

Surficial geology of the Carruthers Pass area, British Columbia (NTS 94D/8)

T. Ferbey and E.A. Elia

0 1 2 3 4 5 Kilometres

Scale 1:50,000

Cartography by K. Szponarski.

Note: Where surficial geology map units consist of multiple materials, a compound map unit designator is used. These compound designators areally more extensive and less extensive sub-materials are joined with a '+' (e.g., CvR where Cv is more extensive than R). We used the surficial geology data model of Deblonde et al. (2024) and definitions for surficial materials and surface expressions in Howes and Kenk (1997).

QUATERNARY SURFICIAL DEPOSITS NONGLACIAL ENVIRONMENT

Organic deposits: peat and other plant material in various stages of decomposition; generally in flat and wet terrain over poorly drained substrates; may include peatland and lacustrine sediments; most common in areas of transition zones between tree stands and water bodies; rare at high elevations.

Colluvial and mass wasting deposits: Rubble and diamict, poorly sorted, massive to stratified. Composition is dependent on source material. Deposited directly by gravity-induced movement.

Ca **Colluvial apron and talus slope:** diamict and rubble sourced from steep upslope bedrock exposures; 1 to 10 m thick but locally >10 m near the base of talus slopes; typically a series of colluvial cones (slope gradient >15°) that have merged into a relatively homogeneous slope.

Cz **Landslide deposit:** diamict, rubble, and blocks; hummocky and ridged topography; can be >10 m thick; typically forms hummocky topography; includes inactive and active landslides.

Cg **Rock glacier:** rubble and blocks with interstitial ice; hummocky and ridged topography; lobed surface expression due to flow; common in high elevation, north-facing slopes.

Cb **Colluvial blanket:** sand, rubble, and diamict; >2 m thick; topography is predominantly controlled by the underlying material and masks minor irregularities; typically overlies till or bedrock; occurs on moderate to steep slopes.

Alluvial deposits: Gravel, sand, minor silt, and organic material, commonly stratified. Deposited by modern streams.

Ap **Alluvial floodplain:** sorted sand and gravel with minor silt; >2 m thick; local and discontinuous organic veneers; forms low-relief planar surfaces near modern rivers; prone to flooding.

Af **Alluvial fan:** poorly sorted gravel, sand, and diamict; >2 m thick; stratified; slope gradient <15°; occur where a stream issues from a narrow valley onto a plain or valley floor; a potential aggregate source.

PROGLACIAL AND GLACIAL ENVIRONMENTS

Glaciolacustrine Deposits: Sand and gravel with minor diamict, well to poorly sorted. Deposited by glacial meltwater. All deposit types are potential glaciogenic sources.

Gfp **Glaciolacustrine outwash plain:** sand and gravel; 1 to >10 m thick; massive to bedded; generally forms flat surfaces sloping away from direction of glacier retreat.

Gft **Glaciolacustrine terrace:** sand and gravel; 1 to 10 m thick, forming gently sloping flat surfaces perched above meltwater channels or modern streams and glaciogenic deposits.

Gf **Glaciolacustrine fan:** sand and gravel; bedded; 1 to >10 m thick with a slope gradient <15°; deposited at the mouth of meltwater channels immediately following deglaciation.

Gfh **Hummocky glaciolacustrine:** poorly sorted sand and gravel with minor diamict; bedded to massive; 1 to >20 m thick; deposited in contact with a retreating glacier; forms hummocky topography related to melting of buried ice.

Gfc **Glaciolacustrine ice-contact:** poorly sorted sand and gravel; >2 m thick; hummocky ridged and kettle-like surface expression; locally with discontinuous glaciolacustrine sediments in areas that were ponded; a product of ice stagnation, typically in low-relief valley bottoms.

Gfk **Glaciolacustrine ice margin:** sand and gravel with minor diamict; bedded to massive; 1 to >20 m thick; deposited in contact with a retreating glacier and valley wall; can form unpaired terraces, perched above modern valley floor.

Esker: sand and gravel; massive to bedded; 3 to >5 m thick; deposited by meltwater flowing in tunnels in interior of glacier or in channels at base; forms sinuous ridges.

Gfr **Glaciolacustrine blanket:** sand and gravel; >2 m thick; occurs near the margins and at the mouth of meltwater channels; forms gently undulating to flat surfaces.

Gfb **Glaciolacustrine undifferentiated:** sand and gravel units too small to be represented at the scale of mapping.

Till Deposits: Diamict consisting of clasts of all sizes and diverse rock types in a sandy to silty sand matrix. Deposited directly by glaciers and may be modified by modern periglacial processes. On steep slopes, primary features may be modified by slope creep. Mostly deposited by the Cordilleran Ice Sheet during the Late Wisconsinan Fraser Glaciation. Holocene tills deposited by cirque glaciaries are included in this unit.

Th **Hummocky till:** sand- and gravel-rich diamict; >2 m thick; hummocky to rolling surface with moderate to steep slopes and local relief of 1 to 10 m; locally may contain glaciolacustrine and glaciogenic sediments between hummocks; a product of ice stagnation.

Tr **Ridged till:** diamict; >2 m thick; includes discontinuous elongate ridges interpreted as moraines, roughly oriented perpendicular to ice-flow direction; local relief of 1 to 2 m.

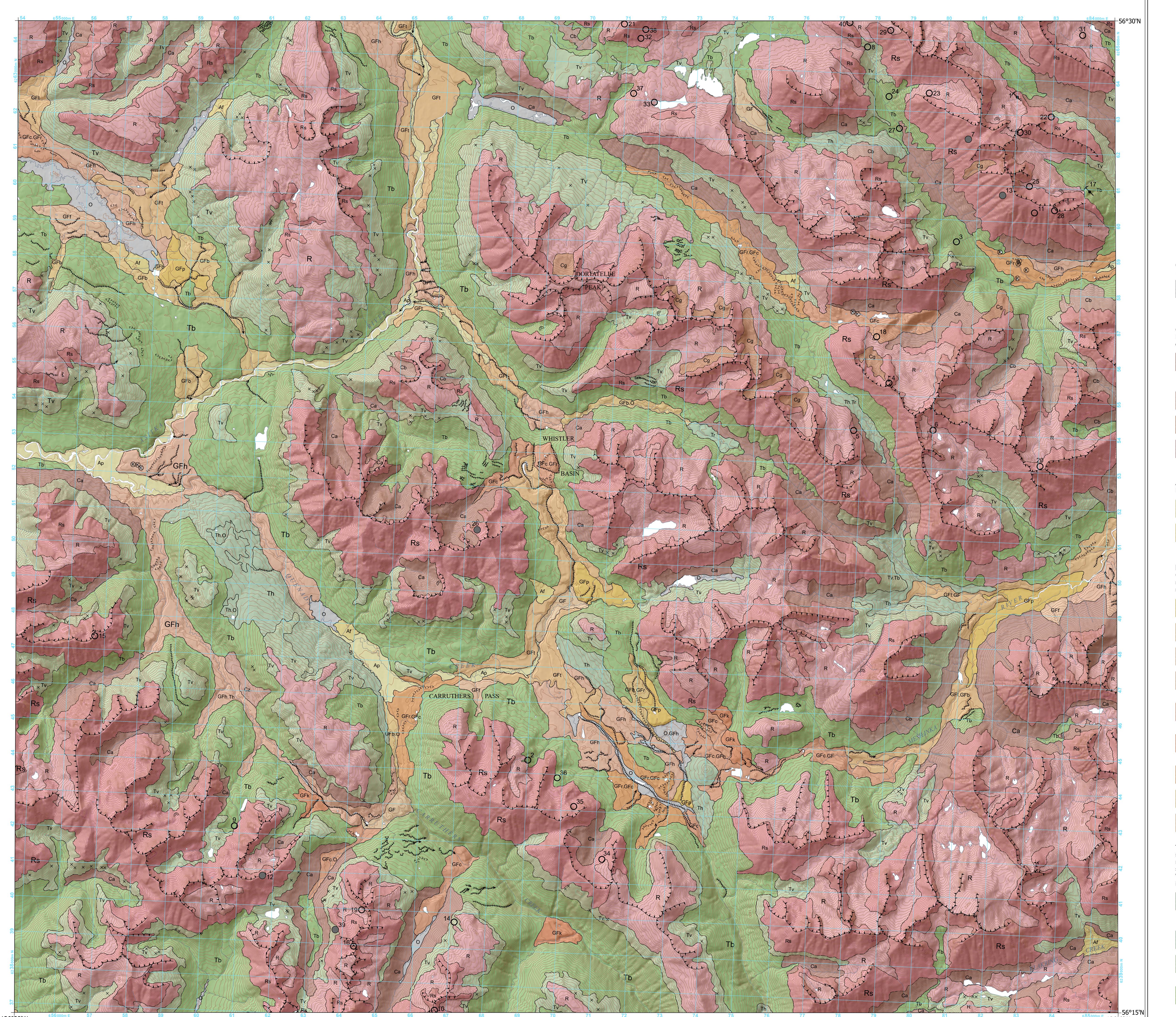
Tv **Till veneer:** diamict; <2 m thick; surface expression mimics underlying topography; on moderately steep slopes and at high elevations; may be modified by process; can be discontinuous and include abundant bedrock outcrops.

Tb **Till blanket:** diamict; >2 m thick; continuous till cover forming undulating topography that locally obscures underlying bedrock; rare bedrock outcrops.

PRE-QUATERNARY
Bedrock: Metasedimentary intrusive rocks of northern Hogen batholith (Jurassic to Cretaceous). Also metamorphosed volcanic and sedimentary rocks and less common intrusive rocks of Quesnel and Stikine terranes and metamorphic and ultramafic rocks of Cache Creek terrane (Ootes et al. 2020a).

R **Bedrock:** bedrock outcrop; locally includes areas of colluvium and till generally <2 m thick; extensively frost shattered at higher elevations; commonly exposed on steep slopes and in alpine environments.

Rs **Steep bedrock slopes:** bedrock outcrop with loose blocks of local bedrock on steeply sloping terrain (>30°); patchy cover of till and colluvium (<2 m thick) increases downslope.


094D10 MOOSELAKE CREEK	094D01 JOHANSON LAKE	094C12 ONION CREEK
094D07 ASTIXA RIVER		094C05 AIKEN LAKE
094D02 SALIX CREEK	094D01 NANITSCH LAKE	094C04 NOTCH PEAK

Recommended citation:
Ferbey, T. and Elia, E.A. 2025. Surficial geology of the Carruthers Pass area (NTS 94D/8). British Columbia, British Columbia. British Columbia Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey, Geoscience Map 2025-03, 1:50,000 scale.

North American Datum 1983 (NAD83)
Universal Transverse Mercator Zone 9 North
Elevation model: NAD83 vertical datum model supplied by Natural Resources Canada.
Elevation: amsl 3117; altitude 45°; vertical factor 1x
Elevation model: NAD83 vertical datum model supplied by Natural Resources Canada.
Contour interval 20 metres. Elevations in metres above mean sea level.

Table 1. Mineral occurrences from MINFILE database (MINFILE, 2025). Abbreviated deposit type designations (e.g., L03) follow deposit descriptions detailed in Lefebvre and Jones (2020).

Map	MINFILE No.	Name	Status	Commodity	Deposit Type
1	094D 015	CROY	Developed prospect	Au, Cu, Ag, Mo, Zn, Pb	I01: Au quartz veins
2	094D 018	CAR	Showing	Ag, Pb, Cu, Zn, Au	I05: Polymetallic veins Ag-Pb-Zn-Au
3	094D 019	KLI	Showing	Mo, Cu	K01: Cu skarn
4	094D 020	RINGO	Showing	Mo, Cu	L05: Porphyry Mo (Low F-type)
5	094D 021	DORTERELLE	Showing	Mo, Cu, Ag	L05: Porphyry Mo (Low F-type)
6	094D 022	MESILINKA RIVER	Showing	Cr	M05: Alaskan-type Pt-Os-Rh-Ir
7	094D 025	SOUP	Prospect	Au, Cu, Fe, Ma	K01: Cu skarn
8	094D 026	BANJO	Showing	Au, Cu, Ag, Pb, Zn	I05: Polymetallic veins Ag-Pb-Zn-Au
9	094D 026	LIZ	Showing	Cu	D05: Volcanic redbed Cu
10	094D 086	PAD	Showing	Cu	D05: Volcanic redbed Cu
11	094D 092	LADY DIANA	Showing	Au, Ag, Cu, Pb, Zn	D03: Alkaline porphyry Cu-Au
12	094D 093	MAR	Prospect	Cu	D03: Volcanic redbed Cu
13	094D 103	SOUTH SOUP	Prospect	Au, Cu, Fe, Ma	K01: Cu skarn
14	094D 104	MONA JEAN	Showing	Cu, Ag	D03: Volcanic redbed Cu
15	094D 107	BANDY	Showing	Cu	D03: Volcanic redbed Cu
16	094D 108	LAKE	Showing	Cu, Ag	D03: Volcanic redbed Cu
17	094D 113	DAVIE CREEK MOLY	Developed prospect	Mo, Cu, Wo	L05: Porphyry Mo (Low F-type)
18	094D 114	MCCONNELL BERYL	Showing	Be	O01: Rare element pegmatite - LCT family
19	094D 124	TOM	Showing	Cu	D03: Volcanic redbed Cu
20	094D 125	KELLY	Showing	Mo	L05: Porphyry Mo (Low F-type)
21	094D 137	JOHAN	Showing	Au, Ag	I01: Au quartz veins
22	094D 139	AUPPER	Showing	Au, Cu, Ag	L01: Subvolcanic Cu-Ag-Au (As-Sb)
23	094D 140	KC	Showing	Au, Ag, Pb, Zn, Ma	I05: Polymetallic veins Ag-Pb-Zn-Au
24	094D 141	MAL	Showing	Cu, Au, Ag	L04: Porphyry Cu-Mo
25	094D 145	KAREN CREEK	Showing	Au, Ag, Cu	L01: Subvolcanic Cu-Ag-Au (As-Sb)
26	094D 172	CARRUTHERS PASS	Prospect	Cu, Zn, Ag, Au, Co	G04: Besshi massive sulphide Cu-Zn
27	094D 176	CRO 2	Showing	Ag, Au, Cu	unknown
28	094D 177	DBC	Showing	Au, Ag, Cu, Pt, Pd	I01: Au quartz veins
29	094D 180	KC 1	Showing	Au, Ag	I05: Polymetallic veins Ag-Pb-Zn-Au
30	094D 183	UPC	Showing	Au, Ag, Cu	I01: Au quartz veins
31	094D 188	04SEN-230	Showing	Pb, Cu, Ag, Au	I05: Polymetallic veins Ag-Pb-Zn-Au
32	094D 203	DORT 3 EAST	Showing	Au	I01: Au quartz veins
33	094D 204	DORT 2	Showing	Au, Ag	I01: Au quartz veins
34	094D 235	PASS 3	Showing	Cu, Ag	I06: Cu-Ag quartz veins
35	094D 236	PASS2 SOUTH	Showing	Cu, Ag	E04: Sediment-hosted Cu
36	094D 237	PASS2 WEST	Showing	Au, Ag, Cu	I05: Polymetallic veins Ag-Pb-Zn-Au
37	094D 252	RED BLUFFS	Showing	Au	I01: Au quartz veins
38	094D 263	TF	Showing	Au	I01: Au quartz veins
39	094D 254	FOG	Prospect	Cu, Ag	D03: Volcanic redbed Cu
40	094D 255	PARISH HILL	Showing	Cu, Au, Ag	K01: Cu skarn

Descriptive notes
In 2018, the British Columbia Geological Survey initiated a multi-year program integrating 1:50,000 scale bedrock and surficial geological mapping for northern Hogen batholith. New bedrock mapping refined the origin and timing of batholith emplacement and base- and precious-metal mineralization (Ootes et al., 2019a, b, 2020a; Jones et al., 2021), and new surficial geology mapping is detailed in the ice-flow history (Ferbey and Elia, 2021). The present series of 1:50,000-scale surficial geology maps for the Notch Lake (NTS 94C/4), Nanitsch Lake (NTS 94D/1), and Carruthers Pass (NTS 94D/8) map areas.

The Cordilleran Ice Sheet covered the Hogen batholith area during the Late Wisconsinan glacial maximum when ice flowed east and southeast across the region from an ice divide above the Skeena Mountains. During this stage, ice-flow was independent of valley floor topography and glaciers were able to move over low-elevation topographic divides, transporting glacial debris into adjacent drainages (Ryder and Maynard, 1991; Clague and Ward, 2011). Glacially streamlined or eroded landform and outcrop-scale indicators are commonly aligned parallel with valleys, indicating that ice flow direction was still controlled by steep, high-elevation valley walls for most of the Late Wisconsinan.

Overconsolidated subglacial tills were deposited in the area during full-glacial conditions as till blankets, streamlined tills, and till veneers. During deglaciation, less consolidated melt-out tills were deposited as talus cones. Significant volumes of glacial meltwater flowed through the area during deglaciation, creating numerous lakes and streams. Most of the meltwater was deposited in subglacial (forming extensive outwash plains and terraces) but a component was subglacial (forming eskers) or in contact with stagnant ice blocks (producing hummocky and gravelly surfaces). Colluvial deposits are common along the base of steep slopes and are now vegetated and stable, but talus aprons and cones are still actively being constructed. Solifluction lobes and rock glaciers are currently active, predominantly on north-facing slopes. Organic deposits occur throughout the study area, mostly as narrow transition zones between tree stands and water bodies. These deposits can be extensive along the floors of retreat-phase glaciolacustrine meltwater channels.

Subglacial till, the ideal sample medium for till geochemistry and mineralogy surveys in mineral exploration (Levson, 2001), is common in valley bottoms and covering lower hillslopes. Although bedrock is well-exposed at high elevation, small, isolated outcrops, which may be overlooked, are common along valley bottoms and on forested hill flanks.

References cited
Clague, J.J., and Ward, B.C. 2011. Pleistocene Glaciation of British Columbia. In: Ehlers, J., Gibbard, P.L., and Hughes, P.D., (Eds.), Developments in Quaternary Science, 15, Amsterdam, pp. 563-573.

Deblonde, C., Campbell, J.E., Chow, W., Cocking, R.B., Huntley, D.H., Parent, M., Rice, J.M., Robertson, L., Smith, I.R., Weatherston, A., and