${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ AGES OF HYDROTHERMAL MINERALS IN ACID SULPHATE. ALTERED BONANZA VOLCANICS, NORTHERN VANCOUVER ISLAND (NTS 92L/12)

By Andre Panteleyev, Geological Survey Branch
Peter H. Reynolds, Dalhousie University
and Victor M. Koyanagi, Geological Survey Branch

KEYWORDS: Geochronology, Bonanza volcanics, hydrothermal alteration, rhyolite, Vancouver Island, alunite, acid sulphate, Island Plutonic Suite, ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating

INTRODUCTION

The occurrence of acid sulphate, advanced argillic alteration in extensive zones within Bonanza volcanic rocks in Northern Vancouver Island has been long known (Clapp, 1913, 1915). The alteration zones have been examined at various times for their precious and base metal potential as well as for sources of various industrial minerals. The most extensive recent exploration has been carried out to the north of Holberg Inlet and west of Island Copper mine (Figure 1) by BHP Minerals Limited and associated companies, and in the recent past by BHP Minerals' corporate predecessors. Ministry work in the belt of altered Bonanza rocks has been conducted since 1991, primarily to investigate relationships between subvolcanic intrusions and related, high-level advanced argillic alteration. This setting is considered to be 'transitional' between porphyry copper and epithermal environments. This work has been discussed by Panteleyev (1992) and Panteleyev and Koyanagi (1993, 1994). The ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ data reported here provide ages for hydrothermal minerals in altered rocks within the belt of Bonanza rocks to the north of Holberg Inlet and to the west of Island Copper mine. If the hydrothermal minerals are products of subvolcanic hydrothermal activity, their ages should be similar to that of the Bonanza (rhyolite) hostrocks and the supposedly coeval Island intrusions. A conventional K -Ar date obtained on hornblende from the Mead Creek stock, a typical intrusion of the Island Plutonic Suite, is $168 \pm 4 \mathrm{Ma}$ (Panteleyev and Koyanagi (1994).

The ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating technique is a variation of the K Ar method in which samples are irradiated with fast neutrons to convert ${ }^{39} \mathrm{~K}$ to ${ }^{39} \mathrm{Ar}$. The argon is extracted by incremental step-heating to fusion, and the resulting gas is processed much as in the conventional K-Ar technique. Cumulative ${ }^{39} \mathrm{Ar}$ released and apparent age are presented in the form of age spectrum plots (Figure 2). A 'plateau age' is defined by contiguous steps that together comprise more than 50% of the total ${ }^{39} \mathrm{Ar}$ gas released, provided

Figure 1: Location Map
that they exhibit no diffeences in apparent age beyond that expected from experimental uncertair ty. Detailad discussions of the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ method, among ritany, are loy Lanphere et al. (1981), Parrish and Rodcick (198:5), McDougall and Harrison (1988) and Reynold: (1992).

SAMPLING AND ANALYTICAL METHODS

Seven samples were selected for ${ }^{40} \mathrm{Ar} /{ }^{9} \mathrm{Ar}$ dating. The sample suite includes two homblendes, one from the copper-mineralized Hushamu stock ($91 \mathrm{AP} 12 / 19$), and the other from the Mead Creek stock (92AP3/'-7) located about 3 kilometres to the northeast; a hydrotl ermal mica from the Hushamu stock; and four alunite soncentrates from acid-leached rhyolitic Bonanza volcanic rocks in the Pemberton Hills and southern Mount McIntos 1 (Table 1). The alunites exhibit differences in their app arance ard habit. Two of the samples (92AP-EC-150 and 92AP15/473a) contain well crystallized, euhedral :rains, one formed as vug fillings, the other as repl.cement of feldspar phenocrysts. The other two are earth y, compact, white to pink in colour and occur in patches a id irregular masses as replacements of porous bedded rocss and vein fillings. The differences in habit of hypogene and supergene alunites have been outlined by Sillit re (1994).

Clean mineral concentrates were prepa:ed for all samples and purity was checked by X-ray a alysis. All argon isotopic analyses were made using a VC 3600 ma:is spectrometer coupled to an internal tantalun resistance furnace of the double-vacuum type. fornblence

TABLE 1: ${ }^{40} \mathrm{Ar}{ }^{39}$ Ar SAMPLE DESCRIPTIONS

Sample Number	UTM Zone 9		Location	Mineral Analyzed	Description
	Easting	Northing			
91AP12/49	--..--	-----	Hushamu stock	hormblende	Hushamu stock, possibly dike
91AP-12/50	581000	5614660	Hushamu stock	sericite, quartz	bleached and clay-altered fault zone in pyritic
			1700 Road		zeolite-rich diorite, sericite mineral separate
92AP-EC-150	-----	-----	South McIntosh	alunite, minor topaz	DDH EC-150, South McIntosh drill core, silica rock with alunite-filled vugs, (collected
					by J. Fleming)
92AP15/1-71B	585999	5609291	Youghpan Creek	alunite	thin-bedded tuffs, pink/tan patches along bedding
92AP15/2-72B	585758	5609490	Youghpan Creek	alunite	relict tuff/breccia, massive silica hydrothermal overprint; pink, massive, earthy, fracture filling is alunite
92AP15/4-73a	585166	5610046	West Youghpan Creek	alunite	clay-altered basalt, remnant feldspars, breccia at base of silicified knob
92AP3/1-7	583839	5615892	Mead Creek stock	hornblende	homblende mineral separate from fresh diorite

*This age corresponds to a 168 ± 4 conventional K-Ar date (Panteleyev and Koyanagi, 1994)

Figure 2. Age spectrum diagrams and ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ratio plots. Half-heights of open rectangles designate the 1σ relative (between-step) uncertainties. Age spectra for the two well-crystallized alunites are stippled. P.A. indicates 'plateau age'; M.A. is maximum age of segment. All errors are quoted at the 2σ level of confidence.

TABLE 2: ANALYTICAL DATA

Temp ${ }^{\circ} \mathrm{C}$	$m V^{39} \mathrm{Ar}$	\% ${ }^{39} \mathrm{Ar}$	AGE (Ma)	AGE +/-	\%ATM	${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$	${ }^{36} \mathrm{Ar} /{ }^{40} \mathrm{Ar}$	${ }^{39} \mathbf{A r} /{ }^{40} \mathbf{A r}$	\% IIC
Sample 91AP12/49 Hornblende									
750	16.8	8.3	120.8	2.1	33.2	1.87	0.001125	0.022353	0.59
900	4.1	2.0	116.9	11.3	56.6	5.70	0.001918	0.015000	1.86
950	3.7	1.8	139.5	16.8	58.6	12.53	0.001984	0.011936	3.55
975	2.9	1.4	164.8	30.5	48.6	10.49	0.001646	0.012453	2.61
1000	7.6	3.8	155.0	6.7	38.1	9.16	0.001291	0.015992	2.39
1025	$2(1.6$	10.2	167.3	2.1	22.0	9.62	0.000747	0.018605	2.36
1050	$2 \mathfrak{1} 0$	10.0	173.8	1.8	13.6	9.38	0.000463	0.019801	2.24
1075	15.7	9.8	172.4	1.4	12.0	9.06	0.000409	0.020341	2.17
1100	54.9	27.3	171.7	1.0	7.7	8.86	0.000262	0.021425	2.13
1125	$1 \mathrm{C}$.	5.0	175.3	3.9	21.6	9.19	0.000732	0.017817	2.18
1200	16.0	8.0	172.8	2.7	24.8	9.54	0.000840	0.017351	2.28
1275	17.2	8.5	177.3	2.7	31.2	9.84	0.001057	0.015446	2.31
1350	6.4	3.2	287.2	13.8	54.7	10.99	0.001853	0.006081	1.83
Total Gas Age $=169.5 \mathrm{Ma} \mathbf{J}=\mathbf{0 . 0 2 3 2 1}$									
Sample 91AP12/50 Sericite									
550	52.8	2.1	170.9	0.9	7.8	0.00	0.000266	0.020462	0.00
600	76.8	3.0	167.7	0.9	5.7	0.00	0.000195	0.021347	$0.01)$
660	213.0	8.5	169.3	0.8	1.8	0.00	0.000063	0.022002	0.00
700	276.8	11.0	171.1	0.8	1.8	0.00	0.000063	0.021771	$0.01)$
750	474.0	18.9	171.5	0.8	1.0	0.00	0.000035	0.021899	0.00
780	362.2	14.5	171.1	0.8	1.3	0.00	0.000047	0.021876	0.00
810	306.3	12.2	169.4	0.8	1.1	0.00	0.000040	0.022150	0.00
850	334.2	13.3	168.2	0.7	1.7	0.00	0.000059	0.022188	0.00
890	183.6	7.3	167.6	0.8	3.1	0.00	0.000105	0.021971	0.00
950	1058	4.2	168.8	0.8	4.1	0.00	0.000139	0.021568	0.00
1025	672	2.6	168.9	1.0	8.1	0.00	0.000274	0.020667	0.00
1100	279	1.1	161.8	1.6	22.8	0.00	0.000772	0.018143	0.00
1200	146	0.5	173.6	4.6	34.7	0.00	0.001174	0.014266	0.00
Total Gas Age $=169.8 \mathrm{Ma} ; \mathrm{J}=0.002208$									
Sample 92AP-EC-150 Alunite									
525	29.7	13.3	277.6	25.2	85.1	0.07	0.002882	0.001821	0.01
550	47.0	21.1	143.6	1.5	29.0	0.01	0.000984	0.017486	0.001
575	92.6	41.6	151.2	0.8	9.8	0.01	0.000331	0.021072	0.00
600	47.2	21.2	161.2	1.1	12.5	0.05	0.000423	0.019116	0.01
625	3.1	1.3	148.6	14.2	55.8	0.70	0.001890	0.010502	0.17
800	2.6	1.1	--.		---	0.85	0.003479	0.010665	2.38
Total Gas Age $=167.3 \mathrm{Ma} ; \mathbf{J}=0.002044$									
Sample 92AP15/1-71B Alunite									
500	27.4	2.2	107.4	1.4	30.0	0.12	0.001016	0.023345	0.04
525	30.9	2.5	120.2	0.9	10.6	0.03	0.000360	0.026543	0.01
550	181.6	14.8	129.8	0.6	2.7	0.02	0.000092	0.026706	0.00
575	610.9	49.8	145.3	0.6	0.6	0.02	0.000021	0.024269	0.00
600	372.3	30.3	153.4	0.7	0.8	0.03	0.000027	0.022885	0.00
625	0.7	0.0	65.5	105.0	86.2	0.97	0.002919	0.007610	0.47
700	2.3	0.1	- 63.8	24.7	86.9	0.39	0.002941	0.007427	0.19
Total Gas Age $=143.8 \mathrm{Ma} ; \mathbf{J}=0.002049$									
Sample 92AP15/2-72B Alunite									
550	70.7	3.0	131.5	0.8	16.4	0.03	0.000557	0.022520	0.00
575	604.4	25.8	128.5	0.6	2.1	0.01	0.000072	0.026998	0.00
600	1646.3	70.3	143.9	0.6	2.0	0.02	0.000068	0.024048	0.00
625	12.4	0.5	77.3	3.0	57.0	0.46	0.001931	0.019970	0.02
800	5.3	0.2	151.5	22.4	87.4	0.27	0.002959	0.002917	0.06
Total Gas Age $=139.2 \mathrm{Ma} \mathbf{J}=0.002039$									
Sample 92AP15/4-73A Nunite									
450	4.2	0.2	---	--	---	1.15	0.003546	0.009063	1.57
500	7.0	0.4	131.0	6.1	52.9	0.17	0.001792	0.012743	0.04
550	96.9	6.5	166.0	1.4	10.0	0.09	0.000341	0.019033	0.02
600	1044.	71.0	166.9	0.7	1.0	0.04	0.000035	0.020819	0.00
625	261.:	17.7	160.0	0.7	5.3	0.04	0.000181	0.020819	0.01
700	36.:	2.4	139.6	2.5	49.3	0.09	0.001670	0.012837	0.02
1000	$19 . \%$	1.3	54.2	4.1	79.4	0.21	0.002688	0.013738	0.12
Total Gas Age $=162.8$ Ma; $\mathrm{J}=0.002041$									
Sample 92AP3/1-7 Hortiblende									
750	19.0	3.8	150.3	5.6	65.8	1.52	0.002227	0.008784	0.39
900	33.8	6.7	164.3	2.6	39.6	1.25	0.001342	0.014133	0.30
950	11.1	2.2	160.3	4.9	46.1	3.37	0.001560	0.012958	0.83
1000	13.5	2.7	159.0	4.7	48.5	8.82	0.001642	0.012476	2.19
1025	29.4	5.9	170.8	2.4	31.2	12.24	0.001058	0.015467	2.88
1050	74.2	14.8	172.1	1.2	20.0	12.07	0.000677	0.017851	2.82
1075	63.6	12.7	168.9	1.2	17.8	11.09	0.000606	0.018693	2.63
1100	46.8	9.4	176.5	1.2	11.9	10.28	0.000405	0.019130	2.36
1125	27.5	5.5	173.1	1.6	17.2	9.76	0.000583	0.018367	2.27
1150	21.1	4.2	172.5	3.0	23.1	9.68	0.000784	0.017100	2.26
1200	38.6	7.7	176.9	2.5	35.9	10.90	0.001216	0.013896	2.50
1250	30.8	6.1	179.9	2.8	39.2	11.60	0.001330	0.012933	2.62
1325	50.3	10.0	179.5	2.1	35.0	11.98	0.001187	0.013864	2.71
1400	38.0	7.6	194.9	7.2	68.7	11.71	0.002 .328	0.006110	2.49
Total Gas Age $=173.5 \mathrm{Ma} ; \mathrm{J}=0.002235$									

Error estimates at 1σ level; \%IIC $=$ Interfering Isotopes Correction

--- not determined

MMhb-1, with an assumed age of $520 \pm 2 \mathrm{Ma}$ (Sampson and Alexander, 1987), was the standard used for all analyses. Other experimental procedures follow those described by Muecke et al. (1988). Analytical data are presented in Tables 1 and 2.

INTERPRETATION

Roughly the first 10% of gas released from both hornblendes yielded relatively young and variable apparent ages and low apparent ${ }^{37} \mathrm{Ar}{ }^{3 / 3} \mathrm{Ar}$ (proportional to Ca / K) ratios. Subsequent gas defined an age plateau at 173 ± 2 (26) Ma for 91AP12/49 and a near plateau at 176 ± 3 (2 σ) Ma for 92AP3/1-7, both characterized by relatively high and uniform ${ }^{37} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ratios, and hence probably the best estimates of the ages of the hormblendes. The age spectrum obtained for the hydrothermal sericite sample 91AP12/50 is concordant at 170 ± 2 (2б) Ma over all but the first and last few per cent of gas released. The four alunites yielded relatively discordant age spectra. The least discordant alunite, 92AP15/4-73A, one of the samples that has well crystallized grains, has an apparent age between 160 and 167 Ma over 95% of the gas release. The remaining three alunite spectra have apparent age gradients, a pattern generally attributed to gas loss resulting from one or more later thermal events. The maximum age attained by 92AP-EC-150, the other well crystallized sample, is 161 Ma. Maximum ages attained by the two poorlycrystallized samples are lower at circa 145 to 150 Ma .

DISCUSSION

Analytically distinguishable differences in apparent age were detected in this suite of hornblende, sericite and alunite samples. The age range is at least circa 173-176 Ma from the amphibole data to circa $160-165$ Ma from alunite data. The younger $160-170 \mathrm{Ma}$ ages are probable lower limits for the times of late-stage hydrothermal alteration. Still younger ages from the poorly crystallized alunites are consistent with textural criteria that distinguish a later supergene origin. Similar age spectra are described by Vasconcelos et al. (1994), including discussions of supergene alunite and jarosite specimens. Thermal events subsequent to all of these may be reflected in the early gas release from these two alunites and from one of the homblendes.

ACKNOWLEDGMENTS

Clean mineral separates were prepared and analyzed by x-ray diffraction by Mac Chaudry, Geological Survey Branch. Keith Taylor helped with the analytical work at Dalhousie University.

REFERENCES

Clapp, C.H. (1914) The Geology of the Alunite and Pyrophyllite Rocks of Kyuquot Sound, Vancouver Island; Geological Survey of Canada, Summary Report 1913, pages 109-126.

Clapp (1915) Alunite and Pyrophyllite in Triassic and Jurassic Volcanics at Kyuquot Sound, British Columbia; Economic Geology, Volume 10, No. 1, pages 70-88.

Lanphere, M.A., Dalrymple, G.B., Alexander, E.C., Jr. and Kraker, G.P. (1981) Irradiation of Samples for ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Dating Using the Geological Survey T.R.I.G.A.; United States Geological Survey, Professional Paper 1176, 55 pages.
McDougall, I. and Harrison, T.M. (1988) Geochronology and Thermochronology by the ${ }^{46} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ Method; Oxford University Press, Oxford Monograph of Geology and Geophysics.

Muecke, G. K., Elias, P. and Reynolds, P. H. (1988) Hercynian/Alleghenian overprinting of an Acadian terrane: ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ Studies in the Meguma Zone, Nova Scotia, Canada; Chemical Geology (Isotope Geoscience), Volume 73, pages 153-167.

Panteleyev, A. (1992): Copper-Gold-Silver Deposits Transitional between Subvolcanic Porphyry and Epithermal Environments; in Geological Fieldwork 1991, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 19921, pages 23I-234.

Panteleyev, A. and Koyanagi, V.M. (1993) Advanced Argillic Alteration in Bonanza Volcanic Rocks, Northern Vancouver Island - Transitions between Porphyry Copper and Epithermal Environments; in Geological Fieldwork 1992, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1993-1, pages 287-293.
Panteleyev, A. and Koyanagi, V.M. (1994); Advanced Argillic Alteration in Bonanza Volcanic Rocks, Northern Vancouver Island - Lithologic and Permeability Controls; in Geological Fieldwork 1993, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1994-1, pages 101-109.

Parrish, R. and Roddick, J.C. (1985): ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Dating; in Geochronology and Isotope Geology for the Geologist and Explorationist, Short Course No.4, Geological Association of Canada, Cordilleran Section, pages IV-8 to IV-18.

Reynolds, P.H. (1992) Low Temperature Thermochronology by the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Method; in Short Course Handbook on Low Temperature Thermochronology, Zentilli, M. and Reynolds, P.H., Editors, Mineralogical Association of Canada, pages 3-19.

Sampson, S. D. and Alexander, E. C. (1987) Calibration of the Interlaboratory ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ Dating Standard MMhb-1; Chemical Geology, Volume 66, pages 27-34.

Sillitoe, R.H. (1994): Epithermal Models: Genetic Types, Geometric Controls and Shallow Features; in Mineral Deposits Modeling, Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., Editors, Geological Association of Canada, Special Paper 40, in press.

Vasoncelos, P. Brimhall, G.H., Becker, T.A. and Renne, P.R (1994): ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Analysis of Supergene Jarosite and Alunite: Implications to the Paleoweathering History of the Western USA and West Africa; Geochimica et Cosmochimica Acta, Volume 58, pages 401-420.

NOTES

