

British Columbia Geological Survey Geological Fieldwork 1979

PRELIMINARY INTERPRETATION OF LEAD ISOTOPES IN GALENA-LEAD FROM BRITISH COLUMBIA MINERAL DEPOSITS

By C. I. Godwin, A. J. Sinclair, and B. D. Ryan Department of Geological Sciences, University of British Columbia

INTRODUCTION

Analysis of lead isotopes from mineral deposits in British Columbia is part of an ongoing lead isotopeoriented metallogenic study of the Canadian Cordillera. A total of 80 new analyses from 48 deposits, reported in Tables 1 to 5 (see pp. 178-182), have been completed since early 1979 in the Geology-Geophysics Laboratory at the University of British Columbia.

Data are discussed in terms of major tectonic belts (Sutherland Brown, et al., 1971), and data presentation (Tables 1 to 5) is organized in the same fashion. Table 1, Insular Belts, lists 12 analyses from 7 deposits; Table 2, Central Coast Crystalline Belt, reports 23 analyses from 17 deposits; Table 3, Southern Coast Crystalline Belt, contains 26 analyses from 10 deposits; Table 4, Intermontane Belt, shows 11 analyses from 8 deposits; and Table 5, Eastern Fold Belt, reports 8 analyses from 6 deposits. Locations of deposits analysed are on Figure 57. Averaged values for age categories within each belt or table are shown on Figure 58. This is an interim report since some tectonic belts are not represented in Tables 1 to 5, many more analyses are in progress, and analyses completed prior to this study are not considered here. Our comments are restricted entirely to preliminary evaluation of the new data reported and will be updated as additional analyses are compiled.

SAMPLE PREPARATION AND ANALYSIS

All analyses were done on samples of pure galena or, in the case of very fine-grained sulphides, on samples of mixed sulphides containing galena. Sulphide samples were dissolved using HCl and HNO₃, and the resulting solution was filtered and evaporated until a precipitate of $PbCl_2$ crystals was obtained. Following washing of these crystals in H₂O and ethyl alcohol, they were redissolved in H₂O to provide a concentrated PbCl₂ solution which was further purified by passing it through anion exchange columns.

Electroplating of lead from this solution followed by dissolving in HNO_3 and by evaporation provided about 50 grams of $Pb(NO_3)_2$ for each sample. About 1 μ gm of lead was then loaded onto single rhenium filaments, using the standard silica gel technique.

Isotopic analyses were done using a 90-degree, 12-inch mass spectrometer. Samples and standards were analysed at temperatures of 1100 degrees to ±100 degrees centigrade. Runs on samples were interspersed with runs of the Broken Hill No. 1 standard. Reproducibility of individual analyses of this standard is generally about 0.1 per cent at 1 sigma and this is considered to be the reproducibility of the sample analyses. All isotopic ratios reported in the tables have been normalized to their absolute values by intercomparison with the Broken Hill No. 1 standard. The absolute value of this standard was taken to be: 206 Pb/ 204 Pb = 16.003, 207 Pb/ 204 Pb = 15.389, and 208 Pb/ 204 Pb = 35.657 (Cooper, *et al.*, 1969).

Figure 57. Location of deposits for lead isotope analyses.

Figure 58. Lead isotope analyses - averaged values.

INSULAR BELT

Data, listed in Table 1, are generalized on Figure 58. Most deposits are demonstrably volcanogenic in origin (for example, Western Mines, Tyee, etc.), however, the origin is uncertain for some showings.

Results for those deposits hosted by the Sicker volcanic rocks of Pennsylvanian/Permian age cluster roughly about a point centred near the geochron (zero isochron) but significantly below the normal crustal growth curve of Stacey and Kramers (1974). These features indicate a multistage evolution, part of which was in a low U/Pb and Th/Pb environment. A linear trend in the ²⁰⁷ Pb/²⁰⁴ Pb versus ²⁰⁶ Pb/²⁰⁴ Pb data can be defined by a York II cubic regression line. This trend, if real, and if interpreted as a two-stage model with final mineralization about 250 Ma ago, indicates a source rock (basement complex ?) about 2000 Ma in age. More work is required to examine this possibility.

The Tertiary Sunro deposit, in Metchosin volcanic rocks, also developed in a low U/Pb and Th/Pb environment. However, the lead is more radiogenic than that from lead in Sicker volcanic rocks, presumably because of the younger, Tertiary age for Sunro.

COAST CRYSTALLINE BELT

Lead isotope data for deposits in the central part of the Coast Crystalline Belt are in Table 2. Most results are from deposits in metamorphosed Hazelton volcanic rocks of Jurassic age, and many are of volcanogenic origin. Because of the complex geological history in this area, the origin is uncertain for some showings described as veins. Some vein deposits, however, are demonstrably Tertiary in age (for example, late-stage veins at British Columbia Molybdenum), because of their association with Tertiary intrusive rocks.

Data from most deposits contained in Jurassic volcanic rocks cluster closely to the composition of average modern-day lead (Fig. 58). Consequently, they are abnormally enriched in radiogenic lead because their true age is *circa* 200 Ma. This anomaly requires a multi-stage origin which to a first approximation is estimated by a two-stage model based on a York II cubic regression line through the ²⁰⁷Pb/²⁰⁴Pb data. This model requires a source for radiogenic lead of about 2400 Ma, although there is a large uncertainty attached to this model age. Obviously, more high quality analyses are required to investigate this problem adequately. Lead from the Ecstall and Big Missouri deposits is the least radiogenic and lies significantly to the left of the geochron on Figure 58; thus, single stage ages based on the model of Stacey and Kramers (1974) can be calculated and are 134 Ma and 173 Ma respectively. These ages are in reasonable agreement with the age of host rocks. Several authors (for example, Cannon, *et al.*, 1972) have suggested that the greatest economic potential for lead-zinc deposits, in a constant geological setting in a given area, is for those with the least radiogenic isotopic ratio of lead. According to this empirical relationship, the lead from the Ecstall and Big Missouri indicates areas of significant potential for large lead-bearing deposits, a possibility in accord with the origin and known reserves at the Ecstall deposit.

Tertiary deposits sampled in the central part of the Coast Crystalline Belt contain more radiogenic lead than do older deposits, perhaps in part due to their young age. In general, however, they are too highly radiogenic to attribute their greater content of radiogenic lead only to decreased age. A more complex history of evolution is necessary; more data are required.

Lead isotope data for deposits in the southern part of the Coast Crystalline Belt are in Table 3. Analyses are either from volcanogenic deposits or from veins which are probably closely related spatially to volcanogenic deposits. Volcanic host rocks are Jurassic in the Seneca-Harrison Lake area, but might be as young as Early Cretaceous in the Britannia-Northair area. Isotopic ratios plot on the geochron and are substantially below the normal crustal evolutionary growth curve. Thus lead from these deposits evolved in an environment with significantly lower U/Pb and Th/Pb ratios than that of deposits from the central part of the Coast Crystalline Belt.

Some data for galena from the Van Silver deposits represent veinlets cutting intrusive rocks of the Garibaldi Volcanic Suite (for example, TUN. and MILL). The young vein leads have similar isotopic compositions to older, volcanogenic leads (for example, Tedi), indicating that Late Tertiary mineralization has occurred without significant contamination by a radiogenic component. This uniformity of lead isotope composition points to a close genetic relationship between lead deposits in and near the Callaghan Creek pendant depsite the several ages of mineralization (Miller and Sinclair, 1978, 1979).

INTERMONTANE BELT

The relatively few new lead isotope dates for deposits in the Intermontane Belt are mainly from the Smithers area and are given in Table 4. Deposits hosted by Hazelton volcanic rocks of Jurassic age are probably volcanogenic unless closely related spatially to stocks as young as Tertiary. The Kutcho volcanogenic deposit occurs in volcanic rocks which are probably Triassic in age. Lead isotope data from deposits in Jurassic rocks are relatively uniform in composition and cluster close to the geochron only slightly below the normal crustal growth curve. Isotopic values are comparable to those found in volcanogenic deposits of the neighbouring central Coast Crystalline Belt. The Kutcho deposit is an obvious anomaly, but is separated widely geographically from the other deposits and occurs in older Triassic rocks.

OMINECA BELT

No new data have been obtained for the Omineca Belt.

EASTERN MARGINAL BELT

Lead isotope data for the Eastern Marginal Belt, given in Table 5, are for shale-hosted, stratiform zinclead-silver deposits in the Driftpile-Gataga area of northeastern British Columbia. These data cluster near the geochron but are significantly above the general growth curve for crustal leads for both thorium-derived ²⁰⁸ Pb and ²⁰⁶ Pb and ²⁰⁷ Pb. On fossil evidence, the deposits formed very near the Devonian/Mississippian boundary (W. Roberts, 1979, personal communication). Earlier lead isotope studies (Godwin, *et al.*, 1979) indicate a basement source of 1500 Ma for this area.

CONCLUSIONS

The comparatively few new lead isotope analyses on galena from mineral deposits in British Columbia show that lead isotopes provide a useful means of investigating different ages and geochemistries of basement rocks throughout the Canadian Cordillera. More data obviously are desirable and will result in refined interpretations. A number of specific conclusions can be drawn from data presented.

(1) Insular Belt lead isotope ratios from deposits hosted by Sicker volcanic rocks suggest the possible existence of an approximately 2000-Ma-old basement complex.

- (2) Central Coast Crystalline Belt lead isotope data from Jurassic volcanogenic or related deposits suggest the possibility that basement rocks *circa* 2500 Ma old underlie this area.
- (3) Southern Coast Crystalline Belt lead isotope ratios from volcanogenic or related deposits developed in a significantly different Pb-U-Th environment than did lead in comparable deposits in the central Coast Crystalline Belt.
- (4) Tertiary mineralization at Van Silver deposits have lead isotope ratios indistinguishable from volcanogenic deposits in Lower Cretaceous Gambier Group rocks, indicating that a close genetic relationship is likely. In other cases lead may be mobilized and contaminated with a radiogenic component to produce, for example, Tertiary lead highly enriched in a radiogenic component. Examples of this may include Tertiary porphyry and related deposits.
- (5) Most lead ratios from *circa* Mesozoic volcanogenic and related deposits appear to have developed in a relatively low U/Pb and low Th/Pb environment relative to the normal crustal evolution curve defined by Stacey and Kramers (1975) and implies growth in a more primitive environment. This characteristic is common to such deposits in the Insular, Coast Crystalline, and Intermontane Belts. Data are not yet available for the Omineca Belt.
- (6) Leads from several volcanogenic deposits with 'least radiogenic' isotopic ratios allow calculation of reasonable single stage ages, and may specify areas of high mineral potential.
- (7) Eastern Fold Belt lead isotope ratios from Devonian/Mississippian stratiform lead-zinc-barite deposits evolved in a high U/Pb and Th/Pb environment relative to normal crustal evolution. Evolution of the lead in the Selwyn shale basin is an acceptable explanation of the pattern found.

Our comparatively few, new lead isotope analyses on galena from mineral deposits in British Columbia show that such studies provide important restrictions on ore genesis, age of mineralization, and age and geochemical attributes of the source rocks (*see* Sinclair, 1965). Much more data are desirable and will provide a useful means of studying metallogeny of the Canadian Cordillera.

ACKNOWLEDGMENTS

The writers thank A. Garven for helping to collate much of the data. Financial assistance for lead isotope studies in the Canadian Cordillera have been most generously provided by: British Columbia Ministry of Energy, Mines and Petroleum Resources, Cominco Ltd., Cyprus Anvil Mining Corporation, and Rio Tinto Canadian Exploration Limited. A number of geologists from the Ministry of Energy, Mines and Petroleum Resources and industry kindly have contributed specimens for this study.

REFERENCES

- Cannon, R. S., Jr., Pierce, A. P., Antweiler, J. C., and Buck, K. L. (1962): Lead-isotope Studies in the Northern Rockies, U.S.A., *in* Petrologic Studies (a volume in honour of A. F. Buddington), *Geol. Soc. America*, pp. 115-131.
- Cooper, J. A., Reynolds, P. H., and Richards, J. R. (1969): Double Spike Calibration of the Broken Hill Standard Lead, *Earth Planet. Sci. Lett.*, Vol. 1, pp. 58-64.

- Godwin, C. I., Sinclair, A. J., and Ryan, B. D. (1979): Preliminary Lead Isotope Interpretations of Zinc-Lead-Silver Mineralization in the Selwyn and Mackenzie Fold Belts, Northern Canadian Cordillera, Program and Abstracts, *Geol. Assoc. Canada*, Cordilleran Section.
- Miller, J.H.L. and Sinclair, A. J. (1978): Geology of Part of the Callaghan Creek Roof Pendant (92J/3W), B.C. Ministry of Energy, Mines & Pet. Res., Geological Fieldwork, 1977, pp. 96-102.
- Miller, J.H.L. and Sinclair, A. J. (1979): Geology of an Area including Northair Mines Ltd.'s Callaghan Creek Property (92J/3W), B.C. Ministry of Energy, Mines & Pet. Res., Geological Fieldwork, 1978, Paper 1979-1, pp. 124-131.
- Sinclair, A. J. (1965): Oceanic Leads and Ore Genesis: A Discussion, Econ. Geol., Vol. 60, pp. 1533-1538.
- Stacey, J. S. and Kramers, J. D. (1975): Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model, *Earth Planet. Sci. Lett.*, Vol. 26, pp. 207-221.
- Sutherland Brown, A., Cathro, R. J., Panteleyev, A., and Ney, C. S. (1971): Metallogeny of the Canadian Cordillera, *CIM*, Bull., Vol. 64, pp. 37-61.

TABLE 11 LEAD_ISOTOPE_ANALISES'_ON_GALENAS_PRON_MINERAL_DEPOSITS Insular Belt

Sample Numper	Deposit Name	Nap Lat.º Name North	Long.º West	Lead I: 20+Pb/	sotope I ro+ph	ata (Rela 20795/2	tive 15 04Pb	ZOSPD/	s %) 204Pb	Remarks
ertiary					_					
679JR-00 Jumber of	1 Suaro (Jordan R.) deposits (n) = 1 <u>ar</u>	JR 48.44 <u>ith average</u>	1 <u>2</u> 4,04 = X	19.018 [19.018	(.06) (.06)]	15.624 [15.624	(+ 10) (- 10)]	38,714 [38,714	(+13) (+13)]	
iumber of	analyses = 1 <u>st</u>	d' strot meau	=S • n- 1/2							
ennsylva	<u>)jan - Permian</u>									
7988-001	Alpha and Beta	AB 48.73	124.09	18.882	(.07)	15.617	(. 10}	38.406	(.07)	∎assi¥a
79CL-001	Cowichan Lake	CL 48.78	124.31	18,646	(.03)	15.581	(.05)	38.276	(. 10)	massive
9CL-002	Cowichan Lake	CL 48.7A	124.3A	18.666	(.02)	15.589	(.07)	38.396	(.10)	massive
79CL-003	Cowichan Like	CL 48.74	124.3A	18.702	(+07)	15.546	(.10)	38.086	(. 30)	Elssive
Average	for Cowichan Lake	CL 48.7A	124.34	[18,671	[.04]	115.572	(*03)]	[38, 252	(* 19)]	
7910-001	Iron Clad	IC 48.85	123.68	18.682	(.08)	15.581	(.09)	38.304	(. 12)	disseminated ³
79LN-001	Lenora	LN 48.87	123.78	18.534	{.04}	15,538	(- 09)	38.216	(+ 04)	D assi v e
79LN-002	Lenora	LN 48.87	123.78	18,562	(.08)	15.572	(.08)	38,230	(.09)	massive
ya et a de	for Lenora	LN 48.87	123.78	18.548	(.06)]	15.555	(-08)]	[38.227	(.06)]	
79TY-001	Tyee	TY 48.87	123.78	18.558	(.08)	15.577	(.07)	38.123	(• 11)	massive
7988-001	Western: Byra	WH 49.57	125.59	18,506	(.06)	15.579	(.04)	38,186	(,07)	massive
7988-002	Western: Myra Z	¥8 49.57	125.59	18,483	(+07)	15.554	(.07)	38.089	(06)	massive
79¥M-003	Western	WY 49.57	125.59	18.484	(+ 06)	15.551	(-09)	38.115	(.03)	massive
Average	for Western	WH 49.57	125.59	[18,493	(+06)]	[15, 56 1	(-07)]	1 38.130	[.05]]	

Number of deposits (n) = 6 <u>arith: average</u> = \bar{x} [18.639 (.06)] [15.577 (.08)] [38.240 (.10)] Number of analyses = 11 <u>std_ error mein</u> =5 · n^{-1/2} 0.057 0.009 0.044

1. All analyses done in the Geology - Geophysics Laboratory, The University of British Columbia.

2. All analyses done on galena samples unless otherwise noted.

3. Sample is galena poor and mainly pyrite and chalcopyrite.

TABLE 2: LEAD ISOTOPE ANALYSES! ON GALENAS FROM MINEBAL DEPOSITS

Central Coast Crystalline Belt

Sample Number	Deposit Name	Bap Name	Lat.º North	Long.º West	Lead I: 2069b/	sotope 20+Pb	Data (Rel: 207pb/	ntive 15 20+Pb	S Brror as 20apb/3	s %) sa∢pb	Remarks
Tertiarr											
G7988-0013	RAF: Bear R. area	BR	55.98	129.89	19.231	(.05)	15.629	(.04)	38,712	(.07)	age uncertain
G78NC4 155*	B.C. Molypdenum	MO	55,42	129.42	19.203	(. 14)	15.537	(.10)	38.893	(.13)	K-Ar; 51 Ma
G7958-0013	Packer Praction	SR	56.11	130.02	19.155	(.08)	15.585	(.05)	38.602	{.06}	age uncertain
Number of deposits (n) = $3 \frac{11111}{510} \frac{1121302}{500} = \overline{X}$ Number of analyses = $3 \frac{510}{510} \frac{61000}{500} \frac{1}{500} = 5 \cdot n^{-1/2}$					19.196 0.022	(•09)]	15.617 0.016	(.06)]	(38,736 0,085	(•09)]	
Jurassic											
G788V-001	Bayview	B¥	55,96	129,98	18,501	(+ 14)	15,592	(.08)	36.213	(.08)	
G7884-001	Big Missouri	83	56.11	130.03	18.175	(.06)	15.521	(.06)	37,634	(.09)	
G780V-001	Dolly Warden	DV	55.74	129.63	18,948	(+ 09)	15.673	(.03)	38.779	(.11)	
G78DV-002	Doliy Varden	DV	55,74	129.63	18,866	(+08)	15.628	(.11)	38.432	(. 16)	
Average f	or Dolly Varien	DA	55.74	129.63	[18,907	(.08)]	[15,651	(.07)]	[38,605	(, 14)]	
G78EC-001	Ecstall Biver	EC	53.87	129.51	18.303	(.04)	15.549	(.02)	37.788	(=04)	
G78E5-00 13	Esperanza	ES	55.49	129.49	18.791	(.14)	15.617	(.05)	38.620	(. 10)	
G78NC8136*	Galena Property	3 P	55.72	129.52	18.912	(= 11)	15,668	(,06)	38,784	(.20)	
G79GD-0013	Granduc	GD	56.21	130.33	18.722	(. 11)	15.600	(.10)	36,428	(.11)	
G79HB-0013	Hercules (Dumis)	RR	56.16	130.05	18.753	(.07)	15.634	(.06)	39.057	(+ 10)	
G788C-001	Hidden Creek	30	55.44	129.81	18,489	(• 13)	15,590	(.09)	38.380	(. 11)	
G78NS-001	Hastadon	45	55,59	129,76	18,758	(. 10)	15.654	(.06)	38.546	(.10)	
G785P-001	Silbak-Premier	SP	56.05	130.02	18.825	(.06)	15.577	(.06)	38.357	(.07)	
G785P-002	Silbak-Premier	SP	56.05	130.02	18.849	(.06)	15.639	(+ 04)	38.551	(+ 10)	
G785P-003	Silbak-Premier	SP	56.05	130.02	18.839	(.05)	15.632	(.06)	38,475	(.07)	
G/9Pt-0013	Silbak-Premier	SP	56.05	130.02	18,767	(+ 06)	15.594	(+13)	38.494	(,08)	
average r	OI SIIDAR-PICUICE	38	20.02	130.02	[10.020	[* 00]]	1 1 3 4 6 9 3	(+0/) 1	1 30.409	(.00);	
G78TB-001	Torbit	78	55.69	129.49	18.844	(.11)	15,580	(.03)	38.295	(.05)	
G7818-002	Torbit	ŤB	55.69	129.49	18.856	(. 10)	15.610	(.05)	38,287	(.20)	
G78NC6995	Torbit	TB	55.69	129.49	18.918	(.05)	15.642	(.08)	38.546	(.05)	
Average f	or Torbit	ΤB	55.69	129.49	[18,872	(*03)]	[15.611	(.05)]	1 38.376	(.10)]	
37880198*	United Metals	U M	55.55	129.28	18.858	(.07)	15.671	(.07)	38.503	(. 18)	
G78UJ-001	Unuk River	μJ	56.41	130.49	18.861	(.08)	15.629	(.08)	30,373	(. 15)	
Number of d Number of a	eposits (n) = 14 <u>aci</u> nalyses = 20 <u>std</u>	the im	20199 = 0_0918 =	$= \frac{\overline{X}}{S} \cdot n^{-1/2}$	[18.694 0.063	(.09)]	[15_674 0,011	(.06)]	[38,456 0,103	(+11)]	

1. All analyses done in the Geology - Geophysics Laboratory, The University of British Columbia.

2. All analyses done on galena samples unless otherwise noted.

3. Sample submitted by T. Grove, BCHOA.

W. Sample submitted by N. Carter, BCNOR.

Simple Number	Deposit Name	Мар Мафе	Lat.¢ North	Long.º West	Lead Is 200pb/2	sotope ≥∘+pp	Diti (Rel: 20795/3	ative 15 20 • Pb	Error as 20#Pb/2	5 ≸) 204Pb	Remarks
Jurassic	<u>- Lower Cretaceous</u>										
G788L-001	fitzsimmons Creek	A L	50.12	122.93	18.466	(.05)	15.525	(.05)	38.047	(.07)	massive
G798F-001 G798F+002 Average	Big Poot Big Foot for Big Poot	8 F 8 F 8 F	49.44 49.44 49.44	121.84 121.84 121.84	18,494 18,496 (18,495	(+07) (+04) (+06)]	15.525 15.550 [15.538	(.04) (.10) (.07)]	38.030 38.077 [38.054	(+07) (+14) (+11)]	stockwork stockwork
BRITN-493 BRITN-494 BRITN-495 BRITN-496 G78BT+001 G78BT+002 G78BT+003 Average	Britannia: E Blf. Britannia: Vict Britannia: Vict Britannia: Vane Britannia: Bluff Britannia: No 5 Britannia: No 8 for Britannia	BT BT BT BT BT BT	49.61 49.61 49.61 49.61 49.61 49.61 49.61 49.61	123.14 123.14 123.14 123.14 123.14 123.14 123.14 123.14	18.53, 18.524 18.524 18.582 18.484 18.544 18.502 [18.507	(.10) (.09) (.05) (.07) (.07) (.08) (.09) (.08)	15.573 15.556 15.579 15.548 15.521 15.591 15.568	(.08) (.08) (.06) (.03) (.07) (.09) (.07) (.07)	38.097 37.952 38.221 38.054 38.053 38.145 38.092 38.085	(.08) (.13) (.06) (.11) (.06) (.05) (.08) (.08)	NASSIVO NASSIVO NASSIVO NASSIVO NASSIVO NASSIVO NASSIVO
G79HL-001	Harrison Lake	HL	49.35	121.83	18,482	(.07)	15.563	(. 97)	38.043	(.10)	stockwork
G79HP-001	Hopkins	H P	49.64	123.29	18,532	(. 05)	15.599	(.08)	38.093	(+ 12)	nassive
G78LC-001	Lynn Creek	LC	49.42	123.06	18.474	(= 04)	15.529	(.03)	38.028	(. 15)	massive (skarn?)
G79HV-001 G79HV-002 Average	NCVicar: Ruth McVicar: Whistler for McVicar	4 V 14 V 14 V	49.66 49.66 49.66	123.02 123.02 123.02	18.408 18.467 [18.438	(.08) (.07) (.08)]	15.545 15.549 15.547	(.02) (.10) (.06)]	37,976 38,058 { 38,017	(.09) (.08) (.09)]	∎tssive Bassive
G79NA-001 G78NA-002 G78NA-003 G78NA-004 Average	Northair: hanif. Northair: Discov. Northair: Warman Northair: Warman for Northair	N A N A N A N A N A	50.13 50.13 50.13 50.13 50.13	123.10 123.10 123.10 123.10 123.10	18,373 18,472 18,441 18,429 [18,430	(.10) (.06) (.10) (.05) (.08)]	15.511 15.537 15.517 15.527 [15.523	{.06} (.05) (.08) (.07) (.06)]	38,960 38,101 38,034 38,012 [38,026	(.07) (.11) (.10) (.04) (.08)]	nassive nassive Bassive Vein
G78SE-003 G78SE-005 Average	Seneca Seneca for Seneca	SE SE SE	49.32 49.32 49.32	121.95 121.95 121.95	18.312 18.319 [18.316	(.10) (.10) (.10)]	15.516 15.516 [15.516	(-08) (-09) (-08)]	37.895 37.914 [37.905	(.07) (.08) (.08)]	∎assi¥e stockwork
G78VS-001 G78VS-002 G78VS-005 G78VS-006 average	Van Silver: Tedi Van Silver: Hill Van Silver: Tun. Van Silver: Tun- for Van Silver	¥5 75 75 75 ¥5	50.06 50.06 50.06 50.06 50.06	123, 14 123, 14 123, 14 123, 14 123, 14	18.427 18.664 18.712 18.462 18.553	(.09) (.06) (.04) (.07) [.06]]	15.556 15.552 15.583 15.519 15.552	(.07) (.08) (.09) (.08) (.08)	38.079 38.190 38.223 38.002 38.124	(-09) (-05) (-12) (-07) (-08)]	disseminated vein in tert. intr. veinlet disseminated
Number of Number of	deposits (n) = 10 <u>ari</u> analyses = 26 <u>std</u>	110. 3Y	ETIGS =	X = S · n - 1/2	[16.481 0.028	(.07)]	[15.541 0.007	(.06)]	[38.055 0.027	(.10)]	

TABLE J: LEAD ISOTOPE ANALYSES! ON GALENA? PROM MINERAL DEPOSITS Southern Coast Crystalline Belt

1. All analyses done in the Geology - Geophysics Laboratory, The University of British Columbia.

2. All analyses done on galema samples unless otherwise noted.

TABLE 4: LEAD ISOTOPE ANALYSEST ON GALENAE REOM.MINENAE DEPOSITS Intermodtane Belt

_____ Nap Lat.º Long.º Lead Isotope Data (Rilative 1S Error as) Deposit Name – Name North West – z06Pb/z0+Pb – z07Pb/z0+Pb – z08Pb/z0+Pb Sample Numper Regarks _____ _____ <u>Cretaceous - Tertiary</u> G79AT-001 Atlin Ruffner G79AT-002 Atlin Ruffner Average for Atlin Ruffner AT 59.73 133.53 19.066 (.05) 15.599 (.09) 38.580 (.11) AT 59.73 133.53 19.101 (.05) 15.637 (.08) 38.718 (.09) AT 59.73 133.53 [19.084 (.05)] [15.618 (.08)] [38.649 (.10)] GS 54.18 126.25 18.863 (.06) 15.577 (.07) 38.387 (.20) K-Ar: 50MA GS 54.18 126.25 19.402 (.06) 15.661 (.06) 38.772 (.12) GS 54.18 126.25 18.860 (.05) 15.553 (.04) 38.301 (.05) GS 54.18 126.25 [19.042 (.06)] [15.597 (.06)] [38.487 (.12)] S7865-003 Goosley: Galena G785G-002 Goosley: Main G785G-003 Goosley: S. Tail Average for Goosley Average for Goosley G79PC-036 Poplar Porphyry PC 54.02 126.98 18.861 (.10) 15.588 (.07) 38.438 (.08) [Number of deposits (n) = 3 <u>arith. average</u> = \overline{X} [13.995 (.07)] !15.601 (.07)] !38.524 (.10) | Number of analyses = 6 <u>std. error mean</u> =S·n^{-1/2} 0.068 0.009 0.064 Jurassic G784S-001 Ascott AS 54.79 126.72 18.666 (.09) 15.592 (.07) 38.349 (.10) G78BK-001 Bob Creek BK 54.30 126.60 18.834 (.09) 15.608 (.07) 38.444 (.04) 15.386 (.08) 38.219 (.04) G78DL-002 Del Santo DL 54.65 126.70 18.643 (.08) G78TS-001 Topley Silver TS 54.60 126.26 18.735 (.07) 15.578 (.08) .t 38.346 (.05) Number of deposits (n) = 4 <u>arith, average</u> = \overline{X} [18,720 (.08)] [15,591 (.08)] [38.340 (.06)] Number of analyses = 4 <u>stå, ertor mean</u> = 5·n^{-1/2} 0.043 0.006 0.046 <u>Vpper Triassic</u> G78KU-001 Kutcho Ck. KU 58.20 128.37 18.469 (.07) 15.524 (.13) 37.815 (.09) Number of deposits (u) = 1 $\frac{arith_x}{arerage} = \overline{x}$ [18,469 (.07)] [15,524 (.13)] [37.815 (.09)] Number of analyses = 1 $\frac{std_x}{error_sean} = 5 \cdot n^{-1/2}$ ---- ----------

1. All analyses done in the Geology - Geophysics Laboratory, The University of British Columbia.

2. All analyses done on galena samples unless otherwise noted.

TABLE 5: LEAD ISOTOPE AMALYSES! ON GALENAS FROM MINEBAL DEPOSITS Bastern Fold Belt

Sample Number	Deposit Name	пар Мале	Lit.º North	Long.º West	Lead Is zospb/s	otope (***Pb	Data (Rela 20796/1	tive 1: PO*Pb	S Error a: zompb/:	5 %) 2042b	Remarks	
<u>Devonian - dississippidb</u>												
G78AK-001	Alcock	AK	57.67	125.42	18.984	(.09)	15.764	(.08)	39.561	{. 09}		
G78CQ-001	Cirque	CQ	57.52	125.12	18.795	(• 08)	15.689	(.08)	39.166	(.08)		
G78DC-001	Driftpile Creek	DC	58.07	125,92	18.864	(.07)	15,666	(.07)	39.093	(.05)		
G780C-002	Driftpile Cre∘k	9C	58.07	125.92	18.860	(,09)	15.686	(+06)	39.202	(. 10)		
G/8DC+003	Driftpile Creek	DC	58.07	125.92	18.852	(.08)	15.655	(.06)	19.043	(.13)		
Average	tor principile Creek	DC	20.07	123.92	[18.859	(*08)]	f 12*88A	(*00)]	[34,113	(•na)]		
G78EF-001	Elf	2 P	57.42	124.72	18.634	(. 09)	15.661	[=09]	39.310	(.04)		
378PK-001	Fluke	? K	57.42	124.87	18.846	(.08)	15.714	(.04)	39.477	(.06)		
G798G-001	Rough	RG	58,27	126.17	18.709	(.03)	15.617	(.07)	38.548	(- 11)		
Number of Number of	deposits (n) = 6 <u>a</u> analyses = 8 g	<u>cith. av</u> Ed. erco	erade =	:). =S·n− ^{⊥/2}	[18.838 0.037	(.08)]	[15,686 0.020	(.07)]	[39, 196 0, 148	(,08)]		

1. All analyses done in the Geology - Geophysics Laboratory, The University of British Columbia.

2. All analyses done on galena samples unless otherwise noted.