1988-23 C.4

MINERAL RESOURCES DIVISION Geological Survey Branch

PRODUCING AND DEVELOPING THERMAL COAL PROPERTIES IN BRITISH COLUMBIA

By A. Matheson

OPEN FILE 1988-23

MINERAL RESOURCES DIVISION Geological Survey Branch

Canadian Cataloguing in Publication Data Matheson, A.

Producing and developing thermal coal properties in British Columbia

(Open file, ISSN 0835-3530; 1988-23)

Bibliography: p. ISBN 0-7718-8686-1

Bituminous coal - British Columbia - Thermal properties.
 Coal mines and mining - British Columbia.

I. British Columbia. Geological Survey Branch. II. Title. III. Series: Open file (British Columbia. Geological Survey Branch) ; 1988-23.

HD9554.C33B775 1988 338.2'724'09711 C88-092189-7

Open file reports are preliminary and may not conform to editorial standards applied to other publications of the British Columbia Geological Survey Branch

VICTORIA BRITISH COLUMBIA CANADA

January 1989

TABLE OF CONTENTS

Page	
INTRODUCTION1	
Acknowledgments2	
THE EAST KOOTENAY COALFIELDS	
Infrastructure	
Production And Markets	
Producing Mines Crowsnest Coalfield:	
Balmer (Sparwood) Operations	
Coal Seam Development5	
Reserves5	
Coal Preparation And Production5	
Markets - Published Contracts5	
Shipping Specifications -	
Not Available5	
Byron Creek, Coal Mountain5	
Coal Seam Development	
Reserves	
Coal Preparation And Production	
Markets - Published Contracts	
Shipping Specifications5	
Producing Mines Elk Valley Coalfield:	
Greenhills Operations	
Coal Seam Development	
Reserves6	
Coal Preparation And Production	
Markets - Published Contracts	
Shipping Specifications (Raw Coal)	
Line Creek	
Coal Seam Development	
Reserves	
Coal Preparation And Production	
Markets	
Published Contracts	
Shipping Specifications	
Fording River Operations	
Coal Seam Development7	
Reserves	
Coal Preparation And Production	
Markets - Published Contracts7	
Shipping Specifications -	
Product Range7	
THE PEACE RIVER COALFIELD	
Infrastructure	
Production And Markets	
Producing Mines Peace River Coalfield:	
Quintette	
Coal Seam Development	
Reserves	
Coal Preparation, Production,	
Markets And Shipping	
Specifications	
Bullmoose Mine	
Coal Seam Development11	

Page
Reserves
Coal Preparation And Production
Markets - Published Contracts
Shipping Specifications11
THE TELKWA COALFIELD
Infrastructure
Prospective Mine Telkwa Coalfield:13
Telkwa
Coal Seam Development
Reserves14 Mining
Coal Preparation And Production
Projected Shipping Specifications
Government Approvals
VANCOUVER ISLAND COALFIELDS
Infrastructure
Producing Mine Comox Coalfield:
Quinsam
Reserves
Coal Preparation And Production
Shipping Specification - On A Run-of-
mine Basis
Prospective Mine Nanaimo Coalfield:16
Mid-island Coal Project16
Coal Seam Development
Reserves
Coal Preparation And Production
Markets
rojecto smpping specifications
COAL QUALITY
REFERENCES
GLOSSARY
APPENDICES
I. Summary Of Coal Quality Requirements - Cement
Manufacture
II. Summary Of Coal Quality Requirements - Power
Generation
Different Bases
IV. Analysis Of Raw Coal With Fuel Potential
FIGURES
1. Coalfields Of British Columbia
2. East Kootenay Coalfields
3. Peace River Coalfield
5. Comox And Nanaimo Coalfields

Page

TABLES 1. Reserves Of Coal - East Kootenay Coalfields4

- 2. East Kootenay Coalfields Infrastructure To
- British Columbia......4
- 4. National And International Sales Of British Columbia Thermal Coal (Clean) From 1981 to 1985.....5

Page
5. Reserves Of Coal - Peace River Coalfield10
6. Peace River Coalfield Infrastructure To
Tidewater10
7. Production Of Clean Thermal Coal Northeastern
British Columbia10
8. Western Canadian Low-sulphur Coals
9. Coal Quality Comparison
10. Proximate Analysis Of Coals <15% Ash

Geological Survey Branch

INTRODUCTION

Following the Industrial Revolution coal became the major source of energy until the early part of the 20th century, when its importance declined as a result of the increase in use of abundant and inexpensive petroleum and natural gas. In recent years, however, the rising cost of petroleum has encouraged a return to the use of thermal coal and emphasized the necessity to avoid too great a dependency on any one source of fuel, particularly in view of the vagaries of present-day pricing. The diminishing supplies of petroleum and natural gas, the unstable political situation in the Middle East (source of over 60 per cent of the world's petroleum reserves) and the vast resources of coal throughout the world will ultimately force industry to become more dependent on coal and other alternative sources of energy.

The variability in rank of British Columbia coals allows the resource to meet a large spectrum of market demands. The coals vary from lignite at Hat Creek to anthracite in the Groundhog basin. The lignite at Hat Creek has undergone tests for atmospheric fluidized bed combustion and integrated coal gasification combined cycle for thermal power generation. Hat Creek has not

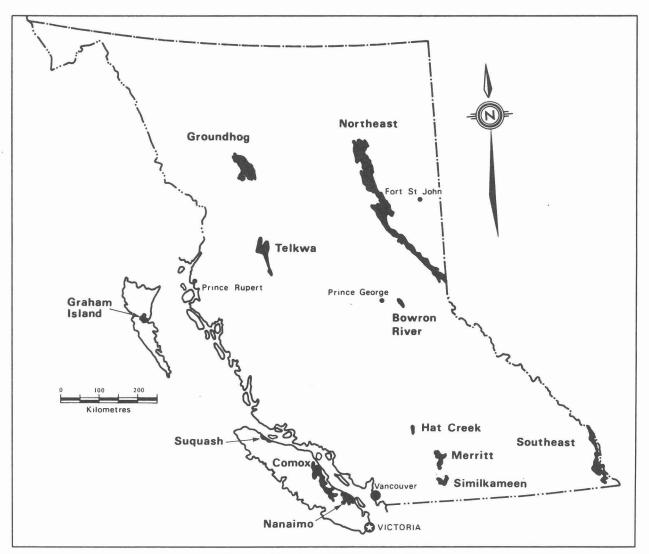


Figure 1. Coalfields of British Columbia.

reached the development stage, as a result, it is not dealt with in this paper. As anthracite, such as that of the Groundhog Basin, has very specialized uses and a different set of requirements, it has also been excluded. The province's bituminous and sub-bituminous coals, which are the subject of this report, may be of immediate interest to Ontario Hydro. The total *in situ* reserve and resource figure for thermal coal in British Columbia is 12.14 billion tonnes, almost 30 per cent of the entire provincial coal resource. At present, major coal production is from two areas in the province, the southeast and the northeast. Limited production is also obtained from Vancouver Island. With the exception of production from the Byron Creek and Quinsam properties, the coals are principally used for metallurgical purposes, however, about 15 per cent of the total is oxidized and as a result, is sold as thermal coal. The Telkwa coalfield in the west-central part of the province has a property in the pre-production stage which will produce thermal coals.

ACKNOWLEDGMENTS

The author would like to acknowledge the invaluable assistance of W. Kilby, D. Grieve, and J. Schwemler, particularly in the presentation of the analytical data (Appendix IV), and to B. Arnet for the time she has spent typing this report and D.J. Fehr for the typesetting and formatting which improved the presentation.

THE EAST KOOTENAY COALFIELDS

The East Kootenay coalfields, located in southeastern British Columbia, are comprised of three separate fields which extend from the Montana border northward and are known respectively as the Flathead, Crowsnest and Elk Valley Coalfields.

These are the most important coalfields of the province and have produced well over 100 million tonnes of metallurgical coal and about 10 million tonnes of thermal coal from a number of different mines since 1898. All three fields are underlain by Jurassic-Cretaceous Kootenay Group strata, with the coal contained predominantly within the Mist Mountain Formation. There is a wide variation in the thickness of the Mist Mountain Formation with a resulting variation in the number of coal seams. Thus, where the formation is preserved in the Flathead coalfield, it contains only four or five seams, whereas in parts of the Elk Valley coalfield it contains in excess of 15 seams. Tectonism has caused repetition and structural thickening of seams, in many places enhancing reserves, while in some locations severe folding and faulting have hindered mining and effected quality.

In both the Elk Valley and Crowsnest coal basins, the coal measures are about 500 to 600 metres in thickness and contain up to 23 seams; the number of mineable seams ranges from 1 at Byron Creek to 10 and 11 at the Fording and Greenhills operations respectively, with an aggregate coal thickness of 55 metres. The coal resources

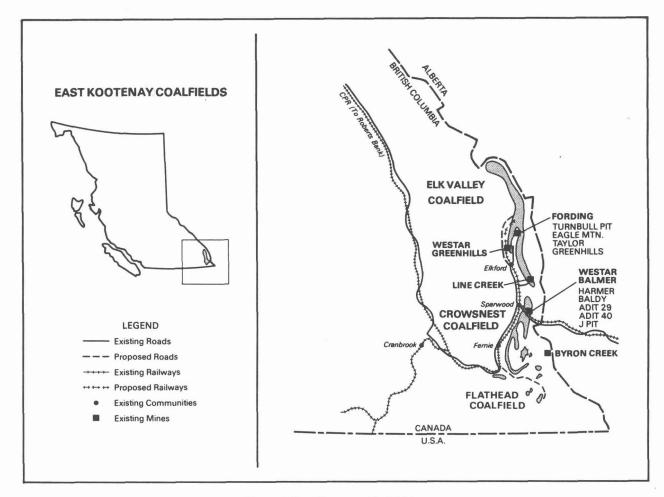


Figure 2. East Kootenay Coalfields.

of the Elk Valley, Crowsnest and Flathead coalfields are detailed in Table 1. Coal rank varies from low-volatile to high-volatile A-bituminous, with the five operating mines producing a range of coking, semi-coking and thermal coal products.

Appendix III gives the various multiplication factors required to convert chemical coal quality parameters from one basis to another. Naturally, these formulas cannot be applied to the ash properties, physical properties such as grindability and abrasion index and caking/coking properties of a coal. The factors are expressed in terms of the parameters most commonly available from coal quality data.

In the Crowsnest coalfield, Westar Mining Ltd., Balmer Operations, and Byron Creek Collieries Ltd. operate open pit mines which produce predominantly from one seam (the Mammoth seam at Byron Creek and the Balmer seam at Balmer), although Westar's dependence on the Balmer seam is decreasing with time. In the Elk Valley coalfield, Westar Mining's Greenhills Operations, Crows Nest Resources' Line Creek Mine, and the Fording River operations of Fording Coal Ltd. are open pit mines which produce from multiple seams. All five mines are truck-shovel operations, with the exception of Fording Coal which utilizes both truck-shovel and dragline mining systems.

			TABL	E 1	
RESERVES	OF	COAL -	EAST	KOOTENAY	COALFIELDS

	Geological in situ Coal (million tonnes)						
	Metallurgi	cal Quality	Thermal Quality				
Property	Measured	Indicated	Measured	Indicated			
Total geological in situ coal	1030	44	160	0			
Total run-of-mine coal	880	22	120	0			
Total saleable coal	540	14	110	0			

INFRASTRUCTURE

Coal from southeastern British Columbia is shipped through two ports: the larger, Roberts Bank, has two berths, one of which is capable of handling 250 000 DWT (dead weight short tons) vessels. This facility handles all offshore coal shipments from the southeast except those from Byron Creek which pass through Port Moody, a port capable of taking 65 000 DWT vessels (Table 2).

PRODUCTION AND MARKETS

The sale of clean thermal coal has risen steadily this decade peaking in 1984 and 1986. It is estimated that sales in 1987 will be roughly equivalent to the previous year (Table 3).

International markets have expanded in recent years, and in addition to those countries listed in Table 4, include Finland, Holland and Egypt. Over 80 per cent of the thermal coal exported comes from southeastern British Columbia.

TABLE 3 PRODUCTION OF CLEAN THERMAL COAL IN SOUTHEASTERN BRITISH COLUMBIA Mine Production (tonnes)

Byron Line						
Year	Westar	Creek	Fording	Creek	Total	
1981	403 675	441 237	-	-	844 912	
1982	354 319	1 029 908	106 168	795 297	2 285 692	
1983	444 906	1 292 148	60 255	611 058	2 408 367	
1984	968 314	1 337 787	220 925	1 148 375	3 675 401	
1985	743 170	1 048 297	178 376	998 827	2 968 670	
1986	821 166	874 826	492 816	833 604	3 022 412	
1987	2 198 816	614 672	837 617	567 815	4 218 920	

TABLE 2				
EAST KOOTENAY COALFIELDS				
INFRASTRUCTURE TO TIDEWATER				

Port		oughput Capacit on tonnes per ye		Operating Mines	Access via	Distance km
	Capacity	Total**	Thermal**			
Westshore Terminals Roberts Bank	24.0	12.7	2.9	Line Creek Crows Nest Resources	Rail-CP	1135
				Fording River Fording	Rail-CP	1170
				Greenhills Westar	Rail-CP	1150
				Balmer Westar	Rail-CP	1120
Pacific Coast Terminals	1.5			Byron Creek Byron Creek	Rail-CP	1125
Port Moody				Collieries		
Thunder Bay	n/a*	0.9	0.9		Rail-CP	2200

*n/a - not announced

**1986

TABLE 4 NATIONAL AND INTERNATIONAL SALES OF BRITISH COLUMBIA THERMAL COAL (CLEAN) FROM 1981 TO 1985

Destination	Sales in Million Tonnes
Canada	
Ontario	3.84
British Columbia	0.67
Manitoba	0.43
Alberta	0.02
South Korea	5.34
Japan	4.86
Denmark	1.95
Hong Kong	1.22
United States	0.60
France	0.88
Spain	0.22
Taiwan	0.20
West Germany	0.03
Phillippines	0.17
Belgium and the Netherlands	0.17
Brazil	0.05

Total 20.65

PRODUCING MINES CROWSNEST COALFIELD:

BALMER (SPARWOOD) OPERATIONS

Operator:	Westar Mining Ltd.
Owners:	Westar Group, (66.6%)
	Group of 10 Japanese coal
	consumers, (33.4%)

COAL SEAM DEVELOPMENT

The coal measures are about 610 metres thick, with between 45 and 52 metres of coal contained in 11 seams. Present production is mainly from the No. 10 (Balmer seam) which has an average thickness of 13.7 metres, but can be greater where local structural thickening occurs. The coal rank ranges from low to high-volatile bituminous with a tendency for the latter to occur in the upper seams (Appendix IV).

RESERVES

The total *in situ* coal reserves and resources of the property are approximately 300 million tonnes, of which about 10 per cent is thermal coal.

COAL PREPARATION AND PRODUCTION

The plant has two operation lines with a combined production capacity of 5.8 million tonnes per year.

The average annual coal production planned for the years from 1988 to 1991 is 9.05 million tonnes of raw coal yielding 5.7 million tonnes of clean coal at 62.5 per cent recovery. Due to current thermal coal prices, Westar is reducing its thermal coal sales.

Annual

		Contract		Volume	
Location	Company	From	То	(000 tonnes)	
California U.S.A.	Genstar Cement	04/86	n/a*	43.5	
Washington U.S.A.	Columbia Cement (Bellingham)	1986	n/a	75	
California U.S.A.	Cogeneration National (Stockton)	1985	2000	136	
Ontario	Ontario Hydro	1987	n/a	180	

'n/a = not available

SHIPPING SPECIFICATIONS - NOT AVAILABLE

BYRON CREEK, COAL MOUNTAIN

Operator: Byron Creek Collieries (1983) Ltd. Owner: Esso Resources Canada Limited

COAL SEAM DEVELOPMENT

Mining is entirely in the Mammoth seam which is 30 to 60 metres thick, but may reach 200 metres apparent thickness as a result of local structural thickening. There is considerable variation in the ash content of the seam.

RESERVES

The *in situ* coal reserves are reported as 102 million tonnes and the indicated resources as 109 million tonnes.

COAL PREPARATION AND PRODUCTION

A new heavy-medium washing plant and drier complex with a capacity of 2 million tonnes per year began production in 1986; total plant capacity is now 3.6 million tonnes per year.

The proposed operating plan to 1990 will raise production to 2.3 million tonnes with a stripping ratio of 5.5 bank cubic metres per tonne clean coal. The coal is sold predominantly for thermal purposes though some is being sold as a soft coking coal.

MARKETS - PUBLISHED CONTRACTS

		Contract		Volume
Country	Company	From	То	(000 tonnes)
Canada	Hudson Bay Mining & Smelting Company Flin Flon, Manitoba	1987 Ltd.	1989	60
	Ontario Hydro	1977	1992	590
Japan	Sumitomo Metal Industries	1988	1989	N/A
	Nippon Kokan K.K.	1988	1989	N/A
	Kobe Steel	1988	1989	N/A

SHIPPING SPECIFICATIONS

	Thermal Coal	Low-Ash Coal
Total Moisture	8%	8%
Ash	15.1%	8.5% - 9%
Volatile matter	22.6%	21.0% - 22.5%
Fixed Carbon	54.3%	60.5% - 62.5%
Total Sulphur	0.3%	0.3%
Calorific Value	6370 kcal/kg	6830 kcal/kg
Hardgrove Index	75-80	75-80
PRODUCING	MINES	

ELK VALLEY COALFIELD:

GREENHILLS OPERATIONS

Operator:	Westar Mining
Owners :	Westar Group (80%)
	Pohang Iron and Steel
	(South Korea), (20%)

COAL SEAM DEVELOPMENT

Only a few of the 29 known coal seams on the property are economic. There are five major seams, continuous throughout the property, which constitute about 68 per cent of the *in situ* reserves.

Seams lower in the sequence (Nos. 1, 7 and 10) are medium-volatile bituminous coals, whereas the higher seams (16 and 20) are high-volatile A bituminous (Appendix IV).

RESERVES

The proven mineable reserves are reported as 104.1 million tonnes of which about 20 per cent is thermal coal.

COAL PREPARATION AND PRODUCTION

The anticipated annual production of clean coal through to the year 1990, at a stripping ratio of 4.0 bank cubic metres per tonne raw coal, is 2.1 million tonnes of coking coal and 0.8 million tonnes of thermal coal. Due to current thermal coal prices, Westar is reducing its thermal coal sales.

MARKETS - PUBLISHED CONTRACTS

		Cont	ract	Annual Volume	
Country	Company	From To		(000 tonnes)	
Denmark	Elkraft Power Co.	1982	1991	400 (to be shared) with Balmer	
Hong Kong	Kowloon Electric Supply Co.	1982	1988	250-500	
South Korea	Korea Electric Power Corp.	1982	1987	250	

SHIPPING SPECIFICATIONS (RAW COAL)

Total Moisture	10%
Inherent Moisture	1.5%
Ash	16%
Volatile Matter	25.0% - 28.0%
Fixed Carbon	54.5% - 57.5%
Total Sulphur (adb)	0.5%
Calorific Value (adb)	6900 kcal/kg
Ash Fusion Temp. (initial)	1300°C
Hardgrove Index	70 - 80
Size	50 mm x 0

LINE CREEK

Operator:	Crows Nest Resources Limited
Owner:	Shell Canada Resources Limited

COAL SEAM DEVELOPMENT

There are seven coal seams with average thicknesses varying from 2.8 to 11.6 metres and with an aggregate thickness of up to 55 metres. Ninety per cent of the reserves are in the four lowest seams. Though seam No. 8 is the thickest, and is mainly metallurgical, it has good thermal coal properties. The coals vary in rank from low to medium-volatile bituminous (Appendix IV).

RESERVES

The *in situ* coal reserves and resources at an average stripping ratio of 5.24 bank cubic metres per tonne clean coals are: reserves 44.5 million tonnes, resources 180 million tonnes. About 20 per cent of the entire reserves and resources are thermal.

COAL PREPARATION AND PRODUCTION

The total annual production capacity is 2.7 million tonnes, of which a portion (by-product of the metallurgical coal) is thermal coal, the washing yield is about 68 per cent at 15-17 per cent ash. As the pits get progressively deeper, and the oxidized coal less, the production of thermal coal diminishes.

MARKETS

Most thermal coal sales are committed to Korea; surpluses may be sold elsewhere. Sales in thousands of tonnes are summarized in the following table:

Thermal Coal Destinations

	Korea (000 tonnes)	Other (000 tonnes)	Total (000 tonnes)	
1984	827	243	1070	
1985	1151	101	1252	
1986	834	-	834	
1987	735	-	735	

PUBLISHED CONTRACTS

		Con	tract	Annual Volume
Location	Company	From	То	(000 tonnes)
South	Керсо	1985	1989	n/a*
Korea	Ssang Yong	1982	1991	35
Japan	Nihon Cement	1985	-	50
*= /= = ==	emiloble			

*n/a = not available

SHIPPING SPECIFICATIONS

	Clean Coal	Unwashed Coal
Total Moisture	8%	6%
Ash	17% Max	23%
Volatile Matter	21% Min	17 - 20%
Total Sulphur	0.5%	0.5%
Calorific Value	6400 kcal/kg	6400 kcal/kg
Size	50 mm x 0	50 mm x 0

FORDING RIVER OPERATIONS

Operator:	Fording Coal Ltd.
Owner:	Fording Coal Ltd
	a subsidiary of CP Ltd.

COAL SEAM DEVELOPMENT

The coal-bearing formation is 500 metres thick and contains at least 20 seams which are mineable (*ie.* individual seam thickness greater than 1.5 metres). The aggregate thickness of these seams is from 45 metres to 70 metres. The largest seam averages 10 metres in thickness. The coal is medium-volatile to high-volatile bituminous in rank (Appendix IV).

RESERVES

The majority of the reserves occur in the Eagle Mountain area, followed by the Greenhills, Elco, and Turnbull areas. The total *in situ* open pit reserves exceed 300 million tonnes of metallurgical coal and 30 million tonnes of thermal coal.

COAL PREPARATION AND PRODUCTION

The planned annual production is 5.6 million tonnes of metallurgical coal and 400 000 tonnes of thermal coal for the next 30 years (from 1988 to 2018). All production is by conventional open pit mining methods and will be at an overall stripping ratio of 7.0:1 (bank cubic metres of waste to metric tonnes of clean coal produced). Washplant yield varies from 50 to 80 per cent, depending on the seam being processed, averaging 67 per cent. Ash content of the cleaned product varies from 6 to 15 per cent, depending on the seam and product specifications.

MARKETS - PUBLISHED CONTRACTS

		Contract		Annual Volume
Location	Company	From	То	(000 tonnes)
South Korea	Korea Electric Power Corp.	1982	1991	250
Canada	Ontario Hydro	1988	-	180
Canada	Steel Brothers Cement	1982	1990	30
USA	Lehigh Portland Cement Washington State	1982	-	20

SHIPPING SPECIFICATIONS - PRODUCT RANGE

Ash	7.0% - 15.0%
Moisture	8.0% - 12.0%
Volatile Matter	20.0% - 31.0%
Fixed Carbon	55.0% - 66.0%
Sulphur	0.35% - 0.75%
Calorific Value (daf)	7800 kcal/kg - 8700 kcal/kg

THE PEACE RIVER COALFIELD

The Peace River coalfield, situated in the northeast part of the province, produced about 100 000 tonnes of medium-volatile bituminous coal with intermittent production from small mines between 1908 and 1960. The area was subjected to a high level of exploration activity from 1978 to 1984.

Coal measures are contained in the Cretaceous Gething and Gates Formations. In the southern part of the field the major portion of the coal resource is contained in the Gates Formation, whereas in the northern part the older Gething Formation contains most of the coal.

Well-developed coal in the Gates Formation is found southeast of the Sukunka River and extends along the foothills into Alberta; northwest of the Sukunka River the formation is dominantly marine. The mineable thickness of coal reaches 22 metres in four seams at the Quintette mine. Here the single most important seam is the J seam which reaches 10 metres in thickness and has great lateral extent. J seam is equivalent to the A (or B?) seam at the Bullmoose mine and seam B4 in the Monkman deposit.

Well-developed coal in the Gething Formation extends from the Pine River southeast to Kinuseo Creek. Thinner, but still economically interesting coal is present as far north as Williston Lake (Carbon Creek deposit). North of Williston Lake the Gething Formation is dominantly marine. Significant deposits in the Gething Formation include Burnt River (lower Gething coal) and Sukunka (upper Gething coal). Seam 60 at Burnt River reaches 8 metres in thickness and at Sukunka, the Bird and Chamberlain seams are up to 5 metres thick. Thick and continuous coal development in the Gates and Gething Formations is related to cycles of marine transgression and regression.

Figure 3. Peace River Coalfield.

TABLE 6 PEACE RIVER COALFIELD INFRASTRUCTURE TO TIDEWATER						
Port	Throughput Capacity (million tonnes per year)			Operating Mines	Access via	Distance km
	Capacity	Total**	Thermal**			
Ridley Island	10 - 12	7.12	0.12	Quintette	Rail (BCR/CNR)	995
				Bullmoose	Rail (BCR/CNR)	1005

**1986

In the foothills region up to five marine cycles are known in the Gates Formation and two (one major, one minor) are recognized in the Gething. The Gates and Gething coal measures have both been severely effected by Rocky Mountain tectonism so that structural separation and repetition are common. The rank of the coal varies from semi-anthracite to high-volatile bituminous, with Gates coal generally showing better coking quality.

The reserves and resources of the coalfield as assessed for the major properties, Carbon Creek, Burnt River, Sukunka, Mount Spieker, Monkman, Saxon, Quintette and Bullmoose are shown in Table 5 but only the two latter properties are in production.

TABLE 5						
RESERVES	OF	COAL	-]	PEACE	RIVER	COALFIELD

	Geological in situ Coal (million tonnes)					
	Metallurgi	cal Quality	Thermal Quality			
Property	Measured	Indicated	Measured	Indicated		
Carbon Creek						
Burnt River						
Sukunka						
Bullmoose	470*	290*	110*	7.8*		
Mount Spieker						
Quintette						
Monkman						
Saxon						

*Figures are totals for all properties listed.

INFRASTRUCTURE

The coal port on Ridley Island at Prince Rupert was completed at the end of 1983, primarily to provide port facilities for northeast coal shipments (Table 6). The coal is carried by the British Columbia Railway from the mines to Prince George where the coal trains are switched to the Canadian National Railway northern main line, and then continue to Prince Rupert. Ridley Island has one berth which is capable of handling 250 000 DWT vessels.

PRODUCTION AND MARKETS

Production of coal for export started in the Peace River region in 1983 with Quintette producing both metallurgical and thermal coal and Bullmoose producing metallurgical coal exclusively. The following year both mines were producing both commodities and the production of thermal coal peaked (Table 7).

Less than 20 per cent of thermal coal exported from the province comes from the Peace River coalfields. The total provincial figures are shown in Table 4.

TABLE 7
PRODUCTION OF CLEAN THERMAL COAL
NORTHEASTERN BRITISH COLUMBIA

Mine Production (tonnes)			
Year	Quintette	Bullmoose	Total
1983	39 650	-	39 650
1984	703 331	66 780	770 111
1985	713 244	69 618	682 862
1986	105 055	10 000	115 055
1987	9 037	-	9 037

PRODUCING MINES PEACE RIVER **COALFIELD:**

QUINTETTE

Operator:	Quintette Coal Ltd.
Owners:	Denison Mines Limited (50%)
	Mitsui Mining Overseas
	Development (12.5%)
	Carbonnages de France (12.0%)
	Tokyo Boeki Ltd. (10.5%)
	Sumitomo Corporation (5.0%)
	Nine Japanese firms
	(for example, Nippon Steel)(10%)

COAL SEAM DEVELOPMENT

The Gething and Gates formations both contain coal seams on the property, but all the reserves are in the Gates Formation. The coal is medium-volatile bituminous.

RESERVES

Pit	No. and Name of Seams	Thickness (m)	Total (m)
Mesa	4: D, F, G & J	1.88-9.32	22.5
Wolvervine	9: D, E1, E2, F2, G1 G2, J1-J3	0.84-3.12	16.7
Shikano	5: E, E3, G, J & K	1.41-5.17	19.0
Babcock	6: D, E, F, G, J & K	1.94-5.69	18.5

Mineable thermal coal reserves by pit areas are as follows:

Pit	Raw Coa (000 tonne	
Mesa	1545	
Mesa Extension	444	
Wolverine	4168	
Shikano	3905	
Babcock	5106	
Quintette Trend	2988	
Roman	2322	
TOTAL	20478	

COAL PREPARATION, PRODUCTION, MARKETS AND SHIPPING SPECIFICATIONS

Quintette has not shipped thermal coal since 1986.

BULLMOOSE MINE

Operator: Teck Corporation Owners: Teck Corporation (51%) Lornex Mining Corporation Ltd. (39%) Nissho Iwai Coal Development (Canada) Ltd. (10%)

COAL SEAM DEVELOPMENT

The coal occurs in the Gates Formation where 80 metres of coal measures contain five seams with an aggregate thickness of 12.6 metres.

The individual seams vary in thickness from 1.4 metres to 4.8 metres. The coal is medium-volatile bituminous.

Seam	South Fork Pit
A	2.6 m
В	4.8 m
С	1.8 m
D	2.0 m
Е	1.4 m

RESERVES

Mineable reserves, at an average projected stripping ratio of 4.5 bank cubic metres per tonne of raw coal are broken down by seam as follows:

Seam	Tonnage (000)	Percentage of Total
А	19 000	24.2
В	35 300	43.1
С	12 600	15.4
D	12 300	15.0
E	1 900	2.3
TOTAL	81 100	100.0

A little over 4 per cent of total mineable reserves is thermal coal.

COAL PREPARATION AND PRODUCTION

An annual production of 3 million tonnes of raw coal will yield 2.3 million tonnes of clean coal, this includes about 0.06 million tonnes of thermal coal.

MARKETS - PUBLISHED CONTRACTS

Not available

SHIPPING SPECIFICATIONS

	Raw Coal
Total Moisture	8.0%
Inherent Moisture	2.5%
Ash	15%
Fixed Carbon	55%
Volatile Matter	22%
Total Sulphur	0.5%
Calorific Value	7000 kcal/kg
Ash Fusion Temperature	1250°C - 1470°C
Hardgrove Index	81-82
Size	5 mm x 0

THE TELKWA COALFIELD

This coalfield has produced intermittently since 1918, but of the 433 000 tonnes produced to 1970, most was for domestic consumption. Intensive exploration has been conducted in recent years and substantial resources of good quality thermal coal have been delineated.

The Telkwa and Red Rose coal measures locally exceed 400 metres in thickness. They correlate with the lower part of the Cretaceous Skeena Group. The coal measures are folded and faulted; however, areas of shallow dips provide favourable sites for potential open pit mining. In places as many as ten coal seams occur, with individual seams up to 7.5 metres thick. The coals vary in rank from medium to high-volatile bituminous.

INFRASTRUCTURE

Ridley Island at Prince Rupert is reachable by either rail (CNR) or road, with a 400 kilometre haul. In the former case, a short (5 km) spur line would be required to connect the mine with the CNR main line at Telkwa.

PROSPECTIVE MINE TELKWA COALFIELD:

TELKWA

Operator:	Crows Nest Resources Limited
Owner:	Shell Canada Limited

COAL SEAM DEVELOPMENT

The coal measures in the upper sequence vary in thickness from 85 to 100 metres in the centre of the field, and consist of ten major seams varying from 0.5 to 7.5 metres thick, with an aggregate thickness of 14 to 18 metres.

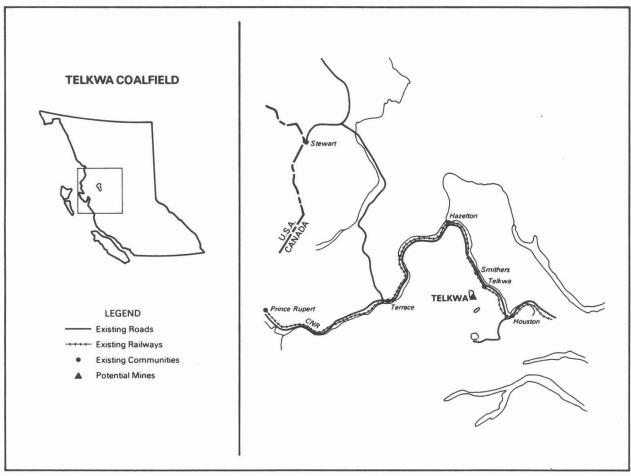


Figure 4. Telkwa Coalfield.

The lowermost seam, No. 1 in the lower sequence, is about 100 metres below No. 2 seam, and separated from it by a marine unit. However, only a very small tonnage may be extracted from No. 1 seam, and as a result it has been discounted in the reserve calculation. The product is a medium to high-volatile bituminous thermal coal.

RESERVES

Using a cut-off of 0.6 metres for seams numbered 2 to 10, the *in situ* coal resource is estimated to be 50 million tonnes of surface mineable coal distributed as follows:

Area	Resource (million tonnes)
North	10
East	30
Possible extensions	5
West	5
TOTAL	50
MINING	

Coal recovery is planned from up to eight open pits by conventional truck and shovel methods. Mineable reserves are in the order of 22 million tonnes of raw coal.

COAL PREPARATION AND PRODUCTION

The preparation plant will have a design capacity for an annual production of 800 000 tonnes of clean thermal coal.

PROJECTED SHIPPING SPECIFICATIONS

On an as-received basis:	
Total Moisture	10%
Ash	11%
Total Sulphur	1.0%
Volatile Matter	24.5% - 26.5%
Calorific Value	6480-6550 kcal/kg
Hardgrove Index	60
Ash Fusion Temp. (initial)	1300°C

GOVERNMENT APPROVALS

Approval-in-principal for mine development was received from the Government of British Columbia in November 1986.

VANCOUVER ISLAND COALFIELDS

The economic coal deposits of Vancouver Island occur in the late Cretaceous Nanaimo Group. Significant deposits are restricted to two major basins, the Nanaimo coalfield and, immediately to the north, the Comox coalfield. The coal is essentially a thermal coal, though some may be used as a soft coking coal.

Over the 100-year period which ended in 1953, more than 50 million tonnes were produced from the Nanaimo coalfield. Coal was extracted from three seams, the Douglas, Newcastle and Wellington. The area was considered to be largely mined out. However, a recent evaluation of the Nanaimo coalfield estimates an *in situ* resource of 8 million tonnes of coal. The dormant Wolf Mountain mine is located in this coalfield 10 kilometres southwest of Nanaimo.

In the Comox coalfield 18.6 million tonnes of coal was extracted from three principal seams between 1888 and 1953. The coal was mined underground from these seams and the product was high-volatile bituminous in rank. Quinsam lies 30 kilometres southwest of Campbell River near the northern extremity of the Comox coalfield.

INFRASTRUCTURE

The deposits are favourably located near tidewater on the east coast of Vancouver Island. The proposed route for the export of Quinsam coal is 32 kilometres by road from the mine to the barge loading site, 50 kilometres from Middle Bay on Texada Island where suitable port facilities exist for local distribution; it could also be barged from there to Westshore Terminals for export.

The Mid-Island coal project proposed to incorporate coal from the Wolf Mountain mine and fines reclaimed from waste dumps, all of which are located in the

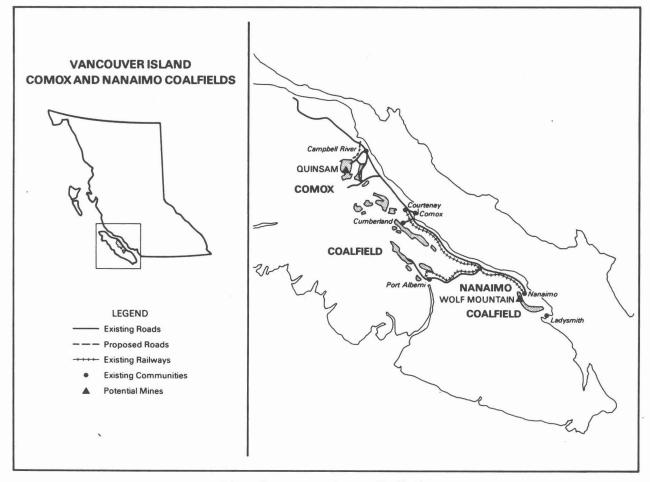


Figure 5. Comox and Nanaimo Coalfields.

Nanaimo coalfield. Raw coal from Wolf Mountain was to be transported by road to the preparation plants located within 6 kilometres of the port facilities where it was to have been processed with the material from the various waste dumps.

PRODUCING MINE COMOX COALFIELD:

QUINSAM

Operator:	Quinsam Coal Ltd.
Owners:	Brinco Coal Corp.

COAL SEAM DEVELOPMENT

There are three coal zones on the Quinsam property with thicknesses varying from 0.3 to 4.0 metres. In the Comox Formation the aggregate thickness of the seams varies from 4 to 8 metres in coal measures which in places reach 90 metres in thickness. In general the rank of the coal is high-volatile B bituminous.

RESERVES

The *in situ* reserves are estimated at 43.5 million tonnes of which 23.6 million tonnes are recoverable by surface mining and 19.9 million tonnes by underground methods. The mining yield is estimated at 91 per cent at an average stripping ratio of 8.6 bank cubic metres per tonne raw coal in the open pit.

COAL PREPARATION AND PRODUCTION

Production started in 1986 with 7000 tonnes, followed by 14 500 tonnes in 1987. One hundred and fifty-five thousand tonnes is scheduled for 1988 with an increase in subsequent years to an annual production of 1 million tonnes. The present product is raw run of mine coal crushed and screened.

Markets for the coal are being sought in the Pacific Rim countries, British Columbia, and the U.S.A. There is also the possibility that it may be economically viable to ship the coal to eastern Canada and Europe on Panamax vessels via the Panama Canal.

SHIPPING SPECIFICATION - ON A RUN-OF-MINE BASIS

Total Moisture	8.0% maximum
Residual Moisture	3.5% average
Ash Content	13.5% maximum

Fixed Carbon	48.0% ± 1.0%
Volatile matter	36.5% ± 1.0%
Total Sulphur	1.0% maximum
Calorific Value	6200 kcal/kg
Hardgrove Index	45 minimum
Ash Fusion Temp. (initial)	1250°C

PROSPECTIVE MINE NANAIMO COALFIELD:

MID-ISLAND COAL PROJECT

Operator: Mid-Island Coal Company Owner: Bel Construction Ltd.

COAL SEAM DEVELOPMENT

Only one of the six seams found on the Wolf Mountain property is of economic interest. The seam averages 2.5 metres in thickness and is correlated with the Wellington seam of the Extention-Protection Formation.

RESERVES

No reserves have been published.

COAL PREPARATION AND PRODUCTION

The plant would be capable of handling a minimum of 250 000 tonnes and a maximum of 500 000 tonnes of raw coal annually. The supplies would have been drawn from various tailing dumps in the area and the Wolf Mountain underground mine.

MARKETS

Markets are being sought in the Pacific Rim countries, British Columbia and the U.S.A.

PROJECTED SHIPPING SPECIFICATIONS

On an air-dried basis:	
Moisture	2.5%
Ash	12.3%
Volatiles	35.2%
Fixed Carbon	50.0%
Sulphur	0.39% - 0.62%
Calorific Value	12 000 Btu
Ash Fusion Temp (initial)	1252°C
Hardgrove Index	55-68
Free Swelling Index	2.5-4.0
Volatiles Fixed Carbon Sulphur Calorific Value Ash Fusion Temp (initial) Hardgrove Index	35.2% 50.0% 0.39% - 0.62% 12 000 Btu 1252°C 55-68

COAL QUALITY

TABLE 9

The Federal/Provincial Task Force report "Western Canadian Low Sulphur Coal: Its Expanded use in Ontario, Technical Report 1986," dealt with coal quality (Table 8). No quality data, however, are given on any of the British Columbia coals.

In the report, Western Canadian Bituminous coals were considered to be a combination of coals from current Alberta and B.C. suppliers. Coal from the latter has a significantly higher heating value than the Alberta suppliers. A variety of B.C. producers can surpass the Western Canadian Bituminous quality specification and several approach the Eastern U.S. Bituminous coal quality with low-sulphur contents.

This study indicates that the Quinsam property on Vancouver Island could provide a supply of good quality coal at a more competitive price than coal from Alberta and the interior of British Columbia. It is also interesting to note that of all the thermal coal in the province, the Vancouver Island coal is the closest in quality to the eastern bituminous coal imported by Ontario Hydro from the United States. A comparison is set out in Tables 8 and 9 below. Washing would not only reduce the ash content but enhance the calorific value and reduce the sulphur content making it an eminently suitable contender for that market.

	COAL QUALITY COMPARISON			
	Eastern Bituminous %	High Volat	tile Bituminous	
		Comox %	Nanaimo %	
Moisture	4-8	0.98-4.29	2.0-2.5	
Ash	8-10	10.37-14.58	10.32-14.89	
Volatiles	35-36	27.51-37.21	36.93-39.09	
Fixed Carbon	n 50-59	47.23-58.03	45.34-48.56	
Sulphur	2.21	0.39-1.35	0.42-0.96	
BTU	13 000-13 300	9 916-13 000	12 090-12 884	

Appendix IV sets out the thermal coal quality, as received basis, of 100 samples from the Northeast, the Southeast, Telkwa and Vancouver Island coalfields. The analyses include Proximate, Ultimate, Sulphur, Ash Constituents, FSI, Hardgrove Index, Ash Fusion Temperature, and Calorific Value. The mine, pit and seams from which the samples were taken are identified. The data may be manipulated as desired and, as an example, Table 10 sets out the proximate analysis of coals with less than 15 per cent ash and the percentage of samples falling into that category in each coalfield.

	ALBERTA		SASKATCHEWAN	UNITED STATES
	High Volatile Bituminous	Sub- Bituminous	Beneficiated	Eastern Bituminous
Moisture	6-9	17-25	12-14	5.5-6.5
Ash	15-30	7-20	9-15	7-9
Volatiles	35-40	30-38	26.10	33-37
Fixed Carbon	-	-	46.8	50.72
Sulphur	0.3-0.4	0.3-0.4	0.2-0.4	1.5-2.5
BTU	7 500-10 000	8 000-9 000	9 500	13 000-13 300

TABLE 8 WESTERN CANADIAN LOW-SULPHUR COALS

 TABLE 10

 PROXIMATE ANALYSIS OF COALS <15% ASH</td>

Coalfield	Crowsnest	Elk Valley	Peace River	Telkwa	Comox	Nanaimo
Percentages of samples	52	22	30	22	50	100
Moisture %	1.02-5.52	1.38-16.53	0.52-1.17	1.3-4.02	0.98-4.29	2.0-2.5
Ash Content %	10.7-14.9	5.26-13.72	5.47-14.77	4.4-14.6	10.37-14.58	10.32-14.89
Volatile Mat %	18.27-24.9	22.63-27.67	18.76-24.48	23.9-25.06	27.51-37.21	36.93-39.09
Fixed Carbon %	56.7-66.39	47.39-62.27	62.0-70.11	60.2-66.56	47.23-58.03	45.34-48.56
Sulphur %	0.14-0.3	0.43-0.7	0.26-1.16	0.2-0.33	0.39-1.35	0.42-0.96
BTU	11 985-13 054	9 399-11 985	13 341-14 397	12 776-13 711	9 916-13 000	12 090-12 884

REFERENCES

- Bonnell, G. W., Janke, L. C. and Romaniuk, A. S. (1983): Analysis Directory of Canadian Commercial Coals, Supplement No. 5; *Energy, Mines and Resources Canada*, Canmet Report 84-1E, Pages 183-215.
- Bonnell, G.W. and Janke, L.C. (1986): Analysis Directory of Canadian Commercial Coals, Supplement No. 6; Energy, Mines and Resources Canada, Canmet Report 85-11E, Pages 240-345.
- Company Annual Exploration Reports; Coal Guidelines Prospectus and Stage Reports: Quintette Coal Ltd. (Quintette), Teck Corporation (Bullmoose), Byron Creek Collieries Ltd. (Coal Mountain), Crows Nest

Resources Ltd. (Line Creek), Fording Coal Ltd. (Fording River Operations), Crows Nest Resources Ltd. (Telkwa), Quinsam Coal Ltd. (Quinsam), Wolf Mountain Coal Ltd. (Wolf Mountain).

- Federal/Provincial Task Force on Expanded Use in Ontario of Low-Sulphur Western Canadian Coal, (1986): Western Canadian Low-Sulphur Coal: Its Expanded Use in Ontario - Technical Report.
- Tibbetts, T. E., Montgomery, W. J. and Faurschou, D. K. (1978): Analysis Directory of Canadian Coals, Supplement No. 3, *Energy, Mines and Resources Canada*, Canmet Report 79-7, Pages 65-70.

GLOSSARY

C.V.:	Calorific value.
AIR DRIED:	The moisture in the coal is in equilibrium with the moisture in the atmosphere.
dmmf:	(Dry mineral matter free) The hypothetical condition in which coal or coke is calculated to be free of both moisture and mineral matter.
HARDGROVE INDEX:	The grindability test used to determine the ease of pulverization in comparison with certain coals chosen as standards. The range varies from 20 to over 110: the higher the number, the more easily the coal is ground.
ASH FUSION TEMPERATURES:	The temperature at which the softening and melting characteristics are measured according to standard procedures, in both midly oxidizing (higher) and midly reducing (lower) conditions. Temperatures measured are at initial deformation, softening, hemispherical and fluid.
SULPHUR:	<i>pyritic</i> : High concentrations are usually associated with a marine depositional environment. <i>organic</i> : Is chemically bonded in the coal substance and is usually associated with sulphate.
	sulphates: Mainly calcium and iron. Very minor quantities (a few hundredths per cent) except in highly weathered or oxidized samples.

.

.

APPENDICES

Construction of the second		and the second second second second second	
Parameter	Desired	Typical Limits*	Comments
Total Moisture (%) (as received)	4-8	max 12 (max 15)	Reduces net C.V. Limited to approximately 15% max for easy handling/grinding. Limits should be higher for low rank coals.
Ash (%) (air dry)	up to 15	max 20 (max 40-50)	Ash content of little influence except it must be constant within $\pm 2\%$ and composition consistent in order to compensate by adjusting feed ratios.
Volatile Matter (%) (dmmf)	various	(max 24)	Dependent on firing system but usually flexible. (In cases of old bin- and-feeder systems for safety and insurance purposes.)
Gross Calorific Value (air dried) kcal/kg	various	min 5020	Consumers have varying preferences for basis of calculation gross/ net air dried/as received).
Total Sulphur (%) (air dried)	up to 2	max 2-5	Dependent on sulphur content of feed materials. Sulphur content of clinker to be less than 1.3%.
Chlorine (%) (air dried)	low	max 0.1	In dry process, chlorine content of clinker to be less than 0.03%. Depending on chlorine content of feed material, max content in coal varies up to 0.1%.
P205 (%) (ash analysis)	up to 2	max 6-8	P205 content of clinker to be less than 1%. Though dependent on P205 content of feed material, seldom a critical factor.
Hardgrove Index (air dry)	high	min 50-55 (min 40)	Dependent on available grinding capacity and required throughput.
Max Size (mm)	25-30	(min 40) 35-40	Limited by top size accepted by pulverizer.
Fines Content (%) (less than 0.5 mm)	15-20	25-30	Limited for good handling characteristics, specifically when wet.

APPENDIX I SUMMARY OF COAL QUALITY REQUIREMENTS CEMENT MANUFACTURE

*Typical limits refer to those commonly quoted by consumers; those in brackets indicate outer limits acceptable in some cases.

Parameter	Desired	Typical Limits*	Comments
Total Moisture (%) (as received)	4-8	max 12 (max 15)	Reduces net C.V. Limited to approximately 15% for easy handling/ grinding. Limits will be higher for low rank coals.
Ash (%) (air dried)	low	max 15-20 (max 30)	Reduces C.V. Limited by ability of consumers equipment to handle and dispose of ash.
Volatile Matter (%) (dmmf)	25-35 15-25	min 25 max 25	Side-fired p.f. furnace. Pulverized fuel. Down-fired p.f. furnace. Pulverized fuel.
Gross Calorific Value (air dried) kcal/kg	high	min 5736 5975	Consumers have varying preferences for basis of calculation (gross/ net, air dried/as received).
Total Sulphur (%) (air dried)	low	max 0.5-1.0 (max 2.0)	Usually dependent on local pollution regulations e.g. United Kingdom, 2.0% max; France (EDF), 1.7% max; Germany 1.0% max; Japan, 0.5% max. Small lots need not necessarily comply with limits.
Ash Fusion Temp. C (oxidizing or reducing)	high deformation	min 1200 (min 1050)	Dry bottom furnaces. Minimum acceptable deformation temp. dependent on flexibility of consumers equipment and operating procedures.
	low fluid	max 1350 (max 1430)	Wet bottom furnaces. Maximum fluid temp. dependent on operating temperatures. Furnace conditions to dictate whether oxidizing or reducing ash fusion temperatures are applicable.
Nitrogen (%) (dmmf)	low (0,8-1.1)		Preferably low to reduce NO_{χ} formation. (Range preferred by Dengen Kaihatsu, Japan).
Chlorine (%) (air dried)	low	max 0.1-0.3 (max 0.5)	As indication of alkali content, should be low to reduce tendency for ash fouling.
Hardgrove Index (air dry) Max Size (mm)	high 25-30	min 50-55 (min 45) 35-40	Dependent on available grinding capacity and required throughput. Limited by top size accepted by pulverizer.
Fines Content (%) (less than 0.5 mm)	15-20	25-30	Limited for good handling characteristics, specifically when wet.

APPENDIX II SUMMARY OF COAL QUALITY REQUIREMENTS POWER GENERATION

*Typical limits refer to those commonly quoted by consumers; those in brackets indicate outer limits acceptable in some cases.

Required					
	As received	Air dried	Dry	Dry ash free	Dry, mineral matter free
Given	(ar)	(ad)	(dry)	(daf) (dmmf)	nee
As received		<u>100-M1</u>	<u>100</u>	<u>100(100-M1)</u>	<u>100(100-M1)</u>
(ar)		100-M	100-M	(100-M)(100-M1-A)	(100M)(100M-B)
Air dried	100-M	_	<u>100</u>	<u>100</u>	<u>100</u>
(ad)	100-M1		100-M1	100-M1-A	100-М1-В
Dry	100-M	100-M1		100-M1	<u>100-М1</u>
(dry)	100	100		100-M1-A	100-М1-В
Dry, ash	(100-M)(100-M1-A)	100-M1-A	100-M ₁ -A	_	100-M1-A
free (daf)	100(100-M1)	100	100-M ₁		100-M1-B
Dry, mineral matter free (dmmf)	(100-M)(100M1-B) 100(100-M1)	100-M1-B 100	100-M ₁ -B 100-M ₁	100-M1-B 100-M1-A	

APPENDIX III
FORMULAS FOR THE CALCULATION OF RESULTS TO DIFFERENT BASES

M total moisture content (as received) M1 inherent moisture content (air dried)

A B

ash content (air dried) mineral matter content (air dried)

The multiplication factors are given to convert chemical coal quality parameters from one basis to another. These formulas cannot be applied to the ash properties, physical properties and caking/coking properties of a coal. The factors are expressed in terms of the parameters most commonly available from coal quality data.

APPENDIX IV ANALYSIS OF RAW COAL WITH FUEL POTENTIAL

												-				Ultimate (As Reco	Analysis ived Bas	% iis)						
COAL	OPERATOR	AREA	SEAM	SAMPLE	STATUS	SEAM THICK-	ASTM	DATA	PI	oxima	te Analysi	. 79			S	ulphur For	ms				Calorific	Value		
FIELD			No.	3116		NESS (metres)	RANK	JUURCE	MOIST	ASH	VOLATELE MATTER	FIXED	с	н	PY	SULPHATE	ORG.	T.S.	N	0	MJAtg	BTU/Ib	HCI	FSI
PC.RIV.	QUINT.COAL	QUINT.	E	FRAME/McC	p1	-	MVBIT	MEMPR 81 (#61)	0.92	23.41	20.21	55.46						0.25		•		-	75	3
PC.RIV.	QUINT.COAL	QUINT.	E	FRAME/McC FRAME/McC	5	-	MVBIT	MEMPR 81 (#61) MEMPR 81 (#61)	0.88	27.47	19.87 20.54	51.78 55.79	•					0.42	•	•			80 79	2.5
PC.RIV.	QUINT.COAL	QUINT.	G	GRIZ/TRANS.	D2	3.7	MAADE I	MEMPR 86 (#724)	0.85	39.70	14.29	45.0						0.52					77	
PC.RIV.	QUINT.COAL	QUINT.	JÆKI	GRIZ/TRANS.	5	7.13		MEMPR 86 (8724)	0.62	25.77	16.65	\$7.0						0.25	÷.		2			- C
PC.RIV. PC.RIV.	QUINT.COAL OUINT.COAL	OUINT.	I C KI	GRIZ/TRANS	D	1.12		MEMPR 86 (0724)	0.45	17.37	17.71	65.0						0.47			-		-	
PC.RIV.	QUINT.COAL	QUINT.	GT-1	GRIZ/TRANS	Ď	6.3		MEMPR 86 (0724)	0.47	22.35	15.97	61.0											74	1.5
PC.RIV.	OUINT.COAL	OUINT.	F	FRAME/MCc	2	-	MVBIT	MEMPR 81 (#61)	0.75	29.34	19.67	50.24						0.49					70	4
PC.RIV.	QUINT.COAL	QUINT.	R	FRAME/MCc		-	MYBIT	MEMPR \$1 (061)	0.88	30.80	19.27	49.03		-				0.46					79	3.5
PC.RIV.	QUINT.COAL	QUINT.	Ğ	SHIKANO	D	-	SUBBITC	MEMPR 85 (#619)	0.60	40.15	14.83	44.0						0.35				8910	69	2.9
PC.RIV.	OUINT.COAL	OUINT.	Ā	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	0.82	10.45	22.97	65.76						1.11				-	88	4
PC.RIV.	OUINT.COAL	QUINT.	A	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	0.84	8.22	24.48	66.46		-				0.86					138	2.5
PC.RIV.	QUINT.COAL	QUINT.	D	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	1.38	11.63	25.17	61.82	•		•		-	0.42					78	1
PC.RIV.	QUINT.COAL	QUINT.	D	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	0.77	18.04	21.97	\$9.22		-	•			0.69	-				65	2
PC.RIV.	QUINT.COAL	QUINT.	D	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	0.77	20.97	22.92	\$5.34	:	1	:	•	:	0.79	1				87	3
PC.RIV.	TECK CORP	BULLMS.	A-1	MINE SURF.	P	-	MVBIT	CANMET 85	1.17	5.47	23.26	70.11	82.83	4.39	0.02	•	0.28	0.30	1.24	4.62	33.49	14397	72	2.5
PC.RIV.	TECK CORP	BULLMS.	D	S. FORK	5	-	MVBIT	MEMPR 77 (0478) CANMET 85	4.02	43.8	18.4	36.7	79.27 79.76	4.81	0.03		0.17	0.65	1.08	6.03	31.89	8266	68 82	3
PC.RIV.	TECK CORP	BULLMS.	8	MINE SURF. S. PORK	5	-	MVBIT	MEMPR 77 (8478)	1.7	28.8	18.5	51.0	82.24	4.53	0.03		0.17	0.28	1.07	0.03	31.09	10596	81	
PC.RIV.	TECK CORP	BULLMS.	AI & A2 COMP AI & A2 & A SPLT	S. PORK			MVBIT	MEMPR 77 (8478)	1.2	38.6	16.4	43.8	81.49	4.52				0.51	0.99			9169	75	2
PC.RIV. TLKW	CRNT.RES.	TLKW	AI & AZ & A STLI	GOAT HEN E.	6	2.18	HVBITB	MEMPR 83 (#238)	0.90	28.51	24.18	46.41	70.60	4.38	2			1.07	0.71	11.7		7107		
TLKW	CRNT.RES.	TLKW		GOAT HRN E.	ñ	1.25	HVBITB	MEMPR 83 (#238)	0.91	19.50	26.85	\$2.75	73.43	4.29				1.02	0.93	11.04				
TLKW	CRNT.RES.	TLKW	2	GOAT HRN E.	D	2.39	HYBITB	MEMPR 83 (#238)	0.87	27.19	24.86	47.09	74.58	4.49				0.58	0.74	12.47				
TLKW	CRNT.RES.	TLKW	6	GOAT HEN E.	D	2.51	HVBITB	MEMPR 83 (#238)	0.92	22.10	25.31	51.67	73.00	4.36				0.75	1.11	12.50				
TLKW	CRNT.RES.	TLKW	7	GOAT HRN E.	D	1.45	HVBITB	MEMPR 83 (#238)	1.00	20.19	26.48	52.32	72.84	4.55			-	1.36	0.72	11.47				
TLKW	CRNT.RES.	TLKW	8	GOAT HRN E.	D	2.18	HVBITB	MEMPR 83 (#238)	1.04	13.42	27.51	58.03	72.37	4.40				1.35	0.72	11.89				
TLKW	CRNT.RES.	TLKW	9	GOAT HRN E.	D	1.52	HVBITB	MEMPR 83 (#238)	0.98	12.40	31.11	55.52	70.04	4.45				2.44	0.72	12.53				
TLKW	CRNT.RES.	TLKW	10	GOAT HRN E.	D	0.66	HVBITB	MEMPR 83 (#238)	1.12	22.85	27.16	48.87	70.85	4.08	•			1.78	0.51	9.74				•
TLKW	CRNT.RES.	TLKW	5	GOAT HRN E.	D	2.56	HVBITB	MEMPR 83 (#238)	0.99	22.41	25.28	51.30	73.05	4.27				0.88	0.66	11.84		•		
COMOX	QUINS.COAL	QUINS.	IN MAIN + RDR	PIT #2 NORTH	<u>r</u>	3.61	HVBITC	MEMPR 83	1.16	11.39	37.21	47.23	-					0.68		-		•	•	•
COMOX	QUINS.COAL	QUINS.	2	PTT #1,2,35.	2	1.41	HVBITC	MEMPR 85	3.08	18.75	35.49	42.18 47.67		•	•		•	2.80	•			•	•	
COMOX	QUINS.COAL	QUINS.	1 NTH.MAIN 1N MAIN + RDR	PIT #2 NTH PIT #2 NTH	5	3.26	HVBITC	MEMPR 85 MEMPR 85	3.99	11.67	36.68	47.13	-		•			0.55		-		•		
COMOX	QUINS.COAL OUINS.COAL	QUINS. OUINS.	1 STH MAIN	PTT 01,2,3S		3.65	HVBITC	MEMPR 85	3.13	14.58	35.54	46.75	2					1.21						
COMOX	OUINS.COAL	QUINS.	IS MAIN + BASL	PIT.#1,2,35		4.68	HVBITC	MEMPR 85	2.97	21.65	32.98	42.40	1					1.0						
COMOX	QUINS.COAL	QUINS.	2	PIT #1,2,35		1.4	HVBITC	MEMPR 82	2.61	19.04	36.91	41.44						5.68						
COMOX	OUINS.COAL	OUINS.	1 STH MAIN	PTT #1,2,35		3.21	HVBITC	MEMPR 82	2.72	20.84	35.04	41.40						1.42						
COMOX	OUINS.COAL	QUINS.	IS MAIN + BASL	PTT #1,2,35	P	4.68	HYBITC	MEMPR 82	2.54	28.35	32.22	36.89						1.07						
COMOX	QUINS.COAL	QUINS.	I NTH MAIN	PIT #2, NTH	P	3.26	HVBITC	MEMPR 83	4.29	10.37	37.21	48.14						0.39						
COMOX	QUINS.COAL	QUINS.	1 NTH	PREP PLANT	P	-	HVBIT	SUBMISSION	3.50	13.00	36.50	48.00	70.70	4.60				0.10	0.90	10.60		10600	50	
NAN	WOLF MT.COAL	WOLF MT.	1	-	D	2.24	HVBITC	MEMPR 82 D	2.00	14.71	37.95	45.34	68.74	5.16	0.08		0.38	0.46	1.29	9.64		12175	85	3
NAN	WOLF MT.COAL	WOLF MT.	1	-	D	2.24	HVBITC	MEMPR 82	2.25	14.89	36.93	45.93	71.71	5.57	0.05		0.37	0.42	1.33	6.08		12090 -	54	4
NAN	WOLF MT.COAL	WOLF MT.	1	-	D	2.24	HVBITC	MEMPR 82 D	2.01	10.32	39.09	48.56	72.89	5.24	0.26		0.70	0.96	1.39	9.20		12884	53	4

¹Producing ²Developing

Table of abbreviations

COALFIELD NAME	ABBREVIATION	OPERATOR NAME	ABBREVIATION	AREA NAME	ABBREVIATION
Crowsnest Elk Valley Peace River Telkwa Comox Nanaimo	CRNT ELK V. PC. RIV. TLKW COMOX NAN	Westar Byron Ck. Collieries Crowsnest Resources Fording Coal Ltd. Quintette Coal Ltd. Teck Corp. Quinsam Coal Ltd. Wolf Mt. Coal Ltd.	WESTAR BYRON CK. COLL. CRNT. RES. FORDING COAL QUINT. COAL TECK CORP QUINS. COAL WOLF MT. COAL	Fording River Mine Quintette Bullmoose Telkwa Quinsam Wolf Mountain	FORDING R.M. QUINT. BULLMS. TLKW QUINS. WOLF MT.

APPENDIX IV (Continued) ANALYSIS OF RAW COAL WITH FUEL POTENTIAL

COAL FIELD	OPERATOR	AREA	SEAM No.	SAMPLE SITE	STATUS	SEAM THICK- NESS	ASTM	DATA SOURCE						Ash /	Analysis	196							nent Ans (ppm)			Ash Fusi emperatu ucing Atm	re 'C	e)	***
						(metres)			SiO3	ALO,	Fe ₂ O ₃	TiO ₂	P305	CaO	MgO	so,	Na ₂ O	КзО	SrO	BeO	LOF	F	а	Hg	Initial	Softening	Hemi	Fluid	
PC.RIV.	QUINT.COAL	QUINT.	E	FRAME/McC FRAME/McC	p1 P	-	MVBIT	MEMPR 81 (#61) MEMPR 81 (#61)			•	-	:	-	:	:	:		:	:	:	0.026	:	:					
PC.RIV. PC.RIV.	OUINT.COAL	QUINT.	E	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)	÷		÷	÷	÷ .	÷			2					0.013							
PC.RIV.	OUINT.COAL	OUINT.	G	GRIZ/TRANS.	D ²	3.7	THE VERSE	MEMPR 86 (#724)	63.03	26.62	1.94	1.19	0.77	2.68	0.73	1.17	0.19	0.61				0.075			1400	1500	1500	1500	
PC.RIV.	OUINT.COAL	QUINT.	J & KI	GRIZ/TRANS.	D	7.13	-	MEMPR 86 (#724)	55.57	20.30	3.88	1.04	1.24	7.48		3.50	0.92	0.61							1243	1312	1337	1373	
PC.RIV.	OUINT.COAL	QUINT.	K	GRIZ/TRANS	D	1.12	-	MEMPR 86 (#724)	69.85	17.33	3.12	1.28	0.10	2.82	1.22	3.64	0.54	0.45							1313	1415	1433	1463	
PC.RIV.	OUINT.COAL	QUINT.	OT-1	GRIZ/TRANS	D	6.3	-	MEMPR 86 (#724)	52.8	30.8	4.96	1.2	3.23	2.95	.39	.60	-	.706	-	-		-			1290	1500	1500	1500	
PC.RIV.	OUINT.COAL	QUINT.	F	FRAME/MCc	P	-	MVBIT	MEMPR 81 (#61)					-		-		-					0.009							
PC.RIV.	QUINT.COAL	QUINT.	E	FRAME/MCc	P	· · · ·	MVBIT	MEMPR \$1 (#61)		-				-	-		-					0.026		1.2					
PC.RIV.	QUINT.COAL	QUINT.	G	SHIKANO	D	-	SUBBITC	MEMPR 85 (#619)		-				-	-							0.027							
PC.RIV.	QUINT.COAL	QUINT.	A	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)		-		-	-	-			-					0.144							
PC.RIV.	QUINT.COAL	QUINT.	<u>^</u>	FRAME/McC	P	-	MVBIT	MEMPR 81 (#61)		•	-	-		-	•	÷., .	-	•	-		•	0.166	•						
PC.RIV.	QUINT.COAL	QUINT.	D	FRAME/MoC	P	-	MVBIT	MEMPR 81 (#61)					-		-		-		-	-		0.052	-				•		
PC.RIV.	QUINT.COAL	QUINT.	D	FRAME/McC FRAME/McC	P	-	MVBIT	MEMPR 81 (#61) MEMPR 81 (#61)		-			-			-	-	•				0.032					-		
PC.RIV.	QUINT.COAL	BULLMS.	A-1	MINE SURF.	2	-	MVBIT	CANMET 85	65.58	15.52	3.87	1.61	0.03	27.78	1.12	3.21	1.02	0.02	0.11	1.28	1.83	15.0	310.0	0.02	1218	1416	1482	1482	
PC.RIV. PC.RIV.	TECK CORP TECK CORP	BULLMS.	D	S. FORK	5	-	MVBIT	MEMPR 77 (#478)	67.74	24.07	1.59	1.24	0.39	0.70		0.59	0.65	1.96				-			1454				
PC.RIV.	TECK CORP	BULLMS.		MINE SURF.	P	-	MVBIT	CANMET 85	41.61	26.86	8.63	2.61	0.59	7.78		2.87	2.30	0.48	0.16	3.27	0.74	24.0	150.0	0.05	1232	1282	1343	1377	
PC.RIV.	TECK CORP	BULLMS.	AI & A2 COMP	S. FORK	P	-	MVBIT	MEMPR 77 (#478)	68.44	17.57	3.27	0.79	0.17	1.12	1.62	1.16	0.49	3.25							1282	1371	1393	1454	
PC.RIV.	TECK CORP	BULLMS.	AI & A2 & A SPLT	S. FORK	P	-	MVBIT	MEMPR 77 (#478)	71.68	16.63	3.33	0.84	0.10	1.01	1.59	0.47	0.40	3.02	-	-		-		-	1298	1393	1421	1437	
TLKW	CRNT.RES.	TLKW	3	GOAT HRN E.	D	2.18	HVBITB	MEMPR 83 (#238)	62.56	23.75	4.123	1.53	1.143	2.986	0.673	1.4	0.81	0.28	-						1401	1405	1409	1423	
TLKW	CRNT.RES.	TLKW	4	GOAT HRN E.	D	1.25	HVBITB	MEMPR 83 (#238)	63.18	19.19	7.005	1.085	1.9	3.5			0.785	0.15				1.41			1355	1359	1388	1396	
TLKW	CRNT.RES.	TLKW	2	GOAT HRN E.	D	2.39	HVBITB	MEMPR 83 (#238)	59.89	26.75	2.43	1.795	1.735	3.43	0.715		0.88	0.24				-			1454	1454	1454	1454	
TLKW	CRNT.RES.	TLKW	6	GOAT HRN E.	D	2.51	HVBITB	MEMPR 83 (#238)	60.96	27.60	2.36	1.58	1.17	1.99		0.82	0.97	0.42				-			1454	1454	1454	1454	
TLKW	CRNT.RES.	TLKW	7	GOAT HRN E.	D	1.45	HVBITB	MEMPR 83 (#238)	59.72	22.68	8.15	2.36	0.53	1.74			0.81	0.24		•	•				1454	1454	1454	1454	
TLKW	CRNT.RES.	TLKW		GOAT HRN E.	D	2.18	HVBITB	MEMPR 83 (#238)	50.72	26.46	9.72	2.42	0.69	2.94		2.48	0.92	0.30			-	-	-		1425	1454	1454	1454	
TLKW	CRNT.RES.	TLKW	9	GOAT HRN E.	D	1.52	HVBITB	MEMPR 83 (#238)	51.32	16.64	21.16	1.57	0.72	2.52			0.65	0.24	-		•				1245	1256	1278	1306	
TLKW	CRNT.RES.	TLKW	10	GOAT HRN E.	D	0.66	HVBITB	MEMPR 83 (#238)	62.8	25.99	9.72	1.44	0.02	2.94	0.82	2.15	0.57	0.24	•		-				1395	1411 1454	1428	1454	
TLKW	CRNT.RES.	OUINS.	3 1N MAIN + RDR	GOAT HRN E. PIT #2 NORTH	D	2.56	HVBITE	MEMPR 83 (#238) MEMPR 83	02.8	23.99	3.97	1.8	0.175	1.333	0.6	1.135	0.945	0.27					0.03		1432	1434	1434	1434	
COMOX	QUINS.COAL OUINS.COAL	OUINS.	IN MAIN + RDR	PIT #1,2,3S.	r i	1.41	HVBITC	MEMPR 85					÷	÷ .		÷ .							0.01	÷.					
COMOX	OUINS.COAL	QUINS.	I NTH.MAIN	PTT #2 NTH	P	3.26	HVBITC	MEMPR 85	÷.		÷.		÷.	÷									0.02						
COMOX	OUINS.COAL	OUINS.	IN MAIN + RDR	PIT #2 NTH	P	3.65	HYBITC	MEMPR 85												-			0.01				-		
COMOX	OUINS.COAL	QUINS.	1 STH MAIN	PIT #1,2,35	P	3.21	HVBITC	MEMPR 85							-								0.01						
COMOX	OUINS.COAL	OUINS.	1S MAIN + BASL	PIT.#1.2.3S	P	4.68	HVBITC	MEMPR 85								× .	-						0.01		-		-		
COMOX	OUINS.COAL	OUINS.	2	PIT #1,2,3S	P	1.4	HVBITC	MEMPR 82							-														
COMOX	QUINS.COAL	QUINS.	1 STH MAIN	PIT #1,2,3S	P	3.21	HVBITC	MEMPR 82										-											
COMOX	QUINS.COAL	QUINS.	1S MAIN + BASL	PIT #1,2,35	P	4.68	HVBITC	MEMPR 82		-	-		-		1.0		1.0												
COMOX	QUINS.COAL	QUINS.	1 NTH MAIN	PIT #2, NTH	P	3.26	HVBITC	MEMPR 83							-		-						0.02				-		
COMOX	QUINS.COAL	QUINS.	1 NTH	PREP PLANT	P	-	HVBIT	SUBMISSION	37.40	20.10	9.50	1.40		25.00		4.10	0.20	0.20		-		0.04	0.04		1250	1300	1310	1320	
NAN	WOLF MT.COAL	WOLF MT.		-	D	2.24	HVBITC	MEMPR 82 D	40.71	22.21	2.92	0.84		18.59		3.02	0.48	0.07	-			•			1302	1317	1345	1408	
NAN	WOLF MT.COAL	WOLF MT.		-	D	2.24	HVBITC	MEMPR 82	43.96	19.47	3.78	0.80	0.63	3.24		0.52	0.01		-	-					1270	1297	1308	1351	
NAN	WOLF MT.COAL	WOLF MT.		-	D	2.24	HVBITC	MEMPR 82 D	32.77	14.63	5.66	0.60	0.50	25.60	3.95	6.47	0.35	0.55				•			1205	1225	1233	1246	

¹Producing ²Developing

Table of abbreviations

COALFIELD NAME	ABBREVIATION	OPERATOR NAME	ABBREVIATION	AREA NAME	ABBREVIATION
Crowsnest Elk Valley Peace River Telkwa Comox Nanaimo	CRNT ELK V. PC. RIV. TLKW COMOX NAN	Westar Byron Ck. Collieries Crowsnest Resources Fording Coal Ltd. Quintette Coal Ltd. Teck Corp. Quinsam Coal Ltd. Wolf Mt. Coal Ltd.	WESTAR BYRON CK. COLL. CRNT. RES. FORDING COAL QUINT. COAL TECK CORP QUINS. COAL WOLF MT. COAL	Fording River Mine Quintette Bullmoose Telkwa Quinsam Wolf Mountain	FORDING R.M. QUINT. BULLMS. TLKW QUINS. WOLF MT.

APPENDIX IV (Continued) ANALYSIS OF RAW COAL WITH FUEL POTENTIAL

									P		e Analys					Ultimate (As Rece								
COAL	OPERATOR	AREA	SEAM	SAMPLE	STATUS	SEAM	ASTM	DATA	e	OXIME	E ANIIII	. ~			1	Sulphur For	rms				Calorifi	c Value		
FIELD			Ne.	SITE		THICK- NESS (metres)	RANK	SOURCE	MOIST	ASH	VOLATEL	FIXED CARBON	с	н	PY	SULPHATE	ORG.	T.S.	N	0	MJ/kg	BTU/Ib	HCI	F\$1
CRNT	WESTAR	MICHEL	10 (BALMER)	PREP PLANT STOCK PILE	p1 P	5	MVBIT	CANMET 85 CANMET 85	1.77	24.41 39.96	19.34	54.45 38.80	64.51 49.39	3.63 3.28	0.13	0.02	0.19	0.34	0.12	4.31	25.35 19.45	10900 8361	72	2.:
CRNT	WESTAR	MICHEL UND.	10 (BALMER)	-	P	-	LVBIT	CANMET 84	1.80	15.29	16.59	66.32	75.49	4.00	-			0.23	1.60	1.59	30.12	12951	94	
CRNT	WESTAR	HARM. SURF.	10 (BALMER)	ADIT #29 STH	. P	-	LVBIT	CANMET 84	1.02	14.32	18.27	66.39	75.48	3.96				0.27	1.52	3.43	30.36	13054	102	
CRNT	WESTAR	HARM.R.MICH.	BALMER	-	P	-	MVBIT	CANMET 79	4.8	12.9	19.8	62.5 54.8	75.4 °	4.0				0.3	1.1	5.6	28.4	12210	100	1.3
CRNT	WESTAR	HARM.R.MICH.	BALMER	-	P	-	MVBIT	CANMET 79	6.0	21.5	17.7	62.78	72.96	3.88				0.3	1.0	4.8	24.8	10670	90	1.:
CRNT	WESTAR	HARMER	10 (BALMER)	MINE SURF.	P	-	LVBIT	CANMET 85	5.37	13.21	18.63	60.43	73.32*	3.76	0.03		0.17	0.20	1.22	3.16	28.99	12465	112	2
CRNT	WESTAR (KAISER)	HARM.R.MICH.	BALMER	PREP PLANT	P	-	MVBIT	CANMET 82 CANMET 85	3.93	15.85	19.79	62.94	76.30	4.03	0.07		0.24	0.31	1.26	4.85	28.31	12173	98	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH (M)	-	P	-	MVBIT	CANMET 85	1.86	10.83	23.69	63.26	75.77	3.91	0.02		0.12	0.14	1.32	5.6	30.21	12990	77	1.
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH (B) MAMMOTH (T)	-	2	-	MVBIT	CANMET 85	2.12	22.28	22.04	\$3.56	64.17	3.61	0.03		0.14	0.18	1.30	5.81 6.55	30.10 25.59	12940	85	1
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH (1)	PTT #34	P	-	MYBIT	CANMET 84	2.46	18.26	21.39	58.11	69.67	3.59	0.03		0.15	0.18	0.95	5.10	25.59	11871	94 71	1.0
CRNT	BYRON CK.COLL	COAL MT/CRB.	MAMMOTH	PIT #3	P	-	MVBIT	CANMET 84	5.06	15.02	21.07	58.85	69.61	3.61				0.19	3.61	5.21	66.12	11902	85	
RNT	BYRON CK.COLL. BYRON CK.COLL.	COAL MT.	MAMMOTH	PHI WS	P	-	MVBIT	CANMET 85	3.09	14.37	23.00	59.54	71.78	3.80	0.04	0.01	0.14	0.19	1.35	5.42	28.59	12291	76	1.
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PIT #3	P	-	MVBIT	CANMET 79	3.4	17.2	21.0	54.4	72.0 ·	3.8	0.3			0.3	1.1	5.1	27.4	11780	76	1.3
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PIT 011	P	-	MVBIT	CANMET 79	3.7	14.0	22.0	60.3	74.2 •	4.1	0.2			0.2	1.1	5.8	28.6	12310	84	1.
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PTT #11	P	-	MVBIT	CANMET 79	3.9	14.9	24.9	56.7	72.7 •	4.1	0.2			0.2	1.2	6.3	27.8	11985	90	2
ELK V.	WESTAR	GRNHILLS MIN.	10	-	P	-	MVBIT	CANMET 84	8.68	48.86	16.98	25.48	33.16	1.91	•			0.21	1.20	5.98	11.56	4970	78	
ELK V.	CRNT.RES.	LINE CK MINE	8	MINE SURF.	P	-	MVBIT	CANMET \$5	0.89	26.56	18.90	53.65	63.76	3.53	0.099		0.30	0.39	0.09	3.79	25.45	10941	82	2.0
ELK V.	CRNT.RES.	LINE CR MINE	7	846 BENCH	P	-	MVBIT	CANMET 85	1.24	23.49	20.10	55.18	65.54	3.78 3.33	0.08	-	0.36	0.43	1.25	4.27			79	2.0
ELK V.	CRNT.RES.	LINE CK MINE	9	MINE SURF.	P	-	LVBIT	CANMET 85	1.94	29.01	16.42	52.62 57.24	64.93	3.33	0.05		0.27	0.31	0.87	3.73	24.21	10406	71	1.5
ELK V.	CRNT.RES.	LINE CK MINE	8	-	P	-	LVBIT	CANMET 84	3.74	21.71	17.31	49.89	58.78	2.71	0.07			0.22	1.09	4.84	25.88	11128	70	
ELK V.	CRNT.RES.	LINE CK MINE	4	1825 BENCH	P	-	SBITB	CANMET 85	16.19	6.25 37.80	26.67	44.63	50.00	2.92	0.07		0.39	0.46	1.16	14.45	21.86	9399	135	
ELK V.	CRNT.RES.	LINE CK MINE	7	-	2	-	MVBIT	CANMET 84 CANMET 85	1.57 2.65	18.54	19.07	59.73	68.6	3.58	0.07			0.47	1.37	5.87	21.36	9182	68	
ELK V.	CRNT.RES.	LINE CK MINE	PREP PLANT	MINE SURF.	2	-	LVBIT	CANMET 85	0.32	24.41	17.74	57.53	66.70	3.52	0.05	• 🕈	0.17	0.23	1.03	5.35	27.03 26.53	11620	75	1.
ELK.V.	CRNT.RES. FORDING COAL	LINE CK MINE FORDING R.M.	13	MINE SURF.	5	-	SBITA	CANMET 85	16.53	9.92	26.17	47.39	57.54	3.13	0.06	0.01	0.36	0.43	1.27	11.18	20.53	9411	71	1.0
ELK V. ELK V.	FORDING COAL	FORDING R.M.	15	GRNHILLS S.		-	MYBIT	CANMET 84	1.58	17.83	17.39	63.20	17.83	3.57			0.50	0.28	1.27	3.64	28.57	12283	79	
ELK V.	FORDING COAL	FORDING R.M.	Ď	GRNHILLS S.	P	-	MYBIT	CANMET 84	2.57	\$3.90	11.99	31.54	38.84	2.15				0.19	0.90	1.45	14.59	6273	67	
ELK V.	FORDING COAL	FORDING R.M.	7	SURFACE	P	-	MVBIT	CANMET 85	0.82	30.13	18.32	50.73	61.16	3.45	0.14	0.2	0.24	0.40	1.05	2.99	24.33	10461		2
ELK V.	FORDING COAL	FORDING R.M.	TAILINGS PD.	-	P	-	MVBIT	CANMET 84	5.09	26.12	18.46	\$0.33	59.39	3.29				0.36	1.27	4.48	24.08	10352	154	2.5
ELK V.	FORDING COAL	FOR DING R.M.	12	EAGLE MTN.	P	-	MVBIT	CANMET 84	7.17	42.86	15.41	34.56	41.62	2.43				2.43	1.05	4.3	16.54	7712	76	
ELK V.	FORDING COAL	FORDING R.M.	8	SURFACE	P	-	MVBIT	CANMET 85	0.79	30.63	19.05	49.54	59.12	3.51	0.07		0.42	0.49	0.88	4.58	23.55	10127	73	2
ELK V.	FORDING COAL	FORDING R.M.	G	SURFACE	P	-	MVBIT	CANMET 85	1.38	13.72	22.63	62.27	73.49	4.41	0.08	0.01	0.52	0.61	1.58	4.81	30.03	12910	105	
ELK V.	FORDING COAL	FORDING R.M.	11	EAGLE MTN.	P	-	MVBIT	CANMET 84	8.78	5.26	27.76	59.20	69.53	4.00				0.77	1.75	9.91	27.72	11918	87	
PC.RIV.	QUINT.COAL	QUINTETTE	F	GRIZ/TRANS.	D ²	3.52	MVBIT	MEMPR 86 (#724)	0.50	19.33	19.41	60.0 60.0						0.49					85	
PC.RIV.	QUINT.COAL	QUINTETTE	D	GRIZ/TRANS.	D	-	-	MEMPR 86 (#724)	0.46	17.78	20.88	58.0	0					1.88						
PC.RIV.	QUINT.COAL	QUINTETTE	1	SHIKANO	D	-	HVBITC	MEMPR 85 (#619)	0.65	22.96 40.15	17.94	44.0						0.26			•	13070	79	2.4
PC.RIV.	QUINT.COAL	QUINTETTE	G	SHIKANO	D	-	SBITC	MEMPR 85 (#619)	0.78	21.53	20.43	57.26						0.35				8910	69	2.5
PC.RIV.	QUINT.COAL	QUINTETTE	P	FRAME/McC	P	-	MARIL	MEMPR \$1 (#61)	0.78	41.33	20.93	27.20						0.55					78	4

¹Producing ²Developing

Table of abbreviations

COALFIELD NAME	ABBREVIATION	OPERATOR NAME	ABBREVIATION	AREA NAME	ABBREVIATION
Crowsnest Elk Valley Peace River Telkwa Comox Nanaimo	CRNT ELK V. PC. RIV. TLKW COMOX NAN	Westar Byron Ck. Collieries Crowsnest Resources Fording Coal Ltd. Quintette Coal Ltd. Teck Corp. Quinsam Coal Ltd. Wolf Mt. Coal Ltd.	WESTAR BYRON CK. COLL. CRNT. RES. FORDING COAL QUINT. COAL TECK CORP QUINS. COAL WOLF MT. COAL	Fording River Mine Quintette Bullmoose Telkwa Quinsam Wolf Mountain	FORDING R.M. QUINT. BULLMS. TLKW QUINS. WOLF MT.

Open File 1988-23

					211 42 11	01010						101												
OPERATOR	AREA	SEAM No.	SAMPLE SITE	STATUS	SEAM THICK- NESS	ASTM RANK	DATA Source						Ash	Analys	is %						Elem	atile Tr ent Ans (ppm)		0
					(metres)			SiO ₂	АĻO,	FezO3	TIO ₂	P205	CaO	MgO	so,	NagO	K ₂ O	SrO	BeO	LOF	F	a	Hg	In
WESTAR	MICHEL	10 (BALMER)	PREP PLANT	Pl	-	MVBIT	CANMET 85	63.50	25.23	2.77	1.29	0.34	1.30	0.52	1.10	0.08	1.44	0.22	0.26	0.88			0.05	14
WESTAR	HARMER	8	STOCK PILE	P	-	MVBIT	CANMET 85	65.43	24.85	1.71	1.25	0.26	0.64	0.72	0.54	0.06	1.94	0.03		1.03	-		0.07	14
WESTAR	MICHEL UND.	10 (BALMER)	-	P	-	LVBIT	CANMET 84	60.69	27.68	3.59	1.27	0.74	2.37	0.23	1.61	0.13	0.08	0.02	-	0.19		-	0.05	14
WESTAR	HARM. SURF.	10 (BALMER)	ADIT #29 STH.	P	-	LVBIT	CANMET 84	60.55	27.79	2.45	1.44	1.16	2.46	0.19	0.92	0.10	0.82	0.03		0.17			0.02	14
WESTAR	HARM.R.MICH.	BALMER	-	P	-	MVBIT	CANMET 79	61.2	29.6	2.6	1.7	0.8	2.4	0.7	1.7		0.4		÷			1.1	0.09	14
WESTAR	HARM.R.MICH.	BALMER	-	P	-	MVBIT	CANMET 79	66.0	25.5	2.3	1.3	0.4	1.1	0.4	0.4	1.0	1.2						0.08	14
WESTAR	HARMER	10 (BALMER)	MINE SURF.	P	-	LVBIT	CANMET 85	\$7.46	32.90	0.92	1.95	0.09	0.77	0.38	0.43	0.04	0.15	0.02	0.09	4.20	63.0	70.0	0.05	14
WESTAR (KAISER)	HARM.R.MICH.	BALMER	PREP PLANT	P	-	MVBIT	CANMET 82	56.57	29.16	5.62	1.73	0.97	1.89	0.70	0.53	0.05	0.95	0.08	0.18	0.44				14
BYRON CK.COLL	COAL MT.	MAMMOTH (M)	-	P	-	MVBIT	CANMET 85	39.25	27.11	3.78	1.93	0.16	15.92	3.70	4.61	1.03	0.09	0.17	0.77	1.17	26.0	50.0	0.05	13
BYRON CK.COLL	COAL MT.	MAMMOTH (B)	-	P	-	MVBIT	CANMET 85	42.02	28.98	3.04	1.90	0.25	13.89	2.44	4.44	1.04	0.13	0.26	0.80	1.49	42.0	70.0	0.04	13

APPENDIX IV (Continued)	
ANALYSIS OF RAW COAL WITH FUEL P	OTENTIAL

COAL FIELD	OPERATOR	AREA	SEAM No.	SAMPLE SITE	STATUS	SEAM THICK- NESS	ASTM RANK	DATA SOURCE						Ash .	Analysi	s %						Elemen	ile Tra nt Anal ppm)		Ten	sh Fusi nperatu ing Atm	re 'C	
			~			(metres)			SiO ₂	AL ₂ O ₃	Fe ₂ O ₃	TIO2	P205	CaO	MgO	SO3 N	la ₂ 0	K ₂ O	SrO	BeO	LOF	F	a	Hg	Initial S	ottening	Hemi	FI
CRNT	WESTAR	MICHEL	10 (BALMER)	PREP PLANT	Pl	-	MVBIT	CANMET 85	63.50	25.23	2.77	1.29	0.34	1.30						0.26	0.88				1482	1482	1482	
CRNT	WESTAR	HARMER	8	STOCK PILE	P	-	MVBIT	CANMET 85	65.43	24.85	1.71	1.25	0.26	0.64					0.03		1.03					1482	1482	
CRNT	WESTAR	MICHEL UND.	10 (BALMER)	-	P	-	LVBIT	CANMET 84	60.69	27.68	3.59	1.27	0.74	2.37	0.23				0.02	-	0.19					1482	1482	
CRNT	WESTAR	HARM. SURF.	10 (BALMER)	ADIT #29 STH.	P	-	LVBIT	CANMET 84	60.55	27.79	2.45	1.44	1.16	2.46					0.03		0.17					1482	1482	
CRNT	WESTAR	HARM.R.MICH.	BALMER	-	P	-	MVBIT	CANMET 79	61.2	29.6	2.6	1.7	0.8	2.4	0.7	1.7		0.4	•	-		-			1482	1482	1482	
CRNT	WESTAR	HARM.R.MICH.	BALMER	NOT OUD C	P	-	MVBIT	CANMET 79	66.0	25.5 32.90	2.3	1.3	0.4	1.1				1.2		0.00	4.00	63.0		0.08	1482	1482	1482	
CRNT	WESTAR	HARMER HARM.R.MICH.	10 (BALMER) BALMER	MINE SURF. PREP PLANT	P	-	LVBIT	CANMET 85 CANMET 82	\$7.46 \$6.57	29.16	0.92 5.62	1.95	0.09	0.77						0.09	4.20	63.0	10.0	0.05	1482	1482 1400	1482	
CRNT	WESTAR (KAISER) BYRON CK.COLL	COAL MT.	MAMMOTH (M)	PREP PLANT	P	-	MVBIT	CANMET 85	39.25	29.10	3.78	1.73	0.16	1.89						0.77		26.0	50.0	0.05		1357	1480	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH (B)	-	P	-	MVBIT	CANMET 85	42.02	28.98	3.04	1.90	0.25	13.92						0.80	1.49					1407	1410	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH (D)	2	5	-	MVBIT	CANMET 85	52.57	36.05	1.63	1.78	0.23	1.53	0.60					0.26						1482	1482	
CRNT	BYRON CK.COLL	COAL MT/CRB.	MAMMOTH	PTT #34	P	-	MVBIT	CANMET 84	54.84	25.17	1.63	1.18	0.06	11.01						0.75	0.83	**				1379	1402	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PIT #3	P		MVBIT	CANMET 84	51.00	30.55	3.80	1.83	0.00	4.19					0.04	0.75	0.54			0.03	1446	1482	1482	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	-	P	-	MVBIT	CANMET 85	48.4	25.01	3.44	1.94	0.69	9.95						0.85		114.0			1263	1296	1377	
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PIT #3	P	-	MVBIT	CANMET 79	49.4	28.9	3.0	1.8	0.7	7.5				1.4						0.08				
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PTT #11	P	-	MVBIT	CANMET 79	54.2	35.0	2.4	2.1	0.5	15				5.5						0.08				
CRNT	BYRON CK.COLL	COAL MT.	MAMMOTH	PIT #11	P	-	MVBIT	CANMET 79	46.2	34.4	2.5	2.0	0.6	9.7				0.2						0.07				
ELK V.	WESTAR	GRNHILLS MIN.	10	~	P	-	MVBIT	CANMET 84	69.94	20.02	2.36	0.97	0.11	0.88					0.02		0.02			0.07	1363	1482	1482	
ELK V.	CRNT.RES.	LINE CK MINE	8	MINE SURF.	P	-	MVBIT	CANMET 85	62.37	25.12	0.91	1.37	2.08	2.98	0.38					0.19		501.0				1482	1482	
ELK V.	CRNT.RES.	LINE CR MINE	7	846 BENCH	P	-	MVBIT	CANMET 85	61.2	27.55	3.03	1.61	1.50	1.81	0.59	0.46 (0.07	.20	0.08	0.40	0.07	343.0	40.0	0.04	1482	1482	1482	
ELK V.	CRNT.RES.	LINE CK MINE	9	MINE SURF.	P	-	LVBIT	CANMET 85	72.88	23.41	0.61	1.47		0.03	0.58	0.04 0	.05 (0.55	0.01	0.16	0.12	79.0	40.0	0.05	1482	1482	1482	
ELK V.	CRNT.RES.	LINE CK MINE	8	-	P	-	LVBIT	CANMET 84	61.96	30.37	1.66	1.41	0.30	0.66	0.32	0.38 0	0.04	.50	0.02		0.34			0.06	1482	1482	1482	
ELK V.	CRNT.RES.	LINE CK MINE	4	1825 BENCH	P	-	SBITB	CANMET 85	47.68	30.38	3.85	1.43	0.71	7.60	1.51	4.90 (0.06	0.22	0.21	0.38	0.75	93.0	20.0	0.04	1371	1457	1477	
ELK V.	CRNT.RES.	LINE CK MINE	7	-	P	-	LVBIT	CANMET 84	66.58	26.27	1.51	1.33	0.13	0.50	0.15	0.35 0	0.05	1.64	0.01		0.05			0.04	1482	1482	1482	
ELK V.	CRNT.RES.	LINE CK MINE	PREP PLANT		P	-	MVBIT	CANMET 85	57.58	31.81	3.48	1.52	0.68	1.01						0.24						1482	1482	
ELK.V.	CRNT.RES.	LINE CK MINE	10A	MINE SURF.	P	-	LVBIT	CANMET 85	68.27	25.68	0.55	1.51	0.23	0.24	0.12					0.30						1482	1482	
ELK V.	FORDING COAL	FORDING R.M.	13	MINE SURF.	P	-	SBITA	CANMET 85	35.53	20.11	7.79	1.14	0.84	18.91						0.77	1.99	98.0				1307	1371	
ELK V.	FORDING COAL	FORDING R.M.	8	GRNHILLS S.	P	-	MVBIT	CANMET 84	60.43	20.95	5.64	0.92	1.85	4.08					0.03	-	0.52					1377	1429	
ELK V.	FORDING COAL	FORDING R.M.	D	GRNHILLS S.	P	-	MVBIT	CANMET 84	71.40	19.56	1.91	0.98	0.10	0.49					0.02		0.13					1482	1482	
ELK V.	FORDING COAL	FORDING R.M.	7	SURFACE	P	-	MVBIT	CANMET 85	68.05	23.98	1.36	1.07	0.04	0.07						0.23		207.0				1482	1482	
ELK V.	FORDING COAL	FORDING R.M.	TAILINGS PD.	7	P	-	MVBIT	CANMET 84	60.67	22.76	8.72	1.20	0.37	1.82					0.03	•	0.43		•			1424	1474	
ELK V.	FORDING COAL	FORDING R.M.	12	EAGLE MTN.	Р	-	MVBIT	CANMET 84	68.75	18.47	3.47	.87	.4	1.41	.68	1.13			0.03	÷	0.47					1471	1482	
ELK V.	FORDING COAL	FORDING R.M.		SURFACE	P	-	MVBIT	CANMET 85	59.78	33.61	1.50	1.47	0.11	0.16						0.23						1482	1482	
ELK V.	FORDING COAL	FORDING R.M.	0	SURFACE	r.	-	MVBIT	CANMET 85	64.51	23.03	5.74	1.33	1.36	1.71	0.43					0.28		201.0				1435	1466	
ELK V.	FORDING COAL	FORDING R.M.	11	EAGLE MTN.	P 2		MVBIT	CANMET 84	49.18	21.05	1.56	1.22	0.70	9.16					0.13	•	1.32		-			1318	1371	
PC.RIV.	QUINT.COAL	QUINTETTE	F	GRIZ/TRANS.	D ²	3.52	MVBIT	MEMPR 86 (#724)	52.86	27.00	3.41	1.28	3.03	5.80				0.89		•		0.121		•		1405	1432	
PC.RIV.	QUINT.COAL	QUINTETTE	D	GRIZ/TRANS.	D	-	-	MEMPR 86 (#724)	53.90	31.60	3.21	1.08	2.68	5.51	0.72	2.59 0	0.19 (0.27	-	-	÷				1470	1500	1500	
PC.RIV.	QUINT.COAL	QUINTETTE	1	SHIKANO	D	-	HVBITC	MEMPR 85 (#619)									e - 1	-	•			0.032		•				
PC.RIV.	QUINT.COAL	QUINTETTE	0	SHIKANO	D	-	SBITC	MEMPR 85 (#619)	-						-	•			-			0.027		2				
PC.RIV.	QUINT.COAL	QUINTETTE	r	FRAME/McC	r	-	MVBIT	MEMPR 81 (#61)		-					1.00							0.017			2011			

¹Producing ²Developing

Table of abbreviations

COALFIELD NAME	ABBREVIATION	OPERATOR NAME	ABBREVIATION	AREA NAME	ABBREVIATION
Crowsnest Elk Valley Peace River Telkwa Comox Nanaimo	CRNT ELK V. PC. RIV. TLKW COMOX NAN	Westar Byron Ck. Collieries Crowsnest Resources Fording Coal Ltd. Quintette Coal Ltd. Teck Corp. Quinsam Coal Ltd. Wolf Mt. Coal Ltd.	WESTAR BYRON CK. COLL. CRNT. RES. FORDING COAL QUINT. COAL TECK CORP QUINS. COAL WOLF MT. COAL	Fording River Mine Quintette Bullmoose Telkwa Quinsam Wolf Mountain	FORDING R.M. QUINT. BULLMS. TLKW QUINS. WOLF MT.

34