TABLE 1: GEOCHEMICAL ANALYSIS OF ROCK SAMPLES, 1999

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>FeO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45.6</td>
<td>12.3</td>
<td>7.8</td>
<td>2.1</td>
<td>4.5</td>
<td>0.8</td>
<td>3.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>48.7</td>
<td>11.2</td>
<td>8.9</td>
<td>1.8</td>
<td>4.9</td>
<td>0.9</td>
<td>3.4</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>51.2</td>
<td>10.1</td>
<td>9.1</td>
<td>2.0</td>
<td>5.0</td>
<td>1.0</td>
<td>3.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

SYMBOLS

- : Siltstone
- : Sandstone
- : Quartzite
- : limestone

TABLE 2: WATERSTREAM GEOCHEMICAL SURVEY

<table>
<thead>
<tr>
<th>Location</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>MnO</th>
<th>FeO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>45.8</td>
<td>12.4</td>
<td>7.6</td>
<td>2.2</td>
<td>4.4</td>
<td>0.7</td>
<td>3.1</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>48.9</td>
<td>11.3</td>
<td>8.7</td>
<td>1.9</td>
<td>4.8</td>
<td>0.9</td>
<td>3.3</td>
<td>0.6</td>
</tr>
<tr>
<td>C</td>
<td>51.3</td>
<td>10.2</td>
<td>9.0</td>
<td>2.1</td>
<td>5.0</td>
<td>1.0</td>
<td>3.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

TABLE 3: MINERAL PROSPECTS:

- Gold Belt
- Silver Belt
- Copper Belt

MINERAL PROSPECTS

- Gold Deposit A
- Silver Deposit B
- Copper Deposit C

COAST MOUNTAINS

- Chaine Mountains
- Pacific Ranges

PACIFIC RANGES

- El.
- EM.

SILTSTONE AND 10

- Compiled by
- Graeme P. McLaren

SHEET 2 OF 2

GEOCHEMISTRY OF THE TENQUILLE CREEK TO OWL MOUNTAIN AREA

SHEET 2 OF 2