⁴⁰Ar/³⁹Ar GEOCHRONOMETRY OF IGNEOUS ROCKS IN THE QUATSINO - PORT MCNEILL MAP AREA, NORTHERN VANCOUVER ISLAND (92L/12, 11)

By D. A. Archibald, Queen's University and G. T. Nixon, Geological Survey Branch

Keywords: geochronometry, ⁴⁰Ar/³⁹Ar dating, Island Plutonic Suite, Vancouver Island, Rupert Stock, Nahwitti Batholith, Glenlion Stock, Jurassic magmatism, Bonanza Group

INTRODUCTION

Previous geochronological studies of early Mesozoic igneous rocks on Vancouver Island have primarily used conventional K-Ar dating techniques to broadly establish an Early to Middle Jurassic age for volcanic lithologies of the Bonanza Group and intrusions of the Island Plutonic Suite. In the Cape Scott (1021) - Alert Bay (92L) area, for example, some 24 K-Ar age determinations have been made on mineral separates and whole-rocks (University of British Columbia Geochronological Database) that span a range from 184 Ma to 105 Ma or latest Early Jurassic to latest Early Cretaceous [according to the time scale of Harland et al. (1990) and using dates recalculated with the new decay constants recommended by Steiger and Jäger (1977)]. Even though a considerable number of samples have been dated, it is presently unclear if this spread in K-Ar dates primarily reflects substantially different ages of emplacement, partial thermal resetting of the K-Ar system or slow cooling following emplacement. Compounding these uncertainties are systematic differences between the materials that were used to date the volcanic and plutonic assemblages. All Bonanza age determinations rely exclusively on poorly characterized whole-rock samples whereas variably altered hornblende and biotite separates (commonly with impurities) have provided dates for the Island Plutonic Suite. Although there is some overlap of dates between the volcanic (105-163 Ma) and plutonic (184-148 Ma) rocks, the predominantly younger K-Ar dates obtained from the Bonanza are all considered to be minimum (cooling) ages only. This interpretation is necessary in order to reconcile fossil data which, in all but a single case (discussed later), Sinemurian to established an early have late Pliensbachian (middle Early Jurassic) age for the Bonanza Group on Vancouver Island (c.f. Muller et al., 1974). The widely embraced concept that Jurassic volcanism is contemporaneous with plutonism on northern Vancouver Island is thus not supported by existing data.

In order to better resolve some of these uncertainties, we have begun to apply ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ geochronometry to selected rock suites to try to obtain more precise data concerning the age of pluton emplacement and the late thermal history of the region. In this preliminary report,

Figure 1. Location of Quatsino-Port McNeill map area.

we present ⁴⁰Ar/³⁹Ar age spectra for intrusions of the Island Plutonic Suite in the Quatsino - Port McNeill map area. The samples were collected as part of the regional mapping component of the Northern Vanceuver Island integrated project (Nixon et al., 1994). They represent hornblende and biotite-bearing granitoids from the Nahwitti batholith, and the Glenlion and Rupert stocks, as well as a high-level hornblende-phyric dike i struding the Bonanza Group. The ⁴⁰Ar/³⁹Ar age data reported below are combined with existing K-Ar and Rb-Sr dates, recently documented fossil occurrences and other new Ar/³⁹Ar age spectra for hydrothermal minerals in acid sulphate-altered volcanic rocks of the Bon inza Group (Panteleyev et al., this volume) in order to re-examine temporal relationships between Jurassic plutonism and volcanism in northern Vancouver Island.

GEOLOGICAL SETTING

The tectonic setting and regional geology of northern Vancouver Island were recently summarized by Nixon *et al.* (1994). Briefly, the oldest stratigraphic components in the Quatsino - Port McNeill area are the Upper Triassic Vancouver Group, which consists of a submarine to subaerial sequence of tholeiitic flood basalts (Karmutsen Formation) capped by thinly bedded to missive lime mudstone (Quatsino Formation) and overlain by thinly bedded and intercalated calcareous to noncalcareous siliciclastics and micritic limestone. The Upper Triassic lithologies are succeeded upwards by a thick Lower Jurassic sequence of submarine to subaerial, mafic to

British Columbia Geological Survey Geological Fieldwork 1994

British Columbia Geological Survey Branch

felsic arc volcanic and sedimentary rocks of the Bonanza Group. These older strata are unconformably overlain by an uppermost Jurassic(?) to Cretaceous marine and nonmarine succession of fine to coarse arc-derived clastic rocks. Intrusive rocks comprise stocks and batholiths of the Island Plutonic Suite and their associated porphyritic phases, and mafic to felsic dikes and sills of Karmutsen, Bonanza and Tertiary age. The geologic elements of Vancouver Island form the southern tip of the Wrangellia tectonostratigraphic terrane which extends northwards through the Queen Charlottes into southeastern Alaska.

SAMPLE DESCRIPTIONS

Granitoids of the Island Plutonic Suite are the focus of this dating study. Descriptions of these intrusions are provided by Carson (1973), Muller et al. (1974), Cargill et al. (1976), and Nixon et al. (1994). The rocks are generally medium-grained, equigranular hornblendebearing diorite and quartz diorite, monzodiorite to quartz monzodiorite and granodiorite (nomenclature after Le Propylitic and argillic alteration Maitre, 1989). assemblages and skarn mineralization are locally well developed. Important porphyry copper-gold mineralization occurs at the Island Copper mine on Rupert Inlet and at Red Dog and Hushamu farther west (Figure 2).

Sample 93GNX25-2 comes from the southern margin of the Nahwitti batholith. This body is exposed north of Nahwitti Lake and extends to the north coast of the Island (Figure 2). It is a coarse to medium-grained (2-6 mm) equigranular hornblende-biotite quartz diorite to quartz monzodiorite containing 5% or more modal quartz and about 10 to 20% hornblende. A marginal zone up to a kilometre wide contains subequal proportions of biotite and hornblende and sparse xenoliths of feldspathic amphibolite. The plagioclase in this sample is moderately saussuritized; hornblende is weakly chloritized, unzoned and free of inclusions; and biotite is typically well chloritized with oxides accompanying chlorite along cleavages.

The Glenlion stock is exposed in roadcuts along the Holberg - Port Hardy road and in the headwaters of Glenlion Creek. It is a medium to coarse-grained, equigranular to weakly porphyritic (<7 mm) hornblende diorite with intrusion breccias (agmatites) containing xenoliths of variably pyritized and silicified Karmutsen lavas at its margins. Rare centimetre-scale modal layering of hornblende and feldspar is developed locally within the stock in zones up to several metres wide. Sample 93GNX7-4 has weakly sericitized feldspars, fresh poikilitic hornblende that includes all the other minerals, .and somewhat chloritized biotite.

The Rupert stock is a medium to coarse-grained, equigranular to porphyritic granodiorite containing up to 30% modal quartz, 60% feldspar, about 10% chloritized biotite and trace amounts of hornblende. Outcrops in the eastern part of the intrusion locally exhibit intense argillic alteration. The westnorthwest-trending quartz-feldspar porphyry dike (100-150 m wide) that hosts porphyry copper-gold mineralization at Island Copper is considered to be an offshoot of the Rupert stock. Coarsely porphyritic dikes of quartz (<1.5 cm) and plagioclase (<1 cm), rarely accompanied by hornblende (<1.5 cn) with hiatal to seriate textures are also found southvest of Quatse Lake and on Rupert Main logging road so itheast of Rupert stock. Sample 93GNX9-10 contains severely altered feldspars, biotite is extensively chloritized (> 50 vol. %) and minor hornblende is altered to chlor te and carbonate.

Hornblende-bearing porphyritic dikes and sills, apophyses of Island Plutonic Suite granitoid;, are widespread in the Bonanza Group and Upper Triassic sedimentary succession. Sample 93GNX18-6-1 was collected from a coarsely porphyritic dike-sill complex containing large (≤ 2 cm) euhedral hornblende crys als set in a fine-grained quartzofeldspathic groundmass. Except for a weakly chloritized rim, the amphibole crystils are unaltered, and unzoned and free of inclusions. Softsediment deformation structures and, locally, z flow breccia occur at the margin of this dike-sill complex, which intrudes thinly bedded intra-Bonanza sedimentary rocks.

⁴⁰Ar/³⁹Ar ANALYTICAL METHODS

Mineral separates were prepared using a ⁻rantz magnetic separator, heavy organic liquids and, where appropriate, hand-picking. Samples and 15 flux menitors (standards) were irradiated with fast neutrons in pesition 5C of the McMaster nuclear reactor (Hamilton, Ottario) for 29 hours. The monitors were distributed throughout the irradiation container, and J-values for individual samples were determined by interpolation.

Step-heating experiments and analysis of the monitors were done in a high-purity silica tube, I eated using a Lindberg tube furnace. The bakeable, ultra-high vacuum, stainless-steel argon extraction system is operated on-line to a substantially modified, A.E.I MS-10 mass-spectrometer run in the static mode. Measured mass-spectrometric ratios were extrapolated to zero time, corrected to an 40 Ar/ 36 Ar atmospheric ratio of 295.⁴, and corrected for neutron induced 40 Ar from potassium, and 39 Ar and 36 Ar from calcium. Dates and errors were calculated using formulae given by Dalrymple *et al.* (1981), and the decay constants recommended by S eiger and Jäger (1977). Inverse isochrons were calculated using the procedures of Hall (1981). The errors given in Table 1 were used to plot the age spectra shown in Figures 3 and 4. Errors represent analytical precision at the 2σ left el of confidence, assuming no error in the J-value.

RESULTS

Analytical data for seven mineral separates including three hornblendes, three biotites and a plagioclase, are listed in Table 1 and shown as age spectra in Figures 3 and 4. Inverse isochrons for selected experiments are also

Figure 3: ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ results of step heating experiments for hornblende. The horizontal, dashed line on the age spectra is the plateau segment date (see Table 1) and indicates which steps were included in the age calculation. The heavy dashed line on the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ inverse isochron plot for 93GNX25-2 hornblende is the best-fit line through the solid crosses; the size of the crosses is an indication of the 2σ error associated with the ratios for each step. Crosses with dotted lines were not included in the age calculation. The solid line connects the best-fit, inverse ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ratio to the inverse atmospheric ${}^{40}\text{Ar}/{}^{30}\text{Ar}$ ratio. The near-correspondence of the two lines indicates that this hornblende does not contain excess argon. All quoted errors are at the 2σ level of confidence.

plotted. All data are shown with 2σ error bars. Table 1 also contains the ratios used to calculate ${}^{40}Ar/{}^{39}Ar$ inverse isochron (correlation) ages.

HORNBLENDE

The three hornblende separates yield well defined plateaus or plateau segments for more than 70% of the 39 Ar released, in spite of their low estimated potassium abundances (<0.4% K).

Hornblende from the Glenlion stock (93GNX7-4) has an integrated date of $170\pm11(2\sigma)$ Ma. The three largest

steps, accounting for 70% of the ³⁹Ar released, yield a plateau date of $176\pm3(2\sigma)$ Ma. An inverse isochron for this sample yields an identical date and reveals no anomalous initial argon. The best estimate of the cooling age for hornblende in this rock is considered to be the plateau date of $176\pm3(2\sigma)$ Ma.

Hornblende from the southern part of the Nahwitti batholith (93GNX25-2) has an integrated date of 165 ± 5 Ma and a well defined, seven-step plateau for 82% of the ³⁹Ar released. The plateau date (166 ± 4 Ma) and the inverse isochron date (166 ± 8 Ma) agree and there is no indication of excess argon despite the low estimated potassium content (*ca.* 0.2% K). The plateau date is

Figure 4: 40 Ar/ 39 Ar results of step heating experiments for biotite and plagioclase. The 40 Ar/ 39 Ar inverse isochron for 93GN X25-2 biotite indicates that this sample contains excess argon with an initial 40 Ar/ 36 Ar ratio much greater than atmospheric argon. Quoted errors are at the 2 σ level of confidence.

x

E.
2
7
a`
E.
\mathbf{S}
<u>с</u>
$\overline{\mathbf{A}}$
2
G
2
E
Σ
r-1
3
Ũ
ŏ
H
G
$\mathbf{<}$
Ľ.
А.
$\mathbf{\Delta}$
E.
2
r_3
2
H
Ö
Ē
щ
പ്
5
5
5
8
5
2
Ξ.
Ξ
j Hij
2
OR
FOR
A FOR
FOR
ATA FOR
DATA FOR
, DATA FOR
L DATA FOR
AL DATA FOR
CAL DATA FOR
FICAL DATA FOR
YTICAL DATA FOR
LYTICAL DATA FOR
ALYTICAL DATA FOR
VALYTICAL DATA FOR
ANALYTICAL DATA FOR
- ANALYTICAL DATA FOR
(-ANALYTICAL DATA FOR
1 - ANALYTICAL DATA FOR
E 1 - ANALYTICAL DATA FOR
3LE 1 - ANALYTICAL DATA FOR
NBLE 1 - ANALYTICAL DATA FOR
FABLE 1 - ANALYTICAL DATA FOR

93GNX18-6-3 Hornblende 60/80

Approximately 0.18% K; 3.85% Ca Plateau Age: 177.0 ± 6.4 Ma (75.2% of ³⁹Ar, steps marked by <) Volume ³⁹Ar: 18.98 x 10⁻⁹ cm³ NTP Mass: 203.0 mg Approximately (Initial ⁴⁰Ar)³⁵Ar: 301.4 \pm 176.9 (MSWD = 1.16, isochron between -0.41 and 3.83) Correlation Age: 175.5 ± 6.8 Ma (86.8% of ³⁹ Ar, steps marked by >) Integrated Age: 166.6 ± 12.6 Ma J Value: 0.007165 ± 0.000044

Temp "Ar "Ar <th">"Ar "Ar<</th">			Λ	olumes				Correla	tion Ratios							
800 25 364 ± 0.852 1 335 ± 0.013 0047 ± 0.389 20 623 ± 0 299 0057 ± 0.013 4.317 ± 0.863 0001778785 ± 0.0663146 0 06292 ± 0.003687 0.007 28 26 32 97 704 7 496 ± 3.001 7 878 ± 6.878 12 25 38 19 8 01 186 1168 46 388 1. 878 12 25 31 0.05 0.013 0.013 0.013 0.013 0.003382 0.000000 0.0575 38 19 8 01 186 1168 46 388 1. 950 1.0168 45 388 1. 950 1.0168 45 389 1.0168 45 389 1.0168 45 389 1.0168 45 389 1.0168 1.0168 45 389 1.0168 1.0253 1.00000 0.0254 0.000000 0.0572 38 19 8 01 186 1.168 45 388 1.000 4.016 1.0168 45 389 1.0168 45 389 1.0168 45 389 1.0168 45 389 1.0168 1.0168 42 381 9 8 01 1.0168 42 381 9 8 01 1.0168 42 381 9 8 01 1.0168 42 381 9 8 01 1.0168 45 389 1.0168 1.0169 1.000000 0.012244 0.000000 0.0254 0.000000 0.0254 0.000000 0.0254 1.027 1.0169 1.0169 1.0169 1.0169 1.0109 1.0169 1.0109 1.0169 1.010 1.0109 1.01	Temp (°C)	*Ar	³⁹ Ar	³³ Ar	³⁷ Ar	34'Ar	Blank ⁴⁰ Ar	34^40Ar	39Ar/10Ar	 د	Ca/K	*1Å ^{1*}	"Ar	**Ar*/3*K	Age ± 2(b
875 41 685 1225 0.333 0.042 0.104 0139 7.371 2261 0130 0033 44 685 1225 0.000000 0.675 38 19 8 01 186 1168 45 388 1. 950 24 038 3331 0.815 0.035 8.404 0.905 0.0231225 0.0000000 0.047444 0.000000 0.425 4.29 8.778 9.155 1 950 24 038 0.315 0.840 0.905 0.023 0.937 0.667 1.866 1.66 1.3497 1.66 1.3497 1.66 1.3497 1.3767 1.3497 1.367 1	98	25 364 ± 0.852	1 335 ± 0 013	0 047 ± 0 389	20 623 ± 0 299	0.057 ± 0.013	4.317 ± 0.863	0 00178785 ± 0 00063146	0 062929 ± 0 003687	0 007	28 26	32.97	10	7 496 ± 3 001	944±36	80
950 24038 3331 0.815 0038 0251 0036 8.404 0966 0.059 0222 4.934 0.987 0.00212325 0.0000000 0.02444 0.000000 0.266 18.86 26.95 4.29 8.778 9.125 1.1407 1.537 1.407 1.537 1.407 1.537 1.407 1.537 1.407 1.537 0.00115 0.000000 0.0011 0.539 1.068 0.0000000 0.0011 0.502 0.0011 0.5397 1.57 1.3407 1.57 1.3407 1.57 1.3407 1.57 1.3407 1.57 1.3407 1.57 1.3407 1.51 1.1407 1.51 1.1407 1.51 1.1407 1.51 1.1407 1.51 1.1407 1.51 1.1407 1.51 1.1407 1.51 1.1208 0.059 0.0000 0.0011 0.0011 0.000000 0.0011 0.00011 0.00000 0.00011 0.00011 0.000000 0.00011 0.00011 0.000000 0.00011 0.000000 0.0011 0.0011 0.000000 0.00011 0.000000 0.00011 0.046 1.302 0.496 1.1400 0.0011 0.000000 0.0011 0.045 0.0000000 0.00011 0.00000 0.0011 0.000000 0.0011 0.000000 0.0011 0.000000 0.0011 0.000000 0.0001 0.00000 0.00010 0.00000 0.00011 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.0001 0.000000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.000000	875	41 685 12 225	0.353 0.042	0104 0139	7.371 2.261	0130 0036	4 545 0 909	0 00302950 0 0000000	0 00382 0 00000 5	0 675	38 19	8 01	186	11 168 46 388	1389 555	52
1000- 40963 2004 2196 0037 2158 074 0045 0101 5339 1068 0.00058323 0.0001326 0.0035 1960 6754 1157 11497 1637 11 1050- 4191 044 1646 011 5329 1068 0.0005000 0.0011 502025 12497 15497 1637 11 1050- 4191 044 1660 0350 04901 0.0005000 0.000119 0.000000 0.0011 1964 631 2208 14467 14302 2316 14302 2316 14302 2316 14302 2316 14302 2316 14302 2316 14302 14302 20000000 0.00511 0.0000000 0.00511 0.0000000 0.0456 14302 2316 14302 2316 14302 2316 14302 2316 14302 2316 14302 20000000 0.04511 0.0000000 0.045611 14302 14302 14302 1	950	24 038 3 331	0.815 0.038	0 251 0 056	8.404 0.906	0.059 0.022	4 934 0 987	0.00212325 0 0000000	0 042444 0 000000	0 266	18.86	26 95	4 29	8 778 9 125	110 0 110	60
<10560> 75.232 4792 4191 0044 1660 0.059 44977 0496 0.059 44977 0496 0.060 011 5920 1184 0000000 0 0000100 0 000000 0 0911 0 0000000 0 0911 0 0000000 0 0911 0 0000000 0 0911 0 0000000 0 094 7631 22.08 14302 0496 1397 1	1000>	40 963 2 004	2.196 0.037	0 847 0.047	23 518 0 704	0 045 0 010	5 339 1 068	0 00058323 0 00014566	0.061322 0 002026	-0 035	09 61	67 54	11 57	13 497 1 637	166.5 15	Е 6
-1200> 154.902 2355 10092 0033 4562 0051 112285 0594 0067 0015 9653 1.931 00000003 0060011 00000000 -0.245 2036 37.06 53.16 14.302 0496 1	<1050>	75.232 4 792	4 191 0 044	1 660 0.059	44 977 0 496	0.060 0.011	5 920 1 184	0 00041103 0 0000000	0 060149 0 000000	160.0	19 64	76 31	22.08	14 606 1 397	1796 16	64
	<1200>	154.902 2355	10 092 0 053	4 562 0 051	112.285 0 594	0 067 0 015	9 653 1.931	0 00003911 0 0000003	0 00000 0 111690 0	-0.245	20.36	87 06	53.16	14 302 0 496	1760	58

93GNX7-4 Hornblende 60/80

Approximately 0.32%K; 4.92% Ca	een 0.18 and 2.63)	0.5% of ³⁹ Ar, steps marked by <)	
Mass: 201.0 mg	21.6 (MSWD = 0.25, isochron betw	Plateau Age: 176.0 ± 3.4 Ma (70	
Volume 39 Ar: 33.27 x 10 ⁻⁹ cm ³ NTP	Initial ⁴⁰ Ar/ ³⁶ Ar: 317.6. \pm 32	4.7% of ³⁹ Ar, steps marked by >)	
J Value: 0.007191 ± 0.00036	Integrated Age: 170.1 ± 11.5 Ma	Correlation Age: 175.3 ± 16.2 Ma (8	

		>	olumes				Correla	tion Katios						
Temp (°C)	*°Ar	¹⁹ Ar	³⁸ Ar	³⁷ Ar	34Ar	Blank ⁴⁰ Ar	³⁶ Ar/ ⁴⁰ Ar	³⁹ Ar/* ⁴⁶ Ar		Ca/K	*0% *1Ar*	% "Ar	**Ar*/*16*	Age ± 2σ
800>	: 85 963 ± 7 551	2.741 ± 0.218	1 160 ± 0 117	5 455 ± 0 635	0.145 ± 0.018	4.317±0.863	0.00157919 ± 0 00026307	0 033565 ± 0 004115	0414	3 64	50.13	8.24	15 890 ± 3 591	195 2 ± 41.8
875>	52.569 11 772	1987 0 441	1 461 0 329	7.054 1.640	0 072 0 0 19	4 545 0 909	0 00114291 0 00000000	0.041323 0 000000	0419	6 50	59.42	5.97	16 027 7.494	1968 872
<050>	124 463 1 405	7 317 0 081	12.006 0.135	50.472 0.603	0 0 79 0 0 10	4 934 0 987	0 00041273 0 0000000	0 061048 0 000000	-0 094	12 62	81 13	21 99	14 383 0.469	1776 55
<1000>	102.894 0.740	6.238 0.044	13 157 0 094	53.161 0.407	0 0 0 0 0 0 0 1 5	2 339 1 068	0 00035559 0 00007892	0 063702 0 000481	-0.144	15 6U	80.81	18.75	14 049 0.733	1736 86
1030	53 070 10 445	3.225 0.412	5 967 0 762	30 468 5.740	0.060 0.013	5.662 1132	0 00070343 0 0000000	0 067736 0.000000	0 399	17 29	66 31	69 6	11 695 3 782	1457 453
1060	23 668 19 583	1873 0 587	2 782 0 872	12 869 7 333	0 048 0 030	6.063 1 213	0 00140162 0.00000058	0 106221 0 000031	0.646	12.58	39.36	563	5 515 11.651	702 454
<1200>	158 254 0 670	9887 0041	19 420 0 083	116 230 0 725	0 090 0.011	9.653 1 931	0 00018717 0 0000000	0 066152 0 000000	-0 451	21 51	83.02	29 72	14 281 0 333	176.4 3.9
93GN	X7-4 Plagio	clase 40/60												
T X 7.1	0.0071701.0	000000	17-1 3	9 4 22 23 41 1	TTT 6-0		1 (×		. 101.0	V. A C.U	· U / 0		

J Value	± 0.007179±	0.000040	- Volun	ne ³⁹ Ar: 32.4	1 x 10 ⁻⁹ cm ³ 1	VITP	Mass: 203.0 mg	Appr	oximate	ly 0.31%	K; 2.55% (Ca	
Integrat	ed Age: 156.	4 ± 10.1 Ma	1	Initial ⁴⁰ ∕	u/ ³⁶ Ar: 578.1	7 ± 544.2 (N	ISWD = 0.70, isochroi	n between 0.29 a	nd 2.41)	· _			
Correla	tion Age: 14($3.8 \pm 36.5 \text{ N}$	Ia (67.1% o	of ³⁹ Ar, steps	marked by >)	Platea	iu Age: 156.5 ± 11.1	Ma (<u>58</u> .3% of ³	⁹ Ar, step	s marked	by <)		
			'olumes				Correla	tion Ratios					
(C)	År.	ıVır	чV	۸ ^۲	"År	Blank ⁴⁰ Ar	³⁴ Ar/ ⁴⁴ Ar	3*Ar/**Ar	 Fa	Ca/K	% %	,••A ⁴ *,**	Age ± 2σ
200	58.441 ± 9 993	1.807 ± 0.157	0.540 ± 0.095	4.431 ± 1 236	0.150 ± 0.025	$4\ 037 \pm 0.807$	0.00249638 ± 0.0064624	0.033191 ± 0.006769	0 639	4 49 2	3 83 558	9689 T £06 L	99.6±84.5
600	94933 9741	4.649 0 469	0.812 0140	27.287 2.897	0.149 0.019	4.075 0.815	0.00141703 0.0000000	0 051048 0 000000	0419	10 74	339 1435	11.387 2 696	141.8 32.3
<700>	71.482 3411	4.638 0.216	0170 0727	28.288 1.410	0.043 0.012	4.154 0.831	0.00031882 0 0000000	0.068747 0 000000	0.028	11 16	12 18 1431	13.176 1219	163.1 14.4
<750	32.826 3 494	1 808 0.177	0 0 0 6 6 0 5 6 9	9.236 1 008	0.042 0.013	4.221 0844	0.00089159 0 00023017	0.063126 0 005040	0.152	935	1.95 558	11 668 3 056	1451 365
<008>	48.879 3 282	2 727 0 181	0.079 0.744	10.690 0.750	0 053 0 014	4 317 0.863	0 000000 0 0000000	0 061147 0 000000	0.100	717 5 6	(7.92 8 42	12 501 2.144	1551 25.5
<875v	48 879 3 282	2.727 0.181	0.079 0.744	10.690 0.750	0.053 0.014	4.317 0.863	0 00047717 0 0000007	0 067003 0 000004	0 203	5 29	8.08 1185	1 12 820 3.340	158.8 39.6
956	42 237 2 306	2.404 0.125	0.395 0.094	6.461 0.349	0.050 0.014	4.934 0.987	0 00085112 0 0000000	0 064456 0.000000	0 0 46	4 92 6	4.83 7.42	11 613 2.046	140.5 24.5
<1025>	57.689 3.946	3.490 0198	0.457 0.156	9339 0.556	0.044 0.009	5.604 1 121	0 00044257 0 0000000	0 067009 0.000000	0 067	4.90	7111 10.7	12 972 1540	160.6 18.3
1100>	72.104 1 230	3.825 0 059	0.509 0.173	12.320 0 206	0 063 0 010	6.752 1350	0.00056954 0.00000000	0.058505 0.000000	-0195	5.89	397 11.80	14.216 0 851	175.3 10.0
1200>	68 046 7.762	3.224 0.357	0 969 0.132	25.130 2.949	0.073 0.016	9.653 1.931	0 00058054 0.00183206	0.055020 0.060106	0.138	14.26	8 21 9.95	15 057 3 286	185.2 38.4

All volumes are x 10^{-9} cm³ NTP. All errors are 2 x standard error.

British Columbia Geological Survey Branch

	Approximately 1.67% K; 2.96% Ca	en 0.37 and 2.26)	5% of ³⁹ Ar, steps marked by <)	
	Mass: 123.0 mg	.9 (MSWD = 1.48, isochron betwe	Plateau Age: 174.3 ± 3.4 Ma (47.)	
	Volume ³⁹ Ar: $105.13 \times 10^{-9} \text{ cm}^3 \text{ NTP}$	Initial 40 Ar/ 36 Ar: 412.8 ± 223	73.7% of ³⁹ Ar, steps marked by $>$)	
93GNX7-4 Biotite 40/60	J Value: 0.007198 ± 0.000032	Integrated Age: 172.6 ± 3.9 Ma	Correlation Age: 172.7 ± 9.3 Ma (

				/olumes				Correl ⁵	tion Ratios						
CC)	*Ar		"Ar	³⁸ Ar	"Ar	³⁶ Ar	Blank ⁴⁰ Ar	³⁶ Ar/*9Ar	3°Ar/1°Ar	 	Ca/K	% *1 ^{A1*}	*År	3 ^{65/n} .74	Age±20
200	83.769 ±	17 268	2727 ± 0482	0 859 ± 0.166	2 570 ± 0.519	0.205 ± 0.067	4.037 ± 0.807	0.00239434 ± 0 00098992	0.034215 ± 0.009589	0 406	1.72	27.58	2.59	8 548 ± 9 772	107.7 ± 119.5
575	106.521	1.898	4 192 0.073	1.011 0.095	1.722 0.792	0.235 0.031	4.063 0.813	0.00215746 0 00000000	0 040947 0 000000	0.083	0.75	34.70	3 99	8.852 2.209	111.4 270
<650>	142 524	1.451	8 961 0.081	2 060 0 099	2.208 0.647	0.061 0.028	4.108 0.822	0 00033608 0 0000000	0 064850 0 000000	-0 023	0.45	87 19	8 52	13.889 0 939	111 0.171
<700>	109 969	1.496	6 677 0.063	1 493 0.186	0 878 0.261	0 0 56 0 0 17	4.154 0.831	0 00039347 0 00008368	0 063206 0 000593	-0 034	0.24	84.82	635	13.982 0.817	173.0 96
750>	150154	0.558	9 455 0.034	2 202 0.124	1.567 0.128	0 043 0 015	4.221 0.844	0 00019274 0.00000000	0 064902 0 000000	161.0-	0.30	91.40	8 99	14.530 0.463	179.5 5.4
*008	144 400	1 720	8 513 0.084	1.978 0.103	1.523 0330	0.067 0.012	4.317 0.863	0 00037035 0.00000002	0 060869 0 000000	-0.040	0.33	86.16	8 10	14.631 0.484	180 6 57
850>	156 529	1 094	9 591 0 066	2 398 0 123	2.838 0180	0 040 0 019	4.455 0.891	0 00015854 0.00000000	0 063167 0 000000	-0 069	0.54	92.30	9 12	15.089 0 620	186.0 7.3
996	169.982	1 037	10112 0048	2 771 0.089	2.805 0.249	0 042 0 012	4 652 0 930	0.00015317 0.0000000	0 001256 0 00000	-0.138	0.51	92.57	9 62	15.586 0 361	191.8 4.2
<u>~</u> 956>	272 578	0 687	17512 0066	7653 0031	18 192 0 288	0 083 0 025	4 934 0 987	0 00022912 0.00000000	0.065509 0.000000	-0 076	6	90.87	16 66	14.232 0 422	175.9 5.0
<1000>	251 666	0 684	16 750 0 078	13 417 0.051	39.651 0.983	0.062 0.021	5 339 1 068	0 00013588 0.00144843	0.068028 0.007942	-0100	4 33	92.58	15 93	14.110 0378	174.5 4.5
1050	120 731	2 356	7 994 0.121	4 298 0 090	15171 0467	0 045 0 008	5 920 1 184	0 00018044 0 00056195	0 069681 0.014689	-0131	3 47	88 90	7 60	13.586 0.456	1683 54
1100	30 554	0 028	1.708 0160	1.345 0.020	6 356 0.885	0.032 0.009	6 752 1 350	0 00032231 0 00287023	0 071721 0.054759	-0 217	683	68.78	1.62	12.615 1 950	1568 232
1200	20812	1 197	0 938 0 037	0964 0051	6 133 0.584	0.043 0.008	9 653 1.931	0 00080802 0 00376582	0 083946 0 076281	-0.381	11 96	38.50	0.89	9 068 2 897	1141 35.3

40/60	
Biotite	
GNX9-10	

102.0 mg Approximately 2.59% K: 1.12% C	06, isochron between -0.41 and 3.83) 7.4 \pm 4.7 Ma (24.3% of ³⁹ Ar, steps marked by <)
Volume ³⁹ Ar: 135.02 x 10 ⁻⁹ cm ³ NTP Mass:	Initial ⁴⁰ Ar/ ³⁶ Ar: 239.5 \pm 722.9 (MSWD = 0.) 24.3% of ³⁹ Ar, steps marked by >) Plateau Age: 177
93GNX9-10 Biotite 40/60 J Value: 0.007216 ± 0.000026	Integrated Age: 173.9 ± 2.2 Ma Correlation Age: 179.3 ± 23.1 Ma (

Temp "Ar "Ar <th">"Ar "Ar<</th">			Vo.	lumes				Correl	ation Ratios						
CCJ Ar A	Temp										Ca/	 *	······		
500 1112 008 ± 3630 547 ± 0175 2243 ± 0087 1372 ± 0638 0.289 ± 0019 4037 ± 00024555 0.00024555 0.0050812 ± 0002388 0.317 0.46 2372 406 575 160188 3564 8131 0.185 2756 0.000000 0.173 0.46 2358 616 575 160188 3564 8131 0.185 2766 0.093 2.063 0737 0.013 0.46 2358 616 570 163177 113 0.1075 0.183 0.357 0.0613956 0.000000 0.175 0.46 25.58 616 750 227869 5746 13345 0.333 0.44 0.831 0.0003000 0.0175 0.011 94.46 9377 919 750 227869 5746 13345 0.333 0.12 0.175 0.012 927 0.012 937 9319 800 2356 11036 0.133 0.833 0.14 0.012 0.0013075	່ ເ	"Ar	"Ar	"Ar	År	"Ar	Blank **Ar	"Ar/"Ar	3*Ar/"Ar	<u>-</u>	х	⁴⁰ Ar*	³⁹ Ar	⁴⁸ Ar ^a / ³⁹ K	Age ± 2σ
575 160158 3564 8113 0185 2766 0005 2069 0237 00013935 00000000 033377 0000000 035377 0000000 03577 0014 016 25.8 616 25.8 616 25.8 616 25.3 6175 0175 014 016 73.8 927 766 0175 0101 0175 0187 0175 0114 0175 0114 0175 0114 0117 0173 0114 0116 9377 9371 9312 9360 9331 9360 93317 9360 9331 <th>995</th> <th>112 008 ± 3.630</th> <th>5 479 ± 0 175</th> <th>2.243 ± 0.087</th> <th>1.372 ± 0.638</th> <th>0.289 ± 0.019</th> <th>4037 ± 0.807</th> <th>0 00254705 ± 0 00019369</th> <th>0 050812 ± 0 002388</th> <th>0.312</th> <th>0.46</th> <th>23 72</th> <th>4.06</th> <th>4 868 ± 1 219</th> <th>623±153</th>	995	112 008 ± 3.630	5 479 ± 0 175	2.243 ± 0.087	1.372 ± 0.638	0.289 ± 0.019	4037 ± 0.807	0 00254705 ± 0 00019369	0 050812 ± 0 002388	0.312	0.46	23 72	4.06	4 868 ± 1 219	623±153
60 213 459 537 12.17 0.066 1.11 0.153 0.014 0.016 87.53 7.38 9.27 760 163377 3113 10.275 0.088 0.033 0.014 0.016 87.53 7.46 750 153377 3113 10.075 0.183 3.395 0.144 0.058 0.75 0.16 87.53 7.46 750 227 869 7.46 13.345 0.337 0.944 0.16 4.73 0.16 87.53 7.46 750 227 869 13.345 0.337 0.944 0.161 4.317 0.863 0.0000501 0.016 87.53 7.46 750 226 814 4.966 12.405 0.937 0.944 0.11 4.317 0.863 0.00005001 0.016 87.53 7.46 750 226 811 0.912 0.744 0.016 4.317 0.863 0.00005001 0.016 87.53 7.46 813 32463	575	160 158 3 564	8313 0185	2766 0.095	2.069 0 257	0 397 0 013	4 063 0 813	0 00245656 0 0000000	0 000000 0 000000	0 397	0 46	26.58	6.16	5140 0632	62 7 7 9
<700> 163317 3113 10075 0183 3395 0104 0.888 0323 0 200 20012075 0.00633792 0.0066372 0.006336 0.0018 3.252 7.46 87.52 7.46 93.75 750 2026914 9641 9311 0.831 0.8341 0.60012075 0.0000001 0.012 0.11 9.46 9.88 760 2026914 9661 1336 0.931 0.834 0.000001 0.012 0.11 9.46 9.88 760 2026914 9769 0.031 643 0.981 0.00013653 0.011 9.44 9.87 8640 1036 178 0.035 0.014 0.010 4.453 0.891 0.000001 0.012 0.13 <th>650</th> <th>213 459 3 537</th> <th>12.517 0 206</th> <th>3685 0 098</th> <th>ESI 0 IEI'I</th> <th>0.307 0.018</th> <th>4108 0.822</th> <th>00000000 0 6E66E100 0</th> <th>0.059886 0 000000</th> <th>0175</th> <th>0 17</th> <th>57.38</th> <th>9 27</th> <th>9 793 0.531</th> <th>123 2 65</th>	650	213 459 3 537	12.517 0 206	3685 0 098	ESI 0 IEI'I	0.307 0.018	4108 0.822	00000000 0 6E66E100 0	0.059886 0 000000	0175	0 17	57.38	9 27	9 793 0.531	123 2 65
750 227869 5746 13345 0332 4399 0133 0 827 0 140 0 20013675 0 0000000 0 0013277 0 0112 0 111 9446 988 800 206614 4996 13 497 0 832 0 142 0 709 0 301 4317 0 883 0 0000000 0 0013377 0 112	<700>	163377 3113	10.075 0183	3 395 0 104	CSE 0 868 0 353	0.068 0.020	4.154 0.831	0 00033792 0 00006272	0.063386 0.000863	0.014	016	87.52	7 46	14 201 0.706	1760 83
800 206 914 4.996 11.245 0.206 914 4.996 11.245 0.799 9.10 9.17 9.19 800 206 914 4.996 11.245 0.203 0.142 0.703 0.911 0.112 <th< th=""><th>750</th><th>227869 5746</th><th>13.345 0 332</th><th>4 399 0 133</th><th>0 827 0 140</th><th>0 041 0016</th><th>4 221 0.844</th><th>0 00012075 0 0000000</th><th>0.059768 0.000000</th><th>0 012</th><th>0.11</th><th>94 46</th><th>6 88 6</th><th>16 134 0 693</th><th>1987 89</th></th<>	750	227869 5746	13.345 0 332	4 399 0 133	0 827 0 140	0 041 0016	4 221 0.844	0 00012075 0 0000000	0.059768 0.000000	0 012	0.11	94 46	6 88 6	16 134 0 693	1987 89
850 189 092 3.265 11036 0193 2.561 018 0044 0101 4.455 0891 0 00015499 0 0000000 -0019 0.42 9.291 8.17 900 324603 4058 17387 0.233 0.4642 0.18 0.560 13.25 901 324603 4058 0.023 0.0647 0066 4652 0.939 0.0183 0.18 9560 13.25 951 334415 4780 20058 2642 0.947 0.066 5339 0.90000000 0.05133 0.18 9560 13.25 9561 313415 4780 20058 2619 0.12 3825 066 5339 108000000 0.05133 0.023 0.24 9561 13.25 9502 10734 0783 0.00000000 0.061139 0.0000000 0.023 0.02 0.0112 3825 0.12 3825 0.66 0.333 0.0000000 0.065398 0.0023 0.242	800	206 914 4 996	12.405 0.299	3 693 0 142	0 709 0 301	0 042 0 01	4317 0863	0.00013663 0.00000001	0.061337 0.000001	0 0 1 2	0.10	93.77	9.19	15645 0614	193.0 7.2
901 324603 4050 17887 0.223 6 642 0108 1734 0457 0047 0066 4 652 0930 0 00000000 0.055592 0 0000000 -0.0133 0.18 95 60 13.25 9540 333415 4780 20054 0286 6119 0122 2610 0144 0045 008 4934 087 0 00000000 0.055592 0 0000000 -0022 024 9581 1485 9540 23415 4780 28054 0245 0084 4934 0877 0 0000570 -0023 024 9581 1485 17000 2446 0112 3825 0666 0353 0168 050005950 000009560 -0035 0262 1227 10500 2446 0112 3825 0667 0329 0029 0029 5920 184 000019560 -0043 1277 8821 453 10500 2544 6116 0119 1548	850	189 092 3.265	11.036 0190	3 724 0 095	2 561 0158	0 044 0 010	4 455 0 891	0 00015499 0 0000000	0 059864 0 000000	-0 019	0 42	92.91	8.17	15.940 0 483	196.4 5.6
954 333415 4.780 20054 0.28 6119 0122 2 610 0044 0045 0008 4 934 9 877 0 00000000 0 061153 0 0000000 -0 0222 0 234 9 581 1 485 <100bx 249711 4721 16 565 0223 0 605 5 339 1 668 0 00005672 0 0007579 -0 023 9 562 1 2 27 <100bx 249711 4721 16 565 0 224 0 795 5 920 1 848 0 00005672 0 00039560 0 065438 0 423 9 562 1 2 27 <100bx 2544 3 277 1 105 1 6 28 0 112 3 823 0 0039 0 2029 0 0029 5 920 1 844 0 000019926 0 0045177 -0 043 1 2 77 8821 4 53 <1200x 25 44 3 217 1 2177 1 6 277 0 0039 0 0 203 0 0 0013928 0 00009960 -0 043 1 2 77 8821 4 53 <1200x 25 44 3 217 <	96	324 603 4.050	17887 0 223	6 6 4 2 0 1 0 8	1734 0457	0 047 0 006	4 652 0 930	0 00009530 0 0000000	0.055992 0 00000	EE0 0-	0.18	95 60	13.25	17.357 0 329	212.9 3.8
+1040- 249711 4721 16 665 0.228 6.446 0.112 3 823 0.676 0.035 0.006 5 339 1068 0.00006770 0.00579 0.0053 0.427 95 62 12.27 10500- 27963 20.74 6116 0119 5226 10.39 0.029 0.029 5201 18.44 0.0006770 0.004579 0.0433 12.77 88211 4.33 1200- 2544 317 1219 1227 8101 9523 0.0039 0.029 0.019 5521 4.33 1200- 2544 317 1277 810 0.235 0.00379361 0.0045794 0.0433 13.77 8211 4.33 1200- 2544 3277 0.119 9228 0.029 0.012 9531 1331 0.00039344 0.077942 0.83540 0.504 154 154 154 154 154 154 154 154 154 1554 154 1554 15	950	333415 4.780	20.054 0 286	6119 0122	2 610 0 044	0.045 0.008	4 934 0 987	0 00008530 0 0000000	0 0001153 0 000000	-0 022	0 24	9581	14 85	15940 0350	1964 41
<1050> 97963 2024 6116 0119 1.681 0112 4248 0579 0.039 0.029 5920 1.84 0.00018928 0.0009360 0.066548 0.06717 - 0.043 1.27 8821 4.53 1.51 1.206 1.27 8821 4.53 1.51 1.206 1.27 8.21 4.53 1.51 1.206 1.25344 3.217 1.227 0.10 0.922 0.095 1.0081 1.275 0.029 0.012 9.653 1.931 0.00037931 0.00408134 0.077942 0.088540 - 0.310 1.504 1.6571 0.91 0.91 1.206 1.51 0.91 1.206 1.51 0.91 1.515 0.021 0.012 9.553 1.931 0.00037931 0.00408134 0.077942 0.088540 - 0.010 1.506 1.571 0.91 1.275 0.001 0.955 1.000037931 0.00408134 0.077942 0.088540 - 0.010 1.504 1.6571 0.91 1.515 0.012 9.553 1.931 0.00037931 0.00408134 0.077942 0.088540 - 0.010 1.515 0.001 0.952 0.0029 0.012 1.955 1.9551 0.000037931 0.00408134 0.077942 0.088540 - 0.010 1.515 0.571 0.91 1.515 0.029 0.012 1.9551 0.00037931 0.00408134 0.077942 0.088540 - 0.010 1.515 0.551 0.0029 0.012 1.9551 0.00037931 0.00408134 0.077942 0.088540 - 0.010 1.515 0.571 0.91 1.515 0.029 0.012 1.9551 0.00037931 0.00408134 0.0077942 0.088540 - 0.010 1.515 0.5511 0.	<1000>	249711 4721	16 565 0 228	4.446 0112	3 825 0 676	0 035 0 006	5 339 1 068	0 00006702 0 00014064	0 067908 0 007679	-0 053	0.42	95.62	12 27	14 434 0.366	178.8 4.3
1200 2 25344 3217 1 227 0110 0.922 0.095 1 0.081 1.275 0.029 0012 9 653 1 931 -000037931 0.00408134 0 0.77942 0.088540 1 -0310 1 1504 1 6571 0.91	<1050>	97 963 2 024	6116 0119	1.681 0112	4 248 0 579	0.039 0.029	5 920 1 184	0.00018928 0.00099360	0 066548 0 006717	-0 043	1.27	88 21	4 53	14186 1459	1758 172
	1200	25344 3217	1 227 0 110	0.922 0.095	10 081 1.275	0.029 0.012	9 653 1 931	-0 00037931 0.00408134	0 077942 0 088540	0.310	15 04	6571	16.0	14.268 4199	1768 496

All volumes are x 10 9 cm³ NTP. All errors are 2 x standard error.

<u>40/60</u>
Hornblende
93GNX25-2

 Volume ^{39}Ar : 35.47 x 10.⁹ cm³ NTP
 Mass: 296.0 mg
 Approximately 0.23% K; 3.91% Ca

 Initial ^{40}Ar / ^{36}Ar : 286.3 ± 151.7 (MSWD = 1.08, isochron between 0.37 and 2.26)

Plateau Age: 165.6 ± 3.6 Ma (82.2% of ³⁹Ar, steps marked by <) Correlation Age: 165.6 ± 8.1 Ma (82.2% of ³⁹Ar, steps marked by >) Integrated Age: 165.4 ± 4.7 Ma J Value: 0.007206 ± 0.000012

		A	'olumes				Correlat	ion Ratios						
						1	4		••••		*	*	160' A - 0 B	
dinar	"Ar	"Ar	³⁸ Ar	Ar	"Ar	Blank Ar	Ar/ Ar	Ar/"Ar	-	Ca/K	Å٢	A	A / P	Age ± 20
2			1000	000 T T T T	10 T T T T T T T T T T T T T T T T T T T	1154 + 0.831	0.00759184 ± 0.00014786	0.014035 ± 0.000625	0.423	2.35	22.56	5.26	16.680 ± 3.499	2048 ± 40.6
907	136.964 ± 4.374	1.865 ± 0.055	0.093 ± 0.084	2000 E CAC 7		1000-1114	0.0000000 0.000000	0.050163 0.00000	0.294	5.18	39.55	2 31	10.194 5 424	127.9 65.7
908	20.657 2.776	0.820 0.054	11/1 1/2/0	01C'0 07C'7	10/0 7500	0000 375 4	0.0000000000000000000000000000000000000	0.045116 0.000000	-0 019	13.47	61.25	2.95	16.820 3.346	206.4 38.8
875	27.661 1.447	1.047 0.054	400.0 500.0	710.0 00/7	P100 2200	SNOU LOLY	0.00140954 0.0007809	0 058242 0 002250	0.134	16.12	44.85	5.)4	9.562 2.532	120 2 30.8
975	35.963 2.055	1.824 0.047	2.888 0.080	10.000 U.114	2100 JONA		0.0000000000000000000000000000000000000	0 066394 0 000000	010	17 55	82.73	20.58	13 793 0.650	170.9 7.7
<976>	114 591 1.144	690.0 DOE.7	551.0 620.51		0000 2000	5 220 1 DK8	0.00009579 0.0000003	0.069170 0.000000	-0.388	17.46	79.40	12.36	13 196 0.414	163.9 4.9
<1000>	68.459 0.659	4.385 0.040	8 234 U.U63	1000 CC0 14	010 0 050 0	0011 LVS S	0.0000000 0.0000000	0.069730 0.000000	-0.141	17.79	80.23	16.51	13.028 0.602	161.9 7.1
<1020>	89.152 1.316	5855 0.086	0.10 843 0.104	CUCU 1060C	0000 0000	1211 1222	0.00016125 0.0000000	0 070007 0 000000	-0.238	18.02	81 39	11 04	13.604 0.747	168.7 8.9
<1040>	61.499 1.082	3.918 0.067	7 051 0.124	7/0/0 000.00F	0000 1200	6.064 1.713	0.00030016 0.0000000	0.068862 0.000000	-0.139	17.49	73 30	5.54	13.663 1.546	169.4 18.3
<1060>	34.472 1.272	1965 0.040		010:0 4/1.01	1100 5900	777 1 F9F 3	0 00064308 0 0009042 5	0 063707 0 010044	-0.144	18.62	67.53	9 23	12.714 1.095	158.2 13.0
<1080>	57.504 1.327	3.272 0.051	0.436 0.105	ACT.0 167.65	0000 0000	YEP 1 8212	01762000 0 EL625000 0	0 062769 0 007008	-0.354	21.05	65 28	6 96	13.202 1.210	163.9 144
<1120>	46.274 0.347	2.468 0.018	0400 250 200	07770 696797	010.0 40.00	101 1590	0 00036365 0 0003756	0 075274 0.073336	-0.180	17.05	42.53	2 12	11.857 5.742	147.9 68.8
1200	19.607 3.148	0.752 0.055	1.262 0.119	541'T 010'	A10:0 000:0	1001 0004								

40/60	000028
Biotite	7214 ± 0.0
(25-2	0.007
93GNX	J Value:

Approximately 2.64% K; 2.25% Ca Volume 39 Ar: 125.77 x 10.9 cm³ NTPMass: 93.0 mgApproximately 2.64% K;Initial 40 Ar/ 36 Ar: 1083.2 ± 775.0 (MSWD = 2.84, isochron between 0.18 and 2.63)8.6% of 39 Ar steps marked by >)Plateau Age: 167.4 ± 9.4 Ma (5.9% of 39 Ar, steps marked by <)</td> A8 60% of 39 Ar stens marked hv >)

Integral	ted Age: 175.9	0± 3.8 Ma	Ι	Initial ⁴⁰ Ar/ ³⁶	Ar: 1083.2 :	± 775.0 (M	SWD = 2.84, isochro	n between 0.18 a	nd 2.63)					
Correla	ution Age: 164.	6 ± 18.2 Ma	(48.6% of ³⁹ /	Ar, steps mari	ked by >)	Plateau	Age: 167.4 ± 9.4 M.	a (5.9% of ^{3%} Ar, s	teps mai	rked by	$\widehat{\nabla}$			
	0	<u>N</u>	samulo				Correlat	ion Ratios						
									 -	-•		- 70	-	
Temp	40 Å T	39 A F	"Ar	"Ar	³⁶ Ar	Blank "Ar	34 Ar/"Ar	39 Ar/40 Ar	 L	Ca/K	År.	År.	40 Ar*/**K	Age $\pm 2\sigma$
อ	ē		{			1000		0.010/01111	: 505 0	 57	37.87	5 74	7 504 ± 1 217	951±150
200	1 140 741 + 4 588	6 596 ± 0 197	2444 ± 0.113	5.541 ± 0.711 ;	0.338 ± 0.022	$4.03.1 \pm 0.80$	+CCOIMON N # 70677700 0	I GETON'N I INHCHN N	<u> </u>	ξ :				110011
	00/14 T 147/641			1041 0.786	0.175 0.074	4 063 0 813	000000000000000000000000000000000000000	0 047523 0.000000	0.349	0.95	42.75	6.18	756.1 1/2.6	110 8 10 3
575	C/07/ 006 191	775'0 8////	171'0 666.7	007.0 100.4			0,00065130,0,000000	0.064886 0.000000	0.018	0 44	79.00	11.27	12.445 0.248	1551 3.0
650	222.830 1.876	14.168 0.119	3.832 0.092	000.0 086.6		4700 001.4		100100 0 000270 0	0.064	02.0	12 10	10.46	14 802 0.505	1830 59
700>	210 2 59 5.420	13.155 0.217	3 907 0.103	2.092 0.392	0.052 0.007	4.154 0.851	0.00018128 0.000184/		5000		0.90	02.0	1550 92931	101.1 64
TED	171 271 4 083	10.550 0.250	3 049 0.131	0 967 0.235	0.021 0.004	4.221 0.844	0 00003988 0.0000000	0.063040 0.000000	900.0-	1.0	01 04			
		2000 0000	1 607 0 131	1 508 0 440	0022 0.011	4.317 0.863	0 00012012 0.0000002	0.066133 0.000001	0.009	0.32	16.66		14,254 U.14	18U.2 4.4
<10R	C/0.C 689.021	6770 / 07 6	771.0 700.7	T40 0 310 F	0.061 0.007	4455 0.801	00000000 (9552000 0	0.055866 0.000000	0.194	0.34	30 78	8.60	16.663 1.233	204.8 14.3
820 <u>></u>	198.453 9.887	10 822 0 523	5 220 U.Z.24	750 CIN7	100'n 100'n			0.056074 0.00000	-0.007	0.42	94 20	14.76	16.829 0.240	2067 2.8
906	331 247 1.289	18.563 0.065	5 978 0 082	4 311 0.040	0.005 0.014	0CC0 7CD16			200	YE O	11 90	14 21	14 707 0 462	187.0 5.4
950~	114 897 6380	20.508 0415	6.339 0.145	8.356 0.438	0.039 0.011	4.934 0.987	0,0000000 0 10000000 0	00000000 1/ 200000					1010 017 LT	20 1171
1000-	1 201	2010 017	2 828 0 095	8,470 0.529	0.030 0.009	5.339 1.068	0 00009316 0 00048652	0.072148 0.020597		5017	10.14	20.0	13.4/7 U./00	
<0001>	LOC'T 007:001		010 2101	5 210 0 040	0.036 0.014	5.920 1.184	0.00023748 0.00143019	0 069299 0.111876	0.128	2.31	83.84	3.29	13418 3942	100.7 40.8
NCUI	TON:71 0/9'C0	, c/ n 0c1.4			900 1200	0 6 6 2 1 0 1 1	0.00052469 0.00178759	0.058253 0.069721	0.274	8.19	68.65	2.24	14 505 9 289 :	179.5 109.5
1200	57.891 20.397	2.813 0.984	1.007 0.373	12 390 4.420	070'0 100'0	1661 660.6	20182100'0 404-2000'0							

All volumes are x 10^{-9} cm³ NTP. All errors are 2 x standard error.

considered the best estimate of the time of cooling of the southern part of this batholith.

Hornblende from a hornblende-phyric dike (93GNX18-6-3) intruding the Bonanza Group has an integrated date of 167 ± 13 Ma. However, the two highest temperature steps yield a plateau date of 177 ± 6 Ma. The data yield an inverse isochron age of 176 ± 6 Ma and suggest that this low-potassium amphibole contains initial argon with a non-atmospheric ratio. The plateau date of 177 ± 6 Ma is considered the best estimate of the age of this dike.

BIOTITE

The three biotite separates contain appreciable intergrown chlorite which is believed to be responsible for their anomalously low estimated potassium contents (<3% K). The heating experiments yield distinctively hump-shaped age spectra. Following Ruffet *et al.* (1991), only the "shoulders" of the hump were used to calculate the plateau segment date which is taken as a maximum estimate of the cooling age for biotite in these rocks.

Biotite from the Glenlion stock (93GNX7-4) has an integrated date of 173 ± 4 Ma. The plateau date and the inverse isochron date agree within analytical uncertainty at 174 ± 3 Ma and 173 ± 9 Ma, respectively. The 174 ± 3 Ma plateau date for 48% of the ³⁹Ar released is believed to be the best estimate of the cooling age for this biotite.

Biotite from the Rupert stock (93GNX9-10) yields an integrated date of 174 ± 2 Ma. This spectrum has the most pronounced hump-shape and only 24% of the ³⁹Ar released defines the shoulders of the hump. The three steps involved define a plateau date of 177 ± 5 Ma. A poor inverse isochron date of 179 ± 27 Ma is in agreement with the plateau date which is considered to be a maximum cooling age for biotite in this pluton.

Biotite from the southern margin of the Nahwitti batholith (93GNX25-2) yields an integrated date of 176±4 Ma. This date is 10 Ma older than the hornblende date for the same rock. The spectrum has an extreme hump-shape and only one step defines a plateau segment date of circa 167 Ma. The fact that biotite and hornblende in this rock show a reversal of the age discordance normally observed suggests that the biotite contains excess argon. An inverse isochron (Figure 4) for the biotite supports this conclusion and reveals twocomponents of initial argon. Most of the steps with dates greater than the hornblende date plot on a line with an initial ⁴⁰Ar/³⁶Ar ratio of 1099 and yield a date of 165±18 Ma. This date is analytically indistinguishable from the hornblende date of 166±4 Ma and is the preferred biotite cooling age for this part of the batholith.

PLAGIOCLASE

Plagioclase from the Glenlion stock (93GNX7-4) has an integrated date of 156 ± 10 Ma and a plateau date of 156 ± 11 Ma for 73% of the ³⁹Ar released. An inverse isochron (not shown) for this experiment reveals two components of initial argon and yields a poorly constrained date of 141 ± 38 Ma. The best cooling age for this sample is regarded as the plateau date of 156 ± 11 Ma.

SUMMARY OF RESULTS AND DISCUSSION

The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ results presented here give some insight into the thermal history of the region and place certain constraints on the age of invusion. The hornblende separates typically yield the best plateau dates whereas the biotites give more complex argon-release spectra.

The dates for hornblende (176±3 Ma) and biotite (174±3 Ma) in the Glenlion stock are analytically indistinguishable and suggest rapid cooling circa 175 Ma from the closure temperature of hornblende (ca. 500°C; McDougall and Harrison, 1988) through the closure temperature of biotite (ca. 300°C; McDougall and Harrison, 1988). This is consistent with the small apparent size of this body and the relatively shallow level of emplacement. The latter observations also suggest that intrusion occurred circa 176 Ma. The signif cance of the younger plagioclase date (156±11 Ma) is not presently clear. It may indicate an episode of Late Jurassic, lowtemperature thermal overprinting that would presumably reflect the zeolite to prehnite-pumpellyite facies regional metamorphism in the area, or slow cooling following emplacement through the imputed closure temperature of plagioclase (ca. 225°C; McDougall and Ha rison, 1938, page 23).

The hornblende (166±4 Ma) and biotite $(165\pm18 \text{ Ma})$ dates for the southern part of the Nahwitti batholith are concordant, but the imprecision of the biotite date precludes firm conclusions regarding the postemplacement cooling history of this part of the intrusion. The dates are, however, consistent with the fairly rapid cooling deduced above for the Glenlion stock and neither spectrum shows evidence of later thermal overprinting. Conventional K-Ar dates on hornblende (150±8 Ma) and biotite (166±6 and 171±6 Ma) were also obtained from samples collected at the southern margin of the Nahwitti batholith (data summarized by Muller *et al.*, 1974. These determinations are comparable to ours.

The age of the Rupert stock is problematic. A previous K-Ar determination yielded an apparent biotite cooling age of 156±6 Ma, significantly your ger than our date (Muller et al., 1974). In addition, a Rb-S whole-rcck isochron date of 180±20 Ma (University of British Columbia Geochronological Database) has been obtained for the quartz feldspar porphyry dike at the I: land Copper mine that appears to be a lateral offshoot of the Rupert stock. Although the Rb-Sr isochron date would generally be preferred as the age of emplacement, the analytical uncertainty is considerable. The maximum cooling age of biotite (174±2 Ma), as estimated from an extremely hump-shaped age spectrum, could conceivally be of the order of 10 Ma greater than the hornblende cooling age for this rock if the ⁴⁰Ar/³⁹Ar systematics are similar to those observed for biotite in the Nahwitti batholith. These

considerations would loosely constrain the age of intrusion of the Rupert stock to be between about 180 and 160 Ma.

The hornblende date $(177\pm6 \text{ Ma})$ for the porphyritic dike supports the contention that these rocks are higher level equivalents of the Island Plutonic Suite. Because the hornblende porphyry was emplaced as a quickly chilled dike in thinly bedded intervolcanic sandstones prior to their complete lithification, the hornblende date is regarded as a good approximation to the age of emplacement which may well have occurred while younger strata within the Bonanza Group were still being deposited (discussed below).

In summary, in the Quatsino - Port McNeill map area, 40 Ar/ 39 Ar age spectra of mineral separates from granitoids of the Island Plutonic Suite provide evidence for two distinct ages of emplacement, *circa* 176 and 166 Ma. Biotite and hornblende dates are essentially concordant and this is consistent with rapid cooling over the approximate temperature interval 500°C to 300°C. There is no evidence in the spectra of post-Jurassic thermal overprinting and it appears that chloritization of biotite occurred soon after emplacement. In fact, a significantly younger plagioclase date (*ca.* 156 Ma) in one of the older plutons may represent the close of zeolite to prehnite-pumpellyite grade regional metamorphism. Although not conclusive, it does seem that certain dikes intruding the Bonanza Group are apophyses of some of the plutons.

Finally, it is worth noting that the ⁴⁰Ar/³⁹Ar stepheating experiments demonstrate the existance of excess argon in some samples, implying that previous K-Ar dates must be used with caution. There are several other K-Ar biotite and hornblende dates in the region. Two K-Ar determinations on biotite from Hepler Creek and the northern margin of the Wanokana batholith underlying the central part of the map area between Holberg Inlet and Nahwitti Lake, yield dates of 148±5 and 161±5 Ma, respectively (cf. Muller et al., 1974). In addition, Panteleyev and Koyanagi (1994 and this volume) have reported a new K-Ar date of 168±4 Ma and a ⁴⁰Ar/³⁹Ar date of circa 173 Ma for hornblende from the northern margin of this batholith, as well as a ⁴⁰Ar/³⁹Ar. date of circa 172 Ma for hornblende from the Hushamu area (Figure 2). In light of the preceding interpretations of the Ar/³⁹Ar age spectra, the hornblende dates might be expected to yield the best approximation to the actual age of intrusion. Thus it would appear that emplacement of the Wanokana batholith occurred between the two ages of intrusion recognized earlier.

HOW YOUNG IS BONANZA VOLCANISM?

We alluded earlier to the fact that Jurassic granitoids seem to be younger than the volcanics based on the disparate ages provided by isotopic dates for the Island Plutonic Suite (*ca.* 184-103 Ma; Toarcian to mid-Cretaceous) on the one hand, and paleontological control in sedimentary rocks of the Bonanza Group (SinemurianPliensbachian; 203-187 Ma) on the other. This discrepancy may be more apparent than real, as discussed below.

Recently, Haggart and Tipper (1994) identified marine fossils from the Bonanza Group that were collected in a quarry east of Rupert Inlet (Figure 2). Outcrop in this area is scarce, but regional mapping reported by Nixon et al. (1994) and Hammack et al. (1995) places this locality near the base of the Bonanza succession (and possibly within it). The succession totals some several tens of metres of noncalcareous siltstone, shale and mudstone intercalated, in the lower part of the quarry, with crystal tuffs, and in the upper part of the quarry, with lithic and crystal lithic tuffs with lapilli-size clasts of predominantly mafic to intermediate volcanic lithologies. The fauna they identified were collected from the lower part of the succession and include ammonites and bivalves that indicate a middle early Sinemurian age (ca. 200 Ma).

Within the basal part of the Bonanza sequence exposed in the pit of the Island Copper mine, marine sedimentary rocks intercalated with lithic-rich tuffs and minor flows(?) have yielded trigoniid bivalves of Aalenian age (Poulton, 1980; Poulton and Tipper, 1991). These marine fossil occurrences are the youngest presently known in the Bonanza Group and clearly indicate that the basal part of the tuff-sediment sequence extends into the earliest Middle Jurassic.

In the vicinity of the Pemberton Hills (Figure 2), the subaqueously deposited basal Bonanza tuffs and sediments are overlain by a thick succession of mafic to felsic subaerial flows and tuffs with minor intercalated sedimentary strata (Nixon et al., 1994). Although stratigraphic continuity has been disrupted by intrusion of the composite Wanokana batholith, rhyolitic flow-dome complexes and ash-flow tuffs exposed in the Pemberton Hills appear towards the top of the succession (Figure 2; Nixon et al., 1994). This rhyolitic unit can be traced east to the shores of Holberg Inlet where a "Bonanza andesite" collected by K. E. Northcote yielded a whole-rock K-Ar date of 163±6 Ma (Bathonian). This "andesite" is a finely crystalline hornblende-bearing rock with fairly fresh feldspars, and although associated with silicic volcanics, contact relationships were not observed so that it could be a dike (K. E. Northcote, personal communication 1994). This Middle Jurassic sample was considered to have been reset by a later thermal overprint (University of British Columbia Geochronological Database). However, as discussed previously, there is no evidence for such an event in the ⁴⁰Ar/³⁹Ar age spectra studied to date. While argon loss remains a possibility, this date fits stratigraphic assignments and may indeed be valid. If this rock is in fact part of a dike, it would place a minimum age limit only on this part of the Bonanza Group.

Panteleyev *et al.* (1995) also provide evidence for the apparent youth of the Bonanza Group in the form of new ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dates for alunites that formed during acid sulphate alteration of the Pemberton Hills rhyolite unit. The alunite age spectra are complex. Two alunites gave maximum plateau ages ranging from *circa* 167 to 160 Ma (latest Bajocian to earliest Callovian), and two gave

significantly younger maximum ages of circa 145-150 Ma (earliest Cretaceous). The oldest dates are considered to represent primary hydrothermal alunite that formed as a replacement of feldspar phenocrysts and as euhedral crystals in vugs, whereas the younger alunites are all interpreted to be supergene. Geological considerations suggest that the acid sulphate alteration occurred penecontemporaneously with extrusion of rhyolitic hostrocks, and may also be linked to emplacement of certain members of the Island Plutonic Suite (Panteleyev and Koyanagi, 1994; Nixon *et al.*, 1994). Although the 40 Ar/ 39 Ar systematics of alunite age spectra are not well known, the primary alunite maximum plateau date is consistent with a Middle Jurassic age for the upper part of the Bonanza succession.

From the preceding discussion, it is evident that the younger, predominantly subaerial part of the Bonanza Group in the Ouatsino - Port McNeill area is younger than Aalenian. The available stratigraphic, paleontological and geochronological data currently suggest that Bonanza volcanism began in the early Lower Jurassic (Sinemurian-Pliensbachian) and extended well into the Middle Jurassic (Bathonian or younger). Accordingly, the upper part of the Bonanza Group would be equivalent in age to the voungest members of the Island Plutonic Suite in the area (ca. 166 Ma). Samples of rhyolitic lavas and ash-flow tuffs in the Bonanza Group are currently being prepared for U-Pb zircon geochronometry in order to further test these inferences.

ACKNOWLEDGMENTS

Thanks are due to the expertise of the regional mapping crew in the 1993 field season upon whose efforts our dating studies are founded, notably Jan Victor Koyanagi, Gary Payie, Andre Hammack. Panteleyev, Nick Massey and Jack Hamilton. Thanks are also extended to Jan Hammack for preparing tables and figures, and to Bill McMillan, Brian Grant and John Newell for editorial comments. The Geochronology Laboratory at Queen's University is supported by an NSERC operating grant to E. Farrar.

REFERENCES

- Cargill, D. G., Lamb, J., Young, M. J. and Rugg, E. S. (1976): Island Copper; in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A., Editor, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 206-218.
- Carson, D. J. T. (1973): The Plutonic Rocks of Vancouver Ísland; Geological Survey of Canada, Paper 72-44, 70 pages
- Dalrymple, G.B., Alexander, Jr., E.C., Lanphere, M.A. and Kraker, G.P. (1981): Irradiation of Samples for ⁴⁰Ar/³⁹Ar Kraker, G.P. (1981): Irradiation of Samples for * Dating Using the Geological Survey TRIGA Reactor; United States Geological Survey, Professional Paper 1176, 55 pages.
- Haggart, J. W. and Tipper, H. W. (1994): New Results in Jura-Cretaceous Stratigraphy, Northern Vancouver Island,

British Columbia; Geological Survey of Canada, Paper 94-

- 1E, pages 59-66. Hall, C. M. (1981): The Application of K-A and 40 Ar/ 39 Ar Methods to the Dating of Recent Volcanics and the Laschamp Event, Ph.D. thesis, University of Toronto, 186 pages.
- Hammack, J. L., Nixon, G. T., Koyanagi, V. M., Payie, C. J., Panteleyev, A., Massey, N. W. D., Hamilton, J. V. and Haggart, J. W. (1994): Preliminary Geology of the Quatsino - Port McNeill Map Area, Nortl ern Vanco sver Island (92L/12, 11W); B. C. Ministry of Energy, Mines and Petroleum Resources, Open File 1994-26.
- Harland, W. B., Armstrong, R. L., Cox, A. V., Cra g, L. E., Smith, A. G. and Smith, D. G. (1990): A Geologic Time Scale 1989; Cambridge University Press,
- Le Maitre, R. W. (Editor) (1989): A Classification of Igneous Rocks and Glossary of Terms: Black well Scientific Publications.
- Masliwee, A. (1981): The Direct Dating of Ore Minerals, unpublished M.Sc. thesis, University of Toronto.
- McDougall, I. and Harrison, T. M. (1988) Geot hronology and Thermochronology by the ⁴⁰Arl³⁹Ar Method, *Cx/orcl* University Press, N.Y., 212 pages.
- Muller, J. E., Northcote, K. E. and Carlisle, D. (1974): Geology and Mineral Deposits of Alert Bay - Cape Scott Map Area. Vancouver Island, British Columbia: Geolegical Survey of Canada, Paper 74-8.
- Nixon, G. T., Hammack, J. L., Koyanagi, V. M., Payie, G. J., Panteleyev, A., Massey, N. W. D., Hami ton, J. V. and Haggart, J. W. (1994): Preliminary Geology of the Quatsino - Port McNeill Map Areas, Northern Vancouver Island (92L/12, 11); in Geological Fieldwo k 1993, Grant, B. and Newell, J. M., Editors, B. C. Mini try of Energy, Mines and Petroleum Resources, Paper 1994-1, pages 63-85
- Panteleyev, A. and Koyanagi, V. M. (1994): Advanced Arg.llic Alteration in Bonanza Volcanic Rocks, Northern Vancouver Island - Lithologic Associations and Permeability Controls (92L/12); in Geological Fieldwork 1993, Grant, B. and Newell, J. M., Editors, B. C. Ministry of Energy, Mines and Petroleum Resources. Paper 1994-1, pages 101-110.
- Panteleyev, A., Reynolds, P. H. and Koyanagi, V. M. (1995): ⁴⁰Ar/³⁹Ar Ages of Hydrothermal Minerals in Acid Sulplate Altered Bonanza Volcanics, Northern Vancouver Island (NTS 92L/12); in Geological Fieldwork 1994, Grant B. and Newell, J. M., Editors, B. C. Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, this volume.
- Poulton, T. P. (1980): Trigoniid Bivalves: from the Bajocian (Middle Jurassic) of Central Oregon, Geological Survey of
- Canada, Paper 80-1A, pages 187-196. Poulton, T. P. and Tipper, H. W. (1991): Aaleni in Ammonites and Strata of Western Canada; Geologi al Survey of Canada, Bulletin 411, 71 pages.
- Ruffet, G., Féroud, G. and Amouric, M. (1991): Comparison of ⁴⁰Ar-³⁹Ar Conventional and Laser Dating o Biotites from ⁴⁰Ar-³⁹Ar Conventional and Laser Dating o Biotites from the North Trégor Batholith; *Geochimica et Cosmochimica* Acta, Volume 55, pages 1675-1688.
- Steiger, R.H. and Jäger, E. (1977): Subcommission on Geochronology: Convention on the U e of Detay Constants in Geo- and Cosmo-chronology, Earth and Planetary Science Letters, Volume 36, pages 359-362.

NOTES

.