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INTRODUCTION 

(Figure 1-23-1) on the  Stewart-Cassiar Highway 120  kilo- 
The Erickson and Taurus mines are located  near  Cassiar 

metres  south of the  Alaska Highway junction. At the time of 

tial new reserves. Ore  production at Erickson and Taurus has 
writing, these  mines are closed  pending  evaluation of poten- 

come  from gold-quartz  veins that are part of the  larger 
Erickson-Taurus system (Nelson t'r al., 1989). This  system 
has been previously well described by Diakow  and Pan- 
teleyev, 1981; Panteleyev and  Diakow,  1982;  Sketchley, 
1986;  Sketchley er a / . ,  1986,  Dussell,  1986  and Bor- 
onowski,  1988. Veins occur in hasalts of Division I1 of the 

Mountain sediments which  overlie  them (Nelson er a l . ,  
Sylvester  allochthon  and  along  the base of the Triassic Table 

1989; Harms et a l . ,  1989). Productive veins are  limited to a 

The  Erickson-Taurus  system  consists of a set of east- 
few  hundred  metres below the  base of the Triassic sediments. 

northeast-trending vein zones, in which  individual  steeply 
dipping veins  strike 045" to 070". and of flat veins  such as the 
Vollaug vein at the base of the Table Mountain sediments 
(Panteleyev  and  Diakow,  1982). The vein system is slightly 
elongated in a  northerly  direction (Figure 1-23-1). 

THE PROBLEM 

characteristics.  They  are  white bull quartz with orange- 
The  Erickson-Taurus  veins  show typical  mesothermal 

weathering  carbonate  alteration  envelopes in basalt; some, 
notably  the Vollaug vein,  are finely  ribboned with carbon. 
Sketchley ( I  986) studied  alteration  patterns at Erickson  and 

ankerite,  siderite,  kaolinite,  dolomite,  pyrite,  carbon, 
identified  alteration  assemblages in basalts  including 

titanium oxide, arsenopyrite  and  sericite.  Higher  gold grades 
are  associated with slivers of serpentinite  along  the base of 
the Table Mountain sediments. Most of these  serpentinites 
are altered to  talc-ankerite  schists  and  quartz-ankerite- 
mariposite  listwanites.  Ore  mineralogy in the veins includes 
free gold, pyrite, tetrahedrite,  chalcopyrite,  arsenopyrite, 
and sphalerite. Goldisilver  ratios  average  slightly  greater that 

solutions, generally  three  phase at room  temperature; total 
1. Fluid  inclusions in the bull quartz are H,O-C0,-NaCI 

homogenization  temperatures  cluster in the range 250 to 
300°C (Nelson  and Bradford, unpublished  data). 

strongly  resemble  classic  mesothermal deposits such as the 
In terms of these characteristics,  the  Erickson-Taurus  veins 

California Mother  Lode  (Bohlke and Kistler, 1986; Weir and 
~ 

Kerrick, 1987),  Bralorne  (Leitch  and Godwin, 19881, the 
Juneau belt veins (Goldfarb et a l . ,  1988),  and  Archean 
volcanic-hosted  deposits  such as the Sigma (Sibson e t  a l . ,  

1980).  Their structural seking is a point of very signi.fi:ant 
1988) and Giant Yellowknife mines  (Allison  and Kenich, 

.' prehnite~chiorile-epldofe lsograd 

x larnpraphyre d kes with granitic 

tem and its surroundings : veins, metamorphic assemblag% 
Figure 1-23-1. Regional map of the Erickson-Taurus sys- 

isograds. and granite-bearing  lamprophyre  dikes. 
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difference, however. Most mesothermal deposits are  formed 
in or adjacent to steeply dipping major  faults or even crustal- 
scale  sutures  such as the Melones fault zone i n  California, the 
Cadwallader fault zone at Bralorne, the  Coast Range  mega- 
lineament near Juneau, the  Porcupine-Destor  and  Kirkland 
Lake-Cadillac  breaks in the Superior  Province, and  the  Con 
and  Campbell  shears near Yellowknife.  Deposit models  call 
on deep fluid  circulation along  these faults (Sibson et a / . .  

and  bounding the  Sylvester  allochthon  are  flat:  the 
1988,  McHaig, 1988). By contrast, major  structures within 

allochthon is a  thin  klippe  perched on miogeoclinal  strata. 
The east-northeast  trending Structures that host  the  Erickson 
veins are minor faults and fractures with minimal  offsets. 
Neither they nor the  thrust  faults provide conduits for  deep, 
large-scale  fluid  circulation. The suggestion of Nesbitt etul .  
(1985). that the  veins “formed  from  deep circulation of 
meteoric water in major fault zones”, is rendered  unlikely by 
the lack of any major steeply dipping fault zones in the  area. 

northeasterly to northeasterly  fractures that host epithermal 
Abbott (1984)  has suggested that the  dominantly  north- 

silver-lead veins in the Cassiar  Mountains are  extensional 
features related to dextral  motion on northwest-trending 
major  faults,  The orientation and distribution of the  Erickson- 
Taurus structures have resisted  such  regional  kinematic inter- 
pretation.  Although  the  veins  formed at about  130  Ma 

probably  dextral-transcurrent on major faults such as the 
(Sketchley e t a l . ,  1986) when the  regional strain pattern was 

Tintina, Kechika  and Cassiar faults (Gabrielse, 1985), they 
are  oriented  at high angles to the main faults  and occur in  the 
compressive rather than extensional  regime of the strain 
ellipsoid.  They  are not en echelon in plan view but form a 

cross-section and could have formed in response to near- 
box-shaped  array (Figure 1-23-1).  They may be en echelon in 

horizontal  motion on the fault at the  base of the Table 
Mountain sediments (R. Britton, personal communication, 
1988). Top-to-the-south  movement on this fault during  min- 
eralization is shown by extensional  duplex  structures  and 
slickensides within the Vollaug vein. 

the  structural  regime that gave rise to the Erickson-Taurus 
Thus  important  questions  remain unresolved concerning 

vein stmctures  and the nature and  driving mechanism of the 
fluid system that introduced  the ore. 

NEW EVIDENCE 

Sylvester  allochthon was conducted as part of regional map- 
A study of metamorphic assemblages in mafic  rocks ofthe 

ping of the  Midway-Cassiar area. Based on this work, three 
syn tn postemplacement  metamorphic facies have been iden- 

tional prehnite-chlorite-epidote and  actinolite-epidote. The 
tified within  the  allochthon: prehnite-pumpellyite, transi- 

grads is based on the  experimental  and  theoretical  work of 
interpretation of assemblages and  the  identification of iso- 

Liou er al. (1985) and Cho and  Liou (I 987)  (Figure  1-23-2). 
Figure 1-23-1 shows the  regional  distribution of the  three 
facies. In general, the  actinolite-epidote  facies is restricted to 
a n m o w  hand along the  margin of the  Cassiar  batholith.  It is 
assumed t o  have developed  through  contact  metamorphic 
upgrading of regional  prehnite-pumpellyite assemblages 
North of Cassiar the  actinolite-epidote  facies  widens some- 
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what  around  small  intrusive  bodies  east of the  Cassiar 
batholith - the Lamb Mountain and Contact stocks.  Another 
buried intrusion may be indicated in this  area by a negative 

Lamb Mountain stock: by abundant  contact-metamorphic 
magnetic  anomaly  centred 2 kilometres  northeast of the 

andalusite up to 3 kilometres from the margin of the Cassiar 
batholith;  and by granitic clasts in a  nearby lamprophyre  dike 
(Figure  1-23-1). 

Eaht of Cassiar  the  actinolite-epidote  isograd  swings 

The thermal peak in this area is postkinematic, as shown in 
abruptly east  to  enclose the  entire  Erickson-Taurus system. 

thin sections by actinolite  sprays  growing across  small  shear 
mnes and zones of chlorite fabric. Although of apparent 
contact merdmorphic origin, this  anomalously  wide  zone of 
relatively  high-grade  metamorphic assemblages is unlikely 
to be related to the  Cassiar  batholith. A study of the 
assemblages bordering  Erickson  veins  shows a strong  retro- 
grade overprint, with actinolite  replaced by pumpellyite. The 
Erickhon veins were emplaced roughly 20 Ma before  the mid- 
Cretaceous cooling  age of the  Cassiar  batholith;  given  the 
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TEMPERATURE 

Figure 1-23-2. Schematic  P-T  phase  relationships for the 
model  basaltic  system CaO-MgO-A1lO,-Fe,O,-HiO-CO~~ 
from  Cho  and  Liou (19871. Xco2~:0.1. With  increasing 
CO,. the  triangle l2-I,-l, expands, making  the  assemblage 
ca + cp 7 chl + qr stable  over a wlder  range of pressures and 
temperatures.  Increasing amounts of iron shift  the  grid to 
lower  pressures  and  temperatures. 
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textural  and  age  relationships,  the  actinolite near Erickson 
cannot have been generated by the  batholith. 

camp.  Where  relationships are  demonstrated, they are post- 
Lamprophyre  dikes  are common in the Erickson-Taurus 

mineral, but tend to follow  fractures  surrounded by carbonate 
alteration and are  themselves somewhat carbonate-altered. 

Panteleyev (unpublished data, cited in Sketchley, 1986) 
“Fresh” dikes  contain  prehnite-pumpellyite assemblages. 

obtained one K-Ar age of I IO? 4 Ma on a  lamprophyre dike, 
slightly  younger  than the sericites in the  veins.  Three 
lamprophyre  dikes in the camp are known to contain  granire 

report  for Taurus Resources  Limited),  one on the east  side of 
xenoliths: one near the Taurus mine  (Peter  Read,  unpublished 

Table Mountain near the  Erickson veins (Sketchley, 19861, 
and one north ofsnowy Creek  discovered in the  course ofthis 

occupies a fracture  surrounded by orange-weathering carbo- 
study  (Figure 1-23-1). The dike  north of Snowy  Creek 

nate  alteration  (Plate 1-23-la). although the lamprophyre 
itself is fresh.  The inclusions  are  strongly  clay-carbonate- 
altered medium-grained  granite  (Plate I-23-lb), that orig- 
inally consisted of plagioclase,  orthoclase and quartz inter- 
grown in a  cumulate-like  mosaic with minor biotite and other 
unidentified  mafic  minerals. In contrast, a  lamprophyre dike 
in basalts of the  allochthon  north of the Erickson-Taurus 
system  contains abundant clasts of subjacent  miogeoclinal 
units, but no granite. 

INTERPRETATIONS AND COINCLUSIONS 
It  is proposed that a lrlrge granitic b’ady exists at c.epth 

below the Erickson-Taurus system. Contact  metamorphism 
related to i t  generated  the broad actinolite-epidote zone that 
coincides with the vein jystem. Constant-pressure cross- 

path based on the  observed  transitional  a.ssemblages, v hich 
section A-A on Figure 1-23-2 shows the niost likely pro$  rade 

diagram along  this  cross-section. On it are  shown  paths of 
passes below the invariant point I , .  Figure 1-23-3 is a T.-Xco, 

prograde  and  also of retrograde  metamorphism  nhich 
accompanied  veining. It IS seen as a constant-temper,iture 
event, with Xco, decrea!;ing progressively away front the 
veins.  A typicalsequencs of assemblages  passes outmard 
from Sketchley’s (1986) outer carbonate zone, which con- 
tains  iron-magnesium  carbonate,  through  chlorite- 
calcite-(epidote), into prellnite-pumpellyite-calcite-chl(,rite. 

reactions.  During the later stages of coohng, a hydrothermal 
This  sequence can be explained in terms of fluidcrock 

convection  cell  centred on the granitic  body. Fluids, consist- 
ing of mixed H,O-CO, solutions in which  gold was carried in 
sulphite compounds, ascended  along i l  series of fra(:ture 
zones in the cupola. They  reacted with the mafic  country 
rocks, producing carbon.ue  halos that pass  outward into 
carbonate-poor  assemblages. The fluids were ponded i t  the 
base of the Table Mountain sediment!., which formed  a 
combination  physical-chemical trap  due to their carbon-rich 



batholith,  this  mafic-poor  granite is medium  grained  and 
Plate I-23-lb. Granite clast. Unlike  rocks of the Cassia 

equigranular with a graphic  texture. 

composition and inability to sustain fractures.  Gold pre- 
cipitation  probably occurred  as a  result of cooling,  carbon- 
controlled  reduction  and  absorption of sulphur  in  pyrite  and 
arsenopyrite  in  basalt  and  particularly  ultramafic  wallrocks. 
Fluid  inclusion data  (Nelson  and  Bradford, unpublished) do 

fluids, so boiling  was not a  contributing mechanism. 
not reveal the  presence of coexisting immiscible H,O-CO, 

Although cryptic intrusions have not ben  previously  linked 
to volcanic-hosted  mesothermal  gold-quartz  veins in the 

of another key type of deposit in the Cassia and  Pelly 
northern Cordillera, they are  an important element in models 

Mountains:  mantos.  Bradford (1988) summarizes evidence 
for  a  buried  intrusion  near the Midway  silver-lead-zinc manto 
deposit, including  quartz-sericite alteration,  skam  develop- 
ment at depth, rhyolite dikes and  a negative magnetic  anom- 
aly. The  Butler Mountain deposit 20 kilometres  north of 
Midway contains synmineralization  rhyolite dikes that may 
represent the upper  levels of a similar but younger pluton 
(NelsonandBradford, 1987). Abbott (1977, 1986) attributes 
anomalous block  uplifts in the  Seagull  and  Ketza River 
districts  and at the Mount Hundere  manto  zinc deposit  to 
subjacent granites. 

the region, no matter  what  its  immediate setting.  seems  to  be 
Remarkably,  every  significant  precious  metal deposit in 
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linked to unexposed granite.  By  combining existing  manto 
deposit  models with  observations of the  Erickson-Taurus 
system, an extensive list of the surface expressions of these 
intrusions can  be  made.  This list includes: 

Unexplained  postkinematic  metamorphic culminations. 
Anomalous  horsts. 
Felsic dikes. 
Granitic inclusions in dikes. 
Negative  magnetic  anomalies. 
Alteration:  carbonateilistwanite  in  basic  and  ultrabasic 

These surface  expressions  are  exploration  parameters of 
general  application.  The local  host determines what  type of 

clinal settings, or mantos in platformal carbonates.  The 
deposit will occur,  whether  gold-quartz  veins  in eugeosyn- 

particularly well demonstrated by the  Erickson-Taurus sys- 
strong  influence of the  local host on deposit character is 

tem,  where veins  and  alteration assemblages, indistinguish- 
able  from those in purely  eugeosynclinal  settings  like  the 

hosts, quartz-sericite  in  pelites. 
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Figure 1-23-3. Xco, diagram  representing  cross-section 
A-A on Figure 1-23-2, below  invariant  point I , .  Xco, in this 

the  alteration  zones  around  the  gold-quartz  veins,  additional 
schematic  diagram  is  less  than 0. I .  With higherxco,, as in 

carbonate  phases  such as dolomite  and  ankerite will develop. 
The  retrograde  arrow  represents  increase of Xco, towards, 
but not into, such zones. 

British  Columbia Geological Survey Branch 



California Mother Lode, have formed in a thin eugeosyncli- 
nal sheet,  less  than  600  metres  above  the  underlying 
miogeocline. 

This model for the  Erickson-Taurus  system  accounts for 
both its similarities to and  differences from other mesother- 
mal gold-quartz  deposits.  The similarities - vein mineralogy 
and texture, and alteration assemblages - are  due  to local 
hostrock  character,  fluids consisting of H,O, CO,, NaCI, 
sulphur species  and metals, and  ambient  pressure of 200-250 

Mixed H,O-CO, fluids also  occur in the manto deposits,  as 
megapascals  (Nelson  and  Bradford,  unpublished  data). 

shown at Midway (Bradford, 1988). The major  difference is 
the  lack of a deep controlling  structure for  Enckson-Taurus. 

regional-scale  hydrothermal  cell  adequately  accounts for the 
But,  as shown  above, an intrusion-driven, rather  than  a 

presence  and  the  distribution  of  the  veins.  The  east- 
northeasterly  fractures can he linked to extension  in the 
cupola of a  northerly-elongate  granite. The top-to-the-south 
motion on the Vollaug vein, near  the  southern end of the 
system, is consistent with this  interpretation. 
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