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INTRODUCTION 

As part  of  our  continuing  study  of  rapid,  thorouqh  evaluation  procedures 
for  multi-element  stream  sediment  data  (for  example,  Sinclair  and 
Fletcher, 1979; Matysek,  et  al., 1980), we  have  developed  a  systematic, 
computer-oriented  method  of  recognizing  and  ranking  anomalous  samples. 
O u r  detailed  procedure  utilizes  the  type  and  quality  of  data  incorporated 
in various  regional  programs  undertaken by the  British  Columbia  Ministry 
of  Energy,  Mines  and  Petroleum  Resources  but  can be adapted  easily  for 
data  for  other  programs. 

Regional  multi-element  stream  sediment  surveys  of  the  type  carried  out  in 
British  Columbia  under  terms of the  Uranium  Reconnaissance  Program 

provenance  region  of  each  sample.  Consequently,  the  following  procedure 
contain  coded  information on the  principal  rock  unit  forming  the 

for  determining  multi-element  background  models is intended  to be applied 

this  purpose  is  never  perfect: some basins  may be underlain  by  two  or 
to  sample  subsets  based on provenance  (rock  type).  Rock-type  coding  for 

more  important  rock  types,  other  drainage  basins m y  be  miscoded,  perhaps 
because  of  the  scale  of  geological  base  maps  available.  In  any  case  it 
is  apparent  that  some  apparently  anomalous  metal  concentrations  arise 
from  incorrect  assignment  of  the  dominant  rock  type  or  from  mixing  of 
sediments  derived  from  several  rock  types. 

GENERAL  METHODOLOGY 

Our  general  approach  to  recognition  and  ranking  of  anomalous  samples  is 
summarized  on  Figure 1. In  brief  the  method  involves  the  following 
steps: 

( 1 )  Sorting  of  data  into  provenance  groups,  that  is,  predominant  rock 
type  in  drainage  basin  above  the  sample. 

( 2 )  Evaluation  of  simple  statistics  and  probability  graphs  for  each 
element  in  each  provenance  group. 

( 3 )  Threshold  selection  using  the  method of Sinclair (1976) to isolate 
anomalous  samples  from  background  samples. 

( 4 )  Selection  of  one  or  more  elements  to  serve  as  the  focus  of  the  study 
(for  example,  zinc) . 
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Figure 1 .  Sequential approach to anomaly recognltlon and rankllg. 

(5) Backward  stepwise  regression  of  each  provenance  group  to  develop 
background  models  for  zinc  in  terms  of  other  elements. 

( 6 )  Ranking  individual  samples  in  terms  of  (a)  their  contamination  code 
and  (b)  the  regression  model  and  threshold. 

(7) Output  of  sample  information  in  a  manner  convenient  for  practical 
use  in  follow-up  examination. 

SORTING  INTO  PROVENANCE  GROUPS 

Data  for  each  provenance  group  should be dealt  with  separately.  Means 
and  standard  deviations of all  raw  and  log-transformed  metal  abundances 
provide  insight  into  levels  of  abundance,  dispersion,  and  general  aspect 
of population  densities  (histogram).  Correlation coefficienss indicate 
metal  associations  of  geological  importance (for  example,  Si:nclair  and 
Tessari, 1980). If only  background  values  are  considered,  these 
associations  commonly  reflect  differences  in  background  environments  and 
are  not  related  directly  to  anomaious  samples. 

THRESHOLD SELECTION 

Separation of  background  and  anomalous  samples  is  essential 'to our  method 
because  it  leads  directly  to  statistical  models  for  backgrou~ld  metal 
abundances.  Consequently,  the  method  of  threshold recogniti'm is 
important.  We  have  adopted  the  probability  graph  approach OE Sinclair 
(1976) because  this  procedure  is  systematic  and  has  been  shorn  by 
numerous  examples  to  provide  effective  thresholds  for  many  types  of 
geochemical  data. 
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ELEMENT SELECTION 

We must decide which element  or  elements are of direct   concern  to  our 

molybdenum, tungsten-uranium, or others?  Of course, we may want  t o  
search problem. Are we interested  in   s i lver- lead-zinc,   copper-  

i nves t iga t e  many assoc ia t ions  of the  sor t   l i s ted,   but   in   our   approach 

metal assoc ia t ion  it m y  not be necessary to  deal  thoroughly  with a l l  
each  association would be dealt   with  separately.   Within a p a r t i c u l a r  

elements  because some may be redundant,  others may not show adequate 
geochemical con t r a s t ,  and s t i l l  o the r s   my   p re sen t   l imi t a t ions   r e su l t i ng  
from analytical   problems. I n  our case we  w i l l  use  zinc  data  as a b a s i s  
for evaluat ing  regional  s i l t  samples in   terms of s i lver- lead-zinc and 
lead-zinc  associat ions  typical  of our study  area (map-area 82F). 

MULTIVARIATE MODELLING OF BACKGROUND VALUES 

Multiple  regression  has been shown  by  many to be an e f f e c t i v e  method of 
demonstrating  empirical   relationships between a par t icular   e lement  
(dependent  variable) and a group of other  elements  (independent 
var iab les ) .   In  many cases  a high  proportion of the v a r i a b i l i t y  of the 
dependent  variable is explained  in terms of var ia t ions  in   the  independent  
va r i ab le s   (S inc la i r  and Fletcher ,  1980). Where such methods are applied 

example, z inc )  can be expressed as a linear combination of the  abundances 
to background  samples  only, the abundance of a dependent   var iable   ( for  

(or  logarithms of abundances) of many other  elements to provide a 
mul t iva r i a t e  background model. 

We have experimented  with two approaches to the se lec t ion  of samples used 
t o   e s t a b l i s h  a mult iple   regression model. In  our f i r s t   a t t e m p t s  sample 

group  with  only  those  values below the  threshold  (based on p robab i l i t y  
s e l ec t ion  was based on the dependent  variable  for a single  provenance 

graphs)  being  selected.  I n  a later refinement we ed i ted  the data  base 
f o r  a s ing le  provenance  group by omitting  samples  that were a l s o  
obviously anomalous with  respect to any of the  independent  variables.  

The s p e c i f i c  method we use for mul t iva r i a t e  background  modelling is 
backward, stepwise regression which starts with a l l  independent  variables 
in   the  data   base and sequent ia l ly   drops  those  that  make no s t a t i s t i c a l l y  
s ign i f i can t   con t r ibu t ion   t o   exp la in ing   t he   va r i ab i l i t y  of the dependent 
variable.   Eventually a poin t  is reached where a l l  remaining  variables 

equation is obtained of the form 
a r e   s t a t i s t i c a l l y   s i g n i f i c a n t   ( a t  the 0.05 l eve l ,   f o r  example) and an 

Log (zn)  = B o  t 6, log  (X,) + 6, log (x,) + f19 l og  (x,) etc. 

where 6 's  are constant  and Xi's are abundances of metal i. 

RECOGNITION AND RANKING OF ANOMALOUS SAMPLES 

For each sample we determine a series of ranks from 0 to 3 by comparing 
the  observed value of the  dependent  variable  with the values  calculated 
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by each of the provenance  group  multivariate models. Significance of the  
rank numbers is shown  on Figure 2. We then  calculate a 4-digit  ranking 
code for  each sample where the f i r s t   d i g i t  is the number of  rock  types 
f o r  which rank  3 was obtained,  the  second  digit is the number of rock 
types  for  which rank 2 was obtained, and so on. If there are seven  rock 
types a l l  with  very  high  zinc  values  (rank 3)  the  ranking  code  muld be 

three rock  types, ( 1  ) fo r  two rock  types, and (0) for  one rock. type to 
7000; in   another  case rank  might be ( 3 )  for  two rock  types, (:!) f o r  

give a ranking code of 2321. 

The main advantage of this  procedure is as  a refinement i n  the   se lec t ion  
of anomalous  values  relating to the  probability  graph  procedure and the 
assigning of r e l a t i v e   p r i o r i t i e s  to anomalous  samples.  Values  above t l  
(Figure 2) are  recognized  as  being  anomalous  without the a id  of multip1,e 

METAL (log ppm obs.) 

Flgure 2. Sample ranklng In r e l a t l m   t o  flelds on a p l o t  of 
observed value versus a  value  calculated from a multi- 
variate model. 

regression. I n  addi t ion,  however,  values  below tl  that depart  

model ( 1  and 2 on Figure 2)  a re   a l so   ou t  of the ordinary and warrant 
subs t an t i a l ly  from the  expectation  according to a m u l t i p l e  regression 

examination. In pa r t i cu la r ,  w are in te res ted  in those  values below t.l 
t h a t   a r e  much higher  than the corresponding  calculated  values. Such 

o ther  elements. On Figure 2 the  suggestion is  made graphica l ly   tha t  
samples  are anomalous i n  one element ,   re la t ive to a l i nea r  combination of 

errors  greater  than  values  calculated  according to the multiple 
samples a re  anomalous if observed  values are more than two standard 

regression model. 
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OUTPUT  PROCEDURES 

We have  designed an output  system by which  samples  can be ordered i n  
terms of decreasing  pr ior i ty   for   fol low-up  explorat ion.  A l l  anomalous 
samples  recognized by the  foregoing  procedures  are  ranked  according  to 

known mines, man-made meta l l ic   fea tures ,  or f e r t i l i z e r ,  on a scale of 0 
the  estimated l ikel ihood of sample contamination from such f ac to r s  as 

t o  3. Our f i r s t  rank of anomalous  samples is based on t h i s  coded 
parameter,  zero  contamination  being of most i n t e r e s t .  Within t h i s  group 
we code a sample for  each  background model a s  3, 2, 1, or 0 as described 
previously and a 4-digit   ranking  code is used to list samples  within  each 
contamination  group  in  order of decreasing  ranking code. Mcat ions   for  
each  sample are listed as is the observed  abundance of the dependent 
var iab le  and the sample number. These items are arranged  in  such a 
manner as to promote e f f i c i ency  of evaluat ion of each  sample.  In 
addi t ion ,  he use  plot   locat ions of  anomalous  samples  with their 
i d e n t i f i c a t i o n  number and ranking  code. 

CASE  HISTORY (MAP-AREA 82F) 

approximate  sample  density of one sample per 1 2  square  kilometres. 
Multi-element  data  are  available  for sample sites i n  map-area 82F a t   a n  

mercury,  tungsten, and molybdenum. Samples here grouped i n i t i a l l y  on the 
Samples are   analysed  for   z inc,   lead,   n ickel ,   cobal t ,  manganese, copper, 

bas i s  of coding as to dominant  rock  type in  the  provenance  region. D a t a  
for  each  element  in  each  provenance  group were examined as a p robab i l i t y  

anomalous  and  background)  using  the method of S inc la i r  (1976). We chose 
graph  and a threshold  selected  separat ing two populations  (presumably 

to examine zinc as the dependent  variable  described  here  because of the 
associat ion  s i lver- lead-zinc i n  known vein  deposi ts   in   the  area.  

obtained  for  each of the  seven  provenance  groups  for which we have 
Background mul t ivar ia te  models for   z inc  i n  terms of other  elements were 

adequate  samples.  Three of these models are summarized i n  Table 1 to 
i l l u s t r a t e   t h e  type of results ob ta ined .   S t a t i s t i c s   fo r   a l l   s even  
provenance  group  models for zinc  are  given  in  Table 2 to i l l u s t r a t e  the 
statist ical  q u a l i t y  of the background models. 

All samples  coded in one of t h e  seven  provenance  groups  for which w e  
could  calculate  background  models were t r ea t ed  by each of the  background 
equat ions  separately.  me calculated  zinc  background  according to  a 

for  each  background model a sample received a ranking from 0 t o  3 
given model was then compared with  expectations for t h a t  model so t h a t  

times, once for  each model. These  rankings  were  accumulated i n t o  a 
inclusive  (compare  Figure 2). In  our case  each  sample was ranked  seven 

anomalous were d iv ided   in to  three contaminat ion  c lasses   with  pr ior i ty  
single  ranking  code.  Samples  recognized as anomalous o r   p o t e n t i a l l y  

contamination  category  samples  are  ranked  according  to  decreasing  numeric 
decreas ing   as   cer ta in ty  of contamination  increases. For each 

part of the  0-contamination  category is l i s t e d .  
value of the  ranking  code. An example is shown in  Table 3, where a small  
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GRANITE 

LOX (zn) 0.4726  0.0713 log  (.Cu) + 0.2420 log  (Pb) f 0.0529 log ( N i )  

+ 0.3994 log ("I) + 0.4189 log (Fe) - 0.2334 log (Co) 
R2 = 0.62 

Se = 0.1277 
n = 393 

QUARTZITE 

log  (Zn) = 1.1020 + 0.2721 log (Pb) + 0.1316 log ( N i )  + 0.4891 log (Fe) 
i- 0.1412 log (Mo) + 0.0399 log  (Hg) 

R2 - 0.74 
se = 0.0915 

n = 287 

SCHIST 

log (Zn) = 0.8392 + 0.4100 l o g  (Pb) + 0.2244 log ( N i l  + 0.560:; log (Fe) 

+ 0.2412 l o g  (W) 
R2 = 0.76 

Se = 0.1008 
n = 27 

TABLE 1 .  EXAMPLES OF  MULTIVARIATE  REGRESSION BACKGROUND MODELS FOR Z I N C  
MAP-AREA 82F 

PROVENANCE GROW 

GRNT 

.92 .84 .84 .86  .79 R 

56 57 100 287  393 n 

ARGL ANDs SLTE QRTZ 

R2 

s, 

.as .70 .70 -74 .62 

.1271 .0812  .lo31 .1184  .0915 

GNSS 

53 

3 5  

.71 

.0940 
- 

SCST 

21 

.87 

.76 

.loo8 
d 

TABLE 2 .  SUMMARY S T A T I S T I C S  FOR  MULTIVARIATE BACKGROUND Z I N C  MODELS 
SEVEN PROVENANCE  GROUPS 

MAP-AREA 82F 
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43 
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46  

47 
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SI 

52 

53 

5 3 6 1 0  5457758 

507056 55t8881 

476055 5450823 

482531 5461913 

501599 9526605 

489601  5443717 

484807  5518468 

487496  3456218 

416166 5487364 

480507  5487605 

476597 5458197 

475075  5488439 

502653 5508315 

179646  5495841 

494963  5528151 

474792  5451528 

489916  5458581 

509423 5500800 

514914  5447471 

448185  5533845 

462164  5538222 

487885 5451555 

489443  5499169 

549914 ssla2& 

481276 5463771 

484487  5484729 
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7000 
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7000 

7000 

7000 

7000 
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7000 
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7000 
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7 0 W  

6iW 
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6103  

6 100 

6 1 0 0  
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4300  
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354 

359 

345 

314 

309 
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195 

199 

199 

174 

119 

279 

164 

155 

144 

239 

114 

114 

214 

109 

191 

198 

I91  

IO6 

181 

186 

ORTZ 

SCST 

ANOS 

AM)S 

S L t E  

SLTE 

GPNT 

SLTE 

GRNT 

GRNT 

ANOS 

GIINT 

SL7E 

ARGL 

SLTE 

ANOS 

SLTE 

SCST 

OR12 

SCST 

GRN7 

GRNT 

GPNT 

O R T I  

APGL 

CRNT 

GNSS 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

773118 

777314 

77 1076 

719 I26 

7772?4 

713056 

77 I I 9 8  

173086 

777198 

777136 

77 I103 

777302 

777159 

771100 

771306 

771077 

7751 I6 

773237 

775100 

779163 

775328 

777112 

777212 

777 182 

771094 

771203 

77501s 

TABLE 3. PART of A TABLE LISTING ANMALOUS SAMPLES IN ORDER OF DECREASED RANKING CODE” 

From  a  total  of 1 259 samples,  this  procedure  produced 115 anomalous 
samples  in  the  0-contamination  category. Our procedure  is  to  list  these 

anomalous  sample  locations  as  illustrated on Figure 3. 
samples  in  tabular  form  in  Table 3 and  to  produce  computer-drawn  plots  of 

In addition  to  ranking  information,  original  raw  data,  and  coordinates, 
the  output  table  contains  a  simple  consecutive  numeric  identifier  used 
for  clarity on the  map  output  and  permitting  easy  combined  use  of  the 
tabulated  data  and  the  output  map.  The  output  map  is  of  particular  use 
because  it  identifies  the  most  obvious  anomalous  samples (for example, 
7000) from  those  that  might  escape  detection  (for  example, 0520) .  The 
scale  of  the  location  plot  should be identical  to  geological  base  maps  of 
the  area so the  two  can  be  studied  together  without  ambiguity.  We  tested 
sensitivity of the  regression  procedure  for  determining a multivariate 
background  for  zinc by establishing  such  models  based on two  training 
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Flgure 3. Plot  of an area of anomalous samples redrafted  fran computer output. 

t h e  same data  set minus any samples t h a t  appeared  to be anomalous i n  any 
sets: ( 1 )  a l l  samples  indicated  as having background zinc  values,  and ( 2 )  

element  other  than  zinc.  Tables 1 and 2 are   based  ent i re ly  o n  the  second 
t r a i n i n g  set. Figures 4 and 5 i l l u s t r a t e   t h e   c o n t r a s t i n g   r e s u l t s  
obtained i n  background  definition. It is clear   that   the   'c leaner '   data  
s e t  (number 2 previously)  leads t o  a bet ter   mult iple   regression 

values. The problem  with  using  the  second  training  set i s  t h a t  more work 
r e l a t ionsh ip ,   t ha t  is, wi th   l ess   sca t te r  of calculated and observed 

anomalous  category. 
is r equ i r ed   t o  set it up and more samples w i l l  be included i n  t h e  
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Figure 4. Observed versus  calculated  zinc  values  for  provenance 

group, 'ARGL.' map-area 82F; calculated  values based on 
a m d e l  determined fran a l l  saples wlth background z lnc 
va 1 ues. 

JISCUSSION 

The  methodology  described  here  would  appear  to  have  a  wide  range  of 
applications  to  geochemical  data  evaluation,  perhaps  with minor 
modifications  to  suit  particular  data  sets.  For  example,  many 
geochemical  surveys m y  not  record  the  likelihood  that  a  sample  is 

precise  limits  to the  coding regions  illustrated on Figure 2 can  be 
contaminated,  and this  level of  ranking  might  have  to  be  omitted. The 

changed  to  suit  a particular bias  to  anomaly  selection,  resulting  in  a 
slightly  different listing  of anomalous  samples. 

One  of  the  serious  problems  is  the  question  of  initial  grouping  of  data 
on the  basis  of  dominant  rock  type  that  underlies  the  drainage  basin  of 
each  sample,  a  classification  which  is  fundamental  to  our  procedure. A 
substantial  amount  of  effort  is  required  to  code  this  rock-type 
information  even  if  the  data  are  available.  If  rock  type  has  not  been 
coded  it  may be necessary  to  use  some  less  satisfactory  method of 

approximation  of  background  geology  for  each  sample.  In  some 
grouping  data,  such  as  the  use  of  factor  analysis  to  provide  an 

environments,  of  course,  some  other  parameter m y  be more  useful  than 
rock  type  for  grouping  data. 
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Log Zn ( o b 4  

Flgure 5. Observed  versus calculated  zlnc  values  for provenance  group, 'ARGL,' wp-area 
82F; calculated  values based on a model d e t e n l n e d  from those  sanples  wlth  zlnc 
background values  that a l s o  are not anomalous I n  any other  element  (that i s ,  a 
'cleaner'  subset  of  the  data used for  Figure 4) .  

CONCLUSIONS 

A method  of  anomaly  selection  and  ranking for multi-element  regional 
stream  sediment  data  has  been  described.  The  procedure  offers  the 
following  advantages: 

( 1 )  The  method  is  rigorous  in  making  use of established  statistical 
methods  for  treating  geochemical  data  such  as  a  probability  graph 
analysis  and  backward  stepwise  regression. 

( 2 )  The  procedure  is  computer  based  and  is  rapid  and  thorough. 

( 3 )  The  methodology  ensures  that  some  anomalous  values  which  are  not 
obvious  (that  is,  are  not  higher  than  a  simple  threshole,)  will  be 
recognized. 



( 4 )  A  novel  ranking  procedure  is  described  that  assigns  relative 
priorities  to  samples  for  further  investigation.  Details  of  the 
ranking  procedure  are  subjective  but  a  system  of  ranking  codes 
clearly  describes  the  manner  in  which  a  sample  is  anomalous. 

(5) Because  samples  are  tested  against  every  rock  type,  the  procedure 
incorporates  an  evaluation  as  to  whether  other  rock  types  might  be 
contributing to the  provenance  area  of  a  particular  sample. 

with  available  geological  maps. 
Possible  additional  rock  types  are  identified  and  can  be  compared 
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