MINERAL INVENTORY SYSTEMS TRAINING HANDBOOK

Compiled by L.D. Jones

OPEN FILE 1994-20

, 1. e -...

1 -

.....

~··**-**

~ <u>~</u>~

> .~

> > British Columbia Ministry of Energy, Mines and Petroleum Resources

Mineral Resources Division Geological Survey Branch

Development and Management of Computerized Mineral Inventory Systems, using MINFILE as an Example

Forward

In November, 1993, the Geological Survey Branch of the Ministry of Energy, Mines and Resources offered a two-week training course to two geologists from the Mineral Resources Department in Tanzania. The purpose of the course was to provide guidelines on the organization, development and management of mineral resource data using personal computers. The course included talks on systematic database development and used MINFILE and other databases as practical models for managing resources.

The intent of this publication is to document most of the notes and overheads used in the course. It will be of interest to those planning and developing mineral inventory and other earth science related database systems.

MINFILE is a comprehensive, computerized mineral inventory of over 11 400 metallic, industrial mineral and coal occurrences in British Columbia. The information is used for geoscience research, mineral exploration, prospecting, land-use management and other applications requiring data for managing mineral resources. The MINFILE system was a pioneer of computerized mineral inventories. It began in the 1970s and now, after over two decades of research, development, and practical usage, is a stable, powerful, easy-to-use, mineral inventory system for IBM PC's and compatibles. The design of MINFILE, the depth of geological data, and the ability to distribute digital data to clients ensures its continued applicability, data-integrity and system-flexibility.

Through licensing agreements, the Province of British Columbia offers the MINFILE system for sale. This proven system can easily be customized to immediately capture data in other localities. Participating agencies could also use MINFILE as a model to design a new system or enhance an existing inventory system. Either way, savings, both in time and cost, would be realized in designing, developing and testing the resulting system. For further information on licensing or training contact Larry Jones, MINFILE Project or Gib McArthur, Manager, Geoscience Information Section, Geological Survey Branch, 5th Floor, 1810 Blanshard Street, Victoria B.C., V8V 1X4; phone (604) 952 0382; fax (604) 952-0381.

Some of the course material is based on a training course on Computerized Databases in Mineral Exploration and Development, which took place in Lusaka, Zambia in May 1993, sponsored by the International Atomic Energy Agency (IAEA) and the Government of Zambia. The course was a follow-up on previous work with the IAEA in Vienna in 1990 and 1991, which resulted in a 200-page technical document titled: "Guidelines for the Organization and Management of Earth Science Data on a Personal Computer." The document is aimed at providing government organizations in developing countries with guidelines in the organization, management and preservation of earth science data.

As coordinator of the course, I acknowledge the assistance from Ministry staff including Gib McArthur, Vic Preto, Cindy McPeek, George Owsiacki, Dorthe Jakobsen, Kim Stone, Don Porter, Laura de Groot, Allan Wilcox, Sherri Proceviat, Sharon Ferris, Eric Grunsky, Ward Kilby, Bill McMillan, Dave Grieve, Dave Lefebure, Steve Sibbick, and Brian Grant.

Larry Jones Senior Geologist MINFILE Project Geological Survey Branch

Development and Management of Computerized Mineral Inventory Systems, using MINFILE as an Example

15 - 26 November 1993, Victoria, B.C., Canada

OUTLINE:

Course Introduction and Outline The Role of the Geological Survey Branch (GSB) **Overview of Geological Survey Branch Databases** Geology and Mineral Resources of B.C. The Strategy and Philosophy in Mineral Resources Databases Guidelines to Database Systems Mineral Deposit Databases MINFILE Project Management Concept, designing, planning (budget, staff) Database Design and Data Dictionary System Testing and Quality Assurance Database Administration and Maintenance (documentation and manuals) Data Acquisition and Processing Procedures (coding procedures) Training and Client Support Marketing and Distribution of Data New Technology and Future Planning Designing and Producing Computer Generated Products for Users Mineral Titles Mineral Exploration Databases Earth Science Information Databases (ARIS example) Using the MINFILE System: Basic Disk and File Management Techniques (DOS and dBase) Installing MINFILE Searching, Reporting, Data Entry, Data Transfer and Utilities Data Integration, Mineral Potential and GIS Applications

Branch Tours

Myra Falls Mine Visit

Development and Management of Computerized Mineral Inventory Systems, using MINFILE as an Example

Table of Contents

	pic number and Title Page		
	Forward	iii	
	Outline	v	
	Table of Contents		
	Final Program		
1.			
1.	Introduction: Introduction of Participants and Lecturers; Purpose of Course	1	
	Course Outline and Materials	Z	
	Technical Document for Workshop in Lusaka	4	
	Bibliography		
2.	The Role of the Geological Survey Branch (GSB): G. McArthurno		
3.	Overview of Geological Survey Branch Databases: L. Jones	10	
	ARIS, COALFILE, BEDROCK, MINFILE, Field Data, RGS	19	
	Data Integration: Mineral Potential Project, GIS	24	
	Geological Survey Branch Geoscience Database Directory		
	CONCERNMENT SUSTAINED BOR (see Toria 2)	40	
	GSB Computer Systems Plan (see Topic 8)		
4.	Geology and Mineral Resources of B.C.: V. Preto	53	
5.	Strategy and Philosophy in Mineral Resources Databases: L. Jones	71	
6.	Guidelines to Database Systems: L. Jones		
-			
7.	Mineral Deposit Databases: L. Jones	.125	
	Data Elements, Structure and Codes	126	
	USGS Example	148	
	MINFILE Example	. 155	
8.	MINFILE Project Management Overview: L. Jones, D. Jakobsen	107	
	Theory	100	
	Practical - The MINFILE Experience	. 188	
	Examples of Proposals	. 201	
	Geological Survey Branch Computer Systems Plan	.212	
9.	Database Design and Data Dictionary: L. Jones no n	notes	
10.	System Testing and Quality Assurance: L. Jones, C. McPeek	.221	
11.	Database Administration and Maintenance: C. McPeek, L. Jones	10tes	
12.	Data Acquisition and Processing Procedures (Coding Procedures): L. Jones, G. Owsiacki	ıotes	
13.	Training and Client Support: D. Jakobsen	245	
	Training Approach	250	
	Client Support	230	
	Help Desk Example	239	
		264	
14.	Marketing and Distribution of Data: L. Jones	275	

B.C. Geological Survey Branch

Table of Contents (cont.)

Topic number and Title

Page

15.	Mineral Titles: J. Chan, K. Stone, D. Porter	no notes
16.	New Technology and Future Planning: L. Jones	
	Computer Technology Trends	
17.	Designing and Producing Computer Generated Products for Users: L. Jones, G. Owsiacki	no notes
18.	The QuikMap Mapping System: G. Owsiacki, L. Jones	no notes
19.	Data Modelling Concepts: L. de Groot, L. Jones	
	MINFILE/pc Database Structure	
20-21.	Data Modelling Practical (Host Rock Hierarchy): L. Jones, L. de Groot, G. Owsiacki	
22.	Mineral Exploration Databases: L. Jones	
	Drill Hole Data; Geophysical Data	350
	Regional Geochemistry Survey (RGS) Database; COALFILE Database	364
	Field Data: Geological Database System (GSB-GDS)	260
	The Data Scotogram Database System (GB (DS)	
23.	Earth Science Information Databases:	
23.	Lut in science information Databases.	
	Their Elements and Functions: L. Jones	
	Assessment Report (ARIS) Database: A. Wilcox, L. de Groot	
24.	Pibliography Database Demonstration	
2-1 .	Bibliography Database Demonstration:	no notes
	ARIS Database, ARIS Maps, CDS-ISIS, GEOSCAN: A. Wilcox, S. Proceviat	
25.	GeoHighlight Talks:	1
23.	Georgement Turks,	no notes
	Exploration Highlights in B.C.: Tom Schroeter	
	Geology and Mineral Potential of Tanzania: P. Ndonde, A. Ishegize	
26.	Myra Falls Mine Tour: S. Juras (Westmin)	
20.	Myru runs Mine rour. 5. juras (westillil)	no notes
27.	List of Computer Programs and Data Examples:	405
	ARISTRAN, ATLAS, Bedrock, COALFILE, GSB-GDS, GSB OF 1994-13, Help Desk,	
	Location Index, Metadata File; MINERAL, MINFILE/pc, NEWPET, RGS, UDEPO	
	Location much, Metauata rile, MinerAL, Minrile/pC, NEWPET, RGS, UDEPO	
28.	Tour of Ministry Activities:	
-0.	Information Resource Centre (Georef Search): Sharon Ferris	no notes
	Mineral Dotantial Project: E Connelly B Decisiondine L Connelled have	
	Mineral Potential Project: E. Grunsky. P. Desjardins, J. Cunningham	
	Scientific Review: B. Grant	
	Mapping Section: B. McMillan	
	Economic Geology Section: D. Lefebure, D. Grieve	
	Environmental Geology Section: S. Sibbick	
29-34.	Workshop on Using the MINFILE System: D. Jakobsen, G. Owsiacki	40 -
	Basic Disk and File Management Techniques (DOS and dBase)	
	Introduction to MNEW agement rechniques (DOS and dBase)	
	Introduction to MINFILE	
	Documents: User's Manual, Coding Manual, Workshop Notes	documents and
	Installing the MINFILE/pc Program	. program available
	Searching, Reporting, Data Entry, Data Transfer and Utilities	
25	Data Internation Minanal Detection 1 Contents of the second	
35.	Data Integration, Mineral Potential and GIS Applications: W. Kilby	no notes
	Notas	
	Notes	

Development and Management of Computerized Mineral Inventory Systems, using MINFILE as an Example 15 - 26 November 1993, Victoria, B.C., Canada

FINAL PROGRAM

Monday, 15 November Time:		Time:
1.	Introduction Introduction of participants and lecturers Course outline and materials	09:00 - 09:30
2.	The Role of the Geological Survey Branch (GSB): G. McArthur	09:30 - 09:45
3.	Overview of Geological Survey Branch Databases : L. Jones - COFFEE BREAK -	09:45 - 10:15
4.	<i>Geology and Mineral Resources of B.C.</i> : V. Preto - LUNCH -	10:30 - 12:00
5.	Strategy and Philosophy in Mineral Resources Databases: L. Jones	13:30 - 14:30
6.	Guidelines to Database Systems: L. Jones - COFFEE BREAK -	14:30 - 15:30
7.	Mineral Deposit Databases: L. Jones	16:00 - 17:00

Tuesday, 16 November

Tuesday,	16 November	Time:
	- Discussions -	09:00 - 09:15
8.	MINFILE Project Management Overview: L. Jones, D. Jakobsen	09:15 - 10:15
	- COFFEE BREAK -	
9.	Database Design and Data Dictionary. L. Jones	10:45 - 12:00
	- LUNCH -	
10.	System Testing and Quality Assurance: L. Jones, C. McPeek	13:30 - 14:30
11.	Database Administration and Maintenance: C. McPeek, L. Jones - Documentation and Manuals	14:30 - 15:00
	- COFFEE BREAK -	
12.	Data Acquisition and Processing Procedures (Coding Procedures): L. Jones, G. Owsiacki	15:30 - 16:30
	- Discussions -	16:30 - 17:00
Vednesd	ay, 17 November	Time:
	- Discussions -	09:00 - 09:15
13.	Training and Client Support: D. Jakobsen	09:15 - 09:45

14. Marketing and Distribution of Data: L. Jones - COFFEE BREAK -

09:45 - 10:15

Time:

16:30 - 17:00

15.	Mineral Titles: J. Chan, K. Stone, D. Porter	10:30 - 12:00
	- LUNCH -	
16.	New Technology and Future Planning: L. Jones	13:30 - 14:00
17.	Designing and Producing Computer Generated Products for Users: L. Jones, G. Owsiacki	14:00 - 15:00
	- COFFEE BREAK -	
18.	The QuikMap Mapping System: G. Owsiacki, L. Jones	15:30 - 16:30
	- Discussions -	16:30 - 17:00

Thursday, 18 November

x

The second second		
	- Discussions -	09:00 - 09:15
19.	Data Modelling Concepts: L. de Groot, L. Jones	09:15 - 10:30
	- COFFEE BREAK -	
20.	Data Modelling Practical (Host Rock Hierarchy): L. Jones, L. de Groot	11:00 - 12:00
	- LUNCH -	
21.	Data Modelling Practical , continued: L. Jones, L. de Groot, G. Owsiacki	13:30 - 16:30

- Discussions -

Friday, 19 November Time: - Discussions -09:00 - 09:15 Mineral Exploration Databases. L. Jones 22. 09:15 - 10:15 - Geological Database System (GSB-GDS), COALFILE Database - Regional Geochemistry Survey (RGS) Database - COFFEE BREAK -Earth Science Information Databases 23. 10:45 - 12:00 - Their Elements and Functions: L. Jones - Assessment Report (ARIS) Database: A. Wilcox, L. de Groot - LUNCH -24. **Bibliography Database Demonstration** 13:30 - 15:00 - ARIS Database, CDS-ISIS, GEOSCAN: A. Wilcox - ARIS Maps: S. Proceviat 25. GeoHighlight Talks: 15:00 - 17:00 - Exploration Highlights in B.C., Tom Schoeter - Geology and Mineral Potential of Tanzania:, P. Ndonde, A. Ishegize Geological Survey Branch Slide Show, Oak Bay Beach Hotel 18:00 - 22:00 Sunday, 21 November Time: Drive to Campbell River 12:00 - 18:00

Accommodation at Discovery Coast Inn

Monday, 22 November

26. *Myra Falls Mine Tour*, S. Juras (Westmin) Drive to Victoria

Time:

09:00 - 15:00 15:00 - 20:00

	r, 23 November	Time:
27.	Computer Program Demonstrations - Bedrock, COALFILE, Metadata File; ARISTRAN, ATLAS, - MINERAL, UDEPO, GSB-GDS, NEWPET, RGS, Help Desk, Pro-Cite	09:00 - 12:00
	- LUNCH -	
28.	<i>Tour of Ministry Activities</i> - Information Resource Centre (Georef Search)	13:30 - 15:00
	- Discussions -	15:00 - 16:00
edneso	lay, 24 November	Time:
	- Discussions -	09:00 - 09:15
29.	Workshop on Using the MINFILE System: D. Jakobsen, G. Owsiacki	09:15 - 12:00
30.	Basic Disk and File Management Techniques (DOS and dBase)	
31.	Introduction to MINFILE	
	- LUNCH -	
32.	Installing MINFILE/pc	13:30 - 14:00
33.	Searching, Reporting, Data Entry, Data Transfer and Utilities	14:00 - 16:30
	- Discussions -	16:30 - 17:00
		10.50 17.00
ursday	/, 25 November	Time:
ursday 34.	7, 25 November MINFILE Workshop continued	
		Time:
	MINFILE Workshop continued	Time:
34.	MINFILE Workshop continued - LUNCH - Data Integration, Mineral Potential and GIS Applications:	Time: 09:00 - 12:00
34.	MINFILE Workshop continued - LUNCH - Data Integration, Mineral Potential and GIS Applications: - W. Kilby	Time: 09:00 - 12:00
34. 35. 36.	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Mineral Potential Project: E. Grunsky. P. Desjardins, J. Cunningham 	Time: 09:00 - 12:00 13:30 - 15:00
34. 35. 36.	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Mineral Potential Project: E. Grunsky. P. Desjardins, J. Cunningham Scientific Review: B. Grant 	Time: 09:00 - 12:00 13:30 - 15:00 15:30 - 16:30
34. 35. 36. day, 26	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Scientific Review: B. Grant Kovember Tour of Ministry Activities	Time: 09:00 - 12:00 13:30 - 15:00 15:30 - 16:30 Time:
34. 35. 36. day, 26	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Scientific Review: B. Grant 5 November Tour of Ministry Activities Mapping Section: B. McMillan 	Time: 09:00 - 12:00 13:30 - 15:00 15:30 - 16:30 Time:
34. 35. 36. day, 26 37.	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Scientific Review: B. Grant November Tour of Ministry Activities Mapping Section: B. McMillan COFFEE BREAK - Tour of Ministry Activities Mapping Section: B. McMillan 	Time: 09:00 - 12:00 13:30 - 15:00 15:30 - 16:30 Time: 09:00 - 10:00
34. 35. 36. day, 26 37.	 MINFILE Workshop continued LUNCH - Data Integration, Mineral Potential and GIS Applications: W. Kilby COFFEE BREAK - Tour of Ministry Activities Scientific Review: B. Grant November Tour of Ministry Activities Mapping Section: B. McMillan COFFEE BREAK - Tour of Ministry Activities Mapping Section: B. McMillan COFFEE BREAK - 	Time: 09:00 - 12:00 13:30 - 15:00 15:30 - 16:30 Time: 09:00 - 10:00

.

Development and Management of Computerized Mineral Inventory Systems, using MINFILE as an Example

Larry Jones, Coordinator

Notes from a Training Course held in Victoria, B.C., 15 - 26 November 1993

Participants:

Tanzania Mineral Development

Coordinator:

Geological Survey Branch

• Larry D. Jones

Contributors:

- Gib McArthur
- Vic Preto
- Cindy McPeek
- George Owsiacki
- Dorthe Jakobsen
- Janice Chan
- Laura de Groot
- Allan Wilcox
- Eric Grunsky
- Ward Kilby

Purpose

- ✓ provide guidelines on the organization development and management of mineral inventory systems
- ✓ systematic database development
- ✓ mineral resource data
- use of personal computers
- ✓ MINFILE example

Course Outline

Course Introduction and Outline The Role of the Geological Survey **Branch (GSB) Overview of Geological Survey Branch Databases** Geology and Mineral Resources of B.C. The Strategy and Philosophy in Mineral **Resources** Databases **Guidelines to Database Systems Mineral Deposit Databases MINFILE Project Management Mineral Titles Mineral Exploration Databases** Earth Science Information Databases (ARIS example) **Using the MINFILE System:** Data Integration, Mineral Potential and **GIS Applications**

Branch Tours

Myra Falls Mine Visit

 $\sqrt{}$

Introduction

Course Materials

✓ Course Binder

- lecture notes
- handouts

$\sqrt{}$ MINFILE Manuals

- Coding Manual
- User's Manual
- Workshop Notes

Government Publications

- Style Guide
- Introduction to Prospecting
- NTS Location & Author Index
- Mineral Market Update
- B.C. Exploration & Development Highlights
- Ore Deposits, Tectonics and Metallogeny
- Other publications

✓ Diskettes

- MINFILE/pc
- Sample Data
- Various programs and utilities

Lusaka Workshop

Place & date

• Lusaka, Zambia, May 10-28, 1993

Participants

• 20 participants from Geological Surveys of 13 Countries in Africa

Technical Document (TECDOC)

• Guidelines for the Organization & Management of Earth Science Data on Personal Computers

Consultants

- Larry D. Jones, B.C. Geological Survey
- Caj R. Kortman, Geol. Surv. of Finland
- Maksimilijan Pecnik, IAEA
- Dr. Richard B. Taylor, USGS

Lusaka Workshop

Course Content

- Mineral Exploration & Development in Africa
- Geology & Mineral Resources of Zambia
- Computers in Geological Studies & Mineral Exploration
- Exploration & Development Strategy & Planning
- Strategy & Philosophy in Mineral Resources Databases
- Computer Hardware & Software
- Guidelines to Database Systems
- Geoscience Databases
- Earth Science Information Databases
- Mineral Deposit Database
- Exploration Databases

Introduction

IAEA-TECDOC- . . . in press

Guidelines for the organization and management of earth science data on a personal computer

INTERNATIONAL ATOMIC ENERGY AGENCY

IAEA

ABSTRACT

The understanding of database systems for the organization, management and presentation of earth science data is a major challenge for geological organizations. The management of digital data sets includes the systematic collection, storing, retrieving, transforming and displaying of data. The IBM-PC and compatibles are considered the most suitable, either as temporary or permanent, solutions for the creation of an information system. The dBASE-compatible, Lotus 1-2-3-compatible and ISO-ASCII files are recommended formats for data storage. Database design includes the understanding of data modelling, format standardization, data specifications and types, and data access methods. Geoscience information systems comprise several thematic databases, starting with the master database, which contains information about other databases, such as those handling bibliographies, mapping indexes, mineral deposit information, and exploration information. Most of these subject databases follow a multi-level model. Well designed databases are potentially valuable for integration into more sophisticated and enhanced information systems at a later date when such are required and available. Organizations may benefit by modelling after simple to complex examples of solutions to database management systems in the planning and developing of database systems to meet their needs.

FOREWORD

The International Atomic Energy Agency has long had an interest in providing manuals and guidebooks to assist workers in the most effective use of uranium exploration techniques and methods. Little has yet been done to assist the management of the earth science information needed for exploration or that produced by exploration activities. During the last several decades, the worldwide search for uranium has generated vast amounts of valuable data. The recent decline in uranium exploration has increased the risk of the loss of this data. The IAEA has produced this document to encourage the preservation of data in digital form so that they will still be available when needed in the future.

To address this need the IAEA convened meetings of consultants in October 1990 and September 1991. The three consultants, Larry D. Jones of the British Columbia Geological Survey, Canada, Caj R. Kortman of the Geological Survey of Finland, Richard B. Taylor of the United States Geological Survey, and IAEA staff member Maksimilijan Pecnik, brought their experience in the organization and management of many kinds of earth science information to this need. The capabilities of microcomputers belonging to the IBM-compatible family, using widely available software, were recommended for these tasks. Discussions and examples are provided to assist small organizations in setting up data systems. This volume provides the tangible results of these meeting.

CONTENTS

1.	INTRODUCTION	9
2.	COMPUTER HARDWARE AND SOFTWARE	11
2.1	Hardware	11
2.2	Software	12
2.3	Future Trends	13
3.	GUIDELINES TO DATABASE SYSTEMS	15
3.1	Introduction	15
3.2	Definitions	15
3.3	Data Models	16
3.4	Database System Design	18
3.5 3.6	Standards Database Administration	19
3.0 3.7	Database Administration Database Documentation	19
3.8	References	20 21
4.	GEOSCIENCE DATABASES	23
4.1	Introduction	
7.1	4.1.1 Location Accuracy	23
4.2	Master Database	23 23
	4.2.1 Introduction	23
	4.2.2 Components of a Geoscience Data Directory	23
	4.2.3 References	25
4.3	Earth Science Information Databases	25
	4.3.1 Introduction	26
	4.3.2 Bibliographies	26
	4.3.2.1 Introduction	26
	4.3.2.2 Information systems covering published material	27
	4.3.2.3 Bibliographic databases covering unpublished reports	28
	4.3.2.4 References	29
	4.3.3 Index of Geological Mapping	29
	4.3.3.1 References	31
	4.3.4 Index of Air Photography	31
	4.3.5 Index of Geophysical Mapping	32
	4.3.6 Index of Geochemical Mapping4.3.7 Index of Drill Holes	33
		34
	4.3.8 Management of Digital Cartographic Data 4.3.8.1 References	35
4.4	4.5.8.1 References Mineral Deposit Database	35
r. - 7	4.4.1 Introduction	36
	4.4.2 Data Content and Collection	36
	4.4.3 Data Structure and Elements	36 36
		50

10

	4.4.4	Codes	39
		Use of a Mineral Deposit Database	39
	4.4.6		40
	4.4.7	References	40 40
4.5		ration Databases	40
	4.5.1	Drill Hole Data	44
		4.5.1.1 References and examples	46
	4.5.2	Geophysical Data	46
		4.5.2.1 References and examples	46
	4.5.3	Geochemical Data	46
		4.5.3.1 References and examples	47
	4.5.4	Field Data	48
		4.5.4.1 References	48
4.6	Genera	al Geoscience References	48
			10
5.	CONC	CLUSIONS	49
6.	ANNE	CXES	50
6.1	Master	r Database	
	6.1.1	Example of a Database Review of a Geological Survey	
	6.1.2	Example of a Database Directory of Geoscience Digital Data Sets	
	6.1.3	Example of a Land Information Infrastructure Directory Questionnaire	
	6.1.4	Summary of the Government of British Columbia Corporate Land	
		Information Strategic Plan (CLISP) Initiative	
6.2	Earth S	Science Bibliographies	
	6.2.1	Country Codes	
	6.2.2	Language Codes	
	6.2.3	Classification Codes (AGI)	
	6.2.4	Classification Codes (BRGM-CNRS)	
	6.2.5	Classification Codes (UDC)	
	6.2.6	Examples of Key Terms from AGI Thesaurus	
	6.2.7	Examples of Key Terms from PASCAL-GEODE Lexique	
	6.2.8	Examples of Key Terms from Multilingual Thesaurus of Geosciences	
	6.2.9	Example of Location & Author Index	
	6.2.10	Example of the British Columbia Assessment Report Indexing System (ARIS)	
6.3	Earth S	Science Information and Exploration Databases	
	6.3.1	Example of Digital Geologic Map in IBM-Compatible Format.	
	6.3.2	Example of Geophysical Survey Data	
	6.3.3	Example of Data Handling and Digital Release of Gravity Data for IBM-	-
		Compatible Computers	
	6.3.4	Examples of Data Handling of Stream-Sediment and Soil Samples	
	6.3.5	Example of a Regional Geochemical Survey Database	
	6.3.6	Example of an Earthquake Data Report	
6.4		l Deposit Database	
	6.4.1	Mineral Deposit Code Tables	
		a) Commodity codes	
		b) Mineral codes	

- c) Rock codes
- d) Alteration type codes and mineralogy
- e) Deposit character codes and definitions
- f) Deposit classification codes and definitions
- g) Stratigraphic age codes
- 6.4.2 MINFILE A Mineral Deposit Information System for British
 - Columbia, Canada
- 6.4.3 MINFILE Architecture
 - a) MINFILE/pc database structure
 - b) Entity-relationship model
- 6.4.4 Example of MINFILE Coding Sheet and Reports
 - a) Coding sheet
 - b) Master report
 - c) Production report
- 6.4.5 MRDS Mineral Resource Data System

6.5 Field Data

- 6.5.1 Example of the Geological Database of the Geological Survey Branch, British Columbia
- 6.5.2 Example of a Petrography Data Sheet Metapelites
- 6.5.3 Example of Field Data Capture Using a Handheld Computer

FIGURES

Figure 1.	Relational database components	17
Figure 2.	Example of unnormalized and normalized data structures	19
Figure 3.	Organization of earth science data	22

TABLES

Table 1.	Components of a master database	24
Table 2.	Examples of bibliographic databases	27
Table 3.	Example of data elements for unpublished reports	28
Table 4.	Example of bibliography of geological maps	29
Table 5.	Example of air photography index	31
Table 6.	Example of geophysical mapping index	32
Table 7.	Example of geochemical mapping index	33
Table 8.	Example of drill hole index	35
Table 9.	Example of first-level mineral deposit data	37
Table 10.	Example of second-level mineral deposit data	38
Table 11.	Example of third-level mineral deposit data	38
Table 12.	Code table example	39
Table 13.	Example of an exploration database	41
Tables 14a-d.	Examples of drill hole database tables	44

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

SYSTEM 8. GSMAP, GSMEDIT, GSMUTIL, GSPOST, GSDIG AND OTHER PROGRAMS VERSION 8, FOR THE IBM PC AND COMPATIBLE MICROCOMPUTERS, TO ASSIST WORKERS IN THE EARTH SCIENCES

> by Gary I. Selner and Richard B. Taylor

Open-File Report 92-217

DISCLAIMER

Although program tests have been made, no guarantee (expressed or implied) is made by the authors or the U.S. Geological Survey regarding program correctness, accuracy, or proper execution on all computer systems. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. This report and has not been reviewed for conformity with the U.S. Geological Survey editorial standards.

Denver, Colorado February, 1992

- ATRENS, A., STRUIK, L.C., and HAYNES, A., GEOF A Computer Program to Translate Organized ASCII Computer Geological Fieldnotes to Database Readable Structure, *Geological Survey of Canada*, Open File 2618 (1993).
- BARTIER, Pat, Database review of the Geological Survey Branch, British Columbia, Ministry of Energy, Mines and Petroleum Resources (1990).
- BARTIER, P., KELLER, C.P., and GRANT, B., British Columbia Geological Survey Branch Geographic Information Systems User Requirement Analysis, *University of Victoria* and *British Columbia*, *Ministry of Energy, Mines and Petroleum Resources* (1989).
- BLISS, J.D., Management of the Life and Death of an Earth-science Database: Some Examples from GEOTHERM, *Computers & Geosciences*, Vol. 12, No. 2, pp. 199-205 (1986).
- BECKMAN, M. Dale, KURTZ, David L., BOONE, Louise, Foundations of Marketing, Fifth Canadian Edition, *Dryden*, Canada (1992).
- BURROUGH, P.A., Principles of Geographical Information Systems for Land Resources Assessment. (Monographs on Soil and Resources Survey No 12), Oxford University Press (1987).
- BUTTERFIELD, R.B. and CHARLESWORTH, P.B., Canadian Geoscience Data Directory, Preliminary Version: A listing of digital data sets in federal and provincial geological surveys to December 1990, *Geological Survey of Canada*, Open File 2328, (1991) diskette.
- CHAMPIGNY, N., PEARSON, W.N. and GIBBS, B.L., The Need for Data Interchange Standards for Mining Systems, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 925-934.
- CURRIE, A., Digital Geoscience Data and Exploration Projects, (Computer Treatment of Exploration and Mining Data: Do's and Dont's, Workshop, March 9 and 10, 1990, Toronto, Ontario, Canada) (1990).

CIRRUS ENTERPRISES INC., Program and System Testing Techniques, March 1998, Victoria, B.C.

DE VLETTER, D.R., Geological Data Acquisition, Storage, Retrieval and Presentation, (AGID Guide to Mineral Resources Development) WOAKES, Michael and CARMAN, John S. (Editors), Report No. 10, Association of Geoscientists for International Development, (1983) pp. 207-243.

DOCUMENTATION AND INFORMATION, ISO Standards Handbook 1, ISO, (1988) 1021 p.

- FEHR, D., Reports, Maps and Geoscience Databases Issued by the British Columbia Geological Survey Branch, B.C. Ministry of Energy, Mines and Petroleum Resources, Information Circular 1993-12 (1993).
- FOLEY, B.J., A Perspective of Australian Mining Computing, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 819-830.
- GEOLOGICAL SURVEY OF CANADA, Directory of Geoscience Digital Data Sets Questionnaire, National Geological Surveys Committee (1989).

GEOSCAN Pamphlet, National GEOSCAN Centre Geological Survey of Canada (1989).

GOVERNMENT OF BRITISH COLUMBIA, Land Information Infrastructure Directory Questionnaire, British Columbia Ministry of Crown Lands (1990).

- GRANT, Brian and LOGAN, Claudia, Digital Bibliographic Index of B.C. Geological Survey Branch Publications 1874 - 1993, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1994-13 (1994).
- GRANT, B. and NEWELL, J.M., Style Guide, British Columbia Geological Survey Branch, B.C. Ministry of Energy, Mines and Petroleum Resources, Information Circular 1992-7 (1992).
- GRAVESTEIJN, J, Unesco/IUGS-COGEODOC Expert Consultation Meeting for the Development of Factual Databases in the *PANGIS Project*, Unesco, Paris, 5-9 March (1990).
- GREEN. William R., Exploration With a Computer: Geoscience Data Analysis Applications; Computer Methods in the Geosciences, Volume 9, *Pergamon Press* (1991).
- GRUNDY, W.D. and MIESCH, A.T., Brief descriptions of STATPAC and related statistical programs for the IBM personal computer: *U.S. Geological Survey* Open File Reports 87-0411 (A-C) (1987) 34 p., 15 5-1/4 inch diskettes.
- HARRIS, R.N., PONCE, D.A., HEALEY, D.L. and OLIVER, H.W., Principal facts about 16,000 gravity stations in the Nevada Test Site and vicinity: *U.S. Geological Survey* Open File Report, 89-682-C, (1989) Gravity data on diskettes, two 5 1/2 inch high density diskettes.
- HART, A.B., McQUEEN, K.G., and NEWMARCH, J.D., A Computer Program which Uses an Expert Systems Approach to Identifying Minerals, *Journal of Geological Education*, 1988, v. 36, p. 30-33.
- HUTCHISON, W.W. (Chairman, COGEODATA), Computer-Based Systems for Geological Field Data, Canadian Centre for Geoscience Data, *Geological Survey of Canada*, Paper 74-63, (1975) 100p.
- JONES, L.D., Uranium and Thorium Occurrences in British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-32 (1990).
- JONES, L.D., KORTMAN, C.J., PECNIK, M. and TAYLOR, R.B., Guidelines for the Organization and Management of Earth Science Data on a Personal Computer (IAEA-TECDOC-in preparation), International Atomic Energy Agency, Vienna.
- JONES, L.D., MCARTHUR, J.G. and MCPEEK, C.B., MINFILE -- A Mineral Deposit Information System, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 85-96.
- KALNINS, T.E., WILCOX, A.F. et al., British Columbia Geological Survey Branch Mineral Assessment Report Database, *British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Information Circular 1990-16, (1990).
- KELLY, A.M., Recommended Standards for Recording the Location on Mineral Deposits, Canadian Centre for Geoscience Data, *Geological Survey of Canada*, Paper 72-9, (1972) 8p.
- KORTH, H.F. and SILBERSCHATZ, A., Database System Concepts, *McGraw-Hill Book Company* (1986).
- LEWIS, M., Geophysical Data Sets, (Proceedings of the United Nations Interregional Seminar on Computerized Mineral Title Management and Associated Databases, Rabat, Morocco, 26 November - 7 December 1990), (EMERSON, M. Editor), United Nations Department of Technical Cooperation for Development, New York and Department of Mines, Ministry of Energy and Mines, Morocco, (1992) pp. 207-218.
- LONGE, R.V., et al., Computer-Based Files on Mineral Deposits: Guidelines and Recommended Standards for Data Content, *Geological Survey of Canada*, Paper 78-26, (1978) 72p.

- MACINTYRE, Don G., Computer Assisted Mapping in the British Columbia Geological Survey --Progress to Date and Predictions for the Future, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 61-68.
- MACDONALD DETTWILER, Project Description Summary of British Columbia Land Information Infrastructure, *MacDonald Dettwiler* (1991).
- MARLON-LAMBERT, J.R., Pragmatic Software Engineering and User Interface Design Applied to Mining Systems, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 843-854.
- MATYSEK, P.F., A New Look for Regional Geochemical Survey Data, *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Geological Fieldwork 1986, Paper 1987-1, (1987) pp. 387-394.
- MCMILLAN, W.J., et al., Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, Data, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, (1991) 276 p.
- MEMPR, A Computerized Mineral Inventory System, The MINFILE Solution..., Brochure, B.C. Ministry of Energy, Mines and Petroleum Resources and SHL Systemhouse INC (1990).
- MEMPR, British Columbia Mineral Exploration Review 1992, B.C. Ministry of Energy, Mines and Petroleum Resources, Information Circular 1993-1 (1993).
- MEMPR, Mineral Market Update Vol. 5 No. 2 (July 1993), B.C. Ministry of Energy, Mines and Petroleum Resources, (1993).
- MEMPR, Mineral Potential Workshop Report of Proceedings, April 22-23, 1992, Victoria, B.C., B.C. Ministry of Energy, Mines and Petroleum Resources, Information Circular 1992-22 (1992).
- MEMPR, MINFILE Coding Manual, Version 3.32, B.C. Ministry of Energy, Mines and Petroleum Resources, Information Circular 1992-29 (1992).
- MEMPR, MINFILE/pc User's Manual, Version 1.0, *B.C. Ministry of Energy, Mines and Petroleum Resources*, Information Circular 1992-28 (1992).
- MONEY, N.J., TAUCHID, M., JONES, L.D., PECNIK, M. and TAYLOR, R.B., Proceedings of the Regional Training course on Computerised Databases in Mineral Exploration and Development, 10-28 May 1993, Lusaka, Zambia; International Atomic Energy Agency (IAEA) Vienna and Geological Survey Department, Ministry of Mines, Zambia, in preparation (1993).
- PASCAL GEODE Lexique, Francais-Anglais, Sciences de la Terre Earth Sciences, *CNRS-BRGM*, (1986) 289 p.
- PETERS, W., Managing with Micros, The Northern Miner Magazine, September (1990).
- PICKLYK, D.D., ROSE, D.G. and LARAMEE, R.M., Canadian Mineral Occurrence Index (CANMINDEX) of the Geological Survey of Canada, *Geological Survey of Canada*, Paper 78-8, (1978) 29p.
- PIESSE, D.F.A., Background Paper, (Proceedings of the United Nations Interregional Seminar on Computerized Mineral Title Management and Associated Databases, Rabat, Morocco, 26 November - 7 December 1990), (EMERSON, M. Editor), United Nations Department of Technical Cooperation for Development, New York and Department of Mines, Ministry of Energy and Mines, Morocco, (1992) pp. 13-42.
- RHASSAM, G.N., GRAVESTEIJN, J., and POTENZA, R. (Editors), Multilingual Thesaurus of Geosciences, *ICSTI-IUGS*, Pergamon Press, (1988) 516 p.

- SELNER, Gary I. and TAYLOR, Richard B., SYSTEM 8. Programs to assist workers in the Earth Sciences in using geodetic or Cartesian XYZ data from row column (GSPV85) files: GSPDC, contours and grids interpolated from triangulated network; GSPCS, graphic section; GSPUV, univariant statistics and histograms; GSPPROB, probability diagrams; GSPXY, regression statistics and XY plots; GSPTD, ternary diagrams; and GSPV85, postplots, for IBM PC compatible computers: U.S. Geological Survey Open File Report 92-372, (1992) 83 p., diskettes.
- SELNER, Gary I. and TAYLOR, Richard B., SYSTEM 8. GSLITH and related programs, Version 8, for the IBM PC and compatible microcomputers to assist workers in the Earth Sciences in management of drill data located with geodetic coordinates; provides for drawing of sections and plan views, and export of ASCII files for contouring: U.S. Geological Survey Open File Report 92-260, (1992) 97 p., diskettes.
- SELNER, G.I. and TAYLOR, R.B., SYSTEM 8. GSMAP, GSMEDIT, GSMUTIL, GSPOST, GSDIG and other programs, Version 8, for the IBM-PC and compatible microcomputers to assist workers in the Earth Sciences: *U.S. Geological Survey* Open File Report 92-217, (1992) 217 p., diskettes.
- SHIMOMURA, Ruth H. (Editor), GeoRef Thesaurus and Guide to Indexing; America Geological Institute, (1989) 731 p.
- SONDHEIM, M., LOWE, G., MENES, R. and FRIESEN, P., A Data Model for Geomatics, *British Columbia Ministry of Crown Lands*, (Presented at The Canadian Conference on GIS, GIS '90, Ottawa) (1990).
- STRUIK, L.C., ATRENS, A and HAYNES, A., Handheld Computer ASCII Editor as Field Notebook, and a Compiler for Immediate use of the Digital Data in Database and CAD Applications, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 15-25.
- STAPLETON, G., et al., A Mineral Deposit Database for Microcomputer in Current Research (1991) Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 91-1, (1991) pp. 401-403.
- TAUCHID, M., Mineral Exploration and Development Strategy and Planning, IAEA, Paper presented at the Regional Training course on Computerised Databases in Mineral Exploration and Development, 10-28 May 1993, Lusaka, Zambia; *International Atomic Energy Agency* (IAEA) Vienna (1993) 13 p.
- TAYLOR, Richard B., SELNER, Gary I. and JOHNSON, Bruce, R., GS MRDS A System Based on the Data Fields Used in the National MRDS System but Using dBASE III and a Microcomputer (IBM PC or Compatible) for Organizing Data on Mineral Resource Occurrences and Providing Tabular and Graphic Output, *U.S. Geological Survey*, Open File Report 86-450A, Program Disk 86-450B, (1986).
- TECHNOLOGY, ENGINEERING, and COMPUTING (TEC), Data Modelling Seminar, University of Victoria (1993).
- THREE-E TRAINING INC., Project Management Workshop Notes, November 20-21, 1989, Manageering Associates, Victoria, B.C.
- TURNER, R.L., Data for stream sediment and soil samples from the Elko 1 x 2 degree quadrangle, Nevada, *U.S. Geological Survey* Open File Report, 90-435, (1990) two 5 1/4 inch diskettes.
- ULLMAN, J.D., Principles of Database and Knowledge-base Systems, Vol. I, *Computer Science Press* (1988).
- UNIVERSAL DECIMAL CLASSIFICATION (UDC); International Medium Edition, English Text, Part 1; Systematic Tables, *British Standards Institute*, (1985) 495 p.
- WILSON, Graham C., Computer Database Systems for the Earth Sciences: Applications and Prospects in Mineralogy, Mineral Resources and Museum Curation, (On behalf of The Mineral Database Workshop, 29th International Geological Congress, Kyoto, Japan, 29-30 August 1992), Turnstone Geological Services Ltd., Toronto, Canada (1992) 96 p.

Overview of Geological Survey Branch Databases

OUTLINE:

Introduction

B.C. Geological Survey Databases ARIS COALFILE BEDROCK MINFILE PROPERTY FILE GSB-GDS RGS

Integration of Databases -Mineral Potential Maps

System Plan Development -Example

Summary

- Lecture by: L. Jones 15 November 1993
- **References:** TECDOC Section 4.2, Annex 6.1

Geological Survey Branch

Mandate

The Geological Survey Branch of the Ministry of Energy, Mines and Petroleum Resources is charged with providing the geological inventory required to develop British Columbia's mineral resources, to improve government's stewardship of our mineral endowment, and to help manage and protect Crown lands.

The Branch's mandate is to:

Assemble, maintain, and market a comprehensive geoscience database for B.C. to provide a sound base for

- 1. exploration & development of the province's mineral resources;
- 2. *planning* & *resource management decisions by governments; and,*
- *3. public information on geological resources and hazards.*

Organization Chart

•

Geological Survey Branch

Geological Survey Branch

Hardware

Computers:

Printers: Plotter: Digitizers: Slide Makers: Flatbed Scanner: Media: IBM compatibles (586s, 486s, 386s) Macintosh Notebooks SPARC 10 Work Stations HP LaserJet, Dot Matrix HP 650 Colour, HP Draftmaster Kurta Matrix Procolor

Disks, Tapes, CD ROM

Software

Operation Systems:	Dos, Workgroup for Windows, UNIX
Word Processing:	Word for Windows, Ventura
Spreadsheets:	Excel, Lotus, Quattro Pro
Databases:	dBASE, FoxPro, Friendly Finder, R&R
Communications:	Dynacomm, Sethost, (network to VAX)
	E-Mail, INTERNET
Graphics:	CorelDRAW, Harvard Graphics,
	Power Point
Mapping/GIS:	AutoCad, Terrasoft, QuikMap
Custom software:	eg MINFILE/pc, ARIS, Field Data

•

British Columbia Geological Survey Geoscience Databases

Assessment Report Indexing System

ARIS is a relational database that is an index and an administrative tracking system to the Geological Survey Branch's Mineral Assessment Report Library of more than 22,000 reports. Approximately 1000 new reports are added annually. The database is used to display the distribution of exploration and development activity and for research and mineral potential projects. A group of fields for each Assessment Report are extracted in 8 ASCII files from the VAX mainframe to diskettes. This data may be used on the PC within database management and small mapping projects using QUIKMap software.

Host computer:
Data model:VAX Mainframe; PC
Entity-relationshipOperating system:
DBMS:VMS; DOS
SUPRA; ASCII; dBaseData size:22000 records; 70 MB
Fields per record (maximum/average):Number of files:
60/40.15

COALFILE

Acronym: COALFILE

Acronym: ARIS

COALFILE contains summarized coal assessment reports dating from 1900, submitted by exploration companies in compliance with the Coal Act. The data is organized in six related files - Explore, Comment, Map, Trench, Bulk and Borehole. There is a 3-year confidential period for coal exploration assessment reports and only non-confidential data is publicly available. Distribution policy and administration of the database is currently being established.

Host computer:		Operating system:	DOS
Data model:		DBMS:	dBase
Data size:	8025 records; 3 MB	Number of files:	
	Fields per record (maximum/average):		171/78.

NTS Bibliographic Index

Acronym: **BEDROCK**

Bibliography of BC Geological Survey publications, including author, title, type of publication and map area. The data file is used to publish a map location and author index.

Host computer:	_	Operating system:	DOS
Data model:	Flat-File	DBMS:	dBase
Data size:	2800 records; 10 MB	Number of files:	
	Fields per record (maximum/average):		5/5.

B.C. MINFILE

Acronym: MINFILE

MINFILE contains over 11,000 metallic, industrial mineral and coal occurrences for B.C. Each of these occurrences contain 84 data elements describing mineral deposits in terms of geography, geology and economics. The database is used by government, industry and academia for resource management, land-use planning, exploration and research. MINFILE/pc, Version 3.0, a menu-driven data-entry, search and report program for IBM-compatible computers, accesses the database. An exploration and development module is currently in development.

•
Host computer:	PC	Operating system:	DOS
Data model:	Entity-relationship	DBMS:	MINFILE/pc;
Data size:	11300 records; 60 MB Fields per record (r	Number of files: naximum/average):	

PROPERTY FILE

Acronym: **PROPERTY FILE**

PROPERTY FILE is a library of research material on the mineral occurrences contained in the MINFILE database. The FILE contains news clippings, field notes, company prospectuses, and historical maps, photographs and documents. The FILE is used by government, industry and academia for research. The public has access to view these paper files.

Geological Field and Analytical Data (Geological Database System)

Acronym: GSB-GDS

A dBase relational database contains locations for stations in UTM coordinates, structural measurements, alteration codes, mineralization, rock type and map unit, lists of fossils, age dates, geochemistry and isotopic data. Areas have been mapped at 1:50 000 scale since 1986. Data is not being marketed; available as flat ASCII files on request by interested users.

Host computer:	PC; Notebook PC	Operating system:	DOS
Data model:	Relational	DBMS:	GSB-GDS; dBase
Data size:	30000 records; 20 MB	Number of files:	15
	Fields per record (maximum/average):	280/50.

B.C. METAL

Acronym: BCMETAL

BCMETAL is the historical metal production database for British Columbia. It contains mine location and name, and metal production since 1888. BCMETAL is a proto-type software, written in FoxBase, that allows query by name. location (NTS and Mining Division), year of operation, and metal type produced. Total production for any mine, year or Division may be calculated.

Host computer:	PC	Operating system:	DOS
Data model:	Relational	DBMS:	BCMETAL; dBase
Data size:	1452 records; 8 MB	Number of files:	2
	Fields per record	33/25.	

Regional Geochemical Survey

Acronym: RGS

RGS database contains multi-element analytical determinations, sample location information, bedrock associations and field observations of over 38,000 stream sediment and water samples in British Columbia. The database is used for exploration and development activities; geochemical, metallogenic and environment studies; and mineral potential, resource management and land-use projects. Digital data are stored in standard ASCII format.

Host computer:	MacIntosh; PC	Operating system:	Mac; DOS
Data model:	Flat-File	DBMS:	ASCII; dBase; .WKS
Data size:	38000 records; 10 MB	Number of files:	1
	Fields per record (62/60.	

•

Geological Survey Branch ARIS History

- 1947 1st Assessment Report
- 1981 IBM 3760 Mark IV
- 1984 NTS mini computer
- 1987 ARIS design starts
- 1987 VAX 780/8650
- 1988 ARIS production
- 1990 20 000th Assessment Report BaTA Forum 1992

Geological Survey Branch ARIS

- RELATIONAL DATABASE
- ENTITY/RELATIONSHIP MODEL
- **•** 4TH GENERATION LANGUAGE
- **1200 NEW REPORTS ANNUALLY**

22 000 REPORTS/RECORDS

BaTA Forum 1992

Geological Survey Integrated Data Base Master File Maintenance

01 >General Data

02 >Names (Author Owner Operator)

03 >Geological Summary

04 >Keywords

05 >Work Data

06 >Approval Data

07 >Amend/Reject Data

X > Exits System

Option Number : Assessment Report Number:

BaTA Forum 1992

Mineral Deposit Information at YOUR Fingertips!

B.C. Geological Survey Branch

)

Open File 1994-20

Geological Survey Branch

B.C.

Open File 1994-20

MINERAL INVENTORY MAPS UPGRADES

Topographic Base

Geological Base

 Sorted Index Reports: Commodities Name Nts

Plot by Status

Computer Plotting

Inserts

GSB

Open File 1994-20

Mineral Potential Project Mission

The Mineral Potential Project of the Geological Survey Branch is a component of the multi-ministry Corporate Resource Inventory Initiative (CRII). Government agencies responsible for resource inventories will establish current inventories of the major land based resources of the province in digital form which is readily accessible for inclusion in the land use decision making process.

The Mineral Potential Project will evaluate the mineral potential of BC. The order in which the province is evaluated will be on a priority basis. The term 'mineral' is used in its broadest sense and includes solid, liquid and gaseous commodities found in the earth's crust which have value. Commodities included in this initiative will be metals, industrial minerals, coal, oil and gas.

BaTA Forum 1992

FIGURE 2

...........

37

Source: W. Kilby, Geological Survey Branch

Figure 2. Data sources for a Geoscience Information System using GIS technology. Numbers in brackets indicate number of records in files.

Geological Survey Branch GEOSCIENCE DATABASE DIRECTORY

ARIS	B.C. Assessment Report Indexing System
BEDROCK	B.C. Bedrock Geology, 1:50 000 (Geological
	Database System)
BIBLIOGRAPY	B.C. GSB Bibliographic Index
COALFILE	B.C. COALFILE
MINFILE	B.C. MINFILE
MINPOT	B.C. Mineral Potential
PROFILES	B.C. Mineral Deposit Profiles
PROPERTY FILE	B.C. PROPERTY FILE
RGS	B.C. Regional Geochemical Survey
SURFICIAL	B.C. Surficial Geology, 1:50 000
	0, ,

Ministry of Energy, Mines and Petroleum Resources

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

B.C. Assessment Report Indexing System Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch. Geoscience Information Section, Assessment Report Unit **Description:** ARIS is a relational database that is an index and an administrative tracking system to the Geological Survey Branch's Mineral Assessment Report Library of more than 23,000 reports, dating from 1947. About 1000 new reports are added annually. The database is used to display distribution of exploration and development activity, and for research and mineral potential projects. Keywords: Assessment reports Bibliography **Mineral deposits** Owner, operator, location Work done, exploration results Location: BC Coverage: All BC; Not uniform 48° min - 60° max ; 114° min - 140° max Notes: Map areas: 82, 92, 102, 83, 93, 103, 94, 104, 114 Scales: 1:20 000 to 1:250 000 Geographical references: Lat./Long.; UTMs Map projections: Mercator; Polyconic; Universal Transverse Mercator (UTM) Data form: Digital Hard copy form: Map; Text Positional accuracy: Positional resolution: Dimensionality: F (depth and/or height measurement used?) Time span: Date began: 1947 Date end: Continues Last revised: 1994 Data quality: Encoded for areas only Data set status: Operational Access: Restricted User base: All Host Computer: VAX 8650 (Mainframe); PC Operating system: VMS; DOS Data structure (model): Entity-relationship Set size: 70 MB DBMS used: SUPRA (Cincom); ASCII; dBASE files Files: 15 GIS software: QUIKMap; AutoCAD; GIS Records: 23000 Output formats: Point Data Flat File; ASCII and .DBF relational files Fields: 60 Output media: Floppy Disk; Paper; Accessible online; Comfiche, Microfiche Average fields: 40 Document status: Partial Notes: A group of fields for each Assessment Report are extracted in 8 ASCII files from the VAX to diskettes. This data may be used on the PC within database management and small mapping projects using QUIKMap software. ARIS disks are \$35.00. Five volumes of index maps are \$35.00 each. The complete library of 23 000 reports on fiche is \$17 000.00. Data custodian: Laura de Groot **ARIS Database Manager, Geoscience Information Section** Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0387 Fax: (604)952-0381 Scientific contact: Talis E. Kalnins Mineral Inventory Geologist, Assessment Reports **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0385 Fax: (604)952-0381 Completed by: Laura de Groot, ARIS Database Manager Phone: (604)952-0387 Fax: (604)952-0381 Questionnaire completed: 09/20/89 Data entered: 01/19/94 (mm/dd/yy)

ARIS

Geological Survey Branch Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

Organization: BC Minis Section	stry of Energy, Mine	s and Petroleun	n Resources, Geologic	al Survey Br	anch, Mapping	
measure dates, ge	se relational databa ments, alteration co ochemistry and iso have been mapped	odes, mineraliza otopic data.	ations for stations in l tion, rock type and ma	UTM coordina up unit, lists o	ates, structural of fossils, age	
Keywords: Structura			types and alteration	teres donates	neralization	
Fossils		Geoch	nemistry and isotopic	data	eywords: Asea	
Location						
Notes	All BC; Uniform i Approximately 9(82, 83, 92, 93, 94,	0 1:50 000 scale	° min - 60° max ; 114° sheets have been may 14 Scales	min - 140° m oped. 1:20 000 to	ax	
Geographical references	: UTMs : Universal Transv	541.50			Map a Map a	
			ior; Polyconic; Univer			
Data form:	Digital		Hard copy form:	Open File I	Maps	
Positional accuracy Dimensionality:	t 3m T (depth and/o	r height measur	Positional resolution: rement used?)			
Time span: Data quality:	Date began: 1986 Not encoded but	5 could be obtain	Date end:	Continues	Last revised:	1993
Access	Open to the Publi	ic	ed Data set status: User base:		elopment	
Host Computer:	PC; Notebook Co	-	Operating system:			
Data structure (model):	Relational		150 (Mainframe); PC		Set size:	20 M
DBMS used: CIS software:	GSB-GDS; dBAS	E files			Files:	15
Output formats:	Point Data Flat Fi	le: ASCII and .D	BF relational files		Records: Fields:	3000
Output media:	Floppy Disk; Pape	er; Open File Ma	apsil08A ;eli4 file; ABCI aqu Disk; Paper; Accessi		Average fields:	
Notes:	Data is not bei	ng marketed. A	vailable as flat ASCII f	iles on reque		
n e Asch C within			iskettes).			
Data custodian:	Head, Mapping U	nit				
	BC Ministry of En	/ Branch ergy, Mines and	Petroleum Resources	ana Do ediT		
	5th Fl. 1810 Blans Phone: (604)952	hard St., Victori	ia, B.C., V8V 1X4 ax: (604)952-0381			
Cointific contact	notion Section		etabase Manager, Geo			
Scientific contact:	Head, Mapping Ur	and Petroleutin				
	BC Ministry of En	ergy, Mines and	Petroleum Resources	sen Fl. Phone		
	5th Fl. 1810 Blans Phone: (604)952		a, B.C., V8V 1X4 ax: (604)952-0381			
Completed by:	D.G. MacIntyre, H Phone: (604)952	ead, Mapping U -0440 Fa	nit ax: (604)952-0381			
Questionnaire completed:						

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

BIBLIOGRAPY B.C. GSB Bibliographic Index Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Scientific Review Bibliography of BC Geological Survey publications, including author, title, type of Description: publication, NTS map areas and keywords. Bibliography; map Keywords: Geoscience information Location; NTS area Author Title Location: BC Coverage: All BC; Not uniform 48° min - 60° max ; 114° min - 140° max Notes: Map areas: 82, 92, 102, 93, 103, 94, 104, 114 Scales: 1:50 000 to 1:2 000 000 Geographical references: NTS Map sheets Map projections: Mercator; Lambert Conformal; Polyconic; Stereographic; Universal Tranverse Mercator (UTM) Data form: Digital Hard copy form: Paper **Positional resolution:** Positional accuracy: Dimensionality: F (depth and/or height measurement used?) Time span: Date began: 1874 Date end: Continues Last revised: 1994 Data set status: Developed Data quality: Unknown Access: Open to the Public User base: Academia; Government; Industry Host Computer: PC Operating system: DOS Data structure (model): Relational Set size: 10 MB DBMS used: dBASE files Files: 3 GIS software: No Records: 2809 Output formats: ASCII; .DBF; .XLS Fields: 57 Output media: Floppy Disk; Paper (Information Circular) Average fields: 35 Document status: Not available The data file is used to publish a map location and author index. Notes: A diskette (\$5.00) is available as Open File 1994-13, Digital Bibliographic Index of B.C. Geological Survey Branch Publications 1874-1993. Data custodian: Brian Grant Scientific Editor, Scientific Review Office **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 4th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0454 Fax: (604)952-0451 Scientific contact: Brian Grant Scientific Editor, Scientific Review Office **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 4th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0454 Fax: (604)952-0451 Completed by: Brian Grant, Scientific Editor Phone: (604)952-0454 Fax: (604)952-0451 Questionnaire completed: 01/18/94 (mm/dd/yy) Data entered: 01/18/94

3

Page:

Geological Survey Branch Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

C. COALFILE					C	JALFILE
Organization: BC Minis Geoscien	try of Energy, Mines and the Information Section	Petroleum Re	sources, Geologica	al Survey E	Branch,	
reports a	FILE is a index of over 8 re submitted by explorat tions as a statistical rec	ion companies	s in compliance wit	g from bef h the Coal	ore 1900. The Act. COALFILE	
The da Trench.	ata are organized in 6 rel	ated files: Bo	rehole, Bulk, Comm	nent, Explo	ore, Map and	
Keywords: Coal Asse Borehole		Map Infor Exploration	on data		rench, adit or pit	data
Location:	BC					
Coverage: Notes:	All BC; Not uniform	48° mi	n - 60° max ; 114° 1	nin - 140° :	max	
Map areas: Geographical references:	82, 92, 102, 93, 103, 94	, 104, 114	Scales:			
Data form:			Hard copy form:	Text		
Positional accuracy: Dimensionality:	±2-3 m for Boreholes T (depth and/or heig	Pos	itional resolution:			
Time span: Data quality:	Date began: <1900 Not encoded but could Open to the Public		Date end: Data set status:	Operation	s Last revised: nal Government; Aca	
Host Computer:	PC	(Operating system:			
Output media:	dBASE files	CII and .DBF I			Files:	up to 8025 171
Notes:	Data file (fields/reco (9/608); Explore (44/773 products include paper The Coal Assessme microfiche (7000 fiche)	8); Map (39/852 copy (\$10.00) nt Report libra); and Trench (31/3 , fiche (\$5.00) and o ry of 800 reports is	323). COA		
Data custodian:	Alex Matheson Project Geologist, Econ Geological Survey Brar BC Ministry of Energy, 5th Fl. 1810 Blanshard Phone: (604)952-0420	nch Mines and Pet St., Victoria, B Fax:	roleum Resources .C., V8V 1X4 (604)952-0381	Phan ct. Brian Scient Gaeloj SC Mi		
Scientific contact:	Alex Matheson Project Geologist, Ecor Geological Survey Brar BC Ministry of Energy, 5th Fl. 1810 Blanshard Phone: (604)952-0420	nomic Geology nch Mines and Pet St., Victoria, B	roleum Resources			Questit
Completed by:	Dave Grieve, Coal Unit Phone: (604)952-0416	Head, Econom			·	
			이는 상태에서 그 아파 생김 가지 말했다. 것이다.			

Geological Survey Branch Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

C. MINFILE							MINFI
Organization: Bo G	C Ministi eoscienc	ry of Energy e Informatio	, Mines and Pe on Section, Mi	etroleum Re NFILE Unit	ources, Geologica	al Survey Branch,	
ge	ach of th eography The dat	ese occurre /, geology al abase is use	nces contain 8 nd economics	4 data elem nent, industi	ents describing mi	oal occurrences for B.C. neral deposits in terms of r resource management,	
Keywords: Me	etallic &		inerals	Bibliograp	hy production	Mineral deposits	
	ocation:				production		
	Notes:	(1:100 000 a	of the data ha	ve been coo scales) map	1 - 60° max ; 114° r ed; 75% of the dat areas have been r Scales	a or 73 of the 105	
Geographical refe	erences:	Lat./Long.;	UTMs ransverse Mei			1.30 000 10 1.250 000	
Data	a form:	Digital			Hard copy form:	Reports and Maps	
Time	onality: e span:	T (depth a Date began	and/or height : 1967	measureme	Date end:	Continues Last revised	: 1994
Data c	quality: Access:	Encoded wi Open to the	th each data y Public	alue	Data set status: User base:	Under development All	
Host Con	nputer:	PC		C	perating system:	DOS	
GIS so Output fo	S used: ftware: ormats: media:	MINFILE/pc QUIKMap; A Point Data I Floppy Disk	; FoxBASE+/F utoCAD; GIS flat File; ASCI	and .DBF r	elational files Jeries; Open Files	Files: Records: Fields	11368 84
		program for exploration MINFILE	[•] IBM-compatil and developm data are avail	ble compute lent module able as print	riven data-entry, so rs, accesses the da is currently in dev outs, hardcopy ma e data is on 15 dis	atabase. An elopment. los (101 maps are	
Data cust		Geological S BC Ministry	tabase Manag Survey Branch of Energy, Mit Blanshard St.	nes and Pet Victoria, B	ice Information Se roleum Resources C., V8V 1X4 (604)952-0381	ction	
Scientific co		Senior Geol Geological S BC Ministry	ogist - MINFIL Survey Branch of Energy, Mi Blanshard St.,	nes and Pet Victoria, B.	oleum Resources C., V8V 1X4 (604)952-0381		
Complet	ted by:	Larry Jones	, Senior Geolo	aist - MINFI	LE		
		Phone: (60	4)952-0386		604)952-0381		

MINPOT

GEOSCIENCE DATABASE DIRECTORY

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

B.C. Mineral Potential

46

Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, Mineral **Potential Project** A series of geological map compilations, at a 1:250 000 scale, in digital (.dxf) format. Description: These accurate geological base maps are useful to researchers and mineral exploration personnel who are working with computer systems. Keywords: Geological contacts and units Structural features Location: BC Coverage: All BC; Uniform in areas 48° min - 60° max ; 114° min - 140° max Notes: 41 of the 88 map areas (1:250 000 scale) have been released. Scales: 1:250 000 Map areas: 82, 83, 92, 93, 102, 103, 104 Map projections: Universal Transverse Mercator (UTM) Geographical references: NTS Data form: Digital Hard copy form: Map; Text Positional resolution: Positional accuracy: 1:100 000 Dimensionality: F (depth and/or height measurement used?) Time span: Date began: 1992 Date end: Continues Last revised: 1994 Data quality: Not encoded but could be obtained Data set status: Operational Access: Open to the Public User base: Academia; Government; Industry Host Computer: PC Operating system: DOS Data structure (model): Line/Polygonal Set size: DBMS used: AutoCAD Files: GIS software: AutoCAD; Terrasoft Records: 59-123 Output formats: AutoCad data exchange format (.DXF) Fields: 68 Output media: Floppy Disk; Maps Average fields: 60 Document status: Partial The digital files comprise: polylines of geological contacts and Notes: structural features; polygons of geological units; labels for geological units; NTS 1:50 000 map sheet grid reference lines; geological legend as a text file; metadata descriptor file. Open File packages (\$25.00) contain disks, map, legend and notes. Each package contains 8 to 11 NTS map areas. ploration and development modula MINFILE data are available as prim Data custodian: Ward Kilby Manager, Mineral Potential Project Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0422 Fax: (604)952-0381 RC Moletry of Energy. 9th FL 1810 Blaneherd Scientific contact: Eric Grunsky Project Geologist, Mineral Potential Project **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0424 Fax: (604)952-0381 SC Ministry of Completed by: Larry Jones, Senior Geologist - MINFILE Phone: (604)952-0386 Fax: (604)952-0381 Questionnaire completed: 01/20/94 (mm/dd/yy)

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

B.C. Mineral Deposit Profiles PROFILES Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, **Economic Geology Section** The Mineral Deposit Profiles database is a table of deposit types and standard descriptions **Description:** found in British Columbia. Global and B.C. examples are given. Keywords: Mineral deposits **Deposit types Deposit models** Location: BC Coverage: All BC; Not uniform 48° min - 60° max ; 114° min - 140° max 90 Deposit Profiles exist for B.C. Notes: Map areas: Scales: Geographical references: Map projections: N/A Data form: Digital Hard copy form: Text Positional accuracy: N/A Positional resolution: N/A Dimensionality: F (depth and/or height measurement used?) Time span: Date began: 1992 Date end: Continues Last revised: 1994 Data quality: Not encoded but could be obtained Data set status: Under development Access: Internal use User base: Academia; Government; Industry Host Computer: PC Operating system: DOS/Windows Data structure (model): Flat-file Set size: 0.5 MB DBMS used: Excel and Word for Windows Files: 95 **GIS software:** Records: 155 Output formats: **ASCII and worksheet** Fields: 10 Output media: Floppy Disk; paper Average fields: 9 Document status: Partial Notes: The file is currently being developed and is only available for internal users. Data custodian: Dave Lefebure Manager, Economic Geology Section **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0404 Fax: (604)952-0381 Scientific contact: Dave Lefebure Manager, Economic Geology Section **Geological Survey Branch** BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0404 Fax: (604)952-0381 Completed by: Larry Jones, Senior Geologist - MINFILE Phone: (604)952-0386 Fax: (604)952-0381 Questionnaire completed: 01/20/94 (mm/dd/yy) Data entered: 01/20/94

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

B.C. PROPERTY FILE PROPERTY FILE Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, **Geoscience Information Section** PROPERTY FILE is a library of research material on the approximate 11 000 mineral Description: occurrences contained in the MINFILE database. The FILE contains news clippings, field notes, company prospectuses, and historical maps, photographs and documents. The FILE is used by government, industry and academia for research. Keywords: Metallic & Industrial minerals Bibliography Mineral deposits Geology, sketch maps Drill logs Location: BC Coverage: All BC; Not uniform 48° min - 60° max ; 114° min - 140° max Notes: Map areas: 82, 92, 93, 94, 103, 104, 114 Scales: Range of scales Geographical references: Lat./Long.; UTMs Map projections: Various projections Data form: Paper Hard copy form: Reports and Maps Positional accuracy: Positional resolution: Dimensionality: F (depth and/or height measurement used?) Time span: Date began: 1940s Date end: Continues Last revised: 1993 Data quality: Unknown Data set status: Operational Access: Open to the Public User base: All Host Computer: none Operating system: Data structure (model): Set size: 50 file cab. Files: DBMS used: **GIS software: Records: Output formats:** Fields: Output media: Paper; Maps Average fields: Document status: Partial Notes: The public has access to view these paper files. Data custodian: Dorthe Jakobsen Research Geologist, Geoscience Information Section Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0388 Fax: (604)952-0381 Scientific contact: Dorthe Jakobsen Research Geologist, Geoscience Information Section Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0388 Fax: (604)952-0381 Completed by: Larry Jones, Senior Geologist - MINFILE Phone: (604)952-0386 Fax: (604)952-0381 Questionnaire completed: 09/21/89 (mm/dd/yy) Data entered: 08/25/93

Geological Survey Branch

Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada

B.C. Regional Geochemical Survey RGS Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, **Environmental Geology Section** RGS database contains multi-element analytical determinations, sample location Description: information, bedrock associations and field observations of over 40,000 stream sediment and water samples in British Columbia. Used for exploration and development activities; geochemical, metallogenic and environment studies; and resource management projects. Keywords: Geochemistry; moss mat seds. Sediment & water - stream, lake Elemental values: Location; stream parameters Rock types; formation Location: BC Coverage: All BC; Uniform in areas 48° min - 60° max ; 114° min - 140° max Notes: 46 of the 88 map areas (1:250 000 scale) have been released. Map areas: 82, 83, 92, 93, 102, 103, 104 114 Scales: 1:250 000 Geographical references: UTMs Map projections: Universal Transverse Mercator (UTM); NAD 27 Data form: Digital Hard copy form: Map; Text Positional accuracy: 1:50 000 **Positional resolution:** Dimensionality: **T** (depth and/or height measurement used?) Time span: Date began: 1976 Date end: Continues Last revised: 1993 Data quality: Not encoded but could be obtained Data set status: Operational Access: Open to the Public User base: All Host Computer: PC Operating system: DOS Data structure (model): Flat-File Set size: 10 MB DBMS used: ASCII; dBASE files Files: 1 GIS software: QUIKMap; AutoCAD; GIS Records: 40 000 Output formats: Point Data Flat File Fields: 80 Output media: Floppy Disk; Paper Average fields: 60 Document status: Complete Notes: Digital data are stored in standard ASCII format. Data custodian: Wayne Jackaman **Research Officer** Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0398 Fax: (604)952-0381 Scientific contact: Paul Matysek Manager, Environmental Geology Section Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0394 Fax: (604)952-0381 Completed by: Wayne Jackaman, Research Officer Phone: (604)952-0398 Fax: (604)952-0381 Questionnaire completed: 01/19/94 (mm/dd/vv) Data entered: 01/19/94

B.C. Surficial Geology, 1:50 000

SURFICIAL

Geological Survey Branch Ministry of Energy, Mines and Petroleum Resources Province of British Columbia, Canada Organization: BC Ministry of Energy, Mines and Petroleum Resources, Geological Survey Branch, **Environmental Geology Section** Description: Surficial Geology maps are currently released in hard copy. oclations and field observations of over 40,000 stream Keywords: Location: BC Coverage: 48° min - 60° max ; 114° min - 140° max Notes: Map areas: Scales: Geographical references: Map projections: Universal Transverse Mercator (UTM) Data form: Paper Hard copy form: Map Positional resolution: Positional accuracy: Dimensionality: F (depth and/or height measurement used?) Date end: Last revised: Time span: Date began: Data set status: Under development Data quality: Access: Internal use User base: Academia; Government; Industry Positional resolution: Operating system: Host Computer: Data structure (model): Set size: DBMS used: Files: GIS software: **Records:** Fields: Output formats: Average fields: Output media: Maps DBMS used: Document status: Partial Notes: Data custodian: Paul Matysek Manager, Environmental Geology Section Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Phone: (604)952-0394 Fax: (604)952-0381 Research Officer Geological Survey Branch Scientific contact: Peter Bobrowsky Quaternary Geologist, Environmental Geology Section Geological Survey Branch BC Ministry of Energy, Mines and Petroleum Resources 5th Fl. 1810 Blanshard St., Victoria, B.C., V8V 1X4 Fax: (604)952-0381 10444 1049 1061000 001100102 Phone: (604)952-0395 Completed by: Larry Jones, Senior Geologist - MINFILE Phone: (604)952-0386 Fax: (604)952-0381 St., Victoria. Questionnaire completed: 01/19/94 (mm/dd/yy) Data entered: 01/19/94

1993-94 Computer Systems Plan Geological Survey Branch

Contents:

Executive Summary

1. Introduction

2. Objectives of the Branch Computer System Plan

- 3. System Plan Highlights of 1992-93
 - 3.1. Hardware and software upgrades
 - 3.2. Mineral Resource Evaluation\ Mineral Potential Mapping Project (MPMP)
 - 3.3. District Geology Database and MINFILE system development
 - 3.4. Network planning and remote communication
 - 3.5. Assessment Report management
 - 3.6. Highlights within Branch sections
- 4. Identification of Key Issues for 1993-94
 - 4.1. Network strategy and implementation
 - 4.2. Hardware and software upgrades and training
 - 4.3. Operation and maintenance of existing systems
 - 4.4. Specific and new initiatives
- 5. Recommended Strategy and Priorities
- 6. Conclusion
- 7. Appendices
- 8. Other Key Documents

Prepared by:

Geosystems Advisory Group (L. Jones, Chair)

April 28, 1993

52

PERSONAL COMPUTER Hardware Strategy Matrix

B.C. Geological Survey Branch

11-Jun-91

Hardware		Current Norm		Recommen	ded Configuration	Longterm Direction		
	Component DOS APPLE		DOS	APPLE	DOS	APPLE		
Central Processing	g Unit	80286	680	30	80386	68030	80486/80586	68040/68050
CPU Memory		1 megabyte	1 meg	abyte	4 megabytes	8 megabytes	8 megabytes	12 megabytes
ionitor / Display		EGA	HiRes	Mono	VGA	HiRes Color	HDGA	HDGA
lackup		Floppy	Flop	ру	Shared Tape	Shared Tape	Compact Disc	Compact Disc
ligh Speed Disk S	torage	40 megabytes	40 meg	abytes	80 megabytes	80 megabytes	200 megabytes	200 megabytes
.ow Speed Diskett	e Store	1 x 5.25	1 x	3.5	1 x 3.5 1 x 5.25	1 x 3.5	1 x 3.5	1 x 3.5
led. Speed - Comp	act Die	G				ee At the B	1 - gigabyte	1 - gigabyte
letworks	11111	DNET	Apple		DNET Local Area Netwo	AppleLink ork	Local Area Network MAN	Local Area Networl MAN
louseetc			Ye	adn .	Yes 2	bns o Yes vbu	Scripting Device	Scripting Device
rinter		Deskjet	Personal	Laser	Deskjet Network Laser	Personal Laser Network Laser	Personal Laser Network Color Printer	Personal Laser Network Color Print
nergy Comsumpti	on	900 watts	1700 w	atts	700 watts	1200 watts	500 watts	500 watts
ooling Requireme	nts	1800 BTU's	1400 B	TU's	1200 BTU's	1000 BTU's	700 BTU's	700 BTU's
		AL COMPL Strategy M			APPENDIX:	INFILE sys twork plan	11-Jun-91	
Bu	isiness	Function	% Use	C	urrently OS Used	1 to 2 Year Strategy	3 to 5 Year Strategy	_ ·
Op	peratin	g System	93% 5% 2%	DOS	OOS 3.3 3.3/Windows Elntosh 6.x	DOS 5.0/Windows MacIntosh 7.x	UNIX/XWindows (Open Systems)	þ.
We	ord Pro	cessing	95% 5%		Word 5.0+ for Windows	Word for Windows	Word / UNIX	
Sp	readsh	eet	80%		Lotus	Excel	Excel / UNIX	
			12% 5% 2% 1%	S	Excel L.F.P.S. upercalc Quatro	I.F.P.S. (When required)	4.4. Sp Recomm	
Da	ataBase		40% 55% 5%	DBa	ase/FoxPro se III/IV ++ mphony	OMNIS	OMNIS/UNIX	
Co		ications Mainframe	85% 5% 3% 2%] Ma	et Host Telex Mobius c 240/241 rocomm	Pathworks	Pathworks / UNIX	
	- Enh. '	Term. Em.	3%	Ma	c 240/241	DynaComm Mac 241	Pathworks / UNIX	
	- File I	ransfer	90% 8% 2%	1	Kermit Mobius T Term	Pathworks	Pathworks / UNIX	
Gr	-Preser	ntation	90%	F Po Imp	Iarvard werPoint pressionist reelance	PowerPoint	PowerPoint / UNIX	:
	- Chart	ing	90%		Iarvard Lotus Excel	Excel	Excel / UNIX	
	- Марр	ing/GIS	60%	Q	utoCAD uickmap aSoft (GIS)	Application Driving	UNIX standard platform	

Geology & Mineral Resources of British Columbia

OUTLINE:

Introduction Tectonic Belts Metals Distributed by Belts Mineral Deposit Types Value of Mineral Output Operating Mines Coal Basins and Production Conclusion

Lecture by:	V. Preto
	15 November 1993

References: Geological Survey Branch Publications: Paper 1991-4 Mineral Market Update, July 1993 Open File 1992-1 Information Circular 1993-1

MINERAL RESOURCES OF BRITISH COLUMBIA, AN OVERVIEW

SLIDES NOAA # 16,19,20.

B.C. is strategically located on the Pacific Ring of Fire, so called because of the great concentration of earthquackes of magnitude 5.5 or greater which ring the Pacific Ocean. This is a ring of active volcances, due to active plate subduction which goes on all around this ocean. Such activity over geologic time has been the reason for B.C.'s geological framework and its world class mineral endowement.

Tha province exactly straddles the North American Cordillera, from the boundary of the Pacific Plate on the west, where subduction is active and mineral deposits are being formed, to the craton on the east. The American Cordillera is the backbone of the Americas, and throughout its length, from Bering Strait on the north to Cape Horn on the south, a distance of some 20,000 kilometres is richly endowed with minerals.B.C.'s rocks, as most cordilleran rocks, are relatively young when compared to shield areas of the world. Most are palaeozoic and younger, but in the central and eastern parts of the province we do have precambrian Hadrynian and Helikian rocks which host significant mineral deposits.

SLIDE Tectonic Belts

From the Pacific Ocean to the Plains, B.C. is divided into five Tectonic Belts and at least seven distinct mountain chains across its southern part.

SLIDE Metals distribution by belts

The distribution of metals is controlled by these belts with the Insular Belt containing mostly Fe,Cu,Zn,Au, and Ni, the Coast Belt some Cu,Au,and Ni, the Intermontane Belt Mo,Cu,Au,Sn, and Hg, the Omineca Belt mostly Ag,Zn,Au,Pb,Sn,W,and U, and the Eastern Belt being the least mineralized with only some Zn,Pb,and Ag.

Most of our coal, as will be seen in another slide, occurs in the great coal basins of the north and south Eatern Belt, with lesser amounts in the Intermontane and Insular belts.

SLIDE Mineral Deposit Types by belts.

This metal distribution is also reflected in the distribution of metallic mineral deposits types, with most skarns and magmatic deposits occurring in the Insular Belt, most massive sulphide deposits in the Coast and Insular belts, most porphyry deposits in the Intermontane Belt and only some in the Coast and Insular belts, most vein and stratabound deposits in the Omineca Belt and only a sprinkling of these last two types of deposits in the Eastern Belt. Let us now look at the size and type of the province's mineral output. OVERHEAD Value of mineral output, '91 and '92.

Mining is B.C.'s second largest industry after timber production. Some will argue that now Tourism is #2 ,and this may be so, particularly in terms of the number of people employed. The fact is, however, that every year B.C. produces 2.5 to more than 3 billion dollars worth of coal, metals and a growing number of industrial minerals and structural materials. This industry provides well paying direct jobs to more than 20,000 men and women, and an additional 25,000 to 30,000 related jobs in the supply, service and support sectors. The average salary in our mines is in excess of \$60,000 /yr with considerably higher salaries for certain jobs.

The table shows that our two most important products are copper and coal, with first place being traded between the two depending on world prices. Gold comes third with a total yearly production or roughly 500,000 ounces. Zinc is fourth.Mo,Ag, and Pb are well back on the list. An increasingly important group of products is structural materials, mostly cement and sand & gravel, and a variety of industrial minerals including gypsum, silica, barite, dimension stone, and many others.

OVERHEAD Operating Mines, 1993

These products come from 15 metal mines,8 coal mines,7 industrial minerals mines and a great number of sand&gravel pits throughout the province.

Let us first look at coal.

OVERHEAD Coal Basins

Our most important coal basins are in the Eastern Belt, unfortunatrely a long distance from tide water. Transportation to the ports of Vancouver and Prince Rupert is provided by our two major railways, Canadian National in the north and Canadian Pacific in the south. Most of the eastern coals are Upper Jurassic to Lower Cretaceus , high quality metallurgical coals, but some which are of lesser quality for coke making, mostly because oxidized, are sold as thermal coals.

The Intermontane Belt coal basins are soft Tertiary coals in the south and extreme north, with two large basins of Cretaceous hard thermal coals,one of which, the Klappan Basin, contains huge deposits of anthracite.There is no production from these basins at this time.

Insular coals are all Cretaceous and thermal, with one producing mine, Quinsam, at the north end of Comox Basin.

OVERHEAD Metallurgical and thermal coal production, 91&92.

Coal production is dominated by metallurgical coal largely exported to Japanese steel mills. The drop in production in the second half of '92 was due to operating problems at some of the largest mines in the southeast coalfields. Thermal coal is a distant second to metallurgical coal in terms of output.

OVERHEAD Metellurgical and thermal coal production, 92&93.

'93 is shaping up to be very similar to '92 with an anticipated output of 14.5-15 million tonnes metallurgical coal and 2-2.5 million tonnes

SLIDES

The average salary in our mines is in excess of \$50 Six slides showing that our coal mines are large open pit operations.

Let us now turn to the metal sector. coal, with first place being traded between

OVERHEAD Value of mineral output, '91&'92. 500,000 ounces. Sinc is fourth. Mo, A

Copper is the most important metal product, with gold second and Zn, Mo, Ag, and Pb following in that order. minerals including gypsum, silica, b

OVERHEAD Tectonic Belts and Prospective Areas.

The bulk of our copper production comes from our large Cu-Mo and Cu-Au porphyry deposits, most of which occur in the Intermontane Belt, with some notable exceptions in the Coast and Insular belts. Current gold production is also significantly related to these deposits. Most of the Zn-Ag-Pb deposits are in the Omineca and Eastern belts and in the Coast and Insular belts.

OVERHEAD Producing Mines.

Our largest mine is Highland Valley Copper, roughly tenth on a world scale. This is a huge and highly efficient mine mill complex which treats 136,000 tonnes of ore per day but also mines an equal amount of waste, for a total of 275,000 tonnes of rock mined every day.Full production at Highland Valley began at the nearby Betlehem mine in 1963 and will continue into the next century.Past production and current reserves at Highland Valley Copper are in excess of 1200 million tonnes grading 0.4 % Cu and 0.01% Mo, with moderate gold and silver values. Other major porphyry copper deposits that are being mined are Gibraltar and Endako, both Cu-Mo, and the Cu-Au deposits at Island Copper, Afton and Copper Mountain. here is no production from these basins at this

SLIDES

Three slides to show the size of the highland Valley copper operation.

SLIDE Porphyry Deposit types

Tere are two classes of porphyry deposits in B.C. Those associated with calc-alkalic intrusive rocks and those associated with alkalic intusives. The alkalic deposits tend to be smaller than the calc-alkalic ones, but of higher copper grade and alwys gold rich.

SLIDE Porphyry Cu-Au deposits in B.C.

All alkalic porphyries contain significant gold while only some of the calc-alkalic ones do

SLIDE Three slides showing porphyry models

The main reason for this difference in gold content is not in the chemistry of the host intrusive rock- alkalic vs. calc-alkalic.It is in the depth of formation.

Calc-alkalic porphyries come in two major types. Deeper seated plutonic porphyries, like Highland Valley Copper, are very large masses of intrusive rock which were hydrothermally altered and mineralized entirely within a larger pluton and at a depth of about 5 kilometres below the surface. These are gold poor.

Shallower seated calc-alkalic deposits formed within or around high level, subvolcanic plugs at depths of one to two kilometres from the surface are gold rich. Alteration and mineralization involve both the intrusion and the sedimentary or volcanic host rocks.

The same can be said about alkalic deposits. These are all shallow to subvolcanic in setting, all gold rich, and very complex due to the great number of dykes, plugs and breccia pipes that cut the usually volcanic host rocks.

SLIDE Porphyry Deposit from Chile

In Chile, where the mountains are higher and barren of vegetation, thus affording clearer cross-sections through ore systems, one can actually see in one mountain side the transition between the porphyry system below and the overlying epthermal gold zone in the hosting volcanic and sedimentary rocks.

SLIDE Cordilleran Epithermal Model

In a model such as this, the shallower gold rich porphyries would fit directly below the level of Transitional and Epithermal precious metal systems.

SLIDE Strato Volcano Model.

Stratovolcanoes were the main building block of Cordilleran Island Arcs.In the model of such a system the shallow, gold rich porphyries would fit directly below the cone, at the base of which one would find Transitional and Epithermal systems.

SLIDE Ore Production.

The age of these large producers is Late Triassic to Lower Jurassic.Others, none of which are currently in production, are as young as Early Tertiary. This diagram essentially reflects the age distribution of these deposits,which dominate the provincial metal output.

SLIDE Two slides-Gold Production

Gold is the second most important metal produced in the province.From the beginning of record keeping much of the gold production has come from traditional mesothermal veins, skarns and volcanogenic massive sulphide deposits, with comparatively less from porphyries. This simply because no porphyry deposits were ever mined in B.C. prior to 1962, except for Copper Mountain which at the time was not recognized as a porphyry. If we look at gold production in more recent years, one can then readily see how porphyries dominate the field.

OVERHEAD Lode Gold Production and Reserves

The reserve picture is almost identical, with porphyries holding the largest reserve.Mesothermal veins, which were the most important source of gold earlier in the century continue as an important reserve and source ,as do massive sulphides and a newly recognized type of deposit called Transitionals. Thse are deposits which are bulk mineable or contain compact, higher grade, strongly structurally controlled ore zones and were formed at shallow depths between the porphyry environment and that of epithermal systems.

OVERHEAD Operating Mines, 1993

SLIDE Example of mesothermal vein.

The most important producers of this type earlier in the century were the Bralorne Camp at 4 million ounces and the Rossland Camp at 3 million ounces.The Snip mine , a small but very profitable underground operation in the northwest part of the province, today produces well in excess of 100,000 ounces per year

SLIDE Mesothermal veins genetic model Using the strato volcano model, mesothermal veins fit at the base of the cone. SLIDE Gold at Snip

A good deal of the gold at Snip is recovered directly from jigs and shaking tables with the rest coming from a bulk concentrate.

SLIDE Golden Bear

This is a view of the Golden Bear mine, similar but also somewhat different from classic mesothermal veins. The view shows the good vertical continuity that is one important characteristic of this type of veins.

SLIDE Transitional Deposits Model. Using the strato volcano model, Transitional Deposits fit high, above mesothermal veins.

SLIDE View of Red Mountain

This is an example of a transitional deposit that is under active exploration at this time. This project had in excess of \$ 7.5 million spent on it, the largest single exploration project in B.C. in 1993. This work has indicated a resource of about 2 million ounces of gold, highlighting the importance of this type of deposit.

SLIDE AGB vein specimen, Lawyers Mine.

This is a sample of amethyst gold breccia vein material from the Lawyers Mine, a small Au-Ag producer now closed. This mine started operation at 500 tonnes per day in december, 1988 with reserves of 1,938,000 tonnes grading 6.72 gpt Au and 243 gpt Ag. It closed late in 1992.

SLIDE Tillicum High Grade

This is a specimen of extremely high grade ore from a small gold skarn known as Tillicum Mountain. There is more than \$6,000 worth of gold,or 15-16 ounces in this 63 lb specimen.

SLIDE Afton mine pit.

This is an alkalic Cu-Au porphyry. This pit is now extinguished. It produced 31 million tonnes of ore grading 1% Cu and slightly over 0.5 gpt Au. The orebody is clearly visible in the photograph, and continues at depth beyond the deepest drill holes. This deeper ore may some day be mined by underground methods.

SLIDE View of Afton from the air.

SLIDE Galore Creek.

This is another alkalic Cu-Au porphyry deposit.Located in a very rugged and remote area. Not a mine yet. Reserves are 125 million tonnes grading 1.06% Cu and 0.5 gpt Au.

OVERHEAD Value of mineral production, '91&'92.

Zn, Mo, Ag and Pb are the next most important metallic products.

OVERHEAD Tectonic Belts and Prospective Areas.

Mo comes from Cu-Mo porphyries in the Intermontane Belt. Zn,Ag and Pb come mainly from two types of deposits: polymetallic volcanogenic massive sulphides in the Insular and Coast belts and clastic hosted massive sulphides in the Omineca and Eastern belts.

OVERHEAD Operating Mines, 1993.

Major producers of Zn, Ag, and Pb are the Sullivan, Myra Falls and Goldstream mines, all massive sulphide deposits.

SLIDE Tectonic environment, massive sulphide deposits.

This diagram models the environment of formation of various types of massive sulphide deposits as related to subduction. Outboard at the oceanic rift where new ocean floor is formed, Cyprus type deposits are formed by black smokers like this (forward, then back up).Farther inboard, in sedimentary or volcanic basins, Besshi type deposits like the Goldstream are formed. Further in with high angle faulting and acid volcanic rocks, Volcanogenic Massive Sulphide deposits like Myra Falls occur. Further in yet, in areas of rifted crust clastic hosted massive sulphides like the great Sullivan deposit and carbonate hosted deposits occur.

SLIDE Volcanogenic Massive Sulphide Model

This model shows a heat source, high angle extensional faulting, a basement of mafic volcanics and sediments, and domes of acid volcanics with associated massive sulphides lenses. Myra Falls is an excellent example of this type. As other B.C. deposits of this type it is palaeozoic in age. Past production and current reserves from several distinct ore lenses total approximately 28.7 million tonnes grading 2% Cu, 6.4 % Zn, 0.6% Pb, 2.2 gpt Au and 54 gpt Ag. Major company sustaining world class deposits are of this type, like the great Kidd Creek deposit at Timmins, Ontario.Typically there are several ore lenses at one or two distinct stratigraphic levels.
SLIDE Proterozoic Metallogeny, Sullivan area.

This slide shows the setting of the great Sullivan deposit, a clastic hosted massive sulphide deposit. It shows a sedimentary basin rifted by extensional growth faults, and the location of mineral deposits close to these faults.

SLIDE Cross-section of basin.

A cross- section more clearly shows the growth faults and how the mineral deposits relate to them.

SLIDE Cross-section Sullivan Deposit

This slide shows a section of the deposit, its source or root , its stratabound nature and resulting great lateral continuity.Sullivan is a major world class company sustaining deposit.It has been in continuous production since the turn of the century. Its discovery was the main stimulus for the settling of the southeastern part of our province.It also started a major company, Consolidated Mining And Smelting, now known the world over as Cominco. The trail Smelter was built to treat Sullivan ore and the southern rail line was built to transport ore and coal from the nearby coalfields to the smelter. The city of Kimberley was built at the minesite and to this day depends primarily on the mine for its existence. Sullivan past production and current reserves total more than 150 million tonnes grading 5.55% Zn,5.8% Pb and 63 gpt Ag.

CONCLUSION.

British Columbia has a wonderful mineral endowement largely due to its strategic location across the American Cordillera, the 20,000 km long backbone of the Americas.

SLIDE The country is rugged. The geology is complex and engineering and transportation problems are very challenging, but the prizes are there to be found. This is why mining is B.C. second most important industry.

SLIDE Gold crystal.

V.A.Preto. November, 1993.

#

Figure 4 Tectonic Belts and Prospective Areas

Geologic Setting and Mineral Opportunities

B.C. MINERAL PRODUCTION 1992 - 1993

		1	992	1993 (E)	
		Quantity	Value	Quantity	Value
	Units		\$\$		\$
Metals					
Gold	g	16 410 000	219 136 000	14 178 000	211 682 000
Silver	g	338 817 000	53 316 000	170 133 000	30 284 000
Copper	kg	315 831 000	892 075 000	284 943 000	700 960 000
Lead	kg	64 505 000	42 108 000	43 117 000	22 421 000
Zinc	kg	111 202 000	171 020 000	80 586 000	101 824 000
Molybdenum	kg	8 776 000	54 891 000	10 013 000	58 004 000
Others		-	4 980 000	-	5 385 000
Total Metals		-	1 437 526 000	-	1 130 560 000
Coal					
Metallurgical	t	15 618 000	672 953 000	17 008 000	730 598 000
Thermal	t	2 386 000	73 661 000	2 256 000	52 578 000
Fotal Coal		18 004 000	746 614 000	19 264 000	783 176 000
Structural Materials					
Cement	t	1 336 000	119 313 000	1 461 000	133 418 000
Clay products		-	7 958 000	-	8 306 000
Sand and gravel	t	39 923 000	128 624 000	39 431 000	127 134 000
Stone	t	3 910 000	30 113 000	4 247 000	32 134 000
Others		-	19 233 000	-	19 368 000
Total		-	305 241 000	-	320 360 000
ndustrial Minerals					
Asbestos	t	6 000	2 939 000	-	· -
Sulphur	t	601 000	29 640 000	724 000	36 428 000
Others		-	12 265 000	-	11 865 000
fotal		-	44 844 000	-	48 293 000
otal Solid Minerals			2 534 225 000		2 282 389 000

(E)=Estimate

Figure 6 Coalfields in British Columbia

B.C. CLEAN COAL SOLD AND USED 1980 - 1993

	Metallurgical		Thermal		Total	
Year	Quantity	Value \$	Quantity t	Value \$	Quantity t	Value \$
			4 4 60 000	38 365 000	10 824 000	461 493 000
1980	9 654 000	423 128 000	1 169 000		11 753 000	554 271 000
1981	10 812 000	518 428 000	941 000	35 844 000		
1982	8 400 000	487 005 000	2 246 000	79 874 000	10 646 000	566 878 000
1983	9 317 000	491 950 000	2 163 000	63 839 000	11 480 000	555 789 000
1984	16 302 000	895 175 000	4 437 000	112 344 000	20 740 000	1 007 520 000
1985	17 767 000	899 930 000	4 845 000	128 387 000	22 613 000	1 028 317 000
1986	16 690 000	828 539 000	4 147 000	105 875 000	20 837 000	934 414 000
1987	18 020 000	801 967 000	4 567 000	90 555 000	22 587 000	892 522 000
1988	21 685 000	909 405 000	3 128 000	69 407 000	24 813 000	978 812 000
1989	21 945 000	908 009 000	3 190 000	92 589 000	25 134 000	1 000 598 000
1990	21 346 000	896 051 000	3 021 000	83 806 000	24 366 000	979 857 000
1991	21 773 000	854 784 000	3 075 000	83 052 000	24 848 000	937 836 000
1992	15 618 000	672 953 000	2 476 000	76 542 000	18 094 000	749 495 000
1993(E)	17 008 000	730 598 000	2 256 000	52 578 000	19 264 000	783 176 000

(E) = Estimate

67

B.C. Metallurgical Coal Sales By Destination

U.K.

Iran

Italy

Open File 1994-20

Thousand % of Thousand % of **Total Sales Total Sales** Tonnes Tonnes Turkey 68 0.4% 9376 61.1% Japan 14.2% 54 0.4% 2 185 Belgium Korea 4.3% Egypt 46 0.3% 660 Taiwan 47 641 4.2% Canada 0.3% 44 U.S.A. 560 3.6% Pakistan 0.3% 1.0% Portugal 154 350 2.3% **Total Sales** 15 353 100.0% Brazil France 276 1.8% To Other B.C. Producers 255 Netherlands 274 1.8% 1.7% Adjustments/Purchases (43)Spain 267 **Total Net Sales** Chile 0.6% 15 565 95 95 0.6% Used at mines 53 89 0.6% **Total Sold & Used** 15618 Denmark 72 0.5%

58				B.C. Geological Survey Branch
Company Name	PROJECT NAME	Commodity	Estimated Tonnes (000s)	ESTIMATED GRADE
PORPHYRY DEPOSITS				
Taseko Mines Ltd.	Fish Lake	Cu, Au	1 080 000	0.23% Cu, 0.41 g/t Au
El Condor Resources Ltd. St Philips Resources Inc.	Kerness South	Cu, Au	207 000	0.23% Cu, 0.64 g/t Au
Jordex Resources Inc.	Expo/Hushamu	Cu, Au, Mo	173 260	0.25% Cu, 0.31 g/t Au, 0.01% Mo
Imperial Metals Corp.	Mount Polley	Cu, Au	49 000	0.38% Cu, 0.55 g/t Au
Gibraltar Mines Ltd.	Gibraltar North	Cu	50 000+	0.4% Cu
CMP Resources Ltd.	QR	Au	1 200	5.2 g/t Au
Placer Dome Inc.	Mount Milligan	Cu, Au	284 000	0.2% Cu, 0.58 g/t Au
Massive Sulphide e	DEPOSITS			
Westmin Resources Ltd.	Battle Zone/ Myra Falls	Cu, Pb, Zn, Ag, Au	3 018	2.9% Cu, 0.4% Pb, 14.0% Zn, 24.0 g/t Ag, 1.0 g/t Au
Geddes Resources Ltd.	Windy Craggy	Cu, Au, Ag, Co	297 440	1.38% Cu, 0.2 g/t Au, 3.83 g/t Ag, 0.069% Co
Curragh Resources Ltd	Stronsay	Pb, Zn, Ag	22 080	2.8% Pb, 9.4% Zn, 60 g/t Ag
Homestake Canada Ltd.	Eskay Creek 21B	Au, Ag	1 190	59.41 g/t Au, 2659.3 g/t Ag
Redfern Resources Ltd.	Tulsequah Chief	Cu, Pb, Zn, Au, Ag	7 800	1.6% Cu, 1.18% Pb, 6.47% Zn, 2.74 g/t Au, 109.72 g/t Ag
TRANSITIONAL & VE	IN DEPOSITS			
Equity Silver Mines Ltd.	North Waterline Zone	Cu, Au, Ag	750	0.68% Cu, 209 g/t Ag 4.18 g/t Au
Cheni Gold Mines Ltd.	Mets	Au	53.5	11.62 g/t Au
Golden Rule Resources Ltd.				
Manson Creek Resources Ltd.				
Canarc Resources Corp.	Polaris-Taku	Au	2 590	14.74 g/t Au
Suntac Minerals Corp.				
Newhawk Gold Mines Ltd.	Brucejack Lake	Au, Ag	749.3	15.43 g/t Au, 647.2 g/t Ag
Granduc Gold Mines Ltd.	(Bruceside)	(V	Vest Zone)	
Fairfield Minerals Ltd.	Elk	Au	308.4	22.18 g/t Au, 24.68 g/t Ag

.. -

Table AAdvanced Exploration / Development Projects

Company Name	Project Name	Commodity	Estimated Tonnes (000s)	ESTIMATED GRADE
-PORPHYRY DEPOSITS-		· • ·		
Placer Dome Inc.	Kerr	Cu, Au	126 000	0.62% Cu, 0.274 g/t Au
Placer Dome Inc.	Sulphurets Gold (Sulphside)	Au, Cu	18 000	0.35% Cu, 0.823 g/t Au
New Canamin Res. Ltd.	Huckleberry	Cu, Au	78 000	0.401% Cu, 0.025% MoS2
El Condor Res. Ltd.	Kemess North	Cu, Au	116 109	0.19% Cu, 0.377 g/t Au
Placer Dome Inc.	Shear	Cu, Au	n/a	n/a
Yellowack Res. Ltd.	Katie	Cu, Au	n/a	n/a
Crew Natural Res. Ltd.	Red Dog	Cu, Au, Mo	25 000	0.35% Cu, 0.44g/t Au, 0.006% Mo
Massive Sulphide de	POSITS			
Cominco Ltd.	Par	Pb, Zn, Ag, Ba	n/a	n/a
Teck Explorations Ltd. Cominco Ltd.	MGM/Bend	Zn, Pb, Ag	, n/a	n/a
Kokanee Explorations Ltd., Chapleau Res. Ltd., Barkhor Res. Inc.	Fors	Ag, Pb, Zn	n/a	n/a
Kokanee Explorations Ltd., Legion Res. Ltd.	Leg	Zn, Ag, Ba	n/a	n/a
Minnova Inc. International Curator Res. Ltd	Seneca	Zn, Cu, Au, Ag	533	0.91% Cu, 0.22% Pb, 7.06% Zn, 68.8 g/t Ag, 1.44 g/t Au
Westmin Resources Ltd.	Thelwood Valley (Myra Falls)	Cu, Pb, Zn, Ag, Au	n/a	n/a
TRANSITIONAL & VEIN	DEPOSITS			
Lac Minerals Ltd.	Red Mountain (Marc Zone)	Au	840	12.68 g/t Au
Gold Fields Canadian Mining Ltd.	Nizi	Au, Ag	n/a	n/a
Minnova Inc.	Wolf	Au	n/a	n/a

Table B Exploration Highlight Projects

۰.

Strategy and Philosophy in Mineral Resources Databases

OUTLINE:

Introduction Why, How, When, Where, What, Who The Mineral Exploration and Development Cycle Organization of Earth Science Data Master Database - Data Dictionary System Planning - System Cycle An Approach to Integrated Data Management Summary

- Lecture by: L. Jones 15 November 1993
- References: TECDOC Section 4.1, 4.2, Figure 3. Green, Bill, 1991, Exploration with a Computer. Tauchid, M.: Mineral Exploration and Development Strategy and Planning, IAEA, Paper presented at Lusaka workshop, May 1993.

Strategy and Philosophy in Mineral Resources Databases

REASONING:

Some Whats:

- Mineral resources are unevenly distributed throughout the earth's crust.
- Most countries enjoy some mineral endowment.
- Many have a **mining history** dating back hundreds of years.

Some Whys:

- Few countries have a well-organized, comprehensive and easily accessible **source of historic mining and geological data** relating to the nature and distribution of their mineral resources.
- Such information is the starting point in the search for **new orebodies**.
- Readily accessible databases are essential for effective management of the existing resource and invaluable tools in the search for new orebodies.
- Add to the country's resource base.
- Stimulates mineral exploration leading to discovery of new mineral deposits.
- Development of **new mines**.
- Contributes to the creation of **new wealth** by developers, workforce, and public treasury (profits, wages, and taxes).
- Well maintained databases attracts investment.

Some Hows:

- Effective management of mineral resources requires a **knowledge** of the nature of the resources to be managed, their dimensions, where they are located, their current status, and many other factors.
- Earth Science Databases compile and update this information.

•

- These databases must be accessible to all potential users.
- Organization should develop responsible resource management policies.

Province of British Columbia

The Mineral Exploration and Development Cycle

PHILOSOPHY OF MINERAL EXPLORATION PROGRAMS:

- Mineral exploration and mine development ventures involve a high level of financial risk.
- Information gathered at each stage of a project leads to increased confidence of **discovering and developing** an orebody.
- If the data gathered at each stage of a project is accurate and complete lower risk factors are involved.

STAGES OF MINERAL EXPLORATION PROGRAMS:

- First stage of exploration is the **choice of area**, which is generally based on analysis of available geoscience data from general surveys and previous exploration effort.
- Ready access to this type of information will simplify the task and greatly increase success
- Subsequent stages include **geophysical** and **geochemical** surveys, detailed **geological mapping** and **drilling** and **underground work**.
- Costs increase at each stage, as do the spin-off economic benefits.
- Information generated must provide the **justification for continuing** to the next stage.
- Final stage ore reserves exhausted and mine closes.
- Portion of the profits will be allocated to the search for new orebodies and the exploration and development cycle will be repeated.

MINERAL EXPLORATION PROGRAM OBSERVATIONS AND STRATEGY:

- Detailed **geological information** will be collected during the life of the operation.
- These data are invaluable in the search for **new orebodies** in the same district and in other areas with similar geological setting.
- Data are often **lost** if the project is abandoned.
- Drill core and logs, assays, geophysical results, geological maps, mine plans and engineering reports may be buried in **private files** or may even be lost or destroyed.
- If the information is stored in a database where it can be readily retrieved and analyzed, it may lead to fresh **insights** and **new ideas** that rekindle interest in the project.
- New geological concepts, availability of new technology, commodity price increases, or improved transportation may **reactivate** old mining areas.
- Easy access to **historical and current geoscientific data**, which is gathered at great expense and sometimes is not reproducible, benefits new investors, which in turn will stimulate and promote mining exploration in an area.

•

B.C. Geological Survey Branch

Organization of Earth Science Data

- Information comprising a geoscience information system starts with a repositorytype database referred to as the **master database**.
- Database subjects or **themes** describe the handling of earth science information such as bibliographies; mapping indexes (geological, geophysical and geochemical); air photography indexes; and drill hole indexes; mineral deposit information; and exploration information (drill hole, geophysical, geochemical, and field data).
- Selection of appropriate databases and their content are based on the **objectives** of an organization.
- Examples of objectives would be to **collect and store data** on the various themes; provide essential **linkages** to other databases and other levels within the same data theme; facilitate the production of various **reports and maps**; or provide an aid in **planning** future exploration programs.
- Most subject databases follow a **multi-level model**, beginning with the first-level database, which provides a **basic orientation** to the database theme.
- A second- or third-level database provides more **detailed information** on the subject data.

B.C. Geological Survey Branch

INDEX OF GEOSCIENCE MAPPING

FIRST-LEVEL DATA

- Listing of sources
- Name and address
- Coverage and scales
- Data form

SECOND-LEVEL DATA

- Rock units
- Field observations
- Sample locations
- Kind of data (geophysical surveys)
- Boundaries of map coverage
- Date

Table 9 - Example of first-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP1.DBF Number of data records: 300 Date of last update: 07/07/91

Date of last				
FIELD	FIELD NAME	<u>TYPE</u> <u>WIDTH</u>	DEC	SAMPLE DATA
1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 ** Total **	ID NO DPST NM STATUS C CMDTY1 C CMDTY2 C CMDTY3 C LAT LONG DPTYPE C REF1 REF2 REF3 CMNT1_T GEOL NM DATE]N	Character10Character30Character4Character2Character2Character2Character9Character9Character10Character4Character4Character4Character4Character4Character4Character70Character8163		TVL-013 DOMINION REEF MINE UR AU AG 26-52-00S 026-23-00E QPEB 0012 0066 0109 Quartzite overlying oligomictic quartz-pebble conglomerate. LDJ 070791

Table 10 - Example of second-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP2.DBF Number of data records: 300 Date of last update: 07/07/91

<u>FIELD</u>	FIELD NAME	TYPE	<u>WIDTH</u>	DEC	SAMPLE DATA
1 2 3 4 5 6 7 8 9 10 11 11 12	ID_NO HOST_NM HOST_AGE LITH1_C LITH2_C LITH3_C MIN1_C MIN2_C MIN2_C MIN3_C SETTING SIZE GRADE CMNT2_T	Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte Characte	r 30 r 4 r 4 r 4 r 4 r 4 r 4 r 4 r 4		TVL-013 DOMINION ARCH CGLM QRTZ URAN PYRT BASIN 200 PPM
** Total **					

DATABASE DIRECTORY

Name of data set Acronym

- Responsible organization
- Purpose and description
- Keywords

Location

- Lat. min Lat. max; Long. min Long max
- Coverage
- Scales

Data form

- Positional Accuracy
- Time span
- Data quality and access
- User Base

Host computer

- Operating system
- Data Structure
- Set size
- "GIS" Software DBMS used
- Output formats and Output media

Data Custodian/Manager

Scientific Contact

System Planning

SYSTEM CYCLE:

- Establish business objectives and desired output.
- Scope document, user-requirements, fitting analysis (content and system).
- Detailing the proposal, with an action plan and resources required.

•

- Budgeting and project team selection.
- User-needs analysis and design details.
- Project schedule and detailed implementation plan.
- Develop universal tables, establish regional flexibility.
- Chose application development software and acceptable user-interface.
- Produce a PC-based application.
- System testing and documentation.
- User acceptance and evaluation.
- Marketing, distribution, training and support.

Figure 4.1 The System Life Cycle

CHALLENGE:

- grow with the changes in user-need and technology

 - information strategy minimum cost and effort

MESSAGES:

- Technology alone cannot solve business problems.
- Need people and business strategy.
- Technology is important, but how it is used is the key to success.

System Planning

DATA AND SYSTEM GOALS:

- Quick and easy access to data.
- Detailed, high quality information.
- Data available in a wide variety of forms, such as custom and standard reports, and digital files for incorporation into other programs.
- Systematic management of data elements to improve data integrity and validity.
- An established methodology for the distribution of data.
- Allow the database to grow with increased requirements.
- Efficient and flexible model.
- Establish common data formats and system capabilities.
- Define links to geographical information systems.
- Implement a modern user-interface based on the latest technology.
- Standardize tables and definitions (e.g. commodities and work types).
- A versatile data dictionary will permit customized data content.

•

LIMITATIONS

- Incomplete or inaccurate reporting
- Reporting and recording bias
- Data structure knowledge required
- Data delivery and updating
- Costs & technological barriers

SOLUTIONS

- Research / Interpretation
- Ranking / Combining commodities
- Educate / Documentation
- Planning / Staff support
- Technology / Innovations

GSB

An Approach to Integrated Data Management

- Challenges
- Data Issues Data Models
- Technology Management Issues
- Procedure
- Database Components

Diagram 1: A proposed Reference Model of Geomatics

An Approach to Integrated Data Management

CHALLENGES:

- Successfully integrate the various databases and mapping systems in a way that facilitates exchange of data for broader purposes.
- Maintain information in a manner which promotes data integrity and rapid retrieval.

DATA ISSUES - DATA MODELS:

- Originally recorded on paper.
- Transferred into digitally based systems.
- Data model must be constructed that provides the organizational layout of the data.
- Must serve the needs of the business application that surrounds the data.
- Many databases evolve in which model construction is minimal.
- Ad hoc database construction which occurred as technology developed.

TECHNOLOGY MANAGEMENT ISSUES:

- Development and maintenance of data requires human resources.
- Local and central responsibility of systems.
- Database managers and administrators.
- Routine and specialized maintenance *backups, programming.*
- Inconsistencies, errors, corruption of data, and eventual abandonment of the databases and applications will result.
- Focus on future developments and planned migration strategies.
- Data static if it is collected and managed in a consistent framework.
- Data considered to be dynamic (*changing in its nature, structure, and application*) if collected and evolved over time.
- Requires a strategy that will work towards keeping data relevant and manageable.

PROCEDURE:

- Establish business case and plan strategy.
- Coordinate implementation with the custodians of the databases.
- Review and recommend, where necessary, upgrading of databases.
- Manage and coordinate the exchange of data.

DATABASE COMPONENTS:

- Data model
- Administration
- Project staffing
- Documentation
- Database directory

Guidelines to Database Systems

OUTLINE:

Introduction

Definitions

Data Models

Database System Design

Standards

Database Administration

Database Documentation

Lecture by:

L. Jones 15 November 1993

•

References: TECDOC Section 3

Table 1. Some Common Computer Acronyms.

Acronym	Term
4GL	Fourth-Generation Language
AI	Artificial Intelligence
CAD	Computer-Aided Design
J CASE	Computer-Aided Systems Engineering
CD-ROM	Compact-Disk Read-Only Memory
DBMS	Database Management System
DOS	Disk Operating System
GIS	Geographic Information System
GUI	Graphical User Interface
kb	Kilobyte, 1 thousand bytes of data
LAN	Local Area Network
Mb	Megabyte, 1 million bytes of data
PC	Personal Computer
RAM	Random Access Memory
QBE	Query by Example
SQL	Structured Query Language
WORM	Write-Once Read-Many optical disk drives

Definitions

- ⇒ database is an organized set of related data that is drawn together to fit defined needs
- ⇒ database management system (DBMS) consists of a database and a set of programs to access the database. It provides a structured environment that is both convenient and efficient to use in storing, accessing and reporting data
- \Rightarrow database file contains data with a particular theme
- ⇒ **record** all the data for a particular entry.
- ⇒ **field** is an item of information within a record
- ⇒ database structure defines a database file
- ⇒ database key uniquely identifies the sites of each record
- ⇒ data dictionary contains details of the structure of the database, definitions of the contents of each field and listings of acceptable entries for fields of explicit content
- ⇒ external interface is defined as the mechanism in which the user captures or enters the data
- ⇒ data model describes data and a set of operations used to manipulate that data

B.C. Geological Survey Branch

DATABASE DIRECTORY

Name of data set Acronym

- Responsible organization
- Purpose and description
- Keywords

Location

- Lat. min Lat. max; Long. min Long max
- Coverage
- Scales

Data form

- Positional Accuracy
- Time span
- Data quality and access
- User Base

Host computer

- Operating system
- Data Structure
- Set size
- "GIS" Software DBMS used
- Output formats and Output media

Data Custodian/Manager

Scientific Contact

 $\mathcal{D}^{(n)} = \{ i \in \mathcal{D} : i \in \mathcal{D} : i \in \mathcal{D} \}$

<u>— Minfile</u> <u>File H</u> elp	
MINFILE No: Deposit Name: 093B 001 Layers Deposit Status: Past Producer	FilePreviousOpenCloseExit MINFILE
Commodities: Building Stone + Aggregate +	Help About MINFILE More
	D 786837 549743

1

File: MINF0000.BMP

DATABASE MODELS

A notation for describing data and a set of operations used to manipulate that data

HIERARCHICAL

- tree-structured diagram
- record replication

FLAT-FILE

- spreadsheet style
- single table
- simplicity and portability

RELATIONAL

- data in multiple files
- complex data management
- discrete and manageable units
- flexible; easily modified

ENTITY-RELATIONSHIP

- entity is a distinct object
- relationship is an association among several entities
- primary key is assigned to each entity
- increased data integrity
- easier future modification
- enhanced performance capabilities

INDEX OF GEOSCIENCE MAPPING

FIRST-LEVEL DATA

- Listing of sources
- Name and address
- Coverage and scales
- Data form

SECOND-LEVEL DATA

- Rock units
- Field observations
- Sample locations
- Kind of data (geophysical surveys)
- Boundaries of map coverage
- Date
INDEX OF AIR PHOTOGRAPHY

FIRST-LEVEL DATA

- Listing of sources
- Name and address

SECOND-LEVEL DATA

- Agency code
- Date of coverage
- Scale of photography
- Focal length of lens
- Type of film
- Cloud cover

INDEX OF DRILL HOLES

FIRST-LEVEL DATA

- Listing of sources
- Name and address
- Project, identification number

SECOND-LEVEL DATA

- Location, bearing
- Inclination
- Total length
- Locations of drill core, log and report

Format Specification for Regional Geochemical Survey Data

The following describes the data format for recorded field observations and analytical data, with an explanation of the codes for the field observations.

FIELD	DESCRIPTION	COLUMNS	<u>TYPE</u>	LENGTH	EXAMPLE
01 02 03 04 05 06 07 08 09 10 11 12 13 14	NTS Map-Sheet ID (Year,Crew,Number) UTM Zone UTM East (Metres) UTM North (Metres) Elevation (Metres) Sample Material Replicate Status Formation Rock Type Age Source of Water Stream Order Stream Type	001-006 007-012 013-014 015-020 021-027 028-031 032 033-034 035-038 039-042 043-044 045 046 047		6 6 2 6 7 4 1 2 4 4 2 1 1 1	104N16 841102 10 544654 5911939 1500 8 10 JBv GRNT 64
15 16 17 18 20 21 22 23 24 25 26 27 28	Physiography Drainage Pattern Contamination Stream Width (metres) Stream Depth (cm) Stream Flow Rate Water Colour Bank Type Bank Precipitate Sediment Composition Sediment Colour Sediment Precipitate Channel Bed Type Channel Pattern	048 049 050 051-054 055-57 058 059 060 061 062-064 065 066 067 068	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 1 4 (1) 3 1 1 1 3 1 1 1 1 1 1	2 1 2 3 10.5 220 1 3 2 111 5 2 3 4 2.5 2 1
29 30 31 32 33 34 35 36 37 38 39 40 1	Moss-mat Position Moss-mat Colour Moss-mat Health Moss-mat Host Thickness of Moss-mat Blanks pH of stream waters Uranium in waters (ppb) Fluorine in waters(ppb) Zinc (ppm) Copper (ppm) Lead (ppm) Nickel (ppm) Colait (pm)	069-071 072 073 074 075 076-080 081-085 086-090 091-095 096-100 101-105 106-110 111-115	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3 (1) 1 1 5 (1) 5 (2) 5 5 5 5 5	2.5 2 1 3 10 ? 7.0 0.12 34 47 79 12 26 73

NORMALIZATION

To divide data into logical groupings in separate data files.

Example of unnormalized and normalized data structures

<u>Unnormalized</u> (single database file)

MINERAL DEPOSIT NUMBER LOCATION STRATIGRAPHIC NAME ROCK TYPE DRILL HOLE NO COMMODITY NAME COMMODITY AMOUNT Normalized (three database files)

MINERAL DEPOSIT NUMBER LOCATION STRATIGRAPHIC NAME

STRATIGRAPHIC NAME ROCK TYPE

MINERAL DEPOSIT NUMBER DRILL HOLE NO COMMODITY NAME COMMODITY AMOUNT

Offers:

- easy future modification
- efficient performance
- data integrity
- minimize redundancy

MINFILE ENTITY/RELATIONSHIP DATA MODEL

PART of 'E-R' MODEL

CODE TABLE EXAMPLES

COMMODITY CODES

Copper CU

MINERAL CODES

Azurite AZRT

ROCK CODES

Gabbro GBBR

ALTERATION CODE

Sericitic SERI

	Petroleum	fines and n Resources		
	GEOLOGIC	AL SURVEY BRANCH	L	
		IDENTIFICATIO	N	
00	21 052			13L3 Mol
LE NO09.	<u>3L 053</u>		NERAL INV. NO	
	_	CARMINE		
E(S) 1. LUCK	<u>Y SHIP —</u>			
2				
3				
4	·			
บร: 🗌 รหอง	/ing PROSpect	t DEveloped PRospec	t OUPRODuce	r OU PAst PRoducer
ATION:				
NTS MAP:	093L03W			
BC MAP:			<u></u>	
MINING DIVI	SION: $OMIN = 0$	menica		
UTM ZONE:	<u> </u>	NORTHING:59	<u>87.098 </u> eas	STING: 599 776
	(082(m	netres)		
			m 3 within 5 km	·
Comment of	Identity: Centre.	of mineralized	zone (Minis	ter of Mines Annua
Report	1965, Figur	(13).		
Acpan				
		MINERAL OCCURI	RENCE	
MODITIES: M	2			
AMODITIES: <u>M</u>				
ERALOGY:		- <u> </u>		
ERALOGY:		- <u> </u>		reported in separate loc
ERALOGY: SIGNIFICAN Comment: 4	T Minerale: MLBD C Minor chalcopy	- <u> </u>		reported in separate loc
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment:	IT Minerale: <u>MLBD</u> C Minior chalcopy D Minerale: QRTZ	LCP SPLR GLEN	d galena are	
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment:	IT Minerale: <u>MLBD</u> C Minior chalcopy D Minerale: QRTZ	LCP SPLR GLEN	d galena are	
ERALOGY: SIGNIFICAN Comment: A ASSOCIATE Comment: - ALTERATIO Comment:	IT Minerale: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerale: <u>QRTZ</u> N Minerale: <u>PYRT</u>	LCP 5PLR GLEN rite, sphalecite as CARB KSPA 7	A galena are	
ERALOGY: SIGNIFICAN Comment: A ASSOCIATE Comment: - ALTERATIO Comment:	IT Minerale: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerale: <u>QRTZ</u> N Minerale: <u>PYRT</u>	LCP SPLR GLEN	A galena are	
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO	IT Minerele: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerele: <u>QRTZ</u> N Minerele: <u>PYRT</u> N Type: <u>SILI</u>	LCP 5PLR GLEN rite, sphalecite as CARB KSPA 7	A galena are	
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO	IT Minerale: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerale: <u>QRTZ</u> N Minerale: <u>PYRT</u> N Type: <u>SILI</u> : <u>02</u>	LCP SPLR GLEN cite, sphalecite da CARB KSPA I PYRT CAR	A galena are ALC B. KSPA	
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO	IT Minerele: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerele: <u>QRTZ</u> N Minerele: <u>PYRT</u> N Type: <u>SILI</u>	LCP SPLR GLEN rite, sphalerite as CARB KSPA 7 PYRT CAR	A galena are ALC. B. KSPA.	
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO	IT Minerals: <u>MLBD</u> <u>Minior</u> <u>chalcopy</u> D Minerals: <u>QRTZ</u> N Minerals: <u>PYRT</u> N Type: <u>SILI</u> Slockwork <u>M</u> Layered <u>1</u> Z Massive	LCP SPLR GLEN rite, sphalerite an CARB KSPA 7 PYRT CAR	A galena are ALC. B. KSPA.	JALC Unconsoliidated
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant	IT Minerals: <u>MLBD</u> <u>C</u> <u>Minor</u> <u>chalcopy</u> D Minerals: <u>QRTZ</u> N Minerals: <u>PYRT</u> N Type: <u>SILI</u> : <u>DZ</u> Stockwork <u>M</u> Layered <u>M</u> Assive FION: <u>O9</u>	<u>LCP SPLR GLEN</u> <u>rite</u> , <u>sphalerite</u> as <u>CARB</u> <u>KSPA</u> <u>7</u> <u>PYRT</u> <u>CAR</u> <u>03</u> Breccia <u>08</u> Stratabound <u>13</u> Disseminated	A galena are ALC. B KSPA 03 Stratiform 1 Unknown	Image: Disconsolidated Image: Disconsolidated Image: Disconsolidated Image: Disconsolidated
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant COSIT CLASSIFICAT Replacement	IT Minerale: <u>MLBD</u> <u>C</u> <u>Minior</u> <u>chalcopy</u> D Minerale: <u>QRTZ</u> N Minerale: <u>PYRT</u> N Type: <u>SILI</u> : <u>DZ</u> <u>SK</u> Slockwork <u>M</u> Layered <u>12</u> Massive 29	LCP SPLR GLEN rite, sphalerite as CARB KSPA 7 PYRT CAR	A galena are ALC. B KSPA D3 Stratiform D3 Stratiform Unknown D4 Sedimentary Porphyry	D3 Unconsolidated 10 Concordant 03 Syngenetic 10 Igneous-contact
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn	IT Minerels: <u>MLBD</u> <u>C</u> <u>Minor</u> <u>chalcopy</u> D Minerels: <u>QRTZ</u> N Minerels: <u>PYRT</u> N Type: <u>SILI</u> : <u>DZ</u> <u>SK</u> Stockwork <u>D1</u> Layered <u>12</u> Massive FION: <u>O9</u> <u>D2</u> Magmatic <u>D2</u> Magmatic <u>D1</u> Hydrothermal <u>12</u> Pegmatite	<u>LCP SPLR GLEN</u> <u>rite</u> , <u>sphalecite</u> <u>as</u> <u>CARB</u> <u>KSPA</u> <u>7</u> <u>PURT</u> <u>CAR</u> <u>B</u> Breccia <u>DB</u> Stratabound <u>TB</u> Disseminated <u>DB</u> Residual <u>TB</u> Placer	A gallha arc ALC B KSPA B Stratiform C Unknown C Sedimentary Porphyry C Sedimentary Porphyry C Porphyry C Porphyry C Porphyry	Image: Consolidated Image: Concordant
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme	IT Minerels: <u>MLBD</u> <u>C</u> <u>Minor</u> <u>chalcopy</u> D Minerels: <u>QRTZ</u> N Minerels: <u>PYRT</u> N Minerels: <u>FYRT</u> N Type: <u>SILI</u> Slockwork <u>TZ</u> Massive FION: <u>O9</u> <u>TZ</u> Magnetic <u>TZ</u> Magnetic <u>TZ</u> Magnetic <u>TZ</u> Magnetic	CARB KSPA 7 PYRT CAR 03 Breccia 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual	A galena are ALC. B KSPA D3 Stratiform D3 Stratiform Unknown D4 Sedimentary Porphyry	D3 Unconsolidated 10 Concordant 03 Syngenetic 10 Igneous-contact
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic 12 Pegnetite 11 Epithermal	CARB KSPA 7 PURT CARA DB Breccia DB Breccia DB Stratabound TB Disseminated DB Residual TB Placer TB Mesothermal	A galena are ALC. B KSPA B KSPA B Istatiform C Unknown C Sedimentary Porphyry C Precipitate C Fossil Fuel	Image: Consolidated Image: Concordant
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic 12 Pegnetite 11 Epithermal	LCP SPLR GLEN rite., sphalecite As CARB KSPA 7 CARB KSPA 7 PYRT CAR 03 Brecia 03 Brecia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 20 Cene Isoto	A galena are ALC. B KSPA DI Pipe DI Stratiform Unknown DI Sedimentary Porphyry TI Precipitate TI Fossil Fuel PIC AGE:	Image: Syngenetic 10 Igneous-contact Image: Synge: Syng
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown	IT Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: PYRT N Type: SILI : DZ State T Layered IZ Magnetic T Hydrothermal IZ Pegmatite IT Pepithermal IT Epithermal IT Epithermal	DI Precia DI Precia DI Precia DI Precia DI Precia DI Precia DI Stratabound TI Disseminated DI Precia DI Precia	A gallha arc ALC B KSPA B KSPA B Stratiform I Unknown I Sedimentary Porphyry I Precipitate I Procipitate I Fossil Fuel PIC AGE: G METHOD:	Image: Syngenetic Time Syngenet Syngenetic Time Syngenet
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Unknown E OF MINERALIZAT	IT Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: PYRT N Type: SILI : DZ State T Layered IZ Magnetic T Hydrothermal IZ Pegmatite IT Pepithermal IT Epithermal IT Epithermal	LCP SPLR GLEN rite., sphalecite As CARB KSPA 7 CARB KSPA 7 PYRT CAR 03 Brecia 03 Brecia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 20 Cene Isoto	A gallha arc ALC. B KSPA B KSPA B Stratiform I Unknown I Sedimentary Porphyry I Precipitate I Fossil Fuel PIC AGE: G METHOD: A Bladed 5	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 D2 Magmatic D1 Hydrothermal T2 Pegmatite T3 Epithermal T4 Epithermal T5 Dithermal T6 Dithermal T6 Dithermal T7 Epithermal T1 Regular 2	DI Precia DI Precia DI Precia DI Precia DI Precia DI Precia DI Stratabound TI Disseminated DI Precia DI Precia	A gallha arc ALC. B KSPA B KSPA B Stratiform I Unknown I Sedimentary Porphyry I Precipitate I Fossil Fuel PIC AGE: G METHOD: A Bladed 5	Image: Syngenetic Time Syngenet Syngenetic Time Syngenet
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT TERIAL DATED: APE OF DEPOSIT: APE MODIFIER:	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S OZ Stockwork M Layered 12 Massive FION: O9 D2 Magmatic T2 Pegmatite T3 Pegmatite T4 Pegmatite T4 Pegmatite T5 Petthermal T6 Pegmatite T6 Pegmatite T6 Pegmatite T6 Pegmatite T7 Epithermal T6 Pegmatite T7 Epithermal T6 Pegmatite T7 Epithermal T6 Pegmatite T7 Epithermal T6 Pegmatite T7 Epithermal T6 Pegmatite T7 Epithermal T7	DISTRICT CARB KSPA 7 CARB KSPA 7 CARB KSPA 7 CARB CAR 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Volcanogenic 03 Placer 13 Mesothermal 20 20 20 20 20 20 20 20 20 20	A galena are ALC. B KSPA B KSPA B Stratiform D Unknown D Stratiform D Unknown D Stratiform D Stratiform	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT TERIAL DATED: APE OF DEPOSIT: APE MODIFIER: POSIT DIMENSION	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic DY Hydrothermal T2 Pegmatite T3 Epithermal T4 Epithermal T5 Epithermal T1 Regular 1 Regular 2 N Stockwork 2 Magnetic 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Folded 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N	LCP SPLR GLEN rite., SPLALecite A CARB KSPA Z CARB KSPA Z PURT CARI 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 2 Cene Tabular 3 Faulted 3 Fractured (metres)	A galena are ALC. B KSPA B KSPA B Stratiform D Unknown D Stratiform D Unknown D Stratiform D Stratiform	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt
ERALOGY: SIGNIFICAN Comment: 4 ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CHARACTER Vein POSIT CHARACTER Vein POSIT CHARACTER Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT TERIAL DATED: APE OF DEPOSIT: APE MODIFIER: POSIT DIMENSION	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic DY Hydrothermal T2 Pegmatite T3 Epithermal T4 Epithermal T5 Epithermal T1 Regular 1 Regular 2 N Stockwork 2 Magnetic 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Folded 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N	LCP SPLR GLEN rite., SPLALecite A CARB KSPA Z CARB KSPA Z PURT CARI 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 2 Cene Tabular 3 Faulted 3 Fractured (metres)	A galena are ALC. B KSPA B KSPA B Stratiform D Unknown D Stratiform D Unknown D Stratiform D Stratiform	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt
ERALOGY: SIGNIFICAN Comment: A ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT TERIAL DATED: APE OF DEPOSIT: APE MODIFIER:	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic DY Hydrothermal T2 Pegmatite T3 Epithermal T4 Epithermal T5 Epithermal T1 Regular 1 Regular 2 N Stockwork 2 Magnetic 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Folded 2 N Stockwork 2 Magnetic 2 N Stockwork 2 Magnetic 1 Pegmatite 1 Regular 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N Stockwork 2 N Stockwork 2 Magnetic 2 N Stockwork 2 N	LCP SPLR GLEN rite., SPLALecite A CARB KSPA Z CARB KSPA Z PURT CARI 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 2 Cene Tabular 3 Faulted 3 Fractured (metres)	A galena are ALC. B KSPA B KSPA B Stratiform D Unknown D Stratiform D Unknown D Stratiform D Stratiform	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt
ERALOGY: SIGNIFICAN Comment: A ASSOCIATE Comment: - ALTERATIO Comment: - ALTERATIO Comment: - ALTERATIO POSIT CHARACTER Vein Podiform Discordant POSIT CLASSIFICAT Replacement Epigenetic Skarn Diatreme Unknown E OF MINERALIZAT TERIAL DATED: APE OF DEPOSIT: APE MODIFIER: POSIT DIMENSION TITUDE: STRIKE/-	T Minerels: MLBD C Minor chalcopy D Minerels: QRTZ N Minerels: QRTZ N Minerels: PYRT N Type: SILI S Stockwork D Layered 12 Massive FION: O9 Magnetic DY Hydrothermal T2 Pegmatite T3 Epithermal T4 Epithermal T5 Epithermal T1 Regular 1 Regular 2 N Stockwork 2 Magnetic 1 Regular 1 Folded 2 N Stockwork 2 Magnetic 2 Magnetic 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 Magnetic 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 Magnetic 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 N Stockwork 2 Magnetic 2 Magnetic 2 Magnetic 2 N Stockwork 2 N Stockwork	LCP SPLR GLEN rite., SPLALecite A CARB KSPA Z CARB KSPA Z PURT CARI 03 Breccia 03 Stratabound 13 Disseminated 03 Volcanogenic 03 Residual 13 Placer 18 Mesothermal 2 Cene Tabular 3 Faulted 3 Fractured (metres)	A galena are ALC. B KSPA B KSPA DI Pipe DI Stratiform Unknown DI Sedimentary Porphyry TI Precipitate TI Fossil Fuel PIC AGE: G METHOD: A Bladed Seared	Image: Syngenetic in the synthesis in the synthesynthesyntex in the synthesynthesynthesynthesynthesynt

•••

HB-936

Database System Design

- ⇒ Base on an organization's business objectives, functions and processes, and its available resources.
- ⇒ Conduct a system study to help identify requirements for users and implement a process to achieve efficient access to, and manipulation of, data.
- ⇒ Use a data classification hierarchy to described data according to subject area and group.
- ⇒ Good design techniques will include data modeling, data flow diagrams and normalization.

Figure 4.1 The System Life Cycle

ار دارد. به الافاق معطوم من معرف معراج العربي المراجع العربي المعرف العربي المعرف العربي المعرف العربي العربي العربي ال

TECHNOLOGY STUDY

.

-••

Table of Contents

I.	INTRODUCTION	1- 5
11.	SUMMARY OF CURRENT ENVIRONMENT	2- ⁻
	 Overview Existing Applications Environment Existing Technical Environment Organization Standards and Policies Operational Organization Evaluation of Existing System 	-
111.	REQUIREMENTS	3- ⁻
	 Overview Application Requirements Data Requirements System Usage Requirements External Interfaces Operational Requirements Environmental Requirements 	
IV.	ALTERNATIVES COST BENEFIT ANALYSIS	4-
	 Executive Summary Introduction Alternatives Preferred Architecture Conversion Strategy 	
V .	SYSTEM BLUEPRINT	5- ⁻
	 Architecture Definition Implementation Strategy Appendices 	

. . .

.

Ministry of Energy, Mines and Petroleum Resources MINFILE/District Geology Subsystem (MINFILE/DG)

REQUEST FOR PROPOSAL	•	Part B - Requirements Section

Table of Contents

		Page
1.0	Ministry Overview	2
2.0	Situation Overview/Objectives	6
3.0	Hardware and Software Environment	7
4.0	Requirements/Specifications	8
5.0	Vendor Response	13
6.0	Pricing	15
7.0	Project Management	16
8.0	Proposal Evaluation	17

I

;

Table of Contents

1. Executive Summary	1
1.1 Introduction	1
1.2 Overview	L
1.3 Details	1
	1
2. Technical Proposal	4
2.1 Terms of Reference	۰۰۰۰۰۰۰ 4 ۸
2.1.1 Introduction	
2.1.2 Objectives	4 4 4
2.1.3 Scope	
2.1.4 Constraints	
2.1.5 Assumptions	
2.1.6 Project Responsibilities and Reporting	6
2.1.7 Warranty	7
2.2 Project Approach	7
2.2.1 Overall Project Approach	7
2.2.2 Wellodology/100ls	8
2.2.3 Tools and Techniques	8
2.2.4 Project Activities and Deliverables	
3. Financial Proposal	
5.1 General Conditions	15
3.2 Development Fees	15
3.3 Hourly and Per Diem Rates	

4.	Management Proposal	17
	4.1 Corporate Profile	
	4.2 Proposed Personnel	19
	4.2.1 Proposed Staff	19
	4.2.2 Overall Responsibility	20
	4.2.3 Staff Availability	20
	4.3 Evidence of Financial Stability	21
	4.4 Client References	21
	4.5 British Columbia Return on Investment	?K

FIT ANALYSIS REPORT

Table of Contents

1.0	ASSESSMENT OF EXISTIN	NG SYSTEM	1-1
	1.1 Introduction		1-1
	1.2 Description of Existing	System	1-1
	1.3 Future Trends	•	1-2
	1.4 Assessment		1-3
2.0	FUNCTIONAL SPECIFICAT	IONS	2-1
	2.1 Introduction		2-1
	2.2 Principal Recommenda	ations	2-1
	2.3 Description of Logical F		
		s Needed to Minfile/PC	2-3
	2.4 Impact Considerations		2-10
	2.5 Conversion Considerat	lions	2-10
	2.6 Implementation Consid	lerations	2-11
3.0	SYSTEM PERFORMANCE	AND SECURITY GOALS	3-1
	3.1 Introduction		3-1
	3.2 System Availability		3-1
	3.3 Recovery		3-1
4.0	EXTERNAL (HUMAN) INTE	REACE	4-1
			+ 1
5.0	ACCEPTANCE TEST PROC	CEDURES	5-1
	5.1 Introduction		
	5.2 Scenarios		•
	5.3 Test Case Descriptions	5	
	5.4 Assumptions and Cons	straints	

-

FIT ANALYSIS REPORT

Table of Contents (Cont.)

6.0	DETA	NILED PROJECT PLAN	6-1
	6.1	Minfile/PC Modifications to be Made Within Current Project Scope	6-1
	6.2	Minfile/PC Modification Requirements Outside of Current Project Scope	6-2
	6.3	Revised Project Schedule	6-5
	6.4	Increase in Original Project Scope	6 -5
APPEN	DICES	S	
	A	Entity: Placer Occurrence	
	В	Implementation of a Local Area Network	
	С	Implementation of a Wide Area Network	
	D	Minfile Map Production	
	Е	Access to Yukon Land Use Planning GIS	
	F	Conversion of FoxBase Programs to dBase IV	
	G	Sample Report Formats	
	Н	Entity Relationship Diagrams	
	I	Structure Charts	
	J	Data Flow Diagrams	
	К	Sample Forms	
	L	B.C. Minfile Database	

7

MINFILE PRELIMINARY DESIGN DOCUMENT Table of Contents

••••

1.0	DES	SIGN OVERVIEW	1-1
	1.1	Introduction	1-1
	1.2	Design Phase Results	1-1
	1.3	Design Concept	1-5
	1.4	Revised Costs and Benefits	1-6
	1.5	Revised Schedule	1-6
	1.6	User Acceptance	1-6
2.0	PRE	ELIMINARY DESIGN	2-1
	2.1	Introduction	2-1
	2.2	Subsystem Definitions	2-2
	2.3	Human Interface Definition	2-9
	2.4	Revised Performance and Security Goals	2-49
	2.5	System Controls and Audit Trails	2-50
	2.6	Analysis Refinements and Preliminary DATABASE Design	2-51
	2.7	Revised Hardware, Software and Communication Requirements	2-60

.

1. Identification

DENT4010		ILE / pc a Entry	04/27/9 13:1
	Ministry of Energy, Min		
<u> </u>	Identi	fication —	
MINFILE No.	: xxxxxxxx	Names: XXXXXXXX	*****
NMI No.	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Mining Method
Status	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Open F	it: X Underground:
	Loca		5
NTS Maps	: XXXXXXX	Mining Division	s : XXXXXXXXXXXXXXX
BC Maps	: XXXXXXX : XX XX XX : XXX XX XX : XXXX metres		: XX
Latitude	: XX XX XX	Northing	: XXXXXXX
Longitude	: XXX XX XX	Easting	: XXXXXX
Elevation	: XXXX metres	Location Certai	nty : XXXXXXXXXXXX
		ments	
xxxxxxxxxxxxx	*******	*****	*****
Date Coded	: XX/XX/XX		Field Checked:
Date Revised		Coded by : XXXX Revised by: XXXX	
Date Nevised	• ^ / ^ / ^ / ^ /	Revised by: XXX	Field Checked:
			Deposits : XXXXXX
······			
DENT4020	MINFI	ILE / pc	04/27/9
	Data	a Entry	13:2
	Ministry of Energy, Mir	nes and Petroleum	Resources
	- Mineral	Occurrence -	
MINFILE NO.	: XXXXXXXXX	Name : XXXXXXXX	*****
Commodities	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	 (XXXXXXXXX	
MINERALS		DEPOSIT	
Significant	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Characteristics:	*****
Associated	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Classifications:	
Alteration	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXXXXXXXXX
Alterat'n Typ	e: XXXXXXXXXXXX		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
			XXXXXXXXXXXXXX metres
AGE			XXX/XXX
Mineralizatio	n: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· •	XXX/XX
Isotopic	: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	· •	
Material Date	d: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXX Method:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
······································			
			Deposits: XXXXXX

MINFILE DETAILED DESIGN DOCUMENT

Table of Contents

1.0	DET	AILED DESIGN	1-1
	1.1	Introduction	1-1
	1.2	Physical Database Design	1-1
	1.3	•	1-9
	1.4	-	1-10
	1.5	Maintenance Considerations	1-52
2.0	SYS	TEM TEST AND USER ACCEPTANCE SPECIFICATIONS	2-1
	2.1	Introduction	2-1
	2.1		2-1
		Test Acceptance Criteria	2-1
	2.4		2-1
	2.5	-	2-2
3.0	col	VERSION SPECIFICATIONS	3-1
	3.1	Introduction	3-1
	3.2	Overview	3-1
	3.3	Plan	3-2
APP	ENDI	CES	
	Α.	Edit Rules Matrix	

B. B.C. Minfile Database

-•· •

	MINFILE IMPLEMENTATION PLAN			
	Table of Contents			
	· · · · · · · · · · · · · · · · · · ·			
1.0	INTRODUCTION	1-1		
1.0				
		2-1		
2.0	OVERVIEW	2-1 2-1		
	2.1 Implementation Strategy 2.2 Roles and Responsibilities	2-1		
	2.2 Roles and Responsibilities			
		•		
3.0	SOFTWARE CONFIGURATION	3-1		
4.0	DATABASE CONFIGURATION	4-1		
5.0	IMPLEMENTATION PLANS	5-1		
	5.1 Release Overview	5-1		
	5.2 Schedule	5-1		
	5.3 Conversion	5-3		
	5.4 Impact Considerations	5-3		
	5.5 Forms Preparation	5-3		
	5.6 User Aids	5-3		
	5.7 Training	5-4		
	5.8 Handover	5-5		
	5.9 Post-Implementation Support	5-5		
6.0	CONTINGENCY PLANS	6-1		
FIGL				
	1. Implementation Schedule			

APPENDICES

A. Proiect Fault Report Form

PROJECT CHANGE REQUEST

Customer Name:	Request #:
Project Number:	Project Manager:
Project Code:	Date:
Change Requested:	Requested By:
Reason for Change:	
Reason for Change.	
Cost Amount:	Prepared By:
Ramifications:	
Kammeations.	
Approved (A) / Rejected (R):	
Customer Signature:	Company Signature:
Name:	Name:
Signature:	Signature:
Date:	Date:

Conventions and Standards

GENERAL

 \Rightarrow Acquisitions for business objectives

HARDWARE AND SOFTWARE

- \Rightarrow IBM-compatible PC
- ⇒ Store data in ASCII (American Standard Communication Information Interchange) format.

•

⇒ Lotus 1-2-3 (.WK1) and dBASE (.DBF) formats are recommended.

COMPUTER HARDWARE AND SOFTWARE GENERAL

- **Custom development** of programs is expensive.
- Recommend purchase of **existing application packages**, such as spreadsheets, word processors, database systems, statistical packages and GIS programs is.
- Concentrate on the **integration and implementation** of these applications.
- Benefits include **improved functionality and reduced costs** for maintenance and support of custombuilt software.
- Establish **business objectives** before selecting computing environment.
- **Evaluate software requirements** first, before hardware selection, to avoid incompatibilities.
- Consider availability of **support and local expertise; training** requirements; **standards** compliance; and the **size and growth** requirements of the database.

Hardware

- **IBM-compatible PC** systems (80486 processor) recommended.
- 640-kilobyte random access memory (RAM), with at least four megabytes of extended memory.
- Large hard disk (200 megabytes).
- Parallel port for a printer; two serial ports for plotter and digitizer.
- **VGA** graphics system.
- Peripheral devices: laser printer; digitizer (capable of sending data as an ASCII string); plotter (HPGL).
- Mass storage devices for large data sets and system backup.
- **UPS** (uninterrupted power supply) recommended in areas of erratic power supply.

Software

- Operating systems: **DOS and MS Windows**.
- Word-processing systems: capable of working in, or exporting a simple **ASCII** file (ASCII characters 33-127), without control characters.
- Spreadsheet format: Lotus 1-2-3 (.WK1) format.
- Database management systems (DBMS): .DBF format of **dBASE** has become a *de facto* standard.
- Other **supporting software** packages: report writers; file compression utilities.
- **Custom development:** if funds are available; may make the organization's work process more efficient; documentation of the developed product is very important.

DATABASE ADMINISTRATION

Objective to maintain a <u>standard</u>, <u>structured</u> and <u>secure</u> database.

CONCERNS

Data acquisition	 collecting, managing and modifying data
Data integrity	 detect errors; provide logic and range checks
Data currency	 data values are reconfirmed or updated within an appropriate time period
Data access control	 granting of permission for the creation, retrieval, use, modification and disposal of data.
Data custodianship	 designation of a functional responsibility for the creation, integrity and maintenance of data
Data links	 interchange with diverse applications and needs

dBASE View: C:\...dg\notices.dbf

63 / 1,587

Prop 1 dsc	Recrn area	Mining div 、	Nts	Lat	Long
	N	ALBERNI	92E\15W	04960	12690
	N	NANAIMO	92L/12W	50 4130	1274550
194	N	2	•		
	N	Victoria			
200	N				
	Ν	Victoria	92C.058	48 35	12429
207	N	Victoria	P92B/12W		
210	N	New Westminster			
	N	Nanaimo	92F\1,2,7,	49 15	12430
	N	Vancouver	92K-11W	50 31	25 245
	N	Vancouver	92k/15e,w	05055	12445
221	N				
	N	Nanaimo	92F/9E	49 0	12434
	N		92F/7,10	49 30	12453
	N	Nanaimo	982L17W	50 25	12047
	N	Nanaimo	92L/7W	12645	50 15
232	N	Nanaimo			
237	N	Nanaimo			
241	N				
246	N				

•••

<u>PROBLEM:</u>

Data structure knowledge is required for proper interpretation of data

<u>SOLUTION:</u>

Education of users and accurate documentation

GSB

GSB

DATABASE LIMITS AND SOLUTIONS...

PROBLEM:

Data delivery and updating involves tremendous amount of time

SOLUTION: Project planning and staff support

DATABASE PROJECT STAFFING

QUALIFICATIONS

- 1. Understanding of computerized database concepts, model and design.
- 2. Understanding of geoscience data acquisition, data elements and their relationships.
- 3. Ability to design computerized databases using widely available database management systems.
- 4. Ability to access and to retrieve the data in the database in order to transfer the data to other application programs to gain additional capabilities (statistical packages, GIS and others).

DATABASE DOCUMENTATION

Important for instruction and reference by users and subsequent program developers.

COMPONENTS OF DOCUMENT PLANNING

- user-needs analysis
- purpose, scope and contents of documentation
- document specification
- work plan
- organization (menu hierarchy, topic or function)

TYPES OF DOCUMENTS

- training documents (user manuals, tutorials and quick reference cards
- reference documents (technical programmer notes)
- marketing documents (descriptive brochures)

Mineral Deposit Databases

OUTLINE:

Introduction

Data Codes, Structure and Elements

USGS Example

MINFILE Example

- What is MINFILE
- Brief History
- Data Model
- User Examples
- MINFILE/pc
- Products and Distribution

Summary

Lecture by: L. Jones 15 November 1993

References: TECDOC Section 4.4, Annex 6.4

Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada

GEOLOGICAL SURVEY PAPER 78-26

Computer-based files on mineral deposits: Guidelines and recommended standards for data content

A report by the Mineral Deposits Working Committee, National Advisory Committee on Research in the Geological Sciences

R.V. Longe, Chairman, C.F. Burk, Jr., J. Dugas, K.A. Ewing, S.A. Ferguson, K.L. Gunn, E.V. Jackson, A.M. Kelly, A.D. Oliver, P.G. Sutterlin and G.D. Williams

List of Tables of Values given in this report

	Name	Type of list	Usage	Applicable data groups
1	Development status	Closed	Strongly recommended	3.3.3
2	Reference points	Open	Optional	3.3.5 3.3.6
3	Provinces and Terri- tories of Canada	Closed	Strongly recommended	3.3.8
4	Types of development	Open	Strongly recommended	3.4.5
5	Geological types	Closed	Strongly recommended	3.5.1
6	Categories of geologic- stratigraphic units	Open	Strongly recommended	3.5.2
7	Stratigraphic age codes	Closed	Optional	3.5.2 3.5.3 3.5.7
8	Relationship of geologic-stratigraphic unit to deposit	Closed	Optional	3.5.2 3.5.3
9	Rock types	Closed	"Primary category strongly recom- mended; remainde optional	
10	Mineral names	Open	Optional	3.4.6
11	Shapes	Closed	Strongly recommended	3.5.4 3.5.5
12	Shape modifiers	Open	Optional	3.5.5
13	Geometric relationship to environment	Closed	Optional	3.5.5
14	Types of documents	Closed	Optional	3.3.5 3.5.3 3.4.1 3.5.7
15	Map types	Open	Optional	3.4.2 3.6.1 3.4.3 3.3.5 3.6.1

TABLE 1. Schematic relationship between natural, conceptual, physical and electronic

data structures. This report focuses on conceptual data structures.

Mineral Deposit Databases

GENERAL

- A mineral deposit database is an **organized inventory** of data related to mineral occurrences.
- A **relational data model** is functional, flexible and expandable.
- Use in a **multi-level** approach.
- Use standard codes.
- Rank multiple entries, such as the commodity, mineralogy and lithology fields, in decreasing order of importance.

Multi-Level Approach

FIRST-LEVEL DATA ELEMENTS:

- Deposit identification number
- Deposit name
- Commodities or minerals present
- Point location, map area
- Administrative jurisdiction
- Geologic setting
- Current status or stage of development
- Deposit type
- Commodity economics
- Brief geological descriptions
- Primary references
- Name of the collector and date of input

these are the recommended minimum data elements

•

Example of first-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP1.DBF Number of data records: 300 Date of last update: 07/07/91

<u>FIELD</u>	FIELD NAME	TYPE	WIDTHDEC	SAMPLE DATA
4		Character	10	
1	ID_NO	Character	10	TVL-013
2	DPST_NM	Character	30	DOMINION REEF
3	STATUS_C	Character	4	MINE
4	CMDTY1_C	Character	2	UR
5	CMDTY2_C	Character	2	AU
6	CMDTY3_C	Character	2	AG
7	LAT	Character	9	26-52-00S
8	LONG	Character	10	026-23-00E
9	DPTYPE_C	Character	4	QPEB
10	REF1	Character	4	0012
11	REF2	Character	4	0066
12	REF3	Character	4	0109
.13	CMNT1 T	Character	70	Quartzite overlying
	·			oligomictic quartz-
				pebble congl.
14	GEOL NM	Character	4	LDJ
15	DATE IN	Character	8	070791
** Total **		1	63	

1

Multi-Level Approach

SECOND-LEVEL DATA ELEMENTS:

- Host rocks in terms of name, age, lithology and relationship to the economic minerals
- Size of deposit
- Regional structural-tectonic setting

•

- Economic, gangue and alteration minerals
- Reserves
Example of second-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP2.DBF Number of data records: 300 Date of last update: 07/07/91

FIELD	FIELD NAM	<u>E TYPE</u>	<u>WIDTH</u>	DEC	SAMPLE DATA
4		Obarastar	10		T\/I_042
1	ID_NO	Character	10		TVL-013
2	HOST_NM	Character	30		DOMINION
3	HOST_AGE	Character	4		ARCH
4	LITH1_C	Character	4		CGLM
5	LITH2_C	Character	4		QRTZ
6	LITH3_C	Character	4		
7	MIN1_C	Character	4		URAN
8	MIN2_C	Character	4		PYRT
9	MIN3_C	Character	4		
10	SETTING	Character	20		BASIN
11	SIZE	Character	1		
11	GRADE	Character	20		200 PPM
12	CMNT2_T	Character	70		
** Total	**		179		

Multi-Level Approach

THIRD-LEVEL DATA ELEMENTS:

- Elevation & location accuracy
- Alteration type
- Deposit details
- Metamorphic type and grade
- Stratigraphic name and age
- Isotopic age, material dated and dating method
- Ore reserve category, year of calculation, quantity, grade and reference
- Year of production, ore mined, ore milled, quantity and reference

Example of third-level mineral deposit data.

<u>Field</u>	<u>ength</u>	Content
ELEV	4	Elevation in metres
LOC_ACC	1	Deposit location accuracy (1=500 m, 2=1 km, 3=5 km)
ADMINJUR	4	Administrative jurisdiction (province, territory or district)
ALTER_C	4	Alteration type code
DEPCHR C	4	Deposit character code
DEPCLAC	4	Deposit classification code
DEPSIZEL	4	Deposit length
DEPSIZEB	4	Deposit breadth
DEPSIZEW	4	Deposit width
DIP	3	Deposit dip
STRIKE	3	Deposit strike
PLUNGE	6	Deposit plunge
DEPSHA_C	1	Deposit shape type code (1=regular, 2=tabular, etc)
META_T_C	1	Metamorphic type code (1=contact, 2=regional)
META_G_C	2	Metamorphic grade code
STNAME_C	6	Stratigraphic name code
ST_AGE_C	3	Stratigraphic age code
ISOAGE	20	Isotopic age
MATERIAL	30	Material dated
DATMET_C	2	Dating method code
RESCAT_C	2	Ore reserve category code (IN=indicated, etc)
RESYEAR	4	Year of calculation or publication
RESQUAN	12	Quantity in metric tonnes
RESCO_C	2	Recoverable commodity code
RESGRADE	9	Grade of commodity
RESREF_T	70	Reserves reference
PRODYEAR	4	Year of production
MINED	12	Ore mined
MILLED	12	Ore milled
PRODCO_C	2	Produced commodity code
PRODQUAN		Quantity produced
PRODRF_T	66	Production reference

Mineral Deposit Databases

DATA CODES (ENTITIES OR TABLES)

- Keep the database **small**.
- **Reduce errors** on input.
- Help to **speed up queries** on the database.
- Provide the user with classification guidelines and choices.
- May be **easily redefined**, modified or expanded.
- Chose codes with **meaning** and flexibility.
- Use **standard codes** based on controlled vocabularies and global frequencies, such as commodities, rocks, mineral names and stratigraphic units.

 \cap

1

MINFILE CODING FORM

SUMMARY

MINERALOGY

ALTERATION

COMMON MINERALS	CODE	ALTERATION TYPE (Assemblages)	CODE
ECONOMIC		Argillic	AGLC
Chalcopyrite	CLCP	Propylitic	PPLC
Galena	GLEN	Silicic	SLCC
Sphalerite	SPLR	Greisen	GRSN
Arsenopyrite	ARPR	Skarn	SKRN
Pyrite	PYRT	Saussuritic	SSTC
Pyrrhotite	PYTT	Carbonate	CRBN
Molybdenite	MLBD	Potassic	PTSC
Scheelite	SCLT		
Tetrahedrite	TRDR		
Barite	BRIT		
Fluorite	FLRT		
GANGUE			
Barite	BRIT		
Fluorite	FLRT		
Limestone	LMES		
Quartz	QRTZ		
Biotite	BOIT		
Dolomite	DOLM		
Feldspar	FLDP		
Calcite	CLCT		
ALTERATION			
Montmorillonite	MMRL		
Alunite	ALUN		
Kaolinite	KLNT		
Sericite	SRCT	·	
Clay	CLAY		
Chlorite	CLRT		
Pyrite	PYRT		
Epidote	EPDT		
Dolomite	DOLM		
Serpentine	SRPN		
Tourmaline	TRML		
Biotite	BOIT		
Feidspar	FLDP		

Code table example

FILE NAME: STATUS_C

CODE DESCRIPTION

EXPLANATION

- SHOWShowingPROSProspectDEPRDeveloped prospectECDPEconomic depositMINEActive mineMINRInactive mine
- MIND Depleted mine

A showing or occurrence with identified mineralization. A showing with development and unknown resources.

A prospect pending an economic evaluation.

A developed prospect with recoverable ore. A producing mine.

An inactive mine with resources remaining. A mined-out or depleted ore deposit.

SRCH1070 MINFILE / pc Search									
	M	inistry of	Energy,		Petroleum	Resou	irces		
			Deposit	Character	Search			· ····································	
	01 Vein 02 Stockwor 03 Breccia 04 Pipe 05 Unconsol		07 08 09	Podiform Layered Stratabour Stratiforn Concordan	n .	12 13 14	Discon Massiv Dissen Shear Unknow	ve minated	
A11	of:	and	and	i and	and		must	be prese	ent
				AND					
At]	least 1 of:	or	01	c or	or		must	be prese	ent
Cor	mplete the a	above Bool	ean expre	ession		[Deposit	ts : 111	L44

SRCH1080 MINFILE / pc Search Ministry of Energy, Mines and Petroleum Resources							
	Depos	sit Classi	fication	Search			
01 Replacement 02 Magmatic 03 Volcanogenic 04 Sedimentary 05 Syngenetic 06 Epigenetic	07 Hydrotl 08 Residua 09 Porphys	nermal al ry s-contact	12 Pegm 13 Plac	atite er orite lative	 17 Epithermal 18 Mesothermal 19 Fossil Fuel 20 Metamorphic 21 Industrial Min. ** Unknown 		
All of:	and	and	and	and	must be present		
AND							
At least 1 of:	or	or	or	or	must be present		
Complete the above Boolean expression Deposits : 11144							

i

STRATIGRAPHIC AGE CODES

<u>Era</u>	<u>Period</u>	Epoch	<u>Code</u>
1 Cenozoic	0	0	100
	1 Quaternary	0	110
		1 Recent	111
		2 Pleistocene	112
		9 Pliocene-Pleistocene	119
	2 Tertiary	0	120
		1 Pliocene	121
		2 Miocene	122
		3 Oligocene	123
•		4 Eocene	124
		5 Paleocene	125
		9 Cretaceous-Tertiary	129
	Mesozoic-Cenozoic		199
2 Mesozoic		0	200
	1 Cretaceous	0	210
		1 Upper	211
		4 Middle	214
		7 Lower	217
		9 Jurassic-Cretaceous	219
	2 Jurassic	0	220
		1 Upper	221
		4 Middle	224
		7 Lower	227
		9 Triassic-Jurassic	229
	3 Triassic	0	230
		1 Upper	231
		4 Middle	234
		7 Lower	237
	Paleozoic-Mesozoic	9 Permian-Triassic	239 299
2 Delegacia	0	0	200
3 Paleozoic	0 Umman Dalaana'a	0	300
	Upper Paleozoic	0	301
	1 Permian	0	310
		1 Upper 4 Middle	311
		7 Lower	314 317
		9 PennsylvanPermian	317
	2 Pennsylvanian	0	320
		1 Upper	321
		4 Middle	324
		7 Lower	327
		9 Carboniferous	329
	3 Mississippian	0	330
	Phim	1 Upper	331
		4 Middle	334
		7 Lower	337
		9 Devonian-Mississipp.	339
	4 Devonian	0	340
		1 Upper	341

STRATIGRAPHIC AGE CODES

Era	<u>Period</u>	<u>Epoch</u>	<u>Code</u>
		4 Middle	344
		7 Lower	347
		9 Silurian-Devonian	349
	5 Silurian	0	350
		1 Upper	351
		4 Middle	354
		7 Lower	357
		9 Ordovician-Silurian	359
	6 Ordovician	0	360
		1 Upper	361
		4 Middle	364
		7 Lower	367
		9 Cambrian-Ordovician	369
	7 Cambrian	0	370
		1 Upper	371
		4 Middle	374
		7 Lower	377
		9 Proterozoic-Cambrian	379
P	roterozoic-Paleoz.		399
4 Proterozoic	0	0	400
	1 Upper	0	410
	2 Hadrynian	0	420
	4 Middle	0	440
	5 Helikian	0	450
	7 Lower	0	470
	8 Aphebian	0	480
5 Archean	0	0	500
	1 Upper	0	510
	4 Middle	0	540
	7 Lower	0	570
INIVNOUNI			***

UNKNOWN

DEPOSIT TYPES Geological Survey Branch Mineral Deposit Profiles

<u>Code</u>	Description	<u>Synonym</u>	<u>USGS</u>	B.C. Example	Global Example
A	ORGANIC				
A01	Peat			Fraser Delta, North Coast	Ontario, New Brunswick
A02	Lignite	Brown coal		Hat Creek, Skonun Point (Graham Island)	Coal River (Sask.), Texas
A03	Sub-bituminous coal	Thermal coal, Black lignite		Hat Creek, Quinsam	Highvale (Alberta)
A04	Bituminous coal	Coking coal, Soft coal		Quintette, Bullmoose, Greenhills	Gregg River (Alberta)
A05	Anthracite coal	Hard coal, Stone coal		Mt Klappan, Queen Charlottes	Pennsylvannia
B	RESIDUAL/SURFICIAL				
B01	Laterite Fe	Gossan Fe; enriched iron formation	••		Glenravel (IRLD), Oregon, Araxa (BRZL)
B 02	Laterite Ni		38a		Riddle (Oregon)
B02	Laterite-Saprolite Au	Eluvial placers	38g		Boddington, Mt. Gibson (Australia),
805	Latente-Sapionte Ad	Liuviai pidoolo	Jug		Akaiwang (Guyana)
B04	Bauxite Al	Lateritic bauxite	38b	Florence (Sooke)	Brazil, Queensland, Pocos de Caldas (Brazil), Salem hills (Oregon)
B05	Residual kaolin	Primary Kaolin	38h*	Lang Bay, Sumas Mountain	Germany, North Carolina, Idaho
B06	Fireclay	Refractory shale	38i*	Sumas mountain, Quinsam coal	Alabama, Georgia, Missouri
B07	Bog Fe, Mn, U, Cu, Au		••	Whipsaw Ck, Limonite Creek,	
507	bog 1 0, mil, 0, 00, Au			Quatsino Iron?	
B08	Surficial U	"Calcrete U"		Prairie Flats	Trois Rivieres (Que.), Flodelle Creek - (Wash.)
B09	Karst-hosted Fe, Al, Pb-Zn				Transvaal, Sardinia (Pb-Zn), Jamaica (Al), Marquesaedo (Fe, SPAN)
B10	"Terra Rossa" Au-Ag	Residual Au; Precious metal gossans	"	Villalta	Rio Tinto (Spain)
B11	Marl			Cheam Lake (Chiliwack)	
B12	Sand and Gravel				
C	PLACER				
C01	Surficial placers	Placer U-Au-PGE-Sn- diamond-magnetite- gamet, gems	39a	Fraser River, Quesnel River, Graham island	North Saskatchewan River, Nome (Alaska)
C02	Buried channel placers		39a	Williams Creek, Otter Creek, Bullion Mine	Livingston Ck (Yukon), Valdez Creek (Alaska)
C03	Marine placers	Off-shore heavy mineral sediments	l 39f"?	Middlebank (n. end Van. ls.)	Australia (NSW, Queensland)
C04	Paleoplacer U-Au-PGE-Sn- diamond-Ti-mag-gar-zir		39c,d,e		Elliot Lake, Blind R., Wittwatersrand, Jacobina
D	CONTINENTAL SEDIMENTS & VOLCANICS				
D01	Zeolites in tuffs of open hydrologic systems	Open-System Zeolites	25oa	Princeton basin	Death Valley (Calif.), Naples (Italy), John Day Form. (Oregon)
D02	Zeolites in saline, alkaline-lake deposits	Closed Basin Zeolites	25ob		Bowie (Ariz.), Lake Magadi (Kenya)
D03	Volcanic redbed copper	Basaltic Cu	23	Sustut	Keewenaw (Mich.), Copper Mine (NWT)
D04	Basal U	Sandstone U		Blizzard, Tyee	Sherwood (Wash.)
D05	Sandstone U	Roll front U, Tabular U	30c		Colorado Plateau, Grants (New Mexico)
D06	Volcanic-hosted U	"Epithermal U" Volcanogenic U	25f	Rexspar, Bullion (Birch Island)	Marysvale (Utah), Aurora (Oregon)
D07	Olympic Dam type Fe (Cu-U-Au)	El Romero Type	29b		Olympic Dam (Australia), Wernecke Breecia's (Yukon)
Е	SEDIMENT-HOSTED				
E01	Almaden Hg		27b		Almaden (Spain), Santa Barbara (Peru)
E02	Kipushi Cu-Pb-Zn	Carbonate-hosted Cu- Pb-Zn	32c		Tsumeb (Nambia), Kipushi (Zaire), Ruby Creek (Alaska)
E03	Carlin-Type Sediment-hosted Au-Ag	Carbonate-hosted Au- Ag	26a,19c		Carlin (Nevada), Getchell (Nevada), Cortez (Nevada)
E04	Sediment-hosted Cu	Sandstone Cu, Sediment-hosted stratiform Cu	30b	Sage Creek	Kupfershiefer (Germany & Poland), White Pine (Mich.), Boleo (Mex)
E05	Sandstone Pb		30a	? Tamarack	Laisvall (Sweden), Largentiere (France), George Lake (Sask.)

Open File 1994-20

-.

<u>Code</u>	Description	<u>Synonym</u>	<u>USGS</u>	<u>B.C. Example</u>	<u>Global Example</u>
E06	Bentonite	Volcanic Clay, Soap Clay	28e?*	Princeton, Quilchena	Wyoming, Alberta, Rodalquilar (SPAN)
E07	Sedimentary kaolin	-	31k*		Tanana Maurtain (Mart.) Trimacour
E08	Carbonate-hosted talc	Dolomite-hosted talc	18?i*	Red Mountain, Silver Dollar	Treasure Mountain (Mont.), Trimacous (France), henderson (Ont.)
E09	Sparry magnesite	Veitsch-type, carbonate- hosted magnesite	18?i*	Mt. Burssilof, Marysville	Europe Legill? Ck, 110 Ck, Sulphur Ck
E10	Mississippi Valley type barite			Muncho Lake	Gem?, Tan?
E11	Mississippi Valley type fluorite		32d*	Lower Liard	Viburnum Trend (Missouri), Pine Point,
E12	Mississippi Valley Type Pb-Zn	Carbonate-hosted Pb- Zn, Appalachian Zn	32a/32b	Robb Lake, Monarch	Polaris (NWT)
E13	Kootenay Arc Type Pb-Zn	.	24-	Sullivan, Cirque, Driftpile	Mount Isa (Australia), Faro, Grum
E14	SEDEX Zn-Pb-Ag-S	Sullivan massive sulphide	31a	Sullivan, Cirque, Dhilipile	(yukon) Blackbird, Sheep Creek (Montana)
E15	Blackbird massive sulphide Cu-Co	Sediment-hosted Cu-Co massive sulphide			Nick (Yukon), China
E16	Sediment-hosted Ni		 246	Kwadacha	Tea (Yukon), Magcobar (Ireland)
E17 F	Sediment-hosted barite CHEMICAL SEDIMENT	Bedded barite	31b	Kwadacha	
F01	Sedimentary Mn		34b		Molongo (MXCO), Atasu (Kazakhstan), Kalahari (SAFR)
F02	Bedded gypsum/anhydrite	Marine evaporite gypsum	35ae	Lussier River, Windermere	Paris Basin (France), Appalachian Basins (New York, Penn.)
F03	Gypsum-hosted sulphur	Frasch sulphur		Trutch area	Texas, Louisiana, Poland, Coronation _ (Alberta)
F04	Bedded celestite		35aa*	Kitsault Lake	Lake Enon (Nova Scotia), Mexico, Germany
F05	Palygorskite	Attapulgite	34e*	"Mountain Leather" (Cassiar)	Metalline Falls, Wash.
F06	Lacustrine diatomite	Diatomaceous earth, kieselguhr	31s		Juntura and Otis Basins (Oregon), Lake Myvatn (Iceland)
F07	Phosphate, upwelling type	•	34c	Fernie synclinorium	Phosphoric Formation (Idaho), Meskala (Morocco)
F08	Phosphate, warm-current type		34d	none	Athabaska Basin (Sask.), Florida
F09	Playas (hydromagnesite, sodium carb. lake brines)		35ba,bm(T)		
F10	Superior Type Iron Formation		34a	Falcon?	Mesabi Ranges (Minnesota), Minas Gervas (Brazil)
G	MARINE VOLCANIC ASSOCIATION				Versilian less Formation (Minn.)
G01	Algoma Fe		28b		Vermillion Iron Formation (Minn.), Helen Mine (Ont.)
G02	Volcanogenic Mn	combine with rhodonite	e 24c		Olympic Mtns.(Washington), Nicoya (Costa Rica)
G03	Volcanogenic anhydrite/gypsum			Britannia, Falkland	
G04	Besshi massive sulphide Zn-Cu-Pb	Kieslager	24b	Goldstream, Windy Craggy	Besshi (Japan), Greens Creek (Alaska)
G05	Cyprus massive sulphide Cu		24a	Anyox, Chu Chua	Cyprus, Oman
G06	Noranda/Kuroko massive sulphide Cu-Pb-Zn	Noranda Cu-Pb-Zn massive sulphide	28a	Britannia, Kutcho Creek, Myra Falls	Noranda (Quebec), Kuroko (Japan)
н	EPITHERMAL				
H01 H02	Travertine Hot spring Hg	tufa?	35d* 27a	Ucluelet?	Sulphur Bank (California), Steamboat Springs (Nev.)
H03	Hot spring Au-Ag		25a	Cinola	McLaughlin (Calif.), Round Mountain (Nev.)
H04	Epithermal Au-Ag; high sulphidation	Acid-sulphate epithermal, Nansatsu	25d	Taseko Property, Expo	El Indio (Chile), Nansatsu (Japan)
H05	Epithermal Au-Ag; low sulphidation	type Adularia-sericite	25b/25c	Lawyers, Blackdome, Silbak Premier	 Creede (Colorado), Comstock (Nevada), Sado (Japan)
H06	Epithermal Mn	epithermal	25g		Talamantes (Mexico), Gloryana (New Mexico)
H07	' Rhyolite-hosted Sn and Sn-Ag veins	i	25h, 20b	D Zone Cassiar	Black Range (New Mex.), Potosi (Bolivia), Ashio (Japan)
H08	Alkalic-hosted Au-Ag-Te-F veins	"epithermal", sub- volcanic	22b		Emperor (Fiji), Zortman-Landusky (Mont.), Cripple Creek (Colorado)
HOS	Hydrothermal clays	kaolin, alunite, siliceo cap, pyrophyllite	us 25lb*	Monteith Bay, Pemberton Hills	(Cornwall (England)?)
I	VEIN / BRECCIA				

B.C. Geological Survey Branch

<u>Code</u>	Description	<u>Synonym</u>	<u>USGS</u>	B.C. Example	<u>Global Example</u>
101	Gold-quartz veins	Mesothermal, Motherlode, Saddle Reefs	36a	Bralome, Erickson, Atlin	Motherlode (Calif.), Alaska-Juneau (Alaska), Red Lake (Ont.)
102	Subvolcanic shear hosted gold			Scottie, Snip, Johnny Mountain, Baker?, Rossland	
103	Turbidite-hosted gold veins	Meguma Type	36a	Frasergold	Ballarat, Australia; Meguma (Nova Scotia)
104	Iron formation-hosted gold		36b	900 Zone Debbie?	Homestake (South Dakota)
105	Polymetallic veins Ag-Pb-Zn		22c	Silver Queen, Beaverdell	Keno Hill (Yukon)
106	Cu-Ag Quartz Vein		?	Davis Keys?, Churchill Copper	Nikolai Mine, Kathleen-Margaret (Alaska)
108	Silica-Hg carbonate	New Almaden?	27c	Pinchi, Bralome Takla	Red Devil? (Alaska)
109	Stibnite veins and disseminations	Simple and Disseminated Sb Deposits	27d,27e	Minto, Congress, Snowbird	Jerritt Canyon (Nevada), Bolivia
110	Vein barite		27e	Parson	Del Rio District (Tenn.), Jebel Ighoud (Morocco)
111	Barite-fluorite veins		26c*	Rock Candy	Mongolian flourite belt
112	W veins	"Porphyry W"	15a		Pasto Bueno (Peru), Carrock Fell (Great Brit.)
113	Sn veins and griesens		15b		Cornwall (GRBR), Lost River (Alaska)
114 115	Volcanic-hosted magnetite apatite Uranium veins		25i	Magnet? Little Gem?	Uranium City, Schwartzwalder
115			••		(Colorado)
116	Felsic plutonic U			Coryell intrusions, Surprise Lake	Roy Creek, Bokan Mountain (Alaska), Massif Central (France)
117	Silica veins			Gypo vein	
117	Unconformity U-Au-Ni	Vein-like type U	37a		Key Lake, Cigar Lake (Sask.), Jubiluka (Australia), The Midnight (Wash.)
J	REPLACEMENT				
J01	Polymetallic manto Ag,Pb,Zn (Au)	Polymetallic replacement deposits	19a	Bluebell, Midway,	East Tintic (USUT), Manto (MXCO), Drum Mountain (USUT), Butler mountain, Sa Dena Hess
J02	Sn manto and stockwork	"Replacement Sn"	14c		Renison Bell (Tasmania)
J03	Mn veins and replacements	"Replacement Mn"	19b		Lake Valley (New Mexico), Phillipsburg
v	SKARN				(Montana)
К К01	Cu skam		18a,b	Craigmont, Phoenix	Mines Gaspe Area (Que.), Carr Fork
K02	Zn-Pb skam		18c	Piedmont, Contact	(Yukon) San Antonio (Mexico), Ban Ban
1/00	F		40.1		(Australia)
K03 K04	Fe skam Au skam		18d 	Tasu, Jessie, Merry Widow, HPH Nickel Plate	Shinyama (Japan), Cornwall (Penn.) Fortitude, McCoy (Nevada), Buckhorn Mountain (Wash.)
K05	W skam		14a	Emerald Tungsten, Dimac	Cantung, Mactung (yukon), Pine Creek (Calif.)
K06	Sn skarn		14b	Daybreak	Lost River (Alaska), JC (Yukon)
K07	Mo skam			Coxey, Novelty	Little Boulder Creek (Idaho), Mt. Tennyson (Australia)
K08	Garnet skarn		••	Crystal Peak, Argonaut	
K09	Wollastonite skam		18g	Sechelt	Fox Knoll (USNY)
L L01	PORPHYRY Subvolcanic Cu-Ag-Au (As-Sb)	Enargite Au,	22a/25e	Equity Silver, Thom?	Lepanto (Philipines), Resck (Hungary),
L02	Porphyry-Related Au	Transitional Au-Ag Granitoid Au, Porphyry	20d	Snowfields?	Kori Kollo (Bolivia) Marte, Lobo (Chile), Fort Knox (Alaska)
L03	Alkalic Porphyry Cu-Au	Au		Afton, Mt. Polley, Copper Mountain, Galore Creek	Ok Tedi (PNG), Tai Parit (Phillipines)
L04	Porphyry Cu+/-Mo+/-Au		17	Highland Valley, Gibraltar	Chuquicamata, La Escondida (Chile)
L05	Porphyry Mo		21b	Endako, Kitsault, Glacier Gulch	Quartz Hill (Alaska)
L06	Porphyry Sn	"Subvolcanic Tin"	20a		Llallagua (Bolivia), Potato Hills (Yukon)
L07	Porphyry W		21c*	Воуа	Mount Pleasant (Nova Scotia), Logtung (Yukon)
М	ULTRAMAFIC/MAFIC-HOSTED				
M01	Basaltic subvolcanic Cu-Ni-PGE		5a/5b	Circl Manual	Noril'sk, Duluth
M02	Gabbroid Ni-Cu-PGE		7a	Giant Mascot	Lynn Lake, Kluane Province, Yukon, Noril'sk-Talnakh
M03	Podiform chromite	Major/minor	8a/8b		(Turkey/Oregon)

3

Geological Survey Mineral Deposit Profiles

.

<u>Code</u>	Description	<u>Synonym</u>	<u>USGS</u>	B.C. Example	Global Example
M04	Anorthosite (ilmenite)				
M05	Zoned ultramafic Fe-Ti-	Alaskan Type Fe-Ti-	9	Tulameen	Duke Island
M06	V/PGE/Cr/Cu-Ni Asbestos	V/PGE/Cr/Cu-Ni Serpentinite-hosted	8d	Cassiar	Thetford
MOO		asbestos			Theorem .
M07	Serpentinite-hosted magnesite-talc		8f*	Nahatlatch River	
M08					
N	ALKALIC ASSOCIATION	Contractito danasita	10	Alou Deen Dumle? Mount Cross	Balaham (South AFrica) Oka
N01	Carbonatites	Carbonatite deposits - Phosphate, Th, REE	10	Aley, Deep Purple?, Mount Grace tuff	Palabora (South AFrica), Oka (Quebec), Mountain Pass (Califorr
N02	Kimberlite-hosted diamond	Diamond pipes	12	Cross	Kimberley, Orapa, Premier
N03	Lamproite-hosted diamond	Lamproite-hosted diamond	12	Golden, Ospika	Australia, British Columbia
0	PEGMATITE	Glamoria			
001	Pegmatite, family LCT	Zoned pegmatite, Lithium-Cesium-	13a*,b*	Firestorm, Kimberley	Tanko (Canada), Blackhills (South Dakota), Greenbushes (Australia)
O02	REE pegmatite, family NYF	Tantalium Niobium-Ytrium-Fluorine			South Platte District (Colorado), Bancroft (Ont.)
O03	Granitic pegmatite, muscovite class	Mica-bearing pegmatite	13f*		Nomagualand (SAFR)
003 004	Simple quartz-feldspar pegmatites	Barren pegmatite, Ceramic pegmatite		Lumby, Hellroaring Creek, Oliver	Black Hills, Otjiwarongo (Nambia)
Ρ	METAMORPHIC-HOSTED				
P01	Andalusite homfels			Frenchman Cap, Leech River	Transval (South Africa), Brittany (France)
P02	Kyanite family			Leech River	Pella (SAFR), Hillsboro (North Carolina), NARCO (Quebec)
P03	Microcrystalline graphite				Raton (New Mexico), Sonora (Mex
P04	Crystalline flake graphite	"Lump and chip graphite"		AA	Lac Knife (Que)
P05	Vein graphite	grapine			Calumet, Clot (Que), Bogala (Sri
P06	Corundum in aluminous metasediments				Lanka) Gallatin & Madison Counties (Montana)
Q	GEMS AND SEMI-PRECIOUS STONES				(mone)
Q01	Jade			Cry lake, Ogden Mountain	
Q02	Rhodonite				
Q03	Agate				
Q04	Amethyst				
Q05	Jasper	,			
Q06	Columbia-type emerald deposits		31c		Chivari and Mazo districts (Columbi
Q07	Schist-hosted emerald deposits				
Q08	Opal	Australian-type			Southeast Queensland, Coober Pe
Q09	Ruby & Sapphire				(Australia)
R	INDUSTRIAL ROCKS				
R01	Cement shale				
R02	Expanding shale				Wabamun shales (Alberta)
R03	Dimension stone - granite				Riviere a Pierre (Que), Black Hills (South Dakota)
R04	Dimension stone - marble				Vermont, Alabama, Georgia
R05	Dimension stone - andesite				
R06	Dimension stone - sandstone		30d*		
R07	Silica sandstone	High Silica Quartzite	30e*	Moberley	
R08	Flagstone				Yorkshire (GRBR)
R09	Limestone			Texada Island, Victoria	
R10	Dolomite		••		
R11	Volcanic ash - pumice				
R12	Perlite			Blackdome	
R13	Nepheline syenite			Trident Mountain	Blue Mountain
R14	Alaskite				Feldspar Corp., N.? Carolina
R15	Crushed rock				· · ·

ORGANIZATION OF MINERAL DEPOSIT DATA

÷

Mineral Deposit Databases

USES

- An inexpensive **research** tool by industry, academic researchers and government.
- Selection of areas for exploration or research projects.
- Assists in the analysis of the **distribution** of geology, metallogeny and mineral deposits.
- Mineral deposit distribution plots help select prospective areas for **mineral potential**.
- Land-use planning and mineral resource management.
- Data may be integrated into geographical information systems (**GIS**).

Mineral Deposit Databases

USGS EXAMPLE:

MRDS - Mineral Resource Data System Contents

- Record Number and Type
- Information Source
- Reporter and Affiliation, and Entry Date
- Site Type, Name and Synonyms
- Country, State, County and District/Area
- Primary Quadrangle and Scale
- Latitude And Longitude
- Commodities
- Production
- Deposit Type and Code
- Host Rock Name and Lithology
- Host Rock and Mineralization Age
- Tectonic Setting
- Associated Igneous Rock and Age

•

- Ore Minerals and Controls
- Non-Ore Mineralogy
- Deposit Description
- Comments
- Key Words
- References

MRDS - MINERAL RESOURCE DATA SYSTEM

Reference

TAYLOR, Richard B., SELNER, Gary I. and JOHNSON, Bruce, R., GS MRDS - A System Based on the Data Fields Used in the National MRDS System but Using dBASE III and a Microcomputer (IBM PC or Compatible) for Organizing Data on Mineral Resource Occurrences and Providing Tabular and Graphic Output, U.S. Geological Survey, Open File Report 86-450A, Program Disk 86-450B, (1986).

Database Structure (mrds.dbf)

<u>Field</u>	<u>Field name</u>	Туре	<u>Width</u>
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\223\\24\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\35\\36\\37\\38\\90\\41\\42\\44\\42\\44\\42\\44\\42\\44\\42\\44\\42\\44\\42\\44\\44$	SYNONYMS SITE_TYPE DIST_AREA COUNTY STATE COUNTRY QUAD_2DEG PRIME_QUAD SCALE LATITUDE LONGITUDE COMMODITYS PRODUCTION PROD_INFO DEPOS_TYPE DEPOS_CODE HR_LITH FORM_HR AGE_HR AGE_MINER TECTON_SET AS_IG_LITH AGE_AS_IG ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_MINER N_ORE_SDESC COMMENTS SKEY_WORDS NOTES	Character Charac	7 13 14 68 1 10 68 24 40 25 15 15 68 68

MRDS - MINERAL RESOURCE DATA SYSTEM

Database Descriptions of Fields

- or what goes into each blank in the form -

RECORD NUMBER:	The entry in this required field is generated automatically by the computer. Each record in a file i numbered starting with one; the working file numbers continuously increase in order of entry. (This number belongs to the computer - the PC - it does not go to the national MRDS system.)					
WORKING FILE NUMBER (WF_NUMI	3ER): The entry in this field is for the convenience of the compiler of the database; any number can be used (1-99999); it is best used as a sequential entry when several different MRDS databases are being Compiled. It is not a required field. (This number belongs to the compiler.)					
MRDS NUMBER (MRDS_NO):	Enter the MRDS number if one has been assigned to the deposit; otherwise, leave blank. (This number belongs to the national MRDS system.)					
CMR NUMBER (CMR_NO):	Enter the CMR record number if one has been assigned to the deposit; otherwise, leave blank. (This number belongs to CMR - it does not go to the national MRDS system.)					
RECORD TYPE (REC_TYPE):	This is a two character code describing the type of record. The first character is an S if the record contains site specific information (describes a single mine, prospect, etc.). The first character is an A if the record contains information describing an area (a mineralized area, mining district, etc.). The second character is an M for metallic deposits, an N for nonmetallic deposits, or a B for deposits that contain both metallic and non-metallic commodities. (Only the M, N, or B goes to the national MRDS system.)	l				
	S site M metallic A area N nonmetallic B both metallic and nonmetallic					
ENTRY DATE (ENTRY_DATE):	The date the data is entered into the database. Enter two digits for month (06), two for date (03), and two for year (85). Change date after editing only for substantive changes, especially if new information has been added.					
INFORMATION SOURCE (INFO_SRCE	: A one character code used to describe the primary type of information which was used to create the record. The codes are:	e				
	1Published literature2Unpublished report, memo, file, etc.3Field observation4MRDS5Personal communication					
REPORTER (REPORTER):	Enter the name (preferably last name, first name, middle initial) of the person responsible for the contents of the record. If an assistant is doing the actual data entry, he or she should enter his supervisor's name in this field. The purpose of this field is to provide users with a contact for further information about this particular record.					
REPORTER AFFILIATION (REPORT_A	FF): Enter the name of the organization for which the reporter works. Organization names may be abbreviated if the abbreviation is unique and easily recognizable (USGS, BLM, etc.).					
SITE TYPE (SITE_NAME):	Enter the most well known, or most recent name of the deposit, occurrence, district, or area. If the name is unknown, enter as unidentified occurrence. This is a required field.					
SYNONYMS (SYNONYMS):	Enter other names by which the site has been known. If more than one name is entered, separate names with commas. For district or area records, names of important mines in the district should be entered here.					
SITE TYPE (SITE_TYPE):	Enter type of site or area being described by this record as a one character code from the following list:					
	M MineThis field does not go to theP Prospectnational MRDS system.C ClaimO OccurrenceH Drill hole					
	A Mineralized area D Mining district					
DISTRICT/AREA (DIST_AREA):	Enter the best known or most recent name of the mining district or mineralized area which contains the site being described, or the name of the district or area for an area record.	s				
COUNTY (COUNTY):	Enter in full the county name in which the deposit is located. If the deposit is located in more than one county, separate the names with commas. Do not enter the word "county" as part of the name.					

STATES (STATE):	Enter the two character, U.S. Postal Service abbreviation for the name of the state in which the deposit is located. If a district or area is located in more than one state, enter the code for the state in which most of the area is located.
COUNTRY (COUNTRY):	Enter the name, or abbreviation for the name (eg. US) of the country in which the deposit is located.
2 DEGREE QUADRANGLE (QUAD_2DE	E): Enter the name of the lo x 20 quadrangle in which the deposit is located. In the case of district or area records, enter the name of the lo x 20 quadrangle in which most of the district or area is located. Do not enter the word "quadrangle" as part of the name.
PRIMARY QUADRANGLE (PRIME_QUA	AD): Enter the name of the quadrangle used to determine the accurate coordinates of the site location, or the boundary of the mining district or area. Normally, this will be the name of a 1:24,000 or 1:62,500 scale quadrangle. Do not enter the word "quadrangle" as part of the name.
SCALE (SCALE):	Enter the denominator of the fractional scale of the primary quadrangle (24000, not 1:24,000).
LATITUDE (LATITUDE):	Enter the latitude of the site being described to the nearest second. The format is: dd mm ssN dd = degrees mm = minutes ss = seconds Normally, this information is obtained by digitizing from the primary quadrangle named above. This is a required field.
LONGITUDE (LONGITUDE):	Enter the longitude of the site being described to the nearest second. The format is: ddd mm ssW. Normally, this information is obtained by digitizing from the primary quadrangle named above. This is a required field.
COMMODITIES (COMMODITYS):	Enter a list separated by commas of the known commodities at the site being described. Use the correct chemical symbols for elements (Au, Ag, Pb, etc.) and short descriptive "codes" for other minerals and materials. The list below is that of the national MRDS system; please use it, as it will facilitate search, and feed directly into the main system. If possible, list the commodities in decreasing order of importance.

Commodity Codes

ALM		Alum	HAG		Heavy aggregate
AL1		Bauxite	KYN		Kyanite, sillimanite, andalusite, dumortierite
AL2		Aluminum (from other sources)	LAT		Laterite
AL3		Alunite	LST		Limestone, general
AMB		Amber		LSTI	Limestone, CaCO3 >97 %
GYP		Anhydride, gypsum		LST2	Limestone, 97 % > CaCO3 >95 %
ASB		Asbestos	LWA		Light weight aggregate
VOL		Ash, volcanic	MGS		Magnesite
BRI		Brines, saline materials	MBL		Marble
MG		Brucite as well as magnesium	MIC		Mica, general
CAR		Carbonates		MICI	Sheet mica
CER		Cement rock, natural		MIC2	Scrap mica
CLY		Clay, general			Flake mica
	CLI	Bentonite	MPG		Mineral pigments
	CL2	Fuller's earth	MON		Monazite
	CL3	Kaolin (includes high alumina clay)	OLV		Olivine
	CL4	Ball clay	Ρ		Phosphorus or phosphate
	CL5	Fire clay (refractory)	PEA		Peat
	CL6	Bloating materials (clay, shale, etc,)	PER		Perlite
	CL7	Brick clay (common)	PGM		Platinum group metals
COR		Corundum	PUM		Pumice
DIA		Diamond	PYR		Pyrite
DIT		Diatomite		PYRI	Pyrrhotite
DOL		Dolomite, general	PYF		Pyrophyllite
	Doli	Ultra pure dolomite, CaCO3 + MgCO3 >97 %	QTZ		Quartz
	DOL2	High magnesian dolomite; 97% > CaCO3 MgCO3 >95%	REE		Rare earth elements
EMY		Emery	REF		Refractory materials
EVA		Evaporates, see also brine, halite	BRI		Salines, brines
FLD		Feldspar	SAP		Saprolite
GAR		Garnet	SIL		Silica
GEM		Gem stones	TLC		Talc, serpentine, soapstone
GLA		Glauconite	VRM		Vermiculite
GRF		Graphite	WOL		Wollastonite
GYP		Gypsum, anhydride	ZEO		Zeolites
HAL		Halite			

PRODUCTION (PRODUCTION): A one character field which indicates whether production has been known to occur. Codes are as follows: Y known production Ν known to have not produced ? production history unknown PRODUCTION INFORMATION (PROD_INFO): Enter into this text field information about the production history of the deposit, if any. Include known dates of production, commodities produced, and data on tonnage and/or grade of ore produced. DEPOSIT TYPE (DEPOS_TYPE): Enter a concise label, or labels that you would attach to the type of deposit being described by this record (epithermal vein, massive sulfide, Mississippi Valley, placer, etc.). DEPOSIT TYPE CODE (DEPOS_CODE): Enter the code number from the following list which best describes the deposit. If several deposit types are present, enter the code numbers describing them in order of importance; separate these code numbers with commas. These code numbers provide a structured entry to facilitate sorting by deposit type. This entry will not be transmitted to the main MRDS file. **Deposit type code** 10. Placer deposits Modern 10.2 10.21 Alluvial 10.22 Marine, including beach, strand line 10.4 Fossil 10.41 Alluvial 10.42 Marine, including beach, strand line Quartz-Pebble conglomerate (Au, U, Th, Rand) 12. Residual deposits 12.2 Resistate (mechanical) 12.22 barite (Missouri) 12.4 Chemical (concentrations, alteration minerals) 12.42 clays 12.44 bauxite 12.46 iron (including "bog iron, manganese',) vermiculite nickel (Riddle, OR) 12.49 14. Supergene base and precious metals 20. Organic-rich sedimentary deposits 20.2 peat 20.6 shale (metal-rich) 20.62 metal-rich black shale Syngenetic sedimentary deposits 22. clays lithium clays 22.2 22.25 22.3 shales (bloating, light-weight aggregate) 22.4 carbonate rocks 22.42 22.44 22.46 limestone dolomite nahcolite 22.6 22.8 phosphorite evaporite 22.82 gypsum-anhydride-sulfur 22.84 22.86 saline minerals saline brines 24. Iron formation Sedimentary manganese 26 26.2 bedded (Kalahari field) 26.4 nodules 28. Sedimentary (bedded) barite Syngenetic massive (and disseminated) sulfides 30. Sedimentary (Rammelsberg) 30.2 Iron formation, sulfide bearing 30.6 Volcanic-hosted 30.61 Ophiolite assemblage (Cyprus) 30.63 Felsic to intermediate (Kuroko) 30.8 Metamorphosed syngenetic sulfide deposits 30.81 Zn-Cu (Sedalia type) 30.83 W-Cu (Firefly type) Diagenetic sedimentary deposits 36. 36.2 clays 36.4 zeolites 36.42 saline lake (closed system) 36.44 altered tuffs (open system) 36.6 fluorite (Rome, OR)

36.8 metals in sedimentary rocks 40. Epigenetic sedimentary-hosted deposits sandstone-hosted metals 40.2 sandstone uranium, vanadium, silver sandstone-hosted "Mississippi Valley" (Laisvall, Sweden) 40.22 40.24 sandstone. shale-hosted metals copper (Kupferschiefer) 40.4 40.42 40.44 molybdenum (SD Badlands) carbonate-hosted metals 40.6 "Mississippi Valley', base metals, cobalt 40.62 40.64 Dolomitic Cu-Co (Zaire Cu) Geothermal energy 50. 50.2 Steam 50.4 Hot water (only) 52. Hot spring deposits 52.1 carbonates (travertine) 52.2 clays 52.3 52.33 52.35 metals sedimentary rock-hosted voicanic-hostedHydrothermal (volcanic-subvolcanic)55.155.2stockworks55.3breccia pipes volcanic-hosted 55. 55.4 mantos 55.5 disseminated 55.55 volcanic Cu (Keeweenaw, MI) 55.6 unconformity-vein (uranium) 57. Contact metamorphic 57.1 57.2 Cu (Pb-Zn-Au-Ag-Mo, Carr Fork, UT) Zn-Pb (Ag-Cu-W, Ban Ban, Australia) W (Mo-Zn-Cu, Pine Creek, CA) 57.5 57.6 Sn (W-F-Be, Lost River, Ak) Fe (Cu-Co-Au, Daiguiri, Cuba) 57.7 57.8 Nonmetallics 57.81 magnesite (magnesite, brucite, Gabbs, NV) 57.83 marble 58. Porphyry 58.1 58.3 Си Cu-Mo (Au) 58.4 Au 58.5 Mo (W) 58.7 Sn 59. Greisen 59.1 disseminated 59.3 veins 59.5 pegmatite-greisen veins 60. Volcanic-plutonic rocks 60.1 pumice and perlite 66. Magmatic segregations, granitic plutons 66.1 pegmatites 67. Magmatic segregations, mafic-ultramafic plutons 67.1 sulfide (immiscible melts) 67.11 podlike (Sudbury) 67.13 layered, interstitial (Bushfeldt Pt) 67.3 cumulates 67.31 67.32 stratiform chromitite disseminated chromite 67.34 Podiform 67.6 intrusive 67.61 magnetite, chromite, ilmenite 67.7 extrusive 67.71 magnetite (lava) 68. Magmatic differentiates, undersaturated plutons (syenite-ultramafic complexes) 68.5 intrusive 68.51 carbonatite 68.7 extrusive 68.71 carbonate (lava) Kimberlite pipes (diamond pipes) 69. alnoite (diamond-bearing, Kimberly, Australia) 69.1 70. Meta-ultramafic 70.1 asbestos 70.3 serpentine 75. Regional metamorphic 75.2 75.3 aluminosilicate minerals marble

	graphite talc
Commodities that should	not be entered in MRDS file:
Oil and gas	Sand and gravel (common aggregates) Dimension stone Coal
HOST ROCK LITHOLOGY (HR_L	(TH): Enter a concise description of the lithology of the rock which forms the principal host for the deposit.
HOST ROCK NAME (FORM_HR):	Enter the formal name of the unit which forms the principal host for the deposit.
HOST ROCK AGE (AGE_HR):	Enter the abbreviation for the most specific geologic age of the rock which forms the principal host for the deposit. A range of ages may be entered separated by a hyphen (Cret-Tert).
···	CenCenozoicPalPaleozoicQuatQuaternaryPermPermianHoloHolocenePennPennsylvanianPleisPleistoceneCarbCarboniferousTertTertiaryMissMississippianNeoNeogeneDevDevonianPaleogPaleogeneSilurianPlioPlioceneOrdOrdovicianMioMioceneCambCambrianOligoOligocenePrecPaleoPaleoceneArcheanMesMesozoicEEarlyCretCretaceousMuMiddleJurJurassicLLateTri<TriTriassic
MINERALIZATION AGE (AGE_M	INER): Enter the abbreviation for the most specific geologic age of the mineralization of the deposit. Use the same abbreviations used for the age of the host rock. A range of ages may be entered separated by a hyphen (Cret-Tert). If the mineralization has been dated radiometrically, include that information in the "Deposit Description" field.
TECTONIC SETTING (TECTON_S	ET): Enter a brief description of the tectonic setting of the site or area at the time the deposit was formed.
ASSOCIATED IGNEOUS ROCK (A	S_IG_LITH): Enter a brief description of any igneous rock genetically associated with the mineralization. Include the formal name, if any, and the lithology.
ASSOCIATED IGNEOUS ROCK A	GE (AGE_AS_IG): Enter the abbreviation for the most specific geologic age of the genetically associated igneous rock. Use the same abbreviations used for the age of the host rock. A range of ages may be entered separated by a hyphen (Cret-Tert). If the associated igneous rock has been dated radiometrically, include that information in the "Deposit Description" field.
ORE MINERALS (ORE_MINER):	Enter the complete name of all ore minerals known to occur at the site being described. If possible, list in decreasing order of importance.
NON-ORE MINERALOGY (N_ORE	E_MIN): Enter into this text field a complete (as possible), but brief description of the alteration, gangue, and other non-ore mineralogy associated with the mineralization at this site.
ORE CONTROLS (ORE_CNTRLS):	Enter into this text field a description of the factors controlling mineralization, including structural, stratigraphic, chemical, or any other type of control.
DEPOSIT DESCRIPTION (DEPOS_	DESC): Enter into this text field a general description of the deposit being described. Also include any other information concerning this deposit or area that does not seem to fit in another field.
COMMENTS (COMMENTS):	This is a general purpose text field which can be used for information which does not fit any other field. This is a good place to put speculations (as opposed to facts entered into other fields) concerning deposit origin, etc.
KEY WORDS (KEY_WORDS):	This is a key word field available for free use; it will not be transferred to MRDS or to the CMR file.
NOTES (NOTES):	This is a memo field available for notes, comments, that are not to be transferred to MRDS or to the CMR file.
REFERENCES (REF_15):	Five numeric reference fields are furnished. Each reference should be entered into the Reference file, numbered in order of entry. These references must be in standard Survey format, and must be complete. Each reference will be assigned a number and be entered only once. A number from the reference file should be entered into the numeric reference field of the MRDS file. Up to five references may be entered into a single deposit record, one in each field.

00

C

00

C

C

000

Summary of B.C. MINFILE

OVERVIEW OF MINFILE:

- MINFILE is the British Columbia Geological Survey's mineral inventory database management system.
- Contains information on over 11 000 metallic, industrial mineral and coal occurrences (showings to major producing mines).
- MINFILE/pc, a menu-driven data-entry, search and report program for IBM-compatible microcomputers, accesses the database.
- Data elements are organized with a set of codes (entities), within a relational database design (entity-relationship model).
- The MINFILE system helps provide solutions in mineral exploration, land-use planning and mineral resource management.
- MINFILE information may be used in other programs such as word processors, plotted using computer-aided mapping systems, and integrated with conventional geographical information systems.
- The database contains 69 files, with 96 fields and 84 data elements.
- 86 maps (1:250,000 or 1:100,000 scale) cover 950 000 square kilometres.

MINFILE DATA:

- Location
- Commodity
- Mineralogy and alteration
- Geological setting
- Lithology and host-rock name and age
- Deposit class and character
- Assays, reserves and production, and reserves
- Textual geological description (capsule geology)
- Bibliography, citing information sources for the occurrence

Summary of B.C. MINFILE (cont)

THE MINFILE/pc PROGRAM:

- A **stand-alone, menu-driven program**, operating within 640 kilobytes of RAM, in the MS-DOS environment of IBM-compatible microcomputers.
- 12 menu-driven **searches** on a variety of exploration and geological parameters.
- 12 high quality **reports** on the search results.
- **Data-entry** has a pull-down and pop-up interface for changing, updating and appending data.
- Utility functions assist in configuring the database, exporting and importing data, and maintaining the system.
- **Code table maintenance** allows the users to add, delete and modify the contents of the various codes and tables.
- The province wide database of over 11 000 occurrences currently occupies **60 megabytes** of space.
- Data are distributed in **ASCII files**, which are configured into searchable database (**dBASE**) files.
- **Programming language and software**: FoxBASE+/FoxPro, R&R Relational Report Writer, automatic table look-up (Proximity Technology Inc.), data compression (PkZip by PkWare Inc.).
- **Supporting documents** include a coding manual, a user's manual and technical manuals.

PRODUCTS, DISTRIBUTION AND SUPPORT:

- Mineral location maps, with topography and geological base (1:250,000 or 1:100,000 scale)
- Paper print-outs of indexes and complete reports
- Data disks (map areas, provincial, commodity open files)
- MINFILE/pc software
- Coding and user's manuals
- Custom searches, reports and data
- Talks, workshops and help desk
- Over 400 users
- MINFILE technology and program are marketed for sale world-wide

MINERAL OCCURRENCE STATUS IN BRITISH COLUMBIA

N.T.S: Deposit No:2	1
U.T.M: METALS: Cu, Ag, Fe, As, Co, Au	
Lot - Long. : 56°12.9' 130°20.7' PROPERTY: Granduc Mine	<u> </u>
BC MI #3302	Granduc
References:	"
pp 15-17; 1957, p 6; 1958, p 6; 1960, p 6; 1961, p 8; 1962, p 8;	
1964, p 18; 1965, pp 44-48; 1966, p 38; 1967, pp 31-34; 1968, p 46; 1969, p 54	
BC Prelim. Map of Granduc Area, 1956	
As Repts 89; 90; 328; 340 Granduc (Leduc) NMI 104B/1 Cu 1 Granduc (Leduc)	(Edna May)
NRB Corp Files: "The Granby Lining Co. Ltd.";	
"Granduc Mines, Ltd."; "Granduc Operating Co."	
Western Miner & Oil Review, Aug. 1953, p 42	
(OVER)	Project 290
Norman, G.W.H., "Faults and Folds Across Cordilleran Trends at the Headwaters of Leduc River, Northern B.C.," Petrologic Studies, Buddington Volume, the G.S.A., 1962	
GEM 1970, p. 68-73; 1971, p. 34-5 Norman, G.W.H. & McCue, J., "1966 Relations of Ores to Fold Patterns at Gra C.I.M.M. Special Volume No. 8	anduc, B. C.'

1

.

÷., -

, duc		Playa	snb3)			-	C telle	_
613	MINER	AL DEPOSIT INVENTO	DRY					
ap No1048-21				- Propert	y No	3302	L .	10
etal 🖸 Industrial Mineral			· 5					1
ame: <u>Granduc Mine</u>								2
H 12	3		1 .		Io	20	T	5
Claim	- 10 54	Owner	1	Year(s)		in her	1	12
Claim		Owner			1			10
Operator	10	Owner	1	Year(s)	1000	12	Prod	
Claim'		Owner		1	-		Product(s)	
Operator	2 kos			Year(s)	0	5 12	- 1	
ocation: N.T.S. 104B/1W	Lat. 56º13.0'	Long. 130°20_	81	. U.T.M	1	e la	Cu,A	
M.D. <u>Skeena</u> Loc. plot	In park	Sou	E. &	N. 🗌 El		1		
Production: Tons <u>6,491,898</u> Others		The late	Year(s)19	970 to 1973		140 100	_	ROPER
Reserves; Tons	0	Grada 1				172		
Tons Tons		Grade Grade	17.1	101	Year	les La	_	Ĩ
Tons Tons		Grade	17.1	101	Year	les La	_	-
Ions Ions evelopment: Surface Underground40,146!		Grade	17.1	101	Year	les La		17.0
Tons Tons evelopment: Surface		Grade Grade	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	10 10 10 10 10	Year	les La		0.50*31
Tons Tons evelopment: Surface Underground40,146' Drilling68,273' Surveys: Geol	Geophys	Grade Grade Grade	6	Geochem	Year Year	8 2 42 4 10 10 10 10 10 10 10 10 10 10 10 10 10		300,50".3.1
Tons Tons Underground40,146' Drilling68,273' Surveys: Geol @ferences: M.M.A.R1931_47	Geophys , 1953-82, 1956-15,1961	Grade Grade	G 8, 1965-44, 1	Geochem	Year Year	8 2 42 4 10 10 10 10 10 10 10 10 10 10 10 10 10	Map	130050*11
Tons Tons Underground40,146' Drilling68,273' Surveys: Geol @ferences: M.M.A.R931-47 G.F.M. 1969-54, 1970-66,73	Geophys , 1953-82, 1956-15,1961 3, 1971-34, 1972-574, 19	Grade Grade	6 8, 1965-44, 1 _ 5 ~ 7	Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()	Map lio.	130,50*1.
Tons Tons Underground40,146' Drilling68,273' Surveys: Geol Gferences: M.M.A.R1931_47 G.E.M1969_54, 1970_66,73 As. Rpt.: L.C Geol		Grade State State Grade State State State State State State State State Grade State	6 8, 1965-44, 1 _ 5 ~ 7	Seochem 1966-38, 1967-3 /	Year Year 1,1968-46_	6 (; 35) b ()		3. 130,50".1.
Tons Tons Underground40,146' Drilling68,273' Surveys: Geol @ferences: M.M.A.R931-47 G.F.M. 1969-54, 1970-66,73		Grade State State Grade State State State State State State State State Grade State	6 8, 1965-44, 1 _ 5 ~ 7	Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()		5' 3, 130,50' 1,
Tons Tons Underground40,146' Drilling68,273' Surveys: Geol Gferences: M.M.A.R1931_47 G.E.M1969_54, 1970_66,73 As. Rpt.: L.C Geol	Geophys 1, 1953_82, 1956_15,1961 1, 1971_34, 1972_5 ⁷ 4, 19 Prosp. Prosp. Geophys. 3739 Map Granduc - 1956, NM	Grade Grade 6 -8. 1962-8. 1964-1 8 -8. 1962-8. 1964-1 13. 4972 -, 1974 0. I.Cul-		Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()		015'd. 130050'J.
Ions Tons underground 40,146' Drilling 68,273' Surveys: Geol. cferences: M.M.A.R. G.E.M. 1969-54, 1970-66,73 As. Rpl.: Geol.	Geophys 1, 1953_82, 1956_15,1961 1, 1971_34, 1972_5 ⁷ 4, 19 Prosp. Prosp. Geophys. 3739 Map Granduc - 1956, NM	Grade Grade 6 -8. 1962-8. 1964-1 8 -8. 1962-8. 1964-1 13. 4972 -, 1974 0. I.Cul-		Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()		22015.3. 130050.1.
Ions Tons underground 40,146' Drilling 68,273' Surveys: Geol. cferences: M.M.A.R. G.E.M. 1969-54, 1970-66,73 As. Rpl.: Geol.	Geophys 1, 1953_82, 1956_15,1961 1, 1971_34, 1972_5 ⁷ 4, 19 Prosp. Prosp. Geophys. 3739 Map Granduc - 1956, NM	Grade Grade 6 -8. 1962-8. 1964-1 8 -8. 1962-8. 1964-1 13. 4972 -, 1974 0. I.Cul-		Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()		20015.3, 130050.1,
Ions Tons underground 40,146' Drilling 68,273' Surveys: Geol. cferences: M.M.A.R. G.E.M. 1969-54, 1970-66,73 As. Rpl.: Geol.	Geophys 1, 1953_82, 1956_15,1961 1, 1971_34, 1972_5 ⁷ 4, 19 Prosp. Prosp. Geophys. 3739 Map Granduc - 1956, NM	Grade Grade 6 -8. 1962-8. 1964-1 8 -8. 1962-8. 1964-1 13. 4972 -, 1974 0. I.Cul-		Seochem 1966-38, 1967-3 /	Year Year 1,1968-46 474	6 (; 35) b ()	lio. <u>1048-21</u> f	22015 31 130050 11
Ions Ions evelopment: Surface Underground Drilling 68,2731 Surveys: Geol G.E.M. 1969-54, 1970-66,73 As. Rpt.: L.C Geol Geol. and mapsPreliminary ummary description titude of deposit: Strike	Geophys 1, 1953-82, 1956-15, 1961 1, 1971-34, 1972-574, 19 Prosp. Geophys. 3739 Map Granduc - 1956, NM zed shear zones in meta Dip	Grade Grade Grade Grade 3 <u></u> <u></u> 5 <u></u> 5 <u></u> 5 <u></u> 5 <u></u> 5 <u></u> 5 <u></u> 5 <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>		jeochem 1966-38,1967-3 /	Year Year 1,1968-46 474		lio. <u>1048-21</u> f	oud: 1 22015'd. 130050'1.
Ions Ions Underground40,146' Drilling68,273' Surveys: Geol Gferences: M.M.A.R1931-47 G.E.M1969-54, 1970-66,73 As. Rpt.: L.C Geol Geol. and mapsPreliminary ummary description Lititude of deposit: Strike ize: Length		Grade Grade s 		jeochem 1966-38,1967-3 / / / / Dep th	Year Year 1,1968_46 47.4 Other Other Plunge	VE 10117 14 51 1401 16 61 1001 10 00	lio 1048-21 Property	- roug: :- 22015'd. 130050'1.
Ions Ions Underground40,146' Drilling68,273' Surveys: Geol Gferences: M.M.A.R1931_47 G.E.M1969_54, 1970_66,73 As. Rpl.: L.C Geol Geol. and mapsPreliminary ummary description ummary description ittitude of deposit: Strike ize: Length inerals		Grade Grade Grade s 		ieochem 1966-38,1967-3 / / / / Dep th	Year Year 1,1968_46 47.4 Other Other Plunge	VE 10117 14 51 1401 16 61 1001 10 00	lio. <u>1048-21</u> f	ar = roug- :
Ions Ions Underground Underground Drilling Surveys: Geol Gferences: M.M.A.R Gferences: Gferences: Strike Gferences: M.M.A.R Gferences: M.M.A.R Gferences: M.M.A.R Gferences: M.M.A.R Gferences: Gferences: Strike Gferences: M.M.A.R Gferences: Gferences: Strike Gferences: M.M.A.R Gferences: Gferences: Strike Gferences: Gferences: Strike Gferences: Gferences: Strike Gferences: Gferences: Strike Gferences: Gferences: Strike Gferences: Strike Gferences: Strike Gferences: Strike Gferences: Strike Gferences: Strike Gferences: Strike Gferences: St	Geophys , 1953-82, 1956-15,1961 1, 1971-34, 1972-574, 19 Prosp. Geophys. 3739 Map Granduc - 1956, NM ized shear zones in meta Dip Dip Width rite, pyrchotile, magnet	Grade Grade s 	6 8, 1965-44, 1 - ようし O. Geochem	Geochem 1966-38,1967-3 / / / / / / / / / / / / / / / / / / /	Year Year 1,1968_46 47.4 Other Other Plunge	VE 10117 14 51 1401 16 61 1001 10 00	lio 1048-21 Property	Fat - Fould' 1 20015'31 130050'11
Ions Ions Underground40,146' Drilling68,273' Surveys: Geol eferences: M.H.A.R931_47 G.E.MJ969_54, 1970_66,73 As. Rpl.: L.C Geol Geol. and mapsPreliminary ummary descriptionminerali ttitude of deposit: Strike ize: Length inerals Chalcopyrite, pyr conomic minerals	Geophys , 1953-82, 1956-15,1961 , 1971-34, 1972-5'4, 19 Prosp Geophys. 3739 Map Granduc - 1956, NM zed shear zones in meta Dip Dip Width	Grade Grade s 	6 8, 1965-44, 1 - ようし O. Geochem	Geochem 1966-38,1967-3 / / / / / / / / / / / / / / / / / / /	Year Year 1,1968_46 47.4 Other Other Plunge	VE 10117 14 51 1401 16 61 1001 10 00	lio 1048-21 Property	Fat - Fould: 1 220,15° d. 130,50° J.
Ions Ions Underground40,146' Drilling68,273' Surveys: Geol Gferences: M.M.A.R1931_47 G.E.M1969_54, 1970_66,73 As. Rpl.: L.C Geol Geol. and mapsPreliminary ummary descriptioninerali ttitude of deposit: Strike ize: Length Surveys	Geophys , 1953-82, 1956-15,1961 1, 1971-34, 1972-574, 19 Prosp. Geophys. 3739 Map Granduc - 1956, NM ized shear zones in meta Dip Dip Width rite, pyrchotile, magnet	Grade Grade s 	6 8, 1965-44, 1 - ようし O. Geochem	Geochem 1966-38,1967-3 / / / / / / / / / / / / / / / / / / /	Year Year 1,1968_46 47.4 Other Other Plunge	VE 10117 14 51 1401 16 61 1001 10 00	lio 1048-21 Property	Far - row8: 1 22015 3. 130050 1.
Ions Ions Underground40,146' Drilling68,273' Surveys: Geol eferences: M.H.A.R931_47 G.E.MJ969_54, 1970_66,73 As. Rpl.: L.C Geol Geol. and mapsPreliminary ummary descriptionminerali ttitude of deposit: Strike ize: Length inerals Chalcopyrite, pyr conomic minerals	Geophys , 1953-82, 1956-15,1961 , 1971-34, 1972-5'4, 19 Prosp Geophys. 3739 Map Granduc - 1956, NM zed shear zones in meta Dip Dip Width	Grade Grade Grade 3 		Geochem 1966-38,1967-3 / / / / / / / / / / / / / / / / / / /	Year Year 1,1968-46 47 4 Other Plunge	201 201 201 201 201 201 201 201 201 201	No1048-21 Property No302	rat - Fould' := 22015'd. 130050'1.
Ions Ions Evelopment: Surface Underground Drilling Genterences: M.M.A.R Gerences: M.M.A.R Gerences: M.M.A.R Geol Geol Geol Geol. and mapsPreliminary Ummary description minerals Lititude of deposit: Strike ize: Length Linerals Conmic minerals Innerals Lissays Limarks	Geophys /, 1953_82, 1956_15,1961 8, 1971_34, 1972_574, 197 Prosp Geophys3739 Map Granduc - 1956, NM zed shear zones in meta Dip Dip Width Width	Grade Grade s =8, 1962-8, 1964-1 Expl. Form 73-497 -, 1974 0. I.Cul- seds. Az ilc, galena, spbal		Geochem	Year Year 1,1968.46 47 4/ Other Plunge	The second secon	No1048-21 Property No302	rat = rou8" : 20015" d. 130050" J.

Open File 1994-20

> م. ... ب. ...

> . .

- م مر مر

-

 ρ^{-1}

		HOST	ROCK	·		
DOMINANT HOST ROCK:	1 Sedimentary	3 Volcanic 4 Metasedim	· <u> </u>	etaplutonic 7 stavolcanic] Metamorphic	
	Hazelton Lowec_Jura	ssic	isotopic Age:		defined	
Strat-Age:			• • -			
1. Igneous/Metamorphic/O Strat-Age: <u>124</u> * Dating Method: <u>07</u>	nher: EOCLDL K-A		Isotopic Age:	49.9 Ma.	a <u>Intrusion</u> 1- 2.3 Ma (biotite horn;	
Dating Method:			Material Dated:			
ROCK TYPE/LITHOLOGY: MODIFIER	1 CODE(S)			Rhyolis	поск NAME 	
QRTZ MA BOIT	<u>12N</u>		BRCC PRPR IRFL	 _Quartz Biotite	a. _manzonite.porf .hornfels	рругу
			CRWK CRGL	Arg'illii	acke *c	
		-				·
	C	GEOLOGIC	AL SETTING			
TERRANE: 1. <u>CPC</u> PHYSIOGRAPHIC AREA:	_Plutonic_ NCPTNec	hako_P	25 lateau	ane OM OM 757	neca EA EAstern ikinia	
X	YPE (Contact Regional	RELATIONSHIP 1 Pre-Minerali 2 Syn-Minerali 3 Post-Mineral	zation			
	_ Zeolite S Greenschist M Amphibolite K Hornfeis L Granulite	BS Blueschist EC Eclogite AN Anthracite SA Semi-Anthr LV Low Vol. Bi		MV Med. Vol. Bit HV Hi Vol. Bitum SB Sub Bitumin LI Lignite	inous	
Geological Setting Comme	nt:					

CAPSULE GEOLOGY

Molybdenum mineralization occurs within a rhyplite plug, 600 by 900 diameter, which intrudes hornfelsic clastic rocks with intercalated metres In greywackes argillites of the Lower Turassic Hazelton Group. The porphyry dated at Nanika Escene Intrusions and has been is part of 49.9+1-This rhydlite porphyry plug consists. ot tour million years porphyries and two orming breccia oorphuru two in chud in oluo is a white aphanitic rock the. WITH parde phenocrysts telds par This phase intrudes Larlier breccia in which an occur along with Archuru trag ments Country rock The Com posed *tragments* breccia ma monzonite porphyry. small (about 245 metres in diametar dua N Mineralization is concentrated STOCKWORK veins and silici Eied ractures centained molybdenite MINERALI zation pecio <u>the contact</u> better grades zone <u>immed jately</u> and <u>occur</u> 10 sphalarite and galena <u>chalco pyrite</u> younder porphyry plug. <u> Illinor</u> in separate loca lities roort

carbonate, is the <u>most intense</u> type tinn nt meta somatism also ourite and alteration with potassic OCCUR וצמאל reported to host <u>13.6 million tonnes</u> ucky Ship deposit 15 D. 17 per cent molyb denite (Map 65, ore grading

WORK HISTORY

YE FROM	AR TO	WORK	AMOUNT (m/km/ha/No.)	COMMENT (Owner/Operator/Results)
	1957	STAK	15 claims	Owned by Matthew Sam and B. McRae
1963	1964	<u>TREN</u> <u>PH45</u>	62 metres	109 claims owned by Southwest Potash Corp
		<u>6EDL</u> GEDC	61 line-km.	42 claims optioned to Plateau Metals Ltd Work done under the direction of T.J.R.
1915	1917	DIAD	1312 metres	Godfrey of Southwest Potosh Corp.
	67	STAK. PH45	<u>81 claims</u>	Amax Exploration Inc., restaked 81 claims and optioned property from both
		GEDC IPOL	· · · · · · · · · · · · · · · · · · ·	Southwest Potash Corp. and Plateau Metals Ltd.
		MAGG DIAD	CAZA malage	In 1965 Plateau Matals Ltd. reported
		TREN	<u>8439 metres</u>	13.6 million tonnes of 0.17 % Mosz.
·····	_1468	STRI DIAD	2 holes, 828 m.	Work done by Plateau Metals Ltd.
		GEDI.		

~~ ,----**-**--0 \mathbf{C} <u>___</u> <u>___</u> <u>____</u> **(****** r r e -

DEPOSIT DENT4010	SCREEN EDIT	PRINT HELP				
DENI4010	Identification	E / pc 30/05/94 ata Entry 16:54				
	Mineral occurrence	s and Petroleum Resources				
	Host rock Geological setting					
	Reserves	cation				
	Production					
	: Capsule geology	Names: ESKAY CREEK				
	: Bibliography	Mining Method				
Status	: Notes	Open Pit: Underground: X				
	Exploration Activity	ion				
	: Work History	Mining Divisions : Skeena				
BC Maps	: [UTM Zone : 09				
	: 56 38 00	Northing : 6277299				
	: 130 27 00	Easting : 411052				
Elevation	: 1600 metres	Location Certainty : Within 500 m				
		ents ———				
21 zone, appro	oximately 84 kilometres	north-northwest of Stewart and 4				
Date Coded	: 24/07/85	Coded by : GSB Field Checked: N				
Date Revised	: 15/11/91	Revised by: GO Field Checked: Y				
		Deposits : 11369				

DEPOSIT	SCREEN	EDIT	PRINT HELP
DENT4020	Ministry of En	Append Revise	/ pc 30/05/94 ta Entry 16:54 and Petroleum Resources
MINFILE No.	- : 104B 008	Browse Delete Move Insert	currence— Name : ESKAY CREEK
Isotopic Material Date	n: Lower Jurassi : d: Galena	lc	EPOSIT haracteristics: Stratabound lassifications: Volcanogenic ypes: hape : Tabular odifiers : Faulted Dimension : 1400x250 x5 metres Strike/Dip : / Trend/Plunge : / Method: Lead/Lead k. Age date of mineralization from
			Deposits : 11369

(****

--

~··

r--

p

.....

Ar / - 1

MINFILE

GSB

GSB

LIMITATIONS

- Incomplete or inaccurate reporting
- Reporting and recording bias
- Data structure knowledge required
 Educate / Documentation
- Data delivery and updating
- Costs & technological barriers

SOLUTIONS

- Research / Interpretation
- Ranking / Combining commodities

 - Planning / Staff support
 - Technology / Innovations

GSB

DATA CAPTURE

- Company Reports
- Provincial Annual Reports, Bulletins
- Federal Papers, Memoirs, Bulletins
- University Theses
- Press Releases
- Scientific Journals

GSB

SOFTWARE APPLICATIONS

Program

С.,

C

C

C

C

C

C

C

C

C

0

0

C

dBASE/FoxBASE R&R Friendly Finder lotus

Harvard Graphics

Norton Editor/Word Norton Commander Mobius/Kermit Laplink AUTOCAD/ESLMap

<u>Use</u>

Relational Database Reports Query (TSR) Spreadsheet Flat File Charts

Word Processor Dos Shell Vax-PC Link PC-PC Link Drafting/Plotting

Examples

Mineral Inventory Master Report Codes Budget/Stats Projects Slides/Overhead Graphs Capsule Geology File Organizer Downloads Data Transfer Mineral Maps

For Desk-top Prospecting

COPPER *RESERVES IN B.C.

(MILLION TONNES, AVERAGE GRADE)

TOTAL: 5.4 BILLION TONNES GRADING BETWEEN 0.36% AND 0.895% COPPER

*BASED ON 44 DEPOSITS WITH RESERVES => 20 MT, 0.2% CU

MINFILE OCT. 1991

The **MINFILE/pc** program...

Is stand-alone on a personal computer

- Enables the user to search the MINFILE database on a variety of exploration and/or geological parameters
- Allows the user to produce high quality reports on the search results
- The data entry module allows the user to alter the data in the MINFILE database
- Ensures that data can be easily transferred between computers
- Can be obtained free of charge from the Geological Survey Branch, MINFILE project

MINFILE/pc Version 3.0 Requirements

IBM-PC or compatible computer
DOS Version 3.X or higher
640 Kilobytes of RAM
1.2 Mb, 5.25 inch floppy drive
Disk space: 2 Mb for the program,
8 Mb per 1000 occurrences data

.C. Geological Survey Bran

Open File 1994-20

MENU1000 MINFILE / pc Search Ministry of Energy, Mines and Petroleum Resources						
Search	database					
* Location 1	Deposit character					
Commodity 2	Deposit classification 8					
Status 3	Lithology 9					
MINFILE Number/Name 4	Formal/informal host 10					
Mineralogy 5	Deposits with production 11					
Host rock, mineral age 6	Deposits with reserves 12					
Ch	oice 4					
* Location search is recommended f	irst. Deposits : 75					

2. Location

SRCH1010	MINFILE / pc	
	Search	
	Ministry of Energy, Mines and Petroleum Resources	

Latitude Longitude	Location search Degrees / Minutes From / /	Degrees / Minutes To / /
UTM Northing UTM Easting UTM Zone	From	То
NTS Map Sheet BC Map Sheet Mining Division Physiographic Region	104B Tecto Terra	onic Belt ane
Choose ONE search ONLY	·	Deposits : 75

ll Report	LE / pc Generation es and Petroleum Resources
Rep	orts
Master	MINFILE Number Index
Dev	ices
Screen 8 Printer . Report MM Device M	Modify settings]
Select device and report	Deposits : 10675

SRCH1020 MINFILE / pc Search Ministry of Energy, Mines and Petroleum Resources					
	. (Commodit	y Searc	 h	
Primary Commodity	or 🖬	or or	or or	or 🖬	must be present
All of:	and	l 📰 and	l 📕 and	and	must be present
		A	IND		
* At least 1 of:	or	or or	or or	or or	must be present
		A	ND		
None of:	or or	or 🖉	or or	or	must be present
* This search is the o	uickest	:			Deposits : 10675

Open File 1994-20

.--

.....

مرد می مرد می مرد می مرد می مرد می مرد می

•

RUN DATE: 06/02/94 RUN TIME: 11:02:42					PAGE: 1 REPORT: RGEN0100 N
MINFILE NUMBER:	<u>092F 330</u>			NATIONAL MINERAL	INVENTORY: 092F12 Zn4
NAME (S) :	<u>myra falls (h-w)</u> , Myra falls	H-W, H-W MINE,			
NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY:	49 34 24 125 35 25 0326 Metres				G DIVISION: Alberni UTM ZONE: 10 NORTHING: 5494198 EASTING: 312728
COMMODITIES:	Copper Cadmium	Zinc	Lead	Gold	Silver
MINERALS					
	Sericitic Upper Devonian	Sphalerite Pyrrhotite Quartz Silicific'n DATING METHOI	Galena Barite Pyrite Pyrite D: Rubidium/Stron	Pyrite tium MATERIAL DATED:	Tennantite - : Whole rock
DEPOSIT					
CHARACTER : CLASSIFICATION : SHAPE :	Stratiform Exhalative Tabular Age date from Jura	Massive Volcanogenic s, 1987, page 3			
HOST ROCK DOMINANT HOST ROCK:					
STRATIGRAPHIC AGE	GROUP	FC	DRMATION	IGNEOUS/N	ETAMORPHIC/OTHER
Upper Devonian ISOTOPIC AGE: DATING METHOD: MATERIAL DATED: Upper Devonian Jurassic ISOTOPIC AGE:	Sicker 370 Ma Rubidium/Strontium	Mj	rice		lutonic Suite
MATERIAL DATED:					
Tertiary ISOTOPIC AGE: DATING METHOD: MATERIAL DATED:	Potassium/Argon			Mount Was	shington Intrus. Suite
LITHOLOGY:	Pyroclastic Rock Argillite Andesitic Flow Breccia Quartz Feldspar Rh Pillow Basalt Feldspar Pyroxene Granitic Dike Dacite Rhyolite				
HOST ROCK COMMENTS:	Age dates from Geo 1987. Sicker Grou				
GEOLOGICAL SETTING	T				
METAMORPHIC TYPE:	Wrangell	RI	lutonic Rocks ELATIONSHIP:		: Vancouver Island Ranges : Greenschist
					MINFILE NUMBER: 092F 330

.

RUN DATE: 06/02/94 RUN TIME: 11:02:42 MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES PAGE: 2 REPORT: RGEN0100

INVENTORY

ORE ZONE: GAP YEAR: 1993 CATEGORY: Measured QUANTITY: 634400 Tonnes GRADE COMMODITY 3.2000 Grams per tonne Gold 151.5000 Grams per tonne Silver 1.8000 Per cent Copper 1.1000 Per cent Lead Zinc 13.3000 Per cent COMMENTS: Proven and probable geological reserves. REFERENCE: George Cross News Letter No. 30 (February 12), 1993. ORE ZONE: H-W YEAR: 1993 CATEGORY: Measured OUANTITY: 8955100 Tonnes COMMODITY GRADE 39.6000 Grams per tonne Silver 2.2000 Grams per tonne Gold Copper 1.7000 Per cent 0.4000 Per cent Lead 4.3000 Per cent Zinc COMMENTS: Proven and possible geological reserves. REFERENCE: George Cross News Letter No. 30 (February 12), 1993. ORE ZONE: BATTLE CATEGORY: Measured YEAR: 1993 2013700 Tonnes QUANTITY: COMMODITY GRADE Gold 1.1000 Grams per tonne Silver 24.2000 Grams per tonne 2.6000 Per cent Copper 0.5000 Per cent Lead 12.7000 Zinc Per cent COMMENTS: Proven and probable geological reserves. REFERENCE: George Cross News Letter No. 30 (February 12), 1993. ORE ZONE: TOTAL CATEGORY: Measured YEAR: 1993 QUANTITY: 12516100 Tonnes COMMODITY GRADE 2.1000 Grams per tonne Gold Silver 45.6000 Grams per tonne Copper 1.9000 Per cent 0.5000 Per cent Lead 6.3000 Per cent Zinc Total proven and probable geological reserves of the H-W, Lynx, Price, COMMENTS : Gap, Battle, Extension (W37), Trumpeter and 6 Level deposits. REFERENCE: George Cross News Letter No. 30 (February 12), 1993. CAPSULE GEOLOGY

The H-W volcanogenic massive sulphide deposit occurs within the southern part of the Buttle Lake uplift. This discreet belt of Upper Paleozoic rocks is bounded on the east by Upper Triassic Karmutsen Formation volcanics (Vancouver Group) and on the west by the Early to Middle Jurassic Island Plutonic Suite. The geology of the uplift has recently undergone reinterpretation and the stratigraphy has been reassigned to several new formations of a redefined Sicker Group and the new Buttle Lake Group (formerly the upper part of the Sicker Group), (Juras, 1987; Massey, Personal Communication, 1990).

The new Buttle Lake Group consists of: (1) the Lower Permian(?) Henshaw Formation composed of conglomerate, epiclastic deposits and vitric tuffs; and (2) the Lower Permian to Pennsylvanian Azure Lake

MINFILE NUMBER: 092F 330

Open File 1994-20

RUN DATE: 06/02/94

RUN TIME: 11:39:21

179

PAGE : 1

REPORT: RGEN0200

MINFILE / pc PRODUCTION REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

MINFILE NUMBER:	<u>092F 330</u>	NAME :	MYRA FALLS (H-W)		STATUS: P	roducer
Production <u>Year</u>	Tonnes <u>Mined</u>	Tonnes Milled		Commodity	Grams <u>Recovered</u>	Kilograms <u>Recovered</u>
1992	1,156,489	1,171,629		Silver Gold	20,271,000 988,054	
				Copper Lead Zinc		18,427,90 1,963,460 32,840,930
1991	1,104,436	1,081,400		Silver Gold Copper	19,565,000 963,114	17,041,682
				Lead Zinc		1,626,609 31,293,019
1990	1,156,519	1,171,337		Silver Gold Copper	21,354,000 1,079,054	20,019,000
				Lead Zinc		20,019,000 265,000 34,428,000
1989	1,239,673	1,229,262		Silver Gold Copper	29,132,000 1,339,499	- 23,234,000
				Lead Zinc		302,000
1988	1,247,575	1,255,124		Silver Gold	34,875,293 1,469,107	
				Copper Lead Zinc		26,858,000 99,000 45,385,000
1987	1,089,796	1,089,796		Silver Gold	31,757,428 1,322,033	
				Copper Lead Zinc		25,145,000 3,371,000 47,581,000
1986	1,066,664	1,066,664		Silver Gold	43,637,121 1,704,588	
				Copper Lead Zinc		24,728,110 4,490,731 56,849,571
1985	585,670	585,670		Silver Gold	27,131,675 811,884	
				Copper Lead Zinc		8,200,962 1,377,572 29,484,968
SUMMARY TOTALS:	0 92F 330	NAME :	MYRA FALLS (H-W)			
		Metric		<u>Imperial</u>		
Recovery:	Mined: Milled:	8,646,822 8,650,882	tonnes tonnes	9,531,490 9,535,965	tons tons	
A *	Silver: Gold: Copper:	227,723,517 9,677,333 163,654,661	grams grams kilograms	7,321,470 311,133 360,796,666	ounces ounces pounds	
	Lead: Zinc:	13,495,374 317,084,492	kilograms	29,752,198 699,051,447	pounds	

Comments:

1990: 1985: 1986-1990: Combined output of H-W and Lynx (092F 071). Combined output of H-W, Lynx (092F 071) and Myra (092F 072).

× . r , e

1

. .

p....

, . . . r -. p r r. . Ľ e. A ^

Figure 1. Steps for Data Entry in MINFILE/pc

·· --

р.... р.... р....

·---

(m) (m)

p--.

p

p

e ...

1 -

~

0. Main Menu

DEPOSIT
ation

Mineral Occurrence Host Rock Geological Setting Reserves Production Capsule Geology Bibliography Work History Exit to Main Menu

EDIT	
Append Revise	
Browse Delete Move Insert	
Submit Undo	
Options Compare	

PRINT

HELP

	Master report - MINFILE
	Master report - Update
	Production report - MINFILE
4.	Production report - Update

SCREEN	DEPOSIT	EDIT	HELP	PRINT		
	Select from list Previous in list Next in list		MINFILE/pc Friendly F DOS Comman		:	ON
	MINFILE No. Select					
Create Delete Append fr		updates				

Ţ	DEPOSIT	SCREEN	EDIT PRINT HELP MINFILE / pc 21/07/92	7
	Select from Previous in Next in list	list of	Data Entry 12:15 Energy, Mines and Petroleum Resources	
	MINFILE No.	Select	Identification	
	Create Delete Append from	01 Updates oduc	Names: MCKINLEY (L.140S) Mining Nethod er Open Pit: Underground: Location	
	Exit to Main	Menu	Mining Divisions : Greenwood UIM Zone : 11	
	Latitude Longitude Elevation	: 49 32 30 : 118 23 18 : 1333 metres	Northing : 5488380 Easting : 399557	
		·	Comments	
	Date Coded Date Revised	: 24/07/85 : 24/07/85	Coded by : GSB Field Checked: N Revised by: GO Field Checked: N	
			Deposits : 10675	

Data	LE / pc Entry es and Petroleum Resources	21/07/92 14:14 Append
- Mineral Occurrence -		
MINFILE No. : 092HSW092	Name : HARRISON GOLD	
Bommodities E Gold MINERALS Significant Gold Significant : Gold Associated Quartz Alteration : Sericite Alteration Sericite Alterat'n Type: Sericitic AGE Mineralization: Tertiary Isotopic : 24.5	DEPOSIT Characteristics: Vein Classifications: Epigenetic Shape : Irregular Modifiers : Fractured Dimension : x x Strike/Dip : / Trend/Plunge : /	metres
Material Dated: Sericite Method: Potassium/Argon COMMENTS: Age date from vein sericite in Portal Stock adit (Fieldwork 1984)		
For multiple fields use Escape when done Deposits : 1		

- 1:250,000 NTS area data diskettes (\$5/disk)
- Paper printouts (\$5-\$50)
- Mineral inventory maps by NTS area (\$5)
- Coding manual, custom searches, MINFILE/pc and User's manual (FREE)
- Provincial MINFILE location index (\$5)
- Open Files: Major Industrial Mineral Deposits, Major Deposits in B.C. (\$10)
- Complete digital dataset of the Province (\$60)
- Complete set of MINFILE maps for the Province on microfiche (\$10)

Open File 1994-20

Geological Survey Branch

rovince of British Columbia

Mineral Deposit Databases

Project Management

- Concept, Designing, Planning (budget, staff)
- Database Design and Data Dictionary
- System Testing and Quality Assurance
- Database Administration and Maintenance (documentation and manuals)
- Data Acquisition and Processing Procedures (coding procedures)
- Training and Client Support
- Marketing and Distribution of Data
- New Technology and Future Planning
- Designing and Producing Computer Generated Products for Users

Project Management

Topics

Theory

- Concept
- Design
- Project Planning
- Implementation
- Acceptance
- Assessment
- Summary

Practical

• The MINFILE Experience

Lecture by: L. Jones, D. Jakobsen <u>References: Three E Management Course Notes</u> Project Management

Concept: Idea

- Compare the current situation with a more desirable one.
- Develop idea about how to improve the situation by:
 - Problem solving techniques
 - Instructions floor
 - Intuitive flash
 - Random trial and error
- Produce objective statement
 - why do the project?
 - what is the concept?
 - what is the expected result?
 - what are the benefits?

Design: Create a description of WHAT will be produced

- Understand the intent of the concept in detail
- Determine the needs of whoever is supposed to benefit from the concept
- Define the boundaries and limits of the project (scope)
- Propose a suitable product to satisfy the intent of the concept and the needs of the owner and the user

Design cont.

- Get GENERAL approval
- Make detailed design decisions to unmistakably define the product
- Get SPECIFIC approval
- Assemble a communication package (proposals, design documents)

Project Planning: Create a description of HOW the output will be produced

- Make contingency plans
- Develop work breakdown
 - by task
 - by sub-project
 - by time period
 - by resource
- Need to know:
 - what other task must precede this task ?
 - who or what will do it?
 - what is to be done?
 - how long will it take?

- Decide Precedence of events
 - make contingency plans first
 - use a MIND MAP which is a graphic representation of the events

- consider working from finish to start
- consider using TASK BOXES

TASK BOX

- indicate appropriate milestones
- Allocate resources
- Calculate cost and cash flow projection
- Establish a quality assurance system

- Establish authority structure
 - who is responsible for what?
 - who do you need to communicate with?
- Produce detailed communication package
- Develop a process to monitor the work and respond to unplanned events (contingency plans to adjust \$, time or resources)
- Establish deliverables and deadlines

Implementation: The product is created as designed and planned

- Establish and maintain rapport with all engaged in or affected by the project work
- Activate the work and quality monitoring system devised during the planning phase
- Respond to variances
- Re-plan, re-structure and redefine as required
- Exercise good leadership

Acceptance: Acceptance of product

- Deliver product
- Test product
- Sign-off/accept product
- Produce the final Report

Assessment

- How has the overall situation changed since the project was conceived?
- How do these changes affect the need for the project?
- Could this have been foreseen more accurately?
- Was the user's assessment of the needs correct?
- Might the needs have been better met some other way?
- Did the design conform to the criteria specified by the concept?

Assessment cont.

- To what extent did the product match the design?
- How adequate was the plan?
- Were cost and time estimates realistic?
- Was the quality appropriate?
- How good is the documentation?
- Was a better approach overlooked?

ETC.....

Summary

- Define a need
- Come up with an idea to fulfill this need
- Design a product that would meet the idea
- Plan how to produce this product
- Implement the plan and produce the product
- Accept the final product
- Assess the success of the project

Project Management

The MINFILE Experience: A project 26 years in the making and still evolving

Historical background:

- 1967 Manual Card File
- 1969 Revised Card File
- 1973 MINDEP
- 1976 MINFILE (Honeywell)
- 1981 MINFILE (IBM)
- 1985 Redesign MINFILE(VAX)

The MINFILE Experience cont.

- 1987 MINFILE/pc V. 1.0
- 1988 MINFILE /pc V. 2.0
- 1989 MINFILE/pc V. 2.13
- 1991 MINFILE/pc V. 3.0
- 1992 Improvements and User Manual
- 1993 MINFILE/dg
- Each of these are milestones in the project and each of these are sub-projects within the larger MINFILE project

r r

Defining a need

- The government, industry and individual geologists collect a lot of data on B.C. mineral deposits
- The government collects data through regulatory requirements

Defining a need cont.

- The government, industry and individual geologists all need access to all this data to:
 - ⇒ Avoid duplication
 - ⇒ Build scientific and geological knowledge
 - \Rightarrow Save research time
 - ⇒ Avoid decisions based on incomplete data
 - ⇒ Provide a sound basis for government decisionmaking
 - ⇒ Make it possible to assess the mineral potential of different areas of the province
The Idea♦ In 1967:

 Create a well organized, easily accessible and complete mineral deposit file for British Columbia

Design

- Research all available data for each known mineral deposit and compile it in a consistent format
- Create a 1-page form printed in a "fill-in-the-blanks" format for compiling the data consistently
- The format should allow for future computerization of the data
- The location of each deposit will be plotted on standard 1:250 000 National Topographic Maps to 3 degrees precision
- The maps and the filled in forms will reside with the Mineral Inventory Section of the B.C. Geological Survey Branch in Victoria

Design cont.

- The maps and forms will be accessible to everyone
- The forms will contain the following data:
 - ⇒ Identification
 - ⇒ Type of commodity and specific products
 - ⇔ Names
 - \Rightarrow Location
 - ⇒ Property Status and Potential
 - ⇒ Brief History of Development
 - ⇒ References
 - ⇒ Geology Summary Description

B.C. Geological Survey Branch

Produce Product

N.T.S:104B/1W	Deposit No: 21	
U.T.M:	METALS: Cu, Ag, Fe, As, Co, Au	
Lat - Long. :56 ⁰ 12.9' 130 ⁰ 20.7'	PROPERTY: Granduc Mine	
References: BC MI #3302	Grand	uc
MMAR 1931, p 47; 1953, p 82; 1954, p pp 15-17; 1957, p 6; 1958, p 6;	p 80-82; 1955, pp 14-16; 1956, " 1960, p 6; 1961, p 8; 1962, p 8;	
	6, p 38; 1967, pp 31-34; 1968, p 46;	
<u>1969, p 54</u> BC Prelim. Map of Granduc Area, 1956		······
As Repts 89; 90; 328; 340		
NMI 104B/1 Cu 1 MRB Corp Files: 'The Granby Lining Co	Granduc (Leduc) (Edna)	May)
"Granduc Mines, Ltd."; "Granduc		
Western Miner & Oil Review, Aug. 1957		
	(OVER) Proje	ct 290
104B/1W	21	• • • • • • • •
Norman, G.W.H., "Faults and Fold at the Headwaters of Leduc Ri		•
Petrologic Studies, Buddingto	on Volume, the G.S.A., 1962	
GEM 1970, p. 68-73; 1971, p. 34-5 Norman, G.W.H. & McCue, J., "1966 Rela C.I.M.M. Special Volume No. 8	itions of Ores to Fold Patterns at Granduc, E	3. C."

• This form was accepted and the work proceeded

Project Management

Project Assessment

- Assessment of the project two years later indicated that:
 - ⇒ The forms took too long to complete
 - ⇒ There was not enough geological data available on most deposits
 - ⇒ Ideas for the requirements of the geological part of the file changed with time and people
 - ⇒ The file would be useful when complete but had only limited usefulness when incomplete
- It was obvious that a change was required and that the project had so far failed to meet the original objectives

Result

- The file was re-designed for computer storage and retrieval
- Initially only a few of the items on the original form were input; geology was omitted to be added later
- A new form and program were developed
- Computerization solved some of the problems
- The constant evolution of the program and the methodology of collecting data have been a response to the changing needs of the users and rapidly changing technology

PROPOSAL FOR MINFILE CODING

OBJECTIVE:	Update mineral inventory for Divisional use.
TERM:	December 1, 1993 - June 30, 1994.
FEES:	Variable according to funds available and priorities.

SUMMARY

This is a proposal for the coding and publication of incomplete areas of the MINFILE database. MINFILE, a database of over 11,300 metallic, industrial mineral and coal occurrences, is extensively used by the Mineral Resources Division. The data are a component in providing information for and responding to the Ministry priorities of mineral strategy, protected area planning, and resource management. The objective is to complete priority areas according to available funds.

BACKGROUND and JUSTIFICATION

MINFILE is used extensively by government and industry for resource information, land-use planning, research and exploration planning. The Land Management and Policy Branch use it to contribute to the provincial land-use plan and protected area strategy. The Regional Geologists provide advice and information to government, industry and public clients, while maintaining an upto-date inventory of mineral deposits and reporting on exploration activity in the province. The Geological Survey Branch delivers MINFILE data to government, industry and academia. The MINFILE database is important to the Commission on Resources and Environment (CORE), whereby it provides mineral resource assessment data for the Mineral Potential Project.

The MINFILE database must contain updated data as the information provides a critical layer of information for Geographical Information Systems and decisions based on land-related data. Approximately 3000 occurrences (includes 30% growth) or 20% of the database remain to be coded.

PROPOSAL OBJECTIVES

The objective of this proposal is to release a number of map sheet areas to both internal and external users. A budget and time commitment according to prioritized areas are proposed to support personnel in the coding, updating, editing and publication of the MINFILE data and maps.

The following is a prioritized list of the key areas based on Regional Geologist and Land-use priorities:

Map Areas	Total Occurrences	Coding Months	Edit/Pub. Months	Estimated Budget
1. Southwest Regio	n (Mainland):			
092HSW	195	3.0	1.0	\$12 000
2. Northeast Regio	n (Prince Georg	e):		
094H-P	160	3.0	1.0	\$12 000
3. Northwest Regio	on (Prince Rupe	rt):		
104J	50	1.5	0.5	\$6 000
104I	120	2.0	0.5	8 500
4. Thompson-Okar	agan (Kamloop	s):		
092I(N)	330	8.0	1.0	\$28 000
082LNW	110	2.0	0.5	8 500
082E/W	350	6.0	1.0	23 000
5. Cariboo-Chilcoti	n (part Thomps	on-Okanaga	n):	
092P	200	5.0	1.0	\$17 000
6. Kootenay:				
082E/E	400	6.0	1.0	\$25 000
082FSE/NE	320	6.0	1.0	28 000
082FNW	310	6.0	1.0	28 000
082K	660	16.0	2.0	50 000
			Total:	\$246 000

BENEFITS

The Division will benefit from:

- Providing the Province with information to meet its economic and environmental goals. ۲
- Protected Area Strategy and CORE objectives.
 Providing information to accommodate First Nations' interests.

7 Prince George - Ted Faulkner

214

CONTRACT PROPOSAL FOR MAINTENANCE OF MINFILE/dg

CONTRACTOR: TERM: FEES: Systems Consultants Inc. November 1, 1993 - March 31, 1994. \$20,000

SUMMARY

This is a proposal for the maintenance and updating of the new MINFILE/dg system. This system integrates MINFILE, a database of over 11,000 metallic, industrial mineral and coal occurrences, and a new module focusing on exploration and development. The system will be used by the Regional Geologists to maintain and report on exploration activity in the province, and by the GSB to maintain and deliver MINFILE data to government, industry and academia. The system is a component in providing information for and responding to the Ministry priorities of mineral strategy and planning and resource management.

The testing of the new system is near completion and practical implementation will follow. A budget is required to enhance the system, providing for more searches, better data transfer, and improved documentation. Systems Consultants Inc. will be used because of their previous experience with the system and to avoid costly learning time. The objective of this proposal is to release a stable new version of the MINFILE software to both internal and external users.

BACKGROUND and JUSTIFICATION

Over the last 4 years much effort has been put into the user-requirements, system design and development of a database for use by the Regional Geologists. In September 1992, District Geology and Geoscience Information sections of the GSB sent out a **Request For Proposal for the development of a District Geology Subsystem** (MINFILE/dg). This resulted in a \$49,500 contract awarded to Systems Consultants Inc. in October 1992. The system is an enhancement to the existing MINFILE/pc, Version 3.0, which integrates *MINFILE*, *Notices of Work* and *Exploration* databases. This project resulted in the **delivery of a Functional Design Document**, a conversion of MINFILE/pc to FoxPro, 50 functional changes to MINFILE/pc, and a copy of the new integrated MINFILE/dg system for testing and implementation.

This system, built to original specifications, will serve as the foundation for the Regional Geologists to do data entry and simple reporting on mineral deposits, and exploration and development projects. This proposal will enhance the system to provide more searches capabilities, better data transfer facilities, and improved help system and documentation.

The Regional Geologists provide advice and information to government, industry and public clients, while maintaining an up-to-date inventory of mineral deposits and exploration activity. The MINFILE/dg system will maintain and easily access this information. It will help to reduce data acquisition and management costs, improve the quality and consistency of the information, and provide a solid foundation for resource management and planning. Database development within the Land Management and Policy Branch (LMPB) and the Geological Survey Branch (GSB) hinges on sharing of and access to common, consistent and current land-related data.

PROPOSAL OBJECTIVES

The objective of this proposal is to release a stable new version of the MINFILE software (Version 4.0) to both internal and external users. A budget is proposed to support a contract for the maintenance and updating of the MINFILE/dg System. Functional changes will be coordinated with additional modifications to the MINFILE/pc software, as identified by system users.

The following is a list of the key objectives:

Maintenance and Changes

- update the current MINFILE User's Manual to reflect the changes in the software
- software upgrades (R&R 5.0; FoxPro 2.5)
- context-sensitive help system
- more efficient transfer facility
- code table look-up in search screens to **input codes**
- redesign search screens to include additions to tables
- several **minor changes** not completed in the first phase of development and some identified during testing

Scope and Design

- a **query system** for the exploration and development data
- a work history system
- an **alternate code table look-up system** to Proximity
- a redesign of reserves and production according to an audit

BENEFITS

The Regional Geologists will benefit from:

- selective searching and reporting
- the ability to combine 5 regional datasets into a single dataset to enable provincial statistics and reporting
- an improved, user-friendly system, including user documentation, help system and code table look-ups.
- the investigation of future enhancements for implementation in 1994/95
- redesign in areas to meet current resource strategies

Ministry of Energy, Mines and Petroleum Resources MINFILE/District Geology Subsystem (MINFILE/DG)

REQUEST FOR PROPOSAL Requirements Section

Table of Contents

- 1.0 Ministry Overview
- 2.0 Situation Overview/Objectives
- 3.0 Hardware and Software Environment
- 4.0 Requirements/Specifications
- 5.0 Vendor Response
- 6.0 Pricing
- 7.0 Project Management
- 8.0 Proposal Evaluation

Appendices

- I Project Change Request Summary for MINFILE/pc, Version 3.0
- II Details of Project Proposal for the Design, Development and Implementation of District Geology MINFILE
- III Geoscience Information Section Business Objectives
 - IV System Plan for MINFILE
 - V MINFILE/pc Database Structure and Menu Tree
 - VI MINFILE/pc Proposed "New" Menu Tree

Geological Survey Branch

DRAFT

1993-94 Computer Systems Plan Geological Survey Branch

Contents:

Executive Summary

- 1. Introduction
- 2. Objectives of the Branch Computer System Plan
- 3. System Plan Highlights of 1992-93
 - 3.1. Hardware and software upgrades
 - 3.2. Mineral Resource Evaluation (MRE) Mineral Potential Mapping Project (MPMP)
 - 3.3. District Geology Database (MINFILE/dg) and MINFILE system development
 - 3.4. Network planning and remote (District Geology) communication
 - 3.5. ARIS management
 - 3.6. Highlights within Branch sections

4. Identification of Key Issues for 1993-94

- 4.1. Network strategy and implementation
- 4.2. Hardware and software upgrades and training
- 4.3. Operation and maintenance of existing systems
- 4.4. Specific and new initiatives
- 5. Recommended Strategy and Priorities
- 6. Conclusion
- 7. Appendices
- 8. Other Key Documents

Prepared by: Geosystems Advisory Group (L. Jones, Chair)

April 28, 1993

EXECUTIVE SUMMARY

The mandate of the Geological Survey Branch is to assemble, maintain, and market a comprehensive geoscience database for British Columbia. All sections within the Branch provide critical data to fulfilling this mandate. The Mineral Potential Project is a key initiative, challenged to deliver mineral potential maps through the integration of these databases using GIS technology. The Branch computer systems plan identified end products, day-to-day operations, common key issues, and new initiatives. An integrated approach was used to evaluate the strategy of each section.

Objectives of the system plan are:

- To upgrade management and analysis of geoscience data and the map inventory.
- To facilitate the mineral resource assessment program by providing an efficient and standardized means of producing mineral potential maps.
- To enhance digital communication within the Branch, other Ministries and clients.
- To provide a systematic methodology for the integration of the Geological Survey Branch databases.
- To maximize the value of the current investment in computer technology.
- To be compatible with the Corporate Land Information Strategic Plan.
- To align the Branch with Ministry objectives on policy, procedures and standards concerning system technology.

The following are system plan highlights from the previous year:

- The majority of Branch staff were upgraded to Ministry standard computer platforms.
- The MPMP created mineral potential maps for several areas of the province, through the creation and integration of a wide range of multi-sourced data and by key hardware and software acquisitions.
- Hardware and software upgrade requirements of staff.
- A systems development contract for MINFILE/dg resulted in delivery of a Functional Design Document, a conversion of MINFILE/pc to FoxPro, 50 functional changes to MINFILE/pc, and a copy of the new program.
- MINFILE published new User's and Coding manuals.
- Network topologies were investigated but not implemented. Communication efforts resulted in the installation and testing of a modem and a pilot LAN in the Kamloops District office.
- ARIS unit commenced automation of producing index maps and produced an annual mailout of P.A.C. account statements from the automated pc-based P.A.C. system.
- COALFILE data was ported from the VAX to the PC, in dBASE format.

The following key areas have been identified to meet branch objectives:

- Network strategy and implementation.
- Hardware and software upgrades and training.
- Operation and maintenance of existing systems: Mineral Potential, GSB Database, MINFILE and ARIS systems.
- Specific and new initiatives: capture management and integration of data, spatial analysis strategy, MINFILE enhancements, PC direction for ARIS, and COALFILE.

The following are the key recommendations, in order of priority, by the Geosystems Advisory Group to improve operations of the Branch and to serve our clients better; costs estimates are preliminary:

- Plan a network strategy for the Branch. Progressively install peer-to-peer LANs within all sections. (\$15,000 per group (5/group) or \$12,000 for server + \$700/station to upgrade)
- Justify and address general and specific hardware and software acquisitions. (\$75,000 \$100,000)
- Continue to maintain support for existing Branch systems. (\$50,000)
- Evaluate several GIS's and data analysis packages and implement the best solution for spatial analysis. (\$20,000)
- Implement a UNIX-based GIS for a corporate GIS/Data Management system. (\$15,000)
- Enhance MINFILE/pc including a new interface for search routines, redesign of the reserves and production and work history. (\$40,000)
- Upgrade, promote and distribute COALFILE. (\$10,000)
- Evaluate the ARIS system to improve its efficiency. (\$15,000)
- Evaluate the MINFILE system including conversion choices for a multi-user environment, digitally generated MINFILE maps, and links between the MINFILE and ARIS systems. (\$65,000 \$80,000)
- Proceed with capture and analysis of aeromagnetic, gravity and LANDSAT data. (\$2500)
- Implement individual employee career and education plans. (variable costs)
- Investigate marketing strategies. (variable costs)

The Geological Survey Branch has a highly skilled group of people and has demonstrated the ability to efficiently deliver quality products. With competition for funding and rapid technological changes, the Branch is challenged to maintain these key success factors. The Branch has the opportunity for the innovative implementation of computer technology and to become a major contributor in the land-use planning process. As well, improvements can be made on production time and overhead costs. The result will be satisfied clients, consisting of users within the Branch, groups in other Ministries, users in industry and the general public.

Systems Testing & Quality Assurance

Outline

r--

Introduction Why Test? Definition of Testing Types of Errors Testing Principles Test Case Design/Testing Techniques Levels of Testing Summary

Lecture by:	L. Jones and C. McPeek
-	16 November 1993

Reference: Program and System Testing Techniques by Cirrus Enterprises Inc. March 1988

Introduction

Evaluation of system development projects over the years has produced one fairly constant analysis - approximately 50% of the total cost of each project has been devoted to "testing".

Typically, however, project estimators classify testing as an "addon" and schedulers usually schedule only 10-20% of project time and budget to testing.

Testing of a system development project involves the methodical and effective testing of the components of a system, whether they be hardware or software, and the project as an entity.

Each of the following groups of individuals within an organization, will, and should, approach testing with different objectives:

a. programmers

Will be concern with accuracy of program code and whether or not requirement specifications have been met.

b. systems analysts

Will be concerned about whether the system meets functional specifications and that the business case is satisfied.

c. technical support

Will be concerned with the technical components of the system, their acquisition, and integration into the operating environment.

d. data entry/users

Will be concerned about ensuring that they have the right equipment to do the job, that the procedures are accurate, the system is user friendly and effective., and whether their needs are met.

e. system development manager/project leader

Will be concerned about the overall business case, the schedule, project resources, and budgeting.

There are techniques available which will ensure all of the objectives of these separate interest groups are met.

What portion of the cost of the system development project would be dedicated to the testing phase?

Why Test?

There are significant penalties to be paid for inadequate or improper testing:

- a. Unreliable systems
- b. Inefficient manpower utilization
- c. Redundant testing
- d. Longer than estimated development times
- e. Frustrated users/customers

Purpose Benefits of thorough system testing and quality assurance:

- a. to improve software quality and reliability.
- b. **to reduce quality-related costs** associated with retesting, warranty and complaint handling.
- c. to meet customer needs and achieve greater customer satisfaction
- d. to provide performance improvement measures, high productivity and quicker delivery of systems
- e. to improve staff morale
- f. to ensure that end result fits with the design specifications

The average computer software package marketed contains 3 defects per 1000 lines of code. Keeping in mind that the majority of software products available on the market exceed more than 100,000 lines of code - this means that you can potentially encounter over 300 defects while using your favourite package.

The number of defects (faults) in a program or a system can be reduced substantially when a rigorous quality control (or testing) methodology is effectively applied. It is practically impossible to eliminate all errors in a computer system, but there are techniques which can be used to make it easier to locate errors and prevent them from occurring in the first place. **(**

C

٣

C

C

r

1

Definition of Testing

When one tests a program, one wants to add some value to the program - improving the reliability of the program.

So in order to make a program or system more reliable - it must be testing with the INTENT OF FINDING ERRORS. Testing should not be approached with the idea of proving that the program(s) works properly. A SYSTEM DEMONSTRATION is the technique used to show that a program does what it is supposed to. If it does work property - IT CAN STILL HAVE ERRORS!

For most purposes then, a test is the process of finding errors and a SUCCESSFUL test is one in which errors ARE DISCOVERED.

•

Slide 5

Systems Testing

Definition

- ⇒ A test is the process of finding errors and a SUCCESSFUL test is one in which errors ARE DISCOVERED.
 - \checkmark add value to the program.
 - ✓ improving reliability of the program.
 - \checkmark be intent on finding errors.
 - ✓ system demonstrations show a program working.
 - \checkmark IT CAN STILL HAVE ERRORS!

Types of Errors

a. Specification problems

The program specification provided the programmer is incorrect, incomplete, ambiguous, or self-contradictory. Or the specification changes as the code is being written and the programmer is aiming at a moving target.

Example: Changes to Functional Description during program development.

b. Program/function errors

Missing or wrongly worded functions within a program module - or functions which serve no purpose.

Example:

Appending a file to the end of Bibliographies was originally misinterpreted, such that the programmer appended several files to one bibliography instead of one file to several bibliographies.

This is a case of not understanding the way we do business.

c. Testing errors

Incomplete or ineffective test case preparation can leave program defects undetected.

Example: Problem with lithologies when deleting then appending occurrences, without pack/reindexing. Ranking is lost in multiple fields due to indexing problem.

d. External Interfaces

External interfaces are the means by which the system communicates to the outside world. They include devices such as printers, modems, etc. There can be errors communicating between hardware components.

Example: Different printer types.

e. Internal Interfaces

Internal interfaces are interfaces with other software such as compilers, operating systems, other program modules.

Example: DOS problems with backup/restore of various versions of DOS.

.

Types of Errors (cont.)

f. Control and Sequence Errors

- assuming events occur in a specific sequence
- initiating a process before prerequisites have been met
- waiting for an impossible combination of prerequisites
- failing to recognize when prerequisites have been met
- missing a processing step
- using the wrong processing step
- redundant processing

Example: During data entry problems occur in a screen when entering fields randomly rather than in sequence.

g. Resource Management Problems

Improper use or allocation of memory in the CPU for use by data files, programs, subroutines, or memory variables can all create havoc with a program.

Example: Loading MINFILE/pc low Vs high memory.

h. Process Errors

- arithmetic and manipulative errors
- incorrect initialization of variables or files
- program control and statement sequence execution

Example: Production figures originally incorrect by one decimal point in database.

i. Data Errors

These errors arise in the incorrect specification of data elements, their formats, the number of elements, and their initial values.

Example: Data Coded/Date Revised fields have different date formats.

j. Documentation Errors

These are errors caused by inadequate or incorrect documentation and/or procedure instructions to the users/operators. The system is expecting one situation or occur but the user/operator does something unexpected.

Example: Reserves in MINFILE.... If reserve category is assay only one calculation can exist. If reserve category any of the others, two calculations may exist. The testing of reserves was done before the formal rules were written in the Coding Manual and these rules were not clearly outlined to all the users doing testing. **Open File 1994-20**

r r . r 1 • p-------...... **r** ... <u>(</u>---1 1. 1e r r

~

MENU0000	MINFILE / dg Main Menu Ministry of Energy, Mines and Petroleum Resources
	Search Database 1
	Report Generation 2 Utilities 3
	Minfile Data Entry 4 Project Data Entry 5
	Code Table Maintenance 6
	File 'C:\minfile\data\E33' does not exist.
Gathering Inf	' Cancel ¤ < Ignore >its : 11338

MENUOOOO	MINFILE / dg Main Menu Ministry of Energy, Mines and Petroleum Resources
	Search Database 1
	Report Generation 2
	Utilities 3
	Minfile Data Entry 4
	Project Data Entry 5
	Code Table Maintenance 6
	Variable 'PRJTYP_C' not found.
Gathering Inf	Cancel ¤ < Ignore >its : 11338

229

Testing Principles

- **Test early and often**. Detection of errors early are easier and less costly to fix.
- **Define the expected output or result** so that erroneous results are not interpreted as valid.
- A **programmer should avoid attempting to test their own program** as the programmer may not want to expose errors or may have a misunderstanding of the program specification.
- Thoroughly **inspect the result of each test**.
- Test cases must be written for invalid and unexpected, as well as valid and expected input conditions.
- Examining a program to see if it DOES NOT DO what it is supposed to do is only half the battle. The other half is seeing whether the program DOES WHAT IT IS NOT supposed to do. Example a payroll program is supposed to print cheques and is wrong if it doesn't. It is also wrong if it prints cheques and deletes the first record of the file.
- Avoid throw-away test cases unless the program is a throw-away program. Creating test conditions and test data is a costly process and the investment should be saved for later use. Re-testing of a program which was modified or fixed is not as rigorous if the original test conditions were saved. Errors found in early versions of the program must be verified as fixed in later versions.
- Do not plan a testing effort under the assumption that no errors will be found. Testing is the process of executing a program with the **intent of finding errors**.
- The **probability of the existence of more errors in a section of a program is proportional to the number of errors already found** in that section. (roughly 80/20).
- Testing is an extremely creative and intellectually challenging task. There is more creativity required for testing than for designing a program.

Test Case Design

One of the most important considerations in program and system testing is the design and development of effective test cases.

Here are some guidelines to use when designing test cases:

Single Condition Statements

For programs containing only one condition per decision statement, a minimum test criterion is of a sufficient number of test cases to (1) evoke all outcomes of each decision at least once and (2) invoke each point of entry at least once (to ensure that all statements are executed at least once).

Multiple Condition Statements

For programs containing decisions having multiple conditions, the minimum criterion is a sufficient number of test cases to evoke all possible combinations of condition outcomes in each decision, and all entry points into the program.

Range Values

If an input condition specifies a "range" of values (e.g. item count can be from 1 to 999), identify three valid tests - two being the top and bottom of the range, and one between (1,999, 38), and two invalid tests (<1 and >999). Check for negative and zero values when the range expects positive values greater than zero.

Set of Values

If an input condition specifies a "set" of input values and each one is handled differently by the program, identify a valid test and two invalid ones. Try a blank value.

"Must Be" Values

If an input condition specifies a "must be" situation (e.g. first character must be a letter), identify one valid test and two invalid tests.

Sequence of Input

If an input condition specifies a particular sequence of input focus attention on the first and last elements of the set. Test with no values input.

.

Test Case Design (cont.)

Input Testing

Check for the following:

- input file (field) is empty
- input file (field) is not available
- input has 1 record
- all records are the same
- improper sequence
- security features are executed properly
- screen displays are readable and usable
- screen displays are presently in proper sequence

Output Testing

Check for the following:

- last record written or line printed
- formats proper
- files are opened and closed properly
- totals are accumulated properly
- report headers, footers, page numbering is proper
- proper page breaks
- special forms are produced properly
- data records which contain totals or other results are created or updated properly
- reports are presented in proper sequence
- screen displays are presented in proper sequence

•

• results of computations

Open File 1994-20

.....

~

(****

.

	Test Procedure			Expected Result	Initials
1. Per	form the test cases below				
(a)	Test menu item #1 - Search Database		Search D	ATABASE - screen appear	s
	Choice: 1				
(b)	Test menu item #2 - Report Generation		Report G	eneration - screen appears	
	Choice: 2				
(C)	Test menu item #3 - Utilities		Utilities -	screen appears	
	Choice: 3				
(d)	Test menu item #4 - Data Entry		Data Entr	y - screen appears	
	Choice: 4				
(e)	Test menu item #5 - Query Database		Query Dat	tabase - screen appears	
	Choice: 5			· · ·	
(f)	(f) Test exit from main menu		Exit MINF prompt	ILE returns to the DOS	
	Choice: 0				
(g)	Test incorrect key sequer Enter letters and invalid n	nce iumbers	Error mes	sage	
				· · · · · · · · · · · · · · · · · · ·	
Date:		Time:		Completed by:	Status:
Commen	ts:		.*		

	Test Procedure	Expected Result	Initials
1. Test	example		
(a)	Primary Commodity: (any valid codes All of: (any valid codes) None of: (any valid codes)	\$)	
(b)	Cursor to the last field and return	Verify correctness	

(2) <u>Search Database - Commodity</u>

Comments: This screen functions and appears the same as the B.C. MINFILE.

To perform any tests, a list of all MINFILE Numbers and corresponding Commodity information must be obtained. This list will be used to verify that the search was performed correctly and the correct records were retrieved.

The tester is to be creative when performing searches, use different combinations of fields and values. There are no restriction on which field may remain empty.

Test: An example test is given. The tester should perform many such tests, using a variety of combinations. All problems should be logged.

Objective: To test the functionality of the Search Database - Commodity screen.

234

<u>.</u>...

Levels of Testing

There are six levels of testing. The first five levels are testing which should be performed by the Contract Systems Personnel and will be touched on lightly. The sixth level will be explained in more detail.

LEVEL 1 - Module Testing (or Unit Testing) LEVEL 2 - Function Testing

LEVEL 3 - Software Integration Testing

LEVEL 4 - System Integration Testing (or Migration Test)

LEVEL 5 - System Demonstration

LEVEL 6 - User Acceptance Testing

Module Testing

Module testing is the process of testing the individual subprograms, subroutines, or procedures which comprise a program. Rather than initially testing the program as a whole, testing is first focused on the smaller building blocks of the program. The reasons for this approach are: it is a way of managing the complexity of testing, it eases the debugging task since errors can be isolated to a particular module, and it provides the ability to test multiple modules simultaneously.

Function Testing

Function testing is the process of attempting to find discrepancies between a program and its external specification (i.e. its input/output). We define a function as a set of related program modules which, when executed in proper sequence, perform a specific task. In simple terms, it is a program.

Software Integration Testing

Software Integration testing is the process of ensuring that programs which are intended to operate simultaneously or in conjunction with other programs are able to do so.

System Integration Testing

The System Integration Testing process involves a series of tests to be conducted to ensure that the newly developed set of programs will operate on the host computer, including peripherals such as printers and plotters, for which it is intended. Some of the major testing processes involved are: configuration testing, volume testing, stress testing, security testing, storage testing, recovery testing, procedure testing, and conversion/compatibility testing.

System Demonstration

The purposed of the System Demonstration level of testing is to demonstrate that the performance and efficiency expectations have been met.

.

User Acceptance Testing

User Acceptance testing is the process of comparing the program to its initial requirements and the current needs of its end users. The best way to conduct user acceptance testing is to devise test cases attempting to show that the system DOES NOT meet the specifications. This test is also concerned with accuracy of the user documentation. The documentation should be inspected to ensure that is conforms to the functions of the programs.

The responsibilities of the User during the User Acceptance testing will be outlined shortly, but generally, it is up to the User to determine whether or not they want to proceed with the implementation of the system as a production system. If the user accepts the system without qualification - then they have no right to criticize the operation or performance of the system.

A comprehensive user acceptance TEST PLAN should be developed, and should contain the following items: a description of the system (or component) being testing, a list of the people involved in the test and their responsibilities, where the tests are to be conducted, what computer resources are required and when, what technical support will be required and when, how long the tests are expected to take, where the source data is to be obtained from, what is to be tested, testing schedule and expected performance. Keep in mind that not only are programs to be tested, also the consideration must be given to the following when preparing test cases: user procedures, user documentation, hardware interfaces, other software interfaces, conversion of data from manual or other computer systems, training of user staff, backup and recovery, security.

A set of TEST DATA, when run against a program or series of programs, will result in output which is expected and pre-determined. Exacting test cases must be developed to ensure a good cross section of tests are carried out. They must reach all areas of the system - input, output, processing, and hardware and software interfaces.

Keep well DOCUMENTED procedures used for testing and outcomes. Well written test cases will find errors. Document those errors giving as much detail as possible. Always include the following: date, time, author, version of system you are testing, error symptom, expected results, results obtained, any sample output reports/displays which document the errors, and problem report number. IT IS BETTER TO GIVE TOO MUCH INFORMATION THAN NOT ENOUGH. Retain these forms for follow up testing and future reference.

Words of wisdom:

- if you can not re-create the error it will be hard for any systems person to correct it.
- beware of cascading errors (that is errors caused by previous errors).
- some errors detected will result in Change Requests Vs Fault Reports (i.e. if the error was not the result of a specified change originally outline in the Specifications Document then it is a new request and should be recorded as a future change).

5

User Acceptance Testing

- ⇒ the process of comparing the program to its initial requirements and the current needs of its end users.
- ⇒ attempt to show that the system DOES NOT meet the specifications.
- ⇒ accuracy of the user documentation.
- ⇒ determine if the system is a production system.
- ⇒ develop a comprehensive user acceptance TEST PLAN.

User Acceptance Testing

TEST PLAN

- ⇒ a description of the system (or component) being testing.
- ⇒ a list of the people involved in the test and their responsibilities.
- ⇒ where the tests are to be conducted.
- ⇒ what computer resources are required and when.
- ⇒ what technical support will be required and when.
- ⇒ how long the tests are expected to take.
- ⇒ where the source data is to be obtained from.
- \Rightarrow what is to be tested.
- ⇒ testing schedule and expected performance.

User Acceptance Testing OTHER CONSIDERATIONS

- user procedures
- user documentation
- hardware interfaces
- other software interfaces
- conversion of data from manual or other computer systems
- training of user staff
- backup and recovery
- security

User Acceptance Testing

IMPLEMENTATION

- realistic test data
- develop test cases to reach all areas of the system
- document procedures used for testing and outcomes
 - date, time, author
 - version of system you are testing
 - error symptom
 - expected results
 - results obtained
 - any sample output reports/displays which document the errors
 - problem report number

it is better to give too much information than not enough

retain these forms for follow up testing and future reference
-

~

5

「「「「「

1

r r

C

1

1

1

User Acceptance Testing

WORDS OF WISDOM

- if you can not re-create the error it will be hard for any systems person to correct it.
- beware of cascading errors (that is errors caused by previous errors).
- some errors detected will result in Change Requests Vs Fault Reports (i.e. if the error was not the result of a specified change originally outline in the Specifications Document then it is a new request and should be recorded as a future change).

	N	MINFILE DETAILED DESIGN DOCUMENT	
		Table of Contents	
1.0	DE	TAILED DESIGN	1-1
	1.1	Introduction	1-1
	1.2	Physical Database Design	1-1
	1.3		1-9
	1.4 1.5		1-10
	1.5	Maintenance Considerations	1-52
2.0	SYS	STEM TEST AND USER ACCEPTANCE SPECIFICATIONS	2-1
	2.1	Introduction	2-1
	2.2		2-1
	2.3		2-1
	2.4		2-1
	2.5	Test Script	2-2
3.0	CON	VERSION SPECIFICATIONS	3-1
	3.1	Introduction	3-1
	3.2	Overview	3-1
	3.3	Plan	3-2
APPE	ENDIC	ES	
	A.	Edit Rules Matrix	
	А. В.	B.C. Minfile Database	

PROJECT FAULT REPORT

Customer Name:		Fault #:		
Project Name:		Version:		
Priority: (1- Testing held	l up; 2 - New release; 3 - Fix as time all	ows; 4 - Discuss and)		
Fault Description:	Prepared By:	Date:		
		·		
Solution Description:	Responded By:	Date:		

PROJECT CHANGE REQUEST

Customer Name:	Request #:
Project Number:	Project Manager:
Project Code:	Date:
Change Requested:	Requested By:
Reason for Change:	
Cost Amount:	Prepared By:
	•
Ramifications:	
Approved (A) / Rejected (R):	
Customer Signature:	
	Company Signature:
Name:	Name:
Signature:	Signature:
Date:	
Valt	

Training and Client Support

TOPICS

- Introduction and Background
- Training Approach Target Audience
 - Skill Level
 - Hands-on Experience
 - Costs
 - Documentation
 - Workshop
- Client Support The Problem Options The MINFILE Help desk
 - Conclusion

Lecture by: D. Jakobsen Training and Client Support

Introduction and Background

- 5 years ago none of the geologists on the MINFILE project had computers.
- The MINFILE database resided on the mainframe computer (VAX) and the geologists gave filled-in forms to data entry clerks.
- There was no training or documentation and computer knowledge or skills were not required.
- In April 1989, the geologists each got a 286 desktop computer and the fun began.

r r

r

r r r

~

Introduction and Background cont.

- Some learned quickly, some learned slowly, some learned not at all.
- Initially we used our computers as typewriters because we didn't know any better.
- Fortunately, Larry had excellent computer skills and we pestered him constantly for help.
- We received many calls from clients requesting help and/or information.
- We made haphazard attempts to train our "frontline" staff on MINFILE. That is, the district geologists and our colleagues in the Branch.

Training and Client Support

Introduction and Background cont.

- We struggled gamely on in this way until 1991.
- The most recent version of the software (MINFILE/pc V.3.0), which includes the data entry module, was developed in 1991.
- Now we could input the data directly on our personal computers.
- At the same time, the MINFILE database was removed from the VAX to the personal computer.
- Because of these two things we quickly had to learn some new skills.

Introduction and Background cont.

- These included:
 - Security
 - Data transfer
 - System testing
 - Back-ups and storage
 - Various software packages that we now use routinely.
- MINFILE/pc V. 3.0 is a fairly complex piece of software and the team needed to understand it to be able to help our clients. We also had to recognize the need for more formal training, documentation and user support.

Training and Client Support

Training Approach

- Target Audience:
 ⇒ General public to Major mining companies and staff.
 - The lowest common skill level of this target audience is NO computer knowledge, therefore, basic computer skills need to be taught.
 - ⇒ Previously, we insisted that clients have a basic knowledge of DOS, but eventually realized that this didn't work.
 - ⇒ Computer basics for some staff training can be left out.

((

ŗ

r r

r C

۲ ۲

1

r

r

٢

Training Approach cont.

 Hands-on Experience:
 ⇒ To learn new software you must use it and computer training must include handson exercises, a lecture is not enough.

Costs:

⇒ We do external training on a cost recovery basis, excluding salaries.

Training and Client Support

Training Approach cont.

• Documentation:

- ⇒ Our first user's manual was published in Dec. 1992.
- ⇒ It took us a long time to recognize the need for a manual. We believed that the program was so easy to use that a manual was unnecessary.
- The manual significantly reduced our support activities.
- ⇒ We also have information materials that we use to advertise the project and our products.

с г

C

WORKSHOP: THE MINFILE TRAINING APPROACH

 The workshop was developed through trial and error.

The Key features are:

- The Workshop Notes match the workshop exactly.
- Hands-on exercises, using appropriate examples, are interspersed with lectures (remember the attention span of participants).
- Low student/teacher ratio, lots of personalized help and attention.

253

WORKSHOP cont.

- The computer is shown on the overhead for live demonstration purposes.
- The timing on the Agenda is flexible so that each section has the necessary time.
- The language is kept simple, avoiding jargon.
- We try to have fun, keeping it light and using lots of graphics.

~

(

(

r r

~

WORKSHOP cont.

- The first formal internal training workshop was in Nov. 1991.
- The first formal external training workshop was in Nov. 1992.
- We have now done the external workshop 3 times, for about 45 clients.

WORKSHOP cont.

Advertising Brochure

AGENDA

(

r F

r r r

r r

ر. د

٢

WORKSHOP cont.

• Agenda

Training and Client Support

259

Client Support

The Problem

- Before the release of V. 3.0, in April 1991, it was estimated that about 2.5 days per week were spent by the MINFILE team helping user's solve problems.
- At this time there were 400 clients and the MINFILE team dealt with 1062 inquiries during the period 1990-1991.
- Marketing efforts were steadily increasing the amount and type of clients and these were using a wide variety of hardware.

r r

((

r c

Client Support cont.

 Version 3.0 of the MINFILE/pc program was more complex and the team anticipated an increase in support activities.

It was clear that we needed to deal with this issue, so we investigated some options:

- A. Support and Maintenance from the consultants (SHL Systemhouse):
 - ⇒ They would set up a Help desk available from 8 am to noon, Monday to Friday, staffed by an experienced and knowledgeable person.

Client Support cont.

- ⇒ The price for this deluxe solution was \$50,000 per year.
- B. Continue with the existing situation; a help desk type solution in-house:
 - ⇒ This would mean a continued demand on staff time.
- C. Hire an in-house expert:⇒ High cost.
- D. User pays for support:
 ⇒ Requires support from an outside vendor who then does the work and collects the fees.

r r

rrrr

r r

5

5

r r

r

5

r r

(

r r

r r

Client Support cont.

E. Client support to be handled with a combination of an inhouse help-desk and a general maintenance and support contract with SHL.

⇒ Approximately 70% of the work in-house and 30% by SHL.

We chose option E and the MINFILE Help desk was developed.

Training and Client Support

Conclusion

As soon as possible, we recommend that:

- In-house staff be trained on all appropriate software and hardware.
- A User's Manual and information materials be produced.
- A Help desk system be implemented.
- Client training be initiated.

Training and Client Support

Problems Database Structure (PROBLEMS.DBF):

Field	Туре	Length
Company	С	50
Clientname	С	20
Problem1	С	55
Problem2	С	55
Solution1	C	55
Solution2	С	55
Area	С	8
Fix	L	1
Time	N	4
Date	D	8
ComType	С	6
RecBy	C	3

Address Database Structure (ADDRESS.DBF):

<u>Field</u>	Туре	<u>Length</u>
Company	С	50
Last_Name	С	25
First_Name	С	20
Street	С	50
City	С	20
Prov_State	С	10
Country	С	15
Code	С	10
Phone	С	14
Fax	С	14
PC_VERS_1	L	1
PC_VERS_2	L	1
PC_VER_213	L	1
PC_VER_300	L	1
Manual_Usr	L	1
Manual_Cod	L	1
Info_Pack	L	1
Date_Recv	D	8
Recv_By	С	3
Date_Sent	D	8
Sent_By	С	3
Notes	С	50

<u> HELPDESK</u>

INTRODUCTION:

The British Columbia Geological Survey Branch (GSB) maintains a comprehensive mineral inventory database of over 11 000 metallic mineral, industrial mineral and coal occurrences known as MINFILE. The database has evolved over the past 25 years from a simple manual card file to a powerful mainframe and microcomputer based Geoscience Information System. The MINFILE database is available to a diverse user-community through MINFILE/pc, a menu-driven program for IBM/pc compatible computers. MINFILE/pc is a search-report and data-entry program valuable to researchers of the MINFILE database.

The program allows user's to search the data, report on search results and add, delete or change the mineral occurrence data in the database. By January 1993, 536 clients had received the MINFILE/pc program.

The HELPDESK program is the client support supplement to MINFILE/pc for the internal use of the GSB. This program keeps two databases: an Address database (ADDRESS.DBF) and a Problems database (PROBLEMS.DBF). The program utilizes a run-time version of FOX+ and Proximity Scan. The HELPDESK program contains user-friendly pull-down and pop-up menus and has a brief on-line help facility.

The Address database contains client addresses and the MINFILE products that each client has. This database is useful for creating mailing lists to notify clients of upgrades to MINFILE/pc and new data releases. The GSB must track the number of copies of MINFILE/pc V. 3.0 because it incorporates Proximity Scan, a licensed piece of software that the GSB purchases.

The Problems database contains information on the problems that clients have contacted the GSB about. When a client contacts the GSB with a problem, the database is examined for a similar problem and the solution. This enables the GSB to quickly solve client problems and evaluate the problems that clients are experiencing for correction in future releases of MINFILE/pc.

5

C

5

r r

C

1

5

C

(***

5

(

r

5

5

(

F

1

PROBLEMS:

The Problems routines assume that the Problems database exists. The database, if missing, can be re-created using dBASE or FOX+. A list of the file structure occurs at the end of this document. A form, called a Problem Log, is used to gather the problem information. This form is then given to the staff member who maintains the HELPDESK. The name and address of clients contacting the GSB with problems should be in the database.

READ PROBLEM:

This option will read the problems stored in the Problems database. When selected, a screen pops up and prompts you to enter a problem area or type: DOS, MINFILE, data, hardware or other. Tabbing from field to field will allow you to select a specific client by entering the company or last name. Input the first few letters of the problem area or type, company name or last name. Proximity Scan will search the database and find up to 64 of the closest matches. An entry is selected by moving up or down with the arrow keys until the desired entry is highlighted and then pressing *CTRL-ENTER* (press the *CTRL* and the *ENTER* keys simultaneously). A screen containing all the information on that entry will pop up. To exit this screen press any key.

ENTER PROBLEM:

This option allows the user to enter a problem into the Problems database from the Problem Log. A window pops up when this option is selected and prompts you for the client's last name or company. The entry is then chosen by highlighting it and pressing *CTRL-ENTER*. The input screen pops up with blank fields that are then filled. The address, phone number, fax number and MINFILE/pc version information is listed at the bottom of the input screen. This information should be verified for accuracy while speaking with the client.

At the input screen you will be prompted for a description of the problem (2lines), a description of the solution given to the client (2-lines), the problem type or area (DOS, MINFILE, data, hardware or other), a fix flag ("y" or "n"), the time taken in minutes, the date, the communication type (phone, fax, office, mail or other) and the initials of the staff member who received the problem.

NOTES:

- The problem area or type and the communication type fields both give you pop-up menus so you simply select the appropriate choice.
- Problems are split up into five types or areas: DOS, MINFILE, data, hardware or other.
- The fix flag is added if the problem is caused by the MINFILE/pc program and needs to be fixed in future versions.

- The date defaults to the current date but can be changed.
- The communication type (phone, fax, office, mail or other) is mainly for statistical purposes.
- Some edit checks are built into the Problems routine. The data will not be added if important fields are left blank. These fields are: Problem line 1, Solution line 1, problem area or type, communication type and time. This forces the inclusion of important information and allows the user to exit if they change their mind.

BROWSE:

This option is only to be used by experienced database people because it can permanently alter or damage the data. This routine is used to change information, to enter something that the edit checks do not allow or to delete and undelete (before "packing") records. The commands are listed at the top of the screen and other commands can be accessed using the F10 key.

PACK:

This routine is used to remove all deleted records permanently and to shrink the size of the database, it "packs" the database.

DELETE:

This option allows you to choose a record to delete. The routine uses Proximity Scan and has the same commands as described in the READ PROBLEM and ENTER PROBLEM sections. Once a record has been chosen, by pressing *CTRL-ENTER*, the program will ask you if you really want to delete the record ("y" or "n"). This makes it difficult to delete an entry accidentally. The deleted entry is flagged in the database and will not appear except when using the BROWSE routine. You can undelete the entry by going into BROWSE, selecting the entry by highlighting it and pressing *CTRL-U*. To permanently remove the entry, pack the database.

ADDRESS:

This option assumes that the Address database already exists. If the Address database is missing a new one can be created using the structure listing found at the end of this document and the FOX+ or dBASE programs. A form, called the Client Record, must be filled out when a client receives a MINFILE product. The form is then given to the staff member maintaining HELPDESK for input.

Open File 1994-20

5

1

C

(

-

C

C

1

r-

۴

C

r

READ ADDRESS:

This option allows the user to read the addresses currently stored in the Address database. When chosen a screen will pop up and prompt you to enter the name of the company you wish to look up. To look up the client using a different piece of information (e.g., phone number) you can use the tab key to move through the record until you reach the desired field. Enter the first few letters of the word you are looking for and Proximity Scan will list up to 64 of the closest matches found in the database. Use the up and down arrows to highlight the record you want and press *CTRL-ENTER* simultaneously. A screen will pop up containing all the information on the client. This includes the version of MINFILE/pc the client has, if he has a User's manual, information package, etc. Press any key to exit the address screen.

ENTER/EDIT ADDRESS:

This option allows you to edit an existing address record or add a client name to an existing company record. A window pops up when this option is chosen and prompts you to input the company name. Highlight the record of interest using the cursor keys and press *CTRL-ENTER*. The input screen will pop up with all the information stored in that record as the default information. You can move around from field to field and edit the information. Once you reach the bottom you are prompted to add or replace the record. If you are adding a name to an existing company record then you want to add the record. If you are updating the information then you want to replace the record.

To add a client to the Address database press the *ESC* key while in the first screen. A blank input screen will appear and you can fill-in the information. The routine verifies that the company name or the last name of the client is entered. If both are left blank the record is not added. The notes field at the bottom of the screen is used to document special data requests and any other information that might be important to record.

BROWSE:

See the BROWSE sub-section under the PROBLEMS section.

PACK:

See the PACK sub-section under the PROBLEMS section.

DELETE:

See the DELETE sub-section under the PROBLEMS section.

OPTIONS:

This area gives you a couple of miscellaneous options to aid you in using HELPDESK.

HELP:

This is the on-line help program. When chosen, a menu will pop up to allow you to choose either Entering Information, Reading Information, Browsing, Packing or Configuration. Highlight the area (using arrows) press *ENTER* and a screen will pop up with the requested help information. To exit the help screen press any key.

CONFIGURE:

This option enables the user to change the background pattern and the background color used in the HELPDESK screens. This allows users to choose a screen that is easy on the eyes. A screen with ten different patterns will pop up when this option is selected and you choose a pattern. A new screen then pops up allowing the user to choose one of ten color combinations. These choices are stored in a file called screen.mem. The changes are kept until changed again, even if the user exits the program.

RECOMMENDATIONS:

The HELPDESK program does not have the capability of creating reports within the program. R&R Relational Report Writer is a good report program for use with FOX programs and is recommended for use with HELPDESK.

It is recommended that only one person add information to the HELPDESK. If more than one person is adding information to the databases then several different copies of the databases would exist. The person entering the information should distribute an updated copy of the Address and Problems databases at least once a month. Forms have been created for this purpose and should be used.

с С С

r

Problems Database Structure (PROBLEMS.DBF):

<u>Field</u>	Type	<u>Length</u>
Company	C	50
Clientname	С	20
Problem1	С	55
Problem2	С	55
Solution1	С	55
Solution2	С	55
Area	С	8
Fix	L	1
Time	Ν.	4
Date	D	8
ComType	С	6
RecBy	С	3

Address Database Structure (ADDRESS.DBF):

<u>Field</u>	<u>Type</u>	<u>Length</u>
Company	C C	50
Last_Name	С	25
First_Name	С	20
Street	C C	50
City	С	20
Prov_State	C	10
Country	С	15
Code	C	10
Phone	C C	14
Fax	С	14
PC_VERS_1	L	1
PC_VERS_2	L	. 1
PC_VER_213	L	1
PC_VER_300	L	1
Manual_Usr	L	1
Manual_Cod	L	1
Info_Pack	L	1
Date_Recv	D	8
Recv_By		3
Date_Sent	D	8
Sent_By	С	3
Notes	С	50

MINFILE/pc 3.0 ORDER FORM				
· · ·				
MINFILE/pc v3.0] Data:			
User's Manual 🗌				
Product List				
Coding Manual 📋	·			
Info. Package 🗌				
Name Company Name Address City				
Province				
Telephone No	- Fax No			
Date Received	_ Recv. By			
Date Sent	_Sent By			
Ministry of Energy, Mines and Petroleum Resource MINFILE Project, Geological Survey Branch 201 - 553 Superior St. Victoria, B.C., V8V 1X4 Tel.: (604) 356-2825 Fax: (604) 356-8153	3			
For Data disks or paper, contact:				
Crown Publications Inc. 546 Yates Street Victoria, B.C. V8W 1K8 Tel.: (604) 386-4636 Fax: (604) 386-0221	26/08/91			

~

r

CLLLL

Problems Log for MINFILE/pc
Company:
Client Name: Problem:
Solution:
Prob. Type: Dos MINFILE Hardware Data Other
Program Fix? Y / N
Date: / / (dd/mm/yy)
Time Taken Mins.
Communication Type: Phone Fax Office Mail Other
Received By:

ł

26/08/91

274	
2/4	

B.C. Geological Survey Branch

Month: Name:		<u> </u>	lient Record	-age:	
DATE	CLIENT	AFFILIATION	PURPOSE	CODE	TYPE
					a.
			• .		
			· · · · · · · · · · · · · · · · · · ·		
				. <u></u>	

TYPE: CODE:

P - Phone, C - Correspondence, O - Office, F - Fax, D - Delegate, EM - EMail, M - Meeting, T - Training. PI - Product Information, DR - Data Request, PS - Program Support, PF - Property File, DEMO - Demonstration; A - Administrative, P - Project, ARIS - Assessment Report. I - Industry, B - Geological Survey Branch, G - Government, P - Public, C - Contractor, U - University.

AFFILIATION:

(

c

r r

(

۲ ۲

0

r r

e e

1-

C

Marketing and Data Distribution OUTLINE:

Introduction Marketing Concepts Strategy and Planning The Marketing Plan Marketing Implementation Distribution Examples Summary

Lecture by:

L. Jones 17 November 1993

Reference: Beckman, M. Dale, David L. Kurtz, Louise Boone (1992): Foundations of Marketing, Fifth Canadian Edition, Dryden Canada

Province of British Columbia • Geological Survey Branch

Marketing BUSINESS PURPOSE:

- \Rightarrow identify and create a client
- \Rightarrow identify needs
- \Rightarrow products and services to meet needs
- \Rightarrow communicate product or service
- \Rightarrow make the product or service
- \Rightarrow price to reflect costs
- \Rightarrow follow-up and servicing

MARKETING DEFINED

⇒ the process of planning and executing the conception, pricing, promotion and distribution of ideas, goods and services to create exchanges that satisfy individual and organizational objectives.
<u>r</u>

Marketing

TARGET MARKET (client identification)

- ⇒ major national and international exploration and mining companies
- \Rightarrow environmental groups
- \Rightarrow consultants
- \Rightarrow academia
- \Rightarrow government
- \Rightarrow rock and mineral collectors
- \Rightarrow geochemical labs.

STRATEGY AND PLANNING

- \Rightarrow develop corporate strategy
- \Rightarrow develop marketing strategy
- \Rightarrow develop marketing plan.

CORPORATE STRATEGY

⇒ the overall purpose and direction of the organization that is established in the light of the challenges and opportunities found in the environment, as well as available organizational resources. This is sometimes expressed as a **mission statement**.

Open File 1994-20

-

C

(

1

0

0

 $\overline{}$

_

Marketing

GEOLOGICAL SURVEY BRANCH MANDATE:

The Geological Survey Branch of the Ministry of Energy, Mines and Petroleum Resources is charged with providing the geological inventory required to develop British Columbia's mineral resources, to improve government's stewardship of our mineral endowment, and to help manage and protect Crown lands.

The Branch's mandate is to:

Assemble, maintain, and market a comprehensive geoscience database for B.C. to provide a sound base for

- 1. exploration & development of the province's mineral resources;
- 2. planning & resource management decisions by governments; and,
- *3. public information on geological resources and hazards.*

Exhibit 2–2 The SWOT Analysis – with Suggestions of What to Look For

Strengths

Internal

Weaknesses

Adequate financial resources? Well thought of by buyers? An acknowledged market leader? Well-conceived functional area strategies? Access to economies of scale? Insulated (at least somewhat) from strong competitive pressures? Proprietary technology? Cost advantages? Product innovation abilities? Proven management? Other? No clear strategic direction? Obsolete facilities? Lack of managerial depth and talent? Missing any key skills or competencies? Poor track record in implementing strategy? Plagued with internal operating problems? Falling behind in R&D? Too narrow a product line? Weak market image? Below-average marketing skills? Unable to finance needed changes in strategy? Other?

External

Opportunities

Serve additional customer groups? Enter new markets or segments? Expand product line to meet broader range of customer needs? Diversify into related products? Add complementary products? Vertical integration? Ability to move to better strategic group? Complacency among rival/firms? Faster market growth? Other?

Threats

Likely entry of new competitors? Rising sales of substitute products? Slower market growth? Adverse government policies? Growing competitive pressures? Vulnerability to recession and business cycle? Growing bargaining power of customers or suppliers? Changing buyer needs and tastes? Adverse demographic changes?

281

Marketing

MARKET STRATEGY PLANNING

- \Rightarrow state objectives
- \Rightarrow identify problems and opportunities
- \Rightarrow study previous plans
- \Rightarrow alternative strategies
- \Rightarrow identify risk factors
- \Rightarrow action plan
- \Rightarrow contingency plans

OPERATIONAL ORGANIZATIONAL REQUIREMENTS

 \Rightarrow Identify:

- resources held
- resources required
- resource gaps
- \Rightarrow responsibilities
- \Rightarrow timetables
- \Rightarrow implementation and controls

THE MARKETING PLAN

- \Rightarrow a program of activities that lead to the accomplishment of the marketing strategy.
- ⇒ what should be included in the Plan to meet strategy objectives and organization effectiveness?

Process (Figure 6-2):

- 1. analyze market and environmental opportunities and threats
- 2. analyze business strengths and weaknesses
- 3. generate objectives and strategy
- evaluate objectives and strategy
- 5. plan implementation and control programs

283

Marketing

THE MARKETING PLANNING PROCESS

I. Situation Analysis: Where Are We Now?

A. Historical Background

B. Client Analysis

Who are the clients we are trying to serve? What market segments exist? How many potential are there? What are their requirements?

C. Marketing opportunities: What exist for the organization?

II. Marketing Objectives: Where Do We Want to Go?

Example: The objective of this marketing plan is to develop a strategy to attract investors to explore and develop gold resources. The plan will identify a target market, strategies, issues, opportunities, and data gathering and implementation methods.

- **III. Strategy, Developing a Marketing Mix**: *What should we do with each of the marketing mix elements? How can we get there?*
 - A. Product/Service Decisions
 - B. Pricing Decisions
 - C. Distribution Decisions
 - D. Communication Decisions
 - E. Financial Considerations
 - F. Control Aspects: monitor, change, feedback

Open File 1994-20

C

<u>____</u>

Marketing

IMPLEMENTING THE PLAN: The Marketing Mix

marketing mix is the blending of the four elements (price, product, communication, distribution) of marketing to satisfy clients.

- ✓ product management requires decisions about what kind of product is needed, its uses, package design and new-product development. Products include services which are performance and symbolic attributes designed to produce clientsatisfaction.
- ✓ pricing includes methods of setting reasonable, possibly profitable and justified prices.
- ✓ distribution is the selection and management of marketing channels, which are the steps that products take to the client, and the physical distribution of the products.
- ✓ communication selling, advertising, promotion, and publicity. Communicate the benefits of investing.

MINFILE/pc 3.0 ORDER FORM			
MINFILE/pc v3.0 [] User's Manual [] Product List [] Coding Manual [] Info. Package []] Data:		
Name Company Name Address City Province	Postal Code		
Telephone No Date Received Date Sent Ministry of Energy, Mines and Petroleum Resources	Recv. By Sent By		
MINFILE Project, Geological Survey Branch 201 - 553 Superior St. Victoria, B.C., V8V 1X4 Tel.: (604) 356-2826 Fax: (604) 356-8153 For Data disks or paper, contact: Crown Publications Inc. 546 Yates Street Victoria, B.C. V8W 1K8 Tel.: (604) 386-4636 Fax: (604) 386-0221 26/08/91			

MINFILE PU Product Type	BLICATIC	DNS (Jan Rel. Date	uary 1994 Paper Price) <u>No. Pages</u>	<u>Notes</u>
082FSW	374	91 June	\$ 30.00	947	
082G	257	91 June	\$20.00	401	
	322	91 June	\$5.00		Disk price
082GJ			\$7.50	108	Disk price
082J	65	91 June			
082LSW	157	93 Oct	\$15.00	303	
082M	244	87 Nov	\$20.00	480	
082N,O	92	93 Oct	\$7.50	172	
083D.C	46	92 Mar	\$7.50	115	
092B	149	91 Jan	\$25.00	291	
0920	149	91 Jan	\$25.00	299	
092E	69	89 June	\$7.50	144	
	565		\$50.00	1215	
092F		90 June			
092G	197	90 June	\$10.00	400	
092HNE	303	92 Dec	\$25.00	551	
092HNW	73	92 May	\$7.50	160	
092HSE	244	92 July	\$25.00	566	
092ISE	189	90 Feb	\$20.00	371	
VJZIJE	103	30160	\$20.00	571	

092F	565	90 June	\$50.00	1215	
092G	197	90 June	\$10.00	400	
092HNE	303	92 Dec	\$ 25.00	551	
092HNW	73	92 May	\$7.50	160	
092HSE	244	92 July	\$25.00	566	
092ISE	189	90 Feb	\$20.00	371	
092ISW	96	91 June	\$10.00	176	
092J	234	92 Jan	\$20.00	464	
092K	154	89 June	\$12.00	287	
092L,102I	344	89 June	\$30.00	777	2 sheets for map (\$10.00)
092M,102P	17	92 May	\$5.00	40	
092N	62	92 May	\$7.50	144	Diale price
092N,092M	79	92 May	\$5.00	206	Disk price
0920	119	92 Jan	\$12.50	206	
093A	150	89 Sept	\$15.00	293 113	
093B	57 15	89 Sept	\$5.00 \$5.00	27	
093C 093D,103A	34	89 Sept 89 Sept	\$5.00	60	
093E	113	87 Nov	\$10.00	142	
093F	50	89 Sept	\$5.00	96	
093G	56	89 Sept	\$5.00	78	
093H,083E	126	89 Sept	\$10.00	233	
0931	22	89 Sept	\$5.00	47	
093	24	89 Sept	\$5.00	39	
093K	อิร่	89 Sept	\$7.50	161	
093L	301	89 Sept	\$30.00	630	
093M	194	92 Mar	\$15.00	321	
093N	219	93 Jan	\$20.00	415	
0930	48	92 Mar	\$5.00	89	
093P	23	89 Sept	\$5.00	89 25	
094A	9	92 Mar	\$5.00		Map price
094A,B	42 33	92 Mar	\$5.00	84	
094B	33	92 Mar	\$5.00		Map price
094C	161	92 Sept	\$15.00	248	
094D	171	92 Sept	\$15.00	326	· ·
094E	233	92 Dec	\$30.00	622	
094F	30	92 May	\$5.00	51	Disk asis
094F,G	66	92 May	\$5.00	50	Disk price.
094G	36	92 May	\$5.00	59	
103B,C	79	89 Apr	\$7.50	162	
103F,K	54	89 Apr	\$7.50	97	
103G	45	89 Apr	\$7.50	89 131	
103H 103I	73 223	89 Sept 89 Sept	\$7.50 \$20.00	414	
103	48		\$7.50	83	
1030,P	261	89 Apr 90 Feb	\$25.00	588	
1030,r 104A	175	93 Mar	\$18.00	375	
104B	360	89 Feb	\$35.00	897	2 sheets for map (\$10.00).
104F	8	88 July	\$5.00	007	Map price.
104F.G	130	88 July	\$15.00	247	
104G	122	88 July	\$5.00		Map price.
104H	30	92 Jan	\$7.50	63	F F
104K	116	88 July	\$15.00	260	
104M	87 ·	93 July	\$ 7.50	157	
104N	133	88 Dec	\$15.00	253	
1040	50	88 Dec	\$7.50	97	
104P	117	88 Dec	\$12.50	216	
114P	84	88 Dec	\$10.00	146	
1993 Mines & Expl.	150	94 Jan	\$5.00	100	Disk only; data of Open File 1994-1.
Coding Manual V.3.32	200	92 Nov	\$0.00	102	Information Circular 1992-30.
Industrial Minerals	398	92 Jan	\$10.00		Open File 1992-9.
Major Deposits in BC	373	92 Mar	\$10.00		Disk only.
MINFILE/pc V. 3.0	11269	91 July	\$0.00 \$75.00		Disk. 15 disks; may be bought separately.
Provincial Database	11368	94 Jan	\$75.00 \$5.00		
Provincial Index Provincial Mans	11368 66	94 Jan 92 Jan	\$10.00 \$10.00		Disk only; includes report generator. Microfiche; covers 101 NTS areas.
Provincial Maps User's Manual V.1.0	00	92 Jan 92 Dec	\$0.00	158	Information Circular 1992-28
USEI S MAITUAL V.I.U			30.00	011	mormation circular 1992-20

NOTE: Map area products are available in disk (\$5.00 each), map (\$5.00 each) and paper format (prices as noted).

DISKS (excluding MINFILE/pc). MAPS and PAPER: Crown Publications Inc. 546 Yates Street Victoria, B.C., V8W 1K8 Phone: (604) 386-4636 Fax: (604) 386-0221

MINFILE/pc. MANUALS and INFORMATION: Ministry of Energy, Mines and Petroleum Resources MINFILE Project, Geological Survey Branch 5th Fl., 1810 Blanshard Street, Victoria, B.C., V8V 1X4 Phone: (604) 952-0387 Fax: (604) 952-0381

MINFILE Project Management

PROJECT ELEMENTS

- Concept, designing, planning (budget, staff)
- Database Design and Data Dictionary
- System Testing and Quality Assurance
- Database Administration and Maintenance (documentation and manuals)
- Data Acquisition and Processing Procedures (coding procedures)
- Training and Client Support
- Marketing and Distribution of Data

⇒ New Technology and Future Planning

• Designing and Producing Computer Generated Products for Users

Future Trends

- LAN (Local Area Networks)
- Client/servers
- CD-ROM (compact discread only memory)
- GIS (Geographical information systems)
- Al (Artificial Intelligence / Expert Systems)

KEY AREAS FOR SYSTEM ENHANCEMENTS Opportunity for leadership roles by sections

- ☑ Hardware upgrades
- ☑ Software upgrades
- System development
- ☑ Networking
- ☑ Application integration
- ☑ Training

KEY SUCCESS FACTORS

- highly skilled group of people; ability to respond quickly to change
- ability to efficiently deliver quality products; respected reputation

CHALLENGES

- competition for funding
- rapid technological changes
- communication

OPPORTUNITIES/BENEFITS

- innovative implementation of computer technology
- become a major contributor in the land-use planning process
- improvements on production time and overhead costs
- enhance service quality
- reduce business life cycle
- satisfied client-base

ADVANTAGES/BENEFITS OF LANS

- ability to share information (transfer files)
- efficient information retrieval
- improve personal and workgroup productivity
- provide shared access to hardware (printers)
- share software
- ∎ e-mail

-

(***

- backups
- LAN discipline (administration, concepts, issues)
- proving ground
- communications

A Tale of Three Networks

Traditionally, you've had to choose between a peer-to-peer network, which offers flexible printer and file sharing, and a server-based LAN such as NetWare, which requires a central server and administrator but offers a better platform for sharing applications. Today, thanks to DOS 5.0's memory tricks and advanced peer-to-peer technology, you can run NetWare and your peer-to-peer NOS on the same workstations and get solid multiuser support plus simultaneous freestyle resource sharing.

COMPUTER TECHNOLOGY TRENDS

L.D. Jones, June 29, 1992

INTRODUCTION

~

5

0

While mainframes will still have a role in the handling of strategic corporate data, PC's are considered the engines for the end users due to the power, ease of use, industry support and low cost. While an organization's base data and systems exist, the organization is challenged to use the data from a strategic business perspective. In business, technology is important, but how to implement it is the key to success. Businesses are stressing the need for reliability, industry standards and the ability to expand.

Business planning leads to information systems planning. Businesses will generally use technology tools to achieve the goals of the organization; technology, although strongly influences organizations, should not dictate how an organization does business. Major corporations generally first define their business role and strategy. Data is then collected, with the key or primary data, such a personnel and accounting, on mainframes. The organization will then derive secondary or support data, which may reside on the mainframe or on PC's. Technology activities or a model will then fit into the overall business strategy of an organization. While an organization's base data and systems exist, the organization is challenged to use the data from a strategic business perspective.

This report will discuss some of the major trends of the Canadian computer industry and focus on technology specific to the corporate strategy of the Geological Survey Branch.

	CHALLENGE:
•	grow with the changes in user-need and technology
	- information strategy
	- minimum of cost and effort
	MESSAGES:
•	Technology alone cannot solve business problems
•	Need people and business strategy
•	Technology is important, but how it is used is the key to success

THE COMPUTER TECHNOLOGY INDUSTRY

General Trends

The computer technology industry is very competitive and is undergoing a complete structural change. Technological enhancements are rapidly advancing and, as a result, quickly become outdated. Computer prices are decreasing while performance increases, thus causing an economic environment of declining margins. Businesses are moving from mainframes to PCs, and to client-server technology. Scalable versions of operating systems, such as Unix, which will run on platforms from workstations to supercomputers, are in the forefront. With the move away from mainframes, business are turning to outsourcing, which is the leasing of equipment and expertise, to operate their corporate computer systems. Internationally, joint ventures are common, such as Japanese-American computer consortiums, where the Japanese have the hardware technology and the Americans have the software. Multimedia, the ability to interact with computers in multiple ways during the same session, will become a reality and is expected to grow dramatically (50% increase in sales/year).

In the Canadian software industry there is a lack of qualified people. Skills are becoming obsolete; there are too many programmers and demands for people with PC-based application-development skills. Training is not

being adequately addressed by government, business and educators. However, employment growth in the industry is expected to be 20% in the next 3 years.

Fewer resources
Greater competition; structural change
Open integration of systems
Downsizing
moving applications off a mainframe and onto smaller machines,
usually networked microcomputers or personal computers (PCs).
Customer-driven
connectivity, security, integration, growth, configuration
flexibility, and innovation.
SOLUTIONS
Client/server technology
reduce computing costs, more productive applications and better
access to information.
Distributed computing; software applications
Standards compliance
Standard interfaces (Windows)
Flexibility, growth and cost effectiveness
Scalability
multiprocessing, upgradable, protect investment.
Pervasive, consistent internetworking
Outsourcing
the leasing of equipment and expertise to operate corporate
computer systems; contracting out non-strategic functions.

Customers are becoming more sophisticated. They want connectivity, security, integration, growth, configuration flexibility, and innovation. Users of computer technology are demanding the ability to switch among differing hardware and software brands with ease; industry is responding by developing client-server applications, Unix operating systems and open systems. Users want more choice in hardware and software to match the best environments and applications for their business needs. For open systems and client-server applications to succeed they will have to provide two key functions: internetworking and interoperability. Internetworking concerns the linking, with gateway and local-area network technology, of separate platforms. Open systems (OSI,TCP/IP) provide the set of common standards that vendors require to implement products that can be linked. Interoperability addresses how applications interact across the network. Examples are databases and E-Mail gateways. Clients will want an amalgam of well-accepted PC LAN-based components, such as Windows, Windows applications, a solid but simple E-Mail with good directory services and X.400 gateways.

•	Identify the business motivation
	how to improve operating efficiency and costs;
	how to provide a competitive advantage and accelerate the
	business cycle.
•	Analyze the flow of information
	logical work flow within the organization;
	design networks, processing power, and data distribution.
•	Establish the system architecture
	networks - LAN;
	databases - multi-user, data integrity, compatibility of access methods;
	development tools - SQL-based; user interface builders; and
	integrated development tools.
•	Establish the application architecture
	after Freita

r

7

1

(

(

с с

r

1

5

<u>(</u>

7

•

~

5

s

The market for reduced instruction set computing (RISC) based systems will grow at a compounded annual rate of 28% from 1991 to 1995 while unit revenues will grow at a 45% rate, according to a report by Electronic Trend Publications. Reasons for this are RISC is linked with UNIX, the price of a RISC system will continue to drop sharply, resulting in RISC desk-top systems, which will replace mainframes.

	CLIENT/SERVER IMPLEMENTATION: CLIENT/SERVER BUDGET:
•	Hardware and operating system (\$35 000) 486 PC, 16M RAM, 600M hard drive, UNIX, ethernet, 386
	servers
•	Application software (\$4000)
	relational database, SQL
•	Training and support (\$40 000)

Sales of mainframes declined 4.7% in 1991, while overall computer hardware sales grew 3.1%. Sales were slowed by lack of upgrade capability in mainframes and economic and technological uncertainty. Currently, 200 Canadian companies, including major utility companies, travel agents, insurance companies and banks, operate roughly 400 mainframes. Existing mainframes may be replaced, but their total number will not likely increase substantially. Data processing and manipulations will take place at lower-level computers and the mainframes will become data depositories and file servers. Major companies will still require the mainframe to handle huge amounts of data and the multitude on existing users. Mainframes are also easier to manage and back up.

Downsizing

Downsizing refers to moving applications off a mainframe and onto smaller machines, usually networked microcomputers or personal computers (PCs). While mainframes will still have a role in the handling of strategic corporate data, PC's are considered the engines for the end users due to the power, ease of use, industry support and low cost. PCs are typically one-third to one-half the cost of mainframes when software and network costs are included. As well, mainframe software and thinking are being ported onto PC networks. With this shift, applications such as E-Mail are being moved. The AS/400, as a minicomputer platform for vertical, business-oriented solutions, is becoming a popular choice as an alternative to MVS type of environments. The technology and software tools to support downsizing are still "immature". Concerns for businesses involved in downsizing include costs of converting the software or getting the old system running on the new hardware as networks are not as simple as the central processors of the mainframes.

Networking

All currently noncommunicating PCs are potential candidates for interconnection. Large corporations are increasingly developing a company-wide strategy of including both mainframes and PCs within their overall computing capability. User are accustomed to the friendliness of microcomputers and demand that packages be equally easy to install, access and use. They want transparent access to the host so that they can work on host-applications using the capabilities of the PC. Desired features may include context-sensitive help, on-line tutorials, menu-driven installation and configuration, and common user-interfaces. The PC-to-host market is becoming saturated and, with the move to corporate LANs, gateway-products to gain access to mainframes appear to be gaining popularity.

In a recent survey of PC-LAN users, the most important purchasing criteria are compatibility with existing LANs (31%), vendor reliability (20%), quality (12%), commitment to open systems standards (11%), lowest price (9%), post-sale support (8%), highest performance (5%), technical innovation (2%). LAN design, installation and management is a highly specialized discipline requiring experts who understand the complex interdependencies between hardware and software and networks.

3

4

Standards and Open Systems

The International Standards Organization (ISO) develop or adopt standards for computer languages, architecture and systems, in order to overcome the problems of incompatibility between computer platforms. National standards organization, such as those in the U.S.A., are very influential in setting computing standards due to their large high tech industry. New standards often influence the computing market for products and jobs. For example, new directions in computing standards are being set by Open Systems Interconnect (OSI), which sets standards for the movement of data within systems and Open Systems Architecture (OSA), which attempts to eliminate problems of computer incompatibility and vendor dependence.

Solutions for open systems networking will force organizations to either implement a coexistence strategy or a transition strategy. A transition will occur when a organization runs one protocol, but wishes to run only another protocol. A harder alternative is the coexistence of two different protocols in an organization.

The telecommunications industry, has experience rapid growth and communications protocols for the business world tend to be those developed by vendors such as IBM and DEC. In general, a communication protocol is a set of rules for formatting the transmission of data, consisting of a destination header, the message and a error-checking trailer. Industry has been slow to adopt a single international standard for data communications. However, there is a gradual move towards using the OSI standard. This standard is a seven-layer hierarchy, defining the electrical characteristics, communications standards, and software applications for computer systems. The first four layers define the transfer of data and the top three layers, called the user layers, deal with computer sessions and data processing. See OSI reference model.

		OSI REFERENCE MODEL
7	Application	- Application/Information content displayed in layer 6.
6	Presentation	 Code conversion and data formatting; terminal standards, display rules.
5	Session	 Coordination of interaction between end-application processes; English language translated into network technology.
4	Transport	 End-to-end data integrity and quality of service; assembles and disassembles data packets for layer 3.
3	Network	 Switching and routing of information.
2	Data Link	 Transfer of units of information to the other end of a physical link, responsible for data integrity between nodes.
1	Physical	 Transmission of the bit stream to the transmission medium.

OPEN SYSTEMS

·	Hardware	 from CISC (complex) to RISC (reduced instruction set)
:	Software Applications	 from Proprietary to Open Systems from Timesharing to Client/Server

WHY - OPEN SYSTEMS:

- Standards
- User-driven vs vendor-driven
- Investment protection
- Adaptable to change
- Do more with less

٢

	WHAT - OPEN SYSTEMS		
	A vendor-neutral applications environment compliant with international standards.		
	HOW - OPEN SYSTEMS		
•	Connectivity		
	the ability to move any piece of information within the network,		
	regardless of the media transmission technologies.		
•	Interoperability		
	enables all system elements to exchange information between network devices, regardless of the vendor.		
•	Portability for the user and application		
	Leverage strengths of all environments		
	Distribute portions of applications across a network		
•	Share processing power and data management		
•	Specialty services available to all		
•	Any system can be a client or server		

Electronic mail

Electronic mail (E-Mail) includes fax, electronic data interchange (EDI), Telex, voice mail and other products. E-Mail is increasingly seen as a tool for enhancing productivity and as a platform for further application development. Standard message exchange protocols and user directories, developed under the OSI model, further stimulate new products that will serve to build a global E-Mail network that rivals telephone networks.

E-Mail is one of the key applications developing in the LAN environment, as it opens the door to enhancing productivity through improved communications. Rudimentary messaging capabilities are included with most LAN operating system software; however, products with more enhanced features are being sought after by many users. LAN vendors will likely add more attractive features to their mail component. The key competitive factor in this market is protocol observance or connection to outside services.

E-Mail growth has been spurred by the growth of PCs, data communications, and application software standardization. The growth of standard interchange methods, such as the X.400 standard, hopes to create a uniformity in communications protocols and to eliminate the barriers imposed by proprietary systems. This provides groups with the global compatibility and functionality to construct private, multi-vendor networks for electronic mail exchange. See figure 1 on E-Mail Connectivity Schematic.

Full-featured E-Mail systems include mailboxes, editors, store and forward, directories, distribution lists, bulletin boards, message headers and storage, security and access to outside systems. In addition to these basic technologies, opportunities exist for the development of advanced features and applications, to further organize and manage office communications. These extended features include application programming interfaces (APIs), attachments, EDI, facsimile, forms, graphical user interfaces (GUIs) and gateways.

E-Mail has measurable advantages over alternative forms of communication, such as telephones, postal and courier services, and intracompany mail. Restrictions however, include the scope of service, ease of use, cost and security. Efficiency benefits, such as speed of delivery and message turnaround, must be weighed against large start-up costs. Traditional cost justification methods, such as costs on a per-user basis and message volume, are difficult to measure. Justifications may become strategic payoffs such as time savings, multitasking, and the acceleration of shared ideas and their documentation in a workgroup. Thus messaging becomes an extension of the thinking process as opposed to the automation of some process otherwise handled in some other medium. E-Mail, if carefully planned and considered an investment and an asset, will likely benefit an organization in positive, unforeseen ways.

Organizations are moving from private (in-house) and public E-Mail systems, to local area network (LAN)-based E-Mail systems, which are growing at a rate of 150% per year. E-Mail is playing a more significant role in business applications. Commercial electronic mail systems appears to be emerging at the leading edge of a trend towards inter-corporate electronic mail and will form a key part of the electronic data exchange. Five to 8% of E-Mail is sent externally to other companies and this is predicted to increase substantially as more companies wish to establish direct links with their business partners, suppliers and customer. Larger companies are increasingly looking to X.400-based systems, which address tying electronic data interchange into internal mail systems. Domain networks like the Internet and UUCP are growing and may emerge as national and international E-Mail backbones.

CONCLUSION

Although not as active as it once was, the PC-to-mainframe communications market is still important to the growing number of companies that want access to information and applications residing on mainframes or minicomputers. Many computer companies however, unable to compete with the extensive product lines of major vendors, have found a niche market in micro-to-minicomputer links or Macintosh-to-host connectivity products. Although product-purpose is identical, the market strategy differs, such as modular versus complete solutions, each having its advantages, depending on the knowledge of the user. Businesses will focus on technological applications for two levels: the large computers to handle the increased volume of data and decentralized processing units in order to permit the shifting of the business closer to the points of service. Clients will want an amalgam of well-accepted PC LAN-based components, such as Windows, Windows applications, a solid but simple E-Mail with good directory services and X.400 gateways. The challenge is to keep informed on where the technology is going in five to 10 years down the road. Technology is important. But how to implement it is the key to success in networking.

REFERENCES

Carroll, J. (1992): Are commercial e-mail systems dead?, Computing Canada, March 2, 1992, p. 46.

Carroll, J. (1991): E-mail moving from margins to mainstream, Computing Canada, November 21, 1991, p. 57.

Data Communications: Basic Concepts, Datapro Reports on PC Communications, May 1990

Desormeaux, Ronald (1991): An IS mandate, Computing Canada, December 5, 1991, p. 13.

Electronic Mail for Microcomputers: Market Overview, Datapro Reports on PC Communications, January 1990

Electronic Mail for Microcomputers: Technology Overview, Datapro Reports on PC Communications, Jan. 1990

Fisher, Sharon (1991): TCP/IP, Computerworld, October 7, 1991, pp.97-99.

Freitag, William and Buhrle, Robert (1992): 4 Steps to Client/Server Success, Data Based Advisor, June 1992.

Rose, Marshall (1991): Making the transition from TCP/IP to OSI, Computerworld, October 7, 1991, p. 99.

Software Human Resources Steering Committee (1991): Software and National Competitiveness, Human Resource Issues and Opportunities, Executive Report, Employment and Immigration Canada, LM-180/2/92

A Computer Program which Uses an Expert Systems Approach to Identifying Minerals

Allan Bruce Hart Kenneth George McQueen

School of Applied Sciences Canberra College of Advanced Education Belconnen, A.C.T., 2616 Australia

ABSTRACT

٢

C

٢

This paper describes a mineral identification program which utilises a shell system for creating expert systems of a classification nature. It has been specifically tailored to three subdomains, these being identification of minerals in: hand specimens, thin sections of rocks, and polished sections of rocks. The program has facilities for building new expert systems and amending existing expert systems. The expert systems created use inexact reasoning, and thus can handle both missing and inaccurate data. Explanation and help facilities are also available.

Key words: Computer assisted instruction; geology teaching; mineralogy and crystallography.

Introduction

We have developed an "expert system" designed to act as an advisor for the identification of minerals. The system is called *MICA* (Mineral Identification by Computer Assistance) (see Hart, 1986a) and can be used as an aid by students and teachers for mineral identification in hand specimen or when using a petrographic microscope.

The system has the following features:

- (a) a limited subject domain (identifying minerals);
- (b) the ability to handle both erroneous and missing data;
- (c) help and explanation facilities;
- (d) a facility for checking the appropriateness of entered values:
- (e) a facility to allow a system manager to expand the data base by adding further properties and minerals;
- (f) a facility for asking which tests should be applied next to help in the identification.

These features allow the system to be classified as an expert system (Anonymous, 1985).

Other geologically based expert systems include the *Dipmeter Advisor System* (Smith and Baker, 1983), *Prospector* (Duda and others, 1979; Duda and Gaschnig, 1981; Gaschnig, 1982; Campbell and others, 1981), and *LITHO* (Bonnet and Dahan, 1983). All of these systems are related to prospecting.

Smith and Leibovitz (1986) have published details on a mineral data base and computer program for mineral identification called *MINIDENT*. Their system utilizes a large number of mineral properties including composition, optical properties, symmetry, cell dimensions, density, hardness and x-ray diffraction data, and is designed more for high level use by professional mineralogists. The system described here differs from *MINIDENT* in that it utilises properties readily observed in hand specimen or under the petrographic microscope, and is designed more as a teaching aid for student use.

Defining the Problem

The main aim of the system is to provide a short list of minerals which fit a description or list of properties for an

Jan Dennis Newmarch

School of Information Sciences Canberra College of Advanced Education Belconnen, A.C.T., 2616 Australia

unknown mineral. A further aim is to advise the user which tests to carry out to shorten the list.

The problem of identifying minerals is basically one of classification. Minerals have a finite number of characteristics which can be used in their identification, and the problem is theoretically simple. It is made more complex when the data entered are either incomplete or inaccurate. Some properties may also be very similar, and the system must be able to cope with users who cannot distinguish subtle differences in values, or who are not aware of terms that more accurately describe particular qualitative properties.

For the operation of the system, mineral properties can be divided into two groups: (1) properties which consist of discrete values and which are normally described by a single word or a phrase (for example, in hand specimen: lustre, colour, streak, form, crystal system, whether the mineral is magnetic, and so forth); and (2) properties which can be expressed with numeric values (for example, hardness and specific gravity).

How the System Identifies Minerals

Kerr (1959) claims that much wasted time and effort in identifying minerals can be avoided if a systematic approach is adopted. The *MICA* system has been designed to follow a systematic logic routine (Figure 1). Properties will always be tested in the same order. In general this will be the order in which they were entered onto the data base, but this can be changed if desirable.

In practice the system:

- (a) asks the user to list all observable properties (in a sequence commonly used in mineral identification);
- (b) creates a list of all minerals it knows about;
- (c) assigns each mineral an initial score of 20;
- (d) asks the user to enter values for each property;
- (e) checks the value entered against all values on the data base for each mineral;
- (f) if a mismatch occurs, deducts the value associated with a property from the score for that mineral;
- (g) deletes minerals with a score of zero or less;
- presents a list of most probable minerals (from most likely to least likely) with their remaining score as a value out of 20.

Once the system has given its answers, the user can ask it how it arrived at its score for a particular mineral. The user can also ask which tests should be performed next (in practice these will be the tests which enable the top three minerals to be distinguished from each other).

Special Cases -- Partial Mismatches

For mismatches of quantitative measurements, a sliding scale, similar to that used in fuzzy logic (Zadeh, 1965; Gains, 1976; Negoita, 1985), is used. For example, if a user estimated the specific gravity of galena to be 8.0 (whereas, galena's actual specific gravity ranges from 7.4 to 7.6 (Dana, 1932)), this would be an excusable mistake and consequently would be

Journal of Geological Education, 1988, v. 36, p. 30

Expert Systems Approach to Identifying Minerals

Figure 1. Basic sequence of steps used by MICA to identify minerals.

given a higher weight (a lower score subtracted) than a less excusable estimate such as estimating galena's specific gravity to be 10.5. Score adjustment is made using a linear function. The program *PROSPECTOR* (Duda and Gaschnig, 1981) employs a similar principle but uses a non-linear function.

For qualitative properties, values are divided into sets of subgroups of similar values, and each subgroup is given a score. The system locates the lowest scored subgroup containing both the entered property value and the data base value, and subtracts this score from the total mineral score. For example, many observers may not be able to distinguish between a vitreous and adamantine lustre, so these values are included in a low-score subgroup. Consider quartz, which has a vitreous lustre. If the lustre is given as adamantine then it is a more excusable mistake than a lustre of metallic, and a lower score would be subtracted for adamantine than for metallic. (Metallic only occurs with vitreous in a high-score subgroup, as these values are unlikely to be confused.)

Knowledge Base

The knowledge base, like that of many other expert systems (for example GEM (Davis and Nanninga, 1985)), has two parts: factual data and knowledge about this data.

Traditional expert systems have presented knowledge about data as production rules (Quinlan, 1980; Waterman, 1979). However, more recently other methods such as frames (Aikins, 1983; Mylopoulos, 1981; Fikes, 1981), table-driven rules (Pasik and Schor, 1984), and knowledge areas (Geogeff and Bonollo, 1983) (containing procedural information), have been used. The approach taken here is to have a series of attributes (mineral properties), each of which is defined by a set of higher-level attributes (attributes of these properties), descriptions, and "legal values." The higher-level attributes consist of both "housekeeping" functions (such as property name, name of file where data are stored, number of decimal places stored on the data base, question to ask the user when obtaining a value for this property), and knowledge used in determining the correct mineral (for example, processing algorithm, dependency, and score associated with the property). The descriptions and "legal values" are kept in a dictionary which is separate from the storage of other attributes. The dictionary serves two purposes: first, to validate data entered by the user, and second, to provide descriptions for the help facility.

Knowledge Acquisition

The shell editor allows the system manager to create a new knowledge base for a different domain. In this case the editor takes the system manager through a step-by-step process ensuring that all the information that the system needs (including descriptions) is entered. This information includes all properties and all minerals to be used in the new domain.

Once a new data base has been created, any part of it can be amended. Amending descriptions, scores, or adding new legal values for a property, adding aliases for a value, or adding groupings of values only affects the dictionary entries. If a new property is added, then the system manager must enter the following:

- (1) a description of the property;
- (2) each legal value for that property and its description
- (or its minimum and maximum values);
- a score for that property;
- (4) the value of that property for each mineral on the data base.

If a new mineral is added, then the system manager is prompted to enter in its formula as well as the value for every property appropriate to that mineral.

Implementation

The current version of *MICA* (Version 2) was developed in *UNSW Prolog* on a SUN workstation, under the UNIX operating system, and using one megabyte of memory. Currently under version 2, two demonstration data bases have been set up. The first has 92 minerals and 12 properties for identification of minerals in hand specimen. The second uses 38 minerals and 9 properties for microscopic analysis of minerals in thin section. Both data bases can be expanded to approximately 200 minerals and the program is designed to incorporate a data base for the identification of minerals in polished section using reflected-light microscopy.

The system uses a minimum of 254k bytes of memory. The amount of memory used during a terminal session is dependent on how much processing is done, but an average session is likely to use a total of 500k bytes of memory. (Supplying data for all 12 hand specimen properties in the data base used 428k bytes of memory and took four minutes to arrive at the answers.) The slowness is partly due to the fact that the system uses an interpretive version of Prolog. Memory requirements are affected to some extent by the inefficiency of the system's garbage collector.

Results

In addition to extensive checking by the authors, the system was tested for both hand-specimen and thin-section identification of unknown minerals using three groups of students from different levels of the undergraduate-degree-level geology course at the Canberra College of Advanced Education. The success of the system during testing depended on the ability

Journal of Geological Education, 1988, v. 36, p. 31

MINERAL	MICA SCORE* (POSN)#	MINERAL WITH TOP SCORE		
Group 1: F	irst year (hand s	(11)		
Hornblende		(=2)Andalusite (16)		
Orthoclase	5	(14)Calcite (13)		
Hematite	2	(2)Uraninite (6)		
Hornblende	_	(=4)Turquoise (19)		
Chlorite	20	(1)Chlorite (20)		
Garnet	11	(10)Opal (18)		
Hornblende		(3)Actinolite		
Orthoclase	20	(1)Feldspar (20)		
Fluorite	13	(=1)Calcite, Fluorite (13)		
Orthoclase	14	(2)Andalusite (15)		
Fluorite	13	(1)Fluorite (13)		
Group 2: Se	econd year (thin	section) (7)		
Augite	3	(12)Staurolite (15)		
Olivine	18	(2)Pigeonite (20)		
Kyanite	17	(1)Kyanite (17)		
Hornblende	11	(1)Hornblende (11)		
Tremolite	11	(1)Actinolite**		
Garnet	17	(=1)Sphalerite, garnet		
Andalusite	11	(=3)Hornblende (14)		
Group 3: Third year (thin section) (6)				
Serpentine	9 `	(3)Muscovite (14)		
Plagioclase	7	(=1)Andalusite, feldspar		
Preĥnite	9	(1)Prehnite (9)		
Biotite	17	(1)Biotite (17)		
Plagioclase	18	(1)Feldspar (18)		
Augite	20	(1)Augite (20)		

Expert Systems Approach to Identifying Minerals

data base are found and corrected. During this settling-down period scores will also need to be adjusted so as to give optimal results. Fine tuning and adjustments to the grouping of easily confused values would also greatly improve the reliability of the results.

The system has considerable merit as a teaching aid in that it can reduce the time spent checking through reference lists of mineral properties. This is often a frustrating exercise for students, particularly at the initial learning stage. The facility for interrogation of the system also allows the user to check which observed properties have affected a particular result and helps familiarise the user with diagnostic mineral properties.

The system is currently being incorporated into the secondand third-year geology programs at the Canberra College of Advanced Education.

Acknowledgements

We thank those students who so willingly co-operated in the testing of the system.

Availability of the MICA System

Copies of the MICA system, together with a user's manual (Hart, 1986b) and a system manager's manual (Hart, 1986c), are available from the Canberra College of Advanced Education at nominal cost determined by the C.C.A.E. These are available on half-inch 1600 bpi tape, using the "tar" and "cpio" formats of Unix. Requests should be directed to Dr. Jan Newmarch at the College address.

Before this system can be used, UNSW PROLOG must be purchased from Dr. C. Sammut, Department of Computer Science, University of New South Wales, Kensington, N.S.W., Australia (approximate cost A\$150).

References Cited

Anonymous, 1985, What's happening with expert systems?: EDP Analyzer, v. 23, no. 12, p. 1-16.

- Aikins, J.S., 1983, Prototypical knowledge for expert systems: Artificial Intelligence, v. 20, p. 163-210.
- Bonnet, A., and Dahan, C., 1983, Oil-well data interpretation using expert system and pattern recognition technique: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, p. 185-189.
- Campbell, A.N., Hollister, V.F., Duda, R.O., Hart, P.E., 1982, Recognition of a hidden mineral deposit by an artificial intelligence program: Science, v. 217, p. 927-929.
- Dana, E.S., 1932, A textbook of mineralogy: New York, John Wiley & Sons Inc., (fourth edition), revised and enlarged by William E. Ford, 851 p.
- Davis, J.R., and Nanninga, P.M., 1985, GEOMYCIN: Towards a geographic expert system for resource management: Journal of Environmental Management, v. 20, p. 377-390.
- Duda, R.O., Gaschnig, J.G., 1981, Knowledge-based expert systems come of age: Byte, v. 6, no. 9, p. 238-281.
- Duda, R., Gaschnig, J., and Hart, P., 1979, Model design in the prospector consultant system for mineral exploration, in Donald Michie, editor, Expert systems in the microelectronic age: Edinburgh University Press, p. 153-167.
- Fikes, R.E., 1981, ODESSEY: A knowledge based assistant: Artificial Intelligence, v. 16, p. 331-361.
- Gains, B.R., 1976, Foundations of fuzzy reasoning: International Journal of Man-machine Studies, v. 8, p. 623-668.
- Gaschnig, J., 1982, Prospector: An expert system for mineral exploration, in Donald Michie, editor, Introductory readings in expert systems: Gordan and Breach Science Publishers, p. 47-64.
- Georgeff, M., and Bonollo, U., 1983, Procedural expert systems: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, p. 151-157.

Journal of Geological Education, 1988, v. 36, p. 32

Table 1. Results of student trials of MICA. Note: *top score is 20 (high score accurately described, low score inaccurately described); #if several minerals have the same score = placed in front of position: **actinolite and tremolite are identical in thin section.

of the observers to enter reasonably accurate data, but even so, it was able to cope with significant errors in a number of the total properties. Results of these tests are summarized in Table 1 and indicate that in most cases MICA is able to place the correct mineral amongst its top six suggested answers, even given inexperienced observers. In each test the student was also asked to identify the mineral after describing its properties. Overall, MICA performed better than the students, particularly at the first- and second-year level, commonly giving a correct result for the same properties, for which a student misidentified the mineral. This probably reflects the weaker knowledge base of the inexperienced observer.

Conclusion

The demonstration data bases have shown that the MICA system can be a useful aid for identifying minerals. The shell aspects of the system enable it to be used for several different subdomains (for example, hand specimen, thin section, and polished section) within the overall domain of mineral identification. It could also be extended to include a data base of chemical analyses for rapid mineral determination from electron microprobe data. The ability to add or delete properties enables an individual laboratory to tailor the system to its own requirements. As minerals are easily added or deleted, the data base can be gradually built up over a period of time. The demonstration data bases have also illustrated that it is easy to correct mistakes on the data base once they are discovered.

It is expected that in full scale operation there will be a

settling-down period of about six months while errors in the

Expert Systems Approach to Identifying Minerals

- Hart, A.B., 1986a, MICA: An expert system for identifying minerals: Masters Thesis Canberra College of Advanced Education (unpublished), 64 p.
- Hart, A.B., 1986b, Systems managers manual for mineral identification by computer assistance: (unpublished), Canberra College of Advanced Education, 32 p.
- Hart, A.B., 1986c, Users manual for mineral identification by computer assistance: (unpublished), Canberra College of Advanced Education, 34 p.
- Kerr, P.F., 1959, Optical Mineralogy (third edition): New York, McGraw Hill, 442 p.
- Mylopoulos, J., 1981, An overview of knowledge representation: Sigart Newsletter No. 74, p. 5-12. (Special issue titled "Proceedings of the workshop on data abstraction, databases and conceptual modelling.")
- Negoita, C.V., 1985, Expert systems and fuzzy systems: California, The Benjamin/Cummings Publishing Company Inc., 190 p.
- Pasik, A., and Schor, M., 1984, Table-driven rules in expert systems: Sigart Newsletter No. 87, p. 31-33.
- Quinlan, J.R., 1980, An introduction to knowledge-based expert systems: Australian Computer Journal, v. 12, no. 2, p. 56-62.
- Smith, D.G.W., and Leibovit, D.P., 1986, *MINIDENT*: A data base for minerals and a computer program for their identification: Canadian Mineralogist, v. 24, no. 4, p. 695-708.

- Smith, R.G., and Baker, J.D., 1983, The dipmeter advisor system: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, p. 122-129.
- Waterman, D.A., 1979, User-oriented systems for capturing expertise: a rule based approach, in Donald Michie, editor, Expert systems in the microelectronic age: Edinburgh University Press, p. 26-34.
- Zadah, I.A., June 1965, Fuzzy sets: Information and Control, v. 8, p. 338-353.

About the Authors

Allan Hart at the time of writing this paper was a Masters student in computing at Canberra College of Advanced Education. He is interested in geological applications of computerized expert systems.

Dr. Ken McQueen is a lecturer in geology at the Canberra College of Advanced Education. His interests are in the fields of economic geology, ore mineralogy and metamorphic petrology. His teaching responsibilities include first-year geology and second-year mineralogy and petrology courses.

Dr. Jan Newmarch is a lecturer in artificial intelligence and expert systems at the Canberra College of Advanced Education. His interests are in the fields of logic programming and expert systems. r r

r r r

(

1

DATA MODELLING CONCEPTS

OUTLINE:

Introduction

Philosophy of Data Modelling

Why Data Model?

Levels of Models and Terminology

Modelling Data Entities and Relationships

Keys

Data Dictionary

Referential Integrity

Normalization

Physical Modelling/ Denormalization

Practical Application

Lecture by:	L. de Groot, L. Jones
-	18 November 1993

Reference: Technology, Engineering & Computing (TEC) University of Victoria

INTRODUCTION

The objective of this lecture is to develop an appreciation of what is involved in preparing data models. This will help you to prepare initial data models for your own area of the enterprise and to participate effectively in later reviews of the overall data model. While the task of preparing the actual data model for the enterprise is left to the expert, the assistance of knowledgeable users is essential.

PHILOSOPHY OF DATA MODELLING

Data modelling is an art, not a science. While there are rules which need to be followed, most complex models have more than one correct representation.

- a) Data tends to remain stable over time. Processes (applications) tend to change over time.
- b) Application development should therefore be data driven.
- c) All users with a stake in the data MUST be actively involved in the modelling process.
 - Need to know ALL data requirements.
 - Need to buy into the model must understand it use of appropriate jargon makes it meaningful.
- d) Data is and should be treated as an enterprise resource.
- e) Data should be modelled independent of the applications which use it.

- f) Proper data management requires planning and design.
- g) Data should be managed by a unit with responsibility and authority.
- h) Proper data management requires senior management commitment.
- i) Database technology is used for controlled sharing of data.

r r

5

(

(

WHY DATA MODEL?

a) Communication Vehicle

- A data model is used to communicate an understanding of the meaning of the business data and the business terms.
- Make sure you TALK and LISTEN to people. You are attempting to model the business not your interpretation of it or of what you think it should be.
- Use the business jargon and acronyms where appropriate.
- Ensure the users understand and approve of the data model (best way is to use their terminology wherever you can).

b) Data Quality

- Data quality is a serious issue in many organizations. The definition of data is not consistent across business areas; different areas may have different coding for the same item OR they may use the same name for something which they believe is the same, but will have slightly different definitions of the data.
- For example: Date Received in the department? in the mail room?, etc.
- One of the advantages of a data model is that is should provide consistent definitions of the data used throughout the organization.

c) Data Integrity

- Means that all statements of fact must be consistent. If there are redundant definitions, then they must be consistent.
- Redundancy occurs when the same data is stored in multiple locations. The ability to keep all copies current and synchronized becomes more difficult as the number of copies increase.
- One of the major advantages of a normalized data model is increased data integrity due to reduced redundancies, and, therefore, simpler updating.

d) Data Independence

- A data model is used to separate how the data is accessed from how it is physically stored. This allows greater flexibility in handling database growth, changes to the physical storage of the data, new applications, and isolates changes to the business functions.
- We want to avoid creating fragmented systems, each with their own set of data, and each unable to communicate with the others.

e) Data Flexibility

- Data should be defined once and once properly. If the data model is defined to support a particular application, then other applications may not be able to easily use the data and may have to go through complex conversions.
- By modelling the data independently of any application, the subsequent use of the data tends to be more flexible since it is modelled in a more generic way, rather than being tied to the way a specific application views the data. Eg. fancy query tools.

LEVELS OF MODELS

There are three levels of models - conceptual, logical and physical.

a) Conceptual Model -

- It is a *high-level model* showing the major *business entities and their relationships*.
- Meant to show non-technical staff an overview of the data.
- This model contains the business entities and their interrelationships.

b) Logical Model

• The logical model shows the entities at a lower, more *detailed level*. It contains the *business data entities and their inter-relationships*. This model is independent of the physical implementation.

c) Physical Model

• The physical model contains the *database design*; as such it is *dependent on the actual database management* (or file system) that will be used. It contains changes made to the logical model for *performance* or other technical issues. It is the model which will be implemented.

TERMINOLOGY

a) Entity

с С

5

-

(

(

1

r

- An entity is something of interest to the enterprise.
- In database modelling, the term entity is used for those items about which we collect and store data. It can be a person, place, thing, event or concept. It can be a real physical item such as a machine or an actual person, or it can be an abstract concept such as a job title or a customer account.
- Entity names are nouns, are always in the singular form (Eg. OCCURRENCE NOT OCCURRENCES), and may be composed of multiple words. The name should convey meaning, and should use business terms wherever possible.
- Although an entity is identified by a single name it may have multiple aliases. These aliases should be documented in the Data Dictionary. It is important to identify and document aliases, otherwise you may develop a data model which contains an entity twice.

b) Entity Occurrence

• Each entity is given a unique name. Each instance of an entity is referred to as an entity occurrence.

c) Attribute

- An attribute is defined as a characteristic, property or description.
- An entity is characterized by attributes which define and describe it. For example: a mineral occurrence has a name, number, production year, etc. Each of these items is an attribute of the entity MINERAL OCCURRENCE.
- Other terms often used in place of attribute are data element, data field, field and data item.
- An attribute is identified by a single name, but it may have multiple aliases. Again, these aliases should be documented in the Data Dictionary.

d) Attribute Value

- An actual item of data represented by an attribute is referred to as an attribute value.
- MINERAL OCCURRENCE NAME could have values of Skookum, Hollyrood, Winfield, etc. Each instance of a data value is referred to as a data occurrence. For example: if the mineral occurrence names given above form a list, then the second data occurrence of the attribute MINERAL OCCURRENCE NAME has a data value of Hollyrood.
- Frequently, an entity has a number of attributes to describe it. When an attribute uniquely defines one occurrence of an entity, the attribute is called a primary attribute, or simply, key.
- All attributes that are not primary attributes are referred to as secondary attributes. In a data base, every entity must have a primary attribute. It may have zero, one, or many secondary attributes.

An entity called MINERAL OCCURRENCE is shown in the following figure as a table to illustrate the terms described in this section. This figure is often referred to as a Data Table. Such tables form the basis of the data model for a relational DBMS.

Terminology

A table to represent the attributes and values of the entity MINERAL OCCURRENCE.

312

٠

1

-

р. 1

MODELLING DATA ENTITIES

PRODUCTION YEAR

COMMODITY

QUANTITY

MODELLING DATA ENTITIES

In modelling data, we simply draw a box to represent each different entity and then write the name of the entity into the box. This is referred to as an entity chart. Each box on this diagram has a primary key and may have a number of secondary attributes. These are not shown on an entity chart.

MODELLING ENTITY RELATIONSHIPS

To become a useful model, the diagram must show the relationships that exist among the data entities. Relationships represent the business rules and policies of the organization.

Relationship names are verbs, and may be composed of multiple words. The name should convey meaning, and should use business terms wherever possible.

This section defines the types of relationships that can occur and shows how they can be represented on a diagram.

To indicate that a relationship exists between two data entities, a line is drawn to connect them and the name (description) of the relationship is placed over the line. For example:

Entities and relationships are identified by phrases like:

NOUN VERB NOUN or ENTITY RELATIONSHIP ENTITY

Some examples of these are:

- an AIRPLANE has ENGINES
- a MINERAL OCCURRENCE may have many COMMODITIES
- an EMPLOYEE may be a GEOLOGIST
- a CLERK takes RESERVATIONS on ROOMS for GUESTS

TYPES OF ENTITY RELATIONSHIPS - ONE WAY

One-and only-one:

• a RESERVATION reserves (exactly) one ROOM

Zero-or-one:

• a MINERAL OCCURRENCE may fall within TERRANES

One-or-many:

• a MINERAL OCCURRENCE may span several MAPSHEETS

Zero-or-many:

• a GEOLOGIST may be assigned to multiple PROJECTS

.

TYPES OF ENTITY RELATIONSHIPS - TWO WAY

One-to-one:

- a GEOLOGIST is assigned to one MAP AREA
- a MAP AREA has only one GEOLOGIST

One-to-many:

- a RESERVATION is for exactly one ROOM
- a ROOM may have many RESERVATION

- a MINERAL OCCURRENCE may fall within TERRANE
- a TERRANE may have several MINERAL OCCURRENCES

KEYS

Primary Key

- One or more attributes that uniquely identify an entity occurrence.
- Every entity must have a primary key.
- Any attributes, or combination of attributes, which can be used to uniquely identify an entity occurrence are called **Candidate Keys**. Any of these could be used as the Primary Key for the entity. One of these is chosen as the Primary Key. The selection of the Primary Key should take into account the stability of the key, that is you want a Primary Key whose value is not likely to change once the entity occurrence has been created.

Composite Key

- In those cases, where no single attribute meets the needs of a primary key, two or more attributes are combined together to form the necessary primary key. Such combined keys are called composite keys, or compound keys.
- For example: MINFILE NO. 092HNE004

Surrogate Key

- A surrogate key is an artificial attribute created to ensure a unique primary key. Sometimes composite keys can be awkward to use, and expensive to use for foreign keys; other times the primary key may be subject to change. In these cases surrogate keys, commonly called Skeys, can be introduced. For example: an employee number is really a surrogate key introduced by the business itself to create uniqueness.
- Surrogate keys have a place, but they should be used with caution. They do complicate the data model and can make data access more difficult. This is especially true for end users who are using ad hoc query tools.

Intelligent Key/Business Key

• An intelligent key is one which has meaning to the user. It may have meaning in the key value itself (Eg. a client's name) or it may have embedded meaning (Eg. client numbers which start with the digit 1 are large preferred customers).

Blind Key

• A blind key is one which is never seen by the user. It is stored internally in the database, and is referenced by programs, but never by the user.

KEYS (cont.)

Foreign Key

- When the Primary Key of one entity is contained in another entity to establish a relationship between the two entities, it is called a Foreign Key.
- Foreign Keys enable the implementation of relationships in a relational data model. While they are not actually part of a logical data model, they are commonly included in the logical model for completeness.
- As an example, suppose you have two tables with the following attributes:

Employee	(Emp-ID, Emp-Name, Emp-Add, Dept-No., etc.)
Department	(Dept-No., Dept-Name, etc.)

- The Primary Key of the Employee is Emp-ID.
- The Primary Key of the Department is Dept-No.
- The attribute Dept-No in the Employee table is a Foreign Key to the Department table since it identifies the relationship between the two tables (i.e. it identifies the department an employee works in).

r r

-

C

(

5

1

C

< (

r

RESOLVING MANY-TO-MANY RELATIONSHIPS

- Many-to-many relationships are not supported by most Database Management Systems.
- While many-to-many relationships are acceptable in conceptual data models, and high level logical models, they are generally removed prior to the completion of the logical data model.
- This can be accomplished by performing the **normalization** process, which will be covered later.

DRAWING THE DATA MODEL

- There are a number of different notations which can be used to draw data models, and a number of tools and formats which can be used to document the definitions behind the diagram.
- A data model may consist of two parts:
 - 1. An entity chart that shows all the entities involved and the relationships among them.
 - 2. A set of data tables, one for each entity on the entity chart, that shows the attributes of each entity.

Data Model

In the initial data model above, there is a many-to-many relationship between STUDENT and OFFERING. This relationship is converted into an associative entity named ENROLLMENT, producing the following data model:

Data Tables

COURSE

OFFERING

	Course-No					Start-Time
į	End-Date E	nd-Tim	e Loc	ation	Inst-Id	

ENROLMENT

Student-No Course-No Year Term Grade

STUDENT

Student-No Stu-Name Stu-Address Stu-Phone

INSTRUCTOR

Inst-Id Inst-Name Inst-Addr Inst-Phone

320

(

r r

5

5

5

r r

1

٢

r

1

DATA DICTIONARY

A data dictionary stores information about the data (metadata = data about data).

A data model is composed of both the entity-relationship diagram (data model diagram), which gives a pictorial representation of the data and its relationships, and a data dictionary which describes the entities, attributes, and relationships shown in the entity-relationship diagram. A data model is not complete if it does not include the data dictionary definitions of each and every entity, attribute, and relationship.

A data dictionary can be used to answer the following types of questions:

- What is it?
- What is its identifier (primary key)?
- Where is it?
- Where does it come from?
- Who owns it? Who is responsible?
- Who has authority to access it?
- How does it relate to other data? What are the relationships?
- What are its characteristics? How do I describe it?
- What are its allowable values?
- What aliases does it have?
- Is it mandatory or optional?

There are two types of data dictionary:

- 1. An **Active dictionary** is integrated with tools. When something is changed in the dictionary, it is automatically reflected in the programs, screens, et cetera; when something is changed in a table, it is automatically reflected in the dictionary.
- 2. A **Passive dictionary** is not integrated with tools. In this case the dictionary is really a documentation tool, and all changes must be manually synchronized between the programs, tables, screens, et cetera, and the dictionary.

REFERENTIAL INTEGRITY

As an example, suppose you have two tables with the following attributes:

Employee (Emp-ID, Emp-Name, Emp-Add, Dept-No., etc.) Department (Dept-No., Dept-Name, etc.)

The Primary Key of the Employee is Emp-ID.

The Primary Key of the Department is Dept-No.

The attribute Dept-No in the Employee table is a Foreign Key to the Department table since it identifies the relationship between the two tables (i.e. it identifies the department an employee works in). ~

r r

1

r r

(

r r

(

-

r

r C

r c

REFERENTIAL INTEGRITY

Definition

Referential Integrity (R.I.) allows users to define relationships between attribute values in different entities. Simply stated, referential integrity states that a reference in one entity, to another entity, must be valid.

If an entity contains a foreign key to another entity (parent), then there must exist a row in the parent table for each occurring value of the foreign key.

Need for Nulls

Relational DBMS support the concept of a null. A null is the absence of a value. It is distinct from a blank value for a character string, or a zero value for a numeric field, or a zero length string for a variable length field.

•

Nulls are required to implement Referential Integrity.

PREPARING A DATA MODEL FOR THE LARGE ENTERPRISE

Producing the logical data model for a large enterprise is time consuming and difficult.

Historically, there were two basic approaches:

Top Down Modelling:

- start at enterprise level,
- identify major entities,
- break it down into subject areas and work on business functions,
- then model at the application level.

The major problem with top down modelling is that it takes too long. Since each level of the model is completed before attempting to add more detail, the model is not useful until it is completed. Program areas cannot wait for the corporate model to be completed, so work starts on projects without it.

Bottom Up Modelling:

- start by identifying the business transactions,
- identify attributes,
- determine entities based on user views,
- normalize and synthesize,
- build relationships,
- merge with other models.

The major problem with bottom up modelling is that it takes too long. Note that bottom up modelling starts by identifying the attributes, and then grouping the attributes into entities. This can be a slow process. Also, since you are focusing on the operational data, you often miss the real strategic business rules.

Best Approach

A better approach is to do a high level corporate model, then do business area models at the detailed level.

An initial conceptual model for the whole enterprise is created which shows only the main business entities and their relationships. Such a conceptual model can serve as a framework into which the local data models can be integrated to develop the final corporate data model.

An advantage of this approach is that the conceptual model can be presented to senior management early in the data base development process. It shows how the enterprise data can be integrated without waiting for the detailed corporate data model to be prepared. Short term results are important to maintain the required support of senior management.

A disadvantage of the initial conceptual model is that it requires an understanding of the overall operation of the enterprise. It may be difficult to find a person who understands both data administration and the entire operation of the enterprise.

Scope is critical. By ensuring that the scope of the business area models is reasonable, and always ensuring that the models are staying within their scope, the models can be delivered in a reasonable amount of time. If the data models are not completed in a reasonable amount of time then application development will not be able to wait for the completion of the model and the applications will be built without the benefits of the data model. Open File 1994-20

BASIC STEPS OF DATA MODELLING

- 1. Determine scope of model
- 2. Determine business rules
- 3. Identify entities
- 4. Identify relationships between entities
- 5. Identify attributes
- 6. Determine primary key
- 7. Determine foreign keys
- 8. Identify constraints
- 9. Validate model

Iterate steps 2 through 9 adding more level of detail

10. Review and user sign-off

Keep asking questions. Does it make sense? Don't make assumptions! Include user involvement continually!

NORMALIZATION

The success in the use of the data base depends upon how well the data model is prepared. It is not difficult to test the proposed model to see if the data required by, and generated by, the operational activities can be provided by, and accepted by, the data base. If data cannot be generated then the data model is modified until the data can be generated.

In the same manner the data model is tested to ensure it can provide the data required to provide the various management reports. If necessary, the model is changed so that it does provide the reports.

One difficulty arises in attempting to make sure that the data base can support ad hoc requests which cannot be predefined. Another difficulty is how to support a wide range of future changes which again cannot be predefined.

One way of solving these difficulties is to undertake a review of the data model to determine whether or not any secondary attribute is likely to become an entity at some time in the future. The change from a secondary attribute to an entity can cause exhaustive restructuring of the data base and extensive modifications to the programs that use the altered data item. It is best to define such secondary attributes as entities initially to avoid such problems. Sometimes, however, the cost is deemed to be too high relative to the chance that the secondary attribute will be defined as an entity.

A second means of designing the data model to better meet data model objectives is to Normalize the data. To normalize a data model is to design it so that it conforms to a set of predefined rules.

These rules were originally developed to aid in designing a data model for use with a hierarchical DBMS. Since the development of normalization, it has been recognized that the same approach can be used on any conceptual data model. That is, it can be used to design the data model for more flexibility regardless of what DBMS is used in implementing the data base. Due to the limitations of some DBMS, some of the flexibility in the normalized conceptual model may have to be sacrificed in order to implement the data base in a practical manner.

NORMALIZATION (cont.)

The steps in normalizing a data model are as follows:

- 1. Identify all the data items and the relationships among them.
- 2. Develop the entity chart and the corresponding data tables and the data dictionary definitions for each operation (these are referred to as the local data models).
- 3. Check to see that the data model will support the data requirements and modify it as necessary.
- 4. Apply the normalization rules to each of the entity tables.

The result is a set of normalized data tables which together with the entity chart make up the normalized, conceptual data model.

•

The normal form rules are summarized as follows:

- 1NF Remove repeating groups
- 2NF Remove partial-key dependencies
- 3NF Remove non-key (transitive) dependencies
- 4NF Remove multi-valued independent attributes
- 5NF Retain multi-valued dependent attributes

APPLYING THE RULES OF NORMALIZATION

The purpose of normalization is to eliminate the possibility of update anomalies. The technique of normalization is to apply a set of rules to the data model.

The normalization process consists of using a set of rules to test the data model. If the data model passes the first rule, then the data model is said to be in "first normal form" or a "first level" data model. If the data model fits the first and second rules, then the data model is said to be in "second normal form" or at the "second level". There are five rules and therefore five levels of normalization of a data model.

The usual method of expressing normalization is to say that the data table or the data model is in "second normal form", written as 2NF. Or you could be asked to "draw the data model in third normal form (3NF).

Although five levels of normalization have been defined, most data models are taken to third normal form; fourth and fifth normal form occur infrequently and are not significant to this course.

NORMALIZATION SUMMARY

Normalization can be thought of as:

One fact in one place

One phrase which is often used to describe third normal form is:

The key, the whole key, and nothing but the key

The steps to be taken in order to normalize a data table to the 3 NF are summarized in the figure below.

All conceptual files	Change all non flat data tables into flat data tables by eliminating all repeating groups.
1NF	For data tables with compound keys ensure that all secondary attributes are dependent on the whole key and not just part of it.
2NF	Change all data tables in which a secondary attribute is dependent on another secondary attribute. i.e. ensure all secondary attributes are independent of each other.
3NF	,

PHYSICAL DATA MODELLING

Denormalization

Denormalization is the process of removing levels of normalization when moving from the logical data model to the physical implementation.

This is done to improve performance in time-critical applications, or to reduce resource requirements, either disk storage, or I/O. It is occasionally done to make the physical model easier to use for programs and ad-hoc query tools.

While denormalization can have benefits, it does reduce the flexibility of the data model which was produced by normalization.

The proper method of denormalization is to:

- 1. Take the data model to 3NF
- 2. Selectively denormalize based on performance requirements
- 3. Document why

When subsequent changes are made to the data model, they should always start with the 3NF logical data model, not with the denormalized physical implementation model.

MINFILE/pc 4.0 DATABASE STRUCTURE

ENTITY FILES:

Elle	Field	Size	Alias	File	Field	Size	Alias
	Field						
E01		9	MINFILE_NUMBER LATITUDE_DEG	E18	YEAR	4	YEAR
	LAT_DEG LAT_MIN	2 2	LATITUDE_MIN	E19	COMMOD_C	2	COMMODITY_CODE
	LAT_SEC	2	LATITUDE_SEC		COMMOD_D	30	COMMODITY_DESC
	LONG_DEG	3	LONGITUDE_DEG	E20a	MINCLA_C	1	MINERALOGY_CLASS_CODE
	LONG_MIN	2	LONGITUDE_MIN		MINCLA_D	15	MINERALOGY_CLASS_DESC
	LONG_SEC	2 2	LONGITUDE_SEC UTM_ZONE	E20b	MINERL_C	4	MINERAL_CODE
	UTM_ZONE UTM_EAST	6	UTM_EASTING		MINERL_D	20	MINERAL_DESC
	UTM_NORT	7	UTM_NORTHING	E21	ALTER_C	4	ALTERATION_CODE
	ELEV	4	ELEVATION		ALTER_D	12	ALTERATION_DESC
	LOC_ACC	1	DEPOSIT_LOCATION_ACCURACY	E22	DATMET_C	2	DATING_METHOD_CODE
	DEPSIZEL	4	DEP_SIZE_L DEP_SIZE_B		DATMET_D	30	DATING_METHOD_DESC
	DEPSIZEW	4	DEP_SIZE_B	E23	STNAME_C	6	STRATIGRAPHIC_NAME_CODE
	DIP	3	DEPOSIT_DIP		STNAME_D	30	STRATIGRAPHIC_NAME_DESC
	STRIKE	3	DEPOSIT_STRIKE		STINFORM	1	STRATIGRAPHIC_NAME_INFORMAL
	PLUNGE	6	DEPOSIT_TREND_PLUNGE		STIGMETA	1	STRATIGRAPHIC_NAME_IG_META
	NATMINNO CANMINNO	18 6	NAT_MIN_INV_NO CANMINDEX_NUMBER		STGROUP	1	STRATIGRAPHIC_NAME_GROUP
	CODED	8	DATE_CODED		STFORM		STRATIGRAPHIC_NAME_FORMATION
	REVISED	8	DATE_REVISED	E24	ST_AGE_C	3	STRATIGRAPHIC_AGE_CODE
	GREVISED	4	GEOLOGIST_REVISE		ST_AGE_D	20	STRATIGRAPHIC_AGE_DESC
	FREVISED FCHECKED	1	FIELD_REVISED FIELD_CHECKED	E25	ROCK_T_C	4	ROCK_TYPE_CODE
	GNAME	4	GEOLOGIST_NAME		ROCK_T_D	30	ROCK_TYPE_DESC
	OPENPIT	1	OPEN_PIT	E26	ROCK_M_C	4	ROCK_MODIFIER_CODE
	UGROUND	1	UNDER_GROUND		ROCK_M_D	30	ROCK_MODIFIER_DESC
E02	STATUS_C	4	STATUS_TYPE_CODE	E27	OREZON_C	5	ORE_ZONE_CODE
	STATUS_D	20	STATUS_TYPE_DESC		OREZON_D	30	ORE_ZONE_DESC
	QMAPSYM	15	MAP_SYMBOL	E28	SAMPLE_C	4	SAMPLE_TYPE_CODE
	SYM_LN_TYP HATCH_PATT	2 •2	SYMBOL_LINE_TYPE HATCH_PATTERN		SAMPLE_D	30	SAMPLE_TYPE_DESC
			-	E29	RESCAT_C	2	RESERVE_CATEGORY_CODE
E03	DOMHRK_C DOMHRK_D	1 15	DOMINANT_HOST_ROCK_CODE DOMINANT_HOST_ROCK_DESC		RESCAT_D	30	RESERVE_CATEGORY_DESC
	-			E30	DEPTYP_C	5	DEPOSIT_TYPE_CODE
E04	DEPMOD_C DEPMOD_D	1 15	DEPOSIT_MODIFIER_CODE DEPOSIT_MODIFIER_DESC		DEPTYP_D	50	DEPOSIT_TYPE_DESC
	_			E31	PROJ_NO	7	PROJECT_NUMBER
E05	DEPCHR_C	2	DEPOSIT_CHARACTER_CODE		PROPERTY	30	PROPERTY_NAME
	DEPCHR_D	20	DEPOSIT_CHARACTER_DESC		PROPERTY_2	30	PROPERTY_NAME2
E06	DEPSHA_C	2	DEPOSIT_SHAPE_TYPE_CODE		OWNER OWNER_2	30 30	OWNER_NAME OWNER_NAME2
	DEPSHA_D	12	DEPOSIT_SHAPE_TYPE_DESC		OPERATOR	30	OPERATOR_NAME
E07	DEPCLA_C	- 2	DEPOSIT_CLASSIFICATION_CODE		DIST_SEQNO	3	DISTRICT_SEQUENCE_NUMBER
	DEPCLA_D		DEPOSIT_CLASSIFICATION_DESC		DIST_MAPNO	3	DISTRICT_MAP_NUMBER
E09	MINDIV_C		MINING_DIVISION_CODE		LAT_DEG LAT_MIN	2	LATITUDE_DEGREE LATITUDE_MINUTE
	MINDIV_D	15	MINING_DIVISION_DESC		LAT_SEC		LATITUDE_SECOND
E10	NTSMAP_C	7	NTS_MAPSHEET		LON_DEG	3	LONGITUDE_DEGREE
E11	BCMAP_C	7	BC_MAPSHEET		LON_MIN	2	LONGITUDE_MINUTE
E12	TECBLT_C	2	TECTONIC_BELT_CODE		LON_SEC LOC_ACC	2 1	LONGITUDE_SECOND LOCATION_ACCURACY_CODE
	TECBLT_D	18	TECTONIC_BELT_DESC		CR_DATE	8	CREATED_DATE
E13	TERRAN_C	3	TERRANE_CODE		RV_DATE	8	REVISED_DATE
	TERRAN_D	30	TERRANE_DESC		CHECKED_BY	5	CHECKED_BY
E14	PHYSIO_C	4	PHYSIOGRAPHIC_AREA_CODE	E32	NOTIC_TYP	1	NOTICE_TYPE_CODE
-17	PHYSIO_D	30	PHYSIOGRAPHIC_AREA_DESC		NOTIC_DESC	20	NOTICE_TYPE_DESC
E15	META_T_C	1	METAMORPHIC_TYPE_CODE	E33	PRJTYP_C	1	PROJECT_TYPE_CODE
- 10	META_T_D	10	METAMORPHIC_TYPE_DESC		PRJTYP_D	20	PROJECT_TYPE_DESC
E16	META_G_C	2	METAMORPHIC_GRADE_CODE		QMAPSYM SYM_LN_TYP	15	MAP_SYMBOL SYMBOL_LINE_TYPE
L 10	META_G_D	15	METAMORPHIC_GRADE_CODE METAMORPHIC_GRADE_DESC		HATCH_PATT	2 2	HATCH_PATTERN
E17	META_R_C	1	METAMORPHIC_RELATIONSHIP_CODE	E24			
617	META_R_C	20	METAMORPHIC_RELATIONSHIP_CODE METAMORPHIC_RELATIONSHIP_DESC	E34	STAGE_C STAGE_D	1 15	MDAP_STAGE_CODE MDAP_STAGE_DESC

MINFILE/pc 4.0 DATABASE STRUCTURE

RELATIONSHIP FILES:

<u>File</u>	<u>Field</u>	<u>Size</u>		<u>File</u>		<u>Size</u>	Alias
R02	MINFILNO STATUS_C	9 4	MINFILE_NUMBER STATUS_TYPE_CODE		ISOAGE MATERIAL	20 30	ISOTOPIC_AGE_HOST MATERIAL_DATED_HOST
R03	MINFILNO Domhrk_C	9 1	MINFILE_NUMBER DOMINANT_HOST_ROCK_CODE	R24	MINFILNO ST_AGE_C	9 3	MINFILE_NUMBER MINERALIZATION_AGE_CODE
R04	MINFILNO DEPMOD_C	9 1	MINFILE_NUMBER DEPOSIT_MODIFIER_CODE	R25	MINFILNO ROCK_T_C	9 4 4	MINFILE_NUMBER ROCK_TYPE_CODE
R05	MINFILNO DEPCHR_C	9 2	MINFILE_NUMBER DEPOSIT_CHARACTER_CODE		ROCK_M_C	11	ROCK_MODIFIER_CODE LITHOLOGICAL_UNIT
R06	MINFILNO DEPSHA_C	9 2	MINFILE_NUMBER DEPOSIT_SHAPE_TYPE_CODE	R26	MINFILNO OREZON_C RESCAT_C	9 5 2	MINFILE_NUMBER ORE_ZONE_CODE RESERVE_CATEGORY_CODE
R07	MINFILNO DEPCLA_C	9 2	MINFILE_NUMBER DEPOSIT_CLASSIFICATION_CODE		A_OR_B YEAR	1 4 12	A_OR_B YEAR QUANTITY
R08	MINFILNO NAME	9 30	MINFILE_NUMBER NAME	D97	QUANTITY REPORT_ON	1	REPORT_ON MINFILE_NUMBER
R09	MINFILNO MINDIV_C	9 4	MINFILE_NUMBER MINING_DIVISION_CODE	R27	MINFILNO OREZON_C A_OR_B	9 5 1	ORE_ZONE_CODE A_OR_B
R10	NTSMAP_C	7	NTS_MAPSHEET		YEAR SAMPLE_C	4	YEAR SAMPLE_TYPE_CODE
R11	MINFILNO BCMAP_C	9 7	MINFILE_NUMBER BC_MAPSHEET	R28	MINFILNO OREZON_C	9 5	MINFILE_NUMBER ORE ZONE_CODE
R12	MINFILNO TECBLT_C	9 2	MINFILE_NUMBER TECTONIC_BELT_CODE		RESCAT_C A_OR_B	2	RESERVE_CATEGORY_CODE A_OR_B
R13	MINFILNO TERRAN_C	9 3	MINFILE_NUMBER TERRANE_CODE		COMMOD_C GRADE	2 9	COMMODITY_CODE GRADE
R14	MINFILNO PHYSIO_C	9 4	MINFILE_NUMBER PHYSIOGRAPHIC_AREA_CODE	R30	MINFILNO DEPTYP_C	9 5	MINFILE_NUMBER DEPOSIT_TYPE_CODE
R15	MINFILNO META_T_C	9 1	MINFILE_NUMBER METAMORPHIC_TYPE_CODE	R31	PROJ_NO MINFILNO	7 9	PROJECT_NUMBER MINFILE_NUMBER
R16	MINFILNO META_G_C	9 2	MINFILE_NUMBER METAMORPHIC_GRADE_CODE	R32a	PROJ_NO NOW_NO NOTIC_TYP	7 9 1	PROJECT_NUMBER NOTICE_NUMBER NOTICE_TYPE_CODE
R17	MINFILNO META_R_C	9 9	MINFILE_NUMBER METAMORPHIC_RELATIONSHIP_CODE		RECVD_DATE	8	RECEIVED_DATE APPROVED_DATE
R18a	MINFILNO YEAR MINED MILLED	9 4 12 12	MINFILE_NUMBER YEAR ORE_MINED ORE_MILLED		OPERATOR MANAGER MGR_TEL WK_START WK_END	30 30 14 8 8	MANAGER
R18b	MINFILNO YEAR COMMOD_C QUANTITY	9 4 2 12	MINFILE_NUMBER YEAR COMMODITY_CODE QUANTITY		EXP_BUD PROD_BUD COMPLETED DISCUSSED	13 13 1 1	EXPLORATION_BUDGET PRODUCTION_BUDGET COMPLETED DISCUSSED
R19	MINFILNO COMMOD_C	9 2	MINFILE_NUMBER COMMODITY_CODE		MDSCREV DEP_TARGET	1 60	MDSC_REVIEW DEPOSIT_TARGET
R20	MINFILNO MINCLA_C MINERL_C	9 1 4	MINFILE_NUMBER MINERALOGY_CLASS_CODE MINERAL_CODE	R32b	PROJ_NO NOW_NO WK_TODO WK_DONE	7 9 70 70	PROJECT_NUMBER NOTICE_NUMBER WORK_TO_DO WORK_DONE
R21	MINFILNO	9 4	MINFILE_NUMBER ALTERATION_CODE	R33	PROJ_NO PRJTYP_C	7 1	PROJECT_NUMBER PROJECT_TYPE_CODE
R22	MINFILNO DATMET_C ISOAGE MATERIAL	9 2 20 30	MINFILE_NUMBER DATING_METHOD_CODE ISOTOPIC_AGE_MINERALIZATION MATERIAL_DATED_MINERALIZATION	R34	PROJ_NO NOW_NO STAGE_C	7 9 1	PROJECT_NUMBER NOTICE_NUMBER MDAP_STAGE_CODE
R23	MINFILNO ST_AGE_C	9 3	MINFILE_NUMBER STRATIGRAPHIC_AGE_CODE	R35	PROJ_NO MINDIV_C	7 4	PROJECT_NUMBER MINING_DIVISION
	STNAME_C DATMET_C	6 2	STRATIGRAPHIC_NAME_CODE DATING_METHOD_CODE	R36	PROJ_NO NTSMAP_C	7 7	PROJECT_NUMBER NTS_MAP

331

MINFILE/pc 4.0 DATABASE STRUCTURE

COMMENT FILES:

File	Field	Size	Alias	File	Field	<u>Size</u>	Alias
C01	MINFILNO	9 70	MINFILE_NUMBER IDENTIFICATION_COMMENT	C09	MINFILNO BIBLIO_T	9 70	MINFILE_NUMBER BIBLIOGRAPHY_COMMENT
C02	MINFILNO SIGMIN_T	9 70	MINFILE_NUMBER SIGNIFICANT_MINERALS_COMMENT	C10	MINFILNO YEAR	9 4	MINFILE_NUMBER YEAR
C03	MINFILNO ASSMIN_T	9 70	MINFILE_NUMBER ASSOCIATED_MINERALS_COMMENT	C11	PROD_T MINFILNO	66 9	PRODUCTION_COMMENT
C04	MINFILNO ALTMIN_T	9 70	MINFILE_NUMBER ALTERATION_MINERALS_COMMENT		OREZON_C RESCAT_C A_OR_B	5 2 1	ORE_ZONE_CODE RESERVE_CATEGORY_CODE A_OR_B
C05	MINFILNO STRUCT_T	9 70	MINFILE_NUMBER STRUCTURAL_COMMENT	C12	RESERV_T MINFILNO	70 9	RESERVES_COMMENT MINFILE_NUMBER
C06	MINFILNO HSTRCK_T	9 70	MINFILE_NUMBER HOST_ROCK_COMMENT		OREZON_C RESCAT_C	5	ORE_ZONE_CODE RESERVE_CATEGORY_CODE
C07	MINFILNO META_T	9 70	MINFILE_NUMBER METAMORPHISM_COMMENT		A_OR_B RESREF_T	70	A_OR_B RESERVES_REFERENCE
C08	MINFILNO CAPSUL_T	9 70	MINFILE_NUMBER CAPSULE_GEOLOGY_COMMENT	C13	MINFILNO CONF_NOTE	9 70	MINFILE_NUMBER CONFIDENTIAL_NOTE
				C14	PROJ_NO EXPL_T	7 70	PROJECT_NUMBER EXPLORATION_COMMENT

NOTE: All fields are character. New to Version 4.0

332

•••

e

----• r---·---1 ((5 (r C C r (1 5 -1 C C r C ľ 1. r C ſ Ç ſ 1 r C €" t r 1 ť 1~ ľ ŗ ſ e. ŗ ,

C:\MINFILE\DATA\METADATA.DBF Printed: 05/27/94 16:34

MINFILE METADATA

					•••				
					Field	Field	Field	Parcel	Expl
rila M	TR Name	Rowcount	Index Name	Field Name	Type	Lenath	<u>Decimal</u>	Flag	Flag
	ame <u>ER Name</u> MINERAL_DEPOSITS	49	E01	MINFILNO	C	9	0	T	F
E01	MINERAL_DEPOSITS	49 0	LUT	LAT_DEG	č	2	Ō	Ť	F
E01		0		LAT_MIN	č	2	Ō	Ť	F
E01		0 0		LAT_SEC	č	2	Õ	Ť	F
E01		0		LONG_DEG	č	3	ō	Ť	F
E01		0 0		LONG_MIN	č	2	Õ	Ť	F
E01		Ö		LONG_SEC	č	2	õ	Ť	F
E01		ů 0		UTM_ZONE	č	2	Õ	Ť	F
E01		Ö		UTM_EAST	č	6	ō	Ť	F
E01		0		UTM_NORT	č	7	ŏ	Ť	F
E01		ŏ		ELEV	č	. 4	ŏ	Ť	F
E01		0		LOC_ACC	č	· 1	ŏ	Ť	Ē
E01		0		DEPSIZEL	č	4	ŏ	Ť	F
E01		0		DEPSIZEB	č	4	ŏ	Ť	F
E01		0		DEPSIZEW	č	. 4	ŏ	Ť	F
E01		· · · · · ·		DIP	č	3	ŏ	Ť	F
E01		ŏ		STRIKE	č	3	ŏ	Ť	F
E01		0 0		PLUNGE	č	6	ŏ	Ť	F
E01		0		NATMINNO	č	18	ŏ	Ť	F
E01		0		CANMINNO	č	6	ŏ	Ť	F
E01		0		CODED	c	8	ŏ	Ť	F
E01		0		REVISED	č	8	ŏ	Ť	F
E01		0		GREVISED	c	4	0	Ť	F
E01		-			c	1	0	Ť	F
E01		0		FREVISED	c	i	Ő	Ť	F
E01		0		FCHECKED	č	4	Ő	Ť	F
E01		0		GNAME	č		0	Ť	F
E01		0		OPENPIT		1	0	Ť	F -
E01		0	500	UGROUND	C	-	0	F	F
E02	STATUS_TYPES	6	E02	STATUS_C	c	4 20	0	F	r E
E02		0	503	STATUS_D	C		-	F	F
E03	DOMINANT_HOST_ROCKS	7	E03	DOMHRK_C	C	1 15	0	F	r r
E03		ō		DOMHRK_D		-	0		r F
E04	DEPOSIT_MODIFIERS	5	E04	DEPMOD_C	C	1	0	F	r r
E04		0		DEPMOD_D	C	15	0	F	F
E05	DEPOSIT_CHARACTERS	15	E05	DEPCHR_C	C	2	0	-	•
E05		0		DEPCHR_D	C	20	0	F	F
E06	DEPOSIT_SHAPE_TYPES	5	E06	DEPSHA_C	C	2	0	F	r r
E06		0		DEPSHA_D	C	12	0	F	F
E07	DEPOSIT_CLASSIFICATIONS	22	E07	DEPCLA_C	C	2	0	F	r
E07		0		DEPCLA_D	C	15	0	F	
E09	MINING_DIVISIONS	31	E09	MINDIV_C	C	4	0	F.	+
E09 ·		0		MINDIV_D	C	15	0	F	+
E10	NTS_MAPSHEETS	2285		NTSMAP_C	C	7	0	F	F
E11	BC_MAPSHEETS	7055		BCMAP_C	C	7	0	F	F
E12	TECTONIC_BELTS	5	E12	TECBLT_C	c	2	0	F	F
E12		0		TECBLT_D	C	18	0	F	F
E13	TERRANES	39	E13	TERRAN_C	C	3	0	F	F
E13		0	F 1 /		C	30	0	F	F
E14	PHYSIOGRAPHIC_AREAS	66	E14	PHYSIO_C	C	4	0	F	F
E14		0	F 1 F	PHYSIO_D	C	30	0	F	F
E15	METAMORPHIC_TYPES	2	E15	META_T_C	c	1	0	F	F
E15		0		META_T_D	C	10		F	F
E16	METAMORPHIC_GRADES	14	E16	META_G_C	C	2		F	F
E16	·	0	·	META_G_D	C	15		F	F
E17	METAMORPHIC_RELATIONSHIPS	3	E17	META_R_C	C	1	0	F	F
E17		0		META_R_D	C	20		F	F
E18	YEARS	126		YEAR	C	4		F	F
E19	COMMODITIES	151	E19	COMMOD_C		2		F	F
E19		0		COMMOD_[30			F
E20A	MINERALOGY_CLASSES	3	E20A	MINCLA_C	c	1	0		F
E20A		0		MINCLA_D	C	15			F
E20B	MINERALS	551	E20B	MINERL_C	C	4	-		F
E20B		0		MINERL_D	C	20			F
E21	ALTERATION_TYPES	25		ALTER_C	C	4			F
E21		0		ALTER_D	C	12			F
E22	DATING_METHODS	12		DATMET_C	C	2			F
E22		0		DATMET_D		30			F
E23	STRATIGRAPHIC_NAMES	721	E23	STNAME_C	С	6	0	F	F
						- ·		_	

Province of British Columbia - Geological Survey Branch

334

B.C. Geological Survey Branch

.

334					Field Field Field Parcel E				. Fromb
	ED Nome	Rowcount	Index Nam	e Field Name	Field Type	Field Length	Field Decimal	Parcel Flag	I Expl Flag
<u>File Name</u> E23	<u>EK Name</u>	<u>Kowcount</u> 0	INUCX NUM	STNAME_D	C	30	0	F	F
23		0		STINFORM	С	1	0	F	F
23		0		STIGMETA	C	1	0	F	F
23		0		STGROUP STFORM	с с	1	0	F	F
23 24	STRATIGRAPHIC_AGES	80	E24	ST_AGE_C	č	3	Õ	F	F
24	511041101041110 <u>2</u> /1025	0		ST_AGE_D	С	20	0	F	F
25	ROCK_TYPES	243	E25	ROCK_T_C	с с	4 30	0	F	F
25	ROCK_MODIFIERS	0 679	E26	ROCK_T_D ROCK_M_C	c	4	Ő	F	F
26 26	RUCK_MODIFIERS	0/5	220	ROCK_M_D	č	30	Ō	F	F
27	ORE_ZONES	3462	E27	OREZON_C	С	5	0	F	F
27		.0	530	OREZON_D	C C	30 4	0	F F	F
28 28	SAMPLE_TYPES	6 0	E28	SAMPLE_C SAMPLE_D	c	30	0	F	F
29	RESERVE_CATEGORIES	10	E29	RESCAT_C	č	2	Ō	F	F
29		0		RESCAT_D	С	30	0	F	F
202	STATUS	49	R02A	MINFILNO	C	9 4	0	T T	F
202 203		0 48	R03	STATUS_C MINFILNO	с с	9	0	Ť	F
R03	DOMINANT_NOST	0	1.05	DOMHRK_C	č	1	Ō	Ť	F
R04	MODIFY	35	R04	MINFILNO	C	9	0	T	F
R04		0		DEPMOD_C MINFILNO	с с	1 9	0	T T	F
R05 R05	CHARACTERIZE	71 0	R05A	DEPCHR_C	č	2	0	Ť	F
206	SHAPE	25	R06	MINFILNO	č	9	0	т	F
R06		0		DEPSHA_C	C	2	0	T	F
R07	ORIGIN	86 0	R07A	MINFILNO DEPCLA_C	с с	9 2	0	T T	F
R07 R08	ALIAS	81	RO8B	MINFILNO	č	9	ŏ	Ť	F
108		0		NAME	ē	30	Ō	Т	F
109	FALL_INTO	49	R09B	MINFILNO	C	9	0	T	F
R09		0 67	RIOB	MINDIV_C MINFILNO	C C	4 9	0	T T	F
R10 R10	HAS_NTS	0	RIUD	NTSMAP_C	č	7	ŏ	Ť	F
211	HAS_BC	Ō	R11	MINFILNO	С	9	0	Т	F
811		0		BCMAP_C	C	7	0	Ţ	F
R12	TECTONIC_BELT_SETTING	48 0	R12B	MINFILNO TECBLT_C	C C	9 2	0	T T	F
R12 R13	TERRANE_SETTING	51	R13B	MINFILNO	č	9	ŏ	Ť	F
213		0		TERRAN_C	Č	3	0	Т	F
R14	PHYSIOGRAPHIC_SETTING	48	R14B	MINFILNO	C	9	0	T	F
R14	TYPE_OF_METAMORPHISM	0 20	R15	PHYSIO_C MINFILNO	C C	4	0	T T	F
R15 R15		20	C 1 7	META_T_C	č	1	ŏ	Ť	F
816	GRADE_OF_METAMORPHISM	16	R16	MINFILNO	С	9	0	т	F
R16		0		META_G_C	C	2	0	Ţ	F
R17 R17	RELATIONSHIP_OF_METAMORPHISI	M 15 0	R17	MINFILNO META_R_C	с с	9	0	T T	F
117 18A	MATERIAL_MINED	9	R18A	MINFILNO	c	9	ŏ	Ť	F
18A	······································	0		YEAR	С	4	0	Т	F
18A		0		MINED	C	12	0	Ţ	F
R18A R18B	COMMODITY_YIELD	09	R18B	MILLED MINFILNO	C C	12 9	0	T T	F
R18B		õ	NTOD	YEAR	č	4	ŏ	Ť	F
R18B		0		COMMOD_C		2	0	T	F
R18B	ADE ODECENT	0 81	0100		с с	12 9	0	T T	F
R19 R19	ARE_PRESENT	0	R19B	MINFILNO COMMOD_(2	0	Ť	F
R20	MINERALOGY	102	R20AB	MINFILNO	С	9	Ō	т	F
20		0		MINCLA_C	C	1	0	Ţ	F
20 21		05	R21	MINERL_C MINFILNO	C C	4	0	T T	F
21	ALTER	0	1.51	ALTER_C	č	9 4	0	Ť	F
22	AGE_OF_MINERALIZATION	38	R22	MINFILNO	С	9	0	т	F
22		0		DATMET_C	C	2		Ţ	F
R22 R22		0		ISOAGE MATERIAL	C C	20 30		T T	F
R22 R23	HOST_ROCK	111	R23C	MINFILNO	c			Ť	F
R23		0		ST_AGE_C	С	3	0	т	F
R23		0		STNAME_C	C	6	0	Ţ	F
R23		0		DATMET_C	С	2		Т	F
R23		0		ISOAGE	С	20	0	т	F

pen rue	: 1994-20				Field	Field	Field	Parcel	33 Exp
le Name	ER Name	Rowcount	<u>Index Name</u>	Field Name		Length		Flag	Flag
3		0 49	R24A	MATERIAL	с с	30 9	· 0	T T	F
4 4	ARE_ASSIGNED	43 0	1270	ST_AGE_C	С	3	Õ	Т	F
5	LITHOLOGIC_HOST	189	R25E	MINFILNO	C	9	0	T T	F
5		0		ROCK_T_C ROCK_M_C	C C	4	0	Ť	F
5 5		ŏ		LITHUNIT	Ċ	11	Ō	Ť	F
6	TONNAGES	17	R26ABC	MINFILNO	C C	9 5	0	T T	F
6 6	· · · · · ·	0		OREZON_C RESCAT_C	c	2	0	Ť	F
6		ō		A_OR_B	С	1	0	Ţ	F
6		0		YEAR	C C	4 12	0	T T	F
6 7	BEST_ASSAY	0 12	R27AB	QUANTITY	c	9	ŏ	Ť	F
, 7		0		OREZON_C	C	5	0	Ţ	F
7		0		A_OR_B YEAR	с с	1	0	T T	1 1
7 7		0		SAMPLE_C	č	4	ŏ	Ť	F
8	RECOVERABLES	41	R28	MINFILNO	C	9	0	Ţ	F
8		0		OREZON_C RESCAT_C	с с	5 2	0	T T	1
8 8		Ő		A_OR_B	č	ī	· Õ	Ť	F
8		0		COMMOD_C		2	0	Ţ	
8	IDENTIFICATION_COMMENTS	0 113	C01	GRADE MINFILNO	с с	9	0	T T	ł
1	IDENTIFICATION_COMMENTS	0	COT	IDENT_T	č	70	ŏ	Т	Ī
2	SIGNIFICANT_MINERALS_COMMENT		C02	MINFILNO	C	9	0	T T	ļ
2	ASSOCIATED_MINERALS_COMMENT	0 rs 0	C03	SIGMIN_T MINFILNO	C C	70 9	0	Ť	1
3		0	205	ASSMIN_T	С	70	Ō	Т	I
	ALTERATION_MINERALS_COMMENT		C04	MINFILNO	C	9	0	Ţ	i
4 5	STRUCTURAL_COMMENTS	0 30	C05	ALTMIN_T MINFILNO	C C	70 9	0	Т Т	ļ
5	STRUCTURAL_COMMENTS	0		STRUCT_T	С	70	Ō	Т	Ī
6	HOST_ROCK_COMMENTS	24	C06	MINFILNO	C C	9	0	T T	F
6 7	METAMORPHISM_COMMENTS	0 27	C07	HSTRCK_T MINFILNO	c	70 9	0	Ť	
7		0		META_T	С	70	0		I
	CAPSULE_GEOLOGY_COMMENTS	924 0	C08	MINFILNO CAPSUL_T	с с	9 70	0	T T	ļ
)8)9	BIBLIOGRAPHY_COMMENTS	271	C09	MINFILNO	c	, U 9	Ő	Ť	i
9	. –	0		BIBLIO_T	С	70	0	Ţ	1
	PRODUCTION_COMMENTS	0 0	C10	MINFILNO YEAR	C C	9 4	0 0	T T	1
0		0		PROD_T	c	66	ŏ	Т	ĺ
1	RESERVES_COMMENTS	2	CIIABCD	MINFILNO	C		0		l
1 1		0		OREZON_C RESCAT_C	с с	5 2	0 0	T T	
1		ŏ		A_OR_B	С	ī	ŏ	Т	
1		0	C1240C	RESERV_T	C	70	0	T T	l
2 2	RESERVES_REFERENCES	3 0	C12ABC	MINFILNO OREZON_C	C C	9 5	0	Ť	
2		0		RESCAT_C	С	2	Ō	Т	1
2		0		A_OR_B	C	1 70	0 0	T T	
2 3	CONFIDENTIAL COMMENTS	3	C13	RESREF_T MINFILNO	с с	9	0		
0	DEPOSIT TYPE CLASS		E30	DEPTYP_C	С	3		F	1
0	IS_TYPE	1	R30 C14		C C	9 7			-
4 1	EXPLORATION NOTES EXPLORATION PROPERTIES		E31	PROJ_NO PROJ_NO	c	7			
3	PROJECT TYPE	3	E33	PRJTYP_C	С	1	0		
4	MDAP STAGE	6	E34 R31	STAGE_C PROJ_NO	C C	1 7			-
1 3	HAS_OCCURRENCE IS PROJECT TYPE		R33	PROJ_NO	С	7	0	F	•
4	AT_MDAP_STAGE	3	R34	PROJ_NO	С	7	0	F	
5 6	FALL_INTO ON_MAP		R35 R36	PROJ_NO PROJ_NO	C C	7			
2A	HAS NOTICE		R32A	PROJ_NO	С	7	0	F	
82B	HAS NOTICE DESCRIPTIONS	10	R32B	PROJ_NO	C	7			•
2	NOTICE TYPE	- Γ	E32	NOTIC_TYP	С	1	0	F	1

Records printed: 212 Page 3

--

.---• ~~ ------1 1 $\overline{}$ 1 ~ 1 -1 (⁻⁻⁻ **r**----P*** **/** ٣ ٢ 1 e <u>,</u> ٣ •--. **

,

Province of British Columbia - Geological Survey Branch

C:\MINFILE\DATA\CODEXREF.DBF Printed: 05/27/94 16:35

RELATIONSHIPS

ENTFL_NM	CODE_NM	RELFL_NM
E02	STATUS_C	R02
E03	DOMHRK_C	R03
E04	DEPMOD_C	R04
E05	DEPCHR_C	R05
E06	DEPSHA_C	R06
E07	DEPCLA_C	R07
E09	MINDIV_C	R09
E09	MINDIV_C	R35
E10	NTSMAP_C	R10
E10	NTSMAP_C	R36
E12	TECBLT_C	R12
E13	TERRAN_C	R13
E14	PHYSIO_C	R14
E15	META_T_C	R15
E16	META_G_C	R16
E17	META_R_C	R17
E18	YEAR	R18A
E18	YEAR	R18B
E19	COMMOD_C	R18B
E19	COMMOD_C	R28
E20A	MINCLA_C	R20
E20B	MINERL_C	R20
E21	ALTER_C	R21
E22	DATMET_C	R22
E22	DATMET_C	R23
E23	STNAME_C	R23
E24	ST_AGE_C	R23
E24	ST_AGE_C	R24
E25	ROCK_T_C	R25
E26	ROCK_M_C	R25
E27	OREZON_C	R26
E27	OREZON_C	R27
E28	SAMPLE_C	R27
E29	RESCAT_C	R28
E30	DEPTYP_C	R30
E32	NOTIC_TY	R32A
E33	PRJTYP_C	R33
E34	STAGE_C	R34

Records printed: 38

Page 1

MINFILE Project Management

PROJECT ELEMENTS

• Concept, designing, planning (budget, staff)

⇒ Database Design and Data Dictionary

- System Testing and Quality Assurance
- Database Administration and Maintenance (documentation and manuals)
- Data Acquisition and Processing Procedures (coding procedures)
- Training and Client Support
- Marketing and Distribution of Data
- New Technology and Future Planning
- Designing and Producing Computer Generated Products for Users

BASIC STEPS OF DATA MODELLING

- 1. Determine scope of model
- 2. Determine business rules
- 3. Identify entities
- 4. Identify relationships between entities
- 5. Identify attributes
- 6. Determine primary key
- 7. Determine foreign keys
- 8. Identify constraints
- 9. Validate model

Iterate steps 2 through 9, adding more level of detail

10. Review and user sign-off

-

-

(

5

1

C

(

5

5

1

1

(

C

(

r r

r

1

HIERARCHY STRUCTURES

QUEEN CHARLOTTE GROUP SKIDEGATE FORMATION HONNA FORMATION HAIDA FORMATION

VANCOUVER GROUP KUNGA FORMATION PARSONS BAY FORMATION SUTTON FORMATION QUATSINO FORMATION KARMUTSEN FORMATION

SICKER GROUP BUTTLE LAKE FORMATION MYRA FORMATION NITINAT FORMATION

COAL HARBOUR GROUP BLUMBERG FORMATION

KYUQUOT GROUP LONGARM FORMATION ONE TREE FORMATION KAPOOSE FORMATION

CARMANHA GROUP SOOKE FORMATION HESQUIAT FORMATION ESCALANTE FORMATION

NANAIMO GROUP GABRIOLA FORMATION SPRAY FORMATION GEOFFREY FORMATION NORTHUMBERLAND FORMATION DECOURCY FORMATION CEDAR DISTRICT FORMATION EXTENSION - PROTECTION FORMATION HASLAM FORMATION COMOX FORMATION

LAIB GROUP REEVES FORMATION

WINDERMERE GROUP MONK FORMATION HORSETHIEF CREEK FORMATION IRENE FORMATION TOBY FORMATION SUSTUT GROUP TANGO CREEK FORMATION BROTHERS PEAK FORMATION

BOWSER LAKE GROUP ASHMAN FORMATION

HAZELTON GROUP SMITHERS FORMATION NILKITKWA FORMATION TELKWA FORMATION

CACHE CREEK GROUP KEDAHDA FORMATION TESLIN FORMATION FRENCH RANGE FORMATION HORSEFEED FORMATION NAKINA FORMATION MARBLE CANYON FORMATION

KAMLOOPS GROUP COLDWATER FORMATION

SPENCES BRIDGE GROUP KINGSVALE FORMATION

INGENIKA ATAN GROUP ROSELLA FORMATION BOYA FORMATION STELKUZ FORMATION ESPEE FORMATION TSAYDIZ FORMATION SWANNELL FORMATION

ANARCHIST/KOBAU GROUP KNOB HILL FORMATION ATTWOOD FORMATION

ROSSLAND GROUP ELISE FORMATION ARCHIBALD FORMATION

HAMILL GROUP RENO FORMATION QUARTZITE FORMATION THREE SISTERS FORMATION MARSH ADAMS FORMATION MOUNT GAINER FORMATION

..../2

7 MARCH 1986

STRATIGRAPHIC AGE CODES

<u>Era</u>	Period	<u>Epoch</u>	<u>Code</u>
1 Cenozoic	0	0	100
	1 Quaternary	0	110
		1 Recent	111
		2 Pleistocene	112
		9 Pliocene-Pleistocene	119
	2 Tertiary	0	120
		1 Pliocene	121
		2 Miocene	122
		3 Oligocene	123
		4 Eocene	124
		5 Paleocene	125
		9 Cretaceous-Tertiary	129
	Mesozoic-Cenozoic	·	199
2 Mesozoic		0	200
	1 Cretaceous	0	210
	•	1 Upper	211
		4 Middle	214
		7 Lower	217
		9 Jurassic-Cretaceous	219
	2 Jurassic	0	220
		1 Upper	221
		4 Middle	224
		7 Lower	227
		9 Triassic-Jurassic	229
	3 Triassic	0	230
		1 Upper	231
		4 Middle	234
		7 Lower	237
		9 Permian-Triassic	239
	Paleozoic-Mesozoic		299
3 Paleozoic	0	0	300
	Upper Paleozoic		301
	1 Permian	0	310
		1 Upper	311
		4 Middle	314
		7 Lower	317
		9 PennsylvanPermian	319
	2 Pennsylvanian	0	320
		1 Upper	321
		4 Middle	324
		7 Lower	327
		9 Carboniferous	329
	3 Mississippian	0	330
		1 Upper	331
		4 Middle	334
	4	7 Lower	337
	,	9 Devonian-Mississipp.	339
	4 Devonian	0	340
		1 Upper	341

 $\overline{}$

-

ſ (C **(** (C ~ 1 ((5 5 5 C ٢ (0 5 C r ٣ r --r ۴ 1e . ۴ 1

> * *

> > e

STRATIGRAPHIC AGE CODES

Era	Period	Epoch	<u>Code</u>
		4 Middle	344
		7 Lower	347
		9 Silurian-Devonian	349
	5 Silurian	0	350
		1 Upper	351
		4 Middle	354
		7 Lower	357
		9 Ordovician-Silurian	359
	6 Ordovician	0	360
		1 Upper	361
		4 Middle	364
		7 Lower	367
		9 Cambrian-Ordovician	369
	7 Cambrian	0	370
		1 Upper	371
		4 Middle	374
		7 Lower	377
		9 Proterozoic-Cambrian	379
Pr	oterozoic-Paleoz.		399
4 Proterozoic	0	0	400
	1 Upper	0	410
	2 Hadrynian	0	420
	4 Middle	0	440
	5 Helikian	0	450
	7 Lower	0	470
	8 Aphebian	0	480
5 Archean	0	0	500
	1 Upper	0	510
	4 Middle	0	540
	7 Lower	0	570

UNKNOWN

North American Stratigraphic Code

* Applicable world-wide.

+Applicable only where material referents are present.

()Number of article in which defined.

FIG. 1.-Relation of geologic time units to the kinds of rock-unit/referents on which most are based.

342

			Pl	HANER	OZO	DIC							EON	Phanerozoic data 1) W.B.Harland ei PreCambrian data	ol. (1990) 🧏	
CENOZOIC MESOZOIC						PALEOZOIC				1) Lumbers & Co	ard (Geology, Vol. 20	1991				
PERIOD EPOCH / STAGE Ma		PERIOD EPOCH / STAGE Mo			PERIOD	RIOD EPOCH / STAGE Ma				PRECAMBRIAN						
ATER	Holoc Pielsto	ene cene	Calabrian	- 0.01 - 1.64			Maastrichtian	-65.0 ± 2	z	Late	Changheington Dzhullion Capitonian	247.5 ± 1 247.5 ± 1 250 ± 12 252.5 ± 13 255 ± 12		ERA	PERIOD	M Ag
NEOGENE	PLIOCE	NE L E	Piacenzian Zanclian Messinian	- 3.40± 1.35	5.2 \pm 1.5 6.7 \pm 2.3 10.4 \pm 1.5 14.2 \pm 1.8 16.3 \pm 1 21.5 \pm 1.8	Late	Campanian	$+74.0 \pm 3$ = 83 ± 4	CARBONIFEROUS CARBONIFEROUS MISSISSIPPIAN PENNANUM PERN	Early	<u>Wordan</u> Roadian Artinskian Sakmarian	255 ± 12 260 ± 11 269 ± 11	0 ± 11	ozoic	Neoproterozoic III	- 57(
	MIOCENE	L	Tortonian				Santonian <u>Conlacian</u> Turenian Cenomanian	-86.6 ± 3 -88.5 ± 2 -90.4 ± 2			Asselian	- 281.5 ± 13 - 290 ± 9 - 295 ± 6.5 - 303 ± 5 - 311.5 ± 9.5	Hadrynian 5	Cryogenian	- 650	
		M	Serravallian				Albian	97.0 ± 2		Late	Moscovian Bashkirian			(late) doe N	Tonian	- 100
		 F	Langhian Burdigalian			Earty	Aptian	112 ± 2		Early	Serpukhovian Visean	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DZOIC	U V Helikian	Stenian	- 12
		E	Aquitanian	-21.5 ± 1.8 -23.3 ± 1		Euriy	Barremian Hauterivian	-124.5 ± 13 -131.8 ± 8 -135.0 ± 8		Early	Tournaisian		ROTER(Helikian (middle) Sa	Ectasian Calymmian	- 14
PALEOGENE	EOCENE	ι	Chattian		29.3 ± 1.5	Lote	Valanginian Berriasian		140.7 ± 13 145.6 ± 9.5 152.1 ± 11.5 154.7 ± 6.5 157.1 ± 8	Late Middle	Frasnian Givetian Elfelian	-362.5 ± 5.5 -367 ± 5 -377.5 ± 10		Aphebian (early) (early)	Statherian	- 16 - 18
		- E	Rupelian	-29.3 ± 1.5			Tithonian Kimmeridgian Oxfordian Callovian	- 154.7 ± 6.9 - 157.1 ± 8		Early	Gedinnian/Lochkovian	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			Orosirian	- 20
				- 35.4 ± 1.4		Middle	Bathonian	161.3 ± 7 166.1 ± 7 173.5 ±11.5	Laté	Pridelian Ludlovian Wenlockian	408.5 ± 4.5 -411 ± 4 -424 ± 4		Paleop	Rhyacion Siderion	- 23	
		L 	Priabonian	-38.6 ± 1.5		Early	Aalenian Toarcian	-173.5 ±11. -178 ±11	11	Earty	Llandoverian Gamachlan Richmondian	-430.4 ± 9 - 439 ± 7 - (445)	± 7	Neoarchaean		25
			Bartonian	-42.1 ± 1.8			Pliensbachian	187 ± 15		Late	Maysvillian Edenian	-(452) -(458) -(464 ± 7.5 -(467) (470)		(late)		- 28
		м	Lutetian			Sinemurian Hettangian	-203.5 ± 6.5 -208 ± 7.5	ORDOVICIAN	Middle	Chazyan Whitereckian Canadian	(473) - 476 ± 7.5	ARCHEAN 2'	Mesoarchaear (middle)			
		_		-50 ± 1.5	-56.5 ± 1.4	Late	Norian	· ·	Early	Trempealeauan	-510 ± 9.5 (512)		Paleoarchaean	-	- 32	
		3	Ypresian	-56.5 ± 1.4				223.4 ± 9.	11 _	Late Middle	Franconian Dresbachian	(515) -517.2 ± 17		(early)	4	- 30
	PALEOCENE	L 	Thanetian	60.5 ± 2.3		Middle	Ladinian Spathian Anisian Smithian	235 ± 4 239.5 ± 6. 241.1 ± 8	± 6.5	Early	Waucoban	-536 ± 5.5		Eoarchaean (earliest)	base not defined	

Open File 1994-20

343

.

•

2

 \sim

North American Stratigraphic Code

Table 2. Categories and Ranks of Units Defined in This Code*

A. Material Units

LITHOSTRATIGRAPHIC	LITHODEMIC	MAGNETOPOLARITY	BIOSTRATIGRAPHIC	PEDOSTRATIGRAPHIC	ALLOSTRATIGRAPHIC	
Supergroup Group Formation Member (or Lens, or Tongue)	Supersuite <u>à</u> Suite S Lithodeme	Polarity Superzone Polarity zone Polarity Subzone	<i>Biozone</i> (Interval, Assemblage or Abundance) Subbiozone	Geosol	Allogroup Alloformation Allomember	
Bed(s) or Flow(s)						

B. Temporal and Related Chronostratigraphic Units

CHRONO- STRATIGRAPHIC	GEOCHRONOLOGIC GEOCHRONOMETRIC	POLARITY CHRONO- STRATIGRAPHIC	POLARITY CHRONOLOGIC	DIACHRONIC	
Eonothem	Eon	Polarity Superchronozone	Polarity Superchron		
Erathem (Supersystem) System (Subsystem) Series Stage (Substage) Chronozone	Era (Superperiod) Period (Subperiod) Epoch Age (Subage) Chron	Polarity Chronozone Polarity Subchronozone	Polarity Chron Polarity Subchron	Episode 5 Phase 5 Span Cline	

*Fundamental units are italicized.

.

Open File 1994-20

(

(

Mineral Exploration Databases

OUTLINE:

Introduction

Organization of Data and Codes

Exploration and Development -MINFILE example

Drill Hole Data - COALFILE example

Geochemical Data - RGS example

Field Data - GSB-GDS, GEOF examples

Summary

Lecture by:

L. Jones 19 November 1993

References:

TECDOC Section 4.5, Annex 6.5

Mineral Exploration Databases

GENERAL:

- Exploration projects generate most or all of the **detailed geologic information** in an area of interest.
- Exploration project databases contain **collected data**, such as field measurements, and calculated data, such as analytical work on samples.
- Data presentation methods help to evaluate regional trends and locate anomalies.
- Good record keeping and proper indexing are essential if the raw data is to be reinterpreted at a later time.
- Modeling and interpretation methods help to filter, reduce or enhance data.
- Data-sets are grouped according to the type of work performed, commonly prospecting, geological, geophysical, geochemical, physical and drilling.
- Global Positioning Systems (**GPS**) are useful for accurately locating sample sites.

ORGANIZATION OF EXPLORATION PROJECT DATA

Mineral Exploration Databases

TYPICAL CONTENTS:

- Title of project
- Jurisdiction
- Location (longitude/latitude)
- Project Type (major, minor)
- The managing company or organization
- The name, address and telephone of the **project coordinator or manager**
- Date and type of work done
- Exploration budget and cost of the completed exploration program
- Notes on pertinent information such as geological descriptions, plans for the following year, assays, references, etc.
Open File 1994-20

<u>~</u>--

_

Structure for EXPLRTN.DBF

<u>FIELD</u>	FIELD NAME	TYPE	V	VID	<u>TH DEC</u>	<u>STA</u>	RT <u>END</u>
1	ID_NO	Character	9)		1	9
2	PROJECT_TITLE	Character	6	0		10	69
2 3	PROVINCE	Character	3	0		70	99
4	DISTRICT	Character	3	0		100	29
5	LATITUDE	Number	-	7	5	30	36
6	LONGITUDE	Number	8	3	5	37	44
7	PROP_TYPE	Character		l		45	45
8	ID_NO2	Character)		46	54
9	ID_NO3	Character		9		55	63
10	EXPAC_DATE	Date		3		64	71
11	REV_MAP_NO	Character	1	0		72	81
12	WORK_TYPE	Character		1		82	85
13	COMPANY	Character	3	0		86	115
14	MANAGER	Character	3	0		116	145
15	MANAG_TEL	Character	1	4		146	159
16	EXP_BUDGET	Numeric	1	3	2	160	172
17	PRO_BUDGET	Numeric	1	3	2	173	185
18	COMPLETED	Logical		1		186	186
19	DISCUSSED	Logical		1		187	187
20	MDSCREVIEW	Logical	• •	1		188	188
21	MDSC_STAGE	Character	2	0		189	208
22	EXPL_NOTES	Memo	1	0		209	218

Work Type Codes

TYPE	DESCRIPTION	CATEGORY	D/A UNITS	NUM. UNITS
BHDR	Becker Hammer	DRIL	m	hole(s)
BIOG	Biogeochemistry	GEOC		sample(s)
CHUD	Churn	DRIL	m	hole(s)
DIAD	Diamond surface	DRIL GEOP	m km	hole(s)
DIPN	Dip needle	GEOP	km	
EMAB	Electromagnetic, airborne Electromagnetic, ground	GEOP	km	
emgr etch	Fission track etch	GEOC	Kiii	<pre>sample(s)</pre>
FOTO	Photo	GEOL	ha	
GEOL	Geological	GEOL	ha	
GRAV	Gravity	GEOP	km	
GRSA	Gamma ray spectrometer, airborne	GEOP	km	
GRSG	Gamma ray spectrometer, ground	GEOP	km	-
HMIN	Heavy minerals	GEOC		<pre>sample(s)</pre>
HYDG	Water	GEOC	l	sample(s)
INFR	Infra-red	GEOP	km km	
IPOL	Induced Polarization	GEOP PHYS	km km	
	Line/grid	PHYS	km	
LSUR MAGA	Legal surveys Magnetic, airborne	GEOP	km	
MAGA	Magnetic, ground	GEOP	km	
MALM	Mise-a-la-masse	GEOP	m	
META	Metallurgic	GEOC		<pre>sample(s)</pre>
MNGR	Mineralographic	GEOL		sample(s)
OBDR	Overburden	DRIL	m	hole(s)
PERD	Percussion	DRIL	m	hole(s)
PETR	Petrographic	GEOL	·	sample(s)
PITS	Pits	PHYS	h a	pit(s)
PROS	Prospecting	PROS	ha	
RADA	Radiometric, airborne	GEOP GEOP	km km	
radg Radp	Radiometric, ground Radiometric drill hole probing	GEOP	m	
RADP	Radar	GEOP	km	
RECL	Reclamation	PHYS	ha	
REST	Resistivity (alone)	GEOP	km	
RGAS	Radon gas scintillometry	GEOP	km	
ROAD	Road, local access	PHYS	km .	
ROCK	Rock	GEOC		sample(s)
ROTD	Rotary	DRIL	m	hole(s)
SAMP	Sampling/assaying	GEOC	km	sample(s)
SCAB	Scintillometer, airborne	GEOP GEOP	km km	
SCGR SEIS	Scintillometer, ground Seismic	GEOP	km	
SILT	Silt	GEOC	NIII .	<pre>sample(s)</pre>
SOIL	Soil	GEOC		sample(s)
SPOT	Self potential	GEOP	km	00p : 0 (0)
STRI	Stripping	PHYS	ha	
TOPO	Topographic/photogrammetric	PHYS	ha	
TRAL	Trail	PHYS	km	
TREN	Trench	PHYS	m	trench(es)
UNDD	Diamond underground	DRIL	m	hole(s)
	Underground development	PHYS PHYS	m	
USUR	Underground surveys	FIIIS	m	

350

-

<u>____</u>

CCCC

r r

File 1994-20						351
11	FIELD	FIELD NAME	TYPE	WIDTH	DEC	MANDATORY
	1	PROJ_NO*	Char	6		Y
	2	NOW NO*	Char	7		Y
	3	NOTIC_DATE	Date	8		Y
	3,	OPERATOR	Char	30		Y
	4	MANAGER	Char	30		
	5	MGR_TEL	Char	14		
	7 [\]	DEPTARGET	Char	70		
	8	WORK TODO	Char	70		
	9	WORK DONE	Char	70		
	10	WORK START	Date	8		
	11	WORK_END	Date	8		
	12	EXP_BUD	Num	13	2	
	13	PROD_BUD	Num	13	2	
	14	COMPLETED	Logic	1		
	15	DISCUSSED	Logic	. 1		
	16 ´	MDAPREV	Logic.	1		
-	17	MDAP_STAGE	Char	1		
	*	key fields				
				• • • • • • • •		• • • •

FIELD	FIELD NAME	TYPE	WIDTH	DEC	MANDATORY
1	PROJ_NO*	Char	7		Y
2	PROPERTY	Char	30		Y
3	PROPERTY_2	Char	30		
4	OWNER	Char	30		Y
5	OWNER_2	Char	30		
6	OPERATOR	Char	30		Y
7	PROJ_TYPE	Char	1		Y
8	MINDIV_C	Char	4		Y
9	NTSMAP_C	Char	9		Y
10	DIST_SEQNO	Char	3		
11	DIST_MAPNO	Char	3		
12	LAT_DEG	Num	2		Y
13	LAT_MIN	Num	2		Y
14	LAT_SEC	Num	2		
15	LON_DEG	Num	3		Y
16	LON_MIN	Num	2		Y
17	LON_SEC	Num	2		
18	LOC_ACC	Char	1		
19	CR_DATE				
20	RV DATE	Date	·		
21	CHECKED BY	Char	5		

PROJECT DENT5010	SCREEN	EDIT PRINT MINFILE / po	OCCURRENCE	HELP 30/05/94
DENISOIO	Ministry of	Exploration Data Energy, Mines and	104B 008	ources 10:57
Project No. :	0100073	Projects Name	ESKAY CREE	3K
Project Type: Owner : Operator :	PRIME RESO	erty DURCES GROUP INC. DURCES GROUP INC.	Mining Divs NTS Map No Latitude Longitude Loc. Cert.	. : 104B09W : 56 37 00 : 130 27 00
Minfile No. District Seq. District Map I	No.: 40		Crea Revis Che	ate date: 24/05/94 ion date: 30/05/94 ecked by:
24/05/94 Pro	oject create	Exploration No d from Notice of w	ork in MIS in	nterface.
Browse applies	s only to mu	ltiple fields		Projects : 143

DENT5020 Ministry of	MINFILE / pc Exploration Data Er Energy, Mines and Pe	itry stroleum Resour	30/05/94 11:01 ces REVISE
Project No. : 0100073 N.O.W. No. : 1994-0001	Notices Name: Mineral	ESKAY CREEK Recvd Date :	05/01/94
►	URCES GROUP INC. URCES GROUP INC. Work	Apprvd Date: Mgr. Phone :	07/01/94 (604) 684-2345
Depst Target: Epithermal ToDo: Drilling, mapping Done:			· · · · · ·
Work start : 15/01/94	Finish : 31/01/94	Completed :	N
Expl. budget: \$1,000, Prod. budget:	000	Discussed : Dev. Review: Dev. Stage :	N
Cursor to field to change	, press enter to mod	ify Pr	ojects : 143

352

ł

L

~

 $\overline{}$

 $\overline{}$ (C ~ --(~ 5 <u>____</u> -----e---• -r ... f^{.....} p • • p ... e 11

.

· /

.

 	05/30/94 10:57:40	MINFILE / pc EXPLORATION MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIV MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURC	PAGE: 1 REPORT: RGEN500	
	PROJECT NUMBER : NAME (S) :	0100073 Eskay creek	PROJECT TYPE:	Major property
		122 40 1994-0001	LATITUDE : LONGITUDE : LOCATION ACCURACY : DATE CODED : DATE REVISED : CHECKED BY :	Within 500 m 05/24/94
	NOTICES NOTICE NUMBER:		RECEIVED DATE: APPROVAL DATE:	01/05/94 01/07/94
	MANAGER: DEPOSIT TARGET:	PRIME RESOURCES GROUP INC. PRIME RESOURCES GROUP INC. Epithermal Drilling, mapping	TELEPHONE :	(604) 684-2345
	WORK STARTED: EXPL. BUDGET: PROD. BUDGET:	01/15/94 WORK FINISHED: 01/31/94 \$1,000,000.00	COMPLETED: DISCUSSED: DEVELOPMENT REVIEW: DEVELOPMENT STAGE:	N N
	EXPLORATION NOTE	S		

24/05/94 Project created from Notice of work in MIS interface. 24/05/94 New Notice of work 1994-0001 received in MIS interface.

Example

Example

DATABASE STRUCTURE OF EXPORTED FILES

QUICKMAP.DBF Template for plotting MINFILE data in QUIKMap.

Field Field Name Type Width Description

1234567890112345678901234567 111111111122222222222	MNTLATTSEC MNTLONTDEG MNTLONTDEG MNTLONTSEC SYM LNTYP SIZE THICK DATATCOLOR HATCH PATT LBLTSIZE LBLTCOLOR LBLTFONT LBLTANGLE OPERATION MAP INDEX STATION STATUS NAME COMMODITYS	Num Num Num Num Num Char Num Char Char Char Char Char	102762223222332033855563400 330	Data type Relational key UTM zone UTM northing UTM easting Latitude degrees Latitude minutes Latitude seconds Longitude degrees Longitude degrees Longitude seconds Symbol type Symbol size Symbol size Symbol colour Fill pattern Label text Label size Label colour Label font Label rotation Operation field NTS map Map number Deposit status code MINFILE name Commodities	S 104B 9 6277299 411052 56 38 0 130 27 0 0 5 15 0 ESKAY CREEK 5 15 0.0 104B 008 DEPR ESKAY CREEK AU, AG, PB, ZN, CU
25		Char	30	Commodities	AU AG PB ZN CU
20	DEP TYPE	Char	50	Deposit type code	I1
21		Char	5 7	NTC man	104B09W
28	NTS MAPNO	Char	1	NTS map	104009W

QUICKPRJ.DBF Template for plotting Project data in QUIKMap.

Field Field Name Type Width Description

Data type Relational key DATA TYPE Char 17 1234567 ŏ100073 KEY Char 56 37 MN LAT DEG Num 2223222332 Latitude degrees Latitude minutes MN-LAT-MIN Num Õ MN_LAT_SEC Num Latitude seconds Longitude degrees 130 27 0 MN-LON-DEG Num MN-LON-MIN Longitude minutes Num MN-LON MIN SYM LN-TYP SIZE THICK DATA-COLOR HATCH PATT LBL_TEXT IRI-SIZE Longitude seconds Symbol type Symbol size 89 Num 1 Num 5 10 Num Symbol colour Fill pattern Label text ĭ5 11 12 13 Num ٥ Num 20 30 5,1 ÉSKAY CREEK Char LBL-SIZE LBL-FONT LBL-ANGLE 14 15 Label size Num Char Label font 0.0 15 16 17 Label rotation Num LBL⁻⁻COLOR Label colour Num OPERATION PROPERTY 18 19 Char Char Operation field ESKAY CREEK PRIME RESOURCES PRIME RESOURCES 3Õ Project name Property owner Property operator Project type code Project type desc. Čhar 3Õ OWNER OPERATOR PROJTYPE 3Ŏ Char Char Char PROJTYPE D Char DIST SEQNO Char 2Ō Major property 40 122 3 3 4 Sequence number DIST MAPNO MINDTV C Map number Mining Division Char ŜŔĒE Char 104B09W NTSMAP-C Char 7 NTS map Notice of Work number Deposit target ģ 1994-0001 Char Char NOW NO DEP_TARGET STAGE_C STAGE_D Deposit target MDAP stage code 1' MDAP stage description Prospectus MINFILE number 104B 008 MINFILE name ESKAY CREEK Commodities AU, AG, PB, ZN, CU Epithermal 60 Čhar 15 Char MINFICENO 9 Char 30 NAME Char COMMODITYS DEP TYPE STATUS 30 5 Char 35 36 Char Deposit type **D**ÊPR Char 4 Deposit status

Province of British Columbia

Open File 1994-20

ſ

5

~

1

۴

с с

(*** /**

-

Figure 3 Exploration Highlight Projects

B.C.	Geological	Survey	Branch
-------------	------------	--------	--------

Company Name	PROJECT NAME	Commodity	Estimated Tonnes (000s)	ESTIMATED GRADE
PORPHYRY DEPOSITS	~ ·			
Placer Dome Inc.	Kerr	Cu, Au	126 000	0.62% Cu, 0.274 g/t Au
Placer Dome Inc.	Sulphurets Gold (Sulphside)	Au, Cu	18 000	0.35% Cu, 0.823 g/t Au
New Canamin Res. Ltd.	Huckleberry	Cu, Au	78 000	0.401% Cu, 0.025% MoS2
El Condor Res. Ltd.	Kerness North	Cu, Au	116 109	0.19% Cu, 0.377 g/t Au
Placer Dome Inc.	Shear	Cu, Au	n/a	n/a
Yellowack Res. Ltd.	Katie	Cu, Au	n/a	n/a
Crew Natural Res. Ltd.	Red Dog	Cu, Au, Mo	25 000	0.35% Cu, 0.44g/t Au, 0.006% Mo
Massive Sulphide de	POSITS			
Cominco Ltd.	Par	Pb, Zn, Ag, Ba	n/a	n/a
Teck Explorations Ltd. Cominco Ltd.	MGM/Bend	Zn, Pb, Ag	n/a	n/a
Kokanee Explorations Ltd., Chapleau Res. Ltd., Barkhor Res. Inc.	Fors	Ag, Pb, Zn	n/a	n/a
Kokanee Explorations Ltd., Legion Res. Ltd.	Leg	Zn, Ag, Ba	n/a	n/a
Minnova Inc. International Curator Res. Ltd	Seneca I.	Zn, Cu, Au, Ag	533	0.91% Cu, 0.22% Pb, 7.06% Zn, 68.8 g/t Ag, 1.44 g/t Au
Westmin Resources Ltd.	Thelwood Valley (Myra Falls)	Cu, Pb, Zn, Ag, Au	n/a	n/a
TRANSITIONAL & VEIN	N DEPOSITS			
Lac Minerals Ltd.	Red Mountain (Marc Zone)	Au	840	12.68 g/t Au
Gold Fields Canadian Mining Ltd.	Nizi	Au, Ag	n/a	n/a
Minnova Inc.	Wolf	Au	n/a	n/a

1992

Table B Exploration Highlight Projects

Copper

Open File 1994-20

r r

(

C

[_____

-

1992

5

Figure 2 Advanced Exploration / Development Highlights

Development Highlights

357

358				B.C. Geological Survey Branch
COMPANY NAME	PROJECT NAME	Commodity	Estimated Tonnes (000s)	ESTIMATED GRADE
PORPHYRY DEPOSITS				
Taseko Mines Ltd.	Fish Lake	Cu, Au	1 080 000	0.23% Cu, 0.41 g/t Au
El Condor Resources Ltd. St Philips Resources Inc.	Kerness South	Cu, Au	207 000	0.23% Cu, 0.64 g/t Au
Jordex Resources Inc.	Expo/Hushamu	Cu, Au, Mo	173 260	0.25% Cu, 0.31 g/t Au, 0.01% Mo
Imperial Metals Corp.	Mount Polley	Cu, Au	49 000	0.38% Cu, 0.55 g/t Au
Gibraltar Mines Ltd.	Gibraltar North	Cu	50 000+	0.4% Cu
CMP Resources Ltd.	QR	Au	1 200	5.2 g/t Au
Placer Dome Inc.	Mount Milligan	Cu, Au	284 000	0.2% Cu, 0.58 g/t Au
Massive Sulphide d	DEPOSITS			
Westmin Resources Ltd.	Battle Zone/ Myra Falls	Cu, Pb, Zn, Ag, Au	3 018	2.9% Cu, 0.4% Pb, 14.0% Zn, 24.0 g/t Ag, 1.0 g/t Au
Geddes Resources Ltd.	Windy Craggy	Cu, Au, Ag, Co	297 440	1.38% Cu, 0.2 g/t Au, 3.83 g/t Ag 0.069% Co
Curragh Resources Ltd	Stronsay	Pb, Zn, Ag	22 080	2.8% Pb, 9.4% Zn, 60 g/t Ag
Homestake Canada Ltd.	Eskay Creek 21B	Au, Ag	1 190	59.41 g/t Au, 2659.3 g/t Ag
Redfern Resources Ltd.	Tulsequah Chief	Cu, Pb, Zn, Au, Ag	7 800	1.6% Cu, 1.18% Pb, 6.47% Zn, 2.74 g/t Au, 109.72 g/t Ag
TRANSITIONAL & VE	IN DEPOSITS			
Equity Silver Mines Ltd.	North Waterline Zone	Cu, Au, Ag	750	0.68% Cu, 209 g/t Ag 4.18 g/t Au
Cheni Gold Mines Ltd.	Mets	Au	53.5	11.62 g/t Au
Golden Rule Resources Ltd.				
Manson Creek Resources Ltd.				
Canarc Resources Corp.	Polaris-Taku	Au	2 590	14.74 g/t Au
Suntac Minerals Corp.				-
Newhawk Gold Mines Ltd.	Brucejack Lake	Au, Ag	749.3	15.43 g/t Au, 647.2 g/t Ag
Granduc Gold Mines Ltd.	(Bruceside)	(West Zone)	
Fairfield Minerals Ltd.	Elk	Au	308.4	22.18 g/t Au, 24.68 g/t Ag

1992

Table AAdvanced Exploration / Development Projects

Copper

11

(

r r

C

Г Г

5

(

Mineral Exploration Databases

DRILL HOLE DATA:

Contents:

- Drill hole name, collar location and elevation, and total length of hole
- Downhole survey data
- Lithological descriptions or stratigraphic units
- Sampling and assay data

Drilling Types:

 Becker hammer, churn, diamond surface, diamond - underground, overburden, percussion and rotary.

Drill Hole Data

- four tables
- connected with a unique key (HOLE-ID)
- ASCII or spreadsheet format
 - 1. Drill hole name, collar location and total length of hole
 - 2. Downhole survey data
 - 3. Lithological descriptions
 - 4. Sampling and assay data

Examples of tables:

Table 14a: Header

HOLE-ID	X-COORD	Y-COORD	Z-COORD	LENGTH	
 •••	••••				
KAM-15	6684.37	456.39	118.42	185.93	
KAM-16	6345.87	395.38	120.45	178.65	
KAM-17	7522.26	520.15	116.72	135.58	
KAM-18	7254.84	486.35	123.95	215.14	
 ••••	••••		· · · · · · · · · · · · · · · · · · ·		

Open File 1994-20

Ċ

.

HOLE-ID	DISTANCE	AZIMUTH	DIP	
•••	•••			
KAM-16	0.00	135.0	47.1	
KAM-16	10.00	135.3	47.0	
KAM-16	20.00	135.4	46.8	
•••	·			
KAM-17	0.00	127.2	60.0	
KAM-17	25.00	127.0	59.4	
KAM-17	50.00	126.7	59.1	
		•••		

Table 14b: Survey Data

Table 14c: Lithology

HOLE-ID	FROM	то	ROCK-TYPE	REMARKS
•••				
KAM-16	28.20	42.30	Chlorite schist	Fine-grained, brecciated
KAM-16	42.30	46.50	Biotite schist	Specks of pyrrhotite
KAM-16	46.50	53.25	Quartzite	Medium-grained
•••				
KAM-17	36.45	44.32	Granite	Coarse-grained
KAM-17	44.32	55.85	Metagreywacke	Chloritized
KAM-17	55.85	68.56	Granite gneiss	Fractured

Table 14d: Assays

HOLE-ID	FROM	то	SAMPLE NO	U-PPM	CU %	etc.
KAM-16	42.30	43.00	Ra-654	160	0.02	
KAM-16	43.00	44.00	Ra-655	390	0.08	
KAM-16	44.00	45.00	Ra-656	750	0.12	
KAM-16	45.00	46.00	Ra-657	440	0.04	
•••						
KAM-17	45.00	46.00	Ra-713	275	0.06	
KAM-17	46.00	47.00	Ra-714	645	0.12	

GEOPHYSICAL DATA:

Contents:

- Surveyor
- Instruments used
- Analog or digital records
- Area covered
- Station location
- Data measurements and calculations dependent on geophysical method

Geophysical Types:

Dip needle, electromagnetic airborne, electromagnetic - ground, gamma ray spectrometer airborne, gamma ray spectrometer - ground, gravity, induced polarization, infra-red, magnetic airborne, magnetic - ground, misea-la-masse, radar, radiometric airborne, radiometric - ground, radiometric - drill hole probing, radon gas scintillometry, resistivity (alone), scintillometer airborne, scintillometer - ground, seismic, self potential.

GEOCHEMICAL DATA:

Contents:

- \Rightarrow Source of geochemical data
- \Rightarrow Sample number
- $\Rightarrow \text{ Location of sample site,} \\ \text{elevation}$
- \Rightarrow Sample material (sediment, soil, water)
- ⇒ Site information (stream parameters, rock type, sample description)
- \Rightarrow Analytical values for each sample

Geochemical Types:

⇒ Biogeochemistry, fission track etch, heavy minerals, metallurgic, rock, sampling/assaying, silt, soil, water.

British Columbia Regional Geochemical Survey Data

NTS Map sheet 92N - Mount Waddington : BC RGS 34

DATA FILES

92N.DAT

- Listings of field and analytical data:

The field and analytical data for each sample are stored in single, fixed length fields as a flat ASCII file.

DOCUMENT FILES

README.DOC - The file you are currently reading.

FORMAT.DOC - Data format for recorded field observations and analytical results.

Explanation of codes for field variables.

92N.DOC - A description of sample collection, analysis, and preparation details

Codes for geological formations.

.....

Format Specification for Regional Geochemical Survey Data (RGS)

FIELD	DESCRIPTION		COLUMNS	TYPE	LENGTH	EXAMPLE
01	NTS Map-Sheet		001-006	А	6	104N16
02	ID (Year, Crew, Num	ber)	007-012	N	6	841102
03	UTM Zone		013-014	N	2	10
04	UTM East (Metr	-	015-020	N	6	544654
05	UTM North (Metr		021-027	N	7 4	5911939
06 07	Elevation (Metro Sample Material	es)	028-031 032	N N	4	1500 8
08	Replicate Status		032-034	N	2	10
09	Formation		035-038	A	4	lJBv
10	Rock Type		039-042	A	4	GRNT
11	Age		043-044	N	2	64
12	Source of Water		045	N	1	2
13	Stream Order		046	N	1 1	1
14 15	Stream Type Physiography		047 048	N N	1	2
16	Drainage Pattern		049	N	î	3
17	Contamination		050	N	ī	3
18	Stream Width (metre	s)	051-054	N	4 (1)	10.5
19	Stream Depth (cm)		055-57	N	3	220
20	Stream Flow Rate		058	N	1	1
21	Water Colour	. •	059	N	1	3
22	Bank Type		060	N	1 1	3 2
23 24	Bank Precipitate Sediment Composition	n	061 062-064	N N	3	111
24	Sediment Colour		062-064	N	1	5
26	Sediment Precipitat	e	066	N	1	2
27	Channel Bed Type	•	067	N	ī	3
28	Channel Pattern		068	N	.1	4
29	Moss-mat Position		069-071	N	3 (1)	2.5
30	Moss-mat Colour		072	N	1	2
31 32	Moss-mat Health Moss-mat Host		073 074	N N	1 1	1 3
33	Thickness of Moss-ma	at	075	N	1	10
34	Blanks		076-080	N	5	?
34	pH of stream waters		081-085	N	5 (1)	7.0
35	Uranium in waters ()	ppb)	086-090	N	5 (2)	0.12
36	Fluorine in waters()		091-095	N	5	34
37		ppm)	096-100	N	5	47
38		ppm)	101-105	N	5	79
39 40		ppm)	106-110 111-115	N N	5 5	12 26
40		ppm) ppm)	116-120	N	5	33
42		opm)	121-125	N	5 (1)	1.7
43		opm)	126-130	N	5	310
44	Iron (¹	8)	131-135	N	5 (2)	3.80
45		ppm)	136-140	N	5	10
46		ppm)	141-145	N	5 (1)	4.5
47 48		ppm)	146-150 151-155	N N	5	6 5
40	-	ppm) ppm)	151-155	N N	5 5	30
50		opm)	161-165	N	5	14
51		opm)	166-170	N	5 (1)	0.3
52		opm)	171-175	N	5	754
53		(mqç	176-180	N	5 (1)	0.7
54		opm)	181-185	N	5	310
55		opm)	186-190	N	5 (1)	0.6
56 57		opm)	191-195 196-200	N N	5 5 (1)	88 8.3
58		t) (pmi)	201-205	N N	5 (1) 5	400 ⁻
59	Gold(1st analysis) (201-203	N	5	78
60		(gm)	211-215	N	5 5 (1)	10.0
61		opb)	216-220	N	5	2000
62		(gm)	221-225	N	5 (1)	10.0

TABLE 6-2-2.RECORD FORMAT FOR INDIVIDUAL SAMPLES

' י

Record 1: Field Information

Fiel	ld Description	Record	Columns	Length	Example
01	Map Sheet	1	01-06	6	104N16
02	ID (Year, Crew, Number)	1	07-12	6	841102
03	UTM Zone	1	14-15	2	10
04	UTM Easting (Metres)	1	16-21	6	544654
05	UTM Northing (Metres)	1	22-28	7	5911939
06	Rock Type	1	30-33	4	GRNT
07	Stratigraphic Age	1	34-35	2	36
08	Stream Width (Decimetres)	1	37-39	3	35
09 ·	Stream Depth (Decimetres)	1	40-42	3	. 3
10	Elevation (Metres)	1	43-46	4	750
11	Sample Material	1	47	1	6
12	Replicate Status	1	48-49	2	00
13	Contamination	1	51	1	. 1
14	Bank Type	1	52	1	. 3
15	Water Colour	1	53	1 .	2
16	Water Flow Rate	1	54	1	2
17	Sediment Colour	1	55	1	6
18	Sediment Composition	1	56-58	3	013
19	Stream Precipitate	1	60	1	2
20	Local Precipitate	1	61	1	3
21	Physiography	1	62	1	. 2
22	Drainage Pattern	· 1	63	1	2
23	Stream Type	1	64	1	1
24	Stream Class	1	65	1	3
25	Stream Source	1	66	1	4
26	Date Collected (Day, Month)	1	68-71	4	1908

Fie	ld Description	L	Record	Columns	Length	Example
01	Map Sheet		2	01-06	6	104N16
02	ID (Year, Crew,	Number)	2	07-12	6	841102
03	Zinc	(PPM)	2	16-20	5	70
04	Copper	(PPM)	2	21-25	5	39
05	Lead	(PPM)	2	26-30	5	2
06	Nickel	(PPM)	2	31-35	5	50
07	Cobalt	(PPM)	2	36-40	5	19
80	Silver	(PPM)		41-45	5	0.1
09	Manganese	(PPM)	2	46-50	5	680
10	Iron	(PCT)	2	51-55	5	3.00
11	Molybdenum	(PPM)		56-60	5	2
12	Tungsten	(PPM)		61-65	5	10
13	Tin	(PPM)	2	66-70	5	4
14	Barium	(PPM)	2	71-75	5	250
15	Loi	(PCT)	2	76-79	4	23.2
Rec	ord 3: (Map Sheet) I	D and R	emainde	r of the An	alytical	Data
01	Map Sheet		3	01-06	6	104N16
02	ID (Year, Crew,	Number)	3	07-12	6	841102
03	Arsenic	(PPM)	3	16-20	5	3.0
04	Antimony	(PPM)	3	21-25	5	4.2
05	Mercury	(PPB)	3	26-30	5	10
06	Optional Element 1		3	31-35	5	
07	Optional Element 2		3	36-40	5	
08	Optional Element 3		3	41-45	5	
~~	• • • • • • • • • • • • • • • • • • •		-		-	

46-49

50-54

55-59

60-64

65-69

70-74

75-79

4

5

5

5

5

5

5

3

3

3

3

3

3

3

(PPM)

(PPM)

(PPM)

(PPB)

(PPB)

Optional Element 4

Uranium in Water

Fluorine in Water

pH of Stream Water

Cadmium

Vanadium

Uranium

09

10

11

12

13

14

15

366

B.C. Geological Survey Branch

2.5

125

2.0

0.46

62

8.3

Geological Survey Branch

C

0000

00

C

CC

C

0

C

C

0

C

C

0

C

0

C

C

0

C

C

C

C

C

CC

C

C

C

Province of British Columbi

COALFILE:

• 6 related .dbf files

Bulk.dbf

⇒ location, report number, bulk sample, license no., seam name

Comment.dbf

Explore.dbf

 \Rightarrow operator, owner, status

Map.dbf

 \Rightarrow area, scales, type

Trench.dbf

 \Rightarrow method, samples, location

Borehole.dbf

⇒ identification, drill type, location, elevation, log type, contractor, depth, direction, dip

FIELD DATA:

Recommended Features for a Field Data System:

- ✓ Easy retrieval, sorting and manipulation of field data to assist in map compilation and plotting.
- ✓ Ability to create page size to map size plots at any scale.
- \checkmark Ability to retrieve data and create reports and tables.
- ✓ Consistency in the way field data is collected and reported.
- ✓ Geologic databases created can be incorporated into a GIS and automated map plotting system.
- ✓ Ability to use dBASE files that are related to each other by station number.

FIELD DATA (cont.):

Contents:

- ⇒ Station location, longitude/latitude, traverse, map area
- \Rightarrow Structural measurements
- \Rightarrow Mineral occurrence data
- \Rightarrow Rock types and alteration data
- \Rightarrow Descriptive notes
- ⇒ Analytical results of geochemical data
- \Rightarrow Radiometric age dates
- \Rightarrow Fossil name and age
- \Rightarrow Isotope analyses
- \Rightarrow Photo number
- \Rightarrow Petrographic data
- \Rightarrow Date and coder

Field Data Types:

- \Rightarrow Geological: geological, petrographic, photo.
- ⇒ Physical: legal surveys, line/grid, pits, reclamation, road, local access, stripping, topographic/ photogrammetric, trail, trench, underground development, underground surveys.

STRUCTURE MINERAL **ALTERATION** FOSSIL AGE DATE **GEOCHEM** FILE FILE FILE FILE FILE FILE MINFILE # fossil code domain alt. code type type type min. code remarks rept. no. date batch strike commodity fos. name error prep dip remarks fos. age lab no. data remarks remarks lab field no. id date analyst data **STATION LOCATION FILE** record no. prefix, traverse, station, substation, area, date NTS map, UTM zone, easting, northing, elevation map unit code (age + formation), rock type code no. of records in each subsidiary files

and the second state of the second state of the

FIELD NOTES ISOTOPE PHOTO PETROG. SAMPLE SILT						
notes type photo no. section no. sample no. site data notes type photo no. section no. type anal. data lab remarks textures remarks remarks lab analyst remarks remarks	FILE	FILE type data remarks lab analyst	FILE photo no.	FILE section no. min. % textures rock type	FILE sample no. type	FILE site data

Figure 1. Relational structure of the Geological Database System. Records in related files are linked to the station location file by station number. Related files also contain location coordinates and can "stand alone" for plotting purposes.

371

GEOLOGICAL SURVEY OF CANADA

COMMISSION GÉOLOGIQUE DU CANADA

GEOF

A COMPUTER PROGRAM TO TRANSLATE ORGANIZED ASCII COMPUTER GEOLOGICAL FIELDNOTES TO DATABASE READABLE STRUCTURE

GEOF (Geological Editor Of Fieldnotes) Copyright November 1, 1991.

A. Atrens¹, L.C. Struik² and A. Haynes²

1993

Open File 2618

¹Statistics Canada Ottawa

²Geological Survey of Canada, Cordilleran Division Vancouver

Energie, Mines et Ressources Canada

Energy, Mines and Resources Canada

373

C

00000

C

C

C

000000

000

0000000

0

000

0

00

0

0

C

C

C

0

0

C

C

0

C

C

C

0

C

C

C

0

C

C

0

C

00

0

C

Figure 1. A sample set of field notes as typed onto the Atari Portfolio editor.

Figure 2. This flow-diagram shows the steps in the GEOF system of translating the field notes to comma-delimited files of data.

374

OUTLINE:

Introduction

Indexes

Codes and Key Terms

Published Systems - GEOSCAN, GEOREF

PC-based Systems - PROCITE

Un-published Systems - GSB Index, ARIS

Summary

Lecture by:

L. Jones 19 November 1993

References: TECDOC Section 4.3, Annexes 6.2 and 6.3

.

ORGANIZATION OF EARTH SCIENCE DATABASES

BIBLIOGRAPHIES:

- ⇒ Published geoscience material is collected systematically by several organizations on a global scale.
- ⇒ A thesaurus is a guide to the usage of keywords (indexing terms), their hierarchical relationships and synonyms.
- ⇒ Unpublished bibliographic data on geoscience material includes reports and maps in the archives of geological surveys and exploration and mining companies.

EXAMPLE OF DATA ELEMENTS FOR UNPUBLISHED REPORTS:

- Title of report
- Name(s) of author(s)
- Name of source organization
- Name of report series
- Serial number or code of report
- Number or range of pages
- Notes on illustrations, appendices, maps
- Year of report

- Types and scales of maps in the report
- Language of report
- Subject keywords
- Geographic names
- Longitude/ latitude
- Text of abstract
- Free field for comments
- Location of document
- Name and date of recorder

378

~

C

5

Earth Science Information Databases

INDEXES

Data Elements for Geological, Geophysical, Geochemical and Topographic Map Indexes:

- Title and year of publication
- Name(s) of author(s)
- Name and address of organization that serves as repositories for data
- Name of report series
- Serial and number of publication
- Map projection and scale
- Country and geographic area

- Area covered in square kilometers
- Longitude/ latitude of the boundaries of map coverage and center of map
- Form of data release (hard copy: paper; digital: file type and size, media format, hardware and software compatibility)
- Availability
- Free field for comments

INDEXES (cont.)

Geological map indexes

⇒ typically contain mappable rock units, structural elements observed and type of samples taken

Geophysical map indexes

⇒ typically contain the kind of geophysical data and its characteristics and details about the survey, such as spacing of flight lines and flight characteristics

Geochemical map indexes

 ⇒ typically contain the type of sample and analytical methodologies used for each sample type

Topographic map indexes

⇒ typically contain contour interval and features

INDEXES (cont.)

Data Elements for Air Photography Indexes:

- \Rightarrow Listing of organizations that provide air photos
- \Rightarrow Agency code
- \Rightarrow Date of coverage
- \Rightarrow Scale of photography
- \Rightarrow Focal length of lens used
- \Rightarrow Type of film
- \Rightarrow Cloud cover
- ⇒ Location, such as coordinates of the corners of each photograph

INDEXES (cont.)

Data Elements for **Drill Hole** Indexes:

- \Rightarrow Record number
- ⇒ Name of organization or project
- \Rightarrow Identification number
- \Rightarrow Location
- \Rightarrow Bearing and inclination
- \Rightarrow Total length
- \Rightarrow Location of drill core
- ⇒ Location of drill hole log or report

Open File 1994-20

COUNTRY CODES

MAP-CODE COMPLETE COUNTRY NAME

MAP-CODE COMPLETE COUNTRY NAME

	•		
AFG	Afghanistan	LES	Lesotho
ALG	Algeria	MAG	Madagascar
ANG	Angola	MLW	Malawi
ARG	Argentina	MAL	Malaysia
AUL	Australia	MLI	Mali
AUS	Austria	MAU	Mauritania
BEN	Benin	MEX	Mexico
BGD	Bangladesh	MOR	Morocco
BOL	Bolivia	MOZ	Mozambique
BOT	Botswana	NAM	Nambia
BRA	Brazil	NZE	New Zealand
BUL	Bulgaria	NER	Niger
BUR	Burma	NIR	Nigeria
BDI	Burundi	NOR	Norway
CMR	Cameroon	РАК	Pakistan
CAN	Canada	PAR	Paraguay
CAR	Central African Republic	PER	Peru
CHD	Chad	PHI	Philippines
CHI	Chile	POL	Poland
CPR	People's Republic of China	POR	Portugal
COL	Columbia	ROM	Romania
PRC	Congo	RWA	Rwanda
COS	Costa Rica	SAU	Saudi Arabia
CUB	Cuba	SEN	Senegal
CZE	Czechoslovakia	SOM	Somalia
ECU	Ecuador	SAF	South Africa
EGY	Egypt	SPA	Spain
ETH	Ethiopia	SUD	Sudan
FIN	Finland	SWA	Swaziland
FRA	France	SWE	Sweden
GAB	Gabon	THA	Thailand
GMY	Germany	TOG	Togo
GHA	Ghana	TUN	Tunisia
GRE	Greece	TUR	Turkey
GRN	Greenland	UGA	Uganda
GUA	Guatemala	UK	United Kingdom
GUI	Guinea	TNZ	United Republic of Tanzania
HUN	Hungary	URU	Uruguay
IND	India	USA	United States of America
IND	Indonesia	SSR	USSR
IRA	Iran, Islamic Republic of	VEN	Venezuela
ISR	Israel	YUG	Yugoslavia
ITA	Italy	ZAI	Zaire
	_ ·	ZAM	Zambia
JPN JOP	Japan	ZIM	Zimbabwe
JOR ROK	Jordan Koraa Benublic of	2.11VI	Lundauwe
NUK	Korea, Republic of		

____ $\overline{}$ ---r (~ ((1 5 C C 5 1 (5 1 5 1 **(** 1 C 1 5 0 1 -0 0 **•**** ¢ C 1 r C <u>r</u> 5 r r ٢ ~ ¢

~

[. r

LANGUAGE CODES

LANGUAGE	ABBREVIATION	LANGUAGE	ABBREVIATION
Afrikaans	AF	Korean	КО
Albanian	AL	Kurdish	KU
Arabic	AR	Laotian	LO
Armenian	AM	Latin	LA
Azerbaijani	AZ	Latvian	LV
Basque	BA	Lithuanian	LI
Belorussian	BE	Macedonian	MC
Bengali	BN	Malagasy	ML
Bulgarian	BU	Malaysian	MA
Burmese	BR	Moldavian	MD
Cambodian	CM	Mongol	MG
Catalan	CA	Norwegian	NO
Chinese	CH	Panjabi	PJ
Croatian	CR	Perisan	PE
Czech	CZ	Polish	PO
Danish	DA	Portuguese	PR
Dutch	DU	Provencal	PV
English	EN	Romanian	RO
Eskimo	EK	Romansh	RH
Estonian	ES	Russian	RU
Faroese	FA	Serbian	SE
Finnish	FI	Sinhalese	SI
Flemish	FL	Slovakian	SL
French	FR	Slovenian	SV
Gaelic	GL	Spanish	SP
Georgian	GG	Swahili	SH
German	GE	Swedish	SW
Greek	GR	Tadzhikistan	TA
Gujerati	GU	Tagalog	TG
Hebrew	HE	Tamil	TM
Hindi	HI	Thai	TH
Hungarian	HU	Turkish	TU
Icelandic	IC	Turkmenistan	TR
Indonesian	IN	Ukrainian	UK
Italian	IT	Urdu	UR
Japanese	JA	Uzbekistan	UZ
Kazakhstan	KZ	Vietnamese	VN
Kirghiz	KI	Welsh	WL
r r

~

1

(

(

CLASSIFICATION CODES (AGI)

Reference

SHIMOMURA, Ruth H. (Editor), GeoRef Thesaurus and Guide to Indexing; America Geological Institute, (1989) 731 p.

Category Codes

- 01 Mineralogy and Crystallography (mineral data, crystal structure, crystal chemistry, crystal growth, phase equilibria, etc.)
- 02 Geochemistry (surveys, trace elements, isotopes, cycles, instruments, etc.)
- 03 Geochronology (absolute age, fission-track, time scales, tephrochronology, tree rings, exposure age, etc.)
- 04 Extraterrestrial geology (Moon, Venus, Mars, Mercury-Planet, Jupiter, Planetology, etc.)
- 05 Petrology, Igneous and metamorphic (Igneous rocks, metamorphic rocks, metasomatism, metamorphism, phase equilibria, magmas, lava, intrusions, inclusions, etc.)
- 06 Petrology, sedimentary (sedimentary rocks, sediments, sedimentation, diagenesis, sedimentary structures, etc.)
- 07 Marine geology and oceanography (ocean floors, ocean basins, ocean waves, circulation, continental shelf, continental slope, etc.)
- 08 Paleontology, general (studies on fossil plants and animals, concepts, life origin, applications, methods, etc.)
- 09 Paleontology, paleobotany (fossil plants, palynology)
- 10 Paleontology, invertebrate (taxonomy, morphology, evolution, etc.)
- 11 Paleontology, vertebrate (taxonomy, morphology, evolution, etc.)
- 12 Stratigraphy, historical geology and paleoecology (biostratigraphy, lithostratigraphy, evolution of land masses, paleomagnetism, paleogeography, biogeography, etc.)
- 13 Areal geology, general (area studies dealing with more than one aspect of geology)
- 14 Areal geology, maps and charts (maps, cross sections, diagrams, with no separate text)
- 15 Miscellaneous and mathematical geology (biography, bibliography, annual reports, popular and elementary geology, mathematical principles, historical accounts, etc.)
- 16 Structural geology (tectonics, folds, faults, fractures, structural analysis, orogeny, etc.)
- 17 Geophysics, general (theoretical studies, experimental studies, models, observatories, etc.)
- 18 Geophysics, solid-earth (tectonophysics, plate tectonics, sea-floor spreading, crust, mantle, core, paleomagnetism, plate tectonics, etc.)
- 19 Geophysics, seismology (earthquakes, elastic waves, etc.)
- 20 Geophysics, applied (geophysical surveys, geophysical methods)
- 21 Hydrogeology and hydrology (ground water, drainage systems, recharge, hydrochemistry, etc.)
- 22 Engineering and environmental geology (foundations, earthquakes, dams, reservoirs, storage, rock mechanics, soil mechanics, pollution, conservation, reclamation, etc.)
- 23 Surficial geology, geomorphology (landform description, landform evolution, environment, etc.)
- 24 Surficial geology, Quaternary geology (glacial features, glaciation, sediments, palynology, stratigraphy, etc.)
- 25 Surficial geology, soils (genesis, morphology, composition, etc.)
- 26 Economic geology, general and mining geology (mineral resources, water resources, production, concepts)
- 27 Economic geology, metals
- 28 Economic geology, non-metals
- 29 Economic geology, energy sources (petroleum, gas, coal, oil shale, geothermal energy, etc.)

CLASSIFICATION CODES (BRGM-CNRS)

Reference

PASCAL GEODE Lexique, Francais-Anglais, Sciences de la Terre - Earth Sciences, CNRS-BRGM, (1986) 289 p.

Earth Sciences

220 MINERALOGY, GEOCHEMISTRY, EXTRATERRESTRIAL GEOLOGY

- A. Mineralogy
- 01 Mineralogy: general, methodology, regional studies
- 02 Silicates
- 03 Non-silicates

B. Geochemistry

- 01 Geochemistry: general, methodology, regional studies
- 02 Water geochemistry
- 03 Soil and rock geochemistry
- C. Isotopic Geochemistry, Geochronology
- 01 Isotopic geochemistry
- 02 Geochronology
- D. Cosmochemistry, Extraterrestrial Geology
- 01 Extraterrestrial geology
- 02 Meteorites, Tectites, Impactites
- 221 METALLIC AND NON-METALLIC DEPOSITS
- A. Metallic and Non Metallic Deposits
- 01 Geochemical exploration, methodology, general
- 02 Metal geology
- 03 Useful material except metal geology

222 CRYSTALLINE ROCKS

- A. Crystalline Rocks
- 01 Igneous and metamorphic rocks petrology, volcanic processes, magmas
- 02 Experimental petrology

223 SEDIMENTARY ROCKS AND MARINE GEOLOGY

- A. Sedimentary Rocks
- 01 Petrology of sedimentary rocks except quaternary
- 02 Čoal
- 03 Hydrocarbons
- 04 Physical properties of sedimentary rocks
- **B.** Marine Geology
- 224 STRATIGRAPHY, AREAL GEOLOGY, GENERAL GEOLOGY
- A. Stratigraphy
- B. Areal Geology, Maps
- 01 Areal geology
- 02 Geologic maps, cartography
- C. General Geology
- 225 TECTONICS, INTERNAL GEOPHYSICS
- A. Tectonics, Structural Geology, Plate Tectonics
- **B.** Internal Geophysics
- 01 Geophysics, general, magnetic, electric and thermic methods and properties
- 02 Solid-earth geophysics, tectonophysics, gravimetry
- 03 Earthquakes, seismology
- 04 Applied geophysics
- 226 HYDROLOGY, ENGINEERING GEOLOGY AND SUPERFICIAL GEOLOGY
- A. Hydrology, Hydrogeology
- 01 Hydrology
- 02 Hydrogeology
- 03 Water resources

٢

C

C

(

COMPUTER DATABASE SYSTEMS FOR THE EARTH SCIENCES: APPLICATIONS AND PROSPECTS IN MINERALOGY, MINERAL RESOURCES AND MUSEUM CURATION

On behalf of The Mineral Database Workshop, 29th International Geological Congress, Kyoto, Japan, 29-30 August 1992

By

Graham C. Wilson Turnstone Geological Services Ltd. P.O. Box 130, Station "B", Toronto Ontario CANADA M5T 2T3

Tel (416)-466-3386

Mon 29-Jun-1992 TGSL Project 1992-006 1st edition, version 1 96 pages, 16 tables Table 1. A Short List of Databases Available for Purchase / On-Line Access.

Database/Source

Reference

MAJOR ON-LINE SYSTEMS Elsevier/ Geo Abstracts

American Geological Institute

Geosystems

MINING INDUSTRY Institution of Mining and Metallurgy

Mining Journal Ltd and Montagu Mining Finance Anon (1989)

Robertson Info-Data Inc., Vancouver Comments

GEOBASE is a major on-line service including sources such as Mineralogical Abstracts. CD-ROM option in preparation. >400,000 items.

GeoRef is available on-line and on CD-ROM. An 'industry standard' Earth Sciences database, global in every sense.

GeoArchive is available on-line and on CD-ROM. UK-based system with $\approx 675,000$ records. Broad-based like GeoRef, covering economic geology, energy resources, hydrology, oceanography and other fields. Varied search options. Coverage from 1974 to present.

The IMMAGE database - see text.

Worldwide metal mining - March 1990 release of gold mines in the Western world. The Metallica 2000 system, later expanded to other metals, includes > 1700 mines plus 400 major and 400 other mining and exploration firms. Reports can be output / downloaded to Lotus 1-2-3

MIN-MET Canada v.2, a database of >21 MB of company annual reports and other sources, with data on >2500 companies and >8700 occurrences.

Only a glimpse of many academic- and industry- oriented databases on the market. See also notes on database systems in the text, some of which are available for purchase or selective access.

- Turnstone Geological Services Ltd, 1992 -

-

~

r C

5 C 5 5 5 C C (1 (5 5 5 5 C r ~ r ŗ , r • ŗ e e , ~

,

Database summaries as cataloged in the:

Canadian Geoscience Database Directory

Product:		SCAN SCAN					
Publisher:	Geok Natio	ogical Sun nal GEOS	/ey of CAN	Canada / Centre	Geoscience	Information Divis	ion /
Custodian:		l Reade ead, Natio	nal G	EOSCAN	Centre		613-992-8916
Scientist:	Antho G	ony Kopf-J EOSCAN	ohnso Data	on Base Man	ager		613-992-8916
Other:							
Description:	GEO	SCAN is a	biblic	ographic d	ata base con	taining approx. 12	20 000
Keywords:	Geos	cience info	ormat	ion; Biblio	graphy		
Coverage: NTS:	Not u All	niform				Scales:	
Geographic refer Positional accura Map projections:	acy:					Resolution:	
Dimensionality?:		No	4	O a a tian		Chattan	
Time period cove		1970	to:	Continu		Status:	Operational
Present form of a	data:	Digital		Hard cop	-		
Host computer: operating syste	en:	HP 3000 MPE	Serie	es 70 (Min	i)		
Database softwa Data structure: User base: Output formats:	are:	MINISIS Alphanul All		S/ISIS		Data file size	: 133 Mb
Output media:		9 Track	Гаре	; Floppy D	isc; Paper;	Accessible online	
GIS software:		No					
Notes:							
						· · ·	

Please add your comments and opinions as to the value of this data set to the NWT CMSD and MRM project:

	al GEOSCAN record provides the g types of information:
Title:	STRATIGRAPHY AND STRUCTURE OF THE MOUNT SELWYN AREA, ROCKY MOUNTAINS, NORTHEASTERN BRITISH COLUMBIA
Author:	MCMECHAN, M E
Source:	GEOLOGICAL SURVEY OF CANADA, PAPER 85-28, 34P. 1987.
Subjects:	ECONCMIC GEOLOGY; PALEONTOLOGY; TECTONICS; STRATIGRAPHY; STRUCTURAL GEOLOGY
Age:	PRECAMBRIAN; PROTEROZOIC; PALEOZOIC; MESOZOIC; CENOZOIC
Keywords:	FOSSILS; CARBONATE ROCKS; SEDIMENTARY ROCKS; METAMORPHIC ROCKS; SEDIMENTARY STRUCTURES; METAMORPHISM; GREENSCHIST FACIES; METAMORPHISM, REGIONAL; STRUCTURAL FEATURES; FAULTS; FOLDS
Descripto	TS: ROCKY MOUNTAIN TRENCH, B C; ROCKY MOUNTAIN THRUST BELT; ROCKY MOUNTAIN FOLD BELT; MINNES GP; STOODART GP; KECHIKA GP; CONODONTS; TRILOBITA; BRACHIOPODA; GASTROPODA; BRYOZOA; CORALS; STROMATOPOROIDS; CHAROPHYTES; PELECYPODA; OSTRACODA; MISINCHINKA GP; GOG GP

Map Info: MAPS (1:50 000, 1:250 000);

Region: BRITISH COLUMBIA

NTS: 0930; 0948

GeoRef™

GcoRcf is the SilverPlatter CD-ROM database that covers the fields of geology and geophysics. Produced by the American Geological Institute and based on over 3,000 journals plus books, maps, reports, and theses, GeoRcf contains over 1.5 million records dating back as far as 1785.

Complete, Authoritative Coverage of All Aspects of Geology

References in *GeoRef* are drawn from over 3,000 journals, as well as books, maps, reports, and U.S. and Canadian Master's theses and Doctoral dissertations for geology and related degrees granted since 1965. *GeoRef* contains references to all U.S. Geological Survey publications since 1971, with references to most of the Survey publications before that date.

GeoRef is a comprehensive, global database that covers geology and its many related and peripheral topics worldwide. Included are citations, abstracts, and references about geophysics and structural geology, economic geology, paleontology and stratigraphy, engineering and environmental geology, geomorphology, geochemistry, sedimentary petrology, and many other relevant topics.

GeoRef is a powerful database that:

- · covers a wide range of geoscience-related topics
- contains over 1.5 million records
- is updated frequently four times per year
- delivers valuable information quickly

A Powerful and Timely Research Tool

CD-ROM technology and a subscription to *GeoRef* can put up-to-date information literally at your fingertips, bringing important data in-house in a convenient and accessible form. Plus, *GeoRef* is updated four times each year with between fifteen and twenty thousand new records added each quarter.

As with all of SilverPlatter's databases, *GeoRef* offers quick and easy access to volumes of information.

Specific descriptors and broad classification categories give you access to exactly the information you need. Powerful database features and SPIRS, SilverPlatter Information Retrieval System software, provide easy access to important material for expert and novice users alike.

With no connection fees or usage costs, a SilverPlatter CD-ROM subscription can easily cost less than an online equivalent. And the convenience and efficiency of CD-ROM searching beats the weight and bulk of a printed database anytime.

	Facts	
Title		
	Geokej	1
Source	American Geological Institute	,
Coverage		!
Number of CDs		I
Print Equivalent	Bibliography and Index of Geology; Bibliography of North	ļ
	American Geology; Bibliography and Index of Geology	ł
·	Exclusive of North America; Geophysical Abstracts; and	1
	Bibliography of Theses in Geology	ļ
Onlinc Equivalent	GeoRef	I
Update Frequency	Quarterly	I
Number of Records in Database	1 5 million	ļ
Approximate Number of		i
Records Added Annually	£0.000 to \$0.000	1
Number of Journals Indexed	2 000	
Format		1
Abstracts Included	Ver for approximately 100	l
	i es, lor approximately 10%	
Purchase or Lease	Lease	1
Searchable Fields		
	Publication Year, Category Code, and others.	
	SD 040	102

SP-060-102

SilverPlatter.

Give Us a Month, We'll Show You a World of Information

SilverPlatter Information offers a 30-day, no-risk trial for any database you order. If, after having *GeoRef* or any other SilverPlatter database installed for thirty days, you decide not to subscribe, just return the discs, software, and documentation and owe nothing.

What a Subscription Includes

Subscription packages to *GeoRef* include the CD-ROM database on three compact discs with four updates per year, SilverPlatter software, on-disc Help screens and Database Guides, comprehensive printed documentation, toll-free customer support, and a subscription to *The SilverPlatter Exchange* newsletter.

For More Information or to Become a SilverPlatter CD-ROM Subscriber, Call:

SilverPlatter Information (U.S.) 800-343-0064 SilverPlatter Information (U.K.) 0800 282 133 or

> American Geological Institute 4220 King Street Alexandria, VA 22302-1507 800-336-4764 703-379-2480

To find out about any of SilverPlatter Information's over 50 database titles, please call for our catalog.

SilverPlatter Product Families Business • Education • Food and Agriculture • Health & Safety Health Sciences • Science and Technology • Social Sciences

SilverPlatter

SilverPlatter Information, Inc.

One Newton Executive Park, Newton Lower Falls, MA 02162-1449, U.S.A. • TEL: 617-969-2332 • FAX: 617-969-5554

Open File 1994-20

5

C

Mini-micro CDS/ISIS REFERENCE MANUAL (Version 2.3)

Division of Software Development and Applications Office of Information Programmes and Services

> Unesco 7, Place de Fontenoy 75700 Paris

> > November 1988

(c) Unesco

Ministry of Energy, Mines and Petroleum Resources (MEMPR): Bibliographic Management System (BMS)

Example of data elements for unpublished reports.

<u>#</u>	Field name	Туре	<u>Widt</u>	hField description
$\begin{array}{c}1\\2&3&4&5&6\\7&8&9&1&1&1&2\\1&3&4&5&6&7\\1&1&2&2&1&2&2&3\\2&2&2&2&2&2&2\\2&2&2&2&2&2&2\\2&2&2&2&$	ID NO TITLE AUTHOR ORGANIZ RPT SER SER ⁻ NO PAGES ILLUS YEAR MAP TYPE MAP ⁻ SCALE LANGUAGE KEY WORDS GEOGR MAP NO MIN LAT MAX ⁻ LAT MIN LONG MAX ⁻ LONG ABSTRACT NOTES AVAILABLE RECORDER REC_DATE	Num. Char.	5 240 160 80 60 20 8 20 4 80 40 20 80 40 20 88 8 8 10 10 40 20 8 8 8 8 10 10 80 80 80 80 80 80 80 80 80 80 80 80 80	Record number Title of report Name(s) of author(s) Name of source organization Name of report series Serial number or code of report Number or range of pages Notes on illustrations, appendices Year of report Types of maps in the report Scale of maps Language of report (abbreviation) Subject keywords Geographic names Map number or designator Minimum latitude (deg., min., sec.) Maximum latitude Minimum longitude Text of abstract Free field for comments Location of document Name of recorder Date of recording

Province of British Columbia Ministry of Energy, Mines and Petroleum Resources Hon. Anne Edwards, Minister

MINERAL RESOURCES DIVISION Geological Survey Branch

DIGITAL BIBLIOGRAPHIC INDEX of B.C. GEOLOGICAL SURVEY BRANCH PUBLICATIONS 1874 - 1993

OPEN FILE 1994-13

EXAMPLE OF LOCATION & AUTHOR INDEX

<u>Field</u>	Field Name	Туре	Width
1	NTSA1	Character	4
2	NTSA2	Character	3
3	NTSB1	Character	4
4	NTSB2	Character	3
5	NTSC1	Character	4
6	NTSC2	Character	3
7	NTSD1	Character	4
8	NTSD2	Character	3
9	AUTHOR	Character	20
10	INITIAL	Character	6
11	TITLE1	Character	200
12	AG_CODE	Character	8
13	PUBLICATIO	Character	60
14	PUB_TYPE	Character	55
15		Character	13
16	PUB_YR	Numeric	4
17	MAPS	Character	15
18	SCALE	Character	10
19	MAJ_REF	Logical	1
20	IN_PRINT	Logical	1
21	LIB_CONG	Character	15
. 22	ISBN	Character	15
23	KEY1	Character	50
24	KEY2	Character	50
25	KEY3	Character	50
26	KEY4	Character	50
27	KEY5	Character	50
28	KEY6	Character	50
29	KEY7	Character	50

Fie	<u>eld</u>	Field Name	Туре	Width
	30	KEY8	Character	50
	31	KEY9	Character	50
	32	KEY10	Character	50
	33	KEY11	Character	50
	34	KEY12	Character	50
	35	KEY13	Character	. 50
	36	KEY14	Character	50
	37	KEY15	Character	50
	38	KEY16	Character	50
	39	PUBPAGE	Character	18
	40	AUTHOR2	Character	20
	41	INITIAL2	Character	6
	42	AUTHOR3	Character	20
	43	INITIAL3	Character	6
	44	AUTHOR4	Character	10
	45	INITIAL4	Character	6
	46	AUTHOR5	Character	10
	47	INITIAL5	Character	6
	48	AUTHOR6	Character	10
	49	INITIAL6	Character	6
	50	AUTHOR7	Character	10
	51	INITIAL7	Character	6
	52	AUTHOR8	Character	10
	53	INITIAL8	Character	6
	54	AUTHOR9	Character	10
	55	INITIAL9	Character	6
	56	REC_NO	Numeric	5
	57	THESIS	Character	5
**	Tot	al **		1428

................

GRANT, B., NTS (National Topographic System) Location & Author Index to Publications of the British Columbia Geological Survey Branch, *British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Information Circular 1991-7, (1991) 304p.

SCREEN FORMAT for inputting data to NTS & Author Index of British Columbia publications

AUTHOR(S):	INITIALS	YEAR	NTS MAP
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	XXXX	a XXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX		b XXXX XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX		c XXXX XXX

KEYWORDS:

Use [Cntl-End] when input complete

 $(\mathbf{y}, \mathbf{y}, \mathbf{y$

B.C. ASSESSMENT REPORT INDEXING SYSTEM (ARIS)

- a library of over 22 000 assessment reports dating from 1947
- reports of assessment submitted by the mineral industry under the Mineral Tenure Act in order to maintain claims in good standing
- \$56 million dollars of exploration work submitted in 1990
- information contained in the reports is a valuable reference and research tool for mineral exploration, academic studies and resource management

Assessment Report Indexing System (ARIS) designed to assist in processing a rapidly mounting volume of assessment report administration and data management.

ARIS Database

- The ARIS system modelled after the MINFILE (Mineral Inventory File)
- The database design uses an "entity-relationship" model comprised of codes (entities), with interrelated tables of data containing common assessment report numbers
- ARIS database resides on a mainframe computer and could easily be ported to a PC-based system.

Present Functions of ARIS:

- 1. Data capture
- 2. Administration and maintenance
- 3. Inquiries (ad hoc and pre-programmed)
- 4. Distribution functions

Commodity Table Entity-Relationship Model

1 5

1. Data Capture (ARIS)

Data Entry

- 1) General Data (locational)
- 2) Names (author owner operator)
- 3) Geological Summary
- 4) Keywords
- 5) Work Data
- 6) Approval Information
- 7) Amend/Reject Information

2. Administration and Maintenance (ARIS)

Reports

- 1) Tables Report
- 2) Name & Address Table Report
- 3) NTS Map Index
- 4) ARIS Summary Sheet
- 5) Off Confidential Report
- 6) Status Report by NTS Map
- 7) Letters (approval, amend, rejection)
- 8) File to Produce Map List

Table Maintenance

- 1) Mining Camp Codes
- 2) Mineral Act Regulations Code
- 3) Date Codes
- 4) Commodities
- 5) Mining Divisions
- 6) NTS Mapsheet Names
- 7) Specific Work Types
- 8) General Work Types
- 9) Name & Addresses
- 10) Name Types
- 11) Keywords

System Maintenance

- 1) System Error Message Maintenance
- 2) System Error Message Inquiry
- 3) Prompter (Help) Maintenance

3. Inquiries (ARIS)

Inquiries

- 1) Claim Name
- 2) Owner Operator Author Name
- 3) Property Name
- 4) Mining Division
- 5) NTS (National Topographic System) Mapsheet
- 6) **MINFILE Number**
- 7) Latitude/Longitude

4. Distribution Functions (ARIS)

- contributor to GEOSCAN, a federal-provincial cooperative program. GEOSCAN is a computerized bibliographic index to geological information dealing with the Canadian landmass, and offshore areas
- produces diskettes in GEOSCAN compatible format.
- perform searches to interested clients free of charge
- complete assessment report libraries on microfiche
- copies of reports can be ordered
- ARIS available on paper, microfiche and computer diskettes. The index provides latitude, longitude, UTM co-ordinates, claim names, operator, author, type of work reported and report year. Available 14 ASCII files to facilitate access by a variety of commercial software programs, such as database management and plotting packages
- 90 index maps mainly at a scale of 1:250 000

Computer Programs and Data Examples

Program/Data	Description	Source/Contact
ARISTRAN	Routine to prepare Assessment Reports for plotting	Talis Kalnins, GSB
ATLAS	World database of uranium deposits	Maks Pecnik, IAEA
Bedrock	Bibliography database	Brian Grant, GSB
COALFILE	Borehole data for coal deposits	Alex Matheson, GSB
Georef Search Eg.	Economic geology in Tanzania	Sharon Ferris, EMPR Library
GSC OF 2419	Index to GSC Open Files	GEOSCAN Centre, GSC
GSB-GDS	Field data program	Don Macintyre, GSB
GSB OF 1994-13	Bibliographic Index of GSB Publications	Brian Grant, GSB
GSC Open File 2328	Canadian Geoscience Data Directory	GSC
Help Desk	Client support supplement to MINFILE/pc	Larry Jones, GSB
Location Index	Mineral occurrence index (first level data)	Larry Jones, GSB
Metadata File	Database directory	Larry Jones, GSB
MINERAL	Uranium mineral database	IAEA
MINFILE/pc	Mineral inventory database	Larry Jones, GSB
NEWPET	Statistical plotting of data	Daryl Clarke, Memorial Univ.
PKZIP	File compression routine	PKWARE Inc.
RGS	Regional Geochemical Survey sample data	Wayne Jackaman, GSB
UDEPO	Database of uranium deposits	IAEA

CONTACTS:

Sun	Ministry of Energy, Mines and Petroleum Resources, Geological vey Branch, 5th Floor, 1810 Blanshard Street, Victoria, B.C. V8V 1X4, (604) 952 0386, Fax. (604) 952 0381.
	tional Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A- 0 Vienna, Austria, Tel. 43 1 2360 ext. 2758, Fax 43 1 234564.
Eart	versity of Newfoundland, Department of Earth Sciences, Centre for th Resources Research, St.John's, NFLD, Canada A1B 3X5, Tel. (709) 8346/8142, Fax (709) 737 2589.
Can	SCAN Centre, Geological Survey of Canada, Natural Resources ada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Tel. (613) 996 4157, (613) 996 9990.
PKWARE, Inc	., 9025 N. Deerwood Drive, Brown Deer, WI 53223.

See also Geological Survey Branch, Geoscience Database Directory, Section 3, pages 40 - 50.

C ~ 5 C 1 -C - \mathbf{C} 0 0 0 (5 ~ 1 5 1 -

P --

- Data Entry: MINFILE and Project Data
- Discussion and Evaluation

 \overline{c}

C

r r r r r

LLLL

5

<u>___</u> 0 (-<u>____</u> <u>___</u> <u>(</u> <u>.</u>-r (r e ۴ r ,... r , .

.

, ,

Table of Contents	PAGE
1. Workshop Agenda	1
2. Basic DOS	
a. DOS (Disk Operating System)	2-6
3. Introduction to MINFILE	
a. MINFILE is	7
b. MINFILE consists of	8
i. The Database	
The MINFILE Database has	
information on	9-10
✓ Use MINFILE data	11
✓ For example	12-14
ii. The Program The MINFILE Program	16
✓ The MIRT ILL Program ✓ MINFILE Contains	15
✓ MINFILE Contains ✓ MINFILE Requirements	16
✓ MIRT ILL Requirements ✓ MIRT ILL Menu Trees	19.20
iii. The Products	18-20
✓ MINFILE Products	21
Product List and Index Map	22-23
MINFILE Map List	24
 Product Comments 	25
4. Installing the Program, Data and Notices of Work	
a. Installation	26-28

Table of Contents (continued)	
5. Searching the data	
a. The Search Menu	29
a. Search Comments	30
6. Data Interpretation	
a. Data LimitsWARNING	31
b. MINFILE Database Files	32
c. MINFILE Database Structure	33-35
d. MINFILE Coding Card	36-39
e. Exploration Coding Card	40
f. Exercise 1	41-42
7. Reporting	
a. Report Generation Menu	43
b. Sample Reports	44-56
8. Utilities and Data Transfer	
a. Utilities Menu	57
i. General Utilities	58
ii. Data Transfer Utilities	59-61
b. Exercise 2	62
9. MINFILE and Project Data Entry	
a. Data Entry Menus	63
b. MINFILE Data Entry Flow Chart and Exercise 3	64
i. Lawyers Deposit printout	65-70
c. Project Data Entry Flow Chart and Exercise 4	71
i. Project printout	72
10. Discussion and Evaluation	73-74

5 -5 0 5 -~ 5 \mathbf{C} 5 -~ --~

TABLE OF CONTENTS

.

•		Page
I. II	NTRO	DUCTION 1
А	. Abo	but MINFILE/pc
- •		The History of MINFILE/pc
	2.	MINFILE/pc Features
В	. Inst	alling MINFILE/pc
	1.	Required Hardware
	2.	The MINFILE/pc Package
	3.	How to Install MINFILE/pc
	4.	Logging on to MINFILE/pc5
	5.	Installing MINFILE data
	6.	Installing Exploration data
II. C	PERA	TING IN MINFILE/pc
		· · · · · · · · · · · · · · · · · · ·
A	. Get	ting Started11
В	. Get	ting Help in MINFILE/pc12
с	. Get	ting Around in MINFILE/pc12
D). The	Main System Menu
		•
E	. Ger	neral Comments on Searches in MINFILE/pc13
	1.	Hints for Searches in MINFILE/pc – The Friendly Finder Option
	2 .	Between Searches14
	3.	Limitations to MINFILE/pc Searches
	4.	Executing MINFILE/pc Searches
	5.	Returning to the Main System Menu15
F.	. Ger	nerating Reports in MINFILE/pc
	1.	Current Settings
	2.	Change Destination
		a. Reports Sent to Display
		b. Reports Sent to the Printer
		c. Reports Sent to File
	3.	Change Settings
	Ο.	a. Display Options
		b. Printer Options
		c. File Options
	4.	Report Type
	4. 5.	When You Are Done With Report Generation
-		
G		neral Comments on the Data Entry System
	1.	Getting into the Data Entry System
	2.	Using the Menus in the Data Entry System
	3.	The Text Editor
	4.	Getting Help In The Data Entry System
	5.	Getting out of the Data Entry System25

......

-

-<u>____</u> ٢- \mathbf{c} 1 C 5 C (5 C (5 **(** 5 (C 1 <u>(</u> (*** C C C e <u>e</u>-• **~**---۶۰۰ **.**.... ۴ e ŕ ÷ • r , ~ r مر .

> , ____

	Α.	Location Search	
		1. Latitude/Longitude	28
		2. Universal Transverse Mercator (UTM)	
		3. National Topographic Series (NTS) Map Sheet	29
		4. B.C. Map Sheet	29
		5. Mining Division	
		6. Tectonic Belt	
		7. Physiographic Region	
		8. Terrane	
	В.	Commodity Search	30
	C.	Status Search	31
	D.	MINFILE Name/Number Search	31
	E.	Mineralogy Search	
	F.	Age (Host Rock or Mineralization) Search	
	G.	Deposit Character/Class Search	
	H.	Deposit Type (B.C. Mineral Deposit Profiles) Search	
	L	Lithology Search	
	 J.	Formal/Informal Host Search	
	ы. К.	Production Search	
		Inventory Search	
	L.		
V.	MIN	IFILE REPORTS	
	Α.	Types of MINFILE Reports Available	
		1. Master Report (RGEN0100.RPT)	
		2. Production Report (RGEN0200.RPT)	4(
		3. Capsule Geology/Bibliography Report (RGEN0300.RPT)	4(
		4. Map Legend Report (RGEN0400.RPT)	4 [·]
		5. Map Commodity Legend Report (RGEN4400.RPT)	4 '
		6. Data Dictionary Control Report (RGEN0500.RPT)	4
		7. MINFILE Number Index (RGEN0600.RPT)	
		8. Primary Name Index (RGEN0700.RPT)	
		9. Primary Commodity Index (RGEN0800.RPT)	
		10. NTS Map Index (RGEN0900.RPT)	<u>م</u>
		11. Alphabetical Index (RGEN1000.RPT)	
		•	
			4. A'
		 Producers & Potential Production Report (RGEN5200.RPT) 	

414

۷.	MIN	FILE UTILITIES45
	Α.	Reset Total Deposits
	B.	Import/Export Search File
		1 Import Search File (Option #1) 46
		2. Export MINFILE No.'s File (Option #2)
		3. Export standard data (ASCII) file (Option #3)
		4. Export standard data (dBASE) file (Option #4)
		5. Export QUIKMap File for Deposits (Option #5)
	C.	Import/Export Updates
	D.	Device Setup
	Ε.	Append/Delete Data
		1. Append Data (ALL)
		2. Delete Data (MINFILE)
		3. Delete All MINFILE Data
		4. Batch Delete Occurrences
		5. Batch Append to Bibliography
	-	
	F.	Parcel/Archive Functions
		1. Parcel MINFILE Data
		2. Parcel Entities
	G.	Pack/Reindex Database
	Н.	Renumber MINFILE Occurrence
		1. Change MINFILE Number
		2. Duplicate MINFILE Occurrence
'VI.	MIN	IFILE DATA ENTRY
	A.	Selecting an Occurrence to Edit: The DEPOSIT Menu
	Λ.	1. Select From List
		2. Previous in List
		3. Next in List
		4. MINFILE Number Select
		5. Create an Occurrence or Anomaly
		6. Delete an Occurrence of Anomaly
		7. Append from Updates
	B.	Selecting a Screen to Edit: The SCREEN Menu63
	<u> </u>	1. Identification Screen
		2. Mineral Occurrence Screen
		3. Host Rock Screen
		4. Geological Setting Screen
		5. Reserves/Assays Screen
		6. Production Screen
		7. Capsule Geology Screen
		7. Capsule Geology Screen
		9. Notes
		J. IIUC5

_

<u>~</u>·· ---r 5 5 ([<u>(</u> r C (~ ~ <u>.</u>.... p r-C 1 e ^ ۴. Ċ . ,

*

ſ

.

......

		10. Exploration Activity and Work History	75
	C .	Edit Modes in the Data Entry System: The EDIT Menu	
		1. Append	76
		2. Revise	77
		3. Browse	77
		4. Delete	77
		5. Move	
		6. Insert	
		7. Submit	
		8. Undo	
		9. Options	
		10. Compare	80
	D.	Printing a Report in Data Entry: The PRINT Menu	80
	E.	Obtaining Help in Data Entry: The HELP Menu	81
		1. MINFILE/pc Help System	81
		2. Friendly Finder: ON (Proximity-Scan)	
		3. DOS Command Shell	82
VII.	SE	ARCHING THE EXPLORATION DATABASE	83
	Α.	Project Details Search	
		1. Project Search	
		a. Project Number	
		b. Project Name	
		c. Project Type	
		d. National Topographic Series (NTS) Mapsheet	
		2. Notices Search	
		a. Notice Year	
		b. Notice Type	
		c. Received Date	
		d. Approved Date	
		3. Exiting the Search Menu	
VIII.	EX	PLORATION REPORTS	87
	A.	Exploration Master Report (RGEN5000.RPT)	87
	В.	Exploration & Development Report (RGEN5100.RPT)	88
	C.	Producers & Potential Producers Report(RGEN5200.RPT)	88
IX.	EX	PLORATION UTILITIES	89
	A.	Reset Total Projects	
	Β.	Import/Export Search File	
		1. Import Search File (Option #1)	
		2. Export Project No.'s File (Option #2)	
		3. Export standard data (ASCII) file (N/A)	
		 Export standard data (dBASE) file (N/A)	92

416

D. Device Setup 93 E. Append/Delete Data 94 1. Append Projects Data 94 2. Delete Projects Data 94 7. Parcel/Archive Functions 95 1. Parcel Functions 95 2. Notices of Work Annual Archive 96 G. Pack/Reindex Database 96 X. EXPLORATION DATA ENTRY. 99 A. Introduction 99 B. The Exploration Database 99 1. Select From List 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 103 3. Project or Notice of Work 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 8. Didetes in the Data Entry System: The EDIT Menu 104 9. <		C.	Import Notices from MIS System	
1. Append Projects Data 94 2. Delete Projects Data 94 F. Parcel/Archive Functions 95 1. Parcel Functions 95 2. Notices of Work Annual Archive 96 G. Pack/Reindex Database 96 X. EXPLORATION DATA ENTRY. 99 A. Introduction 99 B. The Exploration Database 99 1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 1. Project. 104 2. Notices of Work 105 6. List to Main Menu 104 7. Append 106 <		D.	Device Setup	93
1. Append Projects Data 94 2. Delete Projects Data 94 F. Parcel/Archive Functions 95 1. Parcel Functions 95 2. Notices of Work Annual Archive 96 G. Pack/Reindex Database 96 X. EXPLORATION DATA ENTRY. 99 A. Introduction 99 B. The Exploration Database 99 1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 1. Project. 104 2. Notices of Work 105 6. List to Main Menu 104 7. Append 106 <		F	Annend/Delete Data	QA
2. Delete Projects Data 94 F. Parcel/Archive Functions 95 1. Parcel Functions 95 2. Notices of Work Annual Archive 96 G. Pack/Reindex Database 96 X. EXPLORATION DATA ENTRY 99 A. Introduction 99 B. The Exploration Database 99 B. The Exploration Database 99 B. The Exploration Database 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 10. Selecting a Screen to Edit: The SCREEN Menu 104 1. Append 106 2. Revise 106 3. Browse		b an -	••	
1. Parcel Functions				
1. Parcel Functions		F	Parcel/Archive Functions	95
2. Notices of Work Annual Archive 96 G. Pack/Reindex Database 96 X. EXPLORATION DATA ENTRY. 99 A. Introduction 99 B. The Exploration Database 99 1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 102 2. Previous in List and Next in List. 103 3. Project to Notice of Work 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 1. Project. 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 104 1. Project. 106 2. Revise 106 3. Browse 106 4. Delete		• •		
X. EXPLORATION DATA ENTRY				
A. Introduction 99 B. The Exploration Database 99 1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 102 2. Previous in List and Next in List. 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 1. Project 104 2. Notices of Work 105 1. Append 106 2. Notices of Work 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107		G.	Pack/Reindex Database	96
B. The Exploration Database	Х.	EX	PLORATION DATA ENTRY	99
1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 102 2. Previous in List and Next in List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 0. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107		Α.	Introduction	99
1. Project Information 100 2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 102 2. Previous in List and Next in List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 0. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107		•	The Evelopetion Detabase	00
2. Notice of Work Information 101 C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List 103 3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 1. Project 104 7. Append from Updates 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 7. Submit 107 8. Undo 107 <t< td=""><td></td><td>В.</td><td>•</td><td></td></t<>		В.	•	
C. Selecting a Project to Edit: The PROJECT Menu 102 1. Select From List. 102 2. Previous in List and Next in List. 103 3. Project No. Select. 103 4. Create a Project or Notice of Work. 103 5. Delete a Project or Notice of Work. 103 6. Exit to Main Menu. 104 7. Append from Updates. 104 0. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project. 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 7. Submit 107 8. Undo 107 9. Printing a Report in				
1. Select From List			2. Notice of Work Information	
2. Previous in List and Next in List. 103 3. Project No. Select. 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 9. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project. 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 7. Submit 107 7. Submit 107 7. Submit 107 8. Undo 107 9. Link to the MINFILE Database: The OCCURRENCE Menu 107		С.		
3. Project No. Select 103 4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 9. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert. 107 7. Submit. 107 8. Undo 107 7. Submit. 107 6. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
4. Create a Project or Notice of Work 103 5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 D. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 106 7. Submit 107 8. Undo 107 7. Submit 107 8. Undo 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109			2. Previous in List and Next in List	103
5. Delete a Project or Notice of Work 103 6. Exit to Main Menu 104 7. Append from Updates 104 D. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 106 7. Submit 107 8. Undo 107 7. Submit 107 8. Undo 107 7. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109			3. Project No. Select	103
6. Exit to Main Menu 104 7. Append from Updates 104 D. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 F. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109			4. Create a Project or Notice of Work	103
6. Exit to Main Menu 104 7. Append from Updates 104 D. Selecting a Screen to Edit: The SCREEN Menu 104 1. Project 104 2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 F. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
7. Append from Updates104D. Selecting a Screen to Edit: The SCREEN Menu1041. Project.1042. Notices of Work105E. Edit Modes in the Data Entry System: The EDIT Menu1051. Append1062. Revise1063. Browse1064. Delete1065. Move1066. Insert1077. Submit1078. Undo107F. Printing a Report in Data Entry: The PRINT Menu107G. Link to the MINFILE Database: The OCCURRENCE Menu107H. Getting Help in Data Entry: The HELP Menu108XI. CODE TABLE AND USER MAINTENANCE109				
1. Project				
1. Project		D	Selecting a Screen to Edit. The SCREEN Menu	104
2. Notices of Work 105 E. Edit Modes in the Data Entry System: The EDIT Menu 105 1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert. 107 7. Submit. 107 8. Undo 107 7. Submit. 107 8. Undo 107 9. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109		υ.		
E.Edit Modes in the Data Entry System: The EDIT Menu1051.Append1062.Revise1063.Browse1064.Delete1065.Move1066.Insert1077.Submit1078.Undo107F.Printing a Report in Data Entry: The PRINT Menu107G.Link to the MINFILE Database: The OCCURRENCE Menu107H.Getting Help in Data Entry: The HELP Menu108XI.CODE TABLE AND USER MAINTENANCE109				
1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert. 106 7. Submit. 107 8. Undo 107 7. Submit. 107 7. Submit. 107 8. Undo 107 9. Undo 107 9. Undo 107 9. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
1. Append 106 2. Revise 106 3. Browse 106 4. Delete 106 5. Move 106 6. Insert. 106 7. Submit. 107 8. Undo 107 7. Submit. 107 8. Undo 107 9. Vindo 107 9. Undo 107 9. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109		E.	Edit Modes in the Data Entry System: The EDIT Menu	
3. Browse			1. Append	
3. Browse				
4. Delete 106 5. Move 106 6. Insert 107 7. Submit 107 8. Undo 107 F. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
5. Move 106 6. Insert 107 7. Submit. 107 8. Undo 107 F. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
6. Insert				
7. Submit				
8. Undo 107 F. Printing a Report in Data Entry: The PRINT Menu 107 G. Link to the MINFILE Database: The OCCURRENCE Menu 107 H. Getting Help in Data Entry: The HELP Menu 108 XI. CODE TABLE AND USER MAINTENANCE 109				
 G. Link to the MINFILE Database: The OCCURRENCE Menu				
 H. Getting Help in Data Entry: The HELP Menu		F.	Printing a Report in Data Entry: The PRINT Menu	
XI. CODE TABLE AND USER MAINTENANCE		G.	Link to the MINFILE Database: The OCCURRENCE Menu	
		H.	Getting Help in Data Entry: The HELP Menu	108
	XI.	со	DE TABLE AND USER MAINTENANCE	
	-			

	В.	Code Table Maintenance 1 1. Dynamic Code Tables 2. Static Code Tables 1 1	10
	C.	User Maintenance1	14
XII.	CO	NCLUSION1	17
XIII.	AC	(NOWLEDGMENTS1	19
	API	PENDICES	21

TABLES

1. Notes on the Identification Screen	64-65
2. Notes on the Mineral Occurrence Screen	
3. Notes on the Host Rock Screen	67-68
4. Notes on the Geological Setting Screen	
5. Notes on the Reserves/Assay Screen	
6. Notes on the Production Screen	
7. Edit Commands in MINFILE/pc	
8. Notes on the Project Screen	
9. Notes on the Notices of Work Screen	

APPENDICES

DOS (Disk Operating System) Primer
MINFILE CodesC
Mining Codes
Tectonic Belt Codes
Physiographic Region Codes
Terrane Codes
MINFILE Commodity CodesD
MINFILE Mineral, Rock and Modifier Codes E
Stratigraphic Age CodesF
Deposit Types
Profile Groups
Mineral Deposit Profiles
Bibliographic Codes
MINFILE/pc V. 4.0 Database Structure
Data Entry Examples
MINFILE/pc Help Desk K
Database Structure of Exported Files
Interface.dbf
Quickmap.dbf
Quickprj.dbf
Notices.dbf
The Readme.doc FileM
MINFILE/pc V. 4.0 Menu TreeN
Samples of MINFILE and Exploration ReportsO
MINFILE Master

•

Information Circular 1992-30

Notes

-

c c

Notes
Format Specification for Regional Geochemical Survey Data (RGS)

FIELD	DESCRIPTION		COLUMNS	TYPE	LENGTH	EXAMPLE
01	NTS Map-Sheet		001-006	A	б	104N16
02	ID (Year,Crew,Numbe	er)	007-012	N	6	841102
03	UTM Zone	,	013-014	N	2	10
04 05	UTM East (Metres UTM North (Metres	,	015-020 021-027	N N	6 7	544654 5911939
05	UTM North (Metres Elevation (Metres		021-027	N	4	1500
07	Sample Material	5 /	032	N	1	8
08	Replicate Status		033-034	N	2	10
09	Formation		035-038	A	4	lJBv
10	Rock Type		039-042	A	4	GRNT
11 12	Age Source of Water		043-044 045	N N	2 1	64 2
13	Stream Order		045	N	1	1
14	Stream Type		047	N	1	2
15	Physiography		048	N	1	3
16	Drainage Pattern		049	N	1	2
17	Contamination	`	050	N	1	3
18 19	Stream Width (metres) Stream Depth (cm))	051-054 055-57	N N	4 (1) 3	10.5 220
20	Stream Flow Rate		058	N	1	1
21	Water Colour		059	N	1	3
22	Bank Type		060	N	1	3
23	Bank Precipitate		061	N	1	2
24	Sediment Composition		062-064	N	3	111
25 26	Sediment Colour		065 066	N N	1 1	5 2
20	Sediment Precipitate Channel Bed Type		067	N	1	3
28	Channel Pattern		068	N	1	4
29	Moss-mat Position		069-071	N	3 (1)	2.5
30	Moss-mat Colour		072	N	1	2
31	Moss-mat Health		073	N	1	1
32	Moss-mat Host		074	N	1	3
33 34	Thickness of Moss-mat Blanks	2	075 076-080	N N	1 5	10 ?
34	pH of stream waters		081-085	N	5 (1)	7.0
35	Uranium in waters (pr	ob)	086-090	N	5 (2)	0.12
36	Fluorine in waters(pp		091-095	N	5	34
37		om)	096-100	N	5	47
38		om)	101-105	N	5	79
39 40	Lead (pr Nickel (pr		106-110 111-115	N N	5 5	12 26
40 41	Nickel (pr Cobalt (pr		111 - 113 116 - 120	N	5	33
42		om)	121-125	N	5 (1)	1.7
43	Manganese (pr		126-130	N	5	310
44	Iron (%))	131-135	N	5 (2)	3.80
45	Molybdenum (pr		136-140	N	5	10
46 47	Uranium (pr Tungsten (pr		141-145 146-150	N N	5 (1) 5	4.5 6
47	Tungsten (pr Tin (pr		146-150	N N	5	6 5
49	Mercury (pr		156-160	N	5	30
50	Arsenic (pr		161-165	N	5	14
51	Antimony (pp	om)	166-170	N	5 (1)	0.3
52	Barium (pr		171-175	Ν	5	754
53	Cadmium (pr		176-180	N	5 (1)	0.7
54 55	Vanadium (pr Bismuth (pr		181-185 186-190	N N	5 5 (1)	310 0.6
55	Chromium (pr		191-195	N	5 (I) 5	88
57	LOI (%)		196-200	N	5 (1)	8.3
58	Fluorine (pr		201-205	Ν	5	400
59	Gold(1st analysis)(pp		206-210	Ν	5	78
60		gm)	211-215	N	5 (1)	10.0
61 62	Gold (Repeat) (pp Sample Weight Au2 (g		216-220 221-225	N N	5 5 (1)	2000 10.0
02	Sampre Wergnic Auz (S	gm)	221-223	TN	5 (I)	T0.0

SUMMARY OF PRESENTATIONS AT THE REGIONAL TRAINING COURSE ON COMPUTERIZED DATABASES IN MINERAL EXPLORATION AND DEVELOPMENT, LUSAKA, ZAMBIA, MAY 1993

L.D. Jones (British Columbia Geological Survey) and R.B. Taylor (United States Geological Survey)

1. INTRODUCTION

The purpose of this report is to summarize some of the lectures presented during the first week (May 10-15) of the workshop. The lectures focused on guidelines on the organization, management and presentation of earth science data and on systematic database development using personal computers. A key reference for the presentations is the draft copy of the IAEA TECDOC entitled *Guidelines for the organization and management of earth science data on a personal computer*.

Presentations by Jones and Taylor included: the strategy and philosophy in mineral resources databases; examples of the U.S. and Canadian database management systems; hardware and software requirements; guidelines to database systems; earth science information databases; mineral deposit databases including MINFILE; and mineral exploration databases. This report will outline key points of each presentation and reference further reading.

2. STRATEGY AND PHILOSOPHY IN MINERAL RESOURCES DATABASES

2.1 Reasoning

Some Whats:

- Mineral resources are unevenly distributed throughout the earth's crust.
- Most countries enjoy some **mineral endowment**.
- Many have a **mining history** dating back hundreds of years.

Some Whys:

- Few countries have a well-organized, comprehensive and easily accessible **source of historic mining and geological data** relating to the nature and distribution of their mineral resources.
- Such information is the starting point in the search for **new orebodies**.
- Readily **accessible databases** are essential for effective management of the existing resource and invaluable tools in the search for new orebodies.
- Add to the country's **resource base**.
- Stimulates mineral exploration leading to discovery of new mineral deposits.
- Development of **new mines**.
- Contributes to the creation of **new wealth** by developers, workforce, and public treasury (profits, wages, and taxes).

Some Hows:

- Effective management of mineral resources requires a **knowledge** of the nature of the resources to be managed, their dimensions, where they are located, their current status, and many other factors.
- Earth Science Databases **compile and update** this information.

2.2 The Mineral Exploration and Development Cycle

Philosophy of Mineral Exploration Programs:

- Mineral exploration and mine development ventures involve a high level of **financial risk**.
- Information gathered at each stage of a project leads to increased confidence of **discovering and developing** an orebody.
- If the data gathered at each stage of a project is accurate and complete **lower risk factors** are involved.

Stages of Mineral Exploration Programs:

- First stage of exploration is the **choice of area**, which is generally based on analysis of available geoscience data from general surveys and previous exploration effort.
- Ready access to this type of information will simplify the task and greatly **increase success**
- Subsequent stages include **geophysical** and **geochemical** surveys, detailed **geological mapping** and **drilling** and **underground work**.
- Costs increase at each stage, as do the spin-off economic benefits.
- Information generated must provide the **justification for continuing** to the next stage.
- Final stage ore reserves exhausted and mine closes.
- Portion of the **profits** will be allocated to the search for new orebodies and the exploration and development cycle will be repeated.

Mineral Exploration Program Observations and Strategy:

- Detailed **geological information** will be collected during the life of the operation.
- These data are invaluable in the search for **new orebodies** in the same district and in other areas with similar geological setting.
- Data are often **lost** if the project is abandoned.
- Drill core and logs, assays, geophysical results, geological maps, mine plans and engineering reports may be buried in **private files** or may even be lost or destroyed.
- If the information is stored in a database where it can be readily retrieved and analyzed, it may lead to fresh **insights** and **new ideas** that rekindle interest in the project.
- New geological concepts, availability of new technology, commodity price increases, or improved transportation may **reactivate** old mining areas.
- Easy access to **historical and current geoscientific data**, which is gathered at great expense and sometimes is not reproducible, benefits new investors, which in turn will stimulate and promote mining exploration in an area.

2.3 Organization of Earth Science Data

- Information comprising a geoscience information system starts with a repository-type database referred to as the **master database**.
- Database subjects or **themes** describe the handling of earth science information such as bibliographies; mapping indexes (geological, geophysical and geochemical); air photography indexes; and drill hole indexes; mineral deposit information; and exploration information (drill hole, geophysical, geochemical, and field data).
- Selection of appropriate databases and their content are based on the objectives of an organization.
- Examples of objectives would be to **collect and store data** on the various themes; provide essential **linkages** to other databases and other levels within the same data theme; facilitate the production of various **reports and maps**; or provide an aid in **planning** future exploration programs.
- Most subject databases follow a **multi-level model**, beginning with the first-level database, which provides a **basic orientation** to the database theme.
- A second- or third-level database provides more detailed information on the subject data.

2.4 Master Database - Database Directory

- NAME of data set, Acronym
- Location
- Data form
- Host computer
- Data Custodian/Manager and Scientific Contact

2.5 System Planning

System Cycle:

- Establish business objectives and desired output.
- Scope document, user-requirements, fitting analysis (content and system).
- Detailing the proposal, with an action plan and resources required.
- Budgeting and project team selection.
- User-needs analysis and design details.
- Project schedule and detailed implementation plan.
- Develop universal tables, establish regional flexibility.
- Chose application development software and acceptable user-interface.
- Produce a PC-based application.
- System testing and documentation.
- User acceptance and evaluation.
- Marketing, distribution, training and support.

Data and System Goals:

- Quick and easy access to data.
- Detailed, high quality information.
- Data available in a wide variety of forms, such as custom and standard reports, and digital files for incorporation into other programs.
- Systematic management of data elements to improve data integrity and validity.
- An established methodology for the distribution of data.
- Allow the database to grow with increased requirements.
- Efficient and flexible model.
- Establish common data formats and system capabilities.
- Define links to geographical information systems.
- Implement a modern user-interface based on the latest technology.
- Standardize tables and definitions (e.g. commodities and work types).
- A versatile data dictionary will permit customized data content.

Challenges:

- Successfully integrate the various databases and mapping systems in a way that facilitates exchange of data for broader purposes.
- Maintain information in a manner which promotes data integrity and rapid retrieval.

Data Issues - Data Models:

- Originally recorded on paper.
- Transferred into digitally based systems.
- Data model must be constructed that provides the organizational layout of the data.
- Must serve the needs of the business application that surrounds the data.
- Many databases evolve in which model construction is minimal.
- Ad hoc database construction which occurred as technology developed.

Technology Management Issues:

- Development and maintenance of data requires human resources.
- Local and central responsibility of systems.
- Database managers and administrators.
- Routine and specialized maintenance *backups, programming*.
- Inconsistencies, errors, corruption of data, and eventual abandonment of the databases and applications will result.
- Focus on future developments and planned migration strategies.
- Data static if it is collected and managed in a consistent framework.
- Data considered to be dynamic (*changing in its nature, structure, and application*) if collected and evolved over time.
- Requires a strategy that will work towards keeping data relevant and manageable.

Procedure:

- Establish business case and plan strategy.
- Coordinate implementation with the custodians of the databases.
- Review and recommend, where necessary, upgrading of databases.
- Manage and coordinate the exchange of data.

Database Components:

- Data model
- Administration
- Project staffing
- Documentation
- Database directory

2.7 References and Further Reading

- TECDOC: Section 4.1, 4.2, Figure 3.
- Tauchid, M.: Mineral Exploration and Development Strategy and Planning, IAEA, Paper presented at this workshop, May 1993.

3. COMPUTER HARDWARE AND SOFTWARE

3.1 Introduction

- **Custom development** of programs is expensive.
- Recommend purchase of **existing application packages**, such as spreadsheets, word processors, database systems, statistical packages and GIS programs is.
- Concentrate on the **integration and implementation** of these applications.
- Benefits include **improved functionality and reduced costs** for maintenance and support of custombuilt software.
- Establish business objectives before selecting computing environment.
- Evaluate software requirements first, before hardware selection, to avoid incompatibilities.
- Consider availability of **support and local expertise**; **training** requirements; **standards** compliance; and the **size and growth** requirements of the database.

3.2 Hardware

- **IBM**-compatible **PC** systems (80486 processor) recommended.
- 640-kilobyte random access memory (RAM), with at least four megabytes of extended memory.
- Large hard disk (200 megabytes).
- Parallel port for a printer; two serial ports for plotter and digitizer.
- VGA graphics system.
- Peripheral devices: laser printer; digitizer (capable of sending data as an ASCII string); plotter (HPGL).
- Mass storage devices for large data sets and system backup.
- UPS (uninterrupted power supply) recommended in areas of erratic power supply.

3.3 Software

- Operating systems: **DOS** and **MS Windows**.
- Word-processing systems: capable of working in, or exporting a simple **ASCII** file (**ASCII** characters 33-127), without control characters.
- Spreadsheet format: Lotus 1-2-3 (.WK1) format.
- Database management systems (DBMS): .DBF format of **dBASE** has become a *de facto* standard.
- Other supporting software packages: report writers; file compression utilities.
- **Custom development**: if funds are available; may make the organization's work process more efficient; documentation of the developed product is very important.

3.4 Future Trends

- LAN (Local Area Networks)
- Client/servers
- CD-ROM (compact disc-read only memory)
- GIS (Geographical information systems)

3.5 Reference

• TECDOC: Section 2.

4. GUIDELINES TO DATABASE SYSTEMS

4.1 Definitions

- **Database** is an organized set of related data that is drawn together to fit defined needs.
- **Database management system** (DBMS) consists of a database and a set of programs to access the database. It provides a structured environment that is both convenient and efficient to use in storing, accessing and reporting data.
- **Database file** contains data with a particular theme.
- **Record** all the data for a particular entry.
- **Field** is an item of information within a record.
- **Database structure** defines a database file.
- **Database key** uniquely identifies the sites of each record.
- **Data dictionary** contains details of the structure of the database, definitions of the contents of each field and listings of acceptable entries for fields of explicit content.
- External interface is defined as the mechanism in which the user captures or enters the data.
- Data model describes data and a set of operations used to manipulate that data.

4.2 Data Models

• A notation for describing data and a set of operations used to manipulate that data.

Hierarchical:

- Tree-structured diagram
- Record replication

Flat-File:

- Spreadsheet style
- Single table
- Simplicity and portability
- Example: geochemical sample database

Entity-Relationship:

- Entity is a distinct object
- Relationship is an association among several entities
- Primary key is assigned to each entity
- Increased data integrity
- Easier future modification
- Enhanced performance capabilities
- Example: mineral deposit database

- Base on an organization's **business objectives**, functions and processes, and its **available resources**.
- Conduct a **system study** to help identify **requirements for users** and implement a process to achieve efficient access to, and manipulation of, data.
- Use a **data classification hierarchy** to described data according to subject area and group.
- Good design techniques will include data modeling, data flow diagrams and normalization.

4.4 Conventions and Standards

• Store data in ASCII (American Standard Communication Information Interchange) format.

Relational:

4.3

- Data in multiple files
- Complex data management
- Discrete and manageable units
- Flexible; easily modified

Database System Design

• Example: field geology database

• Lotus 1-2-3 (.WK1) and dBASE (.DBF) formats are recommended.

4.5 Database Administration

• Objective to maintain a standard, structured and secure database.

Data acquisition	- collecting, managing and modifying data.
Data integrity	 detect errors; provide logic and range checks.
Data currency	- data values are reconfirmed or updated within an appropriate time period.
Data access control	- granting of permission for the creation, retrieval, use, modification and
	disposal of data.
Data custodianship	- designation of a functional responsibility for the creation, integrity and
	maintenance of data.
Data links	- interchange with diverse applications and needs.

4.6 **Project Staffing Qualifications**

- Understanding of computerized **database concepts**, model and design.
- Understanding of **geoscience data** acquisition, data elements and their relationships.
- Ability to design computerized databases using a widely available database management system.
- Ability to access, retrieve, and transfer data.

4.7 Database Documentation

Components of Document Planning:

- User-needs analysis
- Purpose, scope and contents of documentation
- Document specification
- Work plan
- Organization (menu hierarchy, topic or function)

Types of Documents:

- Training documents (user manuals, tutorials and quick reference cards
- Reference documents (technical programmer notes)
- Marketing documents (descriptive brochures)

4.8 Reference

• TECDOC: Section 3, Figure 1, 2.

• First-level or first-order database contain general information on common data observations, such as

General

5.

5.1

•

•

location of an activity or deposit, who did the work, commodities present and primary references.
Second- or third-level database will provide more detailed information of the subject data.

Specific or theme databases include: bibliographies; indexes on geological, geophysical and geochemical maps; air photography index; drill hole index; mineral deposit data; and exploration

Organize and record data in a systematic and consistent manner, according to standards.

Master database is the directory or index of all the databases in an organization.

information, including drill hole, geophysical, geochemical and field data.

5.2 Master Database Example

Name of data set, Acronym:

• Responsible organization

GEOSCIENCE DATABASES

Many of the databases follow a **multi-level model**.

- Purpose and description
- Keywords

Data form:

- Positional Accuracy
- Time span
- Data quality and access
- User Base

Data Custodian/Manager and Scientific Contact

Location:

- Lat. min Lat. max; Long. min -Long max
- Coverage and scales

Host computer:

- Operating system
- Data Structure
- Set size
- DBMS used
- "GIS" Software
- Output formats and Output media

5.3 Example of British Columbia Geoscience Databases

Assessment Report Indexing System

Acronym: ARIS

ARIS is a relational database that is an index and an administrative tracking system to the Geological Survey Branch's Mineral Assessment Report Library of more than 22,000 reports. Approximately 1000 new reports are added annually. The database is used to display the distribution of exploration and development activity and for research and mineral potential projects. A group of fields for each Assessment Report are extracted in 8 ASCII files from the VAX mainframe to diskettes. This data may be used on the PC within database management and small mapping projects using QUIKMap software.

Host computer:	VAX Mainframe; PC	Operating system:	VMS; DOS
Data model:	Entity-relationship	DBMS:	SUPRA; ASCII; dBase
Data size:	22000 records; 70 MB	Number of files:	15
	Fields per record (maximum/average):		60/40.

COALFILE

Acronym: COALFILE

COALFILE contains summarized coal assessment reports dating from 1900, submitted by exploration companies in compliance with the Coal Act. The data is organized in six related files - Explore, Comment, Map, Trench, Bulk and Borehole. There is a 3-year confidential period for coal exploration assessment reports and only non-confidential data is publicly available. Distribution policy and administration of the database is currently being established.

Host computer:	PC		Operating system:	DOS
Data model:	Relational		DBMS:	dBase
Data size:	8025 records; 3	MB	Number of files:	6
		Fields per record (1	naximum/average):	171/78.

NTS Bibliographic Index

Acronym: **BEDROCK**

Bibliography of BC Geological Survey publications, including author, title, type of publication and map area. The data file is used to publish a map location and author index.

Host computer:	PC	Operating system:	DOS
Data model:	Flat-File	DBMS:	dBase
Data size:	2800 records; 10 MB	Number of files:	1
	Fields per re	ecord (maximum/average):	5/5.

B.C. MINFILE

Acronym: MINFILE

MINFILE contains over 11,000 metallic, industrial mineral and coal occurrences for B.C. Each of these occurrences contain 84 data elements describing mineral deposits in terms of geography, geology and economics. The database is used by government, industry and academia for resource management, land-use planning, exploration and research. MINFILE/pc, Version 3.0, a menu-driven data-entry, search and report program for IBM-compatible computers, accesses the database. An exploration and development module is currently in development.

Host computer:	PC	Operating system:	DOS
Data model:	Entity-relationship	DBMS:	MINFILE/pc;
			FoxBASE+/FoxPro
Data size:	11300 records; 60 MB	Number of files:	69
	Fields per record	d (maximum/average):	84/46 .

PROPERTY FILE

Acronym: **PROPERTY FILE**

PROPERTY FILE is a library of research material on the mineral occurrences contained in the MINFILE database. The FILE contains news clippings, field notes, company prospectuses, and historical maps, photographs and documents. The FILE is used by government, industry and academia for research. The public has access to view these paper files.

Geological Field and Analytical Data (Geological Database System)

Acronym: **GSB-GDS**

A dBase relational database contains locations for stations in UTM coordinates, structural measurements, alteration codes, mineralization, rock type and map unit, lists of fossils, age dates, geochemistry and isotopic data. Areas have been mapped at 1:50 000 scale since 1986. Data is not being marketed; available as flat ASCII files on request by interested users.

Host computer:	PC; Notebook PC	Operating system:	DOS
Data model:	Relational	DBMS:	GSB-GDS; dBase
Data size:	30000 records; 20 MB	Number of files:	15

Fields per record (maximum/average): 280/50.

B.C. METAL

Acronym: BCMETAL

BCMETAL is the historical metal production database for British Columbia. It contains mine location and name, and metal production since 1888. BCMETAL is a proto-type software, written in FoxBase, that allows query by name. location (NTS and Mining Division), year of operation, and metal type produced. Total production for any mine, year or Division may be calculated.

Host computer:	PC	Operating system:	DOS
Data model:	Relational	DBMS:	BCMETAL; dBase
Data size:	1452 records; 8 MB	Number of files:	2
	Fields per reco	rd (maximum/average):	33/25.

Regional Geochemical Survey

Acronym: RGS

RGS database contains multi-element analytical determinations, sample location information, bedrock associations and field observations of over 38,000 stream sediment and water samples in British Columbia. The database is used for exploration and development activities; geochemical, metallogenic and environment studies; and mineral potential, resource management and land-use projects. Digital data are stored in standard ASCII format.

Host computer:	MacIntosh; PC	Operating system:	Mac; DOS
Data model:	Flat-File	DBMS:	ASCII; dBase; .WKS
Data size:	38000 records; 10 MB	Number of files:	1
	Fields per rec	cord (maximum/average):	62/60 .

Petroleum and Natural Gas/Schedule of Wells Acronym: PANG/WELLS

The database contains geological and engineering data, plus production and reserve data, on all wells drilled for petroleum or natural gas in British Columbia.

Host computer:	VAX Mainframe	Operating system:	VMS
Data model:	Relational	DBMS:	SUPRA
Data size:	140 MB		

5.4 Example of U.S.G.S. Geoscience Databases and Software

MRDS - Mineral Resource Data System Contents

Record Number and Type	Deposit Type and Code
Information Source	Host Rock Name and Lithology
Reporter and Affiliation, and Entry	Host Rock and Mineralization Age
Date	Tectonic Setting
Site Type, Name and Synonyms	Associated Igneous Rock and Age
Country, State, County and	Ore Minerals and Controls
District/Area	Non-Ore Mineralogy
Primary Quadrangle and Scale	Deposit Description
Latitude And Longitude	Comments
Commodities	Key Words
Production	References

GSMAP and Associated Programs

These programs are written for the IBM-PC and compatible microcomputers to assist workers in the Earth Sciences, in compilation and publication drafting of geologic maps and illustrations.

- **GSMAP** is the main graphic program that creates the database to facilitate digital compilation of graphical elements. The program uses a digitizer and plotter for entry and plotting of digital data
- **GSMUTIL** is a utility program to process GSMAP databases in either geodetic or Cartesian coordinates. A digitizer and plotter are not required.
- **GSMEDIT** is a screen edit program permitting editing of databases using either geodetic or Cartesian coordinates using the keyboard of the computer.
- **GSMPBLD** uses a digitizer to select specific lines from an existing database and assembles these lines into closed polygons or into lines in an output database.
- **GSMPBS** uses the screen display to select specific lines from an existing database and assembles these lines into closed polygons or into lines in an output database.
- QUEIT is a plotting utility tat uses the HPGL disk file generated by GSMAP to make plots.
- **GSMROSE** is a program enabling construction of rose diagrams from linear data (lines or Polygon boundaries) in GSMAP databases to assist analysis of the trends of linear data.
- **GSSECT** enables quick and accurate generation and plotting of the topographic profile for cross sections, and other profiles drawn from contour maps.
- **GSDIG** makes use of a digitizer to determine geodetic (latitude, longitude) coordinates or Cartesian (X, Y) coordinates from maps or drawing and create ASCII character files containing site identifiers and geodetic coordinates (degree, minutes, seconds) or Cartesian coordinates in units from the drawing or digitizer units.
- **GSPOST** is a program that takes data from a properly formatted ASCII file and plots on the screen, on a plotter, or writes to a disk file in HPGL to make maps displaying information associated with geographic sites by drawing symbols and/or posting numerical.
- **GSLITH** is a program designed to organize, store, and process data that define the "vertical" sequence of rock units at locations specified by latitude/longitude coordinates. It assists in the management of drill data; the drawing of sections and plan views; and the export of ASCII files for contouring.

5.5 References

- TECDOC: Sections 4.1, 4.2, Figure 3, Table 1, Annex 6.1.
- Selner and Taylor, see Bibliography.

6. EARTH SCIENCE INFORMATION DATABASES

6.1 Bibliographies

- **Published** geoscience material is collected systematically by several organizations on a global scale.
- A **thesaurus** is a guide to the usage of keywords (indexing terms), their hierarchical relationships and synonyms.
- **Unpublished** bibliographic data on geoscience material includes reports and maps in the archives of geological surveys and exploration and mining companies.

Example of Data Elements for Unpublished Reports:

- Title of report
- Name(s) of author(s)
- Name of source organization
- Name of report series
- Serial number or code of report
- Number or range of pages
- Notes on illustrations, appendices, maps
- Year of report

- Types and scales of maps in the report
- Language of report
- Subject keywords
- Geographic names
- Longitude/latitude
- Text of abstract
- Free field for comments
- Location of document

• Name and date of recorder

6.2 Indexes for Earth Science Information Databases

Data Elements for Geological, Geophysical, Geochemical and Topographic Map Indexes:

- Title and year of publication
- Name(s) of author(s)
- Name and address of organization that serves as repositories for data
- Name of report series
- Serial and number of publication
- Projection and scale of map
- Country and geographic area
- Area covered in square kilometers
- Longitude/latitude of the boundaries of map coverage and center of map
- Form of data release (hard copy: paper; digital: file type and size, media format, hardware and software compatibility)
- Availability
- Free field for comments

Data Elements for Air Photography Indexes:

- Listing of organizations that provide air photos
- Agency code
- Date of coverage
- Scale of photography

- Geological map indexes typically contain mappable rock units, structural elements observed and type of samples taken
- Geophysical map indexes typically contain the kind of geophysical data and its characteristics and details about the survey, such as spacing of flight lines and flight characteristics
- Geochemical map indexes typically contain the type of sample and analytical methodologies used for each sample type
- **Topographic map indexes** typically contain contour interval and features
- Focal length of lens used
- Type of film
- Cloud cover
- Location, such as coordinates of the corners of each photograph

Data Elements of Drill Hole Indexes:

- Record number
- Name of organization or project
- Identification number
- Location

6.3 References

• TECDOC: Section 4.3, Figure 3, Tables 2 - 3, Annexes 6.2 and 6.3.

7. MINERAL DEPOSIT DATABASE

7.1 General

- A mineral deposit database is an organized inventory of data related to mineral occurrences.
- A relational data model is functional, flexible and expandable.
- Use in a **multi-level** approach.
- Use standard codes.
- **Rank multiple entries**, such as the commodity, mineralogy and lithology fields, in decreasing order of importance.

7.2 Multi-level Approach

First-level Data Elements:

- Deposit identification number
- Deposit name
- Commodities or minerals present
- Point location, map area
- Administrative jurisdiction
- Geologic setting
- Current status or stage of development

Second-level Data Elements:

- Host rocks in terms of name, age, lithology and relationship to the economic minerals
- Size of deposit

Third-level Data Elements:

- Elevation & location accuracy
- Alteration type
- Deposit details
- Metamorphic type and grade
- Stratigraphic name and age
- Isotopic age, material dated and dating method

- Deposit type
- Commodity economics
- Brief geological descriptions
- Primary references
- Name of the collector and date of input
- Regional structural-tectonic setting
- Economic, gangue and alteration minerals
- Reserves
- Ore reserve category, year of calculation, quantity, grade and reference
- Year of production, ore mined, ore milled, quantity and reference

- Bearing and inclination
- Total length
- Location of drill core
- Location of drill hole log or report

7.3 Data Codes (Entities or Tables)

- Keep the database small.
- Reduce errors on input.
- Help to speed up queries on the database.
- Provide the user with classification guidelines and choices.
- May be easily redefined, modified or expanded.
- Chose codes with meaning and flexibility.
- Use standard codes based on controlled vocabularies and global frequencies, such as commodities, rocks, mineral names and stratigraphic units.

7.4 Uses of a Mineral Deposit Database

- An inexpensive research tool by industry, academic researchers and government.
- Selection of areas for exploration or research projects.
- Assists in the analysis of the **distribution** of geology, metallogeny and mineral deposits.
- Mineral deposit distribution plots help select prospective areas for mineral potential.
- Land-use planning and mineral resource management.
- Data may be integrated into geographical information systems (GIS).

7.5 Mineral Deposit Database Project Management

- Budgeting, planning and staffing
- Database design and data dictionary
- Data acquisition and processing procedures (coding procedures)
- Software design, development and system testing
- Database administration and maintenance
- Documentation and manuals
- Designing and producing computer generated products for user's
- Marketing and distribution of data
- Training and client support
- New technology and future planning

7.6 B.C. MINFILE as an Example

Overview of MINFILE:

- MINFILE is the British Columbia Geological Survey's mineral inventory database management system.
- Contains information on over 11 000 metallic, industrial mineral and coal occurrences (showings to major producing mines).
- MINFILE/pc, a menu-driven data-entry, search and report program for IBM-compatible microcomputers, accesses the database.
- Data elements are organized with a set of codes (entities), within a relational database design (entity-relationship model).
- The MINFILE system helps provide solutions in mineral exploration, land-use planning and mineral resource management.
- MINFILE information may be used in other programs such as word processors, plotted using computer-aided mapping systems, and integrated with conventional geographical information systems.
- The database contains 69 files, with 96 fields and 84 data elements.
- 86 maps (1:250,000 or 1:100,000 scale) cover 950 000 square kilometres.

MINFILE Data:

- Location
- Commodity
- Mineralogy and alteration
- Geological setting
- Lithology and host-rock name and age
- Deposit class and character
- Assays, reserves and production, and reserves
- Textual geological description (capsule geology)
- Bibliography, citing information sources for the occurrence

The MINFILE/pc Program:

- A stand-alone, menu-driven program, operating within 640 kilobytes of RAM, in the MS-DOS environment of IBM-compatible microcomputers.
- 12 menu-driven searches on a variety of exploration and geological parameters.
- 12 high quality **reports** on the search results.
- **Data-entry** has a pull-down and pop-up interface for changing, updating and appending data.
- Utility functions assist in configuring the database, exporting and importing data, and maintaining the system.
- **Code table maintenance** allows the users to add, delete and modify the contents of the various codes and tables.
- The province wide database of over 11 000 occurrences currently occupies **60 megabytes** of space.
- Data are distributed in **ASCII files**, which are configured into searchable database (**dBASE**) files.
- **Programming language and software**: FoxBASE+/FoxPro, R&R Relational Report Writer, automatic table look-up (Proximity Technology Inc.), data compression (PkZip by PkWare Inc.).
- **Supporting documents** include a coding manual, a user's manual and technical manuals.

Products, Distribution and Support:

- Mineral location maps, with topography and geological base (1:250,000 or 1:100,000 scale)
- Paper print-outs of indexes and complete reports
- Data disks (map areas, provincial, commodity open files)
- MINFILE/pc software
- Coding and user's manuals
- Custom searches, reports and data
- Talks, workshops and help desk
- Over 400 users
- MINFILE technology and program are marketed for sale world-wide

7.7 References

• TECDOC: Section 4.4, Figure 3, Tables 9-12, Annexes 6.4.

8. EXPLORATION DATABASES

8.1 General

- Exploration projects generate most or all of the **detailed geologic information** in an area of interest.
- Exploration project databases contain **collected data**, such as field measurements, and calculated data, such as analytical work on samples.
- Data **presentation methods** help to evaluate regional trends and locate anomalies.
- **Good record keeping** and **proper indexing** are essential if the raw data is to be reinterpreted at a later time.
- Modeling and interpretation methods help to filter, reduce or enhance data.
- Data-**sets are grouped** according to the type of work performed, commonly prospecting, geological, geophysical, geochemical, physical and drilling.
- Global Positioning Systems (GPS) are useful for accurately locating sample sites.

Typical Contents of Exploration Database:

- Title of project
- Jurisdiction
- Location (longitude/latitude)
- Project Type (major, minor)
- The managing company or organization
- The name, address and telephone of the project coordinator or manager
- Date and type of work done
- Exploration budget and cost of the completed exploration program
- Notes on pertinent information such as geological descriptions, plans for the following year, assays, references, etc.

8.2 Drill Hole Data

Contents:

- Drill hole name, collar location and elevation, and total length of hole
- Downhole survey data
- Lithological descriptions or stratigraphic units
- Sampling and assay data

Drilling Types:

• Becker hammer, churn, diamond - surface, diamond - underground, overburden, percussion and rotary.

8.3 Geophysical Data

Contents:

- Surveyor
- Instruments used
- Analog or digital records
- Area covered
- Station location
- Data measurements and calculations dependent on geophysical method

Geophysical Types:

• Dip needle, electromagnetic - airborne, electromagnetic - ground, gamma ray spectrometer - airborne, gamma ray spectrometer - ground, gravity, induced polarization, infra-red, magnetic - airborne, magnetic - ground, mise-a-la-masse, radar, radiometric - airborne, radiometric - ground, radiometric - drill hole probing, radon gas scintillometry, resistivity (alone), scintillometer - airborne, scintillometer - ground, seismic, self potential.

8.4 Geochemical Data

Contents:

- Source of geochemical data
- Sample number
- Location of sample site, elevation
- Sample material (sediment, soil, water)
- Site information (stream parameters, rock type, sample description)
- Analytical values for each sample

Geochemical Types:

• Biogeochemistry, fission track etch, heavy minerals, metallurgic, rock, sampling/assaying, silt, soil, water.

8.5 Field Data

Recommended Features for a Field Data System:

- Easy retrieval, sorting and manipulation of field data to assist in map compilation and plotting.
- Ability to create page size to map size plots at any scale.
- Ability to retrieve data and create reports and tables.
- Consistency in the way field data is collected and reported.
- Geologic databases created can be incorporated into a GIS and automated map plotting system.
- Ability to use dBASE files that are related to each other by station number.

Contents:

- Station location, longitude/latitude, traverse, map area
- Structural measurements
- Mineral occurrence data
- Rock types and alteration data
- Descriptive notes
- Analytical results of geochemical data
- Radiometric age dates
- Fossil name and age
- Isotope analyses
- Photo number
- Petrographic data
- Date and coder

Field Data Types:

- **Geological**: geological, petrographic, photo.
- **Physical**: legal surveys, line/grid, pits, reclamation, road, local access, stripping, topographic/photogrammetric, trail, trench, underground development, underground surveys.

8.6 References

• TECDOC: Section 4.5, Figure 3, Tables 13, 14, Annexes 6.5.

9. **BIBLIOGRAPHY**

- BARTIER, Pat, Database review of the Geological Survey Branch, British Columbia, Ministry of Energy, Mines and Petroleum Resources (1990).
- BARTIER, P., KELLER, C.P., and GRANT, B., British Columbia Geological Survey Branch Geographic Information Systems User Requirement Analysis, *University of Victoria* and *British Columbia, Ministry of Energy, Mines and Petroleum Resources* (1989).
- BLISS, J.D., Management of the Life and Death of an Earth-science Database: Some Examples from GEOTHERM, *Computers & Geosciences*, Vol. 12, No. 2, pp. 199-205 (1986).
- BURROUGH, P.A., Principles of Geographical Information Systems for Land Resources Assessment. (Monographs on Soil and Resources Survey No 12), *Oxford University Press* (1987).
- BUTTERFIELD, R.B. and CHARLESWORTH, P.B., Canadian Geoscience Data Directory, Preliminary Version: A listing of digital data sets in federal and provincial geological surveys to December 1990, *Geological Survey of Canada*, Open File 2328, (1991) diskette.
- CHAMPIGNY, N., PEARSON, W.N. and GIBBS, B.L., The Need for Data Interchange Standards for Mining Systems, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 925-934.
- CURRIE, A., Digital Geoscience Data and Exploration Projects, (Computer Treatment of Exploration and Mining Data: Do's and Dont's, Workshop, March 9 and 10, 1990, Toronto, Ontario, Canada) (1990).
- DE VLETTER, D.R., Geological Data Acquisition, Storage, Retrieval and Presentation, (AGID Guide to Mineral Resources Development) WOAKES, Michael and CARMAN, John S. (Editors), Report No. 10, Association of Geoscientists for International Development, (1983) pp. 207-243.

DOCUMENTATION AND INFORMATION, ISO Standards Handbook 1, ISO, (1988) 1021 p.

- FOLEY, B.J., A Perspective of Australian Mining Computing, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), *Department of Mining and Mineral Process Engineering, University of British Columbia*, Vancouver, B.C. and *The Canadian Institute of Mining, Metallurgy and Petroleum*, (1991) pp. 819-830.
- GEOLOGICAL SURVEY OF CANADA, Directory of Geoscience Digital Data Sets Questionnaire, *National Geological Surveys Committee* (1989).
- GEOSCAN Pamphlet, National GEOSCAN Centre Geological Survey of Canada (1989).
- GOVERNMENT OF BRITISH COLUMBIA, Land Information Infrastructure Directory Questionnaire, *British Columbia Ministry of Crown Lands* (1990).

- GRAVESTEIJN, J, Unesco/IUGS-COGEODOC Expert Consultation Meeting for the Development of Factual Databases in the *PANGIS Project*, Unesco, Paris, 5-9 March (1990).
- GREEN. William R., Exploration With a Computer: Geoscience Data Analysis Applications; Computer Methods in the Geosciences, Volume 9, *Pergamon Press* (1991).
- GRUNDY, W.D. and MIESCH, A.T., Brief descriptions of STATPAC and related statistical programs for the IBM personal computer: U.S. Geological Survey Open File Reports 87-0411 (A-C) (1987) 34 p., 15 5-1/4 inch diskettes.
- HARRIS, R.N., PONCE, D.A., HEALEY, D.L. and OLIVER, H.W., Principal facts about 16,000 gravity stations in the Nevada Test Site and vicinity: *U.S. Geological Survey* Open File Report, 89-682-C, (1989) Gravity data on diskettes, two 5 1/2 inch high density diskettes.
- HUTCHISON, W.W. (Chairman, COGEODATA), Computer-Based Systems for Geological Field Data, Canadian Centre for Geoscience Data, *Geological Survey of Canada*, Paper 74-63, (1975) 100p.
- JONES, L.D., Uranium and Thorium Occurrences in British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1990-32 (1990).
- JONES, L.D., KORTMAN, C.J., PECNIK, M. AND TAYLOR, R.B., Guidelines for the Organization and Management of Earth Science Data on a Personal Computer (IAEA-TECDOC-in preparation), *International Atomic Energy Agency*, Vienna.
- JONES, L.D., MCARTHUR, J.G. and MCPEEK, C.B., MINFILE -- A Mineral Deposit Information System, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 85-96.
- KALNINS, T.E., WILCOX, A.F. et al., British Columbia Geological Survey Branch Mineral Assessment Report Database, *British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Information Circular 1990-16, (1990).
- KELLY, A.M., Recommended Standards for Recording the Location on Mineral Deposits, Canadian Centre for Geoscience Data, *Geological Survey of Canada*, Paper 72-9, (1972) 8p.
- KORTH, H.F. and SILBERSCHATZ, A., Database System Concepts, McGraw-Hill Book Company (1986).
- LEWIS, M., Geophysical Data Sets, (Proceedings of the United Nations Interregional Seminar on Computerized Mineral Title Management and Associated Databases, Rabat, Morocco, 26 November - 7 December 1990), (EMERSON, M. Editor), United Nations Department of Technical Cooperation for Development, New York and Department of Mines, Ministry of Energy and Mines, Morocco, (1992) pp. 207-218.
- LONGE, R.V., et al., Computer-Based Files on Mineral Deposits: Guidelines and Recommended Standards for Data Content, *Geological Survey of Canada*, Paper 78-26, (1978) 72p.
- MACINTYRE, Don G., Computer Assisted Mapping in the British Columbia Geological Survey -- Progress to Date and Predictions for the Future, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), *Department of Mining and Mineral Process Engineering, University of British Columbia*, Vancouver, B.C. and *The Canadian Institute of Mining, Metallurgy and Petroleum*, (1991) pp. 61-68.
- MACDONALD DETTWILER, Project Description Summary of British Columbia Land Information Infrastructure, *MacDonald Dettwiler* (1991).
- MARLON-LAMBERT, J.R., Pragmatic Software Engineering and User Interface Design Applied to Mining Systems, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and

MULAR, A.L., Editors), *Department of Mining and Mineral Process Engineering, University of British Columbia*, Vancouver, B.C. and *The Canadian Institute of Mining, Metallurgy and Petroleum*, (1991) pp. 843-854.

- MATYSEK, P.F., A New Look for Regional Geochemical Survey Data, *British Columbia Ministry of Energy, Mines and Petroleum Resources*, Geological Fieldwork 1986, Paper 1987-1, (1987) pp. 387-394.
- MEMPR, A Computerized Mineral Inventory System, The MINFILE Solution..., Brochure, B.C. Ministry of Energy, Mines and Petroleum Resources and SHL Systemhouse INC (1990).
- PASCAL GEODE Lexique, Francais-Anglais, Sciences de la Terre Earth Sciences, CNRS-BRGM, (1986) 289 p.
- PETERS, W., Managing with Micros, The Northern Miner Magazine, September (1990).
- PICKLYK, D.D., ROSE, D.G. and LARAMEE, R.M., Canadian Mineral Occurrence Index (CANMINDEX) of the Geological Survey of Canada, *Geological Survey of Canada*, Paper 78-8, (1978) 29p.
- PIESSE, D.F.A., Background Paper, (Proceedings of the United Nations Interregional Seminar on Computerized Mineral Title Management and Associated Databases, Rabat, Morocco, 26 November - 7 December 1990), (EMERSON, M. Editor), United Nations Department of Technical Cooperation for Development, New York and Department of Mines, Ministry of Energy and Mines, Morocco, (1992) pp. 13-42.
- RHASSAM, G.N., GRAVESTEIJN, J., and POTENZA, R. (Editors), Multilingual Thesaurus of Geosciences, *ICSTI-IUGS*, Pergamon Press, (1988) 516 p.
- SELNER, Gary I. and TAYLOR, Richard B., SYSTEM 8. Programs to assist workers in the Earth Sciences in using geodetic or Cartesian XYZ data from row column (GSPV85) files: GSPDC, contours and grids interpolated from triangulated network; GSPCS, graphic section; GSPUV, univariant statistics and histograms; GSPPROB, probability diagrams; GSPXY, regression statistics and XY plots; GSPTD, ternary diagrams; and GSPV85, postplots, for IBM PC compatible computers: U.S. Geological Survey Open File Report 92-372, (1992) 83 p., diskettes.
- SELNER, Gary I. and TAYLOR, Richard B., SYSTEM 8. GSLITH and related programs, Version 8, for the IBM PC and compatible microcomputers to assist workers in the Earth Sciences in management of drill data located with geodetic coordinates; provides for drawing of sections and plan views, and export of ASCII files for contouring: U.S. Geological Survey Open File Report 92-260, (1992) 97 p., diskettes.
- SELNER, G.I. and TAYLOR, R.B., SYSTEM 8. GSMAP, GSMEDIT, GSMUTIL, GSPOST, GSDIG and other programs, Version 8, for the IBM-PC and compatible microcomputers to assist workers in the Earth Sciences: U.S. Geological Survey Open File Report 92-217, (1992) 217 p., diskettes.
- SHIMOMURA, Ruth H. (Editor), GeoRef Thesaurus and Guide to Indexing; America Geological Institute, (1989) 731 p.
- SONDHEIM, M., LOWE, G., MENES, R. and FRIESEN, P., A Data Model for Geomatics, *British Columbia Ministry of Crown Lands*, (Presented at The Canadian Conference on GIS, GIS '90, Ottawa) (1990).
- STRUIK, L.C., ATRENS, A and HAYNES, A., Handheld Computer ASCII Editor as Field Notebook, and a Compiler for Immediate use of the Digital Data in Database and CAD Applications, (Proceedings of the Second Canadian Conference on Computer Applications in the Mineral Industry, Vancouver, Canada, September 15-18, 1991), Volume II (POULIN, R., PAKALNIS, R.C.T and MULAR, A.L., Editors), Department of Mining and Mineral Process Engineering, University of British Columbia, Vancouver, B.C. and The Canadian Institute of Mining, Metallurgy and Petroleum, (1991) pp. 15-25.
- STAPLETON, G., et al., A Mineral Deposit Database for Microcomputer <u>in</u> Current Research (1991) Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 91-1, (1991) pp. 401-403.
- TAYLOR, Richard B., SELNER, Gary I. and JOHNSON, Bruce, R., GS MRDS A System Based on the Data Fields Used in the National MRDS System but Using dBASE III and a Microcomputer (IBM PC or

Compatible) for Organizing Data on Mineral Resource Occurrences and Providing Tabular and Graphic Output, *U.S. Geological Survey*, Open File Report 86-450A, Program Disk 86-450B, (1986).

- TURNER, R.L., Data for stream sediment and soil samples from the Elko 1 x 2 degree quadrangle, Nevada, U.S. *Geological Survey* Open File Report, 90-435, (1990) two 5 1/4 inch diskettes.
- ULLMAN, J.D., Principles of Database and Knowledge-base Systems, Vol. I, Computer Science Press (1988).
- UNIVERSAL DECIMAL CLASSIFICATION (UDC); International Medium Edition, English Text, Part 1; Systematic Tables, *British Standards Institute*, (1985) 495 p.

The Strategy and Philosophy in Mineral Resources Databases

OUTLINE:

Introduction Why, How, When, Where, What, Who The Mineral Exploration and Development Cycle Organization of Earth Science Data Master Database - *Data Dictionary* System Planning - *System Cycle* An Approach to Integrated Data Managment Summary

References:

TECDOC Section 4.1, 4.2, Figure 3 Green, Bill, 1991, Exploration with a Computer

Lecture 5 by: L.D. Jones, May 11, 10:00-11:00

CHALLENGES:

- successfully integrate the various databases and mapping systems in a way that facilitates exchange of data for broader purposes.
- maintain information in a manner which promotes data integrity and rapid retrieval.

DATA ISSUES - DATA MODELS:

- originally recorded on paper.
- transferred into digitally based systems.
- data model must be constructed that provides the organizational layout of the data.
- must serve the needs of the business application that surrounds the data.
- many databases evolve in which model construction is minimal.
- ad hoc database construction which occurred as technology developed.

TECHNOLOGY MANAGEMENT ISSUES:

- development and maintenance of data requires human resources.
- local and central responsibility of systems.
- database managers and administrators.
- routine and specialized maintenance *backups, programming.*
- inconsistencies, errors, corruption of data, and eventual abandonment of the databases and applications will result.
- focus on future developments and planned migration strategies.
- data static if it is collected and managed in a consistent framework.
- data considered to be dynamic (*changing in its nature, structure, and application*) if collected and evolved over time.
- requires a strategy that will work towards keeping data relevant and manageable.

PROCEDURE:

- establish Business Case and Plan strategy.
- coordinate implementation with the custodians of the databases.
- review and recommend, where necessary, upgrading of databases.
- manage and coordinate the exchange of data.

DATABASE COMPONENTS:

- data model.
- administration.
- project staffing.
- documentation.
- database directory.

DATABASE COMPONENTS:

- data model.
- administration.
- project staffing.
- documentation.
- database directory.

- Challenges
- Data Issues Data Models
- Technology Management Issues
- Procedure
- Database Components

Some Whats:

- mineral resources are unevenly distributed throughout the earth's crust.
- most countries enjoy some mineral endowment.
- many have a mining history dating back hundreds of years.

Some Whys:

- few countries have a well-organized, comprehensive and easily accessible source of historic mining and geological data relating to the nature and distribution of their mineral resources.
- such information is the starting point in the search for new orebodies.
- readily accessible databases are essential for effective management of the existing resource and invaluable tools in the search for new orebodies.
- add to the country's resource base.
- stimulus to mineral exploration leading to the discovery of new mineral deposits.
- development of new mines.
- contributes to the creation of new wealth by developers, workforce, and public treasury (profits, wages, and taxes).

Some Hows

- effective management of mineral resources requires a knowledge of the nature of the resources to be managed, their dimensions, where they are located, their current status, and many other factors.
- Earth Science Databases compile and update this information.

THE MINERAL EXPLORATION AND DEVELOPMENT CYCLE

Mineral Exploration Program Observations and Strategy:

- detailed geological information will be collected during the life of the operation.
- these data are invaluable in the search for new orebodies in the same district and in other areas with similar geological setting.
- data are often lost if the project is abandoned.
- drill core and logs, assays, geophysical results, geological maps, mine plans and engineering reports may be buried in private files or may even be lost or destroyed.
- if the information is stored in a database where it can be readily retrieved and analyzed, it may lead to fresh insights and new ideas that rekindle interest in the project.
- new geological concepts, the availability of new technology, an increase in commodity prices or improved transportation may reactivate an old mining area.
- easy access to historical and current geoscientific data, which is gathered at great expense and sometimes is not reproducible, will be of benefit to new investors, which in turn will stimulate and promote mining exploration in an area.

THE MINERAL EXPLORATION AND DEVELOPMENT CYCLE

Philosophy of Mineral Exploration Programs:

- mineral exploration and mine development ventures involve a high level of financial risk.
- information gathered at each stage of a project lead to increased confidence of discovering and developing an orebody.
- if the data gathered at each stage of a project is accurate and complete lower risk factors are involved.

Stages of Mineral Exploration Programs:

- first stage of exploration is the choice of area, which is generally based on analysis of available geoscience data from general surveys and previous exploration effort.
- ready access to this type of information will simplify the task and greatly increase success
- subsequent stages include geophysical and geochemical surveys, detailed geological mapping and drilling and underground work.
- costs increase at each stage, as do the spin-off economic benefits.
- information generated must provide the justification for continuing to the next stage.
- final stage ore reserves exhausted and mine closes.
- portion of the profits will be allocated to the search for new orebodies and the exploration and development cycle will be repeated.

System Planning - Data and System Goals

- quick and easy access to data
- detailed, high quality information
- data available in a wide variety of forms, such as custom and standard reports, and digital files for incorporation into other programs
- systematic management of data elements to improve data integrity and validity
- an established methodology for the distribution of data
- allow the database to grow with increased requirementss
- efficient and flexible model
- establish common data formats and system capabilities
- define links to geographical information systems
- implement a modern user-interface based on the latest technology
- standardize tables and definitions (e.g. commodities and work types)
- a versatile data dictionary will permit customized data content
System Planning - System Cycle

- establish business objectives and desired output
- scope document, user-requirements, fitting analysis (content and system)
- detailing the proposal, with an action plan and resources required
- budgeting and project team selection
- user-needs analysis and design details
- project schedule and detailed implementation plan
- develop universal tables, establish regional flexibility
- chose application development software and acceptable user-interface
- produce a PC-based application
- system testing and documentation
- user acceptance and evaluation
- marketing, distribution, training and support

Development and Evolution of a Database Management System, a Canadian Example

OUTLINE:

Introduction Setting of Ore Deposits in British Columbia B.C. Geological Survey Databases Integration of Databases - *Mineral Potential Maps* System Plan Development - *Example* Summary

References:

TECDOC Section 4.2, Annex 6.1

Lecture 7 by: L.D. Jones, May 11, 14:00-15:30

Data Integration/Management Unit

It is proposed that the Division establish a distinct Data Integration/Management Unit. This unit will address the issues discussed above as well as fulfilling 3 main objectives:

- 1. To provide an efficient and standardized means of producing maps using GIS technology. This will be achieved through the coordinated integration of databases and map data such that thematic maps and reports can be generated for specific applications. This will result in a dynamically-based system that can generate maps and reports critical for land-use issues, and will also provide thematic reports and maps imperative for mineral resource appraisal.
- 2. To provide a powerful, centralized land information management tool for the Geological Survey Branch databases such as Regional Geology, MINFILE, ARIS, Coal file and Regional Geochemistry, Mineral Titles, Notices of Work, Mineral Policy). These databases would exist in various formats which serve the needs of the project/programs that require them. The system will eventually comply with the SAIF (Standard Archive and Interchange Format) format which meets the specifications of the Land Information Infrastructure and would not duplicate existing databases. The following requirements will also be supported:
- compliance with the Division requirement to implement an across-theboard integrated data management strategy that fulfills the requirements of the LII;
- compliance with the requirement to carry out the mineral resource assessment program under the Corporate Resource Inventory Initiative (CRII);
- addressing the need for an upgraded geoscience data and map inventory, management and analysis system;
- providing compatibility with the publication standards for the Division;
- satisfying Land Use Assessment requirements;
- compliances and compatiblility with the Corporate Land Information Strategic Plan.
- 3. To provide an electronic link with the LII (Land Information Infrastructure) that will enable on-line exchange of land information data in SAIF format between the Division and other ministries. This will be devleoped in Phase III of the implementation of the LII. Data will be captured from two main sources. External data such as radiometric or aeromagnetic data will be captured using formats required or defined from the external source. This data will be imported into the GSB GIS using a number of different translators. Data derived from other BC government sources will eventually be captured via the Land Information

Infrastructure using a common set of standards that will be defined using the Standard Archive Interchange Format (SAIF). GSB mineral potential products will also be made available through the LII.

Data Dissemination within the GSB

Data dissemination can be achieved through networked PC and Workstation platforms by accessing a centralized database containing the core databases and integrated products. Through the use of a client-server architecture, data can be captured and managed on the server, while being accessed and analyzed on clients. The Data Integration Unit would act as the central server for the data.

Planned Migration Strategy

In order for the Division to comply with the LII and build a comprehensive and spatially linked database structure, it must plan an implementation and migration strategy. This strategy consists of:

- constructing and coordinating data models of all the databases within the Division that are intended to be part of the LII;
- create a plan of database linkages across the Division;
- on the completion of database lifecycles, each database should be reengineered to conform with Division GIS linkage requirements and the LII.

This strategy requires a team of personnel comprised of those responsible for development and/or management of the various databases within the Division, and would be coordinated by the Data Integration Unit along with ISB. This team would led by a Division representative who is familiar with the LII and the goals and database structures of the Division. This team would coordinate the transition of databases to the proposed data model structure within the Division.

OUTLINE:

Introduction Definitions Data Models Database System Design Standards Database Administration Database Documentation

References:

TECDOC Section 3

Lecture 10 by: L.D. Jones, May 12, 9:00-10:00

Definitions

- ⇒ database is an organized set of related data that is drawn together to fit defined needs
- ⇒ database management system (DBMS) consists of a database and a set of programs to access the database. It provides a structured environment that is both convenient and efficient to use in storing, accessing and reporting data
- \Rightarrow database file contains data with a particular theme
- \Rightarrow **record** all the data for a particular entry
- ⇒ field is an item of information within a record
- ⇒ database structure defines a database file
- ⇒ database key uniquely identifies the sites of each record
- ⇒ data dictionary contains details of the structure of the database, definitions of the contents of each field and listings of acceptable entries for fields of explicit content
- ⇒ external interface is defined as the mechanism in which the user captures or enters the data
- ⇒ data model describes data and a set of operations used to manipulate that data

Earth Science Information Databases - Their Elements and Functions - Part II

OUTLINE:

Introduction Codes and Key Terms Published Systems - *GEOSCAN, GEOREF* PC-based Systems - *PROCITE* Un-published Systems - *GSB Index, ARIS* Summary

References:

TECDOC Section 4.3, Annex 6.2

Lecture 12 by: L.D. Jones, May 12, 11:15-12:15

SCREEN FORMAT for inputting data to NTS & Author Index of British Columbia publications

AUTHOR(S):	INITIALS	YEAR		NTS	MAP
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX	XXXX	a	XXXX	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX		b	XXXX	XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXX		C	XXXX	XXX

KEYWORDS:

Use [Cntl-End] when input complete

EXAMPLE OF LOCATION & AUTHOR INDEX

Field Field Name Width Type 1 NTSA1 Character 4 2 NTSA2 3 Character 3 NTSB1 Character 4 4 NTSB2 Character 3 5 NTSC1 4 Character NTSC2 6 Character 3 7 NTSD1 Character 4 NTSD2 Character 3 8 9 AUTHOR 20 Character 6 10 INITIAL Character 11 TITLE1 Character 200 8 12 AG CODE Character 13 PUBLICATIO Character 60 55 14 PUB TYPE Character Character 13 15 PUB NO 16 PUB_YR Numeric 4 17 MAPS Character 15 SCALE Character 10 18 Logical 19 MAJ REF 1 20 IN_PRINT Logical 1 21 LIB CONG Character 15 Character 15 22 ISBN 23 KEY1 Character 50 24 KEY2 Character 50 25 KEY3 Character 50 26 KEY4 Character 50 50 27 KEY5 Character 28 KEY6 Character 50 29 KEY7 Character 50

Fie	eld	Field Name	Туре	Width
	30	KEY8	Character	50
	31	KEY9	Character	50
	32	KEY10	Character	50
	33	KEY11	Character	50
	34	KEY12	Character	50
	35	KEY13	Character	50
	36	KEY14	Character	50
	37	KEY15	Character	50
	38	KEY16	Character	50
	39	PUBPAGE	Character	18
	40	AUTHOR2	Character	20
	41	INITIAL2	Character	6
	42	AUTHOR3	Character	20
	43	INITIAL3	Character	6
	44	AUTHOR4	Character	10
	45	INITIAL4	Character	6
	46	AUTHOR5	Character	10
	47	INITIAL5	Character	6
	48	AUTHOR6	Character	10
	49	INITIAL6	Character	6
	50	AUTHOR7	Character	10
	51	INITIAL7	Character	6
	52	AUTHOR8	Character	10
	53	INITIAL8	Character	6
	54	AUTHOR9	Character	10
	55	INITIAL9	Character	6
	56	REC_NO	Numeric	5
	57	THESIS	Character	5
**	Tota	al **		1428

GRANT, B., NTS (National Topographic System) Location & Author Index to Publications of the British Columbia Geological Survey Branch, *British Columbia, Ministry of Energy, Mines and Petroleum Resources*, Information Circular 1991-7, (1991) 304p.

B.C. ASSESSMENT REPORT INDEXING SYSTEM (ARIS)

- a library of over 22 000 assessment reports dating from 1947
- reports of assessment submitted by the mineral industry under the Mineral Tenure Act in order to maintain claims in good standing
- \$56 million dollars of exploration work submitted in 1990
- information contained in the reports is a valuable reference and research tool for mineral exploration, academic studies and resource management

Assessment Report Indexing System (ARIS) designed to assist in processing a rapidly mounting volume of assessment report administration and data management.

ARIS Database

- The ARIS system modelled after the MINFILE (Mineral Inventory File)
- The database design uses an "entity-relationship" model comprised of codes (entities), with interrelated tables of data containing common assessment report numbers
- ARIS database resides on a mainframe computer and could easily be ported to a PC-based system.

Present Functions of ARIS:

- 1. Data capture
- 2. Administration and maintenance
- 3. Inquiries (ad hoc and pre-programmed)
- 4. Distribution functions

1. Data Capture (ARIS)

Data Entry

- 1) General Data (locational)
- 2) Names (author owner operator)
- 3) Geological Summary
- 4) Keywords
- 5) Work Data
- 6) Approval Information
- 7) Amend/Reject Information

2. Administration and Maintenance (ARIS)

Reports

- 1) Tables Report
- 2) Name & Address Table Report
- 3) NTS Map Index
- 4) ARIS Summary Sheet
- 5) Off Confidential Report
- 6) Status Report by NTS Map
- 7) Letters (approval, amend, rejection)
- 8) File to Produce Map List

Table Maintenance

- 1) Mining Camp Codes
- 2) Mineral Act Regulations Code
- 3) Date Codes
- 4) Commodities
- 5) Mining Divisions
- 6) NTS Mapsheet Names
- 7) Specific Work Types
- 8) General Work Types
- 9) Name & Addresses
- 10) Name Types
- 11) Keywords

System Maintenance

- 1) System Error Message Maintenance
- 2) System Error Message Inquiry
- 3) Prompter (Help) Maintenance

3. Inquiries (ARIS)

Inquiries

- 1) Claim Name
- 2) Owner Operator Author Name
- 3) Property Name
- 4) Mining Division
- 5) NTS (National Topographic System) Mapsheet
- 6) MINFILE Number
- 7) Latitude/Longitude

4. Distribution Functions (ARIS)

- contributor to GEOSCAN, a federal-provincial cooperative program. GEOSCAN is a computerized bibliographic index to geological information dealing with the Canadian landmass, and offshore areas
- produces diskettes in GEOSCAN compatible format.
- perform searches to interested clients free of charge
- complete assessment report libraries on microfiche
- copies of reports can be ordered
- ARIS available on paper, microfiche and computer diskettes. The index provides latitude, longitude, UTM co-ordinates, claim names, operator, author, type of work reported and report year. Available 14 ASCII files to facilitate access by a variety of commercial software programs, such as database management and plotting packages
- 90 index maps mainly at a scale of 1:250 000

OUTLINE:

Introduction Data Codes, Structure and Elements USGS Example MINFILE Example What is MINFILE Brief History Data Model User Examples MINFILE/pc Products and Distribution Summary

References:

TECDOC Section 4.4, Annex 6.4

Lecture 15 by: R.B. Taylor and L.D. Jones, May 13, 9:00-12:00

Example of first-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP1.DBF Number of data records: 300 Date of last update: 07/07/91

<u>FIELD</u>	FIELD NAME	<u>TYPE</u>	<u>WIDTHDEC</u>	SAMPLE DATA
1 2 3 4	ID_NO DPST_NM STATUS_C CMDTY1 C	Character Character Character Character	10 30 4 2	TVL-013 DOMINION REEF MINE UR
5	CMDTY2_C	Character	2	AU
6	CMDTY3_C	Character	2	AG
7	LAT	Character	9	26-52-00S
8	LONG	Character	10	026-23-00E
9	DPTYPE_C	Character	4	QPEB
10	REF1	Character	4	0012
11	REF2	Character	4	0066
12	REF3	Character	4	0109
13	CMNT1_T	Character	70	Quartzite overlying oligomictic quartz- pebble congl.
14	GEOL_NM	Character	4	LDJ
15	DATE_IN	Character	8	070791
** Total	**		63	

Example of second-level mineral deposit data.

Structure for database: C:\MINDEP\MINDEP2.DBF Number of data records: 300 Date of last update: 07/07/91

<u>FIELD</u>	FIELD NAM	E <u>TYPE</u>	WID	<u>DTH</u>	DEC	<u>SAMPLE DATA</u>
1	ID NO	Character	10			TVL-013
	—		-			
2	HOST_NM	Character	30			DOMINION
3	HOST_AGE	Character	4			ARCH
4	LITH1_C	Character	4			CGLM
5	LITH2_C	Character	4			QRTZ
6	LITH3_C	Character	4			
7	MIN1_C	Character	4			URAN
8	MIN2_C	Character	4			PYRT
9	MIN3_C	Character	4			
10	SETTING	Character	20			BASIN
11	SIZE	Character	1			
11	GRADE	Character	20			200 PPM
12	CMNT2_T	Character	70			
** Tota	**		179			

Example of third-level mineral deposit data.

<u>Field</u>	<u>ength</u> .	Content
ELEV	4	Elevation in metres
LOC_ACC	1	Deposit location accuracy (1=500 m, 2=1 km, 3=5 km)
ADMINJUR	4	Administrative jurisdiction (province, territory or district)
ALTER_C	4	Alteration type code
DEPCHR_C	4	Deposit character code
DEPCLA_C	4	Deposit classification code
DEPSIZEL	4	Deposit length
DEPSIZEB	4	Deposit breadth
DEPSIZEW	4	Deposit width
DIP	3	Deposit dip
STRIKE	3	Deposit strike
PLUNGE	6	Deposit plunge
DEPSHA_C	1	Deposit shape type code (1=regular, 2=tabular, etc)
META_T_C	1	Metamorphic type code (1=contact, 2=regional)
META_G_C	2	Metamorphic grade code
STNAME_C	6	Stratigraphic name code
ST_AGE_C	3	Stratigraphic age code
ISOAGE	20	Isotopic age
MATERIAL	30	Material dated
DATMET_C	2	Dating method code
RESCAT_C	2	Ore reserve category code (IN=indicated, etc)
RESYEAR	4	Year of calculation or publication
RESQUAN	12	Quantity in metric tonnes
RESCO_C	2	Recoverable commodity code
RESGRADE	9	Grade of commodity
RESREF_T	70	Reserves reference
PRODYEAR	4	Year of production
MINED	12	Ore mined
MILLED	12	Ore milled
PRODCO_C	2	Produced commodity code
PRODQUAN	12	Quantity produced
PRODRF_T	66	Production reference

Code table example

FILE NAME: STATUS_C

CODE DESCRIPTION

EXPLANATION

- SHOWShowingPROSProspectDEPRDeveloped prospect
- ECDP Economic deposit
- MINE Active mine
- MINR Inactive mine
- MIND Depleted mine

A showing or occurrence with identified mineralization. A showing with development and unknown resources. A prospect pending an economic evaluation.

- A developed prospect with recoverable ore.
- A producing mine.
- An inactive mine with resources remaining.
- A mined-out or depleted ore deposit.

OUTLINE:

Introduction Organization of Data and Codes Exploration and Development - *MINFILE example* Drill Hole Data Geochemical Data - *RGS example* Field Data - *GSB-GDS, GEOF examples* Summary

References:

TECDOC Section 4.5, Annex 6.5

Lecture 17 by: L.D. Jones, R.B. Taylor and M. Tauchid, May 14, 9:00-12:00

Work Type Codes

TYPE	DESCRIPTION	CATGRY.	D/A UNITS	NUM.UNITS
BHDR	Becker Hammer	DRIL	m	hole(s)
BIOG	Biogeochemistry	GEOC		<pre>sample(s)</pre>
CHUD	Churn	DRIL	m	hole(s)
DIAD	Diamond surface	DRIL	m	hole(s)
DIPN	Dip needle	GEOP	km	
EMAB	Electromagnetic, airborne	GEOP	km	
EMGR	Electromagnetic, ground	GEOP	km	
ETCH	Fission track etch	GEOC		<pre>sample(s)</pre>
FOTO	Photo	GEOL	ha	-
GEOL	Geological	GEOL	ha	
GRAV	Gravity	GEOP	km	
GRSA	Gamma ray spectrometer, airborne	GEOP	km	
GRSG	Gamma ray spectrometer, ground	GEOP	km	
HMIN	Heavy minerals	GEOC		<pre>sample(s)</pre>
HYDG	Water	GEOC		<pre>sample(s)</pre>
INFR	Infra-red	GEOP	km	
IPOL	Induced Polarization	GEOP	km	
LINE	Line/grid	PHYS	km	
LSUR	Legal surveys	PHYS	km	
MAGA	Magnetic, airborne	GEOP	km	
MAGG	Magnetic, ground	GEOP	km	
MALM	Mise-a-la-masse	GEOP	m	
META	Metallurgic	GEOC		<pre>sample(s)</pre>
MNGR	Mineralographic	GEOL		<pre>sample(s)</pre>
OBDR	Overburden	DRIL	m	hole(s)
PERD	Percussion	DRIL	m	hole(s)
PETR	Petrographic	GEOL		<pre>sample(s)</pre>
PITS	Pits	PHYS		pit(s)
PROS	Prospecting	PROS	ha	
RADA	Radiometric, airborne	GEOP	km	
RADG	Radiometric, ground	GEOP	km	
RADP	Radiometric drill hole probing	GEOP	m	
RADR	Radar	GEOP	km	
RECL	Reclamation	PHYS	ha	
REST	Resistivity (alone)	GEOP	km	
RGAS	Radon gas scintillometry	GEOP	km	
ROAD	Road, local access	PHYS	km	
ROCK	Rock	GEOC		<pre>sample(s)</pre>
ROTD	Rotary	DRIL	m	hole(s)
SAMP	Sampling/assaying	GEOC		<pre>sample(s)</pre>
SCAB	Scintillometer, airborne	GEOP	km	-
SCGR	Scintillometer, ground	GEOP	km	
SEIS	Seismic	GEOP	km	
SILT	Silt	GEOC		<pre>sample(s)</pre>
SOIL	Soil	GEOC		<pre>sample(s)</pre>
SPOT	Self potential	GEOP	km	-
STRI	Stripping	PHYS	ha	
TOPO	Topographic/photogrammetric	PHYS	ha	
TRAL	Trail	PHYS	km	
TREN	Trench	PHYS	m	trench(es)
UNDD	Diamond underground	DRIL	m	hole(s)
UNDV	Underground development	PHYS	m	
USUR	Underground surveys	PHYS	m	
	-			

Structure for EXPLRTN.DBF

<u>FIELD</u>	FIELD NAME	<u>TYPE</u>	<u>WIDT</u>	<u>H DEC</u>	<u>STAR</u>	T <u>END</u>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	ID_NO PROJECT_TITLE PROVINCE DISTRICT LATITUDE LONGITUDE PROP_TYPE ID_NO2 ID_NO3 EXPAC_DATE REV_MAP_NO WORK_TYPE COMPANY MANAGER MANAG_TEL EXP_BUDGET PRO_BUDGET COMPLETED DISCUSSED MDSCREVIEW	Character Character Character Character Number Number Character Ch	9 60 30 7 8 1 9 9 8 10 4 30 30 14 13 13 1 1 1	5 5 2 2	1 10 70 30 37 45 46 55 64 72 82 86 116 146 146 160 173 186 187 188	9 69 99 29 36 44 45 54 63 71 81 85 115 145 159 172 185 186 187 188
21 22	MDSC_STAGE EXPL_NOTES	Character Memo	20 10		189 209	208 218

Drill Hole Data

- four tables
- connected with a unique key (HOLE-ID)
- ASCII or spreadsheet format
 - 1. Drill hole name, collar location and total length of hole
 - 2. Downhole survey data
 - 3. Lithological descriptions
 - 4. Sampling and assay data

Examples of tables:

HOLE-ID	X-COORD	Y-COORD	Z-COORD	LENGTH	
KAM-15	6684.37	456.39	118.42	185.93	
KAM-16	6345.87	395.38	120.45	178.65	
KAM-17	7522.26	520.15	116.72	135.58	
KAM-18	7254.84	486.35	123.95	215.14	

Table 14a: Header