Late Submissions

REFERENDUM MINE (82F/6)

By G. G. Addie

INTRODUCTION

For the last several years Tom (herry of Nelson has been surface sampling the Referendum mine (MI $82 \mathrm{~F} / \mathrm{SW}-177$): this year he was successful in finding a new vein. The grade from a bulk sample of 181.4 tonnes obtained from the Referendum vein was 6.2 grams gold per tonne. The silica credit from Cominco pays for the smelting.

GENERAL GEOLOGY (Fis. 51-1)

The host rocks for the veins are roof pendants in the Nelson batholith and include andesites of the Lower Jurassic Rossland Group. Recently this unit has cone under intensive examination by exploration companies searching for massive sulphides. In the Refcrendum mine area (Fig. 51-1) zones of alternating sedimentary rocks, metamorphic rocks, and volcanic rocks are present. The rocks include agglomerates, cong omerates with boudinage texture, tuffs, and crystal tuffs. The metamorphic rocks (included with the sediments for mapping purposes) include quartz augen sericite schist (bird's cye sericite schist) and chlorite schist. The volcanic rocks are basalts and andesites. The mine area (Fig. 51-2) is in andesite which has been intuuded by lamprophyre dykes. Throughout the area trece are srr all tension veins with tourmaline and ilmenite. Some are quartz car sonate filled and some have quartz only. Zoning within the veins is suspected. but not proven. Only rarely is visible gold seen, yet production from the main vein and new vein has given consistent grades. To the southeast of the mine area there is a small Eozene Coryell plug which is believed to have a shonkinite rim (Fig. 51-1).

REFERENDUM MINE (Fiy. 51-2)

The Annual Report of the Department of Mines for 1907 indicates that total production to that datc was 2268 tonnes grading 12.4 grams gold per tonne. The minirg was apparently at the 61 -metre level. The grade was approximately double that being obtained at present from the surface. In the vicinity of the shaft, which has not
been trenched, the main vein has considerable amounts of mass ve, finc-grained tourmaline. Tension veins join the main vein in tris area and also have tourmaline. In prospecting for the extension of the main vein it was noted that on the footwall side of the vein the andesites are sheared, while the hangingwall has blocky jointing. On this basis, a small vein was founci on the cast side of the bicitite lamprophyre dyke with a horizontal displacement by the dyke of approximately 10 metres to the northwest.

NEW VEIN SHOWING

The 'new vein' (Fig. 51-2) wist found by trenching. It is on it': kc with an unnamed vein on the next claim to the west (Fig. 51-1). Ihe west segment of the 'new vein' may be a separate vein: its vuggy nature and high tourmaline content appear quite different from :he shear vein. Based on the displacement of the main vein on the zast side of the biotite lamprophyre dyke. it is likely that the 'new vain' will be found displaced to the northwest by a similar amount (If metres). A bulk sample was taken at the visible gold location; it returned a grade of 3.1 grams gold per tonne.

OTHER VEINS AND MINERALIZATION

On the logging road south of Referendum mine, a small g.ld bearing tension vein striking 125 degrees and dipping 77 deg ees south has been discovered by Tom Cherry. It is a quartz calcite yeir with visible gold in bornite. Unfortunately the vein is only a feu metres long.

On the same road, but further west, there is a 5 -metre-vpids chlorite schist band with a small amount of pyrite which is reportec to assay 1.5 grams gold per tome. This type of exploration target has not been explored and warrants further investigation.

ACKNOWLEDGMENT

We appreciate having the property brought to our attentior by Tom Cherry, and his donation of vein samples for study.

[^0]

[^0]: British Columbia M nistry of Etergy, Mines and Petroleum Resources. Geological Fieldwork, 1985, Paper 1986-1.

