British Columbia Geological Survey
Geological Fieldwork 1985

PETIN
& %
Ty Ly
& &
%(OGICALs\)@A

Other Investigations

ldegroot
1985

LITHCHEM: AN INTEGRATED GEOLOGICAL DATABASE
FOR MICROCOMPUTERS

By J. C. Harrop and A. J. Sinclair
The University of British Columbia
Department of Geological Sciences

INTRODUCTION

Lithchem is a dedicited geologic database system with graphical
and statistical support integrated into the basic design. The system
was developed with a specific application in mind. storage and
maniputation of chemical analyses of igneous rocks. However,
because other sets of geologic data have essentially the same types of
ficlds within cach record. lithchem can be modilicd for other ap-
plications. Lithchem 15 currently 2500 lines of source code. which
compiles to about 47 kilobytes (<b) of object code.

Lithchem was written in TURBO Pascal' onan 1BM XT micro-
compater with 576 Kb internal memory and a {0 megabyte (Mby)
hard disk. The 8088 microprocessor was augmented with a 8087
awnerical co-processer greatly enbancing execution speed of veaf
arithmetic and transcendental functions, as well as providing ox-
tended precision reals and integers, TURBO-87 takes advantage
only of the extended precision rec ls. To usc the extended integers of
transcendental functions one most develop the appropriate asscm-
bly language subroutines or await advanced versions of TURBO-87.

DEVELOPMENT CRITERIA

Of the criteria contrslling the choice of language and algorithms
in this project, time was probably the ultirate one. The end result
has numerous areas for improvemnent and expansion. With time of
development being necessarily short, methods and algorithms were
the simplest that would do the ob. The most elusive bugs were
found to be features of the compiler and alternate code was written to
avoid these problems. 1t was anticipated that the system would be
used by non-experts with regard to programming and thus prompt-
ing for input with merus was used as much as possible. Input that
reguires data is always assigned a default value i no value is
supplied. Range checking and chzcking membership in a known set
are also required to reduce typographic errors that would confuse
searches and be difficult to find Later. 'To ensure case of use for non-
expert programmers, a system that would internally pass data be-
tween searching, graphical, ind statistical procedures was
conceived.

The following considerations were given to developing such a
system in the microcomputer eny ironment. Choice of the program-
ming language had to meet the following requirements:

(1) The systemn will require many steps so a compiler, rather than an
interpretet, is needed.

(2) The system will become complex and should allow possibilitics
for expansion, therefore the language should be structured.
(3)

4

The language will be need a: least graphics primitives.

The language should utilize ttynamic variables to allow the full
power of the memory to be sed.

(5) The language should have adequate mathematical support and
not limit the statistical applications.

The language should be com nonly available and #ble o run on
other microcomputers, portability is important.

(6)

Given the requirements, any Linguage will tall short somewhere
s0 compromise is inev table. FORTRAN is rcasonably portable and

certainly casily available, but it lacks easily accessible dynamic
variables and the version available to the writers also lacks graphics.
Consequently, FORTRAN anc for similar reasons BASIC, were
ruled out. The remaining possibilities included C and Pascal with
morc points in favour of Pascal. While C fits the preceeding desc-ip-
tion well and is probably the mast portable. Pascal is available for
most microcomputers in Borland’s economical Turbo version. Pas-
cal only falls short in the mathcmatical support but this could b
overcome by using the 8087's powers, Certain features of Tirbo
Pascal have been of use in the development of this project and the
will be mentioned in the appropriate section.

DATA STRUCTURES

Each sumple has onc record associated with it that contains:
{1
(2
(3
(4
(5)
6]
7
(8

Sample number.

Map area (NTS map sheet. for example, 93G/11).
Assemblage.

Rock unit {general and specific).

Rock type (author’s and revised.

Source (number reference to a bibliography).
Twelve main oxides, LOI. CO,. and S.
Six trace oxides.

The data are found in the torm of strings of unknown ler gth,
intcgers, and some fixed point numbers or reals since Pascal Joe,
not contain a fixed point type. In some languages namely FOR-
TRAN und BASIC we probabty would have to define array:,, of
fixed size, for cach of these ficlds of data. With a total of 28 fic ds we
would be lucky to be able to work with one or two thousand sam ples
at onc time. With sets of data exceeding the memory’s capacity,
pages of data, perhaps in sma ler amounts to lessen each leading
time. would have to be moved cn and off the disk. Onthe IBM XT it
took between 2 and 3 minutes 10 load 1 000 samples this way {1ont
the hard disk. We did not use the primitive read procedures and
consequently could be made faster; nonetheless it is comparab’e or
better than FORTRAN or BASIC which are notoriously slow with
their O routines. For a search to go through 3000 samples, 1210 13
minutes would be spent on /O processing alonc! A differcr ap-
proach to variable declaration must be taken. Arrays of the typ:
mentioned above have to be defined at the beginning of the sys.em
and are of fixed size. Because of the internal structure of the
compiler these arrays are usually limited to around 64 kilobytes of
memeory for all the arrays. If one relieves the compiler of the job of
keeping track of the location in memory of the variable {in this cas:
an array). there is no longer the 64 -kilobyte limit to the data storag:
capacity and in this application approximately 5 000 samples can b
dealt with at onc time! This should remove the need to flip pagcs on
and off the disk for most data sets, and search times will consist 2nl
of the time the system takes to work its way through memory.

The next major decision lies in how the data should be stored i
cach record. Pascal allows the programmer to define a record typ:
variable that consists of several fietds of similar or different var btz
types. For instance we could define a record with a field for each of

British Columbia Ministry of Eqergy, Mines and Petroleum Resources. Geological Fieldwork, 1985, Paper 1986-1.
1. TURBO-RT ¢ 1984 by Borland Tnernaional. in TURBO PASCAL Neraon 20

285

the previously mentioned variables of the appropriate type for the
data. Closer inspection shows that substantial savings can be made
by compressing the data. The real numbers reported for whole rock
analyses are never less than 0.01 per cent and never {we hope) more
than 99.99 per cent for a single oxide. Real numbers in Turbo
require 6 bytes whereas integers only require 2 bytes. The range of a
mwo's complement binary integer is as —(2v!)to 201 — 1 wherenis
the number of binary digits. In this case a 16-digit integer will give
the range -32 768 to 32 767. Since the per cent oxides are reported
with four digits of accuracy an integer of four and one-half digits can
contain the data as long as we keep track of the position of the
decimal place. This can be done by storing the data as one hundred
times the reported values, truncated. Oxide data forms a large part
of the record and this method gives us two or three times as much
room as would be available using all reals.

The rest of the data is mainly strings, which in Turbo are stored as
one byte per character and onc preceding byte to specity the length
of the string. The source can be recorded as a number reference to a
bibliography kept in a scparate text file. This text file does not
require anything more than the editor to maintain so further discus-
sion of this part of the system is not needed. Sample numbers
currently arc used to sort out which of the sources samples is being
referred to, so an integer will probably suffice in this application.
We still have the ‘map area’, ‘assemblage’, ‘rock unit’. and ‘rock
type' to tepresent. Turbo requires that we specify the length of the
string at the start of the system, so a maximum length that will not
cause problems will have to be set. We could use fourletter
mnemonics and keep the strings short, but this will result in the
system being harder to use by persons not very familiar with it as
well as increasing the chance of typographic errors during input.
Almost all names we need here can be put into a twelve-character
variable, and these names witl be repeated many times throughout
the samples. We have assumed during development that each of
these variables will have less than fifty different names. Some such
as ‘assemblages’ may have fewer but others such as ‘map arca’ may
nced more than fifty. As the system is used these details can be
clarified. Now, if each name is kept in an array of 12-character
strings, one array for each variable, then the individual recerds will
only need to keep the integer that represents the position in the array
of the appropriate name. The names will be stored in the fong. rather
than mnemonic form and for each time the name is repeated a saving
of ten hytes ts made over storing the full name. Ease of use is
maintained and in finding the position of each name entered in the
array any typographic errors can be queried and the correction made
at the time of entry. In the case of rock type and rock unit, two fields
have been merged into one by using the cight most significant bits to
represent an 8-bit number, and the cight least significant bit numébers
as a second 8-bit number. These can be separated easily by binary
masking using an arithmetic and operation. If the upper cight bits
are being recovered an 8-bit right shift is also used (equivalent to an
integer divide by 128) to recover the data. Note that this has left
room in the *map area’ and ‘assemblage’ variables for later addition
of new variables.

Thus, we see that all data entries can be reduccd to integers and

- stored in a compressed form. There are four more variables attached
to each record that also require note here. These are next, last,
nexra, and nextb. Dynamic variables are not defined at & particular
location by the compiler, so it is the job of the system to keep track of
where the record currently being operated on is kept. This record
will also need to contain the memory address of the next record., thus
building a finked list of records. When these records arc being
examined the user may wish to back up one or more records so a
second link to the last record is also maintained resulting in a doubly
linked list. These addresses are gencrated and stored in next and last
during the initial setup when the records are recovered trom the
disk. The two other variables nexta and nexth are sct aside for
sorting linked lists by some paranteter (for example, by $i0. con-

286

tent) and have not yet been used. One last variable used in the record
are integers used as flags in the search routines. These integers are
also available to the plotting and statistical routines and may be
saved on the disk if desired. This variable will be discussed in detail
in the next section. The remaining field is not used as a variable but
is assigned when a sample is entered and is a unique identificr that
remains set and cannot be cdited or refused. Refnum is also used to
identify samplcs for editing and other such operations of the system.

This results in the following list of variables in cach record, using
a total of sixty-four bytes per record.

(1) next, last (pointer variables) : linked list.

(2) main[1.28] (array of 28 integers) : compressed data.

(3) samflag (integer) : set membership flags.

(4) nexta, nextb (pointer variables) @ for future sorting routings.
(5) refnum {integer) : uniquc identifier.

MAIN ALGORITHMS

Here we will move through the system in about the same order in
which the system would run. The majority of the system has been
designed to be menu driven with the goal of always prompting the
user for instructions. The user is kept aware of what commands are
currently valid. A few situations, such as when plotting a composi-
tion diagram, arc not favourable for showing menus. In these cases
the menu is either very simple, or a space or return keystroke will get
the program to the next frame or menu. Thesce areas should not cause
problems after only limited use of the system.

The records are loaded from and written to the disk using the
lowest level procedures available in Pascal, namely Blockread and
blockwrite. The advantages of these are specd, smaller disk files,
and the fact that the procedures are standard Pascal. They do.
however, require that data be transferred in 128-byte blocks and a
double sample buffer is used to do this. Notice that one record
requires 64 bytes, thus two will fit neatly into 128 with no wasted
bytes. When the next record pointer is nil, or in other words there are
ng more records in the list, the procedure continues on to the next
stage.

Samples are entered and edited one at a time in a form mode.
Using the IBM special characters for the text screen, a form for the
sample entry and editing routines has been designed. The form
allows the user to fill in the blanks and, if no data arc available, a
default is provided. This helps to prevent random values from
entering sample data. The form also enhances readability of the
data. Editing provides the current valuc for the default and, if no re-
entry is required, then a return keystroke will pass on to the next
line. The routines that read in the data are set to allow only valid
characters, This helps reduce typographic errors and ensures that
data can be compressed correctly (see preceding data structures).
Individual forms can be printed on the dot matrix printer with the
print screen key. While forms arc a convenient way to view small
amounts of data on the screen, larger sets often need a tabular
format. This can be done to the printer by specifying which fields to
print per line. The whole sample ts considerably larger than a single
line.

Searching is a major part of this system and the routine has becn
kept simple to ensure ease of use. This area of computing has many
refinements to offer which have not been used due to lack of time.
Every sample has an integer flag associated with it. This is then used
as fifteen ser flags to show which scts, if any, a given sample
belongs to. When searching a source and target, flag must be
specified. The source, which could also be the whole file, tells the
systern which of the samples to make the search comparison with.
The target. which cannot be the whole file, Is a flag that the search
will use to mark which samples meet the search criteria. This target
can then be used for plotting, listing, or further searching. When a
scarch is made the samples meeting the criteria can be added to the

target, removed from the target, or removed from the target if they
do net fit the criteria. These operations can only be done one at a
time, but they can be sequenced to find the desired set of data. Therc
is also an operation to join two sets. When saving the samples the
option is given o save the flags. This altows one to continue with the
same scts the next session since otherwise the sets would be lost.

GRAPHICS

The graphics support given by Tt rbo goes no further than moving
or drawing from point to point witt the coordinates given in pixels.
[n the case of the IBM X the vertical range is 320 and the horizontal
600 pixels. Graphics roLtines arc provided for nine plots which onc
may select at random. A tenth option sets the symbols to be used and
with which flags the symbols are to be assoctated. This remains set
so that several different diagrams may be displayed. Up to six
different characters may be assigned to any or all of the fifteen sets
defined by the search rcutines. This was conceived to be useful in
the comparison of potenially diffe -ent sets and in combining sets at
the plotting stage for comparison rather than returning to the search
facility. Copies of the screen output can be made on the dot matrix
printer with the print scrzen key. Some distortion with respect to the
length of the axes will oceur when this is done, but this should be of
little concern in this situation since the axes are of arbitrary length to
begin with.

STATISTICS

This section, while planned for n future expansion, has not been
included in the initial version of tie system. This is only for time
constraint reasons and because the application of the system cur-
rently does not require statistical procedures to be useful.

PORTABILITY

Some of the problems of portability have been dealt with in the
choice of language. Turbo Pascal is easily available and very reason-
ably priced so any microcomputer supported by this language will
be able to accept a source code vertion of Lithchem. Any IBM PCor
XT should be able to ren Lithchern immediately and if they do not
have an 8087 numerical processor then a compiled version with the
regular Turbo would be directly t-ansferable. Most IBM compati-
bles will be ablc to accept the system with very few modifications.
The areas of code that are machine dependent have been isolated,
whevever possiblc, to short subroutines, many of which are found in
the first few hundred lines of sourze code. The adjustments needed
would amount to one or two days of work.

Should the system b2 moved to a microcomputer using another
version of Pascal the problems wiil be greater. Carce has been taken to
keep the code as close to standard Pascal as possible. Again, the

287

majority of changes would be in the sub-routines found at 1he
beginning of the code. LT the microcomputer is not IBM compatidle
but uses the 8088 and BO87 processors a compiled version may be
portable.

Perhaps the most important gJestion would be whether the ma-
chine has enough memory for the proposed application of the data
base and whether a hard disk s essential or not. In its currznt
configuration the size of the Lithcheni system’s database is limized
by the amount of random access memory (RAM) in the host. No
capacity for paging data on and off the disk has been included. As
well as having simplified the devalopment, this strategy has kept e
operational speed of the system up.

EXPANSION AND FURTHER DEVELOPMENT

As mentioned previously, one section that can be added with
relatively small cffort is that for statistical procedures. These wold
interleave with the graphics since some of the statistical methods
would require graphical output. This is the only other set of pro-
cedures that should be added intzrnally to the system. To add more
would result in the complexity and size of the system becommg
unmanageable for future prograramers to work with. Thus a method
has been used to allow system additions to be made without having
to enter the main body of the program. This is the ability in Turbo to
chain systems so that a second system can be executed with the data
left by the first system still accessable in memory, from the first. As
long as subsequent programmers know the format of the data furtrer
sections can be added as particular needs arise. The main system zan
be returned to by chaining back to a version identical in everything
except that it docs not initialize variables or load the data fror the
disk.

Of the many further developments possible one in partizuiar
would be most useful. That is a rontine to enter a file of data fiom
either MTS (the operating system on the mainframe at the Univer
sity of British Columbia) or another cxternal source, an analyt.cal
laboratory, for instance. Batch zntry would remove the most t me
consuming part of the current system.

The modular form of the Lithchem system and data structure san
be modified to work for similar applications, Some of these weuld
only require a revised record structure, while others would need new
routines added. Applications of such an integrated system cculd
range from soil geochemical interpretation to working with isetepic
data.

ACKNOWLEDGMENTS

This work has been supported by the British Columbia Science
Council in cooperation with the Geological Branch, British Colum-
bia Ministry of Energy, Mines and Pztroleum Resources.,

1 N
1190 118° 1170 118°
10 REVELSTOKE 51°4

N

Arrow
Lakes STUDY AREA
L 50° 5094
kanagan
Lake
Kootenay
Lake
PENTICTON
9 11g°
|
S U — } - L

117° 116°

Figure 45-1. Location map of Hallinac mine. Insct map shows location with respect to
major physiographic subdivistons of the Canadian Cordillera.

288

