SOIL 10 Au, Ag, Cu GEOL 11.9 km LINE 27.0 km IDOL 11.0 km ROCS 10 Au, Ag, Cu EWAD 27.0 km;VLF
REFERENCES:

C242
**** RK ****
MINING DIV: Clinton ASSESSMENT REPORT 16170 INFO CLASS 3
LOCATION: LAT. 51 53 24 LONG. 120 46 48 NTS:
CLAIMS: Christmas 1-8
OPERATOR: Mings Mines
AUTHOR: Thomson, D.
COMMODITIES: Copper, Gold
DESCRIPTION: Interbedded basalts, volcaniclastic sediments and rhyodacite tuffs are intruded by diorites. Pyrite and pyrrhotite mineralization with variable gold values are concentrated along fractures in country rock.
WORK DONE: LINE 22.4 km
Rock sample: 36:multielement
SOIL 46:multielement
MAG 28.0 km
REFERENCES: A.R. 14239, 14452, 15699
M.I. 082P 110-RK
 **** RK ****
MINING DIV: *** ASSESSMENT REPORT 16899 INFO CLASS 3
LOCATION: LAT. 51 45 00 LONG. 120 46 46 NTS:
CLAIMS: Christmas 1-5, Christmas B
OPERATOR: Mings Mines
AUTHOR: McNaughton, K.
COMMODITIES: Copper
DESCRIPTION: Interbedded basalts, volcaniclastic sediments and rhyodacite tuffs of the Upper Triassic to Lower Jurassic Nicola Group are intruded by diorite stock, sills and dykes. Soil samples contain up to 640 ppb gold.
WORK DONE: LINE 3.6 km
SOIL 25:multielement
MAG 28.0 km
REFERENCES: A.R. 14239, 14452
M.I. 082P 110-RK
 **** Seficar ****
MINING DIV: Clinton ASSESSMENT REPORT 16199 INFO CLASS 3
LOCATION: LAT. 51 55 12 LONG. 120 46 36 NTS:
CLAIMS: Seficar 1-2
OPERATOR: Iskinner Res.
AUTHOR: Suggers, C.
DESCRIPTION: The claims are underlain by mafic volcanics, volcaniclastic sediments and volcanic breccias which are intruded by diorite, gabbro and felsic porphyry plugs. Quartz-carbonate vein stockworks are present but poorly exposed. Minor chalcocite and argentopyrite occur in chalcedonic quartz and carbonated veins in the volcanic breccias.
WORK DONE: LINE 39.6 km
EMOS 28.0 km
SDG 28.0 km
REFERENCES: A.R. 12650, 13230, 14040, 15450
S.G. 243

Quesnel Lake ****
MINING DIV: Carbons ASSESSMENT REPORT 16925 INFO CLASS 2
LOCATION: LAT. 50 21 39 LONG. 121 16 42 NTS:
CLAIMS: Lsp. 1-6
OPERATOR: Drex Ind.
AUTHOR: Payne, C.
COMMODITIES: Copper
DESCRIPTION: Felsic breccia, tuffs and mafic volcanics have been intruded by a zoned diorite-monzonite stock. An altered (propylitized) halo surrounding the stock contains weakly anomalous gold values.
WORK DONE: DIAD 1900.8 m, 50 holes, NO
SAMP 36:multielement
REFERENCES: A.R. 00833, 02729, 04679, 05117, 05260, 10005, 10509, 15456
M.I. 083A 002-PINE:093A 061-FLY:093A 069-C2
 **** Ajax ****
MINING DIV: *** ASSESSMENT REPORT 16493 INFO CLASS 3
LOCATION: LAT. 52 23 48 LONG. 121 21 06 NTS:
CLAIMS: Kwan 1-4
OPERATOR: Dome Exc. Ltd.
AUTHOR: Fox, P.
COMMODITIES: Gold, Copper
DESCRIPTION: The central part of the claims is underlain by a poorly exposed, concentrically zoned pluton of Upper Triassic age. East of the Birch Creek fault, felsic tuff breccias flank the stock to the east, north and south. Massive basalt flows and pillow breccias enclose the stock, west of the fault. Much of the eastern half of the claims north and south of Kwan Lake are underlain by basaltic wackes and pillow breccias. Units trend northerly and dip steeply west.
WORK DONE: LINE 17.2 km

C244
MINING DIV: Cariboo
LOCATION: LAT. 52.23.42 LONG. 122.20.24 NTS:
CLAIMS: Beekeeper
OPERATOR: Eastfield Res.
AUTHOR: Morton, J.
COMMODITIES: Copper
DESCRIPTION: Hydrothermally altered Upper Triassic Tatla Group volcanics are associated with variable concentrations of pyrite and chalcopyrite. The hydrothermal alteration is believed to be related to a buried intrusive complex.
WORK DONE: IPDL 6.5 km
REFERENCES: A.R. 09750, 12805, 14599, 15048
M.I. 093A 165-EEKEEPER

MINING DIV: Cz
LOCATION: LAT. 52.22.00 LONG. 121.16.42 NTS:
CLAIMS: Shik 1-2
OPERATOR: Second Res.
AUTHOR: Morton, J.
COMMODITIES: Copper, Gold
DESCRIPTION: Upper Triassic-Lower Jurassic mafic Tatla Group volcanics have been intruded by diorite and syenite. Copper and gold mineralization is focussed in hydrothermally altered dacite. Gold mineralization appears to have been remobilized with chalcopyrite into fractured pyrite crystals in altered sections.
WORK DONE: TREN 50,000 m; 13 trenches
PET 1: thin section
IPDL 6.5 km
DBCK 35; multielement
REFERENCES: A.R. 11297, 11623, 12584, 13355, 13804, 14870, 16093
M.I. 093A 162-5-MR

MINING DIV: Cariboo
LOCATION: LAT. 52.27.30 LONG. 121.27.00 NTS:
CLAIMS: Shik 1-2
OPERATOR: Second Res.
AUTHOR: Morton, J.
COMMODITIES: Copper, Gold
DESCRIPTION: The claims lie on the eastern flank of the Queens Lake Trough within a belt of Mesozoic volcano-sedimentary rocks referred to as the Queens Lake Formation. Volcano-sedimentary strata are cut by an episode of intrusive complex (DF porphyritic andesite) ranging in composition from diorite to monzodiorite and to monzonite. Gold mineralization containing chalcopyrite is zonally associated with the felsic intrusive. Gold mineralization is related to minor shear zones.
WORK DONE: GEOL 1.000
DBCK 85; multielement
REFERENCES: A.R. 02137, 02662, 03854, 05215, 08978, 10723, 11935, 13365
M.I. 093A C11-EN

MINING DIV: Cariboo
LOCATION: LAT. 52.21.00 LONG. 120.37.00 NTS:
CLAIMS: Keen 8-11, Mac 2, Mac 3, Mac 4, Mac 10
OPERATOR: Eureka Res.
AUTHORS: Campbell, K.; Letham, D.
COMMODITIES: Gold, Silver, Copper, Zinc, Lead
DESCRIPTION: Stratified andesite, gold-bearing quartz structures and veins in Triassic pyritite of Tatla Formation have been traced over 1.5 km. Intensity of alteration increases from 500 m to 1,000 m. Gold values in the shear zones are over 50 metres. Alteration products include carbonate, sericite, and chlorite.
WORK DONE: TREN: 4000 m; 12 holes
DBCK 14,000 bulk samples
DIAG 2010 m; 18 holes
BOAD 2,00 km
SAMP 160,000
REFERENCES: A.R. 08328, 08751, 11823, 12880, 14022
M.I. 093A 150-FRASERGOLD

MINING DIV: Queens Lake
LOCATION: LAT. 52.05.40 LONG. 120.35.00 NTS:
CLAIMS: Mac 10
OPERATOR: Eureka Res.
AUTHOR: Letham, D.
DESCRIPTION: Triassic black pyritite with a gold enriched horizon characterized by quartz veins and swarms with copper particles of visible gold have been found on the adjoining Frasergold property.

...
The projected strike of this horizon underlies the Mac 10 claim. Soil surveys have proved effective in detecting this horizon.

WORK DONE: SOIL 342: Au

REFERENCES:

Omega, Hawley **

MINING DIV: Cariboo
LOCATION: LAT. 52 22 00 LONG. 120 35 30 NTS:
CLAIMS: Hawley Gold Omega Gold
OPERATOR: Carpenter Lake RES.
ROANS: J. R.
DESCRIPTION: The geology of the property is characterized by steeply dipping metasediments of the Proterozoic-Early Palaeozoic Snowshoe Formation. The sediments are comprised of crenulated, grey phyllites overlain by an upper schist and a quartz-feldspathic gneiss which is in turn overlain by a banded gneiss. Mineralization observed on the property consists mainly of pyritic disseminations in secondary quartz within the crenulated phyllite unit.

WORK DONE: GDL 1:5000
LINE 36.0 km
SOIL 524: multielement
MAG 78.1 km
EMGR 18.0 km: VLF

REFERENCES:

Bluto **

MINING DIV: Cariboo
LOCATION: LAT. 52 15 48 LONG. 120 45 48 NTS:
CLAIMS: Bluto 6
OPERATOR: Inter Can. Dev.
AUTHOR: Brownlee, D.
DESCRIPTION: Upper Triassic black phyllites and argillites with minor calcareous siltstone are bounded on the west by a volcaniclastic unit and on the east by the Mississippian Slave Mountain Group. This assemblage forms the western limb of the Crooked Lake anticline.

WORK DONE: SOIL 80: multielement

REFERENCES:

Elbow **

MINING DIV: Cariboo
LOCATION: LAT. 52 15 30 LONG. 120 45 30 NTS:
CLAIMS: Elbow 6
OPERATOR: Tillicum Gold Mines
AUTHOR: George, J.
DESCRIPTION: The property lies within the Quesnel Trough, a Mesozoic sequence of volcanic and sedimentary strata. The eastern boundary lies within Upper Triassic phyllites, argillites and minor greenstones. A major synclinal structure is flanked by anticlines through Crooked Lake and Mt. Perseus.

WORK DONE: SOIL 82: Au, As

REFERENCES: C247

Fremantle **

MINING DIV: Cariboo
LOCATION: LAT. 52 17 06 LONG. 120 53 46 NTS:
CLAIMS: Fremantle 1-4, Fremantle 6
OPERATOR: Ward, G.
AUTHOR: Drummond, A.
DESCRIPTION: A sequence of Upper Triassic fine to coarse argillite to conglomerate trend 100/70 degrees north across the property and is considered to be the western overturned limb of a westerly trending anticline. Analogous geochemical values of gold, arsenic, zinc, molybdenum were noted. Gold geochemical values range to 310 ppb.

WORK DONE: SOIL 253: multielement

REFERENCES: LINE 13.5 km

Jamboree **

MINING DIV: Cariboo
LOCATION: LAT. 52 19 06 LONG. 120 52 42 NTS:
CLAIMS: Jamboree 1, Jamboree 3-4
OPERATOR: Roote, G.
COMMODITIES: Gold, Copper
DESCRIPTION: Mesozoaic volcanic flow rocks between volcaniclastic sediments dip to the northeast. The volcanic unit has been intruded by a dioritic stock causing local hornfelsing. Moderately regional metamorphism has converted some of the sediments to phyllites. Gold is concentrated in east-west striking shear zones.

WORK DONE: MAG 18.0 km
SOIL 639: multielement
LINE 18.0 km
ROCK 31: multielement
EMGR 18.0 km: VLF

REFERENCES: A.R. 11382
M.I. 093 A 149-JAMBOREE

C **

MINING DIV: Cariboo
LOCATION: LAT. 52 43 12 LONG. 121 22 16 NTS:
CLAIMS: C-3
OPERATOR: Cassiar Res.
AUTHOR: Schmidt, U.
DESCRIPTION: The claim is underlain by metamorphosed sedimentary and igneous rocks of the Paleozoic (?) Omineca Crystalline Belt. Soil geochemistry identified anomalous multielement values.

WORK DONE: SOIL 74: multielement
GDL 1:5000
SILT 7: multielement

REFERENCES: A.R. 13154

C248
Quesnel Lake 093A

--

**** C1. Conch 1 ****

MINING DIV: Cariboo

LOCATION: LAT. 52 43 30 LONG. 121 26 05 NTS:

CLAIMS: C1 Conch 1

OPERATOR: Casamiro Res.

DESCRIPTION: The property is underlain by highly deformed metamorphosed, sedimentary and intrusive rocks of the Quesnel Crystalline Belt. No mineralization other than pyrite was found. Three geochemical soil anomalies were located.

WORK DONE:

SOIL 1:8:multielement
GEOX 1:6:000
SILT 1:8:multielement

REFERENCES:

--

**** CDW ****

MINING DIV: ***

LOCATION: LAT. 52 38 01 LONG. 121 32 38 NTS:

CLAIMS: Rose 2-4, Ast 1, Aud 1, Cat, Ux, Dq, Dq, Dq, E 2, Eas, Eas 3-7, Gsd, Hdr Fr.

AUTHOR: Fox, P.; Goddard, G.

COMMODITIES: Gold, Lead, Zinc

DESCRIPTION: The claims are underlain by Lower Mesozoic augite porphyry basalt and black granite.

WORK DONE:

PERD 899.6 m; 16 holes
GEOX 1:2500
TREN 96.0 m
ROCK 326:multielement
SAMP 133:multielement
LINE 12.0 km
TOP 1:12000, 1:2500, 1:1250
IDOL 7.7 km
SOIL 9:multielement

REFERENCES:

--

**** Moose ****

MINING DIV: Cariboo

LOCATION: LAT. 52 38 12 LONG. 121 38 54 NTS:

CLAIMS: Bullion 3 Fr.

AUTHOR: Richardson, P.

DESCRIPTION: The claims are underlain by Early Mesozoic volcanic and sedimentary rocks that have been intruded by syenite and diorite. In addition, the rocks have been altered to create an chlorite which are accompanied by pyrite, chloropyrite and gold.

WORK DONE:

PERD 1596.4 m; 29 holes

REFERENCES:

--

**** Bullion ****

MINING DIV: ***

LOCATION: LAT. 52 41 00 LONG. 121 42 16 NTS:

CLAIMS: Cariboo 1-4, Most Likely 3-4, Short Stuff 2-3, Sun, Most Likely

OPERATOR: E & B Ex.

AUTHOR: McNaughton, K.

DESCRIPTION: A sequence of Upper Triassic-Lower Jurassic volcanic and sedimentary rocks have been intruded by felsic plutons.

WORK DONE:

SOIL 1:375:multielement
LINE 31.0 km
MASS 61.8 km
EWSR 38.4 km: VLF
ROCK 28:multielement
PETR 19: samples
IDOL 11.8 km

REFERENCES:

--

**** Cariboo Most Likely ****

MINING DIV: Cariboo

LOCATION: LAT. 52 33 00 LONG. 121 38 18 NTS:

OPERATOR: E & B Ex.

AUTHOR: McNaughton, K.

DESCRIPTION: Copper, Gold, Silver, Iron

WORK DONE:

SAMP 176.3 km

REFERENCES:

--

**** Cariboo-Bell ****

MINING DIV: ***

LOCATION: LAT. 52 33 00 LONG. 121 38 18 NTS:

OPERATOR: E & B Ex.

AUTHOR: McNaughton, K.

DESCRIPTION: Copper, Gold, Silver, Iron

WORK DONE:

SAMP 176.3 km

REFERENCES:

--
Quesnel Lake 093A

--
LINE 179.5 km
ROCK: multielement
IPOL 19.3 km
GEOI 1.8000
SOIL: multielement
RTO 2.490.0 m:23 notes
REFERENCES: A. R. 00048-00326, 08538, 08539
K. I. 093A 008-CARIBOO-BELL

**** Prior ****

MINING DIV: Cariboo
LOCATION: LAT 52 35 54 LONG. 121 39 30
CLAIMS: Prior 1
OPERATOR: A & M. Ex.
AUTHOR: Gravel, V.
DESCRIPTION: The claim is underlain by volcanic rocks of the Upper Triassic
SOIL: multielement
REFERENCES:

**** Chaz 3 ****

MINING DIV: Cariboo
LOCATION: LAT 51 48 00 LONG. 121 54 00
CLAIMS: Chaz 3
OPERATOR: Redeyevue Gold Min.
AUTHOR: Allen, D.; MacQuarrie, D.
DESCRIPTION: The Chaz 3 claim lies within the Quesnel Trough, a northwest
undersand of dominantly Lower Mesozoic volcanic and volcanically
derived sedimentary rocks. Gold deposits are associated with complex
alkali intrusions that are coeval to the enclosing volcanics. Local
discoveries (QR and Cariboo Bell) are based on geochronological and
geochemically derived targets.
WORK DONE: LINE 16.5 km
REFERENCES:

**** Conzo ****

MINING DIV: Cariboo
LOCATION: LAT 52 42 00 LONG. 121 49 00
CLAIMS: GONZO
OPERATOR: A. P. M. Ex.
AUTHOR: Allen, D.; Gravel, J.
DESCRIPTION: The Conzo claim lies within the Quesnel Trough, a northwest
undersand of dominantly Lower Mesozoic volcanic and volcanically
derived sedimentary rocks. Gold deposits are associated with complex
alkali intrusions that are coeval to the enclosing volcanics. Local
discoveries (QR and Cariboo Bell) are based on geochronological and
geochemically derived targets. Soil samples contain up to 320 ppb
GOL.
WORK DONE: LINE 15.7 km
SOIL 16.5 multielement
IPOL 1.1 km
REFERENCES: A. R. 15035

**** Lae 1 ****

MINING DIV: Cariboo
LOCATION: LAT 52 42 00 LONG. 121 50 00
CLAIMS: Lae 1
OPERATOR: GEORGE RES.
AUTHOR: Allen, D.; Gravel, J.
DESCRIPTION: The Lae 1 claim lies within the Quesnel Trough, a northwest
undersand of dominantly Lower Mesozoic volcanic and volcanically
derived sedimentary rocks.
WORK DONE: LINE 16.5 km
SOIL 16.5 multielement
IPOL 1.1 km
REFERENCES: A. R. 15034

**** Passe ****

MINING DIV: Cariboo
LOCATION: LAT 52 42 00 LONG. 121 49 00
CLAIMS: Passe 1-4
OPERATOR: STEWART, D.
AUTHOR: Allen, D.; MacQuarrie, D.
DESCRIPTION: The Passe Claim Group lies within the Quesnel Trough, a northwest
undersand of dominantly Lower Mesozoic volcanic and volcanically
derived sedimentary rocks.
WORK DONE: MAG 2.8 km
EMGR 6.5 km:VLF
IPOL 2.1 km
LINE 7.8 km
ROAD 4.0 km
REFERENCES: A. R. 14107

**** QR ****

MINING DIV: Cariboo
LOCATION: LAT 52 40 12 LONG. 121 47 48
CLAIMS: QR 1
OPERATOR: DAVE EX. CAN.
AUTHOR: FOX, P.
COMMODITIES: Gold, Copper
DESCRIPTION: The QR deposit is situated near the eastern edge of the
Intermontane Belt in a northerly-trending volcanic-plutonic
assemblage of Lower Triassic-Lower Jurassic rocks. The QR deposit
comprises three separate zones lying in basaltic lavas, breccias
and sills situated at the contact with a series of younger
donorlastic sediments and within an alteration halo that surrounds
a small diorite stock. Host rocks are propylitized basalt, breccia

C251
and tuff composed of varying amounts of pyrite, calcite, epidote, chlorite, garnet and remnant volcanic fragments.

WORK DONE: 159 holes, 60,000 m
SAMP 159 holes

REFERENCES: A.R. 06079, 06417, 06730, 06967, 08572, 09538, 10592, 11486, 12588, 13754, 14860

M.I. 093A

C253
Quesnel Lake 093a

--

AUTHOR: Trifaux, R.

DESCRIPTION: The claims are underlain by Devonian-Mississippian phyllites, quartzite and mica schist.

WORK DONE: SOIL 20:multielement

REFERENCES: A.R. 13567.14582 quaPtzite ana
mica schist.

QC SOIL 20:multielement

The claims are underlain by Upper Triassic phyllite, argillite, quartzite and schist metamorphosed to greenschist facies. Extensive metamorphism of an ultramafic intrusion is the source of extensive talc occurrences.

WORK DONE: SAM 11:multielement

PITS 16 DIAD 31 4 m:6 holes.EX

REFERENCES: A.R. 14808 M.I. 093a 089-SOVEREIGN

**** Sovereign ****

MINING DIV: Cariboo ASSESSMENT REPORT 15622 INFO CLASS 4

LOCATION: LAT. 52 59 24 LONG. 121 53 36 NTS:

CLAIMS: Wm-CAL 1-5

OPERATOR: Trifaux, R.

DESCRIPTION: The claims are underlain by Jurassic-Triassic slaty argillite, schist and quartzite. Limestones occur in the northwest part of the claims.

WORK DONE: LINE 0.8 km

REFERENCES: ASSESSMENT REPORT 15544 INFO CLASS 4

**** Wm-Cal ****

MINING DIV: Cariboo ASSESSMENT REPORT 15421 INFO CLASS 4

LOCATION: LAT. 52 56 06 LONG. 121 02 42 NTS:

CLAIMS: Healey

OPERATOR: Porter, N.

DESCRIPTION: The claim is underlain by a Precambrian-Cambrian package of sediments including phyllites and argillites of the Issac Formation overlain by the massive Cunningham limestone which is overlain by metamorphosed detrital sediments of the Yankee Belle Formation. Anomalous lead values were obtained in soil and rock chip samples.

WORK DONE: SOIL 14:Pb, Ag, Au

REFERENCES: A.R. 07772 M.I. 093a 145-HT.KIMBALL

**** Bon ****

MINING DIV: *** ASSESSMENT REPORT 15422 INFO CLASS 4

LOCATION: LAT. 52 55 54 LONG. 121 21 54 NTS:

CLAIMS: Bon 1-2

OPERATOR: Dunfield, R.

DESCRIPTION: The claims are underlain by the Mississippian Downey Creek succession consisting of a northwest trending section of brown silicified phyllite with a limestone-synolite domal strathism developed within this northwest trend and contains parallel quartz-carbonate-sulphide veining. Soil geochemistry identified anomalous gold and silver values.

WORK DONE: SOIL 36:multielement

LINE 0.4 km

REFERENCES: A.R. 13085

**** Cariboo-Hudson ****

MINING DIV: Cariboo ASSESSMENT REPORT 15443 INFO CLASS 2

LOCATION: LAT. 52 53 00 LONG. 121 20 50 NTS:

CLAIMS: Black Martin 1-3, Jim, Mineral Lease M32, Sidewind 1-3

OPERATOR: Imperial Metals

AUTHOR: Guin, 3

COMMODITIES: Gold, Silver, Tungsten, Lead, Zinc

DESCRIPTION: Paleozoic Snowshoe Formation of metasedimentary rocks hosts four principal types of mineralization on the property. There are mineralized quartz veins, replacement deposits of massive pyrite, massive lenses of galena and pyrrhotite, and lenses of quartz-sericite.

WORK DONE: DIAD 1133 0 m:24 holes.NO

SAMP 309 C 34 Pb, Zn, Ag, Au, As

TREN 1285 0 m:25 trenches UNOV 500 x portal rehab.

REFERENCES: A.R. 08281, 11916.16262 M.I. 093a 071-CARIBOO-HUDSON

**** Cariboo-Hudson Peter Gulch ****

MINING DIV: Cariboo ASSESSMENT REPORT 15262 INFO CLASS 2

LOCATION: LAT. 52 53 12 LONG. 121 19 48 NTS:

CLAIMS: Black Martin 1-3, Cunningham 1-3, Cunningham Ext. 1-2, Cutter 1-2

OPERATOR: Imperial Metals

AUTHOR: Delaney, P

COMMODITIES: Gold, Silver, Tungsten, Lead, Zinc

DESCRIPTION: Interbedded quartzites, sericite schists, limestones and chlorite schists strike northwest and dip 70 to 90 degrees northeast. Several systems of quartz veins cut these rocks: some veins are gold bearing. Roughly parallel trending veins: Shasta, Hudson and BGs occupy
steeply dipping faults. Gold mineralization is associated with sulphides, mostly pyrite, and is concentrated along steeply plunging ore shoots. Preliminary indications suggest that massive pyritic "replacement" deposits may occur along a limestone horizon.

WORK DONE:
DIL 38: multielement
ROCK 102: multielement
DIAD 239 C 212 holes, NC
SAMP 188: multielement

REFERENCES:
A.B. 0291, 0816, 0844
M.I. 029A 071-CARIBOO-HUDSON; 029A 093-PETER GULCH

**** Cheryl ****

MINING DIV: Cariboo
LOCATION: LAT. 52 56 30 LONG. 121 26 30 NTS:
CLAIMS:
OPERATOR: Steffen, W.
AUTH: Myers, W.
DESCRIPTION: The property is underlain by the Cariboo series or Yanks Peak quartzite, pyrite and limestone. The northernly trending mineralized fault cuts through the center of the property. Strike of the bedding is northwest. Anticlininal axis is southwest of the drill hole. The core contained numerous quartz veins to over 30 centimeters wide, but very little alteration or pyrite mineralization.

WORK DONE:
DIAD 89.1 f 1 hole, 40

REFERENCES:

**** J-1 ****

MINING DIV: Cariboo
LOCATION: LAT. 52 48 00 LONG. 121 26 50 NTS:
CLAIMS:
OPERATOR: Cascadia Mines & Res.
AUTHOR: Archambault, R.
DESCRIPTION: The property is underlain by shaly clastics and carbonates of the Barkerville terrane. They have been metamorphosed to green schist facies, and highly deformed. Gold mineralization in the Cariboo occurs in two different settings: 1) replacement in carbonates 2) gold in quartz veins. The property has potential for both types.

WORK DONE:
SAMP 22: Au, Ag, Cu, Zn
DIAD 533.7 m 5 holes, NO

C257

**** Sylvain-Langis ****

MINING DIV: Cariboo
LOCATION: LAT. 52 48 00 LONG. 121 17 00 NTS:
CLAIMS:
OPERATOR: Harvey Creek Gold Placers
AUTHOR: Burton, A.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Barkerville terrane of Late Proterozoic and Paleozoic age with a subsequence labelled "Paleozoic Gold-Rich Streets". Placer gold and lode gold occur on the property. Mineral assemblages contain anomalous values of silver, lead, zinc and tungsten.

WORK DONE:
TREN 1000.0 m 2 trenches
ROAD 4 0 km rehab
MIN 28: Au, Ag, Pb, Zn, WO
REFERENCES: A.R. 11580
N.I. 029A 111-SYLVAIN-LANGIS

**** Zone ****

MINING DIV: Cariboo
LOCATION: LAT. 52 56 30 LONG. 121 26 30 NTS:
CLAIMS:
OPERATOR: Rise Res.
AUTHOR: Decarie, R.
COMMODITIES: Gold
DESCRIPTION: The property is underlain by the Snowshoe Formation and the Midas Formation. The Snowshoe Formation consists of grey, brown and green sericitic quartzite and pebble conglomerate. The Midas Formation is black quartzite, slate, argillite and siltstone. There is a north-south trending fault across the property.

WORK DONE:
ENAR 173.0 Dr: VLF
NAGA 173.0 km
REFERENCES: N.I. 029A C59-ZONE

Queensel Lake

REFERENCES:

**** Cole ****

MINING DIV: Cariboo
LOCATION: LAT. 52 28 18 LONG. 122 16 24 NTS:
CLAIMS:
OPERATOR: Gibraltar Mines
AUTHOR: Syvain, G.
COMMODITIES: Copper, Molybdenum
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote, and carbonates. Most rocks are an inner border phase of the triassic granite Mount Molykin, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production; these are the
Pollyanna, Granite Lake, Gibraltar East, and Gibraltar West zones.

The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: DIAD 1394.3 m, 9 holes, NO
REFERENCES: A.R. 07367, 07386, 07387, 10283, 10585
M.I. 0338 CB-12LE

* * * Gibraltar East * * *

MINING DIV: Cariboo
LOCATION: LAT 52 36 54 LONG. 122 17 18 NTS:
CLAIMS: Zephyr 6, Zephyr 8, Zephyr 13
OPERATOR: Gibraltar Mines
AUTHOR:
COMMODITIES: Copper, Molybdenum, Silver
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote, and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production; these are the Pollyanna, Granite Lake, Gibraltar East, and Gibraltar West zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: DIAD 145.8 m, 5 holes, NO
REFERENCES: A.R. 00601, 01680, 02425, 07387, 07438, 11290
M.I. 0338 CB-12-GIBRALTAR EAST

* * * Green Bud 7 * * *

MINING DIV: ***
LOCATION: LAT 52 28 24 LONG. 122 17 18 NTS:
CLAIMS: Bud 7
OPERATOR: Gibraltar Mines
AUTHOR:
COMMODITIES: Copper, Molybdenum
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote, and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production; these are the Pollyanna, Granite Lake, Gibraltar East, and Gibraltar West zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: DIAD 133.3 m, 11 holes, NO
REFERENCES: M.I. 0398 056-BUD 7:0938 056-GREEN

* * * Creede * * *

MINING DIV: Cariboo
LOCATION: LAT 52 40 00 LONG. 122 01 00 NTS:
CLAIMS: Creede

CREDE
**** Gibraltar East ****

MINING DIV: ***
LOCATION: LAT. 62 30 42 LONG. 122 17 24 NTS:
CLAIMS: A1 21 Fr. Zephyr 11-13, Zephyr 4
AUTHOR: Gibraltar Mines
COMMODITIES: Copper, Molybdenum, Silver
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production: three are the Pollyanna, Granite Lake, Gibraltar East and Gibraltar west zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: DIAD 3100 5 m; 14 holes, NQ
SAMP 576 Cu, Mo
REFERENCES: A.R. 00486, 01841, 01980, 02425, 07387, 07438, 11290, 15520
M.I. 0038 O12-GIBRALTAR EAST

**** Gibraltar East ****

MINING DIV: Cariboo
LOCATION: LAT. 62 31 00 LONG. 122 17 00 NTS:
CLAIMS: Zephyr 7
OPERATOR: Gibraltar Mines
AUTHOR: Iron, A
COMMODITIES: Copper, Molybdenum
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production: these are the Pollyanna, Granite Lake, Gibraltar East, and Gibraltar west zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: DIAD 150.6 m; 2 holes, NQ
SAMP 84 Cu, Mo
REFERENCES: A.R. 01841, 01980, 02425, 07387, 07438, 10567, 11290, 12452.
M.I. 0038 O12-GIBRALTAR EAST

**** Gibraltar Mine ****

MINING DIV: ***
LOCATION: LAT. 62 31 00 LONG. 122 16 00 NTS:
CLAIMS: GS 17 06 10, HT 14 Fr.
OPERATOR: Gibraltar Mines
AUTHOR: Iron, A
COMMODITIES: Copper, Molybdenite
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production: these are the Pollyanna, Granite Lake, Gibraltar East, and Gibraltar west zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: SAMP 1500; Cu, Mo
DIAD 682.8 m; 3 holes, NQ
REFERENCES: A.R. 00236, 00487, 08129, 08185, 08222, 08326, 08804
M.I. 0038 009-GIBRALTAR MINE

**** ZE ****

MINING DIV: Cariboo
LOCATION: LAT. 62 37 24 LONG. 122 18 06 NTS:
CLAIMS: ZE 8
OPERATOR: Gibraltar Mines
AUTHOR: Byasoth, C.
DESCRIPTION: Chalcopyrite, pyrite and sparse molybdenite occur in quartz veins accompanied by various combinations of chlorite, sericite, epidote, and carbonate. Host rock is an inner border phase of the Triassic Granite Mountain pluton, which has undergone pervasive saussurite-chlorite alteration. Four economic zones have been recognized and are in various stages of development and production: these are the Pollyanna, Granite Lake, Gibraltar East, and Gibraltar west zones. The general trend of deformation, alteration and mineralization is westerly and northwesterly.

WORK DONE: SAMP 150; Cu, Mo
DIAD 310 m; 3 holes, NQ
REFERENCES: A.R. 15019

**** Bob ****

MINING DIV: ***
LOCATION: LAT. 62 38 00 LONG. 123 37 30 NTS:
CLAIMS: Bob 4
OPERATOR: Bob 4
AUTHOR: Nanaimo, which is working on the mine
COMMODITIES: Gold, Silver
DESCRIPTION: Lower Cretaceous (Skene Group) conglomerate, sandstone and argillite dipping 15 degrees southwest are cut by quartzfeldspar felsic dikes and sills and overlain by tectonic basalt. Two distinct fracture systems trend north-northwest and are spaced at 200 m with near-strike dips. An alteration zone 50 m by 1000 metres includes silicas, feldspar, clay, chlorite, molybdenite, pyrite, molybdenite, hematite, pyrite, molybdenite, and minor arsenopyrite, stibnite and galena.

WORK DONE: DIAD 761 m; 14 holes
PERF 247 6 m; 16 holes
REFERENCES: A.R. 12128, 12744, 13476, 13985
M.I. 0038 054-B08
**** McKay ****

MINING DIV: Cariboo
LOCATION: LAT 52 59 06 LONG. 123 38 42 NTS:
CLAIMS: McKay
OPERATOR: Lac Min
AUTHOR: Brown, A.
DESCRIPTION: The claim is underlain by Lower Cretaceous sediments in contact (Fault?) with Eocene Endako Group basalts.
WORK DONE: IPOL 3.8 km LINE 4.0 km
SOIL 40: Au, Ag, As, Sb, Hg
REFERENCES: ***

**** Naz ****

MINING DIV: Cariboo
LOCATION: LAT 52 00 18 LONG. 123 58 42 NTS:
CLAIMS: Naz, Naz. Naz 4-5
OPERATOR: Newmont Ex. of Can.
AUTHOR: Limon, H.
DESCRIPTION: The property is underlain by a northerly trending sequence of Tertiary Beda Lake group volcanics, which are underlain by Lower Cretaceous Skeena Group sediments. The oldest exposed unit, the sediments, are conglomerates and siltstones. They are slightly altered by pyroclastic, limonite, hematite and clay. The overlying volcanics are reddish to purple basalts.
WORK DONE: MAGE 38.4 km LINE 41.4 km
REFERENCES: ***

**** Desc ****

MINING DIV: Cariboo
LOCATION: LAT 52 58 24 LONG. 122 14 12 NTS:
CLAIMS: Dec 11-12
OPERATOR: Moche Res.
AUTHOR: DiPietro, F.: Brannen, J.C.
DESCRIPTION: The claims are underlain by Upper Triassic Takla Group mafic to intermediate volcanic rocks and argillaceous sedimentary rocks which are intruded by coeval alkaline and Early Cretaceous quartz monzonites and diorites.
WORK DONE: EMAS 79.0 km MAGE 79.0 km
REFERENCES: ***

**** Naz ****

MINING DIV: Cariboo
LOCATION: LAT 52 58 48 LONG. 122 13 00 NTS:
CLAIMS: Dec 1-4, Dec 6, Dec 10
OPERATOR: Gilmer Res.
REFERENCES: A.R. 16022

**** Nyw ****

MINING DIV: Cariboo
LOCATION: LAT 52 47 00 LONG. 122 04 00 NTS:
CLAIMS: Nyw 1-5
OPERATOR: Kangle Res.
AUTHOR: Bajdis, C.; Falconer, J.
DESCRIPTION: The claims are underlain by Upper Triassic Takla Group mafic to intermediate volcanic rocks and argillaceous sedimentary rocks which are intruded by coeval alkaline rocks and Early Cretaceous quartz monzonites and diorites.
WORK DONE: LINE 118.5 km MAGE 102.5 km ROCK 21: multi element PETR 11 thin sections GEOL 1:10,000 HWIN 7: multi element EMGR 102.5 km VLF
REFERENCES: A.R. 16022

**** Pal ****

MINING DIV: Cariboo
LOCATION: LAT 52 57 42 LONG. 122 06 12 NTS:
CLAIMS: Pal 1-4
OPERATOR: Palla Res.
AUTHOR: Hermansen, L.; Kovacs, J.
DESCRIPTION: No geologic mapping has been done on the Nyland Lake property. However, the area to the east has been mapped by R.B. Campbell of the Geological Survey of Canada and compiled as Map 9-1981. This work suggests that the Nyland Lake property may be underlain by Upper Triassic to Lower Jurassic age Takla Group volcanics.
WORK DONE: EMAS 60.0 km MAGE 60.0 km
REFERENCES: ***

**** DC ****

MINING DIV: Cariboo
LOCATION: LAT 52 57 42 LONG. 122 16 50 NTS:
CLAIMS: DC 2-7
OPERATOR: Kangle Res.
AUTHOR: Decarle, R.
DESCRIPTION: Underlain by either Permin-Pennsylvanian Cache Creek Group chert, argillite, or limestone, or Lower Jurassic Hazelton Group mafic volcanics.
WORK DONE: MAGA 142.0 km EMAG 142.0 km; HLEM, VLF.
REFERENCES: A.R. 14290, 14747.

*** DC ****
MINING DIV: *** ASSESSMENT REPORT 16546 INFO CLASS 3
LOCATION: LAT. 52 58 18 LONG. 122 15 06 NTS:
CLAIMS: DC 2-3
OPERATOR: Kamuela Res.
AUTHOR: Gonzalez, R.
DESCRIPTION: No geological mapping has yet been done on the property. The property area may be underlain by either Permin-Pennsylvanian Cache Creek Group chert, argillite, and limestone or Upper Triassic Takla Group mafic volcanics.
WORK DONE: SOIL 44; multielement
LINE 18.3 km MAG 18.3 km EMAG 18.3 km
REFERENCES: A.R. 14290. 14747, 16103.

Anchin Lake

*** Cathy J ****
MINING DIV: *** ASSESSMENT REPORT 16288 INFO CLASS 3
LOCATION: LAT. 52 30 18 LONG. 125 26 50 NTS:
CLAIMS: Cathy J 1-2
OPERATOR: Rozek, O.
AUTHOR: Rozek, O.
DESCRIPTION: The claims are underlain by Jurassic diorite, chlorite schist and quartz monzonite. Bearrock is extremely altered.
WORK DONE: SOIL 175; Cu, Ag, Au
ROCK 23; multielement
SILT 2; Cu, Ag, Au
PROS 1; 1000
REFERENCES:

Bella Coola

*** Yel ****
MINING DIV: Skeena ASSESSMENT REPORT 16099 INFO CLASS 4
LOCATION: LAT. 52 08 24 LONG. 127 58 24 NTS:
CLAIMS: Yel 1-3; Yel P
OPERATOR: United Min. Services
AUTHOR: Shearer, J.

Bella Coola Chief

DESCRIPTION: The claims are underlain by flat-lying rhyolite and rhyolite breccia of the Tertiary Bella Bella Formation. Widespread hydrothermal activity was noted in the form of pyrite cemented breccias and abundant quartz veining.
WORK DONE: PROS 1; 1000
SILT 29; multielement
ROCK 21; multielement
REFERENCES:

*** Bella Coola Chief ****
MINING DIV: *** ASSESSMENT REPORT 15887 INFO CLASS 3
LOCATION: LAT. 52 32 00 LONG. 126 32 30 NTS:
CLAIMS: Bella Coola Chief, Gin, Queen, Ryn, Rye, Sihan, Vocka, whisky
OPERATOR: Green Lake Res.
AUTHOR: Day, W.C.
COMMODITIES: Silver, Copper, Gold
DESCRIPTION: Sulphide minerals (chalcopyrite, pyrite) are hosted in olivine gabbro porphyry dykes which intrude andesites. Quartz veins and quartz-feldspar dykes also intrude the andesite but are largely barren in sulphide content as are the andesites themselves.
WORK DONE: SOIL 355, Cu, Au
LINE 90 km
EMAG 90 km
REFERENCES: M.I. 0030 009-BELLA COOLA CHIEF

Nordean

*** Nordean ****
MINING DIV: Skeena ASSESSMENT REPORT 19446 INFO CLASS 4
LOCATION: LAT. 52 38 18 LONG. 127 08 30 NTS:
CLAIMS: Nordean A-B
OPERATOR: Spellman, H.
AUTHOR: Spellman, H.
DESCRIPTION: The claims are underlain by Middle Jurassic diorites.
WORK DONE: SAMPLE 1; 1000
REFERENCES:

Whitecastle Lake

DESCRIPTION: Nordean B-C
REFERENCE:

*** Beaver ****
MINING DIV: *** ASSESSMENT REPORT 16175 INFO CLASS 4
LOCATION: LAT. 53 26 06 LONG. 127 43 12 NTS:
CLAIMS: Beaver 6-8
OPERATOR: Whitesail Ventures
AUTHOR: Horne, E.; Meyers, E.
DESCRIPTION: Mesozoic or Paleozoic mafic to felsic metavolcanics, meta-sedimentary schists and amphibolitic gneisses are intruded by Upper Cretaceous Coast Range granite rocks and quartz-feldspar gneisses.
WORK DONE: MGAS 1; polished section
ROCK 7; Au
GEOL 1; 1000
MINING DIV: Skeena ASSESSMENT REPORT 15677 INFO CLASS 4
LOCATION: Lat. 53 29 48 Long. 127 41 18 NTS:
CLAIMS: Beaver 2, Beaver 3-7
OPERATOR: Whitesail Ventures
AUTHOR: Horne, E.; Meyers, E.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: The Claims are underlain by Lower Jurassic Hazelton Group tuffs, metasediments and diorite in contact with Upper Cretaceous Coast Range intrusive. Gold occurs in diorite in quartz veins.
WORK DONE: GESL 1:10 000, 1:5000, 1:1000
EGR 27 Au, Ag, Cu
ENG 1.0 km VLF
MAG 0.0 km
REFERENCES: M.I. 093E 095-BEAVER (SMITH-NASH): 093E 014-BEAVER 7

MINING DIV: Coles ASSESSMENT REPORT 15677 INFO CLASS 4
LOCATION: Lat. 53 27 24 Long. 127 11 06 NTS:
CLAIMS: Cole J-IV
OPERATOR: QPX Min.
AUTHOR: Lee, L.
COMMODITIES: Gold, Silver
DESCRIPTION: Mineralization on the property comprises numerous quartz veins, stringers and stockworks, varying from a few centimetres in width up to 4 metres. Sulphide content is usually low. Extensive propylite is associated with the veins and argillic alteration is common. High grade mineralization is hosted in lapilli tuffs of the Lower Jurassic Hazelton Group. Age of the mineralization is likely Upper Cretaceous to Early Jurassic.
WORK DONE: GESL 1:5000
SUL 126: multielement
SILT 1:1: multielement
ROCK 74: multielement
LINE 63.0 km
REFERENCES: A. S. 12686, 14831
W. I. 093E 11G-COLES

MINING DIV: Orient ASSESSMENT REPORT 15980 INFO CLASS 3
LOCATION: Lat. 53 32 32 Long. 127 14 00 NTS:
CLAIMS: Mark-X, Ryan
OPERATOR: Westbank Res.
AUTHOR: Parkinson, J.; Pezzot, E.
COMMODITIES: Copper, Molybdenum
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanics. Remnants of Kasanka Group metavolcanics and porphyry laccoliths are present in the north central portion of the claims. A 2 kilometer elliptical body of Cretaceous quartz diorite is mineralized with magnetite and contains zones of sericite alteration.
WORK DONE: EMAB 155.0 km VLF
MAGA 155.0 km
REFERENCES: A. R. 01073.02866.093C0 014-FAB 49.093E 044-FAB 45
**** Play ****

MINING DIV: *** ASSESSMENT REPORT 16146 INFO CLASS 3
LOCATION: LAT 59 31 00 LONG. 127 03 12 NTS:
CLAIMS: PLAY 1-3
OPERATOR: Marley Mines
AUTHOR: Richards, T.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanics intruded by dikes and small plugs. Shear zones with associated quartz veins, stockworks, silicification and/or breccia systems contain anomalous precious metal mineralization.
WORK DONE: PROS 1 5000
TREN 200 m m: 8 trenches
ROCK 151 multielement
SOIL 1051 multielement
SILT 131 multielement
REFERENCES: A R. 12326
M. I. 093E 096-PLAY

**** Hope ****

MINING DIV: *** ASSESSMENT REPORT 15563 INFO CLASS 3
LOCATION: LAT 59 36 36 LONG. 127 36 24 NTS:
CLAIMS: Hope 2, Hope S, Hope 7
OPERATOR: High Hope Properties
AUTHOR: Kallock, P.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by volcanic rocks of the Lower Jurassic Hazelton Group and granitic and dioritic rocks possibly related to Eocene Nanaimo Intrusions. Tetramendrite-bearing volcanic breccia and quartz-galena and quartz-chlorapatite veins containing gold and silver values occupy north-trending structures.
WORK DONE: LINE 12.0 km
TREN 131 0 m: 33 trenches
ROCK 68 Au, Ag
PETS 2 thin sections
REFERENCES: A R. 13374
M. I. 093E 108-HOPE

**** BC ****

MINING DIV: *** ASSESSMENT REPORT 15640 INFO CLASS 1
LOCATION: LAT 59 36 36 LONG. 127 46 12 NTS:
CLAIMS: Hope 2, Hope S, Hope 7
OPERATOR: Newmont Ex
AUTHOR: Meek, D.
COMMODITIES: Lead, Zinc, Silver, Gold, Copper
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanic rocks consisting of argillic tuffs and flows. To date 14 mineralized quartz-carbonate-in-filled fault zones with variable grade galena, sphalerite, chalcopyrite, pyrite, gold and silver have been
C260

White Hall Lake

WORK DONE: SED 31 multielement
SAND 377 Pb, Zn, Ag, Au, Cu
GEO 110000 1 250
ROCK 51 multielement
TREN 1216 0 m: 79 trenches
ROCK 413 Au, Ag
DIAD 1500 0 m: 17 holes EX
REFERENCES: A R. 03261, 03262, 07022, 07060, 11163, 11764
M. I. 033E 611-PC

**** West View ****

MINING DIV: *** ASSESSMENT REPORT 15576 INFO CLASS 4
LOCATION: LAT 53 45 11 LONG. 127 10 30 NTS:
CLAIMS: Win 1-4
OPERATOR: Atma Res
AUTHOR: Hamilton, R.
COMMODITIES: Gold, Silver, Zinc, Lead
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanic and sedimentary rocks with high grade precious metals in massive sulphide veins.
WORK DONE: SED 32 multielement
ROCK 22 multielement
REFERENCES: M 1. 093E CTA-WEST VIEW

**** West View ****

MINING DIV: *** ASSESSMENT REPORT 15786 INFO CLASS 4
LOCATION: LAT 53 45 16 LONG. 127 10 42 NTS:
CLAIMS: Win 1-4
OPERATOR: Hamilton, R.
AUTHOR: Hamilton, R.
COMMODITIES: Gold, Silver, Zinc, Lead
DESCRIPTION: Steeply dipping quartz veins mineralized with pyrite, sphalerite and chalcopyrite occur in Lower Jurassic Hazelton Group volcanic flows and tuffs.
WORK DONE: ROCK 15 multielement
PROS 1120000
REFERENCES: M 1. 093E CTA-WEST VIEW

**** Tet ****

MINING DIV: *** ASSESSMENT REPORT 15803 INFO CLASS 4
LOCATION: LAT 53 50 30 LONG. 126 58 42 NTS:
CLAIMS: Tet
OPERATOR: Chelford, J.
AUTHOR: Chelford, J.
COMMODITIES: Copper, Zinc, Lead, Silver
DESCRIPTION: The claims are underlain by volcanic and sedimentary rocks.
WORK DONE: DIAD 33 2 m: 2 holes EX
REFERENCES: A R. 04880, 07101, 09072, 08248
M. I. 093E 086-TET
**** Chief ****

MINING DIV: ***
LOCATION: LAT. 53 09 57 LONG. 124 59 59 NTS:
CLAIMS: Chief
OPERATOR: Chief
AUTHOR: Rozek, D.
DESCRIPTION: Mt. Davidson, at the southern end of the Pawnee Range, consists of a volcanic pile of rhyolite, andesite, argillite and their associated tuffs and breccias covered by glacial drift at lower elevations. These are identified as Tertiary Ootsa Lake Group or possibly Lower Jurassic Hazelton Group.
WORK DONE: SOIL E7:Ag,As,Cu,Zn,Pb
ROCK 3:Ag,As,Cu,Zn,Pb
PROD 2:10 000
REFERENCES: 0
TRAIL 2.5 km

**** Dave ****

MINING DIV: Onimexa
LOCATION: LAT. 53 10 00 LONG. 124 52 00 NTS:
CLAIMS: Dave
OPERATOR: Rozek, D.
AUTHOR: Rozek, D.
DESCRIPTION: Mt. Davidson at the southern end of the Pawnee Range consists of a volcanic pile of rhyolite, andesite, argillite and associated tuffs and breccias covered by glacial drift from the west. The rocks are identified as Tertiary Ootsa Lake Group or possibly Lower Jurassic Hazelton Group.
WORK DONE: SOIL 100:Cu,Zn,Pb,Ag
PROD 1:10 000
REFERENCES: A.R. 12963, 16403

**** Mary-Lou ****

MINING DIV: Onimexa
LOCATION: LAT. 53 24 24 LONG. 124 50 12 NTS:
CLAIMS: Mary-Lou
OPERATOR: Rozek, D.
DESCRIPTION: The claim appears to be underlain by volcanic and sedimentary rocks. Soil and rock sample results are inconclusive.
WORK DONE: SOIL 38:Cu,Ag,Au
ROCK 13:Cu,Ag,Au
REFERENCES: A.R. 12863

**** Jay Bryd ****

MINING DIV: ***
LOCATION: LAT. 53 11 12 LONG. 125 25 42 NTS:
CLAIMS: Jay Bryd
OPERATOR: Rozek, D.
AUTHOR: Rozek, D.
DESCRIPTION: The claim is underlain by Tertiary Ootsa Lake Group rhyolite. Soil survey results are inconclusive.
WORK DONE: SOIL 44:Ag, Au
ROAD 10 km
LINE 15.0 km
REFERENCES: 0

**** Pig ****

MINING DIV: Onimexa
LOCATION: LAT. 53 27 24 LONG. 124 50 12 NTS:
CLAIMS: Pig,Pig 2-5
OPERATOR: LAC WIR
AUTHOR: Turner, R.
DESCRIPTION: Andesite, probably belonging to the Lower Jurassic Hazelton Group underlies most of the claims. A slightly pyritic outcrop returned an anomalous gold value.
WORK DONE: LINE 34.6 km
MBIN 1:Ag,As,Se,Sn,Hg
EMAR 40.0 km:VLVL
ROCK 1:Ag,As,Se,Sn,Hg
SOIL 5:Ag,As,Se,Sn,Hg
SILT 2:Ag,As, Se,Sn,Hg
REFERENCES: A.R. 01886, 01889

**** Trout ****

MINING DIV: ***
LOCATION: LAT. 53 39 12 LONG. 124 44 3C NTS:
CLAIMS: Trout 1-3,Trout 13,Trout 5
OPERATOR: Welcome North Mines
AUTHOR: Samson, A.
DESCRIPTION: The claims are underlain by intermediate to felsitic volcanic rocks of the Eocene Ootsa Lake Group. Multi-stage explosive deposits are developed within andesites and theesites. Stililification of the rocks is characterized by bands of sericite filling of voids. Mineralization is associated with stililification.
WORK DONE: TREN 674.0 m; 17 trenches
SOIL 119:multielement
ROAD 0.6 km
RTO 767.0 m; 13 holes

C272
SAMP 671: Au
GEOL 1:1000, 1:200
ROCK: 089: Au

REFERENCES: M.I. C89F 044-TROUT

** Octsa 4**

MINING DIV: Ommeck
LOCATION: LAT 53 32 02, LON 125 10 41
CLAIMS: Otse 1
OPERATOR: Newmont Ex. of Can.
AUTHOR: Neeces, J.
COMMODITIES: Fluorite

DESCRIPTION: An andesitic stock intrudes felsic volcanics of late Tertiary age and a quartz-fluorite vein system. 75 by 300 metres occurs in the stock and adjacent rhyolite near the intersection of two faults trending northerly and northeasterly. No geologic or stratigraphic relations were determined in the volcanics.

WORK DONE: ROCK 20: multielement
LINE 12.7 km

REFERENCES: M.I. C89F 051-00TS

** Rnuh 4**

MINING DIV: Cariboo
LOCATION: LAT 53 32 02, LON 125 10 41
CLAIMS: Rnuh 1-3
OPERATOR: Punakata Ltd.
AUTHOR: Howard, W.

DESCRIPTION: The property is underlain by a rhyolite flow and tuffs of the Otsema Lake Group that are unconformably overlain by basalt flows of Oligocene-Miocene age.

WORK DONE: ROCK 30: multielement
TREN 1040.0 m: 21 trenches

REFERENCES: Prince George C930

** Bar 4**

MINING DIV: Cariboo
LOCATION: LAT 53 32 36, LON 125 30 35
CLAIMS: Bar 1-5
OPERATOR: Punakata Ltd.
AUTHOR: E. Pezzat

DESCRIPTION: The Bar claim group is situated near the eastern edge of the Intermontane Belt on a northwesterly-trending assemblage of Upper Triassic-Lower Jurassic volcanic rocks referred to as the Quesnel Trough. Outcrop on the property is very limited but it is inferred that the property is underlain by Upper Triassic sediments.

WORK DONE: EMAB 168.0 km: VLF

REFERENCES: A.R. 14986, 15599

** Bau 4**

MINING DIV: Cariboo
LOCATION: LAT 53 32 30, LON 125 10 00
CLAIMS: Bau 1-4
OPERATOR: Eureka Res.
AUTHOR: Lebreton, D.

DESCRIPTION: An ultramafic intrusive lying within a package of sediments and volcanics of Paleozoic age (Cariboo Group) has a number of anomalous gold values (soils) associated with it. Quist carbonate veining (some sericite) and argillite alteration of the Cariboo Group has occurred near the contact of the intrusive. Further work is planned.

WORK DONE: GEOL 1:5000
SOIL 9:10: Au
PETR. 4 samples

REFERENCES: A.R. 15113

** Boo 4**

MINING DIV: Cariboo
LOCATION: LAT 53 30 12, LON 125 15 00
CLAIMS: Boo 9
OPERATOR: Duke Min.
AUTHOR: Pezzat, E.

DESCRIPTION: Grits overlie predominates the area which is projected as being underlain by northwesterly tending Upper Triassic-Lower Jurassic Takla Group andesite flows, tuffs, agglomerate, basalt, breccia and argillite.

WORK DONE: EMAB 50.0 km: VLF

REFERENCES: NAGA 50.0 km

C274
**** Cottonwood ****

MINING DIV: Cariboo
LOCATION: LAT. 53 08 00 LONG. 122 15 00 NTS:
CLAIMS: CR. 265, 269, 272-4, NO. 0
OPERATOR: Galiant Gold Minas
AUTHOR: Hayashi, T.
COORDINATES: PLAT 4, SD, BLK 15, LS 25
DESCRIPTION: The claims cover an erosional window through Miocene Plateau basalts in which the oldest exposed bedrock consists of a series of metatsonomorphized Permian-Pennsylvanian Cache Creek Group brittle and anhydrous sediments. The metasediments have been hornfelsed by a complex multi-phase intrusive body composed dominantly of porphyritic quartz diorite. The contact between the intrusive and the sediments commonly contains pyrite and is usually highly stilified. All quartz veins known in the area appear to be associated with stilified zones.
WORK DONE: MAGA 150.0 km
EMAB 150.0 km: VLF
REFERENCES: M.J. 0399 025-COTTONWOOD

**** Handy ****

MINING DIV: Cariboo
LOCATION: LAT. 53 06 18 LONG. 122 15 00 NTS:
CLAIMS: Handy 11-IV
OPERATOR: Trio Gold
AUTHOR: Roed. M.
DESCRIPTION: Dyke-like and vein-like bodies of quartz veins are scattered. The claims are underlain by Jurassic-Triassic sediments, metavolcanics and volcanics in a faulted, partly overturned syncline. Mineralization mainly consists of pyrite in quartz veins in scattered locations.
WORK DONE: MAGA 145.0 km
EMAB 145.0 km: VLF
REFERENCES: A.R. 14862

**** Mary ****

MINING DIV: Cariboo
LOCATION: LAT. 53 13 00 LONG. 122 12 00 NTS:
CLAIMS: Mary 2-14
OPERATOR: Silver Spectre Res.
AUTHOR: Decarie, R.
DESCRIPTION: Outcrop is exposed in creek valleys and in the Ahnau Highland area. The exposure consists of Upper Triassic-Takla Group, porphyritic andesite breccia. A major thrust fault cuts across the eastern edge of the property.
WORK DONE: EMAB 400.0 km: VLF, HLEM
REFERENCES: A.R. 15822, 15875

C275

**** Mary ****

MINING DIV: Cariboo
LOCATION: LAT. 50 12 00 LONG. 122 15 00 NTS:
CLAIMS: Mary 2-5, Mary 5-15
OPERATOR: Silver Spectre Res.
AUTHOR: Holgren, L.; Kowalchuk, J.
DESCRIPTION: The Mary property is covered by Quaternary till and clay. Outcrop is exposed in creek valleys and in the Ahnau Highland area. The exposure consists of Upper Triassic-Takla Group, porphyritic andesite breccia. A major thrust fault cuts across the eastern edge of the property. Up to 700 ppt gold in stream sediments coincide with two circular magnetic anomalies.
WORK DONE: ROCK 30, multilevel
LINE 27.0 km
HNM 47, multilevel
EMAG 27.0 km: VLF
SILT 27.0 km: VLF
SILT 27.0 km
REFERENCES: A.R. 15822

**** Mary ****

MINING DIV: Cariboo
LOCATION: LAT. 50 08 18 LONG. 122 05 42 NTS:
CLAIMS: Mary 1, Mary 15-16, Mary 17 Fr.
OPERATOR: Silver Spectre Res.
AUTHOR: Holgren, L.; Kowalchuk, J.
DESCRIPTION: The claims are covered by Quaternary till and clay. Outcrop is exposed in creek valleys and in the Ahnau Highland area. The exposure consists of Upper Triassic-Takla Group, porphyritic andesite breccia. A major thrust fault cuts across the eastern edge of the property.
WORK DONE: EMAG 80.0 km
REFERENCES: A.R. 15822

**** U, Me ****

MINING DIV: Cariboo
LOCATION: LAT. 53 09 12 LONG. 122 09 54 NTS:
CLAIMS: Me, U
OPERATOR: White Geochemique
AUTHORS: Hermann, R.G.; White, G.E.
DESCRIPTION: A major structural fault or contact occurs through the U claim. The claim is underlain by Upper Triassic-Lower Jurassic Takla Group pyrite and slate. Outcrops of Upper Triassic-Lower Jurassic Nicola Group, eugite porphyry, basaltic tuffs, flows and conglomerates with argillite and local andesitic basalt are found on the east side of the Me claim.
WORK DONE: EMAG 32.0 km: VLF
REFERENCES:
**** Wingdam Creek, Wingdam ****

MINING DIV: Cariboo
LOCATION: LAT. 53 01 42 LONG. 121 57 30 NTS:
CLAIMS: Angus Dam, Free, My Lake 1-4, Lance 1-2, Mac 1-4, Most, Ram 1-4, Wingdam
OPERATOR: Rise Res.
AUTHOR: Podolski, G.
DESCRIPTION: The property straddles the contact between Cambrian sedimentary deposits of the Cariboo Group and Mesozoic, mainly volcanic rocks of the Quesnel Trough. The Cariboo Group, which is prominent in the eastern portion of the property, is comprised predominantly of clastic rocks with minor amounts of carbonate rocks. The Quesnel Trough includes a variety of mafic and intermediate volcanic tillites, hornblende diorite, and andesite. The clastic intrusive rocks. Quartz veins appear to be associated with felsic intrusives.

WORK DONE: MAGA 200.0 km
REFERENCES: 4.R. 06295.07094.07540.08269.09740.10640.10815.12738.12950

**** Abu ****

MINING DIV: Cariboo
LOCATION: LAT. 53 09 00 LONG. 122 17 00 NTS:
CLAIMS: Abu
OPERATOR: Sable Creek
AUTHOR: Brazy, T.
DESCRIPTION: The claims are situated within the Quesnel Trough in an area of heavy overburden. They are underlain by Mesozoic volcanic and sedimentary rocks of the Takla Group which are locally known to host polymetallic sulphide deposits of volcanogenic origin.

WORK DONE: EMGR 13.7 km: VLF
REFERENCES:

**** Boo ****

MINING DIV: Cariboo
LOCATION: LAT. 53 10 24 LONG. 122 16 48 NTS:
CLAIMS: Boo 2
OPERATOR: Bkucky Res.
AUTHOR: Pezzot, E.
DESCRIPTION: The claim is underlain by Upper Triassic volcanic and sedimentary rocks of the Takla Group. Bedrock is generally covered by glacial overburden but local outcrops consist of dark green to dark grey andesites and basalts. No mineralization is known to occur on the property. A coincident magnetic and electromagnetic anomaly is present. The trend in the northwest-southeast orientation of the grid area are considered exploration targets for volcanogenic sulphide deposits.

WORK DONE: MAGA 72.0 km: VLF
REFERENCES:

**** Boo ****

MINING DIV: Cariboo
LOCATION: LAT. 53 11 30 LONG. 122 16 00 NTS:
CLAIMS: Boo 1, Boo 2
OPERATOR: Duke Min.
AUTHOR: Pezzot, E.
DESCRIPTION: Glacial cover predominates in the claims area. The geology is dominated by northwesterly trending Upper Triassic-Lower Jurassic Takla Group andesite flows, tuffs, agglomerate, basalt, breccia and argillite.

WORK DONE: EMGR 113.0 km: VLF
REFERENCES:

**** Cott ****

MINING DIV: Cariboo
LOCATION: LAT. 53 00 54 LONG. 122 20 12 NTS:
CLAIMS: Cott 2
OPERATOR: First Nuclear
AUTHOR: Clinie, J.
DESCRIPTION: Weak to moderate cold soil geophysical anomalies were defined in the northwest portion of the claim. These anomalies occur on a strong magnetic anomaly thought to represent events intruded into Upper Triassic Takla Group volcanics. Syenite is probably coeval with the volcanics. Moderate to intense skarn metasomatism has occurred. Magnetite and minor chalcopyrite and pyrite is associated with the skarn.

WORK DONE: LINE 21.8 km, PETRO 3 thin sections
REFERENCES: 4.R.

**** Wingdam ****

MINING DIV: Cariboo
LOCATION: LAT. 53 01 42 LONG. 121 57 30 NTS:
CLAIMS: Angus Dam, Free, My Lake 1-4, Lance 1-2, Mac 1-4, Most, Ram 1-4, Wingdam
OPERATOR: Rise Res.
AUTHOR: Podolski, G.
DESCRIPTION: The property straddles the contact between Cambrian sedimentary deposits of the Cariboo Group and Mesozoic, mainly volcanic rocks of the Quesnel Trough. The Cariboo Group, which is prominent in the eastern portion of the property, is comprised predominantly of clastic rocks with minor amounts of carbonate rocks. The Quesnel Trough includes a variety of mafic and intermediate volcanic tillites, hornblende diorite, and andesite. The clastic intrusive rocks. Quartz veins appear to be associated with felsic intrusives.

WORK DONE: MAGA 200.0 km
REFERENCES: 4.R. 06295.07094.07540.08269.09740.10640.10815.12738.12950

**** Abu ****

MINING DIV: Cariboo
LOCATION: LAT. 53 09 00 LONG. 122 17 00 NTS:
CLAIMS: Abu
OPERATOR: Sable Creek
AUTHOR: Brazy, T.
DESCRIPTION: The claims are situated within the Quesnel Trough in an area of heavy overburden. They are underlain by Mesozoic volcanic and sedimentary rocks of the Takla Group which are locally known to host polymetallic sulphide deposits of volcanogenic origin.

WORK DONE: EMGR 13.7 km: VLF
REFERENCES:

**** Boo ****

MINING DIV: Cariboo
LOCATION: LAT. 53 10 24 LONG. 122 16 48 NTS:
CLAIMS: Boo 2
OPERATOR: Bkucky Res.
AUTHOR: Pezzot, E.
DESCRIPTION: The claim is underlain by Upper Triassic volcanic and sedimentary rocks of the Takla Group. Bedrock is generally covered by glacial overburden but local outcrops consist of dark green to dark grey andesites and basalts. No mineralization is known to occur on the property. A coincident magnetic and electromagnetic anomaly is present. The trend in the northwest-southeast orientation of the grid area are considered exploration targets for volcanogenic sulphide deposits.

WORK DONE: MAGA 72.0 km: VLF
REFERENCES:

**** Boo ****

MINING DIV: Cariboo
LOCATION: LAT. 53 11 30 LONG. 122 16 00 NTS:
CLAIMS: Boo 1, Boo 2
OPERATOR: Duke Min.
AUTHOR: Pezzot, E.
DESCRIPTION: Glacial cover predominates in the claims area. The geology is dominated by northwesterly trending Upper Triassic-Lower Jurassic Takla Group andesite flows, tuffs, agglomerate, basalt, breccia and argillite.

WORK DONE: EMGR 113.0 km: VLF
REFERENCES:

**** Cott ****

MINING DIV: Cariboo
LOCATION: LAT. 53 00 54 LONG. 122 20 12 NTS:
CLAIMS: Cott 2
OPERATOR: First Nuclear
AUTHOR: Clinie, J.
DESCRIPTION: Weak to moderate cold soil geophysical anomalies were defined in the northwest portion of the claim. These anomalies occur on a strong magnetic anomaly thought to represent events intruded into Upper Triassic Takla Group volcanics. Syenite is probably coeval with the volcanics. Moderate to intense skarn metasomatism has occurred. Magnetite and minor chalcopyrite and pyrite is associated with the skarn.

WORK DONE: LINE 21.8 km, PETRO 3 thin sections
REFERENCES: 4.R.
MINING DIV: Cariboo ASSESSMENT REPORT 16645 INFO CLASS 3

LOCATION: LAT 53 11 26 LONG. 122 19 29 NTS:

CLAIMS: G 22-34

OPERATOR: Gabriel Res.

AUTHOR:

DESCRIPTION: The claims are primarily underlain by Upper Triassic Takla Group volcanic and sedimentary rocks, which are intruded by Early Cretaceous granitic dikes and stocks. Early Tertiary sediments overlie the Takla Group rocks in the southwest part of Anbau Creek.

WORK DONE: MAGA 275.0 km

REFERENCES:

MINING DIV: * ASSESSMENT REPORT 15529 INFO CLASS 3**

LOCATION: LAT 53 14 00 LONG. 122 17 54 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claim is situated within the Quesnel Trough, a subdivision of the intermontane tectonic belt and is underlain by Miocene and Pliocene sandstone, shale, conglomerate, diatomite and lignite, with exposures of Upper Triassic Takla Group volcanics.

WORK DONE: MAGA 8.0 km

REFERENCES:

MINING DIV: * ASSESSMENT REPORT 15848 INFO CLASS 3**

LOCATION: LAT 53 07 30 LONG. 122 23 48 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claims are underlain by Upper Triassic Takla Group volcanic and sedimentary rocks which are intruded by possible Early Cretaceous rhyolite dikes.

WORK DONE: MAGA 9.6 km

REFERENCES:

MINING DIV: * ASSESSMENT REPORT 15530 INFO CLASS 3**

LOCATION: LAT 53 13 18 LONG. 122 17 54 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claims are located within the Quesnel Trough, a subdivision of the intermontane tectonic belt and is underlain by Upper Triassic Takla Group volcanics intruded by Early Cretaceous Nipher intrusions. The Cretaceous Nipher intrusions are comprised of quartz monzonite and diorite.

WORK DONE: SDIL 1.6 km

REFERENCES:

MINING DIV: * ASSESSMENT REPORT 16469 INFO CLASS 4**

LOCATION: LAT 53 14 00 LONG. 122 26 00 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The claim is situated within the Quesnel Trough of interbedded Triassic-Jurassic volcanics and sediments. The sediments are locally very graphitic and geophysically conductive.

WORK DONE: SDIL 8.0 km

REFERENCES:

MINING DIV: Cariboo ASSESSMENT REPORT 18848 INFO CLASS 3

LOCATION: LAT 53 07 00 LONG. 122 20 30 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

COMMODITIES:

DESCRIPTION: The claims are underlain by Upper Triassic Takla Group volcanic and sedimentary rocks which are intruded by possible Early Cretaceous rhyolite dikes.

WORK DONE:

REFERENCES:

MINING DIV: * ASSESSMENT REPORT 16363 INFO CLASS 3**

LOCATION: LAT 53 08 00 LONG. 122 25 00 NTS:

CLAIMS:

OPERATOR:

AUTHOR:

DESCRIPTION: The bedrock is composed of anesite, limestone, greywacke, and argillite of the Nipal Group of Upper Triassic age. These rocks have been faulted by several low angle thrust faults. A silt sample from the R.P.M. 1 claim contained over 1000 ppb gold.

WORK DONE:

REFERENCES:

Prince George
**** SM ****

MINING DIV: Cariboo
LOCATION: LAT. 53 04 18 LONG. 122 18 18 NTS:
CLAIMS: SM 8-9
OPERATOR: Sergeant, D.
AUTHOR: Macdonan, K.; Sargent, D.
DESCRIPTION: No bedrock outcrops were found on the claims.
WORK DONE: PROS 1:20 000
REFERENCES:

**** Thunder ****

MINING DIV: Cariboo
LOCATION: LAT. 53 11 48 LONG. 122 21 30 NTS:
CLAIMS: G 27-28; G 30-31
OPERATOR: Mathison, D.; Walcott, P.E.
COMMODITIES: Gold, Copper, Silver, Zinc, Lead
DESCRIPTION: The claims are underlain by Upper Triassic Tekla Group andesite-basalt flows, pyroclastic breccia flows and intercalated cherts and argillaceous rocks intruded by an early Cretaceous granitic body to the north and by a Triassic (?) monzonite stock along Abau Creek.
NUMEROUS mafic-felsic dikes and silts also occur.
WORK DONE: SAMP 1200:multielement
ROCK 24:multielement
RECL 46:multielement
IPOD: 2.9 km
DIAD 4705.0 m: 46 holes, BQ, NO
GEOI 1500
TREN 450.0 m: 8 trenches
NAPS 34.3 km
REFERENCES:

**** Alexis ****

MINING DIV: Cariboo
LOCATION: LAT. 53 10 46 LONG. 122 41 00 NTS:
CLAIMS: Alexis
OPERATOR: MineQuest Ex. Assoc.
AUTHOR: Campbell, K.
DESCRIPTION: The cleams are underlain by Pennsylvanian-Pennsian Cache Creek Group limestone, chert, argillite, greenstone and ultramafic rocks.
LINE 21.0 km
WORK Done: SEIS 2.3 km
REFERENCES:

**** Tertiary ****

MINING DIV: Cariboo
LOCATION: LAT. 53 07 00 LONG. 122 38 12 NTS:
CLAIMS:
OPERATOR: Piney Point Ex.
AUTHOR: Noppen, E.
DESCRIPTION: The property is underlain by Cretaceous age conglomerate with interbedded cherty siltstone and sandstone. The conglomerates are locally intensely clay altered. No mineralization was found.
WORK DONE: SOIL 96:Ag, Au
ROCK 83: Au, Ag
SILT 8: Au, Ag
GEOL 1:5000
REFERENCES:

**** Pogo ****

MINING DIV: Cariboo
LOCATION: LAT. 53 12 30 LONG. 122 48 42 NTS:
CLAIMS: Pogo
OPERATOR: MineQuest Ex. Assoc.
AUTHOR: Petfield, C.
DESCRIPTION: The area of the Pogo claim is underlain largely by Quaternary drift and presumably by chert and argillite of the Pennsylvanian Cache Creek Group. Tertiary lavas cap the hills to the west. The trace of the Pinch Fault lies some 6 kilometers to the east, and spays may cross the property. No gold mineralization has been observed.
WORK DONE: ROCK 4:multielement
SILT 11:multielement
REFERENCES:

**** GC ****

MINING DIV: Cariboo
LOCATION: LAT. 53 06 00 LONG. 123 49 00 NTS:
CLAIMS: GC 1
OPERATOR: Nonrada Ex.
AUTHOR: Beere, R.
DESCRIPTION: The property is underlain by Cretaceous age conglomerate with interbedded cherty siltstone and sandstone. The conglomerates are locally intensely clay altered. No mineralization was found.
WORK DONE: SOIL 96: Au, Ag
ROCK 83: Au, Ag
SILT 8: Au, Ag
GEOL 1:5000
REFERENCES:

**** G ****

MINING DIV: Cariboo
LOCATION: LAT. 53 23 18 LONG. 122 26 00 NTS:
CLAIMS: G 1-17; G 34-44, G 46-48, G South
OPERATOR: Gabriel Res.
AUTHOR: Lecnow, W.
DESCRIPTION: The property is underlain by northwest striking Upper Triassic Tekla Group basaltic flows, tuffs and breccias interlayered with a thick sequence of black graphitic shales and siltstones. A quartz
The claim is underlain by north-northwest trending Jurassic volcanics and sediments. No mineralization was located.

REFERENCES:

ASSOCIATED REPORT 16423 INFO CLASS 4

TRENCHES 6 m:6 trenches

LINE 22.0 km

REFERENCE:

A.F. 10275, 10950, 11268, 12174

M.I. 0033 048-YORK

Hixon Creek, Jo, Pioneer, Cayenne, Quesnel Quartz

MINING DIV: Cariboo

LOCATION: LAT 53 20 00 LONG. 122 25 00 NTS:

CLAIMS: Mark York 10-11 York 4-5

OPERATOR: Leo Min.

AUTHOR: Hogan, J. M., Norton, D.

COMMODITIES: Silver, Lead, Zinc, Copper

DESCRIPTION: The property is primarily underlain by early Proterozoic, Tertiary volcanics and sedimentary rocks which are intruded by early Cretaceous granite stocks. The near strike trend of the property is north-northwest. The claim was tested for uranium at the extreme northwest of the property. No mineralization was encountered. The property was also tested for gold, copper, lead, zinc, and silver. No mineralization was encountered.

REFERENCES:

ASSOCIATED REPORT 15926 INFO CLASS 1

LINE 110: multielement

SILT 1: Au element

TRENCHES 110: multielement

REFERENCE:

B.B. 0344, 0411, 0943, 0955, 11211, 1221, 14521, 15085

M.I. 0933 040-00, 055-00, 095-00, 115-00, 095-00

CIB-QSR: 0344-CIB-00, QSR: 0933-CIB-QSR

QSR MINING: 0350-00 QSR: 0344-D埼4-00 QUARTZ MINE 0350-00 ESE-TERRY CREEK, 008-00 029-CANYON CREEK

Ped **

MINING DIV: Cariboo

LOCATION: LAT 53 21 30 LONG. 122 28 00 NTS:

CLAIMS: Ped 9

OPERATOR: Noranda Ex.

AUTHOR: Baerg, R.

DESCRIPTION: The claim is underlain by interbedded Upper Triassic Taliqa Group volcanics and sediments. Rock units trend north-northwest. No mineralization was detected.

REFERENCES:

ASSOCIATED REPORT 16571 INFO CLASS 4

REFERENCE:

SOIL 110: Cu, Zn, Pb, Ag, As, Au

SM **

MINING DIV: Cariboo

LOCATION: LAT 53 17 48 LONG. 122 17 48 NTS:

REFERENCES:

ASSOCIATED REPORT 16088 INFO CLASS 4

REFERENCE:

SOIL 130: Cu, Zn, Pb, Ag, As, Au
CLAIMS: SM 2
OPERATOR: Sargent, D.
AUTHOR: MacGowan, K.; Sargent, D.
DESCRIPTION: The claim appears to be underlain by Lower Cretaceous Naver Intrusions.
WORK DONE: PROS 120 000
LINE 22.5 km
REFERENCES:

**** Buck ****
MINING DIV: *** ASSESSMENT REPORT 16375 INFO CLASS 3
LOCATION: LAT. 52 44 00 LONG. 122 27 30 NTS:
CLAIMS: Buck 1
OPERATOR: Lac Min.
AUTHOR: Hogan, J.; So Y.M.
DESCRIPTION: This claim is underlain by the Early Jurassic black shale, phyllite and greywacke. The bedding strikes about 16 degrees, dipping 67 degrees west end 70 degrees east. Some dykes are Early Cretaceous granodiorite (pyritic) and diorite, medium to coarse graphitic.
WORK DONE: LINE 19.2 km
SIL 2: multielement
ROCK 5: multielement
SOIL 185: multielement
REFERENCES:

**** Bell-Holm ****
MINING DIV: *** ASSESSMENT REPORT 16515 INFO CLASS 3
LOCATION: LAT. 52 52 18 LONG. 122 51 12 NTS:
CLAIMS: Marie 1-2
OPERATOR: Byron Res.
AUTHOR: western C.
COMMODITIES: Gold, Silver
DESCRIPTION: Erratic gold-silver values occur in quartz veins hosted by anagastic metavolcanic rocks.
WORK DONE: SAMP 80: multielement
DIAD 304.8 m, 3 holes, 30
GEOL 1.200 m
ROCK 24: multielement
TREN 380.0 m, 7 trenches
REFERENCES: A.R. 15480 M.I. 0932 023-BELL-HOLM

**** Tinsdale ****
MINING DIV: *** ASSESSMENT REPORT 16284 INFO CLASS 3
LOCATION: LAT. 53 01 24 LONG. 121 13 48 NTS:
CLAIMS: Tinsdale 1-3
OPERATOR: Cominco
AUTHOR: Pride, K.
DESCRIPTION: The property consists of Cambrian black shale, green phyllite and limestone on its east half and Ordovician-Mississippian black shales, argillite and shelly argillite, black limestone and biotiteized limestone on the west. Isolated outcrops of Upper Silurian-Lower Devonian chert breccia occur on the Tinsdale 1 claim.
**** Acme ****

MINING DIV: Acme
LOCATION: LAT. 53° 03' 36" LONG. 121° 49' 06" NTS:
CLAIMS: Acme Fr., Abex, ChiSholm 5, ChiSholm 6 Fr., Haag's Dimple, Oso 1, Ypree
OPERATOR: Winex Res.
AUTHOR: Outllins, C.; Paseka, C.
DESCRIPTION: The claims are underlain by phyllites, limestones and micaceous quartzites of the Cambrian Cariboo Group. Mineralization is associated with quartz veining striking north-northwest and north-northeast with dips of 30 degrees eastery.
WORK DONE: LINE 24.6 km
REFERENCES: MAG 10.9 km

**** Barkerville ****

MINING DIV: Cariboo
LOCATION: LAT. 53° 03' 30" LONG. 121° 33' 00" NTS:
CLAIMS: Arch 1-4
OPERATOR: Blackberry Gold Res.
AUTHOR: Myers, W.
DESCRIPTION: Bedrock in the area of the claims is composed of argillite, phyllite, quartzite, metavolcanics and limestone of the Cambrian Cariboo Group. Northerly trending faults cut the claim block and act as conduits for mineralization. The rocks have been subjected to a low degree of metamorphism. Northeast trending fractures contain quartz and pyrite with gold mineralization.
WORK DONE: EMG 170.0 km; EM, VLF
REFERENCES: A.R. 14836

**** Burns Creek ****

MINING DIV: Cariboo
LOCATION: LAT. 53° 04' 48" LONG. 121° 40' 00" NTS:
CLAIMS: Yuma
OPERATOR: Dupekowski, A.
AUTHOR: Myers, W.
DESCRIPTION: The claims are underlain by Cambrian Snowshoe Formation. The geology is described as feldspathic sandstone and granule conglomerate locally, micaceous and argillite, phyllite and schist, minor conglomerate limestone and marble.
WORK DONE: EMG 170.0 km; EM, VLF
REFERENCES: M.I. 099H 075-BURNS CREEK

**** Cariboo Corona ****

MINING DIV: Cariboo
LOCATION: LAT. 53° 06' 42" LONG. 121° 33' 42" NTS:
CLAIMS: Yuma
OPERATOR: Dupekowski, A.
AUTHOR: Myers, W.
DESCRIPTION: The claims are underlain by Cambrian Snowshoe Formation. The geology is described as feldspathic sandstone and granule conglomerate locally, micaceous and argillite, phyllite and schist, minor conglomerate limestone and marble.
WORK DONE: EMG 13.4 km; VLF
REFERENCES: A.R. 14834

**** Eight Mile Lake, Sheepher Creek ****

MINING DIV: Cariboo
LOCATION: LAT. 53° 08' 36" LONG. 121° 32' 30" NTS:
CLAIMS: Em 4-3
OPERATOR: Actona Res.
AUTHOR: Wapstra, B.
DESCRIPTION: The claims are underlain by phyllite, argillite, quartzite and limestone of the Cambrian Cariboo Group. Quartz veins with pyrite and gold mineralization occur in altered zones along faults.
WORK DONE: EMG 20.0 km; DIAD 584.3 m; 7 holes, NO
REFERENCES: A.R. 120223, 13830
M.I. 09M 01-8M O14-EIGHT MILE LAKE, 09M 045-SHEEPHER CREEK

**** Harry ****

MINING DIV: Cariboo
LOCATION: LAT. 53° 08' 48" LONG. 121° 40' 24" NTS:
CLAIMS: Harry
OPERATOR: Campbell 1, K.
AUTHOR: Campbell 1, K.
DESCRIPTION: The claims are underlain by phyllite, micaceous quartzite and limestone. The mineralization includes arsenopyrite, pyrite and galena in quartz veins.
WORK DONE: DIAD 112; multi-element
REFERENCES: C288
**** Lightning ****

MINING DIV: Cariboo
ASSESSMENT REPORT 16315 INFO CLASS 3

LOCATION: LAT. 53 02 24 LONG. 121 41 00 NTS:
CLAMS: Lightning 8-9
OPERATOR: Lightning Creek Mines
AUTHOR: Pasciak, G.
DESCRIPTION: The claims are underlain by the Paleozoic Snowshoe Formation which is folded into the Lightning Creek anticlinorium.

WORK DONE: EMAG 400.0 km; VLF, HLEM
REFERENCES: EMAG 400.0 km; VLF, HLEM

**** Louhee, Rainbow ****

MINING DIV: Cariboo
ASSESSMENT REPORT 16517 INFO CLASS 4

LOCATION: LAT. 53 03 30 LONG. 121 34 30 NTS:
CLAMS: Louhee 1-3; Rainbow
OPERATOR: Dykovski, V.; Sanchez, A.
DESCRIPTION: Bedrock in the area of the claims is composed of argillite, phyllite, quartzite, metavolcanics and limestones of the Cambrian Cariboo Group. Northerly trending faults cut the claim block and act as conduits for mineralization. The rocks have been subjected to a low degree of metamorphism. Northeast trending fractures in the area are associated with argillite and pyrite with gold mineralization. This area also contains replacement type pyrite and gold mineralization.

WORK DONE: ENGR 5.7 km; VLF
REFERENCES:

**** Nelson ****

MINING DIV: Cariboo
ASSESSMENT REPORT 15846 INFO CLASS 4

LOCATION: LAT. 53 06 18 LONG. 121 41 42 NTS:
CLAMS: Nelson
OPERATOR: Hill, W.
AUTHOR: "The claim appears to be underlain by Cambrian Cariboo Group rocks"

WORK DONE: PROS 420,000
 REFERENCES:

**** Nelson Creek ****

MINING DIV: Cariboo
ASSESSMENT REPORT 15947 INFO CLASS 3

LOCATION: LAT. 53 06 00 LONG. 121 49 00 NTS:
CLAMS: Burns 14-17; Chisholm 1-4; Chisholm 6-7 Fr., Garbo, Garbo 1 et al., Logan
OPERATOR: Gallant Gold Mines
AUTHOR: Decarie, R.
COMMODITIES: Gold, Lead, Zinc
DESCRIPTION: "The property is underlain by a mix of volcanic and volcanic Clastics rocks with zones of alteration, minor disseminated sulphide mineralization and Sulphide coated fractures. Syenite porphyry dikes intersect the volcanics."

WORK DONE: EMAG 149.0 km; EM, VLF
REFERENCES: MAG 148.0 km

**** Tel ****

MINING DIV: Cariboo
ASSESSMENT REPORT 16647 INFO CLASS 3

LOCATION: LAT. 53 09 43 LONG. 121 33 48 NTS:
CLAMS: Tel 1, Tel 6, Tel 9-10
OPERATOR: Noraano Ex.
AUTHOR: Swail, W.
DESCRIPTION: "The property is underlain by sedimentary rocks of the Cariboo and Telville terranes. Drilling in close proximity to the Pleasant Valley Thrust revealed mylonitization, shearing, fracturing and quartz veining."

WORK DONE: D1J3 292.6 m; 4 holes, NC
REFERENCES: SAMP 30; multielement

**** Cosalite ****

MINING DIV: Cariboo
ASSESSMENT REPORT 16002 INFO CLASS 3

LOCATION: LAT. 53 11.30 LONG. 121 46 00 NTS:
CLAMS: Mustang 1-3
OPERATOR: Condorada Mines
AUTHOR: ASP, W.; Embrey, K.
COMMODITIES: Lead
DESCRIPTION: "Four sequences (Devonian-Mississippian phyllite; Mississippian-Perman quartzite; Mississippian-Perman quartzite; phyllite and gneiss; Mississippian-Pennsylvanian and Perman dolomite, basalt, gabbro and serpentinite) were foliated and thrust in the post-Permian age and later metamorphosed. Several phases of shearing provided channels for gold-quartz veins generally with low quantities of sulphides."

WORK DONE: ENGR 14.1 km; HLEM
LINE 83.0 km
ROAD 2.0 km
COIL 134; Cu, Pb, Zn, Ag, As
MAG 80.0 km
REFERENCES: A.R. 12383
M.J. 093H 92-COSALITE

**** Dang Dee ****

MINING DIV: Cariboo
ASSESSMENT REPORT 15877 INFO CLASS 4

LOCATION: LAT. 53 00 42 LONG. 121 50 18 NTS:
CLAMS: Dang Dee 4
OPERATOR: Cartesters, D.
AUTHOR: Cartesters, D.
DESCRIPTION: "The claims appear to be underlain by argillite, siltstone and volcanic breccia."

WORK DONE: PROS 150,000
REFERENCES: LINE 22.5 km

**** Snalom ****

MINING DIV: *** ASSESSMENT REPORT 16397 INFO CLASS 2
LOCATION: LAT 53 04 00 LONG. 121 58 00 NTS:
CLAIMS: Shalom 1-4, Shalom 6-7
OPERATOR: Pinegrove Res.
AUTHOR: Samcheok, A.
DESCRIPTION: The claims are underlain by the Cariboo Mountain Group (composed of the Snowshoe and Kaza Formations). These formations contain various carbonate rocks, clastic sedimentary rocks and minor intrusive rocks. Despite low to medium effects of deformation and regional metamorphism, the rocks still commonly show original bedding and other sedimentary features.

WORK DONE:
MAGG 38.7 km
EMMB 64.0 km
SLT 30; multi-element
ROCK 13: Au, Cu, Pb, Zn, Ag
LINE 102.9
ROAD 6.7 km

REFERENCES:

**** C.R ****

MINING DIV: Cariboo ASSESSMENT REPORT 16121 INFO CLASS 3
LOCATION: LAT 53 20 00 LONG. 121 25 00 NTS:
CLAIMS: B0, C.R. 1-12
OPERATOR: Noranda Ex.
AUTHOR: Bradshill, L.; Savell, M.J.
DESCRIPTION: The property is underlain by pillowed basalts, chert, intermediate to felsic dacies, and basaltic flows of the Mississippian Slide Mountain Group. Several zones of red brown weathered, quartz carbonate altered rocks with minor chaledonic quartz veinslets have been found.

WORK DONE:
EMMB 312.0 km: HLEM
SOIL 316: Cu, Zn, Pb, Mo, Ag
MAGG 5.6 km
EMMB 312.0 km: HLEM
MAGG 312.0 km

REFERENCES:

**** AK ****

MINING DIV: *** ASSESSMENT REPORT 18049 INFO CLASS 2
LOCATION: LAT 53 27 00 LONG. 121 16 12 NTS:
CLAIMS: AK I-IV, Beck 14
OPERATOR: Noranda Ex.
AUTHOR: Bradshill, L.; Savell, M.J.
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: The property is underlain by Upper Proterozoic black phyllitic argillites and limestones of the Isaac and Cunningham Formations. Trenching of a strong coincident lead-zinc-copper-silver-gold soil geochemical anomaly has resulted in the discovery of several quartz veins with economic gold grades and widths. The veins appear to be both structurally and lithologically controlled.

WORK DONE:
SOIL 2500, 1:1000
MAGG 39.8 km
SOIL 2992: Pb, Zn, Au, Ag, Cu
ROAD 4.0 km
LINE 67.0 km
HMIN 6: Pb, Zn, Au, Ag, Cu
ROCK 199: Pb, Zn, Au, Ag, Cu
STRM 2
SILT 18: Pb, Zn, Au, Ag, Cu
EMMB 8.9 km: VLF, HLEM

REFERENCES: M I. 0934 153-AK

**** In ****

MINING DIV: Cariboo ASSESSMENT REPORT 18855 INFO CLASS 3
LOCATION: LAT 59 23 00 LONG. 121 23 00 NTS:
CLAIMS: In 18-27
OPERATOR: Noranda Ex.
AUTHOR: Bradshill, L.; Savell, M.J.
DESCRIPTION: The property is underlain by Horseshoe to Cambrian sequences of clastic and carbonate sediments of the Cariboo Group. A series of diatexitic quartzites and sandstones trend northerly across the property forming a long, heavily oxidized zone visible for 9 kilometres.

WORK DONE:
EMMB 3.0 km: HLEM
EMMB 87.0 km: VLF
SOIL 175: multi-element
ROCK 38: Cu, Co, Ag, Au
MAGG 67.0 km
MAGG 9.0 km

REFERENCES:

**** Cush ****

MINING DIV: *** ASSESSMENT REPORT 16046 INFO CLASS 4
LOCATION: LAT 53 32 00 LONG. 120 09 36 NTS:
CLAIMS: Cush 3-6
OPERATOR: Noranda Ex.
AUTHOR: Savell, M.J.
DESCRIPTION: The claims are underlain by black clastic sediments of the Upper Proterozoic Miatta Formation. A stream draining an area containing several fenritic boulders and sprigs is anomalous in copper, lead, zinc, arsenic and cobalt. At one section of this stream the boulders and gravels are coated with a white, thin aluminium-sulphate precipitate.

WORK DONE:
GRAY 0.9 km
LINE 1.0 km
SILT 2: Cu, Zn, Pb, Co
MAGG 1.0 km
SOIL 25: Cu, Co, Pb, Zn
REFERENCES: A.R. 058420

C292
NINING DIV: CBPID00
LOCATION: LAT. 53 37 00 LONG. 122 10 36 NTS:
OPERATOR: Noranda Ex
AUTHOR: Sevill, M. J.
DESCRIPTION: The property is underlain by Upper Proterozoic black clastic rocks of the Lower Miette Formation. Several rusty springs are found throughout the property as well as several multielement silt anomalies. Small quartz-calcite veins are mineralized with bournonite. The regional setting and anomalous geochemistry is favourable for the occurrence of sedex type mineralization.
WORK DONE: SILT: multielement
REFERENCES: ROCK: Cu, Pb

McLeod Lake

**** Twin ****
MINING DIV: Cariboo
ASSESSMENT REPORT 16680 INFO CLASS 4
LOCATION: LAT. 53 93 00 LONG. 120 10 36 NTS:
CLAIMS: ROS 0-10, Twin 178, Twin 22-30
OPERATOR: Noranda Ex
AUTHOR: Sevill, M. J.
DESCRIPTION: The property is underlain by Upper Proterozoic black clastic rocks of the Lower Miette Formation. Several rusty springs are found throughout the property as well as several multielement silt anomalies. Small quartz-calcite veins are mineralized with bournonite. The regional setting and anomalous geochemistry is favourable for the occurrence of sedex type mineralization.
WORK DONE: SILT: multielement
REFERENCES: ROCK: Cu, Ag, Pb, Au

McLeod Lake

**** YHW-1 ****
MINING DIV: ***
ASSESSMENT REPORT 16463 INFO CLASS 3
LOCATION: LAT. 53 37 42 LONG. 120 50 18 NTS:
CLAIMS: YHW-1
OPERATOR: Noranda Ex
AUTHOR: Scott
DESCRIPTION: The claim is underlain by Proterozoic to Cambrian sequences of clastic and carbonate sediments of the Yanks Peak Formation and Midale Formation. Gold in rock chip geochemical anomalies have been detected in pyritized black shale cut by an irregular network of quartz veins.
WORK DONE: SILT: Au
REFERENCES: ROCK: Cu, Pb, Ag, As, Au

C293

**** Veta, Mina ****
MINING DIV: Cariboo
ASSESSMENT REPORT 16052 INFO CLASS 3
LOCATION: LAT. 54 27 42 LONG. 122 19 00 NTS:
CLAIMS: Veta, Mina, Minera
OPERATOR: Teck
AUTHOR: Lovang, G.
DESCRIPTION: Interpolation of regional geology shows the area to be underlain by northwest trending Silurian-Devonian calcareous sediments with some interbedded pyritic siltstone and black shale. The carbonate intrusive bodies are mineralized with anomalous Pyroclastics. The syenite is anomalous in rare earth elements.
WORK DONE: SILT: Au
REFERENCES: ROCK: Au

C294

**** PG ****
MINING DIV: ***
ASSESSMENT REPORT 16246 INFO CLASS 4
LOCATION: LAT. 54 31 48 LONG. 122 05 12 NTS:
CLAIMS: PG 2
OPERATOR: Lovang, G.; Meyer, W.
DESCRIPTION: Small dikes or sills and a plug of carbonatite intrude Upper Cambrian limestone, siltstone, silty limestone, calcarious siltstones and carbonate rocks. The intrusive dikes of the sediments is approximately north 90 degrees west with steep dips to the northeast and southwest.
WORK DONE: SILT: rare earth
REFERENCES: ROCK: Au

**** Prince ****
MINING DIV: Cariboo
ASSESSMENT REPORT 15944 INFO CLASS 2
LOCATION: LAT. 54 31 00 LONG. 122 04 00 NTS:
CLAIMS: Feta, George, Lake, Mornaga, Dte 1-2, PG 1-2, Prince
OPERATOR: Teck
AUTHOR: Bentnich, A.
DESCRIPTION: Niobium, Lanthanum, Cerium, Phosphate
WORK DONE: DSSIL: rare earth
REFERENCES: ROCK: Au

**** Windy ****
MINING DIV: Cariboo
ASSESSMENT REPORT 16537 INFO CLASS 3
LOCATION: LAT. 54 57 00 LONG. 123 49 58 NTS:
CLAIMS: Windy 1, Windy 2, Windy 6
OPERATOR: Placee Dome
AUTHOR: Price, S.
DESCRIPTION: Copper, Gold, Palladium
WORK DONE: SILT: rare earth
REFERENCES: ROCK: Au

C294
McLeod Lake 039J

McLeod Lake 039J

LOCATION: LAT. 54 54 00 LONG. 123 17 00 NTS:
CLAIMS: GN 1-2, GN 6-7, GN 11-12, GN 14, GN 16-17, GN 19
AUTHOR: Ezekiel Ex.
COMMODITIES: Gold
DESCRIPTION: Late Paleozoic Slide Mountain Group mafic-ultramafic rocks are intruded by Triassic to Early Jurassic anorthosites and monzonites. Alteration consists of chlorite, epidote, and sericite.

REFERENCES: A.R. 10230, 02764, 03520, 05136, 08613, 13521, 15853
M.I. 039J, 07-MCDougall River: 093J, 023-Ruby

Fort Fraser 093K

Fort Fraser 093K

LOCATION: LAT. 54 27 00 LONG. 124 31 00 NTS:
CLAIMS: BG 27, BG 31-34, BG 37-40, BG 43-46, BG 49
AUTHOR: Game-B. & Sampson, C.
COMMODITIES: Gold, Antimony, Selenium
DESCRIPTION: The claim is cut by pyrite-vein cutting and alteration zone. Alteration consists of chlorite and sericite.

REFERENCES: A.R. 00820, 02164, 03520, 05136, 05138, 08613, 15853, 15855
M.I. 039K, 038-McCulloch River: 093J, 023-Ruby

Snow Bird 093K

Snow Bird 093K

LOCATION: LAT. 54 32 00 LONG. 124 12 00 NTS:
CLAIMS: MR 11-11
OPERATOR: Morrison, W.
AUTHOR: Ryan, J.
COMMODITIES: Chromium
DESCRIPTION: The property covers a portion of the Murray Ridge layered ultramafic body belonging to the Tremblay Intrusion Complex. The property is cut by a variety of veins and alteration zones. The property has a total of 10 km of drilling, with confirmed gold intercepts in the range of 0.005 g/t to 0.2 g/t.
Low grade (0.2 to 0.5 per cent) chromite is ubiquitous throughout the intrusive and shows only a slight increase (up to 2 per cent) within the dunite. Platinum group elements are present in only a few parts per billion.

WORK DONE: ROCK 20; multielement
REFERENCES: M. I. O93K 212-MR

**** Bio ****

MINING DIV: Omineca
LOCATION: LAT. 54 51 92 LONG. 124 18 31 NTS:
CLAIMS: Big 2-81-8 8, Bob 1, Yuy 1
OPERATOR: Big Valley Res.
AUTHOR: Schmidt, U.
DESCRIPTION: The property is underlain by metamorphosed sedimentary and volcanic rocks of the Upper Triassic Takla Group. There is an intrusion of diorite of possible early Jurassic age in the centre of the property. Three precious metal anomalies have been outlined on the property. They are thought to have been caused by the dioritic intrusion.
REFERENCES: SOIL 350; multielement

**** Max ****

MINING DIV: Omineca
LOCATION: LAT. 54 54 30 LONG. 124 04 30 NTS:
CLAIMS: Fire 1, 261-1, Max 1-15
OPERATOR: City Res. Can.
AUTHOR: Schmidt, U.
DESCRIPTION: The property is underlain by volcanic and metasedimentary rocks of the Upper Triassic-Lower Jurassic Takla Group. The Takla Group is intruded by diorite and andesite of Jurassic age. Areas of pyrite and pyrrhotite mineralization may be located near the contact of the intrusion.
WORK DONE: SOIL 200; multielement
REFERENCES: GEO 1:5000, 1:2500

**** BB2 ****

MINING DIV: Omineca
LOCATION: LAT. 54 55 00 LONG. 124 22 06 NTS:
CLAIMS: BB2 2, 081
OPERATOR: Big Bar Res.
AUTHOR: Carter, J.
DESCRIPTION: The underlying rock formations are mainly andesite and rhyolite believed to be Jurassic in age.
WORK DONE: SOIL 272: Au, As
REFERENCES: GEO 1:5000, 1:2500

***** H&H *****

MINING DIV: Omineca
LOCATION: LAT. 54 56 00 LONG. 124 16 30 NTS:
CLAIMS: H & H
OPERATOR: Noracs Ex.
AUTHOR: Maxwell, G.
DESCRIPTION: The property is underlain by normal en- augustie porphyry of the Upper Triassic Takla Group. The Takla Group comprises metasedimentary and volcanic rocks. These are thought to be intruded by Upper Jurassic or Lower Cretaceous Omineca intrusions.
WORK DONE: SOIL 255: multielement
REFERENCES: GEO 1:5000

***** H&H ****

MINING DIV: Omineca
LOCATION: LAT. 54 54 12 LONG. 124 16 30 NTS:
CLAIMS: H & H
OPERATOR: Halloran, A.
DESCRIPTION: The property and surrounding area is underlain by the Upper Triassic Takla Group. The Takla Group comprises metasedimentary and volcanic rocks. These are thought to be intruded by Upper Jurassic or Lower Cretaceous Omineca intrusions.
WORK DONE: LINE 6.3 km
REFERENCES: GEO 1:5000

***** Hat *****

MINING DIV: Omineca
LOCATION: LAT. 54 50 30 LONG. 124 18 36 NTS:
CLAIMS: Hat
OPERATOR: Noracs Ex.
AUTHOR: Maxwell, G.
COMMODITIES: Copper
DESCRIPTION: The claim is underlain by Triassic-Cretaceous diorite and gabbro intrusives and Triassic-Jurassic volcanic and sedimentary rocks. Mineralization occurs in quartz-carbonate altered and silicified zones that trend northwest. Mineralization consists of pyrite, pyrrhotite, and chalcopyrite.
WORK DONE: GEO 1:5000
REFERENCES: M.I. O93K 004-HAT

***** Hat Lake *****

MINING DIV: Omineca
LOCATION: LAT. 54 47 00 LONG. 124 20 00 NTS:
CLAIMS: Hat Lake
OPERATOR: Big Valley Res.
AUTHOR: Schmidt, U.

DESCRIPTION: The property is underlain by Upper Triassic meta-sedimentary rocks of the Takla Group, which are intruded by narrow, Lower Jurassic (?) felsic to mafic rocks. Quartz-carbonate, pyrite and carbonate alteration has been identified on the property. A gold and base metal geochemical anomaly was outlined.

WORK DONE: SOIL 305: multielement

REFERENCES:

4UTHOR:

DESCRIPTION:

The property is underlain by Upper Triassic-Lower Jurassic volcanic and meta-sedimentary rocks of the Takla Group. These rocks are intruded by Lower Jurassic (?) felsic to mafic rocks of predominantly granodioritic composition. A second granite suite of unknown age has also been recognized.

WORK DONE:

REFERENCES:

4UTHOR:

DESCRIPTION:

The property is underlain by Upper Triassic-Lower Jurassic Takla Group volcanics, sediments and Late Cretaceous diorite intrusive. No outcrop was observed on the claim.

WORK DONE: MAGG 9.0 km

REFERENCES:

4UTHOR:

DESCRIPTION:

The claims are underlain by Upper Triassic Takla Group volcanics and sediments. Showings occur where Upper Jurassic or Cretaceous diorites-granodiorites are in contact with the Takla Group assemblage. The intrusives are extensively fractured.

WORK DONE:

REFERENCES:

4UTHOR:

DESCRIPTION:

The property is underlain by metasediments and volcanics of the Upper Triassic Takla Group. Pyrrhotite, quartz and carbonate are often found along fractures or shear zones.

WORK DONE:

REFERENCES:

4UTHOR:

DESCRIPTION:

and altered with plagioclase veins and minor epidote staining. Mineralization is mainly in the form of pyrite and chalcopyrite.

WORK DONE:

REFERENCES:

4UTHOR:

DESCRIPTION:

Most of the claims are covered by glacial drift. At least three outcrops of Eocene Goosly Lake volcanic rocks consisting of biotite-pyroxene-diagonal, trachyandesite and at least one outcrop of Eocene Buck Creek volcanics consisting of andesite and dacite levels and volcanic breccia occur within the property.

WORK DONE:

REFERENCES:

4UTHOR:

DESCRIPTION:

Crude but tabular concentrations of pyrite, chalcopyrite, magnetite.
tetrahedrite and sphalerite are hosted by Cretaceous dacitic pyroclastic rocks. They are enveloped by an advanced argillitic alteration suite.

WORK DONE: DIAD 2099.2 m:** hole5,NQ
REFERENCES: A.R. 01683.05348.06456.06983.01166.07343.10721.10869.13264.14942.15974.15979
M.I. 093L 001-EQUITY SILVER:093L 001-SAM GOOSLY (SG)

**** KLO ****
MINING DIV: *** ASSESSMENT REPORT 16120 INFO CLASS 2
LOCATION: LAT 54 19 36 LNG 126 23 46 NTS:
CLAIMS: KLO 1-2
OPERATOR: EQUITY Silver Mines
AUTHOR: Pease, R.
DESCRIPTION: The claims are underlain by anesitic to basaltic volcanic rocks of Tertiary age. No mineralization is known to occur.

WORK DONE: SOIL 1038; multielement
REFERENCES:

**** Sept.Morning ****
MINING DIV: Omineca ASSESSMENT REPORT 15987 INFO CLASS 2
LOCATION: LAT 54 11 26 LNG 126 21 24 NTS:
CLAIMS: Dave.Gold,Morning Sept,Sept 1-2,Tot 2
OPERATOR: Normie Res.
AUTHOR: Zastavinovinich, S.
DESCRIPTION: Much of the claims are drift-covered with bearcrock exposures restricted to the northern and western portions. Tertiary Gossy Lake anesitic volcanics are generally flat lying and unaltered. Cretaceous Tip Top Hill anesitic lavas and breccias are exposed along KLO creek and underlie the majority of the drift covered area. Tip Top Hill volcanics display widespread chlorite and magnetite alteration and locally clay-sericite alteration. Disseminated pyrite is abundant.

WORK DONE: PEND 1326.9 m:24 holes
ROAD 5.8 km
SOIL 318;multielement
REFERENCES: A.R. 14246

**** Hagas ****
MINING DIV: *** ASSESSMENT REPORT 15787 INFO CLASS 3
LOCATION: LAT 54 10 00 LNG 127 02 00 NTS:
CLAIMS: Hagas,Hand,Hagas 76-77,Hagas 8C
OPERATOR: Petrostone Res.
AUTHOR: Zastavinovinich, S.
DESCRIPTION: The western half of the Hagas Group claims is underlain by the Jurassic Hazleton Group volcanics, while the eastern half is underlain by the Cretaceous Tip Top Hill volcanics. A small, less than 1 kilometre wide plug of gabbro intrudes the Hazleton volcanics in the southwest corner of the property. A geophysical survey proved to be an effective exploration method.

C301

**** Rookie ****
MINING DIV: Omineca ASSESSMENT REPORT 16060 INFO CLASS 3
LOCATION: LAT 54 11 18 LNG 127 18 00 NTS:
CLAIMS: Rookie 1
OPERATOR: EQUITY Silver Mines
AUTHOR: Pease, R.
DESCRIPTION: The claim is underlain by anesitic ash tuff, likely of Cretaceous age. No mineralization was located.

WORK DONE: SOIL 408;multielement
REFERENCES:

**** Star Ship ****
MINING DIV: *** ASSESSMENT REPORT 16308 INFO CLASS 4
LOCATION: LAT 54 01 42 LNG 127 29 12 NTS:
CLAIMS: Star Ship
OPERATOR: Sandes B.
AUTHOR: Smye, E.
DESCRIPTION: A small, complex rhyolite porphyry plug mineralized with molybdenum intrudes Lower Jurassic Hazleton Group volcanic, pyroclastic and sedimentary rocks. A showing of chalcopyrite and pyrite was found in quartz on the periphery of the intrusive and a grab sample contained 201 grams per tonne Silver, 1 gram per tonne Gold and 2 per cent Copper.

WORK DONE: PROS 1.4000
ROCK 11;multielement
SAMP 10;multielement
SILT 1;multielement
REFERENCES:

**** Emerson ****
MINING DIV: Omineca ASSESSMENT REPORT 16398 INFO CLASS 4
LOCATION: LAT 54 25 48 LNG 126 59 12 NTS:
CLAIMS: Emerson 1
OPERATOR: Lorrain Min.
AUTHOR: Carr, R.W.: Scott, A.
COMMODITIES: Molybdenum,Silver,Gold,Copper,Lead,Zinc
DESCRIPTION: Strong pervasive skarn-type replacement over a minimum 0.6 by 1.2 kilometre area has affected Upper Cretaceous(?), dacitic volcanic rock. A zone of intense alteration is associated with intrusive rocks. Trenching of a large peripheral silv er-lead-zinc soil anomaly uncovered scattered silver-rich galena-sphalerite-tetrahedrite veins and veinlets.

WORK DONE: IPOL 4.4 km
LINE 0.1 km
REFERENCES: A.R. 01985.00139.02300.00309.03077.07060.14714.15378
M.I. 093L 092-EMERSON (BARR. LYBDBEUM)
**** Apex 8, Apex 9, Apex 18 ****

MINING DIV: ***
LOCATION: LAT. 54° 26' 06" LONG. 126° 26' 06"
CLAIMS: Apex 75-76, Apex 85
OPERATOR: Barrick Dev.
AUTHOR: Zastavnikovich, S.

COMMODITIES: Copper, Lead, Zinc, Strontium, Barite

DESCRIPTION: The Apex Group claims are underlain by the early to middle Mesozoic Hazelton Group volcanic rocks. A small gabbroic outcrop of intrusive rock is located approximately in the middle of the Apex Group. The claims are underlain by Lower Jurassic Hazelton Group mafic to felsic volcanics. A pair of lineaments intersect in the southwest corner of the property. Surface prospecting located a small outcrop of gabbro in the middle of the Apex Group claim.

WORK DONE: ROCK 54: multielement Soil 105: multielement

REFERENCES: A.R. 05538, 04427, 15604, 15649

M.I. O.38L 246-APEX 9; O.39L 246-APEX 8; O.39L 247-APEX 18

**** Apex 8, Apex 9, Apex 18 ****

MINING DIV: Omineca
LOCATION: LAT. 54° 26' 06" LONG. 126° 26' 06"
CLAIMS: Omineca, Apex 75-76, Apex 85
OPERATOR: Barrick Dev.
AUTHOR: Zastavnikovich, S.

COMMODITIES: Copper, Lead, Zinc, Strontium, Iron

DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group mafic to felsic volcanics. A pair of lineaments intersect in the southwest corner of the property. Surface prospecting located a small outcrop of gabbro in the middle of the Apex Group claim.

WORK DONE: ROCK 54: multielement Soil 105: multielement

REFERENCES: A.R. 05538, 04427, 15604, 15649

M.I. O.38L 246-APEX 9; O.39L 246-APEX 8; O.39L 247-APEX 18

**** Bornite ****

MINING DIV: Omineca
LOCATION: LAT. 54° 26' 06" LONG. 126° 26' 06"
CLAIMS: Omineca, Apex 75-76, Apex 85
OPERATOR: Barrick Dev.
AUTHOR: Zastavnikovich, S.

COMMODITIES: Copper, Silver, Lead, Zinc, Barite

DESCRIPTION: The claims are underlain by a sequence of mancan coloured Lower Jurassic Hazelton Group pyroclastics and sediments. A strongly silicified stratified zone, 20 metres wide and over 300 metres long, dipping steeply to the northeast, occurs within this sequence. Within this zone weak copper-silver mineralization occurs as disseminations and irregular microvein fillings of chalcocite and tennantite. Chalcopyrite, bornite, galena and barite also occur.

WORK DONE: ROCK 107: multielement Soil 042: 2.5 holes NO
TREN 600.0 n 10 trenches SAM 178: multielement

C309

**** Omineca ****

MINING DIV: Omineca
LOCATION: LAT. 54° 26' 06" LONG. 126° 26' 06"
CLAIMS: Omineca, Apex 75-76, Apex 85
OPERATOR: Barrick Dev.
AUTHOR: Zastavnikovich, S.

COMMODITIES: Copper, Silver, Lead, Zinc, Barite

DESCRIPTION: The claims are believed to be underlain by Lower Jurassic Hazelton Group. Magnetic data support this interpretation of the regional geology.

WORK DONE: LINE 49.0 km EMRC 38.0 km VL

C304
Simmers 093L

REFERENCES: A.R. 02533, 02592, 02590, 02958

**** Robert ****

MINING DIV: *** ASSESSMENT REPORT 15061 INFO CLASS 4
LOCATION: LAT. 54 37 30 LONG. 126 23 12 NTS:
CLAIMS: Robert 1
OPERATOR: Noranda Ex.
AUTHOR: Myers, D.
DESCRIPTION: The claim is believed to be underlain by Lower Jurassic
Telkwa Formation volcanic and sedimentary rocks. No outcrop has
yet been found on the claim.

WORK DONE: SPIL 14: multielement
ROCK 1: multielement
BIDG 22: multielement

REFERENCES:

**** Dome Mountain ****

MINING DIV: *** ASSESSMENT REPORT 15171 INFO CLASS 2
LOCATION: LAT. 54 44 18 LONG. 126 37 00 NTS:
CLAIMS: Whistler Fr., Repeater 1-2, Dome A-S, Mat 1, Bert 1-2, Byron 1-2, Tony 1
OPERATOR: A.W. Metals
AUTHOR: McConnell, T.C.; Smith, H.
COMMODITIES: Gold, Silver, Lead, Zinc, Copper
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton
volcanics and sediments. The rocks have been deformed into southeast
plunging folds and northeast and southeast trending high angle faults.
Mesothermal Quartz veins with purite, spalerite, chalcopyrite,
galena, tetraedrite, arsenopyrite and free gold is the predominant
type of mineralization. Small massive sulfide veins also occur.

WORK DONE: EMA 1227.0 km; HEM, VLF
MAGA 1227.0 km

REFERENCES: A.R. 10501, M.I. 093L, 022-DOME MOUNTAIN, FORKS: O93L, 093L, 093L, 093L-DOME MOUNTAIN,
FREE: O93L, 279-DOME MOUNTAIN, CASIN: O93L, 093L, 093L-DOME MOUNTAIN, BOWLID CREEK: O93L, 277-DOME MOUNTAIN, 9800,
DOME MOUNTAIN, BELTING MOUNTAIN: CHANGE: O93L, 276-DOME MOUNTAIN, BOWE, O93L, 280-DOME MOUNTAIN, HODGES: O93L, 281-DOME MOUNTAIN, RAVEN,
FOSSICUS: O93L, 283-DOME MOUNTAIN, HAWK: O93L, 284-DOME MOUNTAIN, EAGLE: O93L, 285-
DOME MOUNTAIN, GEM: O93L, 286-TINA

**** Dome Mountain ****

MINING DIV: *** ASSESSMENT REPORT 1959 INFO CLASS 1
LOCATION: LAT. 54 44 42 LONG. 126 37 18 NTS:
CLAIMS: Cope 2, Grizzly No. 2, Porcupine, Triangle Fr.
OPERATOR: Tesnay Reg.
AUTHOR: Helgeson, B.
COMMODITIES: Gold, Silver
DESCRIPTION: The Dome Mountain property consists of mesothermal auriferous
C305

Simmers 093L

quartz veins crosscutting host Lower Jurassic Hazelton Group
volcanics. Alteration is a quartz-carbonate-sericite assemblage
developing in intensity away from the veins. Tonnage at present is
217,277 tonnes grading 15.7 grams per tonne gold and 79.5 grams per
tonne silver.

WORK DONE: SARP: 38, C306, 41, Au, Ag, Cu, Pb, Zn
TREN: 244, 0 m; 14 trenches
DIAD: 4427.0 m; 48 holes, NG

REFERENCES: A.R. 10864, 1959
M.I. 093L, 022-DOME MOUNTAIN

**** Dome Mountain ****

MINING DIV: *** ASSESSMENT REPORT 15014 INFO CLASS 2
LOCATION: LAT. 54 45 00 LONG. 126 37 00 NTS:
CLAIMS: Bert 1-2, Betty 1-2, Dome 1-3, Dome B, Repeater 1
OPERATOR: Can. United Min.
AUTHOR: Holling, R.
COMMODITIES: Gold, Silver
DESCRIPTION: Hazelton volcanics and sediments are cut by numerous
go1o-silver bearing veins and mineral zones trending northwest to
west-southwest.

WORK DONE: SOIL: 1819, Cu, Pb, Zn, Ag, As
REFERENCES: A.R. 10864, 1959
M.I. 093L, 022-DOME MOUNTAIN

**** Franses, January ****

MINING DIV: *** ASSESSMENT REPORT 15812 INFO CLASS 3
LOCATION: LAT. 54 44 00 LONG. 126 41 00 NTS:
CLAIMS: Frances 1-8, January 1-5, March 1-4, Frances 5 Fr., Fraction
OPERATOR: Marine Drive Estates
AUTHOR: Reynolds, G.
DESCRIPTION: Sedimentary and volcanlastic rocks of Hazelton age may
contain extensions of Dome Mountain Camp gold-silver vein structures.
Rock outcrops are very scarce on the property.

WORK DONE: LINE: 22.0 km

REFERENCES:

**** G10 ****

MINING DIV: *** ASSESSMENT REPORT 1950 INFO CLASS 4
LOCATION: LAT. 54 35 42 LONG. 126 42 30 NTS:
CLAIMS: G10 S
OPERATOR: C.G. Management
AUTHOR: Walker, S.
DESCRIPTION: The claims are underlain by the Lower Jurassic Hazelton Group
which consists of sediments and volcanics dipping in a southerly
direction. The Hazelton Group has been intruded by dikes, sills
and small stocks.

WORK DONE: MAGA 20.0 km
EMAG 20.0 km; HEM
VLF
REFERENCES: A.R. 13228, 14831
**** Hidden Treasure ****

MINING DIV: ***
LOCATION: LAT. 54° 34' 00" LONG. 126° 41' 00" NTS:
CLAIMS: Gia & G Management
OPERATOR: Walker, I.
COMMODITIES: Silver, Copper, Zinc, Lead
DESCRIPTION: The claim is underlain by the Lower Jurassic Hazelton Group which consists of sediments and volcanics dipping in a southerly direction. The Hazelton Group has been intruded by late-stage dykes, sills and small stocks.
WORK DONE: MGA 55.0 km
REFERENCES: A.R. 19770
W.I. 039L 254-HIDDEN TREASURE

**** Sk (Babine Gold) ****

MINING DIV: Omirca
LOCATION: LAT. 54° 46' 12" LONG. 126° 38' 18" NTS:
CLAIMS: Repeter 2
OPERATOR: Can. United Min.
AUTHOR: Harrison, G.
COMMODITIES: Gold, Silver, Lead, Zinc, Copper
DESCRIPTION: The Lower Jurassic Hazelton Group volcanics, including anap elite tuffs and breccias, are intruded by a quartz-felospar porphyry. Both lithologies are cut by northwest trending, high-angle quartz veins up to 0.6 metre wide. The veins carry up to 40 per cent sulphones (pyrite, sphalerite, galena, chalcopyrite) with locally high gold values.
WORK DONE: ODA 69.0 m; 659 holes, 80
MP 125.49 Au
REFERENCES: M.I. 093L 023-SK (BABINE GOLD)

**** Gio ****

MINING DIV: ***
LOCATION: LAT. 54° 33' 48" LONG. 126° 45' 48" NTS:
CLAIMS: Gia
OPERATOR: Fairlana Dev.
AUTHOR: Borevic
DESCRIPTION: The property is underlain by Middle Jurassic volcanioclastic sediments which are intruded by Late Cretaceous granitic rocks and Eocene syenitic dykes. Mesothermal chalcopyrite-sphalerite quartz-carbonate veins occur as discontinuous lenticular fissure fillings in the numerous steep normal faults that cut the property.
WORK DONE: GEOI 25,000
REFERENCES: A.R. 13095

**** Gio ****

MINING DIV: Omirca
LOCATION: LAT. 54° 43' 42" LONG. 126° 56' 18" NTS:
CLAIMS: Round 1-6, Round 12
OPERATOR: Diplomat Res.
AUTHOR: Bishop, S.
DESCRIPTION: The property is underlain by fragmental volcanics belonging to the Telkwa Formation: agglomerate, breccia, tuff breccia and lavas. Lithic, crystal and ash tuffs. Flow of basalt to rhyolite composition occur in red, maroon, purple, grey and green colours. Clasts are composed of monomineralic plagioclase and crystal tuff while crystal and lithic fragments make up the matrix.
WORK DONE: LINE 26.0 km
PROS 110,000
SOLI 413:multi-element
REFERENCES: A.R. 13238, 14334

**** Mame ****

MINING DIV: Omirca
LOCATION: LAT. 54° 46' 84" LONG. 127° 20' 84" NTS:
CLAIMS: Evninude, Florence, Kin, Kin-2-4, Mame
OPERATOR: Cons. Silver Standard Mines
AUTHOR: Dunn, G.
COMMODITIES: Zinc, Copper, Silver, Gold
DESCRIPTION: The claims are underlain by Jurassic anapelite to rhyolite volcanics. Mineralization consists of polymetallic, fissure filling veins radiating from a central molybdenum porphyry system that occurs northeast of the claims.
WORK DONE: GEOI 1,5000
MAG 34.0 km
EMGR 34.0 km; VLF
LINE 34.0 km
SOLI 380; As-Au
ROCK 48.6, Au, Pb, Zn, As
REFERENCES: A.R. 00308
W.I. 039L 091-MAMIE

**** Yukon ****

MINING DIV: ***
LOCATION: LAT. 54° 48' 00" LONG. 127° 17' 12" NTS:
CLAIMS: M 65-66
REFERENCES: A.R. 00308
W.I. 039L 091-MAMIE

Smithers 039L

LOCATION: LAT. 54° 34' 00" LONG. 126° 41' 00" NTS:
CLAIMS: Gia & G Management
OPERATOR: Walker, I.
COMMODITIES: Silver, Copper, Zinc, Lead
DESCRIPTION: The claim is underlain by the Lower Jurassic Hazelton Group which consists of sediments and volcanics dipping in a southerly direction. The Hazelton Group has been intruded by late-stage dykes, sills and small stocks.
WORK DONE: MGA 55.0 km
REFERENCES: A.R. 19770
W.I. 039L 254-HIDDEN TREASURE
OPERATOR: Climax Molybdenum

AUTHOR: Gaye7955, G.

COMMODITIES: Silver, Lead, Zinc, Gold

DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanic rocks.

WORK DONE: Soil, 47: multielement

REFERENCES: W. I. 093L 111-YUKON

**** Cronin Mine ****

MINING DIV: Minneba

LOCATION: LAT 54.86.44 LONG. 126.48.33

CLAIMS: De8 1-12, 73A FR, 8111 1-2, Red, Sunrise 7, View 1-8

OPERATOR: Southern Gold Res.

AUTHOR: Gander 70, Z.

COMMODITIES: Gold, Silver, Lead, Zinc, Cadmium

DESCRIPTION: The property is underlain by Lower Jurassic sediments of the Ashcroft Formation and Middle-Lower Cretaceous sediments of the Red Rock Formation between which is an intruded felsic body dated at 480 Ma. This package is overthrust from the west by Lower Cretaceous volcanics of the Brian Boru Formation. Massive sulphide veins are near the contact of the Phonolite.

WORK DONE: MAG 35.0 km

REFERENCES: A. R. OS96, OS874

N. I. 093L 127-CRONIN MINE

**** Mcken ****

MINING DIV: Minneba

LOCATION: LAT 54.48.41 LONG. 126.49.54

CLAIMS: Mcken 4, Mcken 8

OPERATOR: Takanee Res.

AUTHOR: Capnerhurlt, K. 7 Sokoloff, L.

DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanic and sedimentary rocks. Northwesterly and northeasterly trending strike-slip faults occur in addition to thrust faults.

WORK DONE: Soil 213: multielement

REFERENCES:

Hazelton

**** Danny Bov ****

MINING DIV: Minneba

LOCATION: LAT 54.08.12 LONG. 126.38.48

CLAIMS: Danny Bov 1-2

OPERATOR: Gold Canyon Res.

AUTHOR: Mapes, 0.

DESCRIPTION: The property is covered by deep overburden but outcrops in the area suggest that the underlying bedrock is principally a Lower Jurassic sequence of intercalated, well-bedded dark grey tuffs.

WORK DONE: END 12.3 km: LEX

REFERENCES:

**** Beta, Beta H, Beta B, Beta C, Beta D ****

MINING DIV: Minneba

LOCATION: LAT 54.14.00 LONG. 127.18.12

CLAIMS: Beta 0

OPERATOR: Normond Ex.

AUTHOR: Myners, D.

COMMODITIES: Gold, Silver, Lead, Zinc, Copper

DESCRIPTION: Clastic sediments of the Lower Cretaceous Bowser Lake Group are intruded by a monzonite to diorite late Cretaceous Bulkley pluton. Veins of sphalerite-arsenic-quartz-carbonate and quartz-arsenopyrite carry significant gold and silver values in places, as well as high lead and antimony values.

WORK DONE: DIAD 191.7 m: 9 holes, NO

REFERENCES: A. R. 1353, 13543, 15246

N. I. 093M 098-BETA:093M 099-BETA H,093M 100-BETA B; 093M 101-BETA C:093M 102-BETA D

**** Brunswick ****

MINING DIV: Minneba

LOCATION: LAT 54.07.24 LONG. 127.38.42

CLAIMS: Brunswick

OPERATOR: Cetlides Res.

AUTHOR: Bellang, A.

COMMODITIES: Silver, Lead, Zinc, Gold, Copper

DESCRIPTION: A late Cretaceous Ruppldehyda porphyritic granodiorite stock intrudes argillites and greywackes of the Lower Cretaceous Bowser Lake Group. Sheared controlled quartz-carbonate veins occur in sediments adjacent to and related to the stock. Shears strike north 50 degrees east and dip 45 to 60 degrees northwest. Sphalerite, pyrite, tetrahedrite and chalcopyrite occur as trace to near massive amounts in the veins.

WORK DONE: PROS 1-BOOK

REFERENCES: N. I. 093M 095-BRUNSWICK

**** Killarney ****

MINING DIV: Minneba

LOCATION: LAT 58.04.24 LONG. 127.37.42

CLAIMS: Dan 1-30

OPERATOR: Normand Ex.

AUTHOR: MacArthur, R.

COMMODITIES: Silver, Lead, Zinc

DESCRIPTION: The property is underlain by Jurassic Brian Boru and Red Rose Formations. Disseminated and fracture-filling mineralization consisting of sphalerite and galena locally occurs within quartz.
Hazelton 093M

carbonate-sericite-pyrite altered felsic volcanics and volcaniclastic of the Brian Bend Formation. Soil geochemistry anomalies are associated with mineralized areas and with moraine derived from mineralized areas.

WORK DONE: 35-AU
REFERENCES: A. R 14620 093M 114-KILLARNEY

**** Rocher Deboule ****

MINING DIV: Omineca
ASSESSMENT REPORT 16575 INFO CLASS 3
LOCATION: LAT 86 30 25 LONG. 127 38 25 NTS:
CLAIMS: Rocher
OPERATOR: Southern Gold Res.
AUTHORS: Rezzott., E
COMMODITIES: Copper, Gold, Silver, Lead, Zinc, Uranium, Molybdenum, Tungsten, Copper
DESCRIPTION: The property is predominantly underlain by an elongate pluton oriented at north 25 degrees west. This is the Rocher Deboule Stock and it is part of the Lower Cretaceous Buckley Intrusives. It is composed primarily of gneisiorite. The southern and western part of the property is underlain by Lower Cretaceous Buckley Group sedimentary rocks. Several extensive veins contain copper and precious metal mineralization.
WORK DONE: MAGN 10.6 km
REFERENCES: A. R 16714 M. J. 093M 071-ROCHER DEBOULE

**** Babine, American Boy, (Mohawk) ****

MINING DIV: Omineca
ASSESSMENT REPORT 16324 INFO CLASS 3
LOCATION: LAT 85 42 LONG. 127 35 08 NTS:
CLAIMS: AB 1, AB 7
OPERATOR: Can-Ex Res.
AUTHORS: Homenuke, A
COMMODITIES: Silver, Lead, Zinc, Gold, Copper, Antimony
DESCRIPTION: Gold and silver-bearing quartz-sulphide veins cut Lower Cretaceous Buckley Lake Group sandstones and argillites.
WORK DONE: SOIL 163:multielement

**** Babine, American Boy, (Mohawk) ****

MINING DIV: Omineca
ASSESSMENT REPORT 16461 INFO CLASS 3
LOCATION: LAT 85 17 08 LONG. 127 39 48 NTS:
CLAIMS: AB 1, AB 15-19 Fr., AB 3, AB 7, Coney Lour. Janelle
OPERATOR: Can-Ex Res.
AUTHORS: Homenuke, A
COMMODITIES: Silver, Lead, Zinc, Gold, Copper, Antimony
DESCRIPTION: Silver, gold and base metal sulphide veins occur in quartz veins in Lower Cretaceous Buckley Lake Group sediments and in a norriﬀed zone around a Bulkley (Cretaceous) diorite.

Hazelton 093M

WORK DONE: 1960.0 m
SAMP 15: Pb, Zn, Ag, Au
SOIL 163:multielement
EMGR 9.8 km
VLF 1990.0

**** Group D (Joe, Hazelton) ****

MINING DIV: ***
ASSESSMENT REPORT 15891 INFO CLASS 4
LOCATION: LAT 85 18 48 LONG. 127 30 30 NTS:
CLAIMS: GAR 8-8-Marw11 1-2, Mt. Glen
OPERATOR: Tri-Cnr Min.
AUTHORS: Homenuke, A
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Silver, gold and base metal sulphide veins occur in Lower Cretaceous Buckley Lake Group sandstones and argillites.
WORK DONE: SOIL 17: Cu, Pb, Zn, As, Ag
EMGR 2.1 km
VLF 1190.0
LINE 2.6 km
REFERENCES: A. R. 00058.08906.10189.13181.13440.14135 14840 M. J. 093M 119-GROUP D (JOE, HAZELTON, ACE)

**** Silverton ****

MINING DIV: Omineca
ASSESSMENT REPORT 16601 INFO CLASS 3
LOCATION: LAT 85 26 32 LONG. 127 31 08 NTS:
CLAIMS: Silverton 1-6. Silverton 1-2
OPERATOR: Norprem. Ex.
AUTHORS: Homenuke, A
COMMODITIES: Gold, Silver, Arsenic, Zinc, Lead, Molybdenum
DESCRIPTION: A Bulkley felsic stock cuts Lower Cretaceous Buckley Lake Group sediments, both of which are cut by mullite quartz-porphyry dikes. Quartz-arzenopyrite-pyrite-senilerite-tetrahedrite veins cut the two earliest rocks and contain gold values up to 30.8 grams per tonne.
WORK DONE: SILT 15:multielement
ROCK 96:multielement
SOIL 69:multielement
VLF 1190.0
REFERENCES: A. R. 00058.08906.10189.13181.13440.14135 14840

Mangon River 093N

**** Ce1 ****

MINING DIV: ***
ASSESSMENT REPORT 15423 INFO CLASS 4
LOCATION: LAT 55 14 48 LONG. 124 48 12 NTS:
CLAIMS: Keel 2
OPERATOR: Campbell, C.
AUTHOR: Homenuke C.
COMMODITIES: Copper, Gold

C312
Manson River: OBN

--

DESCRIPTION: The claim is underlain by anatectic and monzonite of the Hoquiam Batholith in contact with Upper Triassic Takla Group volcanic rocks. Mineralization consists of quartz lenses with locally abundant porphyry and disseminated porphyry and lesser chalcopyrite in altered contact-feldsparized mesocratic monzonite. Gold up to 1680 ppm is associated with the best porphyry mineralization.

WORK DONE: ROCK: 50-multielement, PERTH 3 thin sections.

REFERENCES: A. 0. 02714, 02932, 02953, 03383, 03384, 10971

**** Monas ****

MINING DIV: Omineca

LOCATION: LAT. 55 23 30 LONG. 125 36 00 NTS:

CLAIMS: Claim 1-2

OPERATOR: Imperial Metals

AUTHOR: Taylor, A.

COMMODITIES: Chromium

DESCRIPTION: Late Paleozoic ultramafic rocks are faulted into Pennsylvanian Cache Creek Group metamorphics which are all intruded by ultramafic rocks. The ultramafics are silicified, serpentinized and variably altered and contain minor monzonite and monzonite values.

WORK DONE: GEOG 1.2 BDS

REFERENCES: M.I. OBN 109-MONA

**** Tilti ****

MINING DIV: Omineca

LOCATION: LAT. 55 23 11 LONG. 125 48 02 NTS:

CLAIMS: Tilti 2-3

OPERATOR: Noranda Ex.

AUTHOR: Maxwell E., Braden L.

DESCRIPTION: The Tilti claims are underlain by Upper Triassic-Lower Jurassic talcite assemblages volcanic and sedimentary rocks. The volcanics include meta-flow and tuffite, and volcanic tuff and sandstones containing 2-10 percent disseminated pyrite. The sediments consist of calcareous sandy mudstones which trend north and dip steeply to the east.

WORK DONE: GEOG 1.2 BDS

REFERENCES: A. 0. 16376

**** Indio-Schnapps ****

MINING DIV: Omineca

LOCATION: LAT. 55 23 36 LONG. 125 20 00 NTS:

CLAIMS: Schnapps 1

OPERATOR: Eastfield Res.

DESCRIPTION: Confidential Status.

WORK DONE: ROCK: 50-multielement

REFERENCES: M.I. OBN 109-INDIO-SCHNAPP5

**** Valley Girl, Valleeau Creek ****

MINING DIV: Omineca

LOCATION: LAT. 55 29 00 LONG. 124 34 00 NTS:

CLAIMS: VG 2-4

OPERATOR: Imperial Metals

AUTHOR: Duncan D., Taylor, A.

COMMODITIES: Placer Gold

DESCRIPTION: The property is underlain by Triassic-Jurassic volcanic rocks of the Takla Group within 3 kilometres of the Cretaceous Germanian Batholith. Sericitic and pyritic Bore Zones were mapped but samples of such zones returned low results.

WORK DONE: ROCK: 50-multielement

REFERENCES: M.I. OBN 052-VALLEEUA CREEK:093N 111-VALLEY GIRL

**** Fairview ****

MINING DIV: Omineca

LOCATION: LAT. 55 40 56 LONG. 124 30 00 NTS:

CLAIMS: Fair

OPERATOR: Chevron Can. Ltd.

AUTHOR: McAllister, S.

DESCRIPTION: Confidential Status.

(Will be published in Exploration in British Columbia, 1988)
DESCRIPTION: Two detailed grids were established over Triassic Talc Group sediments, which are overlain by intermediate volcanic rocks. Minor carbonized shear zones contain small amounts of chalcopyrite-pyrrhotite with anomalous values of gold in soil on the slope of the grid. The north slope is east grid is geochemical anomaly in gold can be explained by a possible fault zone through the older-stage channel or as a result of poor soil development.

Twin ****

MINING DIV: Omineca ASSETMENT REPORT 15487 INFO CLASS 2
LOCATION: LAT 55 30 54 LONG 125 18 18 NTS:
CLAIMS: Talke, Twin 5-5 OPERATOR: Imperial Metals
AUTHOR: Maxwell, G.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: Drilling of the mineralized zone discovered in 1985 continued in 1986. A total of 16 holes were drilled to test the zone over 700 metres along strike at shallow depth. Gold, silver, and copper mineralization was encountered along the strike length tested, with best results in DH 5 and DH 13 on the west side of the zone. Gold mineralization is spatially distributed and related to intrusive porphyries adjacent to the contact between the Argyll and Upper Triassic-Talc Group volcanic rocks. It is confined to a zone marked by a large pyritic halo.

WORK DONE: MAG 3.4 km EMGR 3.4 km HLEN 25.8 km

REFERENCES: A.R. 14842

Bay ****

MINING DIV: Omineca ASSETMENT REPORT 15874 INFO CLASS 4
LOCATION: LAT 55 40 00 LONG 125 34 30 NTS:
CLAIMS: Sol 1-2, Sol 4 OPERATOR: Golden Porphyry
AUTHOR: MacFarlane, H.
DESCRIPTION: The claims are underlain by sediments belonging to the Pennsylvanian Cache Creek Group. These sediments consist mainly of massive flows, tuff, and lapilli tuff of the Upper Triassic-Lower Jurassic Siltite Group.

WORK DONE: LINE 3.4 km EMGR 3.2 km HLEM MAG 3.4 km

REFERENCES: A. R. 14542

Bedine ****

MINING DIV: *** ASSETMENT REPORT 16038 INFO CLASS 4
LOCATION: LAT 55 36 42 LONG 125 48 24 NTS:
CLAIMS: TL 2 OPERATOR: Noranda Ex.
AUTHOR: Maxwell, G.
COMMODITIES: Zinc-Copper
DESCRIPTION: The claims are underlain by felsic to intermediate volcanics which dip steeply to the west. These volcanics consist mainly of massive flows, tuff, and lapilli tuff of the Upper Triassic-Lower Jurassic Siltite Group.

WORK DONE: IPOL 1.1 km MAG 2.8 km

REFERENCES: A. R. 0842, 0848, 14780 M. I. C32 179-SLOPE

Dag ****

MINING DIV: *** ASSETMENT REPORT 15478 INFO CLASS 4
LOCATION: LAT 55 30 54 LONG 125 53 44 NTS:
CLAIMS: Dag 1 OPERATOR: Noranda Ex.
AUTHOR: Maxwell, G.
DESCRIPTION: The claim is underlain by a north-trending sequence of intermediate to felsic Siltite Group volcanics and sediments of Upper Triassic to Lower Jurassic age.

WORK DONE: DIAD 29.9 km hole 80

REFERENCES: A. R. 14719, 14693, 14849

Axel ****

MINING DIV: *** ASSETMENT REPORT 16508 INFO CLASS 3
LOCATION: LAT 55 56 48 LONG 125 55 12 NTS:
CLAIMS: Axel 4, Axel 3 OPERATOR: Noranda Ex.
AUTHOR: Taylor, A.
DESCRIPTION: Upper Triassic-Talc Group sediments occur in a fault zone adjacent to Pennsylvanian Cache Creek Group rocks. Talc Group sediments are intruded by numerous granitic to syenitic-type dikes which locally carry anomalous gold values.

C316
WORK DONE: ROCK 21; multiplelement

REFERENCES: *** Axegold ****

MINING DIV: Owina
LOCTION: LAT. 55 58 00 LONG. 123 58 00
CLAIMS: Axegold 01, Goldacx 9
COMMODITIES: Imperial Metals

DESCRIPTION: Axegold is located on the north side of the Rockwall Fault. The mine has been developed to a depth of 600 feet and has produced 30,000 tons of ore containing 0.5% gold and 0.8% silver. A major vein of high-grade gold is present in the hanging wall of the fault.

REFERENCES: A.R. 14017, 14018

**** NL ****

MINING DIV: Owina
LOCATION: LAT. 55 58 18 LONG. 124 44 42
CLAIMS: NL 11-15 NL 4, NL 6, NL 8
OPERATOR: Noranda Ex.
AUTHOR: Saly Jr.
DESCRIPTION: The property is underlain by generally north striking, westerly dipping, crystalline limestone, limestone breccia, conglomerate and gilstone of the Middle Cambrian Tachonic formation. A siltstone of the Middle Cambrian Tachonic formation is present near the contact of the limestone and gilstone.

REFERENCES: A.R. 13928, 14994

**** Fever ****

MINING DIV: Owina
LOCATION: LAT. 55 55 36 LONG. 124 46 26
CLAIMS: Fever
OPERATOR: Watkins, J.
AUTHOR: Watkins, J.
DESCRIPTION: The claim is underlain by basalt flows and intercalated fine-grained sediments of the Miocene-Pliocene Slide Mountain terrane. Rock units strike north-northwesterly and dip moderately.

REFERENCES: D.S.S.C.

**** Nmns ****

MINING DIV: Owina
LOCATION: LAT. 55 57 00 LONG. 124 48 00
CLAIMS: Nmns 1
OPERATOR: Lannex Min.
AUTHOR: Scott, A.; Thornton, J.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: Gold, silver and copper-bearing sulphide-rich lenses occur within the Upper Paleozoic basalt. Sulphides are spatially associated with intercalated argillite and chert.

REFERENCES: A.R. 13977

Pine Pass

REFERENCES: 0930

**** Win ****

MINING DIV: Cariboo
LOCATION: LAT. 55 02 05 LONG. 122 53 49
CLAIMS: Win
OPERATOR: Cons. Silver Standard Mines
COMMODITIES: Silver, Lead
DESCRIPTION: A steeply dipping quartzite unit of Cambrian age is surrounded by a low-grade silver deposit.

REFERENCES: A.R. 0929

Halfway River

REFERENCES: 0946

**** Coral ****

MINING DIV: Liard
LOCATION: LAT. 56 09 30 LONG. 123 24 46
CLAIMS: Coral
OPERATOR: Northgate Ex.
AUTHOR: Harby, J.; Haynes, L.
DESCRIPTION: Silver and zinc mineralization is hosted in breccia and pseudo-brecia of the Lower Paleozoic Stone Formation. Showings occur in the top of the Stone Formation beneath a regional unconformity.

REFERENCES: A.R. 13724, 15040
**** Aley ****

MINING DIV: Omineca
LOCATION: LAT 56 26 59 LONG. 125 44 07 NTS:
CLAIMS: Aley 1-4
OPERATOR: Cominco
AUTHOR: Pride, K.
COMMODITIES: Nickel, Apatite
DESCRIPTION: The claims cover a circular carbonatite complex roughly 4 kilometres across which intrudes Cambrian-Silurian sedimentary rocks. A carbonatitic carbonatite core contains substantial nickel reserves as ferronite with lesser pyrophilite and columbite and pyrophilite as aegirine. Minor rare earth minerals are generally confined to the outer margins of the complex and occurring as bastnasite, monazite, and
REFERENCES: SOIL 66: multielement

**** Goat ****

MINING DIV: Goat
LOCATION: LAT 56 05 00 LONG. 125 14 18 NTS:
CLAIMS: Goat
OPERATOR: Hudson Bay Ex. & Dev.
AUTHOR: Stroem, S.
DESCRIPTION: The claim is underlain by Upper Triassic Nicola Group silicified volcanics with local shearing adjacent to large scale fault structures.
REFERENCES: SOIL 174: multielement

**** Vega ****

MINING DIV: Omineca
LOCATION: LAT 56 09 00 LONG. 125 20 00 NTS:
CLAIMS: Vega
OPERATOR: Canmine Dev.
AUTHOR: Weishaupt, R.
COMMODITIES: Gold, Copper, Mercury
DESCRIPTION: The Vega group lies on a north-northwest trending fault structure in Taxis Group volcanics of Upper Triassic to Jurassic age. Several prominent fault structures cut the mineralized zone into several segments with right hand offsets. The zone may be 30 metres wide. Mineralization consists of chalcopyrite, pyrite and minor biotite and gold, either disseminated through the end as a stringer or concentrated along calcite stringers that tie along fractures and/or shears.
REFERENCES: SOIL 102: multielement

**** Lay ****

MINING DIV: Lay
LOCATION: LAT 56 27 36 LONG. 125 37 46 NTS:
CLAIMS: Lay 1-9
OPERATOR: Lacina Min.
AUTHOR: Johnston, Darrell
DESCRIPTION: The Polar's complex is 13 kilometres long by 2 to 4 kilometres wide, northwest trending body of dunite and olivine-rich peridotite, intruding a mixed package of volcanics and sediments of the Permian-Pennsylvanian Cache Creek Group.
REFERENCES: SOIL 102: multielement

**** Lay ****

MINING DIV: Lay
LOCATION: LAT 56 28 02 LONG. 125 37 21 NTS:
CLAIMS: Lay 1-9
OPERATOR: Lacina Min.
AUTHOR: Johnston, Darrell
DESCRIPTION: The Polar's complex is a 13 kilometre by 2 to 4 kilometre wide, northwest trending body of dunite and olivine-rich peridotite, intruding a mixed package of volcanics and sediments of the Permian-Pennsylvanian Cache Creek Group, with a contact aureole of amphibolite. Minor chromite was noted in the peridotite with local small rusty pods of up to 10 per cent pyrite-pyrrhotite in the amphibolite.
REFERENCES: SOIL 102: multielement

**** Mess ****

MINING DIV: Mess
LOCATION: LAT 56 24 36 LONG. 125 36 02 NTS:
CLAIMS: Czech.
AUTHOR: Mowat, U.
COMMODITIES: Copper
DESCRIPTION: The property is underlain by a very magnetic intrusive and black volcanics of probable Pennsylvanian age. At the contact of the two rocks, chalcopyrite and pyroxcene with gold values are found in a gossanous shear zone which trends northwesterly. The gossanous rock is exposed for 500 metres in the bed of a creek.
REFERENCES: SOIL 102: multielement

C319

C320
GEOL 1:00 000
REFERENCES: M.I. 094C 091-MES

**** Michele ****

MINING DIV: Michele
LOCATION: LAT 56 29 06 LONG. 125 38 12 NTS:
CLAIMS: Michele 1
AUTHOR: Mowat, U.
DESCRIPTION: The property is underlain by ultramafic rocks, varying from dunite to harzburgite, to harzburgite. A large number of veins are intruded, consisting of serpentine, olivine, pyrite, and pyrrhotite. The veins are confined to narrow quartz veins or breccias and occur as dark grey, very fine specks and streaks of pyrrhotite and troilite.
WORK DONE: 110 m:2 holes, EW
REFERENCES: M.I. 094C 081-ME5

**** Ne1 ****

MINING DIV: Ne1
LOCATION: LAT 56 29 42 LONG. 125 29 54 NTS:
CLAIMS: Li 2
OPERATOR: Canmin Dev.
AUTHOR: Weishaupt, P.; Weishaupt, R.
DESCRIPTION: Several quartz veins and breccias crosscut Precambrian schists and younger granophyres. Most veins have narrow silicified envelopes and are incised by younger diorite. The silver mineralization is confined to narrow quartz veins or breccias and occurs as dark grey, very fine specks and streaks of pyrrhotite and troilite.
WORK DONE: 64.2 m:2 holes, EW
REFERENCES: M.I. 094C 091-MES

**** Polaris ****

MINING Div: Polaris
LOCATION: LAT 56 30 00 LONG. 126 40 00 NTS:
CLAIMS: Polaris Pole 1-2
OPERATOR: Technikon Platinum
AUTHOR: Page, J.
DESCRIPTION: The Polaris property covers a section of the Polaris Ultramafic Complex and consists of gabbro, ultramafic, and minor komatiite. The property is underlain by a cretaceous gabbroic layered intrusives.
WORK DONE: 3 m:2 holes, SW
REFERENCES: A.R. 04880

**** Czech ****

MINING DIV: Czech
LOCATION: LAT 56 33 05 LONG. 126 48 54 NTS:
CLAIMS: Czech 2
AUTHOR: Mowat, U.
DESCRIPTION: The property is underlain by Permin(?)-esque tuffs intruded by diorite and gabro/ultramafic. No mineralization other than pyrite was noted. Minor anomalous values in gold and platinum were recorded in heavy mineral samples. Cassus quartz veins trend east for 1000 metres and are geochemically anomalous.
WORK DONE: 100 m:2 holes, NW
REFERENCES: M.I. 094C 079-NEL

**** Nero ****

MINING DIV: Nero
LOCATION: LAT 56 06 00 LONG. 126 08 00 NTS:
CLAIMS: Nero 2
AUTHOR: Imperial Metals
DESCRIPTION: A Cretaceous layered gabbro has intruded Permo-Triassic Cache Creek Group metavolcanics and metasediments. Mineralization occurs in scattered occurrences of disseminated iron sulphides, particularly within gabbro and country rock near their contact. The surface was tested for platinum group elements by gold blasting. Best spot results included 312 ppb gold, 10 ppb platinum, 14 ppb palladium, and 10 ppb rhodium.
WORK DONE: 25 Au Pt Pd, Rh
REFERENCES: M.I. 094C 079-NEL

**** PGM ****

MINING DIV: PGM
LOCATION: LAT 56 03 48 LONG. 126 06 18 NTS:
CLAIMS: PGM 4-S
OPERATOR: Platinum Ex.
AUTHOR: Goodwin, J.
DESCRIPTION: The claims are underlain by a Cretaceous gabbroic layered intrusives.
McConnell Creek

O94D

Work Done: Intrusive forming a bowl shaped structure. It is composed of alternating layers of anorthosite, anorthositic gabbro, gabbro and pyroxenite. Faulting has disrupted the intrusive in at least four directions. Mineralization consists of sparse stratabound sulfides.

References:

MINING DIV: Omineca

Location: Lat. 56 11 18 Long. 129 36 30 NTS:

Claims: Comb 1-2

Operator: Gunsteel Res.

Author: Allen, D.; Smith, W.

Description: The claims are underlain by sedimentary rocks of the Upper Cretaceous Stutus Group. Mineralization appears to be epithermal in origin and occurs within and adjacent to Bulkley Intrusions within Upper Cretaceous Bower Lake Group sediments and Lower Jurassic Hazelton Group volcanics.

Work Done: Rock 2: Au, Ag, Sb, Pb, Zn, As, Pb, Zn, As, Ag

Soil: Sil 116: Au, Ag, Sb, Pb, Zn, As, Pb, Zn, As, Ag

Goodridge, Bismuth

MINING DIV: Omineca

Location: Lat. 56 07 42 Long. 127 36 30 NTS:

Claims: Toth 2-3

Operator: Noranda Ex.

Author: Myers, D.

Commodities: Silver, Lead, Zinc, Copper, Gold

Description: Cretaceous Bower Lake Group clastic sedimentary rocks are cut by quartz-carbonate veins of several orientations. The veins are locally less than 1 centimetre wide and carry pyrite, galena, arsenopyrite, pyrrhotite, tetrachloride, and rarely silver. Minor disseminated mineralization is associated with the veinlet mineralization.

Work Done: Soil 431: Au, Ag

References: A.R. 00570, 00574, 14775, 0940, 0941, 0942, 0943, 0944, 0945

Goodridge, Bismuth

MINING DIV: Omineca

Location: Lat. 56 07 54 Long. 127 36 48 NTS:

Claims: Au 24, Au 4, Tom

Operator: Noranda Ex.

Author: Myers, D.

Commodities: Silver, Lead, Zinc, Copper, Gold

Description: Lower Cretaceous Bower Lake Group clastic sediments are cut by quartz-carbonate veins of several orientations. The veins are locally less than 1 centimetre wide and carry pyrite, galena, arsenopyrite, pyrrhotite, tetrachloride, and rarely silver. Minor disseminated mineralization may be associated with the veinlet mineralization.

Work Done: DIAD 752.0 m; 10 holes, NG

McConnell Creek

O94D

Work Done: Intrusive forming a bowl shaped structure. It is composed of alternating layers of anorthosite, anorthositic gabbro, gabbro and pyroxenite. Faulting has disrupted the intrusive in at least four directions. Mineralization consists of sparse stratabound sulfides.

References:

MINING DIV: Omineca

Location: Lat. 56 04 54 Long. 127 07 24 NTS:

Claims: Mot 2

Operator: Prolific Petr.

Author: Kehl, H.B.

Commodities: Copper, Polycrystalline

Description: The claims are underlain by Lower Jurassic Hazelton Group volcanics. Mineralization appears to be epithermal in origin and occurs within and adjacent to Bulkley Intrusions within Lower Jurassic Hazelton Group volcanics. Mineralization appears to be genetically related to the Bulkley granite intrusions.

Work Done: Rock 2: Au, Ag, Pb, Zn, As, Ag

Soil: Sil 116: Au, Ag, Pb, Zn, As, Ag, Pb, Zn, As, Ag

MINING DIV: Omineca

Location: Lat. 56 03 18 Long. 127 04 24 NTS:

Claims: Mot 2

Operator: Grangeen Ex.

Author: Kehl, H.B.

Commodities: Copper, Polycrystalline

Description: The claims are underlain by Lower Jurassic Hazelton Group volcanics. These rocks are

MINING DIV: Omineca

Location: Lat. 56 14 42 Long. 127 10 30 NTS:

Claims: Spine 1

Operator: Minflower Min.

Author: Rynor, G.

Description: Limestone appears to be a clastic sediment within an intravolcanic sequence of the Lower Jurassic Hazelton Group.

Work Done: PET 2 thin sections

References: A.R. 04662, 04655, 04648

MINING DIV: Omineca

Location: Lat. 56 07 42 Long. 127 36 30 NTS:

Claims: Toth 2-3

Operator: Noranda Ex.

Author: Myers, D.

Commodities: Silver, Lead, Zinc, Copper, Gold

Description: Cretaceous Bower Lake Group clastic sedimentary rocks are cut by quartz-carbonate veins of several orientations. The veins are usually less than 1 centimetre wide and carry pyrite, galena, arsenopyrite, pyrrhotite, tetrachloride, and rarely silver. Minor disseminated mineralization is associated with the veinlet mineralization.

Work Done: Soil 431: Au, Ag

References: A.R. 00570, 00574, 14775, 0940, 0941, 0942, 0943, 0944, 0945

MINING DIV: Omineca

Location: Lat. 56 07 54 Long. 127 36 48 NTS:

Claims: Au 2, Au 4, Tom

Operator: Noranda Ex.

Author: Myers, D.

Commodities: Silver, Lead, Zinc, Copper, Gold

Description: Lower Cretaceous Bower Lake Group clastic sediments are cut by quartz-carbonate veins of several orientations. The veins are locally less than 1 centimetre wide and carry pyrite, galena, arsenopyrite, pyrrhotite, tetrachloride, and rarely silver. Minor disseminated mineralization may be associated with the veinlet mineralization.
MINING DIV: Omineca ASSESSMENT REPORT 15583 INFO CLASS 3
LOCATION: LAT. 56 28 20 LONG. 126 04 44 NTS:
CLAIMS: KC-1
OPERATOR: Ritz Res.
AUTHOR: Christopher, P.
COMMODITIES: Gold
DESCRIPTION: The claims are mainly underlain by Upper Triassic Takla Group rocks which are intruded by various phases of the Klujul Creek pluton. Late felsite and andesite dykes also cut the sequence. Northwest trending structures control emplacement of auriferous quartz veins.
WORK DONE: ENGR 6.7 km:VLF
SOIL 22:multi-element
REFERENCES: A.R. 02818,03312,03313,05211,09464
M.I. 056-INDDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 15855 INFO CLASS 3
LOCATION: LAT. 56 40 30 LONG. 126 14 30 NTS:
CLAIMS: Soup 1 and 14.
OPERATOR: Leming Res.
AUTHORS: Ragabattist, C.M.
COMMODITIES: Copper,Gold.
DESCRIPTION: The claims are underlain by volcanic and sedimentary rocks of the Upper Triassic Takla Group. Volcanic rocks include tuffs, agglomerates and flows. Sedimentary rocks are dominantly argillite with minor interbedded limestone and greywacke. Diorite dykes and diabase sills are intrude the Takla Group. East-trending quartz veins and silicified zones carry chalcopyrite, galena and native gold mineralization.
WORK DONE: EMGR 6.7 km:VLF
MAGG 6.7 km
REFERENCES: A.R. 00675,05562,05985,06430
M.I. 0940 028-5INDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 15856 INFO CLASS 3
LOCATION: LAT. 56 48 54 LONG. 126 56 00 NTS:
CLAIMS: Niv 1-3
OPERATOR: Gunsteel Res.
AUTHORS: Allen, D. : Smith, M.
DESCRIPTION: The claim are underlain by Upper Cretaceous Subutut Group sedimentary rocks. Geochemical anomalies obtained in the area suggest potential for paleolayer gold mineralization.
WORK DONE: SOIL 22:multi-element
REFERENCES: A.R. 10341,12802,13585,14622
M.I. 0940 028-SOUP

MINING DIV: *** ASSESSMENT REPORT 15867 INFO CLASS 3
LOCATION: LAT. 56 48 42 LONG. 126 34 48 NTS:
CLAIMS: Jen 1-2
OPERATOR: Asitka Res.
AUTHORS: Allen, D. : Smith, M.
DESCRIPTION: The claim are underlain by Upper Triassic Takla Group volcanic rocks. Gold quartz vein float occurs with scattered geochemical anomalies. Soil sampling has revealed copper, zinc and scattered gold geochemical anomalies.
WORK DONE: SOIL 12:multi-element
REFERENCES: A.R. 02818,03312,03313,05211
M.I. 0940 028-5INDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 15547 INFO CLASS 4
LOCATION: LAT. 56 39 48 LONG. 126 48 00 NTS:
CLAIMS: Nor 2,4,
OPERATOR: Cooke, D.
REFERENCES: A.R. 02818,03312,03313,05211
M.I. 0940 028-5INDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 15634 INFO CLASS 3
LOCATION: LAT. 56 48 43 LONG. 126 56 00 NTS:
CLAIMS: Niv 1-4,
OPERATOR: Gunsteel Res.
AUTHORS: Allen, D. : Smith, M.
DESCRIPTION: The claims are underlain by Upper Cretaceous Subutut Group sedimentary rocks. Geochemical anomalies obtained in the area suggest potential for paleolayer gold mineralization.
WORK DONE: SOIL 22:multi-element
REFERENCES: A.R. 10341,12802,13585,14622
M.I. 0940 028-SOUP

MINING DIV: *** ASSESSMENT REPORT 15544 INFO CLASS 3
LOCATION: LAT. 56 48 43 LONG. 126 56 00 NTS:
CLAIMS: Nor 2,4,
OPERATOR: Cooke, D.
REFERENCES: A.R. 02818,03312,03313,05211
M.I. 0940 028-5INDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 16067 INFO CLASS 3
LOCATION: LAT. 56 48 43 LONG. 126 56 00 NTS:
CLAIMS: Jen 1-2
OPERATOR: Asitka Res.
AUTHORS: Allen, D. : Smith, M.
DESCRIPTION: The claims are underlain by Upper Triassic Takla Group volcanic rocks. Gold quartz vein float occurs with scattered geochemical anomalies. Soil sampling has revealed copper, zinc and scattered gold geochemical anomalies.
WORK DONE: SOIL 12:multi-element
REFERENCES: A.R. 02818,03312,03313,05211
M.I. 0940 028-SOUP

MINING DIV: *** ASSESSMENT REPORT 15856 INFO CLASS 3
LOCATION: LAT. 56 40 30 LONG. 126 14 30 NTS:
CLAIMS: Soup 1 and 14.
OPERATOR: Leming Res.
AUTHORS: Ragabattist, C.M.
COMMODITIES: Copper,Gold.
DESCRIPTION: The claims are underlain by volcanic and sedimentary rocks of the Upper Triassic Takla Group. Volcanic rocks include tuffs, agglomerates and flows. Sedimentary rocks are dominantly argillite with minor interbedded limestone and greywacke. Diorite dykes and diabase sills are intrude the Takla Group. East-trending quartz veins and silicified zones carry chalcopyrite, galena and native gold mineralization.
WORK DONE: EMGR 6.7 km:VLF
MAGG 6.7 km
REFERENCES: A.R. 00675,05562,05985,06430
M.I. 0940 028-5INDEPENDENCE:0940 029-8ANUJG

MINING DIV: *** ASSESSMENT REPORT 15855 INFO CLASS 3
LOCATION: LAT. 56 28 20 LONG. 126 04 44 NTS:
CLAIMS: KC-1
OPERATOR: Ritz Res.
AUTHOR: Christopher, P.
COMMODITIES: Gold
DESCRIPTION: The claims are mainly underlain by Upper Triassic Takla Group rocks which are intruded by various phases of the Klujul Creek pluton. Late felsite and andesite dykes also cut the sequence. Northwest trending structures control emplacement of auriferous quartz veins.
WORK DONE: ENGR 6.7 km:VLF
SOIL 22:multi-element
Toogoodgone River 094E

**** Kenness ****

MINING DIV: Omineca
LOCATION: LAT. 57 03 48 LONG. 126 48 30 NTS:
CLAIMS:
OPERATOR: El Conder Res.
AUTHOR: Blanchflower, J.
COMMODITIES: Copper, Molybdenum
DESCRIPTION: The claims are underlain by andesites and tuffs of the Upper Triassic Takaia Group which are intruded by dykes of the Omineca Intrusions. Younger non-zonate porphyry is also present.
WORK DONE:
REFERENCES:

**** Pine (Fin) ****

MINING DIV: Omineca
LOCATION: LAT. 57 12 30 LONG. 126 41 42 NTS:
CLAIMS:
AUTHOR: Peapson, B.
DESCRIPTION:
WORK DONE:
REFERENCES:

**** Riony ****

MINING DIV: Omineca
LOCATION: LAT. 57 09 00 LONG. 126 42 30 NTS:
CLAIMS:
AUTHOR: Evans, E.
DESCRIPTION: The area is underlain by interlayered Middle Jurassic Toogoodgone volcanics. Gold mineralization is sporadic and is only detected in stream sediments and soils.
WORK DONE:
REFERENCES:

**** Rod ****

MINING DIV: Omineca
LOCATION: LAT. 57 14 18 LONG. 126 52 24 NTS:
CLAIMS:
AUTHOR: Evans, B.
DESCRIPTION: The area is underlain by interlayered Middle Jurassic Toogoodgone volcanics. Gold mineralization is sporadic and is only detected in stream sediments and soils.
WORK DONE:
REFERENCES:

**** Jocky ****

MINING DIV: Omineca
LOCATION: LAT. 57 14 18 LONG. 126 52 24 NTS:
CLAIMS:
OPERATOR: Golden Rule Res.
AUTHOR: Evans, B.
DESCRIPTION: The area is underlain by interlayered Middle Jurassic Toogoodgone volcanics. Gold mineralization is sporadic and is only detected in stream sediments and soils.
WORK DONE:
REFERENCES:

**** Rod ****

MINING DIV: Omineca
LOCATION: LAT. 57 10 00 LONG. 126 45 30 NTS:
CLAIMS:
OPERATOR: Cooke, D.
DESCRIPTION: The claim is underlain by Middle Jurassic Toogoodgone tuffs, lapilli tuffs, and hornblende feldspar porphyry. Two stream silts were anomalous in gold.
WORK DONE:
REFERENCES:

**** Vip 7, Vip 30, Vip 29 ****

MINING DIV: Omineca
LOCATION: LAT. 57 10 24 LONG. 126 50 36 NTS:
CLAIMS:
OPERATOR: Asitka Res.
AUTHOR: Macquarie, D.
DESCRIPTION: The property is underlain by three main rock units. Granodiorite is part of the northwest-trending pluton of Middle Jurassic age. Marble and schist of the Penman Asitka Group forms at least three roof pendants within the granodiorite. Volcanic and volcanoclastic rocks of the Middle Jurassic Toogoodgone Volcanics outcrop on the eastern part of the claims. Main types of mineralization on the property include: (1) copper-zinc-gold in skarns along marble-granodiorite contacts, (2) gold in siliceous zones and chloritic veins with coarse pyrite in pyritic metasiltstone, and
Toodogone River - 094E

(3) gold in brecciated and stilified volcanic rocks of the Toodogone volcanics.

WORK DONE:
- MAG 10.0 km
- EMGR 10.0 km: VLF
- SOIL 99: multielement
- LINE 10.0 km

REFERENCES:
- A.R. 06144.07489.09494
- M.I. 084E 047-VIP 7:004E 048-VIP 30:034E 049-VIP 29

**** Birch ****

MINING DIV:
- OSINEE ASSESSMENT REPORT 16470 INFO CLASS 3

LOCATION:
- LAT. 57 08 31 LONG. 128 45 50

CLAIMS:
- Birch

OPERATOR:
- Chevi Gold Mines

AUTHOR:
- Bekaache, M.

DESCRIPTION:
- Jurassic quartz monzonite and granodiorite are structurally deformed by an extensive network of intersecting faults. The intrusive is bordered by Jurassic and Triassic volcanic rocks. Mineralization is controlled by the contact, faults, and dykes related to the contact and cutting the intrusive core itself.

WORK DONE:
- SOIL 263 Au, Ag, Cu, Pb, Zn

REFERENCES:
- A.R. 15356

**** Black ****

MINING DIV:
- OSINEE ASSESSMENT REPORT 16068 INFO CLASS 3

LOCATION:
- LAT. 57 15 24 LONG. 127 04 00

CLAIMS:
- Black 1, Black III, IV

OPERATOR:
- Horlunger, H.

AUTHOR:
- Hergen, R.G.:

DESCRIPTION:
- Three major stratigraphic units strike northwest across the property. From north to south they are: (1) a late Jurassic intrusive, primarily granodiorite; (2) undivided Middle Jurassic Toodogone volcanics consisting of feldspar porphyry, tuffs, and breccias; (3) upper Triassic Takla Group augite porphyry basalt.

WORK DONE:
- ROCK 14 Au, Ag, Cu, Pb, Zn
- IPOL 1.8 m

REFERENCES:
- A.R. 16371

**** CMIC ****

MINING DIV:
- OSINEE ASSESSMENT REPORT 16371 INFO CLASS 4

LOCATION:
- LAT. 57 12 00 LONG. 127 02 00

CLAIMS:
- CMIC

OPERATOR:
- Toodogone Gold

AUTHOR:
- Bekaache, M.

DESCRIPTION:
- Jurassic quartz monzonite and granodiorite are structurally deformed by an extensive network of intersecting faults. The intrusive is bordered by Jurassic and Triassic volcanic rocks. Mineralization is controlled by the contact, faults, and dykes related to the intrusive core itself.

WORK DONE:
- ROCK 18 Cu, Pb, Zn, Ag, Au
- SOIL 1.5 km

REFERENCES:
- A.R. 16365

**** Fred Zonker ****

MINING DIV:
- OSINEE ASSESSMENT REPORT 16388 INFO CLASS 3

LOCATION:
- LAT. 57 14 00 LONG. 127 02 00

CLAIMS:
- Fred Zonker

OPERATOR:
- Snow, D.

AUTHOR:

DESCRIPTION:
- There is an east trending contact situated in the southern portion of the Zonker claim. The contact is between Upper Triassic Takla Group rocks to the south and Lower to Middle Jurassic quartz monzonite and granodiorite in intrusive rocks to the north. Two major north trending faults and cross faults are evident from the magnetic and aeromagnetic data. The data also indicates some dykes and plugs in the southern portion of the Zonker claim.

WORK DONE:
- MAG 55.0 km

REFERENCES:
- A.R. 16330

**** Lac Noir Ben ****

MINING DIV:
- OSINEE ASSESSMENT REPORT 16388 INFO CLASS 3

LOCATION:
- LAT. 57 14 00 LONG. 127 02 00

CLAIMS:
- Ben, Jerry, Lac Noir

OPERATOR:
- Reachview Ben

AUTHOR:
- Bekaache, M.

DESCRIPTION:
- Jurassic quartz monzonite and granodiorite are faulted into two domes. The intrusive is in contact with volcanics of Jurassic and Triassic ages. Mineralization is associated with the contact zones. Contacts of three types: subvertical contact fault between Triassic volcanics and the intrusive, subhorizontal contact between Jurassic volcanics overlying the intrusive, and contact site lenses of volcanics.

WORK DONE:
- ROCK 17 Cu, Pb, Zn, Ag, Au

REFERENCES:
- A.R. 16330
MINING DIV: *** ASSESSMENT REPORT 16369 INFO CLASS 3
LOCATION: LAT 57.14 00 LONG. 127 08 00 NTS:
CLAIMS: Tagish, Brutus
OPERATOR: Beachview Res.
AUTHOR: N. Sayward, J.
DESCRIPTION: Jurassic quartz monzonite and granodiorite are dome-shaped and structurally deformed by an extensive network of intersecting northeast and northwest trending faults. These faults are associated with mineralization.
WORK DONE: SOIL 94: Au, Ag, Cu, Pb, Zn
REFERENCES: A.R. 01268

MINING DIV: *** ASSESSMENT REPORT 16408 INFO CLASS 4
LOCATION: LAT 57.29 48 LONG. 127 08 56 NTS:
CLAIMS: Amethyst Valley
OPERATOR: Shayna Res.
AUTHOR: Basil C.
DESCRIPTION: The claims are underlain by Middle Jurassic Toodoggone volcanics and Upper Triassic Takla Group rocks.
WORK DONE: LINE 19.2 km
REFERENCES:}

MINING DIV: *** ASSESSMENT REPORT 15412 INFO CLASS 3
LOCATION: LAT 57.29 00 LONG. 127 08 00 NTS:
CLAIMS: Amethyst Valley, Kidtview
OPERATOR: Geostar Min.
AUTHOR: Lkong, C.; Yeager, D.
DESCRIPTION: The claims are underlain by Lower to Middle Jurassic McClain Creek formation porphyritic flows, tuffs, and breccias, and a fault-bounded wedge of Upper Triassic Takla Group porphyritic basalts and sediments. A number of quartz veins, quartz stockwork precursors and silicified zones returned anomalous multielement values in rock chip samples.
WORK DONE: ROCK 134: multielement
REFERENCES: A.R. 00858

MINING DIV: *** ASSESSMENT REPORT 15819 INFO CLASS 3
LOCATION: LAT 57.18 00 LONG. 127 03 00 NTS:
CLAIMS: Black II
DESCRIPTION: The claims are overprint by Middle Jurassic Toodoggone volcanics and Upper Triassic Takla Group rocks.
WORK DONE: DIAD 217.0 m; 2 holes, NO
REFERENCES: C331

MINING DIV: *** ASSESSMENT REPORT 16499 INFO CLASS 3
LOCATION: LAT 57.17 26 LONG. 127 05 53 NTS:
CLAIMS: Chappelle 27
OPERATOR: Multinational Min.
DESCRIPTION: Northwest trending fault separates Upper Triassic Takla Group augite porphyritic basalt from the Black Lake Quartz monzonite stock. The former rock unit is separated from the latter by Middle Jurassic Toodoggone Group quartzite. One of the most important quartz veins is hosted by the Black Lake stock.
WORK DONE: DIAD 217.0 m; 2 holes, NO
REFERENCES: C26-CHAPELLE

MINING DIV: *** ASSESSMENT REPORT 15818 INFO CLASS 3
LOCATION: LAT 57.28 00 LONG. 127 05 00 NTS:
CLAIMS: Joanna II
OPERATOR: Armor Dev.
AUTHOR: Soppre, J.; Steele, J.
DESCRIPTION: Northeast-striking gold and silver-bearing quartz veins are hosted by Upper Triassic Takla Group volcanic rocks northwest of the contact with porphyritic rocks of the Black Lake stock.
WORK DONE: ROCK 5: Au, Ag, Cu, Pb, Zn, Ba
REFERENCES: A.R. 01859, 02532, 02567, 03171, 03198, 03343, 03357, 03418, 03419, 04066, 05461, 05867, 06096, 07533, 08889, 10562, 11516, 11533, 15321, 15701

MINING DIV: *** ASSESSMENT REPORT 15832 INFO CLASS 3
LOCATION: LAT 57.23 00 LONG. 127 10 00 NTS:
G.W.P. 250, G.W.P. 280
C332
Toodoggone River 084E

DESCRIPTION: The southern part of the claim group is underlain by quartz dacite of the Lower to Middle Jurassic Toodoggone volcanics. The northern portions are covered by glacial drift and gravels of Toodoggone River.

REFERENCES:

G.W.P. NO. 430

WORK DONE:

REFERENCES:

G.W.P. NO. 430

WORK DONE:

REFERENCES:

** Golden Neighbour **

MINING DIV: Omineca ASSESSMENT REPORT 15997 INFO CLASS 3
LOCATION: LAT. 57 24 00; LONS. 127 01 48; NTS:
CLAIMS: G.W.P. NO. 430
OPERATOR: Cyprus Metals Can.
AUTHOR: Thompson, W.
DESCRIPTION: The Toodoggone River area is underlain by a volcano-sedimentary complex and numerous intrusive bodies. Northwest faults form the most prominent structural element and have a major role in the emplacement of mineralization. Four main precious and base metal deposit types have been identified in the general area: porphyry, skarn, stratabody and epithermal.

REFERENCES:

G.W.P. NO. 430

WORK DONE:

REFERENCES:
MINING DIV: Omniex
LOCATION: LAT 57 23 24 LONG 127 14 58 NTS:
OPERATOR: Cyprus Metals Can.
AUTHOR: Tompson, W.
COMMODITIES: Gold,Silver
DESCRIPTION: The claims are underlain by volcanic flows, tuffs and epiclastic rocks of the Middle Jurassic Toodogone volcanics. Zones of hydrothermally altered rocks strike northerly across the claim area. Bearrock is covered by alluvium, colluvium and glacial drift throughout 15 per cent of the area.
WORK DONE:
BAND 386: multielement
BALT 108: multielement
DIAD 108B: 12 holes, BQ
TREN 82 B: 11 trenches
SOIL 2012: multielement
SUDD 1: multielement
LINE 50 1 km
GEO 1: 000, 1:10 000, 1:5000, 1:1000
REFERENCES: A. R. 0498
M. I. 0494
O8E-MOOSEHORN

MINING DIV: ***
LOCATION: LAT 57 27 24 LONG 127 00 48 NTS:
CLAIMS: Mason 1
AUTHOR: Thomas, W.
COMMODITIES: Silver,Copper,Lode,Zinc
DESCRIPTION: The claims are underlain by Pennsian Asitka Group limestones and metasandstones. Upper Triassic Takla Group volcanic rocks and Middle Jurassic Toodogone volcanics which are intruded by quartz monzonite.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 300: multielement
REFERENCES: M. I. 0496
O72-PAU (Perry Mason)

MINING DIV: ***
LOCATION: LAT 57 16 24 LONG 127 08 48 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)

MINING DIV: ***
LOCATION: LAT 57 16 06 LONG 127 00 12 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)

MINING DIV: ***
LOCATION: LAT 57 22 00 LONG 127 00 00 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)

MINING DIV: ***
LOCATION: LAT 57 16 24 LONG 127 14 58 NTS:
OPERATOR: Cyprus Metals Can.
AUTHOR: Tompson, W.
COMMODITIES: Gold,Silver
DESCRIPTION: The claims are underlain by volcanic flows, tuffs and epiclastic rocks of the Middle Jurassic Toodogone volcanics. Zones of hydrothermally altered rocks strike northerly across the claim area. Bearrock is covered by alluvium, colluvium and glacial drift throughout 15 per cent of the area.
WORK DONE:
BAND 386: multielement
BALT 108: multielement
DIAD 108B: 12 holes, BQ
TREN 82 B: 11 trenches
SOIL 2012: multielement
SUDD 1: multielement
LINE 50 1 km
GEO 1: 000, 1:10 000, 1:5000, 1:1000
REFERENCES: A. R. 0498
M. I. 0494
O8E-MOOSEHORN

MINING DIV: ***
LOCATION: LAT 57 27 24 LONG 127 00 48 NTS:
CLAIMS: Mason 1
AUTHOR: Thomas, W.
COMMODITIES: Silver,Copper,Lode,Zinc
DESCRIPTION: The claims are underlain by Pennsian Asitka Group limestones and metasandstones. Upper Triassic Takla Group volcanic rocks and Middle Jurassic Toodogone volcanics which are intruded by quartz monzonite.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 300: multielement
REFERENCES: M. I. 0496
O72-PAU (Perry Mason)

MINING DIV: ***
LOCATION: LAT 57 16 24 LONG 127 08 48 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)

MINING DIV: ***
LOCATION: LAT 57 16 06 LONG 127 00 12 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)

MINING DIV: ***
LOCATION: LAT 57 22 00 LONG 127 00 00 NTS:
CLAIMS: Snatta 3
AUTHOR: Thomas, P.
COMMODITIES: Gold,Silver,Copper,
DESCRIPTION: Gold and silver mineralization occurs within structurally controlled quartz and quartz-carbonate stockworks. Most rocks are metagabbro, metadiorite and quartz diorite of the Lower Jurassic Omniex Intrusions.
WORK DONE:
GEO 3: multielement
LINE 7.6 km
SOIL 276: multielement
REFERENCES: M. I. 0496
O71-SAUNDERS (Lawyers,KODAK): 0942 037-SAUNDERS 162:
049E 040-SDM (NE,GO)
**** Sturdee ****
MINING DIV: Omineca
LOCATION: LAT 57 25 30 LONG. 127 12 30 NTS:
CLAIMS: Sturdee
OPERATOR: Energex Min.
AUTHOR: Silvertz, G.
DESCRIPTION: The claim is underlain by Middle Jurassic Toadogone volcanics.
WORK DONE:
REFERENCES:

**** Bv-Thesis II-III, Bonanza-Verranes ****
MINING DIV: Liard
LOCATION: LAT 57 29 00 LONG. 127 22 00 NTS:
CLAIMS: Discovery I
OPERATOR: Duke Min.
AUTHOR: Moulardy, P.
DESCRIPTION: The claims are underlain by Middle Jurassic Toadogone volcanics.
WORK DONE:
REFERENCES:

**** Discovery ****
MINING DIV: Omineca
LOCATION: LAT 57 28 36 LONG. 127 24 36 NTS:
CLAIMS: Discovery I
OPERATOR: Duke Min.
AUTHOR: Moulardy, P.
DESCRIPTION: The claims are underlain by Middle Jurassic Toadogone volcanics.
WORK DONE:
REFERENCES:

**** Golden Stranger ****
MINING DIV: Omineca
LOCATION: LAT 57 22 30 LONG. 127 22 00 NTS:
CLAIMS: Golden Stranger, Golden Stranger II
OPERATOR: Western Horizons Res.
AUTHOR: H. E. Nortz, K.
COMMODITIES: Gold, Silver, Arsenic, Lead, Zinc, Copper
DESCRIPTION: The claims are underlain by Middle Jurassic Toadogone volcanics consisting primarily of crystal tuff breccia and tuff. The tuff breccia have been mapped northernly trending zones of high-grade mineralization. The alteration zones are subparallel to vein-like and comprise central altered cores enveloped by intensely altered rock. Most alteration zones are steeply dipping and are controlled by the NE-trending fault systems.
WORK DONE:
REFERENCES:

**** Spike ****
MINING DIV: Liard
LOCATION: LAT 57 30 00 LONG. 127 18 00 NTS:
CLAIMS: Spike
OPERATOR: Toadogone Synd.
AUTHOR: Hemmery, R.G.; White, G.E.
DESCRIPTION: The major stratigraphic units strike northwesterly across the Toadogone volcanics. The major intrusive is a large Jurassic intrusion. The toadogone volcanics are altered over a large, roughly circular area. The mineralization is known.
WORK DONE:
REFERENCES:

**** Surprise ****
MINING DIV: Omineca
LOCATION: LAT 57 28 00 LONG. 127 16 00 NTS:
CLAIMS: Surprise
OPERATOR: Energex Min.
AUTHOR: Awrepp, H.
DESCRIPTION: The Toadogone volcanics are altered over a large, roughly circular area. The mineralization is known.
WORK DONE:
REFERENCES:

Toadogone River
Tooagogone River

Propylitic alteration predominates. Two auriferous potassic alteration zones occur along the southern boundary of the propylitic alteration. The larger zone is exposed for 300 metres with widths up to 26 metres.

Work Done:
- Rock: Au, Ag
- Geol: 1:50000, 1:1000

References:
- A. R. 14909

Fine **

Mining Div.:
- **Assessment Report 15962**
- **Info Class 3**

Location:
- Lat: 51° 22' 00"
- Long: 126° 52' 00"

Claims:
- Fine 1-4

Operator:
- Toccogone Gold

Author:
- Cukor, V.; Pezzot, E.

Description:
- The claims are underlain primarily by Middle Jurassic Toccogone volcanics. Late Jurassic intrusives are mapped along the eastern half of the claims and Upper Triassic Tekla Group volcanics are located on the northern border. These rocks host several pyrite, chalcopyrite, sphalerite and galena showings.

Work Done:
- MAGA 248.6 km

References:
- A. R. 02862, 03887, 09001, 10294

Arg **

Mining Div.:
- **Assessment Report 16043**
- **Info Class 3**

Location:
- Lat: 57° 22' 00"
- Long: 126° 52' 00"

Claims:
- Adrian, Angus 1-2, Ian, Otto, Paul

Author:
- Perito Res.

Description:
- | Jurassic granodiorite intrusives are in fault contact with andesites of the Middle Jurassic Toccogone volcanics. Smaller intrusives emplaced into quartz andesites exhibit altered flanks. Normal block faulting with related diorite tills and dykes are common. The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common. The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common. The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common.

Work Done:
- Soil: 30, multielement
- Geol: 1:50000; 1:10000
- MAGA 6.2 km
- EMAR 8.5 km

Bishop, Knight **

Mining Div.:
- **Assessment Report 15899**
- **Info Class 3**

Location:
- Lat: 57° 22' 00"
- Long: 126° 52' 00"

Claims:
- Bishop, Castle, Kevin, Knight

Author:
- Perito Res.

Description:
- | The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common. The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common. The claims are underlain by mafic rhyolites and intermediate to mafic intrusives. Zones of secondary sulfidization and pyritization are common.

Work Done:
- Soil: 30, multielement
- Geol: 1:50000; 1:10000
- MAGA 6.2 km
- EMAR 8.5 km

Miller **

Mining Div.:
- **Assessment Report 15555**
- **Info Class 3**

Location:
- Lat: 57° 22' 00"
- Long: 126° 53' 36"

Claims:
- Brenda 6, Jan 1-3, Jan 5

Operator:
- Canex Res.

Author:
- N. E. Thibault, P.; Thibault, R.

Description:
- | Several zones of quartz-banite breccia are thermal veinings in Middle Jurassic Toccogone volcanic rocks and hypabyssal syenite have been located. Disseminated pyrite with minor galena, sphalerite and chalcopyrite occur in the veins. At higher elevations a mineralized quartz-banite breccia zone was located with values in gold and silver.

Work Done:
- IREN 50 g, 10 trenches
- Geol: 1:50000; 1:10000; 1:100
- BEST 11.1 km
- LINE 11.0 km
- Soil: 189, multielement
- Silt: 48, multielement
- Rock: 36, multielement

References:
- A. R. 01493, 01493, 01498, 01496, 015267

Fisher, Wolverine **

Mining Div.:
- **Assessment Report 16185**
- **Info Class 3**

Location:
- Lat: 57° 39' 00"
- Long: 127° 15' 00"

Claims:
- Fisher 1-11, Wolverine 1-11

Operator:
- Toccogone Gold

Author:
- Cukor, V.; Pezzot, E.

Description:
- | The claims are underlain by Upper Triassic Tekla Group volcanics which are surrounded by a Jurassic granite intrusive. Block faulting is evident.

Work Done:
- EMAR 78.0 km
- MAGA 278.0 km

References:
- A. R. 01493, 01493, 01498, 01496, 015267

Har **

Mining Div.:
- **Assessment Report 15674**
- **Info Class 3**

Location:
- Lat: 57° 31' 26"
- Long: 127° 12' 12"

Claims:
- Gard Davies, Har 2-3, Har 8

Operator:
- Western Horizons Res.

Author:
- Cukor, V.

Description:
- | A northerly trending fault separates Middle Jurassic Toccogone volcanics on the west from altered Upper Triassic Tekla Group volcanic flows. Both are cut by minerals related intrusives. Gold and silver mineralization occurs in quartz-carbonate vein breccias and chlorite-

Toodogone River 094E

WORK DONE: carbonate-arenite-epidote altered volcanics.

Lake **

MINING DIV: *** ASSESSMENT REPORT 15650 INFO CLASS 3
LOCATION: LAT. 57 31 12 LONG. 127 06 00 NTS:
CLAIMS: Lake TIV
OPERATOR: RMA Technologies
AUTHOR: Pezzet, E. White, D.E
DESCRIPTION: A majority of the claims are underlain by Upper Triassic Takla magma flows. A major fault structure runs north along Belle Lake Valley and separates the Takla Group on the east from Lower Jurassic Hazelton Group andesites and pyroclastic rocks. An east-west fault is present along the southern property boundary. Some skarn is noted in northwesterly trending thin beds within the Takla Group.

WORK DONE: MAGA 265.0 km EMAB 364.0 km VLF
REFERENCES: A.R. 14965, 15068

*** Org. Ursus ****

MINING DIV: *** ASSESSMENT REPORT 16065 INFO CLASS 3
LOCATION: LAT. 57 34 00 LONG. 127 04 48 NTS:
CLAIMS: Org I-II, Ursus I-IV
OPERATOR: Beachview Res
AUTHOR: Cuckor, V.; Pezzet, E
DESCRIPTION: The Toodogone River area is set in the Intermontane Belt and the main geologic units comprise a volcanic-sedimentary complex and numerous intrusive bodies. Northwest faults form the most prominent structural element and have a major role in the emplacement of mineralization. Four main precious and base metal deposit types have been identified in the general area: porphyry, skarn, stratabound and epithermal.

WORK DONE: EMAB 364.0 km VLF
REFERENCES: MAGA 364.0 km

*** Cal1, Da11 ****

MINING DIV: *** ASSESSMENT REPORT 16065 INFO CLASS 3
LOCATION: LAT. 57 34 48 LONG. 127 21 18 NTS:
CLAIMS: Cal1, Da11, Pau Pika, Yeti
OPERATOR: Expedition Res Group
AUTHOR: Pezzet, E
DESCRIPTION: Three major stratigraphic units strike northwest across the property from south to north. They are (1) late Jurassic intrusion - primarily granodiorite; (2) unidirectional Toodogone volcanics - Middle Jurassic; (3) Takla Group - Upper Triassic augite porphyry basalt flows. These Toodogone volcanics and Takla group sequences are separated by a major fault.

REFERENCES: A.R. 04745, 05230, 05242, 05635, 05637

*** Fred ****

MINING DIV: *** ASSESSMENT REPORT 16140 INFO CLASS 4
LOCATION: LAT. 57 39 30 LONG. 127 28 30 NTS:
CLAIMS: Fred 1
OPERATOR: Prolific Petr.
AUTHOR: Assent, C.
COMMODITIES: Copper, Lead
DESCRIPTION: The property is underlain by Upper Triassic Takla Group volcanic rocks consisting of dark grey andesite porphyry, pyroclastics and sediments of the Upper Cretaceous Tago Creek Formation. Subunit Group. A chlorite, talc, pyrrhotite occurrence is located in the centre of the claim.

WORK DONE: Soil 60, multilevel
REFERENCES: A.R. 04643

*** Gacho, Sueit ****

MINING DIV: *** ASSESSMENT REPORT 15995 INFO CLASS 3
LOCATION: LAT. 57 35 00 LONG. 127 24 18 NTS:
CLAIMS: Gacho Sueit
OPERATOR: Toodogone Gold
AUTHOR: Cuckor, V.; Pezzet, E
DESCRIPTION: The majority of the claims are covered by glacial till. Upper Triassic Takla Group augite porphyry basalt flows are mapped along the northern claim boundary and Agasteho Creek Formation ash flows (a subdivision of the Middle Jurassic Toodogone volcanics) in the southwestern corner of the Sueit claim. Takla Group rocks are in thrust fault contact with the younger volcanics.

WORK DONE: MAGA 178.0 km EMAB 178.0 km VLF

REFERENCES: A.R. 04643
REFERENCES: A.R. 15069

**** Wolf ****
MINING DIV: ***
LOCATION: LAT. 57 31 12 LONG. 127 21 24 NTS:
CLAIMS: Wolf 1
OPERATOR: Beaconview Res.
AUTHOR: Cukor, V.; Pezzot, E.
DESCRIPTION: The Toddogone River area is located in the Intermontane Belt and the main geologic units comprise a volcanic-sedimentary complex and numerous intrusive bodies. Northwest faults form the most prominent structural element and have a major role in the emplacement of mineralization. Four main precious and base metal deposit types have been identified in the general area: porphyry, skarn, stratabound and epithermal.
WORK DONE: MAGA 114.0 km
EMAB 114.0 km; VLF
REFERENCES: A.R. 14498

**** Adogq ****
MINING DIV: Llardi
LOCATION: LAT. 57 34 00 LONG. 127 32 00 NTS:
CLAIMS: Adogq 8-9
OPERATOR: Delaware Res.
AUTHOR: Augsant, C.
DESCRIPTION: The property is underlain by Lower to Middle Jurassic Toddogone volcanics of the Toddogone Creek Formation comprising of numerous ash flow sheets and intercalated crystal-lithic tuffs, and the Noyes creek volcanoclastic. No known workings or mineralized occurrences exist on the property. Silt samples contained only background values of silver and a random distribution of gold up to 50 ppb.
WORK DONE: MAG 110.0 km
REFERENCES: SILT 98: Au.Ag

**** Adogq 7 ****
MINING DIV: Llardi
LOCATION: LAT. 57 30 20 LONG. 127 33 00 NTS:
CLAIMS: Adogq 7
OPERATOR: Delaware Res.
AUTHOR: Augsant, C.
DESCRIPTION: The property is underlain by Lower to Middle Jurassic Toddogone volcanics comprising of numerous ash flow sheets with intercalated crystal-lithic tuffs. No known workings or mineralized occurrences exist on the property. One silt sample contained 100 ppb gold. Other silt samples contained elevated values of gold.
WORK DONE: MAG 110.0 km
REFERENCES:

**** Stik ****
MINING DIV: Llardi
LOCATION: LAT. 57 36 30 LONG. 127 35 00 NTS:
CLAIMS: Stik 3, Stik 4
OPERATOR: Delaware Res.
AUTHOR: Pezzot, E.
DESCRIPTION: The claims are underlain by Middle Jurassic Toddogone Formation ash tuffs and lasilu tufts.
WORK DONE: MAGA 110.0 km
REFERENCES: A.R. 14495

Trutch

REFERENCES: A.R. 0946

**** Cav ****
MINING DIV: Llardi
LOCATION: LAT. 57 42 25 LONG. 127 36 18 NTS:
CLAIMS: Cav 3, Cav 6
OPERATOR: Edinale Res.
AUTHOR: Leighton, D.G.
DESCRIPTION: The property covers lead-zinc-galium-germanium showing with baryte at the contact of devonian Dunedin limestone with Bega River carbonate and Stare Formation limestone-sulphite. Sulphides occur on both limbs of an tightly folded south-plunging anticline.
WORK DONE: SILT 177; Cu, Pb, Zn, Ba
REFERENCES: A.R. 04201

Kemitch

REFERENCES: A.R. 0941

**** Frog ****
MINING DIV: ****
LOCATION: LAT. 58 01 20 LONG. 127 08 30 NTS:
CLAIMS: Frog
OPERATOR: McWhan, A.
AUTHOR: McWhan, A.
COMMODITIES: Copper, Silver, Gold
DESCRIPTION: The claim is underlain by Cretaceous biotite quartz monzonite-gneiss. Quartz veins 10 to 20 centimetres wide. Strike slightly northeast dipping southwest. Mineralization consists of bornite, magnetite and minor chalcopyrite.
MINING DIV: Lanark
LOCATION: Lat. 58 40 36 Long. 127 25 30 NTS:
CLAIMS: RBP 1-5
OPERATOR: Fox M.
COMMODITIES: Fluorite
DESCRIPTION: The claims are underlain by Precambrian schists and Cambrian to Mississippian platformal sediments which are intruded by a granodiorite plutonic and diatreme. Precambrian schists occur close to a strong thrust fault. Rare earth bearing stockwork veins, stringers and open-space fillings contain fluorite, carbonate, biotite, and epidote.
WORK DONE: SOIL 111,000
REFERENCES: A. S. 15220 M. I. 094L 009-RAR

Rore Sound, Neekas

MINING DIV: Skeena
LOCATION: Lat. 52 28 36 Long. 128 10 00 NTS:
CLAIMS: Neekas
OPERATOR: Luc Win
AUTHOR: Ahmad, R.
COMMODITIES: Gold, Silver, Zine, Copper
DESCRIPTION: A foliated crenulation contains remnant pods of andesite and marble. The pods strike northwest from the head of Neekas Cove on the head of Salmon Bay. Two mineralized zones dip vertically, strike northwest and are approximately 2 metres wide with a several centimetres wide zone of massive sulphides. Minerals found are sphalerite, pyrite, chalcopyrite, pyrrhotite and galena.

Larego Limestone

MINING DIV: ***
LOCATION: ***
CLAIMS: ***
OPERATOR: Lareo Limestone
COMMODITIES: Limestone
DESCRIPTION: An extensive body of limestone underlay by a quartzite, dolomite and gneiss. The limestone is faulted and displaced by a fault system. The limestone is cut by a quartz dyke and the fault system is cut by the quartz dyke. The quartz dyke is cut by a fault system. The fault system is cut by the quartz dyke.

Archie, Lucky Seven

MINING DIV: Skeena
LOCATION: Lat. 52 18 24 Long. 131 09 36 NTS:
CLAIMS: Archie 1-4
OPERATOR: Richards, G.
AUTHOR: Richards, G.
COMMODITIES: Iron, Copper, Silver, Gold
DESCRIPTION: Lower Triassic Kalamata Formation greenstones overlain by limestones and argillites are intruded by beveled to phyllicite dykes and shears. The mineralized shear-hosts gold, silver, copper and iron mineralization.
WORK DONE: SOIL 140,000, POLY 4,000, SILT 1,500
REFERENCES: A. R. 08197, 08714, 10186 M. I. 103B 011-ARCHIE, 103B 024-LUCKY SEVEN

Galilee Creek, Crescent

MINING DIV: ***
LOCATION: ***
CLAIMS: ***
OPERATOR: Galilee Creek, Crescent
AUTHOR: Galilee Creek, Crescent
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Upper Triassic Kalamata Formation quartzose and Triassic-Jurassic Kalamata Formation. The quartzose and the Triassic-Jurassic Kalamata Formation are cut by massive limestones. The massive limestones are cut by a quartz dyke. The quartz dyke is cut by a fault system. The fault system is cut by the quartz dyke. The quartz dyke is cut by a fault system. The fault system is cut by the quartz dyke.

Archie, Lucky Seven

MINING DIV: Skeena
LOCATION: Lat. 52 45 00 Long. 131 53 18 NTS:
CLAIMS: Crescent 1, Crescent 5
OPERATOR: Gold Creek Res.
AUTHOR: Gold Creek Res.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Upper Triassic Kalamata Formation quartzose and Triassic-Jurassic Kalamata Formation. The quartzose and the Triassic-Jurassic Kalamata Formation are cut by massive limestones. The massive limestones are cut by a quartz dyke. The quartz dyke is cut by a fault system. The fault system is cut by the quartz dyke. The quartz dyke is cut by a fault system. The fault system is cut by the quartz dyke.
MINING DIV: Skeena ASSESSMENT REPORT 16566 INFO CLASS 4
LOCATION: LAT 53 02 48 LONG. 132 01 36 NTS:
CLAIMS: D5 25 48
OPERATOR: City Res. Can.
AUTHOR: Tolbert, R.
DESCRIPTION: Massive Kunge Formation limestones overlie Upper Triassic Kunge Formation basaltic flows, pillow lavas, breccias and tuffs.
WORK DONE: SAMPL 9B, multielement
GEOL 1 1000
DIAG 77.4 m; 3 holes, BQ
REFERENCES:

MINING DIV: Skeena ASSESSMENT REPORT 16069 INFO CLASS 4
LOCATION: LAT 53 08 48 LONG. 132 02 12 NTS:
CLAIMS: D5 25 48
AUTHOR: Viereke, D.
DESCRIPTION: The northwest portion of the claims are underlain by Cretaceous Hoon Formation rocks consisting mainly of conglomerates and limestone. Elsewhere the property is underlain by Cretaceous Haida Formation rocks consisting primarily of conglomerates and shales. The units are flat lying and have clay alteration developed in fault zones.
WORK DONE: SAMPL 9B, multielement
GEOL 43, multielement
ROCK 18, multielement
REFERENCES:

MINING DIV: Skeena ASSESSMENT REPORT 16449 INFO CLASS 3
LOCATION: LAT 53 01 54 LONG. 132 15 48 NTS:
CLAIMS: DP 7-9, OVERPROOF
OPERATOR: Englefield Res.
AUTHOR: Bennett, D.; Christie, J.
COMMODITIES: Gold
REFERENCES: M. I. 103F C33-SECURITY-OVERPROOF; I03F C33-SECURITY-B ZONE

DESCRIPTION: The southeastern half of the property is underlain mainly by Upper Triassic Kunge Formation basaltic with interbedded lime and argillites and argillaceous limestone. The northwestern half is underlain by pyroclastic flows and fragmental and gabbroic intrusives of the Tertiary Nest Formation. The Jurassic Kunge Formation limestones with minor argillaceous and Jurassic Yakoun Formation sediments. Extensive gold-bearing, quartz-carbonate hydrothermal systems cross the claims along north-trending regional structures.
WORK DONE: SOIL 298 AU
LINE 40.6 km
ROCK 194.4 km
GEOL 1 12000
REFERENCES: M. I. 103F C33-SECURITY-OVERPROOF; I03F C33-SECURITY-B ZONE

MINING DIV: *** ASSESSMENT REPORT 16317 INFO CLASS 3
LOCATION: LAT 53 20 30 LONG. 132 40 00 NTS:
CLAIMS: Brendan I
OPERATOR: Newmont Ex. of Can.
AUTHOR: Somme, D.
COMMODITIES: Gold, Copper, Molybdenum
DESCRIPTION: The property is underlain by a quartz-monzonite porphyry stock of Tertiary age which intrudes a hornblende-diorite batholith of Jurassic age. Structurally controlled quartz-sericite-tourmaline veining contains weak concentrations of arsenopyrite, pyrite, chalcopyrite and gold. Pyritic alteration is generally widespread within the stock but gold values are very erratic.
WORK DONE: TOPO 1 2500
ROCK 257, multielement
SILT 10, multielement
GEOL 1 12500
REFERENCES: A. R. 10015, 10280

MINING DIV: Skeena ASSESSMENT REPORT 16599 INFO CLASS 3
LOCATION: LAT 53 27 16 LONG. 132 05 12 NTS:
CLAIMS: But 1-2
OPERATOR: Unepex
AUTHOR: Felder, F.
DESCRIPTION: The area is thought to be underlain by Skonun Formation sediments as shown by the distribution of this unit in outcrops and drill exploration wells. The sandstone fault cuts through the property and is marked by a distinct break in slope and shift in drainage pattern. Both the Skonun Formation and Sandstein Formation are underlain by important controls of mineralization at the Cinola gold deposit, ten kilometres to the northwest.
WORK DONE: TOPO 1 2500
LINE 12.3 km
REFERENCES: A. R. 10998
**** Marco Lac ****

MINING DIV: *** ASSESSMENT REPORT 16562 INFO CLASS 4
LOCATION: LAT 53 30 24 LONG. 132 07 36 NTS:
CLAIMS: LBC, Marco
OPERATOR: Noramex Min.
AUTHOR: Fairbank, B.
DESCRIPTION: The claims are believed to be underlain by Haida and Skone
Formation sediments. A pronounced fault scarp, bedrock
sucregression, grows southwest of the property.
WORK DONE: SW, multi-element
SILT 12, multi-element

REFERENCES:

**** Nov ****

MINING DIV: Skeena ASSESSMENT REPORT 15514 INFO CLASS 3
LOCATION: LAT 53 29 30 LONG. 132 14 00 NTS:
CLAIMS: Nov
OPERATOR: Noramex Min.
AUTHOR: Robinson, K.
DESCRIPTION: The claim is underlain by Jurassic Yakoun Formation volcanics
and Cretaceous Haida Formation sediments.
WORK DONE: SOIL 10G:45, Au

REFERENCES:

**** Rockhound, Prospector ****

MINING DIV: Skeena ASSESSMENT REPORT 16564 INFO CLASS 3
LOCATION: LAT 53 29 00 LONG. 132 21 36 NTS:
CLAIMS: X 1-4, W
OPERATOR: Bennett, D.; Christie, J.
DESCRIPTION: The property is underlain by Meseta Formations, which unconformably
overlie the Middle to Upper Cretaceous marine sediments occurring throughout the
claim block. A large zone of strong alteration and pyritization occurs northwest
of Sheila Lake and has anomalous gold and arsenic values.

REFERENCES:

**** Smenav ****

MINING DIV: Skeena ASSESSMENT REPORT 16555 INFO CLASS 4
LOCATION: LAT 53 28 30 LONG. 132 20 18 NTS:
CLAIMS: Smena 1-2
OPERATOR: Unex

REFERENCES:

Graham Island 103F

AUTHOR: Fager, F.
DESCRIPTION: The major part of the claim area is underlain by diorite with
feldspar porphyry margins, probably correlative with Cretaceous
Tertiary age intrusives. Thin-bedded Cretaceous argillites of the
Meseta-Cretaceous Juan Formation are normative and bleached at
the margins of the intrusive and within pendants in the intrusive.

WORK DONE: IPOL 3-9 km
LINE 9.2 km

REFERENCES:

**** Brs ****

MINING DIV: *** ASSESSMENT REPORT 15647 INFO CLASS 4
LOCATION: LAT 53 32 30 LONG. 132 19 36 NTS:
CLAIMS: Bre 33-35,Bre 43-44,Bre 48, Bre 50
OPERATOR: Mutual Res.
AUTHOR: Quamen, S.
DESCRIPTION: The Bre property is underlain by felsic volcanics and sediments
including tuff and quartz vein rhyolite. The volcanics are sheared
and kaolinitized. Much of the property is overlain by thick fluviatile
and glacial deposits. Mineralization discovered to date consists of
disseminated pyrite

WORK DONE: GEOIL 14-multielement
SILT 5,000

REFERENCES:

**** Cinola ****

MINING DIV: Skeena ASSESSMENT REPORT 15934 INFO CLASS 3
LOCATION: LAT 53 32 05 LONG. 132 19 36 NTS:
CLAIMS: Bane 14, Bane 26, Bane 28
OPERATOR: City Res. Can.
AUTHOR: Sanders, K.
DESCRIPTION: Gold-Silver Mercury
DRILLholes 87-14 and 87-15 intersected grey-black mudstone to
argillite of the Cretaceous Haida Formation, and rhyolite dykes and
stills of probable Tertiary age. DRILLhole 87-17 intersected
combed-mylonite to fine-grained clastic sediments of the Tertiary Skone
Formation, which show weak argillitic alteration. No significant
gold values were obtained.

WORK DONE: SAM 126-A

REFERENCES:

**** Boris ****

MINING DIV: *** ASSESSMENT REPORT 15841 INFO CLASS 4
LOCATION: LAT 53 36 18 LONG. 132 20 48 NTS:
CLAIMS: Boris 1
OPERATOR: Newmont Ex. of Can.
AUTHOR: Visagie, D.
DESCRIPTION: The claim is underlain by a dark brown rhyolite flow thought to
be part of the middle member of the Lower Tertiary Masset Formation.

REFERENCES:
DESCRIPTION: The claims are underlain by Tertiary Masset Formation basalts and breccias.

WORK DONE: SOIL 116; Au

REFERENCES: 103G; 028-BELLA

**** Revenue ****

DESCRIPTION: The claim is underlain by both Cretaceous Haida and Horn Formation rocks. The Horn Formation is composed of sandstones and shales while the Haida Formation consists of flat-lying poorly sorted conglomerates and flows that are in part calc-ferous.

WORK DONE: ROCK 7; multielement

REFERENCES: 1000

**** Norma ****

DESCRIPTION: The claims are underlain in the west by complexly deformed and metanorphosed layered grey marble and silicified marble and shale. They are intruded by irregular bodies of granite. No significant mineralization was found by the present program.

WORK DONE: ROCK 14; Au

REFERENCES: A.R. 00870.00355

**** Ryan ****

DESCRIPTION: The claims are underlain by the Masset Formation of Paleocene- Eocene age. The formation consists of a thick succession of volcanics, breccias and some tuff. A number of narrow shear zones with weak alteration and pyrite were encountered in the drilling. No significant gold values were found.

WORK DONE: DII 296.4 m: 8 holes, No

REFERENCES: 54MP 73: Au
OPERATOR: TRM Eng.
AUTHOR: Shearer, J.
DESCRIPTION: The Claims are underlain by a central discontinuous belt of large bodies of metamorphosed mélange and pyroclastic rocks cut by northwest trending faults. Gold mineralization was found in float samples of altered monzonite which assayed up to 7.5 grams of gold per tonne.

WORK DONE: SOIL 39; Au
GEOL 1:100 000
ROCK 8: Au

REFERENCES: *** Paul ***

*** Swarn ***

MINING DIV: *** ASSESSMENT REPORT 16100 INFO CLASS 3
LOCATION: LAT 53 26 54 LONG. 130 00 00 NTS:
CLAIMS: Swarn
OPERATOR: Vw Eng
AUTHOR: Valli, M.
COMMODITIES: Iron, Titanium, Vanadium
DESCRIPTION: The claim is underlain primarily by a tuffiferous magnetite bearing plutonic complex. The main plutonic body is in fault contact with metasedimentary and foliated granite rocks. The close contacts, which coincides with a banded pyroxenite unit within the complex, was outlined during the current survey. Significant values of vanadium, titanium and iron and above background values in gold, platinum and palladium.

WORK DONE: SAMPLE 1:1; multielement
SILT 155.2 m hole. 00
MAGN 6.8 km
GEOL 1:2000

REFERENCES: R. 12346. 13377
M. I. 103G 039-SKARN

Douglas Channel

*** western Copper ***

MINING DIV: *** ASSESSMENT REPORT 15896 INFO CLASS 3
LOCATION: LAT 53 06 00 LONG. 128 21 00 NTS:
CLAIMS: Alice Bel, Eburne, Emma Fr., Eva, Isabel, Lila, Lion Fr., Lulu, Mathers Fr., Oop, Pat, Pat Fr., Rock, WC-1
OPERATOR: Nomura, S.
AUTHOR: Sarch, C.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: Property is underlain by phases of diorite, quartz diorite and monzonite which are present in the Coast Plutonic Complex. Numerous pyroxenite dikes cut the plutonic rocks. Gold mineralization is localized in a diorite-dyke cutting the vein-shear zone system, striking northwest and dipping 35 degrees southeast.

WORK DONE: SILT 3: multielement
REFERENCES: M. I. 103H 033-WESTERN COPPER

*** Surf Inlet ***

MINING DIV: Skeena ASSESSMENT REPORT 16092 INFO CLASS 3
LOCATION: LAT 53 05 24 LONG. 128 52 64 NTS:
CLAIMS: Bear 1-2, Lake Fr., Surf One
OPERATOR: TRM Eng
AUTHOR: Burton, W., Gardner, S.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: Gold mineralization is localized along an extensive, complex north-northeast striking zone which cuts through the diorite. Significant values of gold occur in pyrite in quartz-ankerite-sericite-sulphide veins within the complex. Significant volumes of gold are present in the main shaft and mill tailings on the property. The dumps consist of approximately 15,000 tonnes of material. The volume of tailings at the mouth of Paradise Creek is 534,000 tonnes.

WORK DONE: SILT 1:1000, 1:200
PENT 2
META 1:40 sorting
LINE 29.8 km

REFERENCES: R. 8. 05393, 15360, 15377
M. I. 103H 027-SURF INLET

*** Jimmy ***

MINING DIV: *** ASSESSMENT REPORT 15951 INFO CLASS 4
LOCATION: LAT 53 18 00 LONG. 129 52 60 NTS:
CLAIMS: Jimmy 2
OPERATOR: New World Res.
AUTHOR: Shearer, V.
COMMODITIES: Molybdenum
DESCRIPTION: The Jimmy claims are underlain by a structurally complex environment wherein gold-bearing skarn in metasedimentary bands may be present. No mineralization of interest has been found to date. The soil sampling results are very low throughout the claim. Anomalous VLF electromagnetic response.
Douglas Channel

MINING DIV: Skeena
LOCATION: LAT. 53 43 00 LONG. 129 52 00 NTS:
CLAIMS: Green 1-9, Trinity 1-2
AUTHOR: Bradley, M.
COMMODITIES: Zinc, Copper, Lead, Silver, Gold
DESCRIPTION: The rocks in the area represent a high-grade metavolcanic-sedimentary terrane favourable for hosting porphyry and epithermal mineralization. The rocks are dominated by quartzite and feldspar, with minor quartz-sulfide and pyrite-sulfide veins. The quartzite unit is 20-30 m wide, with minor quartz-sulfide and pyrite-sulfide veins.
WORK DONE: PITS 16 samples
REFERENCES: A.I. 10738 M.I. 10909

Douglas Channel

MINING DIV: Skeena
LOCATION: LAT. 53 50 00 LONG. 129 31 30 NTS:
CLAIMS: Blue 1-4, Green 1, Red 1-8, Red 10, Red 13, Red 15, Mariposite 1-2
OPERATOR: Falconbridge

AUTHOR: Wassard, F.; Pattison, J.
COMMODITIES: Copper, Zinc, Lead, Silver, Gold, Iron, Sulphur
DESCRIPTION: The claims are underlain by metasediments and metavolcanics of the Ecstall-Pendragon Complex, which are of early Paleozoic age. The metamorphic grade is greenschist to amphibolite. The strike is nearly northerly and dips steeply to the east.
WORK DONE: SOIL 838, Cu, Pb, Zn, Ag
SMPD 61, Cu, Zn, Pb, Ag, Au
EMAR 152.0 km HLEM
DIAD 916.8 m6, holes, BQ
HAGA 152.0 km
SILT 69, Cu, Pb, Zn, Ag
GEL 1,500 km
EMGR 36.0 km HLEM, VLF
ROCK 354, Assessment, whole rock
LINE 37.9 km
NAG 86.0 km
REFERENCES: A.I. 15928 M.I. 1093 O11, ECSTALL 109H 012-THIRD OUTFP, 109H O60-
LAT, PLATEAU 109H 081-TRENCH, 109H 082-MARIPosite; 109H 083-WEST Grid, 109H 084-THIRTEEN CREEK CIRQUE;
109H 085-SOUTH Grid, EAST

West Grid, Thirteen Creek CIRQUE

MINING DIV: Skeena
LOCATION: LAT. 53 50 56 LONG. 129 31 35 NTS:
CLAIMS: Blue 1, Green 1, Red 2-4, Skinny Fr.
OPERATOR: Falconbridge
AUTHOR: Hendrickson, G.A.
COMMODITIES: Copper, Zinc, Silver, Gold
DESCRIPTION: The claims are underlain by metamorphic rocks of the Ecartall Pendent Central Belt. The complex of possible early Paleozoic to Early Mesozoic age. Metamorphic grade is greenschist to amphibolite. The property, which surrounds claims covering the Ecartall massive sulfide deposit, and is underlain by similarly favourable metavolcanic rocks. Foliation and bedding strike northerly; dips are steeply east.

WORK DONE:
LINE 34.0 km
EMGR 34.0 km
MAGG 34.0 km

REFERENCES: M.I. 1034 053-WEST GRID:1034 064-THIRTEEN CREEK CIRQUE

*** Drum Lummum ***

MINING DIV: *** ASSESSMENT REPORT 15885 INFO CLASS 4
LOCATION: LAT 53 47 00 LONG 129 02 00 NTS:
CLAIMS: Big Thing,Duprite,Drum 2,Dunfries/Indes,Grey Copper,Ibisa,Kitchener
Mavisa,Maviste
OPERATOR: Noranda Ex.
AUX: Maxwell, G.
COMMODITIES: Copper,Silver,Gold
DESCRIPTION: The property is underlain by a large quartz diorite-granodiorite
batholith. The main showing consists of quartz vein and pyrite
with the quartz veins being mineralized with bornite and chalcopyrite.
The copper mineralization carries significant gold values.

WORK DONE: ROCK 3: multielement
SILT 13: multielement
REFERENCES: M.I. 1034 018-DRUM LUMMUN

Terrace 1031

*** SIl.Half Vast ***

MINING DIV: Skeena ASSESSMENT REPORT 16271 INFO CLASS 4
LOCATION: LAT 54 04 42 LONG 128 12 12 NTS:
CLAIMS: Sil
OPERATOR: Cons. Silver Standard Mines
AUTHOR: Quartermain, M.
COMMODITIES: Silica,Molybdenum
DESCRIPTION: A quartz monzonite stock of the Upper Cretaceous Coast Plutonic
Complex intrudes quartz diorite. A quartz body occurs at the contact
between these two units.

WORK DONE:
LINE 2.5 km
BITS 12
META 12
MAGG 3.0 km
SAMP 12: multielement
REFERENCES: M.I. 1031 110-SIL:1031 110-HALF VAST

*** Barite,Gold ***

MINING DIV: Skeena ASSESSMENT REPORT 16664 INFO CLASS 2
LOCATION: LAT 54 07 41 LONG 128 43 27 NTS:
CLAIMS: Billy 1-10

Terrace 1031

*** Jeanette,Bowyes,BariTe,Gold ***

MINING DIV: Skeena ASSESSMENT REPORT 15528 INFO CLASS 3
LOCATION: LAT 54 07 36 LONG 128 43 12 NTS:
CLAIMS: Billy 1-10
OPERATOR: Lacordie Res.
AUTHOR: Bentik, G.
COMMODITIES: Barium, Iron,Silver,Gold,Lead,Barium
DESCRIPTION: Basaltic to rhyolitic flows and tuffs of probable Triassic age
most widespread zones of copper-lead-Zn-silver-barite mineralization. Most of the showings occur within a coarse
rhyolitic belt approximately 8 kilometres long and at least 1.5
kilometres wide.

WORK DONE:
BOX 80:CU,Pb,Zn,BA,AG
SILK 13: multielement
ROCK 34:CU,Pb,Zn,BA,AG
SED 1.20 USG
REFERENCES: M.I. 1031 101-BOWYES:1031 169-JEANETTE;1031 217-BARITE:
1031 218-GOLD

*** B111 ***

MINING DIV: Omineca ASSESSMENT REPORT 15859 INFO CLASS 4
LOCATION: LAT 54 25 24 LONG 128 08 12 NTS:
CLAIMS: B111 1-2
OPERATOR: Makowichuk, W.
AUTHOR: Kerr, J.
COMMODITIES: Copper,Silver
DESCRIPTION: The claims are underlain by interbedded felsic-intermediate
volcanic tuffs, breccias and flows of the Lower Jurassic Hazelton
Group. A north trending fault and breccia zones contain chalcopyrite,
druse, bornite, tetrahedrite and malachite mineralization. Core
samples contain anomalous values of base metals, but no appreciable
amounts of silver or gold.

C358
Terrace 1031

WORK DONE: DIAD 22.9 m; 3 holes, AX
SAMP 11: multielement

REFERENCES: A.R. 10541, 12728
M.I. 1031 214-BILL

*** Silver Crown, Silver Basin, Coffee Pot ***

MINING DIV: *** ASSESSMENT REPORT 19865 INFO CLASS 3
LOCATION: LAT. 54 25 14 LONG. 128 09 18 NTS:
CLAIMS: Diadem Basin in S
OPERATOR: Great World Res.
AUTHORS: Harnedy, R.G.; White, G.E.
COMMODITIES: Silver, Copper, Gold, Lead
DESCRIPTION: Tertiary granodiorthite and granite overlies Upper Triassic - Lower Jurassic blanket to rhyolite breccia, tuffs and flows.
WORK DONE: MAG 205.0 km
ENAB 206.0 km; VLF
REFERENCES: M.I. 1031 064-SILVER CROWN; 1031 065-SILVER BASIN; 1031 191-COFFEE POT

*** Burnt, Portland ***

MINING DIV: Skeene ASSESSMENT REPORT 16026 INFO CLASS 3
LOCATION: LAT. 54 49 00 LONG. 128 48 24 NTS:
CLAIMS: Misty 1, 2
OPEARATOR: Terratech Dev.
AUTHORS: Chapman, J.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: An Upper Cretaceous granodiorite stock, with quartz veinings containing pyrite, tetraedrite, chalcopyrite, galena and visible gold intrudes Lower Cretaceous Bowser Lake Group sediments.
WORK DONE: ROAD 36.0 km
DIAD 392.0 m; 3 holes, NO.
SAMP 205; Au, Ag
REFERENCES: A.R. 08299, 13303
M.I. 1031 019-PORTLAND: 1031 211-BURN

*** Misty ***

MINING DIV: *** ASSESSMENT REPORT 15455 INFO CLASS 3
LOCATION: LAT. 54 44 42 LONG. 128 53 16 NTS:
CLAIMS: Misty 1, 2
OPEARATOR: Mascot Gold Mines
AUTHORS: McNaughton, K.
COMMODITIES: Gold, Silver
DESCRIPTION: Granodiorite of the Upper Cretaceous Coast Crystalline Complex intrudes the sedimentary and volcanic sequence of the Lower Cretaceous Bowser Lake Group. Gold as small flakes and nuggets occur in quartz veins with pyrite, arsenopyrite, galena and tetraedrite.
WORK DONE: LINE 15.0 km
SOIL 335; multielement
EMAG 6.7 km; VLF
MAG 7.8 km

C359

Terrace 1031

REFERENCES: A.R. 08201, 09299, 10128, 10827
M.I. 1031 213-MISTY

*** Misty ***

MINING DIV: Skeene ASSESSMENT REPORT 16302 INFO CLASS 2
LOCATION: LAT. 54 45 00 LONG. 128 54 18 NTS:
CLAIMS: Misty, Misty 1, Misty 4
OPEARATOR: Mascot Gold Mines
AUTHORS: Tindall, L.
COMMODITIES: Gold, Silver
DESCRIPTION: Cretaceous diorites, quartz diorites and granodiorites are in contact with interbedded, upper Cretaceous metavolcanic rocks. Gold and silver are associated with hydrothermal quartz veins.
WORK DONE: SOIL 1251; multielement
ROCK 85; multielement
LINE 37.2 km
REFERENCES: A.R. 09359, 10128, 10827, 15455
M.I. 1031 213-MISTY

*** Quartz Silver ***

MINING DIV: Skeene ASSESSMENT REPORT 16411 INFO CLASS 3
LOCATION: LAT. 54 42 00 LONG. 128 52 00 NTS:
CLAIMS: Geel, No. 1, No. 2, 2.5, 3. Quartz Silver
OPEARATOR: Mt. Arlberg Res.
AUTHORS: Chapman, W.
COMMODITIES: Silver, Lead, Zinc, Copper, Gold
WORK DONE: SOIL 1.5000
MAG 24.5 km
EMAG 24.3 km; VLF
SOIL 828; Au, Ag, Cu, Pb, Zn, As
SOIL 198; Au, Ag, Cu, Pb, Zn, As
ROCK 118; Au, Ag, Cu, Pb, Zn, As
LINE 24.3 km
ROAD 12.5 km
TREN 75.0 m; 8 trenches
REFERENCES: A.R. 13455
M.I. 1031 019-QUARTZ SILVER

*** Kalum ***

MINING DIV: Skeene ASSESSMENT REPORT 16198 INFO CLASS 3
LOCATION: LAT. 54 47 56 LONG. 128 48 30 NTS:
CLAIMS: Kalum 1, Kan 1, 2
OPEARATOR: Cannon Ex.; Alme, H.; Howell, W.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The geology of the Kalum claim consists of a package of sedimentary and tuffaceous rocks with interbedded flows of the Lower Cretaceous Bowser Lake Group. Bedding generally strikes north-northeast to east and dips to the north. The rocks have been

C360
Terrace

moderately to strongly deformed and metamorphosed. Small scale tight folding and local recumbent folds can be seen at Nose Mountain. Mafic and felsic dikes cut through both sedimentary and volcanic units. Gold and copper mineralization occurs along small quartz veins and narrow fractures within small shear zones and in structurally controlled zones of wiluite-hematite alteration.

WORK DONE: DIAD 427 6 m, 6 holes, BC
SOIL 158 multi-element SAMP 43 Cu Ag Au
REFERENCES: A.R. 10450, 11596, 15256, 15679
M.I. 1031 118-KALUM

Kalum ****

MINING DIV: *** ASSESSMENT REPORT 15679 INFO CLASS 3
LOCATION: LAT. 54 49 00 LONG. 128 45 36 NTS:
CLAIMS: Kalum 1, Ken 1 & 2
OPERATOR: Centran EX.
AUTHOR: Lambert, E.
COMMODITIES: Copper, Gold, Silver
DESCRIPTION: The claims are underlain by a package of Jurassic sedimentary and tuffaceous rocks with interbedded mafic flows. They strike north-northeast and dip north-northwest. The rocks are metamorphosed and moderately deformed by local shearing and faulting. Chlorite and epidote in rock units or minor hematite occur locally as alteration in all rock types. Mineralization consisting of chalcopyrite, chalcocite, pyrite and bornite is present in small quartz veins as fracture fillings and along alteration planes.

WORK DONE: LINE 24.7 km
EMGR 45.5 km: VLF
ROCK 24 multi-element
INDU 22.1 km
GEOG 12,000, 1:500
NAGG 22.7 km
REFERENCES: A.R. 10450, 11596, 15256
M.I. 1031 118-KALUM

Brentford ****

MINING DIV: Omineca ASSESSMENT REPORT 15160 INFO CLASS 4
LOCATION: LAT. 54 49 12 LONG. 128 23 12 NTS:
CLAIMS: Star 2
OPERATOR: Leblond L.
AUTHOR: Leblond L.
COMMODITIES: Silver, Gold, Lead, Zinc, Copper
DESCRIPTION: The claim is underlain by hornfelsed Lower Jurassic Hazelton Group sediments including mineralized quartz veins.

WORK DONE: EMGR 3 2 km:VLF
REFERENCES: A.R. 12656, 13368, 14508, 15031
M.I. 1031 188-BRENTFORD

C361

Prince Rupert 103J

Edye Pass Mine ****

MINING DIV: Seeina ASSESSMENT REPORT 15411 INFO CLASS 4
LOCATION: LAT. 54 01 48 LONG. 130 45 00 NTS:
CLAIMS: Kerrys, Tipco, Tobby 1-3
OPERATOR: Imperial Metals
AUTHOR: McEwen R., Vizcaya A.
COMMODITIES: Copper, Molybdenum
DESCRIPTION: The claims appear to be underlain by hornblende diorite where gold is associated with quartz veins. Gold is recovered by direct cyanide extraction tests on fine ground ore indicating a satisfactory recovery (approximately 80 per cent) gold recovery.

WORK DONE: META Bulk Test, Heap Leach
REFERENCES: A.R. 05728, 14602, 15120
M.I. 103J 015-EDYE PASS MINE

Dun 3, Malville Zinc, Conductor Is., Dun 10, Mine

MINING DIV: *** ASSESSMENT REPORT 16036 INFO CLASS 3
LOCATION: LAT. 54 38 00 LONG. 130 46 42 NTS:
CLAIMS: Kathleen 1-4
OPERATOR: St. Edwards Min.
AUTHOR: Duke
COMMODITIES: Zinc, Lead, Copper, Silver
DESCRIPTION: The claims are underlain by Upper Paleozoic to Jurassic felsic and mafic volcanics and volcanoclastic and cherty clastic sediments of the Lower Greensand Group. They form a monoclinal sequence trending north-northeast and dip moderately towards the east. These rocks have been intruded by diorite and granodiorite. The cherty sediments are the dominant host for zinc, copper, nickel, silver, lead, and other base metal mineralization.

WORK DONE: ROCK 318 multi-element
REFERENCES: A.R. 13197, 15777

Noss River 1030

BC Verde ****

MINING DIV: Seeina ASSESSMENT REPORT 15980 INFO CLASS 3
LOCATION: LAT. 55 50 36 LONG. 130 02 48 NTS:
CLAIMS: Big Mike, Otter 1-5
OPERATOR: Alexa Ventures
AUTHOR: Spritts F., Pauliuk D.
COMMODITIES: Gold, Silver, Copper
DESCRIPTION: Quartz veins locally containing gold, silver and sulphide mineralization occur mainly along faults and drhms along the Cretaceous Coast Plutonic Complex. The quartz vein explored by the maiden program is up to 34 centimetres wide, exposed for 32 metres along easterly strike, and northerly dip.

C362
The highest assay obtained was 53.3 grams per tonne gold across 40 centimetres.

WORK DONE:
- **ROCK** 84: multielement 15.8 km
- **LINE** 7: multielement 15.8 km
- **MAG** 170.8 km
- **SILT** 7: multielement 1100.000, 1:5000
- **SOIL** 47: multielement 8.7 km
- **EMAG** 8.7 km
- **EMB** 6.9 km
- **EMAS** 170.6 km

REFERENCES:
- M.I. 1030 012-BC VERDE

ASSESSMENT REPORT 16405 INFO CLASS 3

MINING DIV.: ***
LOCATION: LAT. 55 45 30 LONG. 130 03 00

CLAIMS: Bonus 5

OPERATOR:

AUTHOR:

COMMODITIES: Gold, Silver, Copper, Lead, Zinc

DESCRIPTION:

The Unuk Riverandesitic epiclastic rocks are intruded by granodiorite of the Coast Range Batholith. Quartz occurs with northeast trending shear zones. Veins up to two metres wide contain gold, silver, lead, zinc and copper. The minerals are galena, sphalerite, chalcopyrite, pyrite and pyrrhotite.

WORK DONE:
- **LINE** 2.9
- **SAMP** 24: Au, Ag
- **GEO** 1:100
- **SILT** 51: Au, Ag
- **SOIL** 16: Au, Ag

REFERENCES:
- M.I. 1030 012-IM

ASSESSMENT REPORT 15364 INFO CLASS 3

MINING DIV.: Skeena
LOCATION: LAT. 55 45 30 LONG. 129 27 00

CLAIMS: Sault 1, Sault 3-5, Sault 7-8

OPERATOR: Cominco

AUTHOR: Blackwell J.

COMMODITIES: Silver

DESCRIPTION:

The claims are underlain by an east striking, north dipping sequence of andesite to dacite pyroclastic tuff breccias, overlying by calc-arenaceous debris breccias, bedded pyritic tuff, paralic-epidermites, black limestone, tuffaceous tuff and basalt. This sequence is unconformably overlain by Lower Cretaceous sediments of the Bower Lake Group. Sanguine-bearing sulfa-apatite-sulfides have been located at 5 points along a 5.5 km trend. Soil geochemistry identifies anomalous multielement values.

WORK DONE:
- **GEO** 5000, 1:1000
- **ROCK** 75: Pb, Zn, Ag, Cu, Ba

SOIL 342: MULTIELEMENT

REFERENCES:
- A.B. 1001 13855, 15126, 15364
 - M.I. 103P 245-KIT

ASSESSMENT REPORT 15126 INFO CLASS 3

MINING DIV.: ***
LOCATION: LAT. 55 45 24 LONG. 129 27 06

CLAIMS: Sault 1, Sault 3-5

OPERATOR: Cominco

AUTHOR: Blackwell J.

COMMODITIES: Silver

DESCRIPTION:

The claims are underlain by Lower Jurassic Hazelton Group sedimentary rocks and volcanics which are unconformably overlain by Lower Cretaceous Bower Lake Group sediments. A calc-arenaceous tuff, limestone, debris sequence interbedded with andesite breccias, most a breccia of massive purpferite-sphalerite-geyser stratigraphic, several lead-zinc-arsenic soil anomalies were identified. Geophysical survey results failed to locate conductors in the vicinity of known showings.

WORK DONE:
- **GEO** 1:5000
- **MAG** 2.3 km
- **ROCK** 270: MULTIELEMENT
- **SILT** 270: MULTIELEMENT
- **SOIL** 257: Pb, Zn, Ag, Mo

REFERENCES:
- A.R. 1001 13650, 15126
 - M.I. 103P 245-KIT

Lucky Strike, Blue Ribbon **

ASSESSMENT REPORT 16034 INFO CLASS 4

MINING DIV.: Skeena
LOCATION: LAT. 55 44 42 LONG. 129 35 00

CLAIMS: Cambria 1-3

OPERATOR: Cambria Res.

AUTHOR: Cooper S.

COMMODITIES: Gold, Lead, Zinc, Copper

DESCRIPTION:

The claims are underlain by Lower Jurassic Hazelton Group sedimentary and volcanic rocks which dip steadily to the east. Mineralization consists of gold, silver, copper, zinc and lead in hydrothermal veins filling fractures and shear zones. The largest hydrothermal alteration halo is approximately 500 metres by 1000 metres.

WORK DONE:
- **LINE** 7.0 km
- **TREN** 12.0 km
- **ROCK** 814: Au, Ag
- **GEO** 814: Au, Ag
- **PET** 5 thin sections
- **GEO** 15000
- **OBO** 12000
- **PLO** 12000

REFERENCES:
- M.I. 103P 214-LUCKY STRIKE (MATILDA); 103P 217-BLUE RIBBON

Susanne **

ASSESSMENT REPORT 16602 INFO CLASS 3

MINING DIV.: ***
LOCATION: LAT. 55 40 54 LONG. 129 39 54

REFERENCES:
- M.I. 103P 214-LUCKY STRIKE (MATILDA); 103P 217-BLUE RIBBON
Nass River

MINING DIV: Skeena
LOCATION: LAT. 56 49 48 LONG. 126 52 13 NTS:
CLAIMS: Dunedin Fr., Lakeview 2, Silver Bear No. 1
OPERATOR: Folks, P. C
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: Lower Cretaceous Bouverie Lake Group sediments are intruded by Tertiary dykes. Mineralized quartz veins trending east-west and north-south carry values in silver, gold, lead and zinc.
WORK DONE: SOIL 42, Au, Ag, Pb, Zn
ROCK 11, Ag, Au, Pb, Zn
REFERENCES: A. F. 14867
M. I. 103P 059-LAKEVIEW

Nass River

MINING DIV: Skeena
LOCATION: LAT. 55 56 00 LONG. 126 56 00 NTS:
CLAIMS: Red Reef
OPERATOR: Teuton Res.
AUTHOR: Crewes, D
DESCRIPTION: Lower elevations feature a contact zone between tuffaceous Hezolton volcanics (late Lower Jurassic Uuk River Formation) and the dyke quartz monzonite/monzodiorite intrusive. Silicified zones in the contact carry gold-copper mineralization, with occasional cross-cutting silver-lead-zinc veins. At higher elevations in the vicinity of the Silver Reef Mine, sheared zones in Hezolton volcanics host lenticular deposits of silver-lead-zinc mineralization.
WORK DONE: ROCK 65, multielement

REFERENCES:

2. M. I. 103P

REFERENCES:

3. M. I. 103P

REFERENCES:
MINING DIV: *** ASSESSMENT REPORT 15574 INFO CLASS 4
LOCATION: LAT. 55 56 06 LONG. 129 56 00 NTS:
CLAIMS: Beef 1, Sky Annex
OPERATOR: Tauton Res.
AUTHOR: Fausti, J.
DESCRIPTION: Shear zones and lenticular veins in volcanic tuffs of the Lower Jurassic Hazelton Group volcanics in the west. Slit sampling on N1 revealed multielement anomaly.
WORK DONE: SAMP 31 multielement
PROS 1 5000
REFERENCES: A. R. 10004, 10012

Bowser Lake

MINING DIV: *** ASSESSMENT REPORT 15574 INFO CLASS 4
LOCATION: LAT. 56 02 18 LONG. 129 56 00 NTS:
CLAIMS: Reef 1, Sky Annex
OPERATOR: Namara Ex.
AUTHOR: Baerg, R.
DESCRIPTION: The property covers the boundary between Lower Cretaceous Bowser Lake Group sediments to the east and Lower Jurassic Hazelton Group volcanics in the west. Slit sampling on N1 revealed multielement anomaly.
WORK DONE: ROCK 6, multielement
SILT 4, multielement
PROS 1 5000
REFERENCES:

**** No 111

MINING DIV: *** ASSESSMENT REPORT 15581 INFO CLASS 3
LOCATION: LAT. 56 04 12 LONG. 129 56 06 NTS:
CLAIMS: Big Casino, Ice 1-4, Independence 1
OPERATOR: Moche Res.
AUTHORS: Di Santi, P., St. Pierre, M.
COMMODITIES: Gold, Silver, Lead, Zinc, Barium, Copper
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanic and sedimentary rocks overlie extrusive rocks of Lower Jurassic Hazelton Group volcanics.
WORK DONE: GEO 1 5000
REFERENCES: A. R. 00759, 07841, 01586

Independence Gold/Dalhousie/Rock of Ages Pain

MINING DIV: *** ASSESSMENT REPORT 16082 INFO CLASS 3
LOCATION: LAT. 56 05 18 LONG. 129 54 43 NTS:
CLAIMS: Wentworth, Alnouin (L. 1493). Ben Leon (L. 1487). Big Casino
OPERATOR: Silver Princess Res.
AUTHORS: Big Casino, Initial, Dalhousie, Rock of Ages
DESCRIPTION: The claims are underlain by Lower Cretaceous Bowser Lake Group volcanics and sedimentary rocks on the west side trending easterly. Zones range from 0.5 to 5 metres in width.
WORK DONE: SILT 13, multielement
EMGR 7.5 km: VLF
EMAB 7.8 km: VLF
GEO 7, multielement
MAGA 7.5 Km
ROCK 125, multielement
GEO 1 5000
LINE 10,0 km
MACO 7.8 km
REFERENCES: A. R. 0759, 07841, 11546

Sunbeam, Dunwell

MINING DIV: *** ASSESSMENT REPORT 16822 INFO CLASS 3
LOCATION: LAT. 56 50 59 LONG. 129 54 30 NTS:
CLAIMS: L. 4286. L. 4288. L. 4292-4295. L 871
OPERATOR: Silver Princess Res.
AUTHORS: Harris, C.
COMMODITIES: Silver, Lead, Zinc
DESCRIPTION: The claims are underlain by Lower Cretaceous Bowser Lake Group volcanics and greywackes. Quartz veins occur in a major shear zone.
WORK DONE: GEO 361: multielement
LINE 9.8 km
REFERENCES: M. I. 1089, 022-DUNWELL; 1093, 059-SUNBEAM

**** Todd

MINING DIV: *** ASSESSMENT REPORT 15986 INFO CLASS 3
LOCATION: LAT. 56 12 30 LONG. 129 46 30 NTS:
CLAIMS: Tac 1-2, Tac 7-12
OPERATOR: Namara Ex.
AUTHORS: Baerg, A.
COMMODITIES: Copper, Gold
DESCRIPTION: Copper-gold mineralization occurs in hematitic quartz-breccias veins within and proximal to bodies of siliceous feldspar porphyry which appear to intrude Lower Jurassic Unuk River Formation volcanics. The mineralized zones trend north and vary from 20 centimetres to 15 metres wide. Local alteration consists of quartz-sericite-pyrite +/- chlorite +/- carbonates. Gold values range up to 0.7 grams per tonne.
WORK DONE: GEO 1, 5000
SILT 38, multielement
ROCK 218, multielement

C368
REFERENCES: A.R. 03428
M.I. 104A 001-TGGD

**** Knip ****

MINING DIV: *** ASSESSMENT REPORT 16634 INFO CLASS 4
LOCATION: LAT. 56 24 16 LONG. 129 58 05 NTS:
CLAIMS: Knip
OPERATOR: Crystal Cove Res.
AUTHOR: Kruckowski, E.; Korkin, K.
DESCRIPTION: CONFIDENTIAL STATUS

(Will be published in Exploration in British Columbia, 1988)

**** Virginia K ****

MINING DIV: *** ASSESSMENT REPORT 15145 INFO CLASS 4
LOCATION: LAT. 56 14 54 LONG. 130 53 24 NTS:
CLAIMS: Am 1-5, Virginia K Ext 4, Virginia K Ext 5, Virginia K Ext 6
OPERATOR: Square Gold Res.
AUTHOR: Lisle T.
COMMODITIES: Silver, Lead-Zinc, Copper, Gold
DESCRIPTION: A system of quartz and quartz-silicite veins occur near a northerly trending fault close to a contact between a lower tuff-
slagstone-argillite-limestone unit and an upper, green to maroon
C369

**** Virginia K ****

MINING DIV: *** ASSESSMENT REPORT 15865 INFO CLASS 3
LOCATION: LAT. 56 14 54 LONG. 130 53 24 NTS:
CLAIMS: Am 1-3, Virginia K Ext 4, Virginia K Ext 5, Virginia K Ext 6
OPERATOR: Square Gold Res.
AUTHOR: Lisle T.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanics and sediments which are intruded by the Summit Lake granodiorite stock.

WORK DONE: PROD 1, 20000, 18000
SAPL 6, AU, AG
SOIL 32, AU
REFERENCES: A.R. 8892.05145
M.I. 104A 006-VIRGINIA K

Iskut River

East Gold (Pioneer) ****

MINING DIV: *** ASSESSMENT REPORT 16626 INFO CLASS 3
LOCATION: LAT. 56 16 42 LONG. 130 04 24 NTS:
CLAIMS: Tide 2
OPERATOR: Northair Mines
AUTHOR: MacLeod J.
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: The claims are underlain by Lower Jurassic Hazelton Group volcanics and sediments which are intruded by the Summit Lake granodiorite stock.

Numerous narrow shear veins containing quartz veins mineralized with minor pyrrhotite, galena, chalcopyrite and arsenopyrite carry gold and silver values. The drill holes did not intercept significant mineralization.

WORK DONE: DRED 499.3 m; 2 holes, 80
SAPL 699, 80
REFERENCES: A.R. 08988.08887.11528, 13072, 15410
M.I. 104B 033-EAST GOLD (PIONEER)

Siltbak Premier ****

MINING DIV: *** ASSESSMENT REPORT 12929 INFO CLASS 3
LOCATION: LAT. 56 03 00 LONG. 130 01 30 NTS:
CLAIMS: Cascade No. B (L.3591)
OPERATOR: Wastman Mines
AUTHOR: Wojtek P.
COMMODITIES: Gold, Silver, Lead, Zinc, Copper, Tungsten, Barium
DESCRIPTION: Lower Jurassic Hazelton Group sediments are intruded by sub-volcanic potassic felsic porphyry which also controlled

later gold-silver bearing stockwork veins and quartz-silicite and galena, pyrite, chalcopyrite and telluride and electrum. The zone under
exploration is peripheral to stopes of the former Siltbak Premier Mine.

C370
WORK DONE: DIAD 124.4 m: 1 hole NO

SAMP: 42: Au, Ag, Cu, Pb, Zn

REFERENCES: M.I. 1048, 054-SILBAK PREMIER

**** Willa ****

MINING DIV: Skeena

LOCATION: Lat: 56 04 12 Long: 130 00 48 NT5:

CLAIMS: W.I. 1048, Willa FP

DESCRIPTION:

The claims are underlain by highly fractured greenstones. Pulps and cut stones are of the lower Jurassic Hazelton Group. Minor gold values are associated with pyrite in greenstones. The pyrite occurs as disseminated cubo and anadral greenstones.

REFERENCES:

1. M.I. 1048
2. CONSOE.R.KING
3. CONSOE.R.KING
4. CONSOE.R.KING

**** Consol.King ****

MINING DIV: Skeena

LOCATION: Lat: 56 29 30 Long: 130 36 00 NT5:

CLAIMS: CONSOE.R.KING 1

OPERATOR: Crest Res.

AUTHOR: Adamson, R.

DESCRIPTION:

Northwesterly dip volcanic and sedimentary rocks of the upper Triassic Tetina Group are in part, overlain by lower Jurassic sedimentary rocks of the upper Jurassic Coal River formation. A dyke-like marginite intrusive of Early Tertiary (?) age occupies a northerly striking shear-fault system. Disseminated pyrite and chalcopyrite with anomalous gold values occur in and adjacent to the intrusive.

REFERENCES:

1. A.R. 1074, 11079

**** Catraw ****

MINING DIV: Skeena

LOCATION: Lat: 56 17 30 Long: 130 03 36 NT5:

CLAIMS: Catraw

OPERATOR: Teton Res.

AUTHOR: Cremonese, D.

DESCRIPTION:

The claims are underlain by lower Jurassic Hazelton Group, tines of volcanic fragments and tuffs with minor argilite beds which are cut by feldspar porphyry dykes. Quartz veins and/or veinlets are present along shear zones. A cataclastic zone of Jurassic pyrite and chalcopyrite occurs in the southern portion of the claim area.

REFERENCES:

1. A.R. 11176, 12004, 14007

**** East Gol (Pioneer) ****

MINING DIV: Skeena

LOCATION: Lat: 56 17 30 Long: 130 04 00 NT5:

CLAIMS: Bollin 3, Bollin B

OPERATOR: Sun Valley Gold Mines

AUTHOR: Weber

COMMODITIES: Gold, Silver, Lead, Zinc

DESCRIPTION:

Precious metal mineralization of electrum and silver with the high grade gold-silver mineralization occurs at fault intersections and superimposes a specific alteration phase over the early assemblage. Vein specific alteration comprises silicification and sericitization. The vein systems occur in two zones; one northerly trending with a western dip of 60 to 90 degrees, and the other with a 150 degree strike and northwest dip of 75 to 90 degrees.

REFERENCES:

1. A.R. 05868, 08667, 11526, 13072, 15410, 15826
2. M.I. 1048
3. EAST GOLD (PIONEER)

**** Feld ****

MINING DIV: Skeena

LOCATION: Lat: 56 22 06 Long: 130 08 18 NT5:

CLAIMS: Feld 1-3

OPERATOR: Territorial Petr. Ventures

AUTHOR: Cremonese, D.

DESCRIPTION:

The claims are underlain by volcanic breccia, conglomerate, sandstone and siltstone of the lower Jurassic Upper Coal River formation. A massive area is composed of quartz-pyrite-chlorite schists with pervasive limonitic to hematitic weathering.

C372
Anomalous gold values have been detected during a reconnaissance rock geochemical survey.

WORK DONE: ROCK 183; multielement

MINING DIV: Skeena **LOCATION:** LAT 56 21 00 LONG. 130 08 00 NTS: Skeena Gold, Lead, Zinc, Copper. **DESCRIPTION:** A number of quartz veins less than 1 metre wide are exposed in the portion of the Skeena claim. The veins are composed of pyrite, arsenopyrite, and quartz. The veins are hosted in volcanic rocks and sandstone. The veins have been cross-cut by late-stage quartz veins. The veins have been subjected to high-grade alteration and mineralization. Gold and silver values have been obtained from the quartz veins. **COMMODITIES:** Gold, Silver, Lead, Zinc. **DESCRIPTION:** The veins are composed of pyrite, arsenopyrite, and quartz. The veins are hosted in volcanic rocks and sandstone. The veins have been cross-cut by late-stage quartz veins. The veins have been subjected to high-grade alteration and mineralization. Gold and silver values have been obtained from the quartz veins.

MINING DIV: Skeena **LOCATION:** LAT 56 18 54 LONG. 130 09 18 NTS: Skeena Gold, Lead, Zinc, Copper. **DESCRIPTION:** Rocks of the Jurassic Lower Unuk River Formation consisting of volcanic breccias, conglomerates, siltstones, and sandstones. The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks. **COMMODITIES:** Gold, Silver, Zinc, Lead. **DESCRIPTION:** The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks.

MINING DIV: Skeena **LOCATION:** LAT 56 28 05 LONG. 130 11 42 NTS: Skeena Gold, Silver, Zinc, Lead. **DESCRIPTION:** The claim is underlain by Lower Jurassic Lower Unuk River Formation. The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks.

MINING DIV: Skeena **LOCATION:** LAT 56 16 48 LONG. 130 09 30 NTS: Skeena Gold, Silver, Zinc, Lead. **DESCRIPTION:** The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks.

MINING DIV: Skeena **LOCATION:** LAT 56 20 12 LONG. 130 11 06 NTS: Skeena Gold, Silver, Copper. **DESCRIPTION:** The property is underlain by Lower Jurassic Lower Unuk River Formation volcanic breccia, conglomerate, sandstone and siltstone. The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks.

MINING DIV: Skeena **LOCATION:** LAT 56 02 10 LONG. 130 12 48 NTS: Skeena Gold, Silver, Copper. **DESCRIPTION:** The rocks are characterized by the presence of pyrite, arsenopyrite, and quartz. Gold and silver values have been obtained from the rocks.
WORK DONE: SILT 7.44%.
SOIL 7.44%.
ROCK 7.44%.

M.I. 104B 014-GRACY;104B 015-GLOBE.

Kerr ****
LOCATION: LAT. 56 28 12 LONG. 130 18 06 NTS:
CLAIMS: Kerr 12, Kerr 3, Kerr 39-100.
OPERATOR: Western Can. Min.
AUTHOR: Jerina, M.; Kowalchuk, J.
COMMODITIES: Gold, Silver, Copper, Lead, Zinc.
DESCRIPTION: Chalcopyrite and native gold in quartz veins and silicified breccia zones occur within a large 1 kilometre wide zone of northerly shearing and hydrothermal alteration within Jurassic volcanic and sedimentary rocks.

REFERENCES: A.R. 12471.13369.15493.
M.I. 104B 100-KERR.

Sulphurets Glacier West, Kerr ****
LOCATION: LAT. 56 28 00 LONG. 130 18 00 NTS:
OPERATOR: Western Can. Min.
AUTHOR: Kevers, R.
COMMODITIES: Gold, Silver, Copper, Lead, Zinc.
DESCRIPTION: Gold, silver and minor copper mineralization occurs as irregular and discontinuous quartz-sulphide veins and stockwork zones enclosed within a broad northerly trending pyritic sercite schist zone 500 metres by 2000 metres. The strongly altered and mineralized zone occurs within a sequence of andesitic marine volcanic and subvolcanic rocks, with interlayered sedimentary rocks, all of which are part of the Triassic to Jurassic Stewart Complex. The property is cut by a west dipping thrust fault and by a later andesitic dyke which are weakly altered, faulted and offset.

WORK DONE: GEO 1 2800.
EMGR 8.5 km; VLF.
SOIL 8.5 km; multielement.
ROCK 8.5 km; multielement.
WAG 8.5 km.

REFERENCES: A.R. 12471.13369.
M.I. 104B 099-SULPHURETS GLACIER WEST;104B 100-KERR.
That

MINING DIV: ***

LOCATION: LAT. 56 21 30 LONG. 130 19 49 NTS:

CLAIMS: That 2-3

OPERATOR: Jentei Res.

AUTHOR: Tribe, N.

DESCRIPTION: The claims are underlain by Jurassic Unuk River Formation rocks.

REFERENCES:

MINING DIV: ***

LOCATION: LAT. 56 21 30 LONG. 130 19 49 NTS:

CLAIMS: That 2-3

OPERATOR: Jentei Res.

AUTHOR: Tribe, N.

DESCRIPTION: The claims are underlain by Jurassic Unuk River Formation rocks.

REFERENCES:

MINING DIV: ***

LOCATION: LAT. 56 21 30 LONG. 130 19 49 NTS:

CLAIMS: That 2-3

OPERATOR: Jentei Res.

AUTHOR: Tribe, N.

DESCRIPTION: The claims are underlain by Jurassic Unuk River Formation rocks.

REFERENCES:
**** Skx ****

MINING DIV: *** ASSESSMENT REPORT 16678 INFO CLASS 3
LOCATION: LAT 56 39 38 LONG. 130 54 38 NTS:
CLAIMS: Sky 4-5, Spray 1-2
OPERATOR: Hector Res.
AUTHOR: Todduk, R., Ikonen, G.
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: The claims are predominantly underlain by Lower Jurassic Unuk River formation greenschist/sillstone, which are overlain byandesite agglomerate. Gold and sulphide mineralization occurs with massive pyrite, lesser magnetite, sphalerite and galena within quartz veins up to 1.4 metres true thickness. The zone dips at 30 degrees along 100 metres of strike length within a structural lineament.
WORK DONE:
- GEOL 1:1500
- MAGS 8.7 km
- MGSR 8.7 km:VLF, HLEM
- SPOT 0.4 km
- SOIL 4:22, multielement
- ROCK 2:18, multielement
- DIAD 60.0 m:5 holes, NQ
- SAMP 10:2, multielement
LINE 8.7 km
TREN 85.0 m:5 trenches

REFERENCES:

**** Snip ****

MINING DIV: *** ASSESSMENT REPORT 16621 INFO CLASS 2
LOCATION: LAT 56 41 00 LONG. 131 07 00 NTS:
CLAIMS: Snip 1
OPERATOR: Cominco
AUTHOR: Nicholas R.
COMMODITIES: Gold, Silver, Zinc, Copper
DESCRIPTION: The claims are underlain by Mesozoic arenaceous and tuffaceous units that are cut by a large dyke-like orthoclase porphyry. Bleaching, potassic alteration (K-spar, sericite) and silicification are extensively developed adjacent to the porphyry. High grade gold mineralization occurs within steeply dipping quartz-carbonate-pyrite, shear-vein systems that cut the altered andesites and lithic wall rocks.
WORK DONE:
- SAMP 1:500
- DIAD 190.4 m:12 holes, 80
- ROCK 950, Au, Ag, Cu
REFERENCES: A: 94-140, 03986, 1416
M: I: 1048 023-SNIP

**** Zeenken ****

MINING DIV: *** ASSESSMENT REPORT 16620 INFO CLASS 3
LOCATION: LAT 56 34 20 LONG. 131 11 52 NTS:
CLAIMS: Zeenken 8-14

REFERENCES:

Iskut River

**** Ban-Bam-10 ****

MINING DIV: *** ASSESSMENT REPORT 15987 INFO CLASS 3
LOCATION: LAT 57 10 42 LONG. 150 52 35 NTS:
CLAIMS: Ban 6-Bam 8, Ban 10
AUTHOR: Mugg, W., Walton, G.
COMMODITIES: Gold, Silver, Barite, Anhydrite
DESCRIPTION: The claims are underlain by Peronian limestones and volcanics. Triassic to Jurassic volcanic and volcanoclastic rocks unconformably overlie the Paleozoic sequences. A Jurassic quartz diorite intrudes the package. Mineralization occurs as quartz veins within the quartz diorite, and breccia, disseminations and veins of tennantite in the limestones and clastic sediments.
WORK DONE:
- ROCK 98, multielement
- DIAD 26.0 km
- SAMP 88, multielement
- GEOL 1:100, 000:1:1000
- EMPP 5.7 km:VLF
- TREN 63.0 m:4 trenches
- SOIL 283, multielement

REFERENCES:

**** Ann ****

MINING DIV: *** ASSESSMENT REPORT 15906 INFO CLASS 3
LOCATION: LAT 57 04 00 LONG. 131 32 00 NTS:
CLAIMS: Father, Mother, Pandora
OPERATOR: Dons. Silver Standard Mines
AUTHOR: Dunn, O.
COMMODITIES: Gold, Copper
DESCRIPTION: The property is underlain by andesitic volcanics of Upper Triassic age which show regional argillic alteration and have been intruded by Jurassic syenites and Cretaceous gneissodiorites. Mineralization consists of a weak copper porphyry system with associated precious metals values in calcified, pyritized volcanics associated with north trending structures. Reserves of 165 000 tonnes grading 4.11 grams per tonne gold has been drill-indicated.
Telegraph Creek

WORK DONE: GEOG 1:5000
MIN: Au,multielement
SOIL 103:Au,Cu
TREN 168: B:11 trenches
ROCK 131:Au,Ag

REFERENCES: A.R. 06815.06923
M.I. 104G 023-ANN

**** Jack ****

MINING DIV: Liard
ASSESSMENT REPORT 16531
INFO CLASS 4

LOCATION: LAT. 57 09 30 LONG. 131 34 18 NTS:

CLAIMS:

OPERATOR:
Cons. Silver Standard Mines

AUTHOR:
Jack

COMMODITIES:
Lead,Zinc,Copper,Silver

DESCRIPTION:
Upper Triassic volcanic and sedimentary rocks contain disseminated pyrite and chalcocite.

WORK DONE:
SILT:1:multielement
PROS 1:12 800
SOIL:12:multielement
ROCK 7:multielement

REFERENCES: M.I. 104G 046-JACK

**** Mess,Mest,Jet,Dell ****

MINING DIV: Liard
ASSESSMENT REPORT 16828
INFO CLASS 3

LOCATION: LAT. 57 28 48 LONG. 130 56 00 NTS:

CLAIMS:

OPERATOR:
Chervon Can. Res.

AUTHOR:
Heawill, W.; Walton, G.

COMMODITIES:
Cooper

DESCRIPTION:
The claims are underlain by Pennsian limestones and volcanics. The Triassic volcanics unconformably overlie the Paleozoic sequence. The Triassic volcanics have been intruded by a Jurassic quartz monzonite which in turn has been intruded by a near horizontal anesitic dyke swarm. Mineralization occurs as quartz veins and isolated tene- grade showings.

WORK DONE:
ROCK 6:multielement
SOIL 497:multielement
GEOG 1:5000

REFERENCES: A.R. 06630
M.I. 104I 035-MESS:104G 073-MESS:104G 073-JET:104G 073-DELL

**** Run ****

MINING DIV: Liard
ASSESSMENT REPORT 16503
INFO CLASS 3

LOCATION: LAT. 57 28 18 LONG. 130 54 18 NTS:

CLAIMS:

OPERATOR:
Chervon Can. Res.

AUTHOR:
Heawill, W.; Walton, G.

COMMODITIES:
Lead-Antimony

DESCRIPTION:
The claims are underlain by Pennsian limestones in fault contact with upper Triassic anesitic volcanics and serpentinized ultramafics. Along with the over faults related to the Mess Creek fault system is a Jurassic quartz monzonite intrusion. Erratic gold values occur along C381

WORK DONE:
LINE 6.5 km
ROCK 72:multielement
SAMP 54:Au,Au,Cu,Mo
SOIL 160:multielement

REFERENCES: A.R. 06210.06374.06375.06686.06916.07107.12961.13746.14897
M.I. 104I 072-KUTCHO

Kutcho

WORK DONE:
SILT 1:multielement
REFERENCES: A.R. 06630
M.I. 104I 075-CK:104I 095-KASS

Cry Lake

WORK DONE:
LINE 6.5 km
ROCK 72:multielement
SAMP 54:Au,Au,Cu,Mo
SOIL 160:multielement

REFERENCES: A.R. 06210.06374.06375.06686.06916.07107.12961.13746.14897
M.I. 104I 072-KUTCHO

**** D ****

MINING DIV: Liard
ASSESSMENT REPORT 16773
INFO CLASS 3

LOCATION: LAT. 58 11 42 LONG. 129 07 48 NTS:

CLAIMS:

OPERATOR:
Noranda Ex.

AUTHOR:
Maxwell, G.

COMMODITIES:
Copper

DESCRIPTION:
The property covers occurrences of copper-zinc mineralization in schistose volcanic, volcaniclastic and sedimentary rocks of the "Kutcho Formation".

WORK DONE:
SILT 34:multielement
SOIL 349:multielement
REFERENCES: A.R. 08210.08376.08376.08666.08916.08916.12981.13746.14997
M.I. 104I 072-KUTCHO
CLAIMS: B 1, D 3-4, D 6, D 8-9
OPERATOR: Bel Ante Res.
AUTHOR: Kim H.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by Triassic green and purplish volcanics and volcanioclastic rocks. The southern edge of the property is partially encompassed by the Middle Jurassic Toadstool volcanics. Showings of a gold-silver quartz vein and shear zone with base metal mineralization were noted.
WORK DONE: TEN 10 trenches
GEOLOGICAL CLASS: 1.5000
REFERENCES: A.R. 10699, 11279, 13276, 14004
M.I. 1041 093-0

**** D ****
MINING DIV: Liard
LOCATION: LAT. 58 11 18 LONG. 129 07 50 NTS:
CLAIMS: B 5
OPERATOR: Bel Ante Res.
AUTHOR: Kim H.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Triassic green and purplish volcanic and volcanioclastic rocks. Quartz veins mineralized with pyrite, chalcopyrite, galena and sphalerite occur along a sediment-volcanic contact and within shear zones.
WORK DONE: TEN 5-4, 5-6, 6-0 trenches
GEOLOGICAL CLASS: 1.5000
REFERENCES: A.R. 10699, 11279, 13276, 14004
M.I. 1041 093-0

**** Castle ****
MINING DIV: Liard
LOCATION: LAT. 58 25 00 LONG. 129 42 00 NTS:
CLAIMS: Castle
OPERATOR: Noranda Ex.
AUTHOR: Brecken L. G.
COMMODITIES: Copper, Zinc
DESCRIPTION: The property is underlain by sedimentary and volcanic rocks of the Ringnes Formation, which dips steeply north. A small concentration of pyrite, chalcopyrite and sphalerite is located at the junction of Eagle River and Squaw Creek.
WORK DONE: ROCK 9: Cu, Zn, Au, Ag
LINE 1: 0 km
E一次 1.9 km
MAG 3.0 km
REFERENCES: A.R. 06979, M.I. 1041 077-CASTLE

Cry Lake

CLAIMS: B 1, D 3-4, D 6, D 8-9
OPERATOR: Bel Ante Res.
AUTHOR: Kim H.
COMMODITIES: Gold, Silver
DESCRIPTION: The claims are underlain by Triassic green and purplish volcanics and volcanioclastic rocks. Quartz veins mineralized with pyrite, chalcopyrite, galena and sphalerite occur along a sediment-volcanic contact and within shear zones.
WORK DONE: TEN 10 trenches
GEOLOGICAL CLASS: 1.5000
REFERENCES: A.R. 10699, 11279, 13276, 14004
M.I. 1041 093-0

**** Jazex ****
MINING DIV: Liard
LOCATION: LAT. 58 18 00 LONG. 128 35 00 NTS:
CLAIMS: Jazex 1-9
OPERATOR: Norbasek 81
AUTHOR: Walbriner M.
COMMODITIES: Jade
DESCRIPTION: Neoprite Jazex occurs within a northwest trending belt of Eocene- to Permian dacite and rhyolite tuffs, which have been intruded by a dacite stock and porphyry stock. Jazex commonly occurs at fault contacts between metasedimentary and ultramafic rocks.
WORK DONE: TEN 75 m 9 m trenches
REHOLE 120 cm 15.000
DIAM 12.0 C 3.9 holes
REFERENCES: A.R. 10400

**** Flat ****
MINING DIV: Liard
LOCATION: LAT. 58 27 54 LONG. 128 52 24 NTS:
CLAIMS: FLAT 1-4
OPERATOR: Cukor V.
COMMODITIES: Nickel, Copper
DESCRIPTION: An ultramafic complex with sulphide accumulations contains values of copper, nickel and molybdenum.
WORK DONE: JASPER 189.4 ft
REFERENCES: A.R. 01077 08055
M.I. 1041 061-FLAT

**** Jed ****
MINING DIV: Liard
LOCATION: LAT. 58 32 24 LONG. 128 29 38 NTS:
CLAIMS: Jed 1
OPERATOR: Supreme Res.
AUTHOR: Cukor V.
If

MINING DIV: Let-a ASSESSMENT REPORT 15494 INFO CLASS 4
CLAIMS: LAT. 58 19 54 LONG. 128 59 12 NTS:
OPERATOR: Imperial Metals
AUTHOR: Pesal, R.
DESCRIPTION: Serpentinitized ultramafics are cut by subvertical, well-exposed, quartz veins 0.3 to 0.5 metre wide. Rock samples returned only background values.
WORK DONE: ROCK 86; MULTIELEMENT
REFERENCES: GEO 1:2500

MINING DIV: Let-a ASSESSMENT REPORT 15494 INFO CLASS 4
CLAIMS: LAT. 58 18 30 LONG. 128 55 00 NTS:
OPERATOR: Trenching Platinum
AUTHOR: Page, D.
COMMODITIES: Copper, Nickel
DESCRIPTION: The Turnagain River ultramafic body is a zoned ultramafic complex consisting of a cu-nickel core and peripheral peridotite, pyroxene-rich peridotite and olivine pyroxenite. It intrudes the northwesterly striking Penrith-Pennylvanian Cache Creek Group of rocks.
WORK DONE: ROCK 86; MULTIELEMENT
REFERENCES: A.R. C2036, C3738, 00497
M.I. 1041 014-TURN: 1041 014-COBALT: 1041 014-PYRRHOTITE

MINING DIV: Liaro ASSESSMENT REPORT 16041 INFO CLASS 4
CLAIMS: LAT. 58 28 24 LONG. 128 51 36 NTS:
OPERATOR: Fredlund, D.
DESCRIPTION: The Paleozoic Dease Series are altered to phylite and slate which are interbedded with limestone, anandesite, clorite, serpentinite, and occasionally porphyry mineralized with pyrite, galena, and chalcopyrite. The rocks strike northwesterly.
WORK DONE: ROCK 86; MULTIELEMENT
REFERENCES: A.R. C2036, 00351, 00497
M.I. 1041 14-10

MINING DIV: Liard ASSESSMENT REPORT 16041 INFO CLASS 3
CLAIMS: NORTH 1-2-40, TURN 1-20
OPERATOR: TechniCraft Platinum
AUTHOR: Page, D.
COMMODITIES: Gold, Copper, Silver
DESCRIPTION: The veins and lenses of sphalerite, magnetite, pyrite and chalcopyrite containing gold occur near the contact of non-zonitic intrusions, and tuffaceous and volcanic rocks of the Upper Triassic Stuhini Group. Elevated levels of cobalt, arsenic, lead and zinc in addition to copper have been found.
WORK DONE: ROCK 86; MULTIELEMENT
REFERENCES: A.R. C2036, 00351, 00497
M.I. 1041 14-TURN: 1041 014-COBALT: 1041 014-PYRRHOTITE

DESCRIPTION: Gold, Copper, Silver

cases of copper, gold, and silver.

DESCRIPTION: The property is underlain by Upper Triassic Stuhini Group andesitic to basaltic flows and a variety of sedimentary rocks which are intruded by a gabbroritic-clorite stock with associated dykes of biotite-like masses, and dissected by numerous faults. Shear zones are believed to host sulphide mineralization.

WORK DONE: MAGA 202 1.1
EMAG 302.1 km: VLF
REFERENCES: A.R. C2036, 00351, 00497, 00314, 08835, 07482, 14802
M.I. 1041 014-PAT: 1041 014-ON

MINING DIV: Mosquito Creek ASSESSMENT REPORT 16624 INFO CLASS 4
CLAIMS: LAT. 58 51 08 LONG. 130 22 48 NTS:
OPERATOR: Company, Ltd.
AUTHOR: Leaver, C.
DESCRIPTION: CONFIDENTIAL STATUS

C385

Cry Lake

DESCRIPTION: DeCaril core assayed up to 3.4 grams of gold per tonne in

WORK DONE: SAMP 50, Au
DIAM 304.5 m; 3 holes, 30
REFERENCES: A.R. 13627

C386

Dease Lake

DESCRIPTION: Gold, Copper, Silver

C386

Pat

DESCRIPTION: Gold, Copper, Silver

C386

Mosquito Creek

DESCRIPTION: CONFIDENTIAL STATUS

C386

Will be published in Exploration in British Columbia, 1988
Tulsequah

**** Bandit ****

MINING DIV: Atlin
ASSESSMENT REPORT 16380 INFO CLASS 4
LOCATION: LAT. 58 04 00 LONG. 132 10 00 NTS:
CLAIMS:
AUTHOR: Moffat, L.; Walton, G.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by the Stikine assemblage of intermediate to mafic volcanics, phyllites and Pennan limestone. Major north-south structures cut this assemblage and show hydrothermal gold, silver and copper values.
WORK DONE:
SOIL 12; Au, Ag, As, Hg, Sb, Au
ROCK 5; Au, Ag, As, Hg, Sb, Au
REFERENCES: A. R. 10758, 1824
W. I. 104K 086-BANDIT

**** Hiro Tan ****

ASSESSMENT REPORT 15549 INFO CLASS 3
LOCATION: LAT. 58 12 30 LONG. 132 13 00 NTS:
CLAIMS:
OPERATOR: North American Metalco
AUTHORS: Titley, E.; Wasylyshyn, R.
DESCRIPTION: The claims are within the Stikine terrane where Pennan limestone are overlain by pre-upper Triassic mafic volcanics. Limestone alteration or volcanism is common along fault structures. No significant mineralization was found.
WORK DONE:
MINN 6; Au, Ag, As, Hg, Sb, Au
SOIL 30; multielement
ROCK 12; multielement
RAD 2.4 km
REFERENCES: A. R. 11781, 1422

**** Doro Tan ****

ASSESSMENT REPORT 15894 INFO CLASS 3
LOCATION: LAT. 58 11 00 LONG. 132 13 00 NTS:
CLAIMS:
OPERATOR: Sage Res.
AUTHORS: Cobelens, D.
COMMODITIES: Copper
DESCRIPTION: The claims are underlain by a series of volcanoclastic rocks, tuffs, breccias, argillites and limestones, which are intruded by small dikes of apparent upper Triassic age. Disseminated pyrite, chalcopyrite, and pyrrhotite, and hematite blebs and fracture fillings, and coatings of malachite occur in a small diorite stock and associated alteration zone. No significant geochemical results occur. The single point sample is 99.999 ppm copper and 930 ppm gold.
WORK DONE:
SOIL 11; 10 000 ppm
C387

Tulsequah

REFERENCES:
A. R. 11820
W. I. 104K 039-DORI. 104K 039-TAN

**** Sam ****

ASSESSMENT REPORT 15550 INFO CLASS 4
LOCATION: LAT. 58 15 12 LONG. 132 19 48 NTS:
CLAIMS:
OPERATOR: North American Metalco
AUTHORS: Titley, E.; Wasylyshyn, R.
DESCRIPTION: The claim is within the Stikine terrane where Pennan limestone are overlain by pre-upper Triassic mafic volcanics. Limestone alteration or volcanism is common along fault structures. No significant mineralization was found. A long strong geochemical anomaly exists possibly related to fault structures.
WORK DONE:
SOIL 3; Au, Ag, As, Hg, Sb, Au
ROCK 1; Au, Ag, As, Hg, Sb, Au
REFERENCES:

**** Nte. Misty ****

ASSESSMENT REPORT 16823 INFO CLASS 2
LOCATION: LAT. 58 16 12 LONG. 132 19 12 NTS:
CLAIMS:
AUTHORS: Lee, T.; Walton, G.
DESCRIPTION: The claims are underlain by the Stikine assemblage of intermediate to mafic volcanics, phyllites and Pennan limestone. Major north-south structures cut this assemblage and have concentrated hydrothermal fluids along them. Gold, silver and copper values have been located along some of these structures.
WORK DONE:
DIAG 1898.8 m; 30 holes, No
SAMP 996; multielement
REFERENCES:

**** Ram Tut ****

ASSESSMENT REPORT 16528 INFO CLASS 3
LOCATION: LAT. 58 16 42 LONG. 132 25 30 NTS:
CLAIMS:
AUTHORS: Moffat, L.; Walton, G.
COMMODITIES: Gold, Silver, Antimony
DESCRIPTION: The claims are underlain by pre-upper Triassic allitite, tuff and limestones. Intense silicification combined with precipitation at the top of the limestone unit indicates the possibility for a rerto gold deposit. The feeder zone for this alteration and mineralization is still not defined.
WORK DONE:
DIAG 674.2 m; 14 holes, No
SAMP 411; multielement
REFERENCES:
W. I. 104K 080-RAM. 104K 080-TUT

**** Outlaw ****

ASSESSMENT REPORT 16310 INFO CLASS 3
LOCATION: LAT. 58 32 12 LONG. 132 43 36 NTS:
C386
Tulsequan

104K

LOCATION: LAT: 59 40 34 LONG: 193 35 12 NTS:
CLAIMS: Outlaw 2
AUTHOR: Walton, G.
COMMODITIES: Gold, Silver, Lead, Zinc, Copper
DESCRIPTION: The claims are underlain by a Jurassic diorite which has intruded some Jurassic sediments of either King Salmon Formation or Takawan Formation. These sediments have been metamorphosed. To the north a large area of the Tulsequan is underlain by Stuhini Group mafic volcanic rocks and to the north by a large extent of Stuhini Group felsic volcanics. A claim lies to the north in the felsic rocks with weak gold, silver and high antimony values associated with it.
WORK DONE: DIAD 202 2.2 acre hole, HU, NO
REFERENCES: A.R. 10532, 12564
M.I. 104K 063-OUTLAW

**** KS ****

MINING DIV: *** ASSESSMENT REPORT 16477 INFO CLASS 4
LOCATION: LAT: 58 39 24 LONG: 132 55 54 NTS:
CLAIMS: KS 1-3
OPERATOR: Normandy Ex.
AUTHOR: A.R. 2512
COMMODITIES: Gold, Silver, Lead, Zinc
DESCRIPTION: The claims are underlain by a sequence of Tertiary Stuhini Group volcanics and related mafic dykes. Alteration includes bleaching and silification near the dike and gossanous weathering of narrow near north-trending, narrow shear zones. Geochemical sampling results indicate weak gold-silver-lead-arsenic anomalies.
WORK DONE: SAMP 22, multielement
EDL 1:10,000
REFERENCES: A.R. 2512

**** TN ****

MINING DIV: ATL11 ASSESSMENT REPORT 16897 INFO CLASS 3
LOCATION: LAT: 58 33 00 LONG: 132 48 00 NTS:
CLAIMS: Dalpas
OPERATOR: American Reserve Min.
AUTHOR: WOODCOCK
COMMODITIES: Silver, Gold, Copper
DESCRIPTION: An Eocene volcanic pile with a small related quartz-feldspar porphyry batholith. The pile is highly laterally altered with pyrite and sericite. Linearly altered zones are silicified and mineralized with pyrite, arsenopyrite, chalcopyrite and some silver and gold. In other places pods and lenses of pyrite-tetrahedrite-sphalerite carry silver and minor gold.
WORK DONE: SAMP 392, Cu, Ag, Au
EDL 1:1000
DIAD 650.8, 6.5 holes, NO
REFERENCES: A.R. 02531, 10246, 11923
M.I. 104K 018-THORN; 104K 031-THORN

**** Potlatch, Banker ****

MINING DIV: *** ASSESSMENT REPORT 16870 INFO CLASS 3
LOCATION: LAT: 58 47 00 LONG: 133 18 00 NTS:
CLAIMS: Potlatch; Banker
OPERATOR: Basab, Ent.
AUTHOR: Mark, O.
COMMODITIES: Silver, Gold, Lead, Zinc
DESCRIPTION: The property covers an intermediate to felsic volcanic package overlying pre-Pennian limestones, and is offset by the Tulsequan Fault. It contains two significant mineralized zones. The Sparling and Banker. The Sparling showing, and north-trending volcanics and related intrusives containing gold-silver-copper mineralization. Within narrow parallel shear zones, mineralization within gold-silver-copper, contains significant gold-silver-lead-zinc mineralization. The Banker showing, and north-trending intrusives containing gold-silver-copper, contains significant gold-silver-lead-zinc mineralization. The area is characterized by a northwest-trending faultline that is intruded by north-trending felsic dykes and sills. In 1981 during exploration drilling and mineralization within the strike section grading 0.26 grams per tonne silver, 0.76 grams per tonne gold, 0.84 per cent zinc and 0.06 per cent copper.
WORK DONE: IPOL 1.5 km
REFERENCES: M.I. 104K 007-POTLATCH

**** SKAGWAY ****

MINING DIV: *** ASSESSMENT REPORT 16478 INFO CLASS 3
LOCATION: LAT: 59 43 00 LONG: 134 01 16 NTS:
CLAIMS: Gram 1-4
OPERATOR: Noreens ex.
AUTHOR: Cooland, H.
COMMODITIES: Silver, Gold, Lead, Zinc
DESCRIPTION: The claims are underlain by Upper Cretaceous Kutshi Group volcanics which overlie the older whitestone trough rocks. The Kutshi Group consists of interbedded intermediate to felsic volcanic rocks and tuffs; with tuffaceous sediments. Minor mafic rocks cut these lithologies. Minor quartz-sulfide veining is seen in the southwest corner and minor veining is also present.
WORK DONE: LITL 20.5 km
EDL 1:10 000

C390
Skagway

MAGG 13.5 km
SOIL 4B: multielement
ROCK 28: multielement
SILT 21: multielement
HMN B: Cu, Pb, Zn, Ag, Au

REFERENCES:

**** SKAT ****

MINING DIV: Atlin
LOCATION: LAT. 59 59 30; LONG. 133 18 24; NTS:
CLAIMS: But & T 1-60, Emily
OPERATOR: Doron Ex.
AUTHOR: Loney B.
DESCRIPTION: The claims are underlain by a cauldron subsidence structure of the Tertiary Skagway Group. A ring fracture system has been intruded by various volcanic rocks. Alteration is siliciclastic in style.
WORK DONE: ROCK 28: multielement
SILT 21: multielement
SHEET 3: 47 thin sections

REFERENCES:

**** Moon Lake ****

MINING DIV: Atlin
LOCATION: LAT. 59 48 48; LONG. 134 41 30; NTS:
CLAIMS: Pit 1-3
OPERATOR: Morris Ex.
AUTHORS: MacKay, S.; Reid, W.
COMMODITIES: Silver, Zinc, Lead, Arsenic, Copper, Gold
DESCRIPTION: The claims are underlain by a northwest trending sequence of Tertiary strata, volcanic rocks and associated submarine sedimentary rocks which have been cut by a number of dykes. Intense carbonate alteration and associated silification form a 200 meter wide zone which has localized gold-copper mineralization. Foliated breccias and cataclastics host rich mineralization usually confined to the breccia matrix.
WORK DONE: GEBL 1:12,000; 1:2500
SILT 3: Cu, Pb, Zn, Ag, As, Au
ROCK 18: multielement
SHEET 14: 2 km

REFERENCES:

**** Pike ****

MINING DIV: Atlin
LOCATION: LAT. 59 54 00; LONG. 134 44 00; NTS:
CLAIMS: Pike
OPERATOR: Cooland, H.
AUTHORS: Description: The claims are underlain by andesite of the Triassic Lewis River Group, quartzites of the pre-Permian Yukon Group and granite.
DESCRIPTION: The claims are underlain by granodiorite, andesite and schist of the pre-Permian Yukon Group and granite.
WORK DONE: ROCK 19: multielement
REFERENCES:

**** Castlina ****

MINING DIV: Atlin
LOCATION: LAT. 59 53 24; LONG. 134 50 00; NTS:
AUTHORS: Castlina
OPERATOR: Cooland, H.
COMMODITIES: Silver, Gold, Zinc, Lead, Antimony, Molybdenum
DESCRIPTION: The claims are underlain by Tertiary granite, pre-Permian gneiss and schist and Triassic anodesite cut by younger rhyolite dykes. Subsidiary quartz veins, mineralized rhyolite dykes and a possible volcaniclastic style of mineralization occur on the property.
WORK DONE: ROCK 10: multielement
GEBL 1:10,000
SHEET 5: 2 km

REFERENCES:

**** Silver Queen, Bald Peak, Silver Queen-North, Gau ****

MINING DIV: Atlin
LOCATION: LAT. 59 55 42; LONG. 133 53 36; NTS:
CLAIMS: Dandy L.
OPERATOR: Marjay Ex.
AUTHORS: Davidson, G.
COMMODITIES: Silver, Copper, Gold, Lead, Zinc, Antimony, Arsenic, Iron
DESCRIPTION: The claims are underlain by Mount Nansen Group mafic-felsic volcanics, Lewis River Group sediments and mafic-intermediate volcanics, and Yukon Group quartz-feldspar schist and gneiss. Quartz-vein rhyolite, porphyry dykes and skiffs host most of the mineralized quartz veins.
WORK DONE: PITS 8
LINE 1.2 km
ROCK 30: multielement
GEBL 1:10,000; 1:5000
REFERENCES:

**** McKee Creek ****

MINING DIV: Atlin
LOCATION: LAT. 59 28 00; LONG. 133 32 30; NTS:
CLAIMS: Cos, Kla, Penny
OPERATOR: Perron Gold Mines
AUTHOR: Dandy L.; Gonzalez, R.
COMMODITIES: Placer Gold
DESCRIPTION: The area is underlain by Late Paleozoic Cache Creek metasediments and metavolcanics. The property has a long history of placer gold production, the source of which was the focus of the current exploration programme.

WORK DONE: MADD 16.4 km
SOIL 16: bulk, multielement
ROCK 1: multielement
DIAG 654.7 m; 9 holes; NO SAMP 296: multielement

REFERENCES: A.R. 0357, 0291, 11912, 13194, 14336
M.I. 104N 003-MOKEE CREEK

**** TR ****

MINING DIV: Atlin
ASSESSMENT REPORT 16064 INFO CLASS 3
LOCATION: LAT. 59 30 48 LONG. 133 21 12 NTS:
CLAIMS: TR 1-4
OPERATOR: Goldenrock Res.
AUTHOR: Pennington, T. Neale, T.
DESCRIPTION: The TR claims are underlain by Pennsylvanian-Permian metasedimentary and metavolcanic rocks of the Cache Creek Group particularly the Kedanga Formation. The claims are located on Spruce Creek, a known producer of placer gold. Evidence for host rocks of two types of large gold mineralization are present: quartz veins and metavolcanics/metasedimentary rocks, and quartz-carbonate alteration of serpentinitized ultramafic rocks.

WORK DONE: GW 1.26 km
SAMP 12: multielement
DEPT 3: multielement
PETR 1: thin section

REFERENCES: A. R. 13461

**** GV ****

MINING DIV: Atlin
ASSESSMENT REPORT 15534 INFO CLASS 4
LOCATION: LAT. 59 32 30 LONG. 133 26 24 NTS:
CLAIMS: GV 19
OPERATOR: Placer Dev.
AUTHOR: Guba, M.
DESCRIPTION: Quantities of gold, arsenopyrite and black shale were intersected by diamond drilling. They possibly belong to the Pennsylvanian Cache Creek Group. Minor carbonate and/or quartz veins were noted and are commonly associated with faults. Trace amounts of pyrite are present locally. No significant alteration or mineralization was encountered.

WORK DONE: ROAD 1.0 km
SAMP 12: multielement
DIAG 48.7 m; 1 hole; NO

REFERENCES:

**** Julia ****

MINING DIV: Atlin
ASSESSMENT REPORT 15240 INFO CLASS 4
LOCATION: LAT. 59 39 24 LONG. 133 26 48 NTS:

REFERENCES: A. R. 0357, 0291, 11912, 13194, 14336

Lake View ****

MINING DIV: Atlin
ASSESSMENT REPORT 15536 INFO CLASS 2
LOCATION: LAT. 59 30 00 LONG. 133 27 18 NTS:
CLAIMS: GDC 2
OPERATOR: Creem Siver Mines
AUTHOR: Guba, L.
DESCRIPTION: The claim is underlain by Pennsylvanian-Pennsylvanian Cache Creek Group metavolcanics and sedimentary rocks which are intruded by talcose ultramafics.

Diamond drilling intersected numerous quartz veins and mineralized shear zones.

WORK DONE: DIAG 1602.6 m; 15 holes; NO
SAMP 109: multielement
DIAG 10439: 003-LAKE VIEW
M.I. 104N 009-LAKE VIEW

**** G ****

MINING DIV: Atlin
ASSESSMENT REPORT 15312 INFO CLASS 3
LOCATION: LAT. 59 36 48 LONG. 133 24 48 NTS:
CLAIMS: G 1-5
OPERATOR: Ezell Ex.
AUTHOR: Cunningham, L.
DESCRIPTION: The claims are underlain by Pennsylvanian-Cache Creek Group metasediments and volcanics, which are intruded by ultramafics and carbonatized or sericitized stock. The ultramafics are extensively carbonatized or serpentinitized. Because of limited outcrop exposure, it is difficult to obtain specific structural information, however it appears that several faults and minor faults are present.

WORK DONE: MAGG 10.5 km
ROAD 1.2 km
GDL 1:1000
SU-PK 21: multielement
TREN 450.0 km; 7 trenches

REFERENCES:

**** Shuksan ****

MINING DIV: *** ASSESSMENT REPORT 15545 INFO CLASS 3
LOCATION: LAT. 59 33 06 LONG. 133 28 36 NTS:
CLAIMS: Karen 7; Kulshan 1-2; Shuksan 1-2; ShukSan 4-5
OPERATOR: Placer Dev.

C394
Atlin

AUTHOR: R. Cannon.

DESCRIPTION: A tongue of serpentinized ultramafic rocks of Pennsylvanian age extends northeasterly from the ultramafic body of Union Mountain under the valley of Dominion Creek. This area is underlain by Pennsylvanian-Pennsylvanian Cache Creek Group meta-sediments. The ultramafic rocks are intensely carbonate-altered and vein stockworks are present. These rocks are believed to be greenstone and minor metasediments of the similarly aged Cache Creek Group.

REFERENCES: A.P. 10628.11081, 11511, 13410, 15062, 15545, 16008

*** Shuksan ***

MINING DIV: Atlin ASSESSMENT REPORT 16006 INFO CLASS 3

LOCATION: LAT. 59° 32′ 36″ LONG. 133° 38′ 48″ NTS: CLAIMS: Shuksan

OPERATOR: Jack 31, Homestake Min.

DESCRIPTION: The rocks are intensely carbonate-altered. The country rocks are believed to be greenstone and minor metasediments of the similarly aged Cache Creek Group.

REFERENCES: A.P. 104N 098-SHUKSAN

*** Anaconda ***

MINING DIV: Atlin ASSESSMENT REPORT 16035 INFO CLASS 3

LOCATION: LAT. 59° 32′ 48″ LONG. 133° 41′ 18″ NTS: CLAIMS: Jack 21, Jack 24, VJ 1-3

OPERATOR: Homestake Min. Dev.

DESCRIPTION: The Mesozoic Ultramafic intrusive rocks are predominantly serpentinized and in places hydrothermally altered to siliceous tremolite-weddelite-ultramafite. Several quartz veins and quartz vein stockworks were delineated, most of which are barren. One vein, partially exposed in a pit, returned gold assays as high as 720 p.p.t.

REFERENCES: A.P. 104N 04E-ANACOND (ANVY, FULL MOON)

*** VJ ***

MINING DIV: *** ASSESSMENT REPORT 16069 INFO CLASS 4

LOCATION: LAT. 59° 37′ 36″ LONG. 133° 22′ 24″ NTS: CLAIMS: Jack 22, Jack 24, VJ 1-3

OPERATOR: Homestake Min. Dev.

DESCRIPTION: The Cretaceous Ultramafic Intrusions intrudes sediments, ultramafic rocks and volcanics of the Pennsylvanian-Pennsylvanian Cache Creek Group. No significant alteration or mineralization was noted.

REFERENCES: GEBL 11:10 000

*** Anaconda ***

MINING DIV: Atlin ASSESSMENT REPORT 16035 INFO CLASS 3

LOCATION: LAT. 59° 32′ 48″ LONG. 133° 41′ 18″ NTS: CLAIMS: Jack 21, Jack 24, VJ 1-3

OPERATOR: Homestake Min. Dev.

DESCRIPTION: The area is underlain by Upper Paleozoic oceanic crust of the Atlin terrane. Greenstone is cut by a northeast trending fault and intrudes ultramafic rocks. The ultramafics are serpentinized and carbonatized. The ultramafics and greenstones are cut by steeply
dipping quartz veins which may be locally auriferous.

WORK DONE:
- GEOL: 1:10,000
- MAGG: 1.2 km
- EMGR: 1.2 km; VLF
- EMAG: 2.4 km; VLF

REFERENCES: A.R. OA51, W.J. OA4-IMPERIAL: OA4-PICTOU (HUDSON'S BAY): OA4-ANA (ANNY, FULL MOON)

**** Karen ****

MINING DIV: Atlin
LOCATION: LAT: 50 35 18 LONG: 133 31 36 NTS:
CLAIMS: Karen
OPERATOR: Sunrise Lake Ex. Partn.
AUTHOR: Thompson. J.
DESCRIPTION: The claim may be underlain by metasediments or carbonate altered ultramafics.

WORK DONE:
- MAGG 14.4 km
- EMGR 14.4 km; VLF
- LINE 17.8 km

REFERENCES: A.R. OA4551, W.J. OA4-IMPERIAL, OA4-PICTOU (HUDSON'S BAY)

**** Relief ****

MINING DIV: Atlin
LOCATION: LAT: 50 35 54 LONG: 133 40 24 NTS:
CLAIMS: S:1-2
OPERATOR: White, B.
AUTHOR: White, B.
COMMODITIES: Gold
DESCRIPTION: The claims are underlain by Pennsylvanian-Pennsylvanian Cache Creek Group sedimentary and volcanic rocks that occur near the margin of the Jurassic-Cretaceous Fourth of July Creek Batholith. A stylitized zone containing pyritic quartz veins cut the Cache Creek Group volcanics.

WORK DONE:
- MAGG 14.4 km
- EMGR 14.4 km; VLF

REFERENCES: M.J. OA45-RELIEF

**** S ****

MINING DIV: Atlin
LOCATION: LAT: 50 33 42 LONG: 133 32 30 NTS:
CLAIMS: S:1-2
OPERATOR: Ezbekiel Ex.
AUTHOR: Wallott, P.E.; Dancy, L.
COMMODITIES: Gold
DESCRIPTION: The area in general is underlain by Pennsylvanian-Pennsylvanian Cache Creek Group metasediments and metavolcanics, and intrusive.

WORK DONE:
- MAP 300 km
- OBS 51 km

REFERENCES: M.J. OA34-SPRUCE CREEK

**** Utopia ****

MINING DIV: Atlin
LOCATION: LAT: 50 35 36 LONG: 133 36 12 NTS:
CLAIMS: Atlin
OPERATOR: Gallant Gold Mines
AUTHOR: Dancy, L.
DESCRIPTION: The claim is underlain by Pennsylvanian-Pennsylvanian Cache Creek Group limestones, sandstone, argillite, anodesite and Atlin Intrusion ultramafics. The ultramafics are altered to serpentine, SWC or carbonate and contain quartz stockworks. Pyrite and hematite are present. The quartz stockwork follows the Pine Creek Fault and is approximately 30.6 metres wide.

WORK DONE:
- SAMPL 34;14444km
- DIAM 60.1 m; 10 holes; NO
- EMGR 2.7 km; VLF

REFERENCES: A.R. OA34-SPRUCE CREEK

**** Yellowjacket ****

MINING DIV: Atlin
LOCATION: LAT: 50 35 42 LONG: 133 32 30 NTS:
CLAIMS: Jack-Arrow 1-2, Yellowjacket 11, Discovery, Jack-Fr., Jack 2-3, Jack 5
OPERATOR: Homestake Min. Dev.
AUTHOR: Romaine, T.
COMMODITIES: Gold, Manganese
DESCRIPTION: Gold mineralization is contained within quartz veins in altered serpentinites intruding Pennsylvanian-Pennsylvanian Cache Creek Group greenstone and sediments. Pine Creek forms a major fault zone which trends about 250 degrees. This zone and associated cross faults and gneissic fractures have formed a plumbing system for hypothermal fluids which have produced quartz-carbonate alteration.

WORK DONE:
- MAGG 80 km
- EMAG 256.0 km; VLF
- LINE 86.2 km
- TLOL 10.8 km
- DIAM 250.0 m; 14 holes, HQ

C398
Midway-Discovery, Silver Hill, Midway-Silver Creek

MINING DIV: Liard
ASSESSMENT REPORT 15580 INFO CLASS 1
LOCATION: LAT. 59 08 30 LONG. 129 07 30 NTG:
CLAIMS: Eag. 1
OPERATOR: Lazear Ex.
AUTHOR: Znny, A.
COMMODITIES: Galena, Ag, Pb, Zn
DESCRIPTION: The claims in the vicinity of the Silver Hill deposit are overlain unconformably by Devonian-Mississippian Lower Sylvester Group clastic rocks. The mineralization consists of precious metal bearing polymetallic sulphide quartz-carbonate veins associated with iron-carbonate alteration in major linear structures.
WORK DONE: DIAD 100.0 holes
REFERENCES: A. R. 02118, 12199

McDame

ASSESSMENT REPORT 159791 INFO CLASS 2

LOCATION: LAT. 59 08 30 LONG. 129 29 24 NTS:
CLAIMS: None
OPERATOR: Lazear Ex.
AUTHOR: Znny, A.
COMMODITIES: Galena, Ag
DESCRIPTION: The claims in the vicinity of the Silver Hill deposit are overlain unconformably by Devonian-Mississippian Lower Sylvester Group clastic rocks. The mineralization consists of precious metal bearing polymetallic sulphide quartz-carbonate veins associated with iron-carbonate alteration in major linear structures.
WORK DONE: TREN 17.5 m:4 trenches
REFERENCES: A. R. 02118, 12199

Ritch Low Grade

ASSESSMENT REPORT 15794 INFO CLASS 1
LOCATION: LAT. 59 12 30 LONG. 129 36 30 NTS:
CLAIMS: Wildcat 1-2, Wildcat 9
OPERATOR: Erickson gold min.
AUTHOR: Znny, A.
COMMODITIES: Galena, Pb, Zn
DESCRIPTION: Gold and silver mineralization occurs within the Yellow Vein dipping 30 degrees north. The vein occurs above limestones at the interpreted contact and is interpreted to represent the upper contact of the Silver Hill deposit.
WORK DONE: DIAD 2841.1 m:18 holes, BQ
REFERENCES: A. R. 02118, 12199

Midway-Discovery, Silver Hill, Midway-Silver Creek

MINING DIV: Liard
ASSESSMENT REPORT 15581 INFO CLASS 4
LOCATION: LAT. 59 08 30 LONG. 129 47 30 NTS:
CLAIMS: Film 1, Film 3
OPERATOR: Colon Pacific Ex.
AUTHOR: Znny, A.
COMMODITIES: Galena, Pb, Zn
DESCRIPTION: The claims in the vicinity of the Silver Hill deposit are overlain unconformably by Devonian-Mississippian Lower Sylvester Group clastic rocks. The mineralization consists of precious metal bearing polymetallic sulphide quartz-carbonate veins associated with iron-carbonate alteration in major linear structures.
WORK DONE: LINE 1.5 m

Goldbreak 13 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.28 25.06 Long. 129.31 36

CLAIMS: Goldbreak 13

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 13 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 17 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.24 00 Long. 129.30 00

CLAIMS: Goldbreak 17

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 17 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 27 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.22 00 Long. 129.33 00

CLAIMS: Goldbreak 27

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 27 claim is underlain by Paleozoic marine rocks. Northeast trending, southwest dipping quartzite and phyllite are exposed in the north-central part of the property. The property is on the southwestern limb of a large anticlinorium. Discontinuous zones up to 25 centimetres wide within the southern boundary of the property contain local chalcopyrite, pyrite, malachite and azurite, with associated silver.

WORK DONE: ROCK 12; multi-element

REFERENCES:

Goldbreak 10 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.27 30 Long. 129.26 00

CLAIMS: Goldbreak 10

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 10 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 8; multi-element

REFERENCES:

Goldbreak 13 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.26 00 Long. 129.30 00

CLAIMS: Goldbreak 13

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 13 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 17 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.24 00 Long. 129.30 00

CLAIMS: Goldbreak 17

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 17 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 27 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.22 00 Long. 129.33 00

CLAIMS: Goldbreak 27

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 27 claim is underlain by Paleozoic marine rocks. Northeast trending, southwest dipping quartzite and phyllite are exposed in the north-central part of the property. The property is on the southwestern limb of a large anticlinorium. Discontinuous zones up to 25 centimetres wide within the southern boundary of the property contain local chalcopyrite, pyrite, malachite and azurite, with associated silver.

WORK DONE: ROCK 12; multi-element

REFERENCES:

Goldbreak 10 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.27 30 Long. 129.26 00

CLAIMS: Goldbreak 10

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 10 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 8; multi-element

REFERENCES:

Goldbreak 13 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.28 25.06 Long. 129.31 36

CLAIMS: Goldbreak 13

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 13 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 17 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.24 00 Long. 129.30 00

CLAIMS: Goldbreak 17

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 17 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 27 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.22 00 Long. 129.33 00

CLAIMS: Goldbreak 27

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 27 claim is underlain by Paleozoic marine rocks. Northeast trending, southwest dipping quartzite and phyllite are exposed in the north-central part of the property. The property is on the southwestern limb of a large anticlinorium. Discontinuous zones up to 25 centimetres wide within the southern boundary of the property contain local chalcopyrite, pyrite, malachite and azurite, with associated silver.

WORK DONE: ROCK 12; multi-element

REFERENCES:

Goldbreak 10 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.27 30 Long. 129.26 00

CLAIMS: Goldbreak 10

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 10 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 8; multi-element

REFERENCES:

Goldbreak 13 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.25 00 Long. 129.28 00

CLAIMS: Goldbreak 13

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 13 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 17 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.24 00 Long. 129.30 00

CLAIMS: Goldbreak 17

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 17 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite veins intrude limestone within the property. No sulphide minerals were observed.

WORK DONE: ROCK 1; multi-element

REFERENCES:

Goldbreak 27 **

MINING DIV: Goldbreak

LOCATION: Lat. 59.22 00 Long. 129.33 00

CLAIMS: Goldbreak 27

AUTHOR: McCrossan, E.; Pawluk, D.

DESCRIPTION: The Goldbreak 27 claim is underlain by Paleozoic marine rocks. Northeast trending, southwest dipping quartzite and phyllite are exposed in the north-central part of the property. The property is on the southwestern limb of a large anticlinorium. Discontinuous zones up to 25 centimetres wide within the southern boundary of the property contain local chalcopyrite, pyrite, malachite and azurite, with associated silver.
Goldpeak 14

MINING DIV:

LOCATION: Lat: 59° 26' 00", Long: 129° 29' 00" NTS:

CLAIMS:

OPERATOR: One-Ban Min.

AUTHOR: McCrossan, E.; Pawliuk, D.

DESCRIPTION: The Goldpeak 14 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks. The Atan Group consists of limestone and quartzite with minor siltstone and slate. The property is on the northeastern limb of a large anticlinorium. Calcite and local limonitic iron oxides occur within brecciated limestone.

WORK DONE:

- **ROCK:** BRECCIA
- **SEDIL:** 1:10, 000
- **RMS:** 1:10, 000

REFERENCES:

Goldpeak 19

MINING DIV:

LOCATION: Lat: 59° 24' 00", Long: 129° 29' 00" NTS:

CLAIMS:

OPERATOR: Melinda Res.

AUTHOR: McCrossan, E.; Pawliuk, D.

DESCRIPTION: Lower to Middle Cambrian Atan Group limestone, quartzite, siltstone, slate and clay underlie the northeastern Goldpeak 19 mineral claims. These rocks strike southeastward, dip to the north and conformably overlie Proterozoic Good Hope Group limestone, dolomite, quartzite, siltstone, slate and clay. Brecciated rock created by thrust faulting has been bleached and iron-stained. Rock samples contain low metal values.

WORK DONE:

- **ROCK:** 43, MULTIELEMENT
- **SEDIL:** 1:5000
- **EISE:** 23.4 km
- **MAIA:** 11.6 km
- **MAG:** 17.1 km
- **EMAG:** 17.1 km: VLF
- **EMAS:** 11.6 km

REFERENCES:

Goldpeak 33

MINING DIV:

LOCATION: Lat: 59° 21' 00", Long: 129° 29' 00" NTS:

CLAIMS:

OPERATOR: Markovina, N.

AUTHOR: Pawliuk, D.

DESCRIPTION: The Goldpeak 33 claim is underlain by Proterozoic Good Hope Group and Lower Cambrian Atan Group limestone and quartzite. The property is on the southwestern limb of a large anticlinorium. Quartz veins strike northwest and dips southwest. Limestone has been brecciated and recrystallized along fault zones. Calcite veins range up to 25 centimetres wide and 7 metres in length.

Goldpeak 9

MINING DIV:

LOCATION: Lat: 59° 27' 30", Long: 129° 29' 00" NTS:

CLAIMS:

OPERATOR: Markovina, N.

AUTHOR: Pawliuk, D.

DESCRIPTION: The Goldpeak 9 claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite occurs in breccia along steeply northeastly trending faults within limestone. Calcite veins up to 100 centimetres wide are present. No sulfides were observed.

WORK DONE:

- **ROCK:** BRECCIA
- **PROD:** 1:10, 000

REFERENCES:

Judo

MINING DIV:

LOCATION: Lat: 59° 18' 42", Long: 129° 23' 54" NTS:

CLAIMS:

OPERATOR: Colony Pacific Ex.

AUTHOR: Hall, B.

COMMODITIES: Lead, Zine, Silver, Antimony, Bismuth, Cadmium.

DESCRIPTION: The Judo claim is underlain by Lower to Middle Cambrian Atan Group sedimentary rocks consisting of limestone and quartzite with minor siltstone and slate. The property is on the southwestern limb of a large anticlinorium. Calcite occurs in breccia along steeply northeastly trending faults within limestone. Minimal galena-tetrahedrite mineralization is exposed in a number of trenches. Although the grades are significant, the widths are narrow and the mining potential is limited.

WORK DONE:

- **ROCK:** BRECCIA
- **SEDIL:** 1:200
- **TREN:** 470.0 m: 8 trenches
- **SAMP:** 34: MULTIELEMENT
- **SOIL:** 4: MULTIELEMENT
- **MEAO:** 2.5 km

REFERENCES:

Hyland River Gold

MINING DIV:

LOCATION: Lat: 59° 56' 00", Long: 128° 10' 00" NTS:

CLAIMS:

OPERATOR: Buns Res.

AUTHOR: VD Rosen, G.

COMMODITIES: Placer Gold

DESCRIPTION: Fine grained gold has been extracted from bars along the Hyland River below the Alaska Highway Bridge.

WORK DONE:

- **MASS:** 5.2 km

REFERENCES: M.I. 104P 109-MYLAND RIVER GOLD PLACER
Tatsenshini River 114P

**** Low Herbert, Herbert West, Grizzly Heights ****

MINING DIV: 114P
LOCATION: LAT. 59 20 35 LONG. 136 34 18 NTS.
CLAIMS: Jarvis 8, Jarvis 10-11, Jarvis 13-17, Jarvis 14, Jarvis 7-8, Jarvis 11
OPERATOR: Freeport Res.
AUTHOR: Duffield, 0.
COMMODITIES: Gold, Silver, Copper, Zinc, Lead
DESCRIPTION: A volcaniclastic and sedimentary package carrying galena, sphalerite, barite and occasional high gold and silver values has been traced in Triassic pillow basalts.
WORK DONE: SAMP 260: multielement
DIAD 1499.6; 9 holes, NO
GEOLOGY: 1:10000

REFERENCES: A.R. 62629
M.I. 114P 064-HERBERT WEST: 114P 064-LOW HERBERT; 114P C68-GRIZZLY HEIGHTS

**** O'Connor Gypsum ****

MINING DIV: ***
LOCATION: LAT. 59 38 48 LONG. 136 43 12 NTS.
CLAIMS: O'Connor Res.
OPERATOR: Queenstake Res.
AUTHOR: Phillips, W.; Rodgers, A.
COMMODITIES: Gypsum
DESCRIPTION: Gypsum is discordant within Upper Paleozoic carbonate sediments. The source appears to be Tertiary in age and is contained or bounded by arenitic tuff and quartz-felspar porphyry.
WORK DONE: DIAD 880.0; 18 holes, NO
GEOLOGY: 1:1000

REFERENCES: M.I. 114P 055-O'CONNOR GYPSUM

**** Sam Main Glacier, Sam North Glacier ****

MINING DIV: 114P
LOCATION: LAT. 59 42 00 LONG. 136 52 00 NTS.
CLAIMS: Sam 3-4
OPERATOR: Noranda Ex.
AUTHOR: Cothern, H.; Reit, W.
COMMODITIES: Cooper, Lead, Zinc, Silver, Gold
DESCRIPTION: The claims are underlain by variably altered limestone, mafic volcanic rocks and fine-grained sedimentary rocks. These have all been thermally altered to some degree. The mineralization of most importance is found in residual float and consists of breccia containing lead-zinc rich skarn. Values up to 4.1% zinc per tonne were found in selected high-grade copper mineralization. The source of the mineralization is presumably under the glacier.
WORK DONE: ROCK 5; Cu: Zn: Ag: Au: As

REFERENCES: M.I. 114P 065-SAM MAIN GLACIER

Tatsenshini River 114P

REFERENCES: A.R. 05681, 03980, 09516, 11500, 12225, 13501
M.I. 114P 047-SAM NORTH GLACIER; 114P 048-SAM MAIN GLACIER

**** Baribican Mount, Pampero Ridge ****

MINING DIV: 114P
LOCATION: LAT. 59 42 06 LONG. 136 36 36 NTS.
CLAIMS: Rime 1, Rime 3-7, Rime 11-12, Rime 14-15
OPERATOR: Newman Mines
AUTHOR: Kennedy, D.; Voigt, A.
COMMODITIES: Silver, Copper, Gold, Zinc
DESCRIPTION: The claims are underlain by Upper Triassic intermediate to mafic submarine volcanic rocks with variable amounts of interbedded carbonate and argillites and Early to Middle Paleozoic clastics and carbonates. Mineralization consists of sub-fusaceous, fine-beded lead-zinc-rich skarn, chalcopyrite and pyrite occurring in black, calcareous argillite. The exploration surveys resulted in extension of known mineralization and the location of numerous sulphide occurrences.
WORK DONE: GEOLOGY 1:2000; 1:1000
LINE 24.3 km
PIT B; 5 thin sections
SOIL 26; multielement
ROCK 200; multielement
EMGR 22.8 km; VLF
MAG 22.8 km

REFERENCES: A.R. 05681, 03980, 09516, 11500, 12225, 13501
M.I. 114P 039-BARIBICAN MOUNT; 114P 038-PAMPERO RIDGE

**** Tats ****

MINING DIV: 114P
LOCATION: LAT. 59 39 30 LONG. 134 43 30 NTS.
CLAIMS: WC 14
OPERATOR: Geodes Res.
AUTHOR: McDougall, J.
COMMODITIES: Copper, Silver, Cobalt, Zinc
DESCRIPTION: The claims are underlain by Triassic metavolcanics and minor metasediments cut by quartz diorite stock. Steep northeasterly dipping, northwesterly striking zones of highly pyritized and chloritized rocks, generally faulted (7) segments, are mineralized in places with hematite, chalcopyrite, pyrite and chalcedony. The drill program adequately tested the horizontal extent of mineralization across one pyritic band but failed to penetrate to the desired depth.
WORK DONE: DIAD 37.5; 9 holes, EX
SAMP 18:1:10:1:0:1:0:1:0:1:0

REFERENCES: A.R. 09815, 10741, 11500, 11501, 12821
M.I. 114P 003-TATS

**** Squaw Creek Placer, Sheep ****

MINING DIV: 114P
LOCATION: LAT. 59 59 24 LONG. 137 04 18 NTS.
CLAIMS: Avalanche, Julie 1, Wuncanter, Nancy 1, Snowcave

C405
OPERATOR: Arbor Res.

AUTHOR: Podoliski, G.

COMMODITIES: Copper

DESCRIPTION: The claims overlie the northwest trending Duke River Fault which follows Squaw Creek. East of the fault are Upper Triassic meta-sediments and metavolcanics cut by Cretaceous diorite and granite-diorite stocks. West of the fault are upper Paleozoic (?) limestones, shales, and minor siltstones intruded by gabbro and diabase sills.

WORK DONE: EMAB 100.0 km; VLF, HLEM

REFERENCES: A.D. 14743 M.I. 114P 004-SQUAW CREEK PLACER:114P 021-SHEEP
COAL EXPLORATION
COAL EXPLORATION

GROUNDHOG COALFIELD

C1) MOUNT KLAPPAN:

LOCATION: Lat. 57°06' Long. 128°37' NTS 104H/2, 3,6,7,
Lat. 57°23' Long. 129°15'

LICENCES: 7118-7177, 7381-7392, 7416-7432, 7487-7539,
7559-7561, 7714-7757, 8032-8053

DESCRIPTION: The main coal seams occur in the tentatively
named Middle Klappan Sequence of the Upper
Jurassic to Lower Cretaceous sediments. The
structure is complex largely due to a strong
thrust from the southwest. Upright open folds
occur and become progressively overturned in
the northwest. Drilling took place in the general
area of the proposed pit.

WORK DONE: DIAD 5000m; 34 holes
Geophysical logs
Geol. detailed mapping

REFERENCES: Geol. Fieldwork 1983-81-90; 1984-432-351
Expl. in B.C. 1983-571; 1984-425; 1986-C476

PEACE RIVER COALFIELD

C3) QUINTETTE:

LOCATION: Transfer
Lat. 55°00' Long. 121°06' NTS 93J/14E,93P/3E
Grizzly
Lat. 55°00' Long. 121°04' NTS 93P/3E
Perry Creek
Lat. 55°05' Long. 121°17' NTS 93P/3

LICENCES: Transfer 3341, 3660, 3661, 7849
Grizzly 7845, 7847, 7848
Perry Creek 3601, 3602, 3604, 3605
QUINTETTE (cont'd)

OWNER: Quintette Coal
OPERATOR: Denison Mines
DESCRIPTION:TRANSFER:
1) The five minable seams are found in the middle member of the Gates formation and total some 16.0 metres. In the Transfer area there is a syncline/anticline pair with some minor thrust faulting along this southwest limb of the syncline.

WORK DONE: DIAD 1254m; 8 holes
ROTD 5061m; 46 holes
Adits 3
Geophysical logs

GRIZZLY:
2) The structure is a continuation of the Shikano anticline. The aggregate thickness of the five minable seams is reduced to about 12 metres.

WORK DONE: DIAD 545m; 4 holes
ROTD 3063m; 21 holes
Adits 3
Geophysical logs

PERRY CREEK:
3) The Gates formation coal measures are preserved in an asymmetrical N.W. - S.E. trending syncline. J1 and J2 SEAMS (corresponding to the Teck Bullmoose Mine to the north) have an aggregate thickness of 7.5 metres.

WORK DONE: ROTD 260 m; 5 holes
Geophysical logs

REFERENCES: N.E. Coal Study 1977-37-42
Coal in B.C. 1976-164-167
Coal in B.C. 1986 -3
C2) BULLMOOSE: (PEACE RIVER cont'd)

LOCATION: Lat. 55°07' Long. 121°31' NTS 93P/3,4,
LICENCES: Coal Lease No. 6
OWNERS: Canada Trustco Mortgage Co.
OPERATOR: Teck-Bullmoose
DESCRIPTION: A broad relatively shallow northwest-trending syncline occupies essentially all of the Bullmoose property. The western limb in the northern part is the eastern limb of the anticline on the Chamberlain property. Coal measures in the Gates formation contain two different seams. Within the Gething formation both the Bird and Chamberlain seams occur as well-developed coal intervals. The target area was at the S.W. end of the pit. The only seam of significance encountered was the Bird with an average thickness of about 3 metres.

WORK DONE: ROTD 476 m; 13 holes
Geophysical logs

ELK VALLEY COALFIELD

C4) FORDING RIVER:

LOCATION: Lat. 50°12' Long. 114°50' NTS 82J/2W
LICENSES: 330, 332, 336, 342, 356-358, 511, Leases 1, 2, 5
OWNER: Fording Coal
OPERATOR: Fording River Operations
DESCRIPTION: Fording River property is underlain by the Greenhills syncline in the west and the parallel Alexander Creek syncline in the east. They are separated by the Erickson normal fault. The east limb of the Greenhills syncline has a shallow dip to the west and is the focus of exploration and production in the Greenhills range part of the property. The east limb of the Alexander Creek syncline on average is the steeper (dips in places exceed 45 degrees to the west) and is considerably thickened by westerly dipping thrust faults. Production and exploration on Eagle Mountain are within the Alexander Creek syncline. The coal-bearing Mist Mountain formation is approximately 450 metres thick and contains roughly 10 coal seams, many of which consist of two or more separate benches over part of the property. Seams on Eagle Mountain are numbered upward from 1-seam at the base to 15-seam at the top of the formation. Rank of coals varies from medium-volatile to high-volatile A bituminous.

WORK DONE: DIAD 877 m; 2 holes
 ROTD 3382m; 12 holes
 Geophysical logs

REFERENCES: Coal in B.C. 1976-191
 1985-C425
C5) GREENHILLS:

LOCATION: Lat. 50°08' Long. 114°53' NTS 82J 2W
LICENCES: Freehold
OWNERS: B.C. Resources Investment Corp.
OPERATORS: Westar Mining
DESCRIPTION: The area is underlain by the asymmetrical Greenhills syncline, the east limb of which has a shallow dip to the west. The coal seams occur in the Mist Mountain formation, only a few of the 29 known coal seams on the property are economic, and of these, the lower seams 1, 7 & 10 are medium volatile bituminous in rank.
WORK DONE: Greenhills north end
 ROTD 4381 m; 28 holes
 Greenhills, Big Horn Pit
 ROTD 1323 m; 11 holes

C6) LINE CREEK & C7) LINE CREEK EXTENSION & HORSESHOE RIDGE:

LOCATION: Lat. 49°51' Long. 114°46' NTS 82G 15W
LICENCES: 293, 295, 296, 297, 369, 373
OWNERS: Shell Canada Resources Ltd.
OPERATORS: Crows Nest Resources Ltd.
DESCRIPTION: The property is situated on the relatively simple Alexander Creek syncline. The Mist Mountain formation contains seven coal seams thicker than 2.8 metres and have an aggregate thickness of up to 55 metres. The seams range from low to medium-volatile bituminous in rank.
Exploration was carried out in
i) The lower south pit area on the west limb of the syncline and
ii) Line Creek extension, on the west limb of the syncline and
iii) Horseshoe Ridge area on the east limb of the syncline
WORK DONE: i) DIAD 745m; 6 holes
 ROTD 6095m; 52 holes
ii) DIAD 1120m; 13 holes
 ROTD 5245m; 69 holes
iii) ROTD 1944m; 15 holes
Geophysical logs
INDICES TO PART C
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A02K032</td>
<td>Add 4 082F04W</td>
</tr>
<tr>
<td>A092107E</td>
<td>Addie G 082F06W</td>
</tr>
<tr>
<td>A & M Ex. O92H07W</td>
<td>Adda Min 082H06E</td>
</tr>
<tr>
<td>A & M Ex. 093A12E</td>
<td>Adda Min 093H12E</td>
</tr>
<tr>
<td>A & T 082G09W</td>
<td>Adon V 082M05W</td>
</tr>
<tr>
<td>A. Noell 092J09E</td>
<td>Adoo 094E12E</td>
</tr>
<tr>
<td>A.P.M. Ex. 093A12W</td>
<td>Adoo 094E12E</td>
</tr>
<tr>
<td>AB 1 093H05E</td>
<td>Adon 082C12W</td>
</tr>
<tr>
<td>AB 3 093H05E</td>
<td>Adrian 093H05E</td>
</tr>
<tr>
<td>AB 7 093H05E</td>
<td>Adrian Res. 093H05E</td>
</tr>
<tr>
<td>AC 092107E</td>
<td>Adrian Res. 093A13W</td>
</tr>
<tr>
<td>AC 092F05W</td>
<td>Aft 050F02E</td>
</tr>
<tr>
<td>AH 082G03E</td>
<td>Aftmon-Opel 092101E</td>
</tr>
<tr>
<td>AH 082H03E</td>
<td>Aftmon-Opel 092110E</td>
</tr>
<tr>
<td>AH 082G03E</td>
<td>Aig 082F05W</td>
</tr>
<tr>
<td>AJM Metals 093L01E</td>
<td>Ag 082F05W</td>
</tr>
<tr>
<td>AJS (Rave) 092P01W</td>
<td>Again 21-40 104H07W</td>
</tr>
<tr>
<td>AK 083H05E</td>
<td>Agpu 092H06E</td>
</tr>
<tr>
<td>AK 1-4V 092H05E</td>
<td>Agpu 1-6 092H06E</td>
</tr>
<tr>
<td>AK 092F01E</td>
<td>Agpu 1-8 092H06E</td>
</tr>
<tr>
<td>AK 092H05E</td>
<td>Agincourt Ex. 082F07W</td>
</tr>
<tr>
<td>AK 1-4V 092H05E</td>
<td>Agino Res. 082C12W</td>
</tr>
<tr>
<td>AK 1-4V 092H05E</td>
<td>Agino Res. 092H06E</td>
</tr>
<tr>
<td>ASP 092H07W</td>
<td>Aginos 082F05E</td>
</tr>
<tr>
<td>AT 092N10E</td>
<td>Air 082L02E</td>
</tr>
<tr>
<td>AT 2 092N10E</td>
<td>Air 092L02E</td>
</tr>
<tr>
<td>AU 2 094D04E</td>
<td>Aitree Res. 092F03W</td>
</tr>
<tr>
<td>AU 3 092S08W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>AU 4 094D04E</td>
<td>Ait 082L02E</td>
</tr>
<tr>
<td>AU 5 093G06W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Aitmen 09210W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Abu 093G01W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Abu 2 093G01W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092107E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092107E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092H01E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092H01E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092U07E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ac 092U07E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Ace in the hole 092F08W</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Acme C05H04E</td>
<td>Aitree Res. 092C15E</td>
</tr>
<tr>
<td>Acme Fr. 093H04E</td>
<td>Albero 094F05E</td>
</tr>
<tr>
<td>Acquest Ent. 092F03W</td>
<td>Aley 094F05E</td>
</tr>
<tr>
<td>Actona Res. 093H04E</td>
<td>Aley 1-4 094H05E</td>
</tr>
<tr>
<td>Ad 1 082M04E</td>
<td>Aley 2-4 094H05E</td>
</tr>
<tr>
<td>Ada 082L02E</td>
<td>Aley 2-4 094H05E</td>
</tr>
<tr>
<td>Adam 1 092113E</td>
<td>Aley 2-4 094H05E</td>
</tr>
<tr>
<td>Adam 1 092113E</td>
<td>Aley 2-4 094H05E</td>
</tr>
<tr>
<td>Adams 092W04E</td>
<td>Add 082F09W</td>
</tr>
<tr>
<td>Adams 092W04E</td>
<td>Add 082F09W</td>
</tr>
<tr>
<td>Add 082F09W</td>
<td>Add 082F09W</td>
</tr>
<tr>
<td>Add 2 082F09W</td>
<td>Add 082F09W</td>
</tr>
<tr>
<td>Add 3 Fr. 082F04W</td>
<td>Add 082F04W</td>
</tr>
<tr>
<td>Add 3 Fr. 082F04W</td>
<td>Add 082F04W</td>
</tr>
<tr>
<td>Add 3 Fr. 082F04W</td>
<td>Add 082F04W</td>
</tr>
<tr>
<td>Location</td>
<td>Survey Numbers</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Babe 26 103F05E</td>
<td>C350</td>
</tr>
<tr>
<td>Babe 28 103J09E</td>
<td>C350</td>
</tr>
<tr>
<td>Babine 093H05E</td>
<td>C311</td>
</tr>
<tr>
<td>Babir, NS 092G1AW</td>
<td>C163</td>
</tr>
<tr>
<td>Babir, NS 092J0CAE</td>
<td>C049</td>
</tr>
<tr>
<td>Bacon 092F01E</td>
<td>C154</td>
</tr>
<tr>
<td>Bacon 092G02W</td>
<td>C161</td>
</tr>
<tr>
<td>Bacon 112 092G12W</td>
<td>C161</td>
</tr>
<tr>
<td>Bacon Lake 092F13E</td>
<td>C154</td>
</tr>
<tr>
<td>Baerg, R. 093E04W</td>
<td>C282</td>
</tr>
<tr>
<td>Baerg, R. 093G07E</td>
<td>C283</td>
</tr>
<tr>
<td>Baerg, R. 093H08W</td>
<td>C284</td>
</tr>
<tr>
<td>Baerg, R. 093H10E</td>
<td>C285</td>
</tr>
<tr>
<td>Baerg, R. 101A04W</td>
<td>C367</td>
</tr>
<tr>
<td>Baha Res. 104I06E</td>
<td>C404</td>
</tr>
<tr>
<td>Bain 092F06E</td>
<td>C134</td>
</tr>
<tr>
<td>Bain 1-4 092F06E</td>
<td>C134</td>
</tr>
<tr>
<td>Bain 3-4 092F06E</td>
<td>C134</td>
</tr>
<tr>
<td>Bain, NS 092G16E</td>
<td>C126</td>
</tr>
<tr>
<td>Bastron Res. 092G13E</td>
<td>C73</td>
</tr>
<tr>
<td>Balance Res. 104I03E</td>
<td>C385, C386</td>
</tr>
<tr>
<td>Bald Peak 104N15W</td>
<td>C392</td>
</tr>
<tr>
<td>Baldwin 092G11E</td>
<td>C160</td>
</tr>
<tr>
<td>Baldwin (Slade Cr) 093G11E</td>
<td>C160</td>
</tr>
<tr>
<td>Baldwin 3 092G11E</td>
<td>C160</td>
</tr>
<tr>
<td>Bailys, C. 093G11E</td>
<td>C265</td>
</tr>
<tr>
<td>Ball, J. 092D06E</td>
<td>C230</td>
</tr>
<tr>
<td>Ballarat Ex. 092D07E</td>
<td>C231</td>
</tr>
<tr>
<td>Balton 092G00W</td>
<td>C67</td>
</tr>
<tr>
<td>Balsam 101G02E</td>
<td>C389</td>
</tr>
<tr>
<td>Balsan 082G00W</td>
<td>C67</td>
</tr>
<tr>
<td>Balsan 082G06W</td>
<td>C67</td>
</tr>
<tr>
<td>Bam 10 104G02W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 6 104G03W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 8 104G05W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 10 104G02W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 8 104G07W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 8 104G07W</td>
<td>C380</td>
</tr>
<tr>
<td>Bam 1-4 092M06E</td>
<td>C178</td>
</tr>
<tr>
<td>Banbury Gold Mines 092P14W</td>
<td>C242</td>
</tr>
<tr>
<td>Bandit 104K01E</td>
<td>C387</td>
</tr>
<tr>
<td>Bandit 1 094K01E</td>
<td>C387</td>
</tr>
<tr>
<td>Banjo 094G00E</td>
<td>C325</td>
</tr>
<tr>
<td>Banker 104K12E</td>
<td>C389</td>
</tr>
<tr>
<td>Bar 082M04W</td>
<td>C100</td>
</tr>
<tr>
<td>Bar 092L12E</td>
<td>C272</td>
</tr>
<tr>
<td>Bar 093G00E</td>
<td>C273, C274</td>
</tr>
<tr>
<td>Bar 1-2 093G00E</td>
<td>C277, C274</td>
</tr>
<tr>
<td>Bar 11 082M04W</td>
<td>C100</td>
</tr>
<tr>
<td>Bar 13 082M04W</td>
<td>C100</td>
</tr>
<tr>
<td>Bar 4-8 082M04W</td>
<td>C100</td>
</tr>
<tr>
<td>Bar 4-5 093G16E</td>
<td>C115</td>
</tr>
<tr>
<td>Bar Fr. 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Barb 1 093F11W</td>
<td>C273</td>
</tr>
<tr>
<td>Barbra 092L16W</td>
<td>C200</td>
</tr>
<tr>
<td>Barby 104I02E</td>
<td>C274</td>
</tr>
<tr>
<td>Barby 093L06W</td>
<td>C406</td>
</tr>
<tr>
<td>Barby 103G10E</td>
<td>C393</td>
</tr>
<tr>
<td>Barby 093H05E</td>
<td>C357, C358</td>
</tr>
<tr>
<td>Bartelle 093A5E</td>
<td>C287</td>
</tr>
<tr>
<td>Barnes Creek Min. 092I08W</td>
<td>C97</td>
</tr>
<tr>
<td>Barnes Creek Min. 092P08W</td>
<td>C339</td>
</tr>
<tr>
<td>Barry 092E03E</td>
<td>C333</td>
</tr>
<tr>
<td>Barron Int. Res. 103F08W</td>
<td>C449</td>
</tr>
<tr>
<td>Bart 093E03E</td>
<td>C399</td>
</tr>
<tr>
<td>Bartley, P. 092I04E</td>
<td>C26</td>
</tr>
<tr>
<td>Baring, P. 103E14E</td>
<td>C124</td>
</tr>
<tr>
<td>Barytex Res. 093G01W</td>
<td>C277, C278</td>
</tr>
<tr>
<td>Bas I-11 092I09W</td>
<td>C195</td>
</tr>
<tr>
<td>Basaba Ent. 104K14W</td>
<td>C380</td>
</tr>
<tr>
<td>Basic 082E01E</td>
<td>C13</td>
</tr>
<tr>
<td>Basic 093E05E</td>
<td>C32</td>
</tr>
<tr>
<td>Basi, C. 093E06E</td>
<td>C331</td>
</tr>
<tr>
<td>Basiin 1-5 103I08E</td>
<td>C380</td>
</tr>
<tr>
<td>Bat 1-2 103F03E</td>
<td>C348</td>
</tr>
<tr>
<td>Bat 103G00W</td>
<td>C348</td>
</tr>
<tr>
<td>Battlement Creek 092D03W</td>
<td>C228</td>
</tr>
<tr>
<td>Bau 093G01E</td>
<td>C274</td>
</tr>
<tr>
<td>Bau 1-4 093G01E</td>
<td>C274</td>
</tr>
<tr>
<td>Bav 1-4 103G07W</td>
<td>C589</td>
</tr>
<tr>
<td>Bav 9-9 104I10W</td>
<td>C369</td>
</tr>
<tr>
<td>Bay 092I04W</td>
<td>C101</td>
</tr>
<tr>
<td>Bay 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 093I02E</td>
<td>C310</td>
</tr>
<tr>
<td>Bay 1 093N12W</td>
<td>C315</td>
</tr>
<tr>
<td>Bay 1-2 092M04W</td>
<td>C101</td>
</tr>
<tr>
<td>Bay 11-16 092N04W</td>
<td>C101</td>
</tr>
<tr>
<td>Bay 13-14 092I04W</td>
<td>C101</td>
</tr>
<tr>
<td>Bay 5-7-1 082L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 50 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 56 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 58-10 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 70 092I12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay 84-88 093L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Bay Creek 092F05W</td>
<td>C146</td>
</tr>
<tr>
<td>Bay Res. 092I16W</td>
<td>C127</td>
</tr>
<tr>
<td>Baycrest 092F05E</td>
<td>C146</td>
</tr>
<tr>
<td>Baycrest 2-3 092I05E</td>
<td>C146</td>
</tr>
<tr>
<td>Be 3-6 104G07W</td>
<td>C361</td>
</tr>
<tr>
<td>Beach 092F05W</td>
<td>C147</td>
</tr>
<tr>
<td>Beachview Res. 094E03E</td>
<td>C330, C331</td>
</tr>
<tr>
<td>Beachview Res. 094E05E</td>
<td>C333, C334</td>
</tr>
<tr>
<td>Beachview Res. 094E11E</td>
<td>C341</td>
</tr>
<tr>
<td>Beachview Res. 094E11W</td>
<td>C343</td>
</tr>
<tr>
<td>Beale, S. 093A11E</td>
<td>C346</td>
</tr>
<tr>
<td>Beuno 104H12E</td>
<td>C398</td>
</tr>
<tr>
<td>Bear 093I12W</td>
<td>C143</td>
</tr>
<tr>
<td>Bonanza 082B12E</td>
<td>C114</td>
</tr>
<tr>
<td>Bonanza 082B11W</td>
<td>C161</td>
</tr>
<tr>
<td>Bonanza 097B10W</td>
<td>C205</td>
</tr>
<tr>
<td>Bonanza 082B12E</td>
<td>C114</td>
</tr>
<tr>
<td>Bonanza Gold 092F10W</td>
<td>C185</td>
</tr>
<tr>
<td>Bonanza Queen-Nevada 092H10W</td>
<td>C165</td>
</tr>
<tr>
<td>Bonanza-Vermont 054E08W</td>
<td>C397</td>
</tr>
<tr>
<td>Bonaparte 092P01W</td>
<td>C235, C236</td>
</tr>
<tr>
<td>Bond 082L04E</td>
<td>C28</td>
</tr>
<tr>
<td>Bond 1 082L04E</td>
<td>C87</td>
</tr>
<tr>
<td>Bond, L. 092L01E</td>
<td>C155</td>
</tr>
<tr>
<td>Bonneville 082L02E</td>
<td>C65</td>
</tr>
<tr>
<td>Bonsall Creek 092F01E</td>
<td>C131</td>
</tr>
<tr>
<td>Bonus S 103J16E</td>
<td>C363</td>
</tr>
<tr>
<td>Boo 093G01W</td>
<td>C277, C278</td>
</tr>
<tr>
<td>Boo 1 093G01W</td>
<td>C278</td>
</tr>
<tr>
<td>Boo 1-5 093L10E</td>
<td>C305</td>
</tr>
<tr>
<td>Boo 2 093D01W</td>
<td>C277, C278</td>
</tr>
<tr>
<td>Boo 3 093D01E</td>
<td>C274</td>
</tr>
<tr>
<td>Boomerang 092E03E</td>
<td>C22</td>
</tr>
<tr>
<td>Booth, K. 092B13E</td>
<td>C118</td>
</tr>
<tr>
<td>Bootjack 1-2 Fr 092A12E</td>
<td>C250</td>
</tr>
<tr>
<td>Bordeaux Rea 092H10W</td>
<td>C162</td>
</tr>
<tr>
<td>Border Res. 092H00W</td>
<td>C171</td>
</tr>
<tr>
<td>Borrin 1 092D07E</td>
<td>C231, C232</td>
</tr>
<tr>
<td>Boris 103F09W</td>
<td>C350</td>
</tr>
<tr>
<td>Boris 1 103F09W</td>
<td>C350</td>
</tr>
<tr>
<td>Boritne 092H09W</td>
<td>C350</td>
</tr>
<tr>
<td>Borowski, A. 104P04E</td>
<td>C400</td>
</tr>
<tr>
<td>Borovic, L. 092G07E</td>
<td>C171</td>
</tr>
<tr>
<td>Borovic, L. 093L10W</td>
<td>C307</td>
</tr>
<tr>
<td>Boss 1 092H00E</td>
<td>C174</td>
</tr>
<tr>
<td>Boss 2 092H08E</td>
<td>C174</td>
</tr>
<tr>
<td>Botel, W. 092F06W</td>
<td>C147</td>
</tr>
<tr>
<td>Boulder 1 092H10W</td>
<td>C183</td>
</tr>
<tr>
<td>Bourdon, W. 092F03E</td>
<td>C48</td>
</tr>
<tr>
<td>Bourdon, W. 092F06W</td>
<td>C48</td>
</tr>
<tr>
<td>Bowyer 103J02E</td>
<td>C358</td>
</tr>
<tr>
<td>Bowsey 103H08E</td>
<td>C358</td>
</tr>
<tr>
<td>Bowl 1-2 082D03E</td>
<td>C112</td>
</tr>
<tr>
<td>Box 082J10W</td>
<td>C58</td>
</tr>
<tr>
<td>Box 1 092B15W</td>
<td>C114</td>
</tr>
<tr>
<td>Box 2 092B12W</td>
<td>C114</td>
</tr>
<tr>
<td>Box 5-6 092B12W</td>
<td>C114</td>
</tr>
<tr>
<td>Box 9 092B12W</td>
<td>C114</td>
</tr>
<tr>
<td>Bradish, L. 082F02E</td>
<td>C18</td>
</tr>
<tr>
<td>Bradish, L. 082W09W</td>
<td>C108</td>
</tr>
<tr>
<td>Bradish, L. 082F11E</td>
<td>C154</td>
</tr>
<tr>
<td>Bradish, L. 083H05E</td>
<td>C291</td>
</tr>
<tr>
<td>Bradish, L. 083H05E</td>
<td>C291</td>
</tr>
<tr>
<td>Bradish, L. 083H12W</td>
<td>C318</td>
</tr>
<tr>
<td>Bradish, L. 093H13E</td>
<td>C355, C366</td>
</tr>
<tr>
<td>Bradish, L. 093H12W</td>
<td>C318</td>
</tr>
<tr>
<td>Bradish, L. 103H13E</td>
<td>C355, C356</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Can 7-9 O93A02E</td>
<td>C231</td>
</tr>
<tr>
<td>Can-Ex Res. O93A05E</td>
<td>C311</td>
</tr>
<tr>
<td>Can-United Min. 103P12E</td>
<td>C364</td>
</tr>
<tr>
<td>Can-Nickel O93E05E</td>
<td>C368</td>
</tr>
<tr>
<td>Can Pawnee Oil O93E20E</td>
<td>C17</td>
</tr>
<tr>
<td>Can-United Min. O93L11E</td>
<td>C306, C307</td>
</tr>
<tr>
<td>Cara O82M04W</td>
<td>C101</td>
</tr>
<tr>
<td>Cara 18-21 O92M04W</td>
<td>C101</td>
</tr>
<tr>
<td>Cara 2-13 O92M04W</td>
<td>C191</td>
</tr>
<tr>
<td>Canadian Boy O92X11W</td>
<td>C82</td>
</tr>
<tr>
<td>Canameric Precious Metals O92J15W</td>
<td>C213</td>
</tr>
<tr>
<td>Canamn Res. O92C15E</td>
<td>C127</td>
</tr>
<tr>
<td>Canamn Res. O92E15E</td>
<td>C313</td>
</tr>
<tr>
<td>Canamn Res. O92F01W</td>
<td>C313</td>
</tr>
<tr>
<td>Canasil Res. O92E07W</td>
<td>C340</td>
</tr>
<tr>
<td>Canbol Dev. O92G12W</td>
<td>C162</td>
</tr>
<tr>
<td>Canobol Minos O93B11W</td>
<td>C151</td>
</tr>
<tr>
<td>Canobol Minos O93H04W</td>
<td>C230</td>
</tr>
<tr>
<td>Candy O82J03E</td>
<td>C74</td>
</tr>
<tr>
<td>Candy O92C15E</td>
<td>C125</td>
</tr>
<tr>
<td>Candy O82D01E</td>
<td>C13</td>
</tr>
<tr>
<td>Candy O82E02E</td>
<td>C17</td>
</tr>
<tr>
<td>Camine Dev. O94C03E</td>
<td>C319</td>
</tr>
<tr>
<td>Camine Dev. O94C05E</td>
<td>C311</td>
</tr>
<tr>
<td>Cannon, R. O93L01W</td>
<td>C302</td>
</tr>
<tr>
<td>Cannon E. O93L15E</td>
<td>C350, C351</td>
</tr>
<tr>
<td>Cannon, R. O92P02W</td>
<td>C238</td>
</tr>
<tr>
<td>Cannon, R. O93J16W</td>
<td>C285</td>
</tr>
<tr>
<td>Cannon, R. O14N11W</td>
<td>C319</td>
</tr>
<tr>
<td>Cap O82E13W</td>
<td>C36</td>
</tr>
<tr>
<td>Cape O82F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Cañonhurst, K. O93L15W</td>
<td>C309</td>
</tr>
<tr>
<td>Captain Hook O92F05W</td>
<td>C143</td>
</tr>
<tr>
<td>Car 12 O92L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Car 1 O92L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Carabine Creek O92I15W</td>
<td>C202</td>
</tr>
<tr>
<td>Carbon Energy O92F01E</td>
<td>C131</td>
</tr>
<tr>
<td>Carbide O92E10E</td>
<td>C38</td>
</tr>
<tr>
<td>Carbonate Hill O82K12E</td>
<td>C32</td>
</tr>
<tr>
<td>Cardinal 1 O92F11E</td>
<td>C154</td>
</tr>
<tr>
<td>Cardinal Min. O92114W</td>
<td>C200</td>
</tr>
<tr>
<td>Cardinal, D. O92H06E</td>
<td>C170</td>
</tr>
<tr>
<td>Cardinal, D. O92J06E</td>
<td>C208</td>
</tr>
<tr>
<td>Caribco O82D11E</td>
<td>C113</td>
</tr>
<tr>
<td>Caribco O92A12E</td>
<td>C550</td>
</tr>
<tr>
<td>Caribco 1-2 O82D11E</td>
<td>C113</td>
</tr>
<tr>
<td>Caribco 1-4 O93A12E</td>
<td>C250</td>
</tr>
<tr>
<td>Caribco Coronada O93H04E</td>
<td>C288</td>
</tr>
<tr>
<td>Caribco-Bell O93A12E</td>
<td>C550</td>
</tr>
<tr>
<td>Caribco-Hudson O93A14W</td>
<td>C250</td>
</tr>
<tr>
<td>Caribco-Hudson O93A12E</td>
<td>C250</td>
</tr>
<tr>
<td>Caribco-Prince O92L15E</td>
<td>C398</td>
</tr>
<tr>
<td>Carol 1-1 O82F08E</td>
<td>C51</td>
</tr>
<tr>
<td>Carol S O92C15E</td>
<td>C124</td>
</tr>
<tr>
<td>Carpenter Lake Res. O93A07E</td>
<td>C247</td>
</tr>
<tr>
<td>Carpenter, T. H. O82E03W</td>
<td>C23</td>
</tr>
<tr>
<td>Carpenter, T. H. O92J10E</td>
<td>C208</td>
</tr>
<tr>
<td>Caro 103P12E</td>
<td>C68</td>
</tr>
<tr>
<td>Carruthers, E. O82F14W</td>
<td>C158</td>
</tr>
<tr>
<td>Carrs, D. O92H04W</td>
<td>C290</td>
</tr>
<tr>
<td>Carter, J. O82X06W</td>
<td>C51</td>
</tr>
<tr>
<td>Carter, J. O93X14W</td>
<td>C37</td>
</tr>
<tr>
<td>Cartwright, P. O92106E</td>
<td>C191</td>
</tr>
<tr>
<td>Casco 1-2 O92P02W</td>
<td>C238</td>
</tr>
<tr>
<td>Casamiro Res. O93A11W</td>
<td>C248, C249</td>
</tr>
<tr>
<td>Casal Ex. O92F03W</td>
<td>C389</td>
</tr>
<tr>
<td>Caux Res. O92F06W</td>
<td>C149</td>
</tr>
<tr>
<td>Cascadia No. 8 (L3931) O9A01E</td>
<td>C370</td>
</tr>
<tr>
<td>Cascadia Mines & Res. O92F15W</td>
<td>C382</td>
</tr>
<tr>
<td>Cascadia Mines & Res. O93A14W</td>
<td>C257</td>
</tr>
<tr>
<td>Castle O92E16E</td>
<td>C13</td>
</tr>
<tr>
<td>Castle O92E07W</td>
<td>C339</td>
</tr>
<tr>
<td>Castle O94105E</td>
<td>C383</td>
</tr>
<tr>
<td>Castle 1-4 O82E01E</td>
<td>C13</td>
</tr>
<tr>
<td>Cat O82F14E</td>
<td>C249</td>
</tr>
<tr>
<td>Cat 093A11W</td>
<td>C56</td>
</tr>
<tr>
<td>Cat 1-2 O93114E</td>
<td>C32</td>
</tr>
<tr>
<td>Cat 1-2 O93K11W</td>
<td>C375</td>
</tr>
<tr>
<td>Catoar Res. O94B09E</td>
<td>C377</td>
</tr>
<tr>
<td>Catskill O94G12W</td>
<td>C52</td>
</tr>
<tr>
<td>Cathy O92H08E</td>
<td>C52</td>
</tr>
<tr>
<td>Cathy O92H10W</td>
<td>C65</td>
</tr>
<tr>
<td>Cathy J O93C14W</td>
<td>C265</td>
</tr>
<tr>
<td>Cathy J 1-2 O93C14W</td>
<td>C265</td>
</tr>
<tr>
<td>Catsopea Res. O93404E</td>
<td>C311</td>
</tr>
<tr>
<td>Catsaw O14B08E</td>
<td>C31</td>
</tr>
<tr>
<td>Cauffield, D. O92MC05W</td>
<td>C107</td>
</tr>
<tr>
<td>Cave 1 O92F07E</td>
<td>C151</td>
</tr>
<tr>
<td>Cavey, G. O92I10W</td>
<td>C180</td>
</tr>
<tr>
<td>Day O94G12W</td>
<td>C344</td>
</tr>
<tr>
<td>Day 3 O94G12W</td>
<td>C344</td>
</tr>
<tr>
<td>Darador Ex. O92H04E</td>
<td>C226</td>
</tr>
<tr>
<td>Deans O82M04E</td>
<td>C64</td>
</tr>
<tr>
<td>Cedar O82G08W</td>
<td>C67</td>
</tr>
<tr>
<td>Cedar 092P08W</td>
<td>C239</td>
</tr>
<tr>
<td>Cedar 1 O82G06E</td>
<td>C54</td>
</tr>
<tr>
<td>Cedar 1-2 O82D08W</td>
<td>C239</td>
</tr>
<tr>
<td>Cedar 1-3 O82D06W</td>
<td>C64</td>
</tr>
<tr>
<td>Cedar 10 O92G06W</td>
<td>C67</td>
</tr>
<tr>
<td>Cedar 3 O92G06E</td>
<td>C64</td>
</tr>
<tr>
<td>Cedar 5 O92G05E</td>
<td>C64</td>
</tr>
<tr>
<td>Cedar 7-20 O92P08W</td>
<td>C239</td>
</tr>
<tr>
<td>Cedar V O92P08W</td>
<td>C239</td>
</tr>
<tr>
<td>Census O92114W</td>
<td>C200</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>C25</td>
<td>Crown (L. 2908) 082L04E</td>
</tr>
<tr>
<td>C16</td>
<td>Crown (L. 2908) 082L02E</td>
</tr>
<tr>
<td>C36</td>
<td>Crown 5-8 085L09E</td>
</tr>
<tr>
<td>C35</td>
<td>Crown Point (L. 2929) 082L14E</td>
</tr>
<tr>
<td>C388</td>
<td>Crookshank, P. 104J04E</td>
</tr>
<tr>
<td>C389</td>
<td>Crystal Res. 104A05W</td>
</tr>
<tr>
<td>C384</td>
<td>Cub 104107W</td>
</tr>
<tr>
<td>C384</td>
<td>Cub 3 104107W</td>
</tr>
<tr>
<td>C17</td>
<td>Cuba 082L02E</td>
</tr>
<tr>
<td>C153</td>
<td>Cubor, D. 082L02E</td>
</tr>
<tr>
<td>C339</td>
<td>Cubor, V. 084E07E</td>
</tr>
<tr>
<td>C340</td>
<td>Cubor, V. 084E11E</td>
</tr>
<tr>
<td>C342</td>
<td>Cubor, V. 084E13W</td>
</tr>
<tr>
<td>C384</td>
<td>Cumberland 104B08W</td>
</tr>
<tr>
<td>C375</td>
<td>Cunningham 1-3 033A14W</td>
</tr>
<tr>
<td>C370</td>
<td>Cunningham Ext. 1-2 033A14W</td>
</tr>
<tr>
<td>C594</td>
<td>Cunningham, L. 104H11W</td>
</tr>
<tr>
<td>C357</td>
<td>Cuprite 103H14E</td>
</tr>
<tr>
<td>C192</td>
<td>Curnow, R. 082L07W</td>
</tr>
<tr>
<td>C252</td>
<td>Cush 083E09E</td>
</tr>
<tr>
<td>C252</td>
<td>Cush 3-6 083E09E</td>
</tr>
<tr>
<td>C226</td>
<td>Cutter 1-2 033A14W</td>
</tr>
<tr>
<td>C213</td>
<td>Cuttle, J. 092L15W</td>
</tr>
<tr>
<td>C148</td>
<td>Cypress 1-3 092L05W</td>
</tr>
<tr>
<td>C313</td>
<td>Cypress 1-2 093N05E</td>
</tr>
<tr>
<td>C336</td>
<td>Cypress Metals, Can. 094E06E</td>
</tr>
<tr>
<td>C336</td>
<td>C2 083A06E</td>
</tr>
<tr>
<td>C245</td>
<td>Czech 094C12W</td>
</tr>
<tr>
<td>C320</td>
<td>Czech 1 094C05E</td>
</tr>
<tr>
<td>C320</td>
<td>Czech 2 094C12W</td>
</tr>
<tr>
<td>C382</td>
<td>D 3-4 104L03E</td>
</tr>
<tr>
<td>C382</td>
<td>D 4 104L03E</td>
</tr>
<tr>
<td>C382</td>
<td>D 4-8 104L03E</td>
</tr>
<tr>
<td>C257</td>
<td>D.K. Platinum 092H10W</td>
</tr>
<tr>
<td>C330</td>
<td>DA 2 092L09E</td>
</tr>
<tr>
<td>C205</td>
<td>DC 092L09E</td>
</tr>
<tr>
<td>C196</td>
<td>DC 1 092L10E</td>
</tr>
<tr>
<td>C196</td>
<td>DC 2 092L10E</td>
</tr>
<tr>
<td>C205</td>
<td>DC 2-3 092L10E</td>
</tr>
<tr>
<td>C284</td>
<td>DC 3-5 093L06W</td>
</tr>
<tr>
<td>C191</td>
<td>DC 3-6 092L10E</td>
</tr>
<tr>
<td>C190</td>
<td>DC 4 082L10E</td>
</tr>
<tr>
<td>C249</td>
<td>DJL 093A11W</td>
</tr>
<tr>
<td>C157</td>
<td>DY 1 092F14W</td>
</tr>
<tr>
<td>C158</td>
<td>DY 5 092F14W</td>
</tr>
<tr>
<td>C92</td>
<td>DX 1 082L07W</td>
</tr>
<tr>
<td>C195</td>
<td>DN 092L08W</td>
</tr>
<tr>
<td>C198</td>
<td>DN 092L11W</td>
</tr>
<tr>
<td>C74</td>
<td>DF 1-3 082L09E</td>
</tr>
<tr>
<td>Discovery 104N12E</td>
<td>C209</td>
</tr>
<tr>
<td>Discovery 1 004E09N</td>
<td>C337</td>
</tr>
<tr>
<td>Discovery Gold Ex. 082F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Discovery 1-1 082J03E</td>
<td>C203</td>
</tr>
<tr>
<td>Digno 082F13W</td>
<td>C204</td>
</tr>
<tr>
<td>Ditson, C. 092011W</td>
<td>C69</td>
</tr>
<tr>
<td>Ditson, C. 092012W</td>
<td>C162</td>
</tr>
<tr>
<td>Dividend 2 082E03W</td>
<td>C23</td>
</tr>
<tr>
<td>Dry 082F14W</td>
<td>C30</td>
</tr>
<tr>
<td>Dubrovsky 1, T. 082M06N</td>
<td>C105</td>
</tr>
<tr>
<td>Doc 4 104B08W</td>
<td>C375</td>
</tr>
<tr>
<td>Dock 14 093H08E</td>
<td>C791</td>
</tr>
<tr>
<td>Dodd, E. 082F02E</td>
<td>C186</td>
</tr>
<tr>
<td>Dodge 082F12E</td>
<td>C263</td>
</tr>
<tr>
<td>Dodge 082F12E</td>
<td>C55</td>
</tr>
<tr>
<td>Dodge 1-3 082F12E</td>
<td>C55</td>
</tr>
<tr>
<td>Doe 093A4E</td>
<td>C295</td>
</tr>
<tr>
<td>Doe (Ivy Fan) 082E01E</td>
<td>C33</td>
</tr>
<tr>
<td>Dog 092115E</td>
<td>C201</td>
</tr>
<tr>
<td>Dg 093A1W</td>
<td>C249</td>
</tr>
<tr>
<td>Dog 1-2 092L11W</td>
<td>C221</td>
</tr>
<tr>
<td>Dog 3 082115E</td>
<td>C201</td>
</tr>
<tr>
<td>Dogwood 082B06E</td>
<td>C264</td>
</tr>
<tr>
<td>Dogwood 1 082H07E</td>
<td>C171</td>
</tr>
<tr>
<td>Dogwood 10 082G06E</td>
<td>C84</td>
</tr>
<tr>
<td>Dogwood 8 082B06E</td>
<td>C84</td>
</tr>
<tr>
<td>Dollar 092H05E</td>
<td>C165</td>
</tr>
<tr>
<td>Dolley 092H05E</td>
<td>C173</td>
</tr>
<tr>
<td>Doc 082F03W</td>
<td>C139</td>
</tr>
<tr>
<td>Done 082L04E</td>
<td>C38</td>
</tr>
<tr>
<td>Done 1 093.10E</td>
<td>C306</td>
</tr>
<tr>
<td>Done 2 093L10E</td>
<td>C305</td>
</tr>
<tr>
<td>Done A 0 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Done B 083L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Done Ex. Can. 082D07E</td>
<td>C83</td>
</tr>
<tr>
<td>Done Ex. Can. 082D14W</td>
<td>C74</td>
</tr>
<tr>
<td>Done Ex. Can. 082A06N</td>
<td>C244</td>
</tr>
<tr>
<td>Done Ex. Can. 083A11W</td>
<td>C249</td>
</tr>
<tr>
<td>Done Ex. Can. 083A12E</td>
<td>C250</td>
</tr>
<tr>
<td>Done Ex. Can. 083A12W</td>
<td>C252</td>
</tr>
<tr>
<td>Done Mountain 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Donee 09311E</td>
<td>C154</td>
</tr>
<tr>
<td>Donee 22 082F11E</td>
<td>C154</td>
</tr>
<tr>
<td>Donee 22 082F14W</td>
<td>C155</td>
</tr>
<tr>
<td>Donec 09311E</td>
<td>C186</td>
</tr>
<tr>
<td>Donec 104N11W 082A11E</td>
<td>C139</td>
</tr>
<tr>
<td>Donec South 082F11E</td>
<td>C186</td>
</tr>
<tr>
<td>Doneeion 14 Fr 082L03W</td>
<td>C27</td>
</tr>
<tr>
<td>Done 083A1W</td>
<td>C249</td>
</tr>
<tr>
<td>Donee 082F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Donee 14 083A11E</td>
<td>C27</td>
</tr>
<tr>
<td>Connex Res. 082F09E</td>
<td>C51</td>
</tr>
<tr>
<td>Core 082F03W</td>
<td>C40</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ezziel Ex. 053114E</td>
<td>C295</td>
</tr>
<tr>
<td>Eta 08211W</td>
<td>C140</td>
</tr>
<tr>
<td>Cap 08261W</td>
<td>C249</td>
</tr>
<tr>
<td>Cap 08310W</td>
<td>C304</td>
</tr>
<tr>
<td>Eveshaw 08261E</td>
<td>C17</td>
</tr>
<tr>
<td>Evelyn 08310W</td>
<td>C304</td>
</tr>
<tr>
<td>Evening Star 08211W</td>
<td>C194</td>
</tr>
<tr>
<td>Evening Star No 08211W</td>
<td>C35</td>
</tr>
<tr>
<td>Evening Star No. 08211W</td>
<td>C55</td>
</tr>
<tr>
<td>Evergreen 08261E</td>
<td>C304</td>
</tr>
<tr>
<td>Evninrude 08311W</td>
<td>C308</td>
</tr>
<tr>
<td>Excelsior 08261E</td>
<td>C17</td>
</tr>
<tr>
<td>Expedition Res. Group 08261W</td>
<td>C17</td>
</tr>
<tr>
<td>Expo 082L04E</td>
<td>C284</td>
</tr>
<tr>
<td>Expo 082L05E</td>
<td>C05</td>
</tr>
<tr>
<td>Expo 1-2 082L04E</td>
<td>C221</td>
</tr>
<tr>
<td>Expo 1-2 082F03E</td>
<td>C145</td>
</tr>
<tr>
<td>Expo 3 082L05E</td>
<td>C05</td>
</tr>
<tr>
<td>Expo 30-32 082L11W</td>
<td>C221</td>
</tr>
<tr>
<td>Expo 4 082L03E</td>
<td>C31</td>
</tr>
<tr>
<td>Expo 51 082L11W</td>
<td>C221</td>
</tr>
<tr>
<td>Expo 53-55 082L11W</td>
<td>C221</td>
</tr>
<tr>
<td>Expo 6 082L04W</td>
<td>C05</td>
</tr>
<tr>
<td>Expo 7-8 082L04E</td>
<td>C05</td>
</tr>
<tr>
<td>Expo 9-10 082L04W</td>
<td>C05</td>
</tr>
<tr>
<td>Expo 103F09W</td>
<td>C301</td>
</tr>
<tr>
<td>Ford 2</td>
<td>082L13E</td>
</tr>
<tr>
<td>Ford 4-5</td>
<td>082L13E</td>
</tr>
<tr>
<td>Ford 9</td>
<td>032P09W</td>
</tr>
<tr>
<td>Ford 9</td>
<td>092P09W</td>
</tr>
<tr>
<td>Fortress Res.</td>
<td>082H10W</td>
</tr>
<tr>
<td>Fortuna 092P09E</td>
<td>C234</td>
</tr>
<tr>
<td>Fortuna 1-2</td>
<td>092P09E</td>
</tr>
<tr>
<td>Fortuna 1-2</td>
<td>092P09E</td>
</tr>
<tr>
<td>Fortuna 4 Fr.</td>
<td>082P09E</td>
</tr>
<tr>
<td>Foster 082G11W</td>
<td>C66</td>
</tr>
<tr>
<td>Foster, S.</td>
<td>082G10E</td>
</tr>
<tr>
<td>Fox, 3</td>
<td>082G11E</td>
</tr>
<tr>
<td>Fox, M.</td>
<td>082J15W</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>092D10W</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>082G14W</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>092H10W</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>082G10W</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>092A12L</td>
</tr>
<tr>
<td>Fox, P.</td>
<td>092A10W</td>
</tr>
<tr>
<td>Fokke Ventures</td>
<td>082H10E</td>
</tr>
<tr>
<td>Franks, 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Fran 1</td>
<td>082J12W</td>
</tr>
<tr>
<td>Fran 2</td>
<td>082K12E</td>
</tr>
<tr>
<td>Francs 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Francs 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Francs 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Francis 5 Fr.</td>
<td>083L10E</td>
</tr>
<tr>
<td>Frankincense</td>
<td>082L11W</td>
</tr>
<tr>
<td>Freckle</td>
<td>082J12W</td>
</tr>
<tr>
<td>Free Gold</td>
<td>082G15W</td>
</tr>
<tr>
<td>Freeport Res.</td>
<td>142P07E</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>092L13W</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>092L14W</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>082M13W</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>082M14W</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>082M15W</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>082H10E</td>
</tr>
<tr>
<td>Freeze, J.</td>
<td>082H10E</td>
</tr>
<tr>
<td>Freean 093A07W</td>
<td>C248</td>
</tr>
<tr>
<td>Freean 093A07W</td>
<td>C248</td>
</tr>
<tr>
<td>Freean 093A07W</td>
<td>C248</td>
</tr>
<tr>
<td>French (L.2975)</td>
<td>082E09E</td>
</tr>
<tr>
<td>Frieden, P.S.</td>
<td>082J15E</td>
</tr>
<tr>
<td>Friesen</td>
<td>082L15E</td>
</tr>
<tr>
<td>Frog</td>
<td>082L11W</td>
</tr>
<tr>
<td>Frog</td>
<td>092A12L</td>
</tr>
<tr>
<td>Frog</td>
<td>092A10W</td>
</tr>
<tr>
<td>Frog</td>
<td>092A10W</td>
</tr>
<tr>
<td>Frog</td>
<td>092A10W</td>
</tr>
<tr>
<td>Frog</td>
<td>092A10W</td>
</tr>
<tr>
<td>Location</td>
<td>Coordinates</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Brand, H. 092H10E</td>
<td></td>
</tr>
<tr>
<td>Group D (Joe 093M05E)</td>
<td></td>
</tr>
<tr>
<td>Grove, E.W. 092H10E</td>
<td></td>
</tr>
<tr>
<td>Grove, E.L. 092H10E</td>
<td></td>
</tr>
<tr>
<td>Groves, W. 092G10E</td>
<td></td>
</tr>
<tr>
<td>Groves, W. 092F05W</td>
<td></td>
</tr>
<tr>
<td>Groves, W. 103F05W</td>
<td></td>
</tr>
<tr>
<td>Grub 1-4, 093H05E</td>
<td></td>
</tr>
<tr>
<td>Grubb, W. 092G05E</td>
<td></td>
</tr>
<tr>
<td>Grubb, W. 092L05W</td>
<td></td>
</tr>
<tr>
<td>Grubb, W. 092L05W</td>
<td></td>
</tr>
<tr>
<td>Grubb, W. 082L05W</td>
<td></td>
</tr>
<tr>
<td>Guppy, H. 082M04E</td>
<td></td>
</tr>
<tr>
<td>Guppy, M. 092H10W</td>
<td></td>
</tr>
<tr>
<td>Guppy, W. 092F05E</td>
<td></td>
</tr>
<tr>
<td>Sus 092F05W</td>
<td></td>
</tr>
<tr>
<td>Bus 092H10W</td>
<td></td>
</tr>
<tr>
<td>Bus 1-3 093F05W</td>
<td></td>
</tr>
<tr>
<td>Bus 1-2 082L05W</td>
<td></td>
</tr>
<tr>
<td>Byp 114P10E</td>
<td></td>
</tr>
<tr>
<td>M & H 126 092H10W</td>
<td></td>
</tr>
<tr>
<td>H & H 265 092H10W</td>
<td></td>
</tr>
<tr>
<td>H & H 265 092H10W</td>
<td></td>
</tr>
<tr>
<td>H & H 4 093K15W</td>
<td></td>
</tr>
<tr>
<td>H & H 5 092H10W</td>
<td></td>
</tr>
<tr>
<td>H & G, Min. 093H05W</td>
<td></td>
</tr>
<tr>
<td>HC 093G05E</td>
<td></td>
</tr>
<tr>
<td>HC 093G07E</td>
<td></td>
</tr>
<tr>
<td>HC 103H05E</td>
<td></td>
</tr>
<tr>
<td>HH 1-12 093A14W</td>
<td></td>
</tr>
<tr>
<td>HH 14-21 093A14W</td>
<td></td>
</tr>
<tr>
<td>HJ 092J10E</td>
<td></td>
</tr>
<tr>
<td>HJ 3 092J10E</td>
<td></td>
</tr>
<tr>
<td>HJ 3-2 092J10E</td>
<td></td>
</tr>
<tr>
<td>HM 092F05E</td>
<td></td>
</tr>
<tr>
<td>HD 092E05E</td>
<td></td>
</tr>
<tr>
<td>HD 093E05E</td>
<td></td>
</tr>
<tr>
<td>HPP 1 092H10W</td>
<td></td>
</tr>
<tr>
<td>HPP 1-3 092L12W</td>
<td></td>
</tr>
<tr>
<td>HPP 2 092L12W</td>
<td></td>
</tr>
<tr>
<td>HPP 3 092L12W</td>
<td></td>
</tr>
<tr>
<td>HPP 4 092F05E</td>
<td></td>
</tr>
<tr>
<td>Ha 1 093K10W</td>
<td></td>
</tr>
<tr>
<td>Haag's Umpale 083H04E</td>
<td></td>
</tr>
<tr>
<td>Haag's Umpale 083H03E</td>
<td></td>
</tr>
<tr>
<td>Greenwood, W. 082E05E</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>Kass 10410W</td>
<td>C18</td>
</tr>
<tr>
<td>Kate 08210E</td>
<td>C12</td>
</tr>
<tr>
<td>Kathleen 1-4 103J07E</td>
<td>C12</td>
</tr>
<tr>
<td>Katie 08210W</td>
<td>C11</td>
</tr>
<tr>
<td>Kay 8-11 093A07E</td>
<td>C246</td>
</tr>
<tr>
<td>Keathly 09210W</td>
<td>C18</td>
</tr>
<tr>
<td>Keating, J. 082E02E</td>
<td>C316</td>
</tr>
<tr>
<td>Keating, J. 082F11W</td>
<td>C56</td>
</tr>
<tr>
<td>Keiko 092H05W</td>
<td>C167</td>
</tr>
<tr>
<td>Keiko 3 092H05W</td>
<td>C167</td>
</tr>
<tr>
<td>Keiko 5 092H05W</td>
<td>C167</td>
</tr>
<tr>
<td>Kent 093L09W</td>
<td>C304</td>
</tr>
<tr>
<td>Kelly 4 092F16W</td>
<td>C159</td>
</tr>
<tr>
<td>Kelly Res. 092J10E</td>
<td>C215</td>
</tr>
<tr>
<td>Kemess 094E02E</td>
<td>C327</td>
</tr>
<tr>
<td>Ken 092F08W</td>
<td>C141</td>
</tr>
<tr>
<td>Ken 1-2 103J15E</td>
<td>C361</td>
</tr>
<tr>
<td>Ken 1-2 103J15E</td>
<td>C360</td>
</tr>
<tr>
<td>Ken 1-8 092L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Ken 092F06W</td>
<td>C47</td>
</tr>
<tr>
<td>Ken 092F05W</td>
<td>C47</td>
</tr>
<tr>
<td>Ken 092H04W</td>
<td>C102</td>
</tr>
<tr>
<td>Ken 1-3 092M04W</td>
<td>C102</td>
</tr>
<tr>
<td>Kennedy, D. 114P12E</td>
<td>C406</td>
</tr>
<tr>
<td>Kerr 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 12 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 15 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 41 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 9 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 98 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr 99 104B08W</td>
<td>C376</td>
</tr>
<tr>
<td>Kerr Addison Mines 092F03W</td>
<td>C186</td>
</tr>
<tr>
<td>Kerr Addison Mines 092H05E</td>
<td>C186</td>
</tr>
<tr>
<td>Kerr, J. 103J08E</td>
<td>C358</td>
</tr>
<tr>
<td>Kerry 103J08E</td>
<td>C362</td>
</tr>
<tr>
<td>Kettle 082E03E</td>
<td>C270</td>
</tr>
<tr>
<td>Kevin 093E07W</td>
<td>C339</td>
</tr>
<tr>
<td>Key 092H10W</td>
<td>C183</td>
</tr>
<tr>
<td>Key 094E06E</td>
<td>C334</td>
</tr>
<tr>
<td>Key 1 092H03W</td>
<td>C108</td>
</tr>
<tr>
<td>Key 3 092M06W</td>
<td>C108</td>
</tr>
<tr>
<td>Key Diversified Min. 092H07E</td>
<td>C172</td>
</tr>
<tr>
<td>Key Fr. 092L12E</td>
<td>C252</td>
</tr>
<tr>
<td>Keyser, H. 092H03W</td>
<td>C142</td>
</tr>
<tr>
<td>Keystone 1 082M08W</td>
<td>C108</td>
</tr>
<tr>
<td>Keystone 093E08E</td>
<td>C153</td>
</tr>
<tr>
<td>Kia 104M05E</td>
<td>C392</td>
</tr>
<tr>
<td>Kid 12 082H01E</td>
<td>C37</td>
</tr>
<tr>
<td>Kid 3 082F01E</td>
<td>C108</td>
</tr>
<tr>
<td>Kid Creek Mines 082M04W</td>
<td>C101</td>
</tr>
<tr>
<td>Kid Creek Mines 092B03E</td>
<td>C110</td>
</tr>
<tr>
<td>Name</td>
<td>Depth (ft)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lambert, E.</td>
<td>103115</td>
</tr>
<tr>
<td>Lamie, C.A.R.</td>
<td>0822102</td>
</tr>
<tr>
<td>Lamie, C.A.R.</td>
<td>0920018</td>
</tr>
<tr>
<td>Lamie, R.</td>
<td>082115</td>
</tr>
<tr>
<td>Lampman, J.</td>
<td>0392008</td>
</tr>
<tr>
<td>Lana Gold</td>
<td>0921101</td>
</tr>
<tr>
<td>Lance 093000E</td>
<td>03940E</td>
</tr>
<tr>
<td>Landis, J.</td>
<td>082005</td>
</tr>
<tr>
<td>Lang Bay (Gp)</td>
<td>0921101</td>
</tr>
<tr>
<td>Langley Res.</td>
<td>093015</td>
</tr>
<tr>
<td>Larabee, E.</td>
<td>082004</td>
</tr>
<tr>
<td>Laramie Res.</td>
<td>0821101</td>
</tr>
<tr>
<td>Laramie Res.</td>
<td>093015</td>
</tr>
<tr>
<td>Laredo Limestone</td>
<td>093011</td>
</tr>
<tr>
<td>Laroe, O.</td>
<td>0921101</td>
</tr>
<tr>
<td>Laroe, J.</td>
<td>092115</td>
</tr>
<tr>
<td>Last Chance 092003E</td>
<td>082001</td>
</tr>
<tr>
<td>Last Chance (L. 12853)</td>
<td>082114</td>
</tr>
<tr>
<td>Last Chance 1-5 082114</td>
<td>082011</td>
</tr>
<tr>
<td>Last Chance Fr.</td>
<td>082011</td>
</tr>
<tr>
<td>Late 094001</td>
<td>03940E</td>
</tr>
<tr>
<td>Laura 2 0820101</td>
<td>0820101</td>
</tr>
<tr>
<td>Lawless</td>
<td>082008</td>
</tr>
<tr>
<td>Lay 094005</td>
<td>062005</td>
</tr>
<tr>
<td>Lay 1-5 094005</td>
<td>082005</td>
</tr>
<tr>
<td>Lazy K 0920FO5W</td>
<td>092005</td>
</tr>
<tr>
<td>Lazy K 1-4 0920FO5W</td>
<td>092005</td>
</tr>
<tr>
<td>Leader 0920FO5W</td>
<td>092005</td>
</tr>
<tr>
<td>Leader 1-5 0920FO5W</td>
<td>092005</td>
</tr>
<tr>
<td>Leader, J. 092013E</td>
<td>092013E</td>
</tr>
<tr>
<td>Leary, Q.</td>
<td>092011E</td>
</tr>
<tr>
<td>Leah, Q.</td>
<td>0920101</td>
</tr>
<tr>
<td>Leah, J.</td>
<td>0920101</td>
</tr>
<tr>
<td>Leaver, G.</td>
<td>092008</td>
</tr>
<tr>
<td>Lebo, L. 092012</td>
<td>092012</td>
</tr>
<tr>
<td>Leblanc, L.</td>
<td>103116</td>
</tr>
<tr>
<td>Lechow, M.</td>
<td>092012</td>
</tr>
<tr>
<td>Lechow, M.</td>
<td>093007</td>
</tr>
<tr>
<td>Lechow, M.</td>
<td>093007</td>
</tr>
<tr>
<td>Lecouteur, P.</td>
<td>0920FO4E</td>
</tr>
<tr>
<td>Lee 092115</td>
<td>092115</td>
</tr>
<tr>
<td>Lee, L. 092015</td>
<td>092015</td>
</tr>
<tr>
<td>Lee, L. 092008</td>
<td>092008</td>
</tr>
<tr>
<td>Lee, L. 093006</td>
<td>093006</td>
</tr>
<tr>
<td>Lee, J. 094006</td>
<td>094006</td>
</tr>
<tr>
<td>Leech 0920101</td>
<td>0920101</td>
</tr>
<tr>
<td>Leech 1-5 092012</td>
<td>092012</td>
</tr>
<tr>
<td>Legal Tender 092005E</td>
<td>092005E</td>
</tr>
<tr>
<td>Lehman, J.</td>
<td>092003</td>
</tr>
<tr>
<td>Leighton, G.</td>
<td>092115</td>
</tr>
<tr>
<td>Leighton, D.</td>
<td>094012</td>
</tr>
<tr>
<td>Leiseman, D.</td>
<td>082112</td>
</tr>
<tr>
<td>Leiseman, D.</td>
<td>082114</td>
</tr>
<tr>
<td>Name</td>
<td>Ref</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Lisa Dawn 1-3 082E16W</td>
<td>C110</td>
</tr>
<tr>
<td>Lisle, 082F01E</td>
<td>C133</td>
</tr>
<tr>
<td>Lisle, T. 092G01E</td>
<td>C276</td>
</tr>
<tr>
<td>Lisle, T. 104A05W</td>
<td>C399</td>
</tr>
<tr>
<td>Lisle, T. 104J04E</td>
<td>C386</td>
</tr>
<tr>
<td>Lith 082H04W</td>
<td>C103</td>
</tr>
<tr>
<td>Lith 1-2 082M04W</td>
<td>C103</td>
</tr>
<tr>
<td>Lithos 1-4 082P06E</td>
<td>C51</td>
</tr>
<tr>
<td>Little Bear 082P06W</td>
<td>C30</td>
</tr>
<tr>
<td>Little Bigfoot 1-6 082H05W</td>
<td>C63</td>
</tr>
<tr>
<td>Little Con 092H15E</td>
<td>C153</td>
</tr>
<tr>
<td>Little Con 092H16E</td>
<td>C153</td>
</tr>
<tr>
<td>Little Com 092J15W</td>
<td>C214</td>
</tr>
<tr>
<td>Little Com 4 092J15W</td>
<td>C214</td>
</tr>
<tr>
<td>Little Qualicum Falls 082F07E</td>
<td>C151</td>
</tr>
<tr>
<td>Live Oak 1 082H16E</td>
<td>C171</td>
</tr>
<tr>
<td>Livgard, E. 092H08W</td>
<td>C180</td>
</tr>
<tr>
<td>Liz 082E02E</td>
<td>C18</td>
</tr>
<tr>
<td>Lizzie "C" 082F06W</td>
<td>C48</td>
</tr>
<tr>
<td>Lloyd, J. 082L13E</td>
<td>C54</td>
</tr>
<tr>
<td>Lloyd, J. 082L13E</td>
<td>C33</td>
</tr>
<tr>
<td>Lo S 082F15W</td>
<td>C52</td>
</tr>
<tr>
<td>Lo, P. 104P01E</td>
<td>C400</td>
</tr>
<tr>
<td>Locke 092H01E</td>
<td>C194</td>
</tr>
<tr>
<td>Locke 1-3 092H01E</td>
<td>C164</td>
</tr>
<tr>
<td>Lode 1-4 082H07W</td>
<td>C172</td>
</tr>
<tr>
<td>Lode 1-11 082H07W</td>
<td>C173</td>
</tr>
<tr>
<td>Lode 1-11 092H07W</td>
<td>C173</td>
</tr>
<tr>
<td>Lode Res 092F02E</td>
<td>C137</td>
</tr>
<tr>
<td>Lode Res. 092F03E</td>
<td>C150</td>
</tr>
<tr>
<td>Lodgestone 1-3 092H67W</td>
<td>C172, C173</td>
</tr>
<tr>
<td>Lodgestone Mountain 092H07W</td>
<td>C172, C173</td>
</tr>
<tr>
<td>Lodrell, R. 082W03W</td>
<td>C97</td>
</tr>
<tr>
<td>Lodrell, R. 082W04W</td>
<td>C39, C40</td>
</tr>
<tr>
<td>Lofstrom 082E02E</td>
<td>C136</td>
</tr>
<tr>
<td>Log 1 092H15E</td>
<td>C188</td>
</tr>
<tr>
<td>Log 1-4 092H15E</td>
<td>C28</td>
</tr>
<tr>
<td>Logan 082E05W</td>
<td>C28</td>
</tr>
<tr>
<td>Logan 092H04E</td>
<td>C299</td>
</tr>
<tr>
<td>Logan Mines 082E03E</td>
<td>C22</td>
</tr>
<tr>
<td>Logan, T. 104E</td>
<td>C523</td>
</tr>
<tr>
<td>Logan, N. 104F01E</td>
<td>C374</td>
</tr>
<tr>
<td>Lone Eagle 082F06E</td>
<td>C51</td>
</tr>
<tr>
<td>Lone Silver 082F03W</td>
<td>C41</td>
</tr>
<tr>
<td>Lone Silver 1-3 082F03W</td>
<td>C41</td>
</tr>
<tr>
<td>Lomestree Res. 103J16E</td>
<td>C303</td>
</tr>
<tr>
<td>Longe, R. 092C05W</td>
<td>C233</td>
</tr>
<tr>
<td>Lor 3-5 092C05W</td>
<td>C220</td>
</tr>
<tr>
<td>Lorimer, W. 092D15W</td>
<td>C180</td>
</tr>
<tr>
<td>Lorimer 103A15W</td>
<td>C346</td>
</tr>
<tr>
<td>Lorna 082H15E</td>
<td>C168</td>
</tr>
<tr>
<td>Lorna 082I15W</td>
<td>C195</td>
</tr>
<tr>
<td>Lorne 082J04E</td>
<td>C414</td>
</tr>
<tr>
<td>Lorne Mines 082L01W</td>
<td>C302</td>
</tr>
<tr>
<td>Lorne Mines 082L05W</td>
<td>C315</td>
</tr>
<tr>
<td>Lost Canyon 092F06W</td>
<td>C142</td>
</tr>
<tr>
<td>Lost Cup 092K18E</td>
<td>C35</td>
</tr>
<tr>
<td>Lot 201 092F01E</td>
<td>C53</td>
</tr>
<tr>
<td>Lot 40 092F01E</td>
<td>C153</td>
</tr>
<tr>
<td>Lot 500 092F01E</td>
<td>C153</td>
</tr>
<tr>
<td>Lots 515-60 092F01E</td>
<td>C153</td>
</tr>
<tr>
<td>Lots 5227-5232 082M04E</td>
<td>C288</td>
</tr>
<tr>
<td>Lou 082E03E</td>
<td>C20, C21</td>
</tr>
<tr>
<td>Louise 083A12W</td>
<td>C254</td>
</tr>
<tr>
<td>Louise 1 083A13W</td>
<td>C254</td>
</tr>
<tr>
<td>Louise 2 083A13W</td>
<td>C254</td>
</tr>
<tr>
<td>Lovag, G. 093J05W</td>
<td>C293</td>
</tr>
<tr>
<td>Lovag, G. 093J09E</td>
<td>C294</td>
</tr>
<tr>
<td>Love 092H14W</td>
<td>C183</td>
</tr>
<tr>
<td>Low 104P01W</td>
<td>C400</td>
</tr>
<tr>
<td>Low Herbert 114P07E</td>
<td>C405</td>
</tr>
<tr>
<td>Lowree 093H04E</td>
<td>C289</td>
</tr>
<tr>
<td>Lowe 1-3 093H05E</td>
<td>C289</td>
</tr>
<tr>
<td>Luke, J. 093E01W</td>
<td>C15</td>
</tr>
<tr>
<td>Lucky 082H03W</td>
<td>C180</td>
</tr>
<tr>
<td>Lucky 082H09W</td>
<td>C180</td>
</tr>
<tr>
<td>Lucky 2 082F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Lucky 5-12 092F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Lucky Coon 082W04E</td>
<td>C398</td>
</tr>
<tr>
<td>Lucky Fr. 092F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Lucky John 082K03E</td>
<td>C78</td>
</tr>
<tr>
<td>Lucky John 092E03E</td>
<td>C78</td>
</tr>
<tr>
<td>Lucky John 092E04E</td>
<td>C78</td>
</tr>
<tr>
<td>Lucky Strike 103P12E</td>
<td>C394</td>
</tr>
<tr>
<td>Lucky Strike (Bonaccio) 082H05W</td>
<td>C180</td>
</tr>
<tr>
<td>Lucky Strike 092H03W</td>
<td>C391</td>
</tr>
<tr>
<td>Lucky 082A13W</td>
<td>C748</td>
</tr>
<tr>
<td>Lucky 082A13W</td>
<td>C748</td>
</tr>
<tr>
<td>Luke, W. 082A01E</td>
<td>C70</td>
</tr>
<tr>
<td>Luke, W. 082A02E</td>
<td>C70</td>
</tr>
<tr>
<td>Lulu 104M18W</td>
<td>C354</td>
</tr>
<tr>
<td>Lumberton Mines 082F01W</td>
<td>C54</td>
</tr>
<tr>
<td>Lunair 1-8 092E15E</td>
<td>C159</td>
</tr>
<tr>
<td>Lund 2-3 082F15E</td>
<td>C114</td>
</tr>
<tr>
<td>Luster 1-2 092E12W</td>
<td>C114</td>
</tr>
<tr>
<td>Lutjen, T. 082E03W</td>
<td>C97</td>
</tr>
<tr>
<td>Lutjen, T. 082E03W</td>
<td>C299</td>
</tr>
<tr>
<td>Lynx 082K02W</td>
<td>C738</td>
</tr>
<tr>
<td>Lynx 092B11W</td>
<td>C398</td>
</tr>
<tr>
<td>Lynx 092B08W</td>
<td>C332</td>
</tr>
<tr>
<td>Lynx 11 092F08W</td>
<td>C332</td>
</tr>
<tr>
<td>Lyons 092C08W</td>
<td>C332</td>
</tr>
<tr>
<td>Lyons, E. 092E02E</td>
<td>C138</td>
</tr>
<tr>
<td>Lytton 092J15W</td>
<td>C213</td>
</tr>
<tr>
<td>M 1-4 103F09W</td>
<td>C344</td>
</tr>
<tr>
<td>M 17 092F08W</td>
<td>C152</td>
</tr>
<tr>
<td>M 17 092F08W</td>
<td>C152</td>
</tr>
<tr>
<td>M 6 103F08W</td>
<td>C349</td>
</tr>
<tr>
<td>M 65-80 093L14W</td>
<td>C308</td>
</tr>
<tr>
<td>M 93 082E15W</td>
<td>C97</td>
</tr>
<tr>
<td>M 93 082E15W</td>
<td>C97</td>
</tr>
<tr>
<td>MB 1 092M18W</td>
<td>C181</td>
</tr>
<tr>
<td>MB 1 092M05E</td>
<td>C180</td>
</tr>
<tr>
<td>Name</td>
<td>Code</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Mars 052K06W</td>
<td>C47</td>
</tr>
<tr>
<td>Marsden, H. 092B003E</td>
<td>C227</td>
</tr>
<tr>
<td>Maxwell 1-2 093W05E</td>
<td>C312</td>
</tr>
<tr>
<td>Mary 082W009E</td>
<td>C170</td>
</tr>
<tr>
<td>Mary 052L11W</td>
<td>C211</td>
</tr>
<tr>
<td>Mary 083D01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 1 091D06E</td>
<td>C170</td>
</tr>
<tr>
<td>Mary 1 093G01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 18-18 09S01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 17 Fr. 093D01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 2-14 093D01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 2-2 093D01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary 3-15 093D01E</td>
<td>C276</td>
</tr>
<tr>
<td>Mary Jenson 09D11W</td>
<td>C185</td>
</tr>
<tr>
<td>Mary Lou 093F02W</td>
<td>C271</td>
</tr>
<tr>
<td>Mary Mc North Zone 092J15E</td>
<td>C209</td>
</tr>
<tr>
<td>Mary Mc South Zone 092J15E</td>
<td>C209</td>
</tr>
<tr>
<td>Mary Mc-Main Zone 092J15E</td>
<td>C210</td>
</tr>
<tr>
<td>Mary Mc-South Zone 092J15E</td>
<td>C210</td>
</tr>
<tr>
<td>Mary Lou 093F02W</td>
<td>C271</td>
</tr>
<tr>
<td>Mascot 092K04W</td>
<td>C43, C44</td>
</tr>
<tr>
<td>Mascot Fr. 092J16W</td>
<td>C216</td>
</tr>
<tr>
<td>Mascot Gold Mines 092H05E</td>
<td>C165</td>
</tr>
<tr>
<td>Mascot Gold Mines 092H05E</td>
<td>C178</td>
</tr>
<tr>
<td>Mascot Gold Mines 093I10W</td>
<td>C350</td>
</tr>
<tr>
<td>Mason 094C00E</td>
<td>C335</td>
</tr>
<tr>
<td>Mason Fr. 094O00E</td>
<td>C335</td>
</tr>
<tr>
<td>Master Ace 092D05E</td>
<td>C170</td>
</tr>
<tr>
<td>Master Ace I-11 092D05E</td>
<td>C170</td>
</tr>
<tr>
<td>Mastic-01 (L1902) 082F14E</td>
<td>C350</td>
</tr>
<tr>
<td>Nat 082F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Nat 1 082L15E</td>
<td>C305</td>
</tr>
<tr>
<td>Nat 111-19 082F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Nat 17 082F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Nat 265 082F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Nat 64-72 082F09E</td>
<td>C52</td>
</tr>
<tr>
<td>Mathews Fr. 093I10W</td>
<td>C354</td>
</tr>
<tr>
<td>Mathison, D. 093G01E</td>
<td>C281</td>
</tr>
<tr>
<td>Matson 1-14 092J15E</td>
<td>C258</td>
</tr>
<tr>
<td>Matson Fr. 093A14W</td>
<td>C258</td>
</tr>
<tr>
<td>Maude 5 082K05W</td>
<td>C40</td>
</tr>
<tr>
<td>Mavis 103H11E</td>
<td>C357</td>
</tr>
<tr>
<td>Max 082K01E</td>
<td>C297</td>
</tr>
<tr>
<td>Max 1-15 093K15E</td>
<td>C297</td>
</tr>
<tr>
<td>Maxwell, G. 092K10W</td>
<td>C299</td>
</tr>
<tr>
<td>Maxwell, T. 092K10W</td>
<td>C299</td>
</tr>
<tr>
<td>Maxwell, G. 093N12W</td>
<td>C310</td>
</tr>
<tr>
<td>Maxwell, G. 093N12W</td>
<td>C310</td>
</tr>
<tr>
<td>Maxwell, G. 093N12W</td>
<td>C310</td>
</tr>
<tr>
<td>Maxwell, G. 103H15E</td>
<td>C354</td>
</tr>
<tr>
<td>Maxwell, G. 103H15E</td>
<td>C354</td>
</tr>
<tr>
<td>Maxwell, G. 103H15E</td>
<td>C354</td>
</tr>
<tr>
<td>Maxwell, G. 104I10E</td>
<td>C383</td>
</tr>
<tr>
<td>Maxwell, G. 104I10E</td>
<td>C383</td>
</tr>
<tr>
<td>May 092F09E</td>
<td>C152</td>
</tr>
<tr>
<td>Company Name</td>
<td>Latitude 1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Nancy 1 11AP14E</td>
<td>C406</td>
</tr>
<tr>
<td>Napa Res. 092J15W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 1 092K03E</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 10-12 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 17 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 18 Fr. 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 20 Fr. 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 26 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 3-4 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 4 092K03W</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 5 092K03E</td>
<td>C212</td>
</tr>
<tr>
<td>Nat 7 092K03E</td>
<td>C212</td>
</tr>
<tr>
<td>National Res. Ex. 082L13E</td>
<td>C277</td>
</tr>
<tr>
<td>National Res. Ex. 082L14W</td>
<td>C277</td>
</tr>
<tr>
<td>National Res. Ex. 082M04W</td>
<td>C277</td>
</tr>
<tr>
<td>National Res. Ex. 082M05W</td>
<td>C277</td>
</tr>
<tr>
<td>National Res. Ex. 092P01E</td>
<td>C277</td>
</tr>
<tr>
<td>Nationwide Gold Mines 092P03M</td>
<td>C277</td>
</tr>
<tr>
<td>Naz 093J13E</td>
<td>C263</td>
</tr>
<tr>
<td>Naz 2 093J13E</td>
<td>C263</td>
</tr>
<tr>
<td>Naz 4-5 093J13E</td>
<td>C263</td>
</tr>
<tr>
<td>Neale, T. 082B13W</td>
<td>C121</td>
</tr>
<tr>
<td>Neale, T. 092F05S</td>
<td>C121</td>
</tr>
<tr>
<td>Neal, T. 104A00W</td>
<td>C393</td>
</tr>
<tr>
<td>Nebraska 103A08E</td>
<td>C393</td>
</tr>
<tr>
<td>Neill, R. 082F14W</td>
<td>C157,158</td>
</tr>
<tr>
<td>NeI 084C05E</td>
<td>C321</td>
</tr>
<tr>
<td>NeI 104A04E</td>
<td>C321</td>
</tr>
<tr>
<td>Nelles, D. 082E15E</td>
<td>C30</td>
</tr>
<tr>
<td>Nelles, D. 082L02E</td>
<td>C30</td>
</tr>
<tr>
<td>Holte Colton 082E02E</td>
<td>C106</td>
</tr>
<tr>
<td>Nelson 093H03E</td>
<td>C289</td>
</tr>
<tr>
<td>Nelson Creek 05H04E</td>
<td>C289</td>
</tr>
<tr>
<td>Nep 092E04E</td>
<td>C24</td>
</tr>
<tr>
<td>Nepheline Res. 082E04E</td>
<td>C24</td>
</tr>
<tr>
<td>Nero 094B05E</td>
<td>C322</td>
</tr>
<tr>
<td>Nero 1-6 094C00E</td>
<td>C322</td>
</tr>
<tr>
<td>Neta 082E01W</td>
<td>C14</td>
</tr>
<tr>
<td>Never Sweet 092C13W</td>
<td>C121</td>
</tr>
<tr>
<td>New Global Res. 104H05E</td>
<td>C238</td>
</tr>
<tr>
<td>New Jack of Spades 082E02E</td>
<td>C17</td>
</tr>
<tr>
<td>New Jay 092H06E</td>
<td>C170</td>
</tr>
<tr>
<td>New Keween 1-2 094E02E</td>
<td>C327</td>
</tr>
<tr>
<td>New Moon 082E19E</td>
<td>C269</td>
</tr>
<tr>
<td>Newfields Min. 092H05E</td>
<td>C174</td>
</tr>
<tr>
<td>Newhawk Gold Mines 104B08E</td>
<td>C373</td>
</tr>
<tr>
<td>Newhawk Gold Mines 104B09W</td>
<td>C373</td>
</tr>
<tr>
<td>NewJay Res. 092E00E</td>
<td>C170</td>
</tr>
<tr>
<td>Newman, J. 092J10E</td>
<td>C152</td>
</tr>
<tr>
<td>Newman, P. 092J10E</td>
<td>C206</td>
</tr>
<tr>
<td>Newton Ex. 082H10W</td>
<td>C181</td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>North American Ventures 092E15E</td>
<td>C129</td>
</tr>
<tr>
<td>North Slope 092N11E</td>
<td>C314</td>
</tr>
<tr>
<td>North Star 082K09E</td>
<td>C280</td>
</tr>
<tr>
<td>Northair 1-6 092J03E</td>
<td>C204</td>
</tr>
<tr>
<td>Northair Mines 104B01E</td>
<td>C370</td>
</tr>
<tr>
<td>Northern, K. 094G09W</td>
<td>C338</td>
</tr>
<tr>
<td>Northern Crown 082P04E</td>
<td>C344</td>
</tr>
<tr>
<td>Northgate Ex. 094B03W</td>
<td>C318</td>
</tr>
<tr>
<td>Northwestern Quarries 082E05W</td>
<td>C29</td>
</tr>
<tr>
<td>Nov 100F06E</td>
<td>C349</td>
</tr>
<tr>
<td>Nugget 082E05W</td>
<td>C326</td>
</tr>
<tr>
<td>N.022F03E</td>
<td>C191</td>
</tr>
<tr>
<td>Noe Phillips 092J15W</td>
<td>C213</td>
</tr>
<tr>
<td>Ny Dawn Res. 092F06E</td>
<td>C46</td>
</tr>
<tr>
<td>Nubob 1 092I09W</td>
<td>C236</td>
</tr>
<tr>
<td>Nubob 1-1 092P01W</td>
<td>C235</td>
</tr>
<tr>
<td>Nubob Fr. 092P01W</td>
<td>C235</td>
</tr>
<tr>
<td>Nuf 1 092F05W</td>
<td>C241</td>
</tr>
<tr>
<td>Nugget 082E05W</td>
<td>C91</td>
</tr>
<tr>
<td>Nugget 1 092I05W</td>
<td>C181</td>
</tr>
<tr>
<td>Nugget Mines 092P03E</td>
<td>C39</td>
</tr>
<tr>
<td>Numair Res. 092F14W</td>
<td>C155</td>
</tr>
<tr>
<td>Ny 092F06E</td>
<td>C296</td>
</tr>
<tr>
<td>Nyxan, L. 092H09W</td>
<td>C179</td>
</tr>
<tr>
<td>0 092F07E</td>
<td>C275</td>
</tr>
<tr>
<td>0 093D01E</td>
<td>C394</td>
</tr>
<tr>
<td>0 104N11W</td>
<td>C394</td>
</tr>
<tr>
<td>0 1 094A11W</td>
<td>C394</td>
</tr>
<tr>
<td>0 104N11W</td>
<td>C394</td>
</tr>
<tr>
<td>O'Connor Gypsum 114P10E</td>
<td>C405</td>
</tr>
<tr>
<td>O'Grady, F. 092P02E</td>
<td>C39</td>
</tr>
<tr>
<td>O'Grady, F. 092P03E</td>
<td>C50</td>
</tr>
<tr>
<td>O'Hara Res. 092P03E</td>
<td>C46</td>
</tr>
<tr>
<td>O'Neill, B. 092S14W</td>
<td>C163</td>
</tr>
<tr>
<td>O.K. (L. 092S8) 104A04W</td>
<td>C357</td>
</tr>
<tr>
<td>Ok 1 082W04W</td>
<td>C103</td>
</tr>
<tr>
<td>Ok 2 103F01W</td>
<td>C378</td>
</tr>
<tr>
<td>Ok 1-5 103F01W</td>
<td>C467</td>
</tr>
<tr>
<td>Ocean C21F14E</td>
<td>C57</td>
</tr>
<tr>
<td>Ok 104J01E</td>
<td>C386</td>
</tr>
<tr>
<td>Ok 092M04W</td>
<td>C103</td>
</tr>
<tr>
<td>Ok 104G04W</td>
<td>C378</td>
</tr>
<tr>
<td>Oka 1-11 092E13W</td>
<td>C39</td>
</tr>
<tr>
<td>Old Diggings 092E05W</td>
<td>C30</td>
</tr>
<tr>
<td>Old England 082E03E</td>
<td>C22</td>
</tr>
<tr>
<td>Olde 1-3 093D06E</td>
<td>C294</td>
</tr>
<tr>
<td>Oliffe, E.G. 092G11W</td>
<td>C28</td>
</tr>
<tr>
<td>Oliffe, E.G. 092F03W</td>
<td>C142</td>
</tr>
<tr>
<td>Oly 4 092I07E</td>
<td>C192</td>
</tr>
<tr>
<td>Oly 6 092I07E</td>
<td>C192</td>
</tr>
<tr>
<td>Olympic (Titanic) 092P03W</td>
<td>C143</td>
</tr>
<tr>
<td>Omega 093A07E</td>
<td>C247</td>
</tr>
<tr>
<td>Omega 1 092H08E</td>
<td>C176</td>
</tr>
<tr>
<td>Omega Gold 093A07E</td>
<td>C247</td>
</tr>
<tr>
<td>Omni Res. 082M04E</td>
<td>C39</td>
</tr>
<tr>
<td>Name</td>
<td>Memories</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Perris 082L14W</td>
<td>C95</td>
</tr>
<tr>
<td>Perris 1 082L14W</td>
<td>C95</td>
</tr>
<tr>
<td>Perris 3 082L14W</td>
<td>C95</td>
</tr>
<tr>
<td>Perrin Gold Mines</td>
<td>C395</td>
</tr>
<tr>
<td>Perry 1-2 092E15E</td>
<td>C129</td>
</tr>
<tr>
<td>Perry 4-5 082F08E</td>
<td>C51</td>
</tr>
<tr>
<td>Perry Creek 082F08E</td>
<td>C51</td>
</tr>
<tr>
<td>Pesal, R. G5H1W</td>
<td>C315</td>
</tr>
<tr>
<td>Pesal, R. G1010W</td>
<td>C385</td>
</tr>
<tr>
<td>Peso 093A11W</td>
<td>C249</td>
</tr>
<tr>
<td>Pete 092H05W</td>
<td>C168</td>
</tr>
<tr>
<td>Pete 1-2 093H06E</td>
<td>C168</td>
</tr>
<tr>
<td>Peter Gulch 083A14W</td>
<td>C256</td>
</tr>
<tr>
<td>Peto, P. 082E03E</td>
<td>C106</td>
</tr>
<tr>
<td>Peto, P. 082E12W</td>
<td>C38</td>
</tr>
<tr>
<td>Peto, P. 082H14W</td>
<td>C177</td>
</tr>
<tr>
<td>Peto, P. 092H05E</td>
<td>C180</td>
</tr>
<tr>
<td>Petra 9-15 082F08E</td>
<td>C51</td>
</tr>
<tr>
<td>Petroflame Int. Res. 062K03E</td>
<td>C76</td>
</tr>
<tr>
<td>Petroflame Int. Res. 082J15W</td>
<td>C212</td>
</tr>
<tr>
<td>Petrofume Res. 093L03E</td>
<td>C309</td>
</tr>
<tr>
<td>Petroflute Res. 082E05W</td>
<td>C30</td>
</tr>
<tr>
<td>Pezzot, E. 082K13E</td>
<td>C384</td>
</tr>
<tr>
<td>Pezzot, E. 082K05W</td>
<td>C384</td>
</tr>
<tr>
<td>Pezzot, E. 093E11E</td>
<td>C287</td>
</tr>
<tr>
<td>Pezzot, E. 093G01E</td>
<td>C274</td>
</tr>
<tr>
<td>Pezzot, E. 093G01W</td>
<td>C278</td>
</tr>
<tr>
<td>Pezzot, E. 093M04E</td>
<td>C311</td>
</tr>
<tr>
<td>Pezzot, E. 094E06E</td>
<td>C333,C334,C335</td>
</tr>
<tr>
<td>Pezzot, E. 094E07E</td>
<td>C339</td>
</tr>
<tr>
<td>Pezzot, E. 094E11E</td>
<td>C340,C341</td>
</tr>
<tr>
<td>Pezzot, E. 094E19W</td>
<td>C341,C342,C343</td>
</tr>
<tr>
<td>Pezzot, E. 094E12E</td>
<td>C344</td>
</tr>
<tr>
<td>Pezzot, E. 093L15W</td>
<td>C309</td>
</tr>
<tr>
<td>Phantom 092G14W</td>
<td>C183</td>
</tr>
<tr>
<td>Phantom 2 082G14W</td>
<td>C163</td>
</tr>
<tr>
<td>Philo Gold & Energy 082H08E</td>
<td>C75</td>
</tr>
<tr>
<td>Phigot, W. 11410E</td>
<td>C405</td>
</tr>
<tr>
<td>Phoenix 3 082K03E</td>
<td>C75</td>
</tr>
<tr>
<td>Phyllis 082K13E</td>
<td>C83</td>
</tr>
<tr>
<td>Picasso 082F10W</td>
<td>C54</td>
</tr>
<tr>
<td>Picou 104H11W</td>
<td>C360</td>
</tr>
<tr>
<td>Pic 1-2 092J10E</td>
<td>C208</td>
</tr>
<tr>
<td>Piedmont (Hope 2) 082F11W</td>
<td>C54</td>
</tr>
<tr>
<td>Pierce Mtn. Res. 092H04E</td>
<td>C165</td>
</tr>
<tr>
<td>Pige 093F07W</td>
<td>C272</td>
</tr>
<tr>
<td>Pig 2-5 093F07W</td>
<td>C272</td>
</tr>
<tr>
<td>Pihl, D. 082F01E</td>
<td>C37</td>
</tr>
<tr>
<td>Pika 094E11W</td>
<td>C341</td>
</tr>
<tr>
<td>Pike 104H15E</td>
<td>C321</td>
</tr>
<tr>
<td>Pilgrim H10166 H02115E</td>
<td>C209,C210</td>
</tr>
<tr>
<td>Pillar 094E07W</td>
<td>C340</td>
</tr>
<tr>
<td>Pine 082F04W</td>
<td>C44</td>
</tr>
<tr>
<td>Pine 082L04E</td>
<td>C29</td>
</tr>
<tr>
<td>Pine 082N04W</td>
<td>C103</td>
</tr>
<tr>
<td>Pine 022K08W</td>
<td>C233</td>
</tr>
<tr>
<td>Pine 093A05E</td>
<td>C244</td>
</tr>
<tr>
<td>Pine 093B06E</td>
<td>C27</td>
</tr>
<tr>
<td>Pine 1-2 092D08W</td>
<td>C233</td>
</tr>
<tr>
<td>Pine 1-2 092D08W</td>
<td>C233</td>
</tr>
<tr>
<td>Pine 1-2 092H04E</td>
<td>C75</td>
</tr>
<tr>
<td>Pine 1-2 092H05E</td>
<td>C177</td>
</tr>
<tr>
<td>Pine 092H05E</td>
<td>C251</td>
</tr>
<tr>
<td>Pink one 104101W</td>
<td>C382</td>
</tr>
<tr>
<td>Pink two 104101W</td>
<td>C382</td>
</tr>
<tr>
<td>Pinkone 092F08E</td>
<td>C109</td>
</tr>
<tr>
<td>Pioneer 092H05E</td>
<td>C385</td>
</tr>
<tr>
<td>Pioneer 093G08W</td>
<td>C28</td>
</tr>
<tr>
<td>Pirlf, I. 082F01E</td>
<td>C234</td>
</tr>
<tr>
<td>Pit 093H12W</td>
<td>C385</td>
</tr>
<tr>
<td>Pita 082L02E</td>
<td>C85,C86</td>
</tr>
<tr>
<td>Pita 1-8 082L02E</td>
<td>C85,C86</td>
</tr>
<tr>
<td>Pita 10-16 082L02E</td>
<td>C85</td>
</tr>
<tr>
<td>Pita 20-29 082L02E</td>
<td>C85</td>
</tr>
<tr>
<td>Pita 29 082L02E</td>
<td>C86</td>
</tr>
<tr>
<td>Pita 1-11 082L01E</td>
<td>C86,C89</td>
</tr>
<tr>
<td>Placer Dev. 092F09W</td>
<td>C37,C33</td>
</tr>
<tr>
<td>Placer Dev. 092F12E</td>
<td>C109</td>
</tr>
<tr>
<td>Placer Dev. 092F12W</td>
<td>C208</td>
</tr>
<tr>
<td>Placer Dev. 092F20W</td>
<td>C237,C238</td>
</tr>
<tr>
<td>Placer Dev. 093L13W</td>
<td>C395</td>
</tr>
<tr>
<td>Placer Dev. 104H11W</td>
<td>C393,C394,C395</td>
</tr>
<tr>
<td>Placer Dome 093J13M</td>
<td>C294</td>
</tr>
<tr>
<td>Placer Lease 12241 104H12E</td>
<td>C398</td>
</tr>
<tr>
<td>Placer Lease 12250 104H12E</td>
<td>C398</td>
</tr>
<tr>
<td>Placer Lease 13205 104H12E</td>
<td>C398</td>
</tr>
</tbody>
</table>
| Pl...
<table>
<thead>
<tr>
<th>Red 13 103H13E</th>
<th>C555</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red 15 103H13E</td>
<td>C555</td>
</tr>
<tr>
<td>Red 2-4 103H13E</td>
<td>C555</td>
</tr>
<tr>
<td>Red 3-4 103H13E</td>
<td>C355</td>
</tr>
<tr>
<td>Red Bluff 1-2 09J105W</td>
<td>C213</td>
</tr>
<tr>
<td>Red Dog 09GC09E</td>
<td>C123</td>
</tr>
<tr>
<td>Red Eagle 09F105W</td>
<td>C218</td>
</tr>
<tr>
<td>Red Gold 09D105W</td>
<td>C180</td>
</tr>
<tr>
<td>Red Hawk 09J105E</td>
<td>C208</td>
</tr>
<tr>
<td>Red North 103H13E</td>
<td>C355</td>
</tr>
<tr>
<td>Red Roof 103P105W</td>
<td>C366</td>
</tr>
<tr>
<td>Red River 104B05E</td>
<td>C373</td>
</tr>
<tr>
<td>Red Rose 09G105E</td>
<td>C165</td>
</tr>
<tr>
<td>Red Rover (Toquart) 09F095W</td>
<td>C142</td>
</tr>
<tr>
<td>Red South 103H13E</td>
<td>C355</td>
</tr>
<tr>
<td>Red Sox 09G105E</td>
<td>C165</td>
</tr>
<tr>
<td>Red Star 09Z105E</td>
<td>C184</td>
</tr>
<tr>
<td>Red Top 09K105E</td>
<td>C175</td>
</tr>
<tr>
<td>Redbird 082105W</td>
<td>C193</td>
</tr>
<tr>
<td>Redbird Gold 083010E</td>
<td>C113</td>
</tr>
<tr>
<td>Redtop 082105E</td>
<td>C184</td>
</tr>
<tr>
<td>Redtop 09G105E</td>
<td>C175</td>
</tr>
<tr>
<td>Redtop 095L09W</td>
<td>C504</td>
</tr>
<tr>
<td>Redtop 1-2 093L09W</td>
<td>C504</td>
</tr>
<tr>
<td>Redtop 1-2 3-4 093L09W</td>
<td>C304</td>
</tr>
<tr>
<td>Redtop 3-5 093L09W</td>
<td>C227</td>
</tr>
<tr>
<td>Redwood Res. 082805W</td>
<td>C113</td>
</tr>
<tr>
<td>Red 1-8 094L11W</td>
<td>C345</td>
</tr>
<tr>
<td>Red, M. 082404W</td>
<td>C102</td>
</tr>
<tr>
<td>Redfall 104M105W</td>
<td>C398</td>
</tr>
<tr>
<td>Redglen 1-9 095L10E</td>
<td>C387</td>
</tr>
<tr>
<td>Regional Res. 104010W</td>
<td>C399</td>
</tr>
<tr>
<td>Reid, D. 095D02W</td>
<td>C316</td>
</tr>
<tr>
<td>Reed, R. 09K105W</td>
<td>C355</td>
</tr>
<tr>
<td>Reid, R. 094E05W</td>
<td>C330</td>
</tr>
<tr>
<td>Reid, W. 104K105</td>
<td>C389</td>
</tr>
<tr>
<td>Reid, W. 104M105E</td>
<td>C391</td>
</tr>
<tr>
<td>Reid, W. 116P105W</td>
<td>C405</td>
</tr>
<tr>
<td>Relay 3-5 092002W</td>
<td>C227</td>
</tr>
<tr>
<td>Relay Creek Res. 092115E</td>
<td>C201</td>
</tr>
<tr>
<td>Relief 104M105E</td>
<td>C397</td>
</tr>
<tr>
<td>Rerock 092C05E</td>
<td>C213</td>
</tr>
<tr>
<td>Rendezvous Gold Min. 033A12W</td>
<td>C251</td>
</tr>
<tr>
<td>Rennie, D. 092C07E</td>
<td>C311</td>
</tr>
<tr>
<td>Rerock 1-2 094L11W</td>
<td>C345</td>
</tr>
<tr>
<td>Reroce 3-4 083L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Rerock 1-2 093L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Reroce 2 093L10E</td>
<td>C307</td>
</tr>
<tr>
<td>Republic (L. 4173) 082F10E</td>
<td>C53</td>
</tr>
<tr>
<td>Republic (L. 4175) 082F10E</td>
<td>C53</td>
</tr>
<tr>
<td>Revenge 103G05W</td>
<td>C382</td>
</tr>
<tr>
<td>Revenge 103G05W</td>
<td>C382</td>
</tr>
<tr>
<td>Rex 09Z105E</td>
<td>C148</td>
</tr>
<tr>
<td>Rhub 093F11W</td>
<td>C273</td>
</tr>
<tr>
<td>Rhub 12-13 095F11W</td>
<td>C273</td>
</tr>
<tr>
<td>Rhub 2 093F11W</td>
<td>C273</td>
</tr>
<tr>
<td>Label</td>
<td>Code</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Sutherland, W. O92H04E</td>
<td>C287</td>
</tr>
<tr>
<td>Sven O92H01E</td>
<td>C276</td>
</tr>
<tr>
<td>Sweden O92H08E</td>
<td>C175</td>
</tr>
<tr>
<td>Sweden Fr. O92H08E</td>
<td>C175</td>
</tr>
<tr>
<td>Swift O92H02E</td>
<td>C41</td>
</tr>
<tr>
<td>Swift 1-5 O92F0QW</td>
<td>C41</td>
</tr>
<tr>
<td>Swiss O92J16W</td>
<td>C219</td>
</tr>
<tr>
<td>Sylovan-Langis O93A16W</td>
<td>C265</td>
</tr>
<tr>
<td>Sylvan O92H02E</td>
<td>C41</td>
</tr>
<tr>
<td>Syndicate O93J14E</td>
<td>C295</td>
</tr>
<tr>
<td>T.C. O92K08W</td>
<td>C81</td>
</tr>
<tr>
<td>T.S.L. 02701E</td>
<td>C152</td>
</tr>
<tr>
<td>T.S.L. 1-4 035E01E</td>
<td>C152</td>
</tr>
<tr>
<td>TC 1-2 O92K00E</td>
<td>C211</td>
</tr>
<tr>
<td>TC 1-2 O92K13E</td>
<td>C73</td>
</tr>
<tr>
<td>TD 10 O92H05E</td>
<td>C185</td>
</tr>
<tr>
<td>TD 8 O92H06E</td>
<td>C185</td>
</tr>
<tr>
<td>TI 2 O92H12W</td>
<td>C315</td>
</tr>
<tr>
<td>TR 104N06W</td>
<td>C393</td>
</tr>
<tr>
<td>TR 1-4 104N06W</td>
<td>C393</td>
</tr>
<tr>
<td>TRM Eng. 103G05E</td>
<td>C352</td>
</tr>
<tr>
<td>TRM Eng. 103G06E</td>
<td>C353</td>
</tr>
<tr>
<td>TVK Eng. 103G0BE</td>
<td>C354</td>
</tr>
<tr>
<td>TY O92J15E</td>
<td>C211</td>
</tr>
<tr>
<td>Ta Hoolia 4 O92P05W</td>
<td>C240</td>
</tr>
<tr>
<td>Tacoma O92H0TE</td>
<td>C171</td>
</tr>
<tr>
<td>Taheis Inlet O92E10E</td>
<td>C313</td>
</tr>
<tr>
<td>Talca O92H12E</td>
<td>C187</td>
</tr>
<tr>
<td>Talissa 1 (L.A.021) 104A08W</td>
<td>C367</td>
</tr>
<tr>
<td>Tanka 092N16W</td>
<td>C299</td>
</tr>
<tr>
<td>Tall 1-2 103H13E</td>
<td>C356</td>
</tr>
<tr>
<td>Tall 1-2 103H13E</td>
<td>C356</td>
</tr>
<tr>
<td>Talton 1-2 104K12E</td>
<td>C201</td>
</tr>
<tr>
<td>Tan 092F02E</td>
<td>C387</td>
</tr>
<tr>
<td>Tan 1-2 104K01E</td>
<td>C397</td>
</tr>
<tr>
<td>Tanker Oil & Gas 104B11E</td>
<td>C379</td>
</tr>
<tr>
<td>Tavera 5 093GE</td>
<td>C61</td>
</tr>
<tr>
<td>Tap 1092F02E</td>
<td>C136</td>
</tr>
<tr>
<td>Tar 2 O92L12E</td>
<td>C222</td>
</tr>
<tr>
<td>Tar 1-4 092L14W</td>
<td>C95</td>
</tr>
<tr>
<td>Tara O83L0HE</td>
<td>C89</td>
</tr>
<tr>
<td>Tara 1-7 O83L04E</td>
<td>C219</td>
</tr>
<tr>
<td>Tarja Res. O92H0ZE</td>
<td>C171</td>
</tr>
<tr>
<td>Tarn O92D05W</td>
<td>C230</td>
</tr>
<tr>
<td>Tarn 1-2 092D05W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 093C16W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 11 O93K16W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 2 O93K16W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 4 O93K16W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 6-7 O93K16W</td>
<td>C230</td>
</tr>
<tr>
<td>Tas 9 O93K16W</td>
<td>C230</td>
</tr>
<tr>
<td>Taseko 092D03W</td>
<td>C229</td>
</tr>
<tr>
<td>Taseko 05-06 092D03W</td>
<td>C229</td>
</tr>
<tr>
<td>Taseko 75-83 092D03W</td>
<td>C229</td>
</tr>
<tr>
<td>Taseko 114P12E</td>
<td>C406</td>
</tr>
<tr>
<td>Tax 092H09W</td>
<td>C171</td>
</tr>
<tr>
<td>Tax 092J04E</td>
<td>C204</td>
</tr>
<tr>
<td>Tax 2 O92J04E</td>
<td>C204</td>
</tr>
<tr>
<td>Tax 092G03W</td>
<td>C229</td>
</tr>
<tr>
<td>Tax 1092D03W</td>
<td>C229</td>
</tr>
<tr>
<td>Taylor, A. O92H02E</td>
<td>C313</td>
</tr>
<tr>
<td>Taylor, A. O92H03E</td>
<td>C313</td>
</tr>
<tr>
<td>Taylor, A. O92H11E</td>
<td>C313</td>
</tr>
<tr>
<td>Taylor, A. O93H13W</td>
<td>C316, C317</td>
</tr>
<tr>
<td>Taylor, K. 029C07E</td>
<td>C171</td>
</tr>
<tr>
<td>Taylor, K. 029C08E</td>
<td>C171</td>
</tr>
<tr>
<td>Taylor, K. 029C03W</td>
<td>C171</td>
</tr>
<tr>
<td>Tawlin Res. O92L03W</td>
<td>C230</td>
</tr>
<tr>
<td>Techairan Ent. O92E05W</td>
<td>C28</td>
</tr>
<tr>
<td>Technigem Platinum 092M12E</td>
<td>C379</td>
</tr>
<tr>
<td>Technigem Platinum 104107W</td>
<td>C399</td>
</tr>
<tr>
<td>Teck 092I06C</td>
<td>C389</td>
</tr>
<tr>
<td>Teck O93J09E</td>
<td>C294</td>
</tr>
<tr>
<td>Teck O93J09W</td>
<td>C294</td>
</tr>
<tr>
<td>Tecumseh 104A08W</td>
<td>C367</td>
</tr>
<tr>
<td>Ted Fr. 104A12E</td>
<td>C319</td>
</tr>
<tr>
<td>Ted Fr. 104P04E</td>
<td>C400</td>
</tr>
<tr>
<td>Teddy Glacier O92K13E</td>
<td>C84</td>
</tr>
<tr>
<td>Tedray 104H08E</td>
<td>C373</td>
</tr>
<tr>
<td>Telecom Res. O93L10E</td>
<td>C306</td>
</tr>
<tr>
<td>Tel 092L05E</td>
<td>C220</td>
</tr>
<tr>
<td>Tel 1092L06E</td>
<td>C220</td>
</tr>
<tr>
<td>Tel 1092L06E</td>
<td>C220</td>
</tr>
<tr>
<td>Tel 093H04E</td>
<td>C290</td>
</tr>
<tr>
<td>Tel 1093H04E</td>
<td>C290</td>
</tr>
<tr>
<td>Tel 1093H04E</td>
<td>C290</td>
</tr>
<tr>
<td>Tel 0-10 O93H04E</td>
<td>C290</td>
</tr>
<tr>
<td>Temagun Silver 104B08E</td>
<td>C375</td>
</tr>
<tr>
<td>Tennant 103P13W</td>
<td>C377</td>
</tr>
<tr>
<td>Tennyson 093H08</td>
<td>C374</td>
</tr>
<tr>
<td>Tennyson 1-2 104B08E</td>
<td>C374</td>
</tr>
<tr>
<td>Tendinales, R. O93L12E</td>
<td>C162, C163</td>
</tr>
<tr>
<td>Terramorte, R. 104M13E</td>
<td>C389</td>
</tr>
<tr>
<td>Terracamp Res. 103H16W</td>
<td>C389</td>
</tr>
<tr>
<td>Territorial 092H08E</td>
<td>C175</td>
</tr>
<tr>
<td>Territorial Petr. Ventures 104B06E</td>
<td>C372, C373</td>
</tr>
<tr>
<td>Terts 092C13E</td>
<td>C124</td>
</tr>
<tr>
<td>Terts 1-2 092C02W</td>
<td>C124</td>
</tr>
<tr>
<td>Terts 3-5 092H03W</td>
<td>C139</td>
</tr>
<tr>
<td>Tertiary 093H05E</td>
<td>C291</td>
</tr>
<tr>
<td>Tessalium, R. O93F13E</td>
<td>C154</td>
</tr>
<tr>
<td>Tett 2 O93C11W</td>
<td>C301</td>
</tr>
<tr>
<td>Tett 093C15W</td>
<td>C270</td>
</tr>
<tr>
<td>Toulton Res. 103P13W</td>
<td>C366, C387</td>
</tr>
<tr>
<td>Toulton Res. 104B06E</td>
<td>C371, C373, C374</td>
</tr>
</tbody>
</table>