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Turnagain Ultramafic-Mafic Intrusion

Introduction

The Early Jurassic Turnagain Alaskan-type intrusion (25 km?) is located 70 km
east of Dease Lake in northern British Columbia (Fig. 1). The ultramafic-mafic
body lies within the accreted arc terranes of Quesnellia/Yukon-Tanana, east of
the Early Cretaceous, post-accretionary Kutcho fault and west of displaced
miogeoclinal strata of Ancestral North America (Cassiar terrane, Fig. 2; Colpron
and Nelson, 2011; Gabrielse, 1985). The Turnagain intrusion belongs to a global
class of ultramafic-mafic intrusions emplaced in supra-subduction zone
environments that are gaining prominence as an exploration target for magmatic
Ni-Cu-platinum group element (PGE) mineralization (Nixon et al., 2015; Manor
et al., 2016). The Turnagain body is unusually enriched in Ni(-Co-Cu-PGE)
sulphides compared to typical Alaskan-type intrusions. Low-grade Ni-sulphide
mineralization at Turnagain ranks ninth among the world’s largest deposits in
terms of contained Ni metal, constituting a total resource of 1842 Mt @ 0.21 wt
% Niand 0.013 wt % Co (Mudd and Jowitt, 2014).

The main Ni mineralization is hosted chiefly by wehrlite and clinopyroxenite, and
the principal sulphide minerals are pyrrhotite, pentlandite and chalcopyrite.
Platinum group minerals documented in the youngest part of the intrusion
include platinum- and palladium-bearing arsenides, antimonides and tellurides
(Jackson-Brown et al., 2014). The origin of the mineralization is directly related
to contamination of primitive arc magmas by crustal material. Critical
contributions of sulphur and graphite from carbonaceous phyllite in the wallrocks
led to the reduction of oxidized parental arc magmas and triggered sulphide
saturation (Scheel, 2007).

The Turnagain intrusion has been regarded as a typical Alaskan-type body
zoned from a dunite-wehrlite core to a clinopyroxenite-hornblende
clinopyroxenite-hornblendite margin (Clark, 1980). The compositional and
textural features of Alaskan-type intrusions are commonly related to crystal
accumulation from fractionating mafic-ultramafic magmas residing deep in the
crust. The origin of the zoning has been explained by re-intrusion of hot,
incompletely solidified crystal cumulates to higher crustal levels promoted by
diapiric uprise and/or regional deformation (e.g., Findlay, 1969; Irvine, 1974;
Clark, 1980). More recent studies draw attention to emplacement of zoned
ultramafic suites in narrow conduit systems, rooted in the mantle, which serve as
efficient traps for upgraded metal-laden magmas (e.g., Manor et al., 2016). In
the latter case, lithological zoning appears related to accretion of cumulates on
conduit walls coupled with multiple injection of variably fractionated magmas
(Manor et al., 2016 and references therein).

Regional setting

Prior to this study, greenschist-facies graphitic strata that host the Turnagain
intrusion were interpreted to form part of the displaced North America cratonic
margin and to conformably overlie Cambro-Ordovician stratigraphy of the
miogeocline (Gabrielse, 1998; Erdmer et al., 2005). The latter authors also
documented a conformable relationship between the graphitic strata and
overlying Mississippian metasedimentary-metavolcanic rocks and showed that
the succession is deformed by kilometre-scale, upright to northeastward-verging
folds. They concluded that the entire succession represents a volcanic arc or
back-arc assemblage built on the edge of Ancestral North America.

A regional airborne electromagnetic (EM) survey conducted during mineral
exploration in the area indicates that graphitic strata hosting the Turnagain
intrusion show a marked EM response (conductivity; warm colours in Fig. 3) not
shared by ultramafic or surrounding metavolcanic and metasedimentary rocks
(Figs. 3-4). Our mapping traverses north and east of the Turnagain intrusion
demonstrate that the sharp EM boundary separates highly conductive graphitic
rocks from poorly conductive strata of the miogeocline (Atan Group and Kechika
Formation; Nixon et al., 1989). This EM boundary truncates the stratigraphic
units mapped by Gabrielse (1998) and passes through a 800m gap in outcrop
presumed to be occupied by the Kechika Formation (Erdmer et al., 2005; Figs.
3-4). We infer that this boundary represents a terrane-bounding fault (herein
named the Turnagain fault; Figs. 3-4) that delineates the Early Jurassic thrust
emplacement of late Paleozoic to early Mesozoic arc assemblages
(Quesnellia/Yukon-Tanana terranes) onto the Ancestral North American craton.
The graphitic phyllite and overlying metavolcanic-metasedimentary strata appear
correlative in part with the Swift River and Klinkit Groups of southern Yukon-
Tanana terrane (Roots et al., 2006).

Geology
A compilation of the geology of the Turnagain intrusion incorporates historical
and modern exploration work, as well as geology documented east of the
intrusion (Erdmer et al., 2005; J. E. Scheel, unpublished data; Fig. 5). A series of
simplified geological cross-sections (A-A" to K-K") and a longitudinal section (L-
M-N-O, Fig. 6) showing driii core controi depict contact reiationships with the
country rocks and intrusive components of the complex (Fig. 7). The surface
geology, cross-sections and drill core information were used to construct the
conceptual 3D architecture of the intrusion (Fig. 8).

The Turnagain ultramafic-mafic intrusion forms an elongate body (8 x 3 km)
oriented within the regional structural trend (Figs. 3-4). The northern and eastern
margins of the intrusion are marked by a southwesterly dipping thrust fault that
has emplaced uitramafic rocks onto graphitic strata of Mississippian age in the
footwall. Intrusive contacts with hornfelsed wallrocks are largely preserved along
the southern and western margins of the intrusion (Figs. 5-8).

Geological mapping has established four distinct intrusive phases (Fig. 7; from
oldest to youngest): Phase 1, interlayered wehrlite and clinopyroxenite with
minor dunite; Phase 2, mainly dunite and wehrlite with minor clinopyroxenite and
localized occurrences of clinopyroxenite and hornblendite near the margins;
Phase 3, melanocratic to mesocratic diorite and iesser feldspathic hornblendite;
and Phase 4 hornblende clinopyroxenite, magnetite clinopyroxenite and
hornblendite cut by minor leuco-diorite dykes. Contacts between intrusive
phases are typically sharp and locally marked by intrusive breccias.

Phase 1 forms a small body at the northern edge of the complex. Here,
interlayered (tens of metres to centimetre-scale) wehrlite and clinopyroxenite
with minor dunite form a steeply dipping trough or synform plunging steeply to
the southeast. The original attitude of this structure may have been modified by
motion along the adjacent thrust fault.

Phase 2 dunite-wehrlite(-clinopyroxenite-hornblendite) occupy the core of the
Turnagain intrusion and intrude Phase 1 rocks. This intrusive phase is the most
voluminous and hosts the main Ni-sulphide mineralization. The dunite and
wehrlite units are generally massive although mappable units of wehrlite locally
occur in dunite and vice versa.

Phase 3 diorite forms an elongate body separating Phase 2 from Phase 4 rocks
in the central part of the complex. Centimetre- to metre-scale layering of
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observed locally.

Phase 4 hornblende clinopyroxenite, magnetite-clinopyroxenite and hornblendite
form a poorly exposed body at the northwestern margin of the complex. These
rocks are cut locally by thin leuco-diorite dykes. Examination of drill core and
sparse outcrops reveals sparse centimetre-scale layering locally involving thin
horizons of magnetitite and Fe-Cu sulphides. These Cu-PGE-enriched sulphides
are a current exploration target and potentially form an additional economic
resource.

Geochronology

Emplacement of the various Intrusive phases of the Turnagain Alaskan-type
complex were investigated by U-Pb and OAr/Ar geochronology (Figs. 5-7). U-
Pb dating of accessory minerals (zircon, titanite) by chemical abrasion-isotope
dilution-thermal ionization mass spectrometry (CA-ID-TIMS) yields the following
2pp/28Y  dates (x20) that are interpreted as crystallization ages: Phase 2
hornblendite, 190.3t4.5 Ma (titanite); Phase 3 mela-diorite, 188.11+0.14 Ma
(zircon); and Phase 4 clinopyroxenite (4a) and a leuco-diorite dyke (4b),
185.63+0.19 and 185.33+0.13 Ma (both zircon), respectively. **Ar/**Ar dating of
Phase 2 wehrlite and hornblendite yields plateau dates of 188.6+1.2 Ma (20,
phlogopite) and 187.4+1.5 Ma (hornblende), respectively, that represent cooling
ages (nominally 500°C and 300°C for the closure temperatures of hornblende
and biotite, respectively). The latter dates represent minimum ages for the
emplacement of Phase 2 ultramafic cumulates.

U-Pb dating of detrital zircons has established the age of the country rocks.
Multigrain fractions of air-abraded detrital zircons from a volcanic wacke in an
enclave of metavolcanic-metasedimentary lithologies at the northern margin of
the Turnagain intrusion yield a large range of 20pp/*8Y dates (ca. 244 to 1652
Ma), reflecting Pb loss and Proterozoic inheritance (Scheel, 2007; Figs. 5-6).

---- a “®Pp/*®U date of 301.4+1.2 (20) Ma
(uppermost Pennsylvanian close to the Carboniferous-Permian boundary) which
is interpreted to be the maximum depositional age of this volcanic wacke.
Erdmer et al. (2005) reported a weighted mean **°Pb/***U date of 339.7+1.2 (20)
Ma (Middle Mississippian) for multigrain fractions of air-abraded zircon from a
felsic schist in the lower part of the metavolcanic unit (Figs. 5-6). Thus, the strata
which host the Turnagain intrusion are Carboniferous in age (Middle
Mississippian to Upper Pennsylvanian and possibly younger, as discussed
below).

Southeast of the Turnagain intrusion, a granodiorite body cutting the graphitic
phyllite-metavolcanic contact has yielded multigrain air-abraded 20pp/28y
zircon dates ranging from 183.9 to 192.4 Ma with an interpreted crystallization
age of 187.51£5.8 (20) Ma (Erdmer et al., 2005; Figs. 5-6). One discordant zircon
fraction in this sample shows Proterozoic inheritance (11051440 Ma). To the
south, a granitic dyke cutting metavolcanic stratigraphy and the main regional
foliation yields a wide dispersion of concordant to nearly concordant 2%pp238yY
dates (170.3—-256.5 Ma) representing multigrain air-abraded zircon fractions
(Figs. 5-6). Erdmer et al. (2005) favoured the weighted mean date of the
youngest zircon fractions (170.9+1.4 (20) Ma) as the crystallization age of this
rock and considered the older dates to reflect Permian inheritance (ca. 257 Ma).
Anomalous dates are also given by chemically abraded zircon xenocrysts
recovered from a Phase 4 clinopyroxenite in the Turnagain intrusion. These
xenocrysts yield a concordant early Late Triassic age ca. 236 Ma (Figs. 5-6).
The Permian and Triassic zircons may be sourced by intrusion(s) at depth or
possibly reflect Permo-Triassic stratigraphy involved in unrecognized structural
complexity.

Conclusions

The field observations and geochronological results for ultramafic-mafic rocks of
the Turnagain Alaskan-type intrusion place robust constraints on the internal
architecture and temporal evolution of the complex, the timing of mineralization,
and regional tectonic events.

Emplacement of the Turnagain intrusion occurred in discrete stages over a
period of at least 3 million years (ca. 188-185 Ma). The geochronology results
agree with the sequence of intrusive events recorded by geological relationships
observed in the field. The span of intrusive activity must be regarded as a
minimum since intrusive Phase 2 yields OAr/Ar cooling dates as old as 188
Ma; and the oldest Phase 1 component of the Turnagain complex remains to be
dated.

Mineralization in the Turnagain intrusion is hosted by two separate sub-
intrusions. The main Ni resource is contained in the Phase 2 intrusion dated at
188-190 Ma, whereas the Cu-PGE-enriched sulphides in Phase 4
clinopyroxenites and hornblendites were emplaced several million years later
(ca. 185-186 Ma). The dating results indicate the presence of two distinctive
sulphide saturation episodes in the Turnagain intrusion that took place in
independent mineral systems: an early event that produced substantial Ni-
sulphide mineralization in the older Phase 2 cumulates; and a later event that
gave rise to Cu-PGE mineralization in the younger Phase 4 rocks.

The crude zonal arrangement of internal lithologies appears somewhat
serendipitous in that it is primarily governed by the episodic intrusion and
deposition of discrete batches of cumulates derived from parental magma(s) at
various stages of evolution. However, the localized occurrence of thin marginal
units of hornblendite and clinopyroxenite within the volumetrically dominant
Phase 2 dunites and wehrlites must reflect second-order post-emplacement
processes. Therefore, realistic models for the origin of zoned ultramafic-mafic
complexes such as Alaskan-type intrusions are likely to be complex, and
successful models for their evolution will require calibration by further detailed
geochronological studies.

Regional folding and thrusting in the Turnagain area occurred in response to
deformation accompanying the accretion of Quesnellia/Yukon-Tanana terranes
to the miogeocline. Regional deformation postdates emplacement of the
youngest Phase 4 intrusive component of the Turnagain intrusion. The granitic
dyke dated by Erdmer et al. (2005) places a minimum age on the major phase of
deformation (ca. 171 Ma). Thus, the accretion of Quesnellia to the North
American continent is constrained to be younger than ca. 185 Ma (Early Jurassic
- Pliensbachian) and older than ca. 171 Ma (early Middle Jurassic — Aalenian).
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