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Abstract

The Granite Mountain batholith (Late Triassic), host to the Gibraltar porphyry Cu-Mo deposit, is east of the Fraser River between Williams
Lake and Quesnel. Previously considered part of Cache Creek terrane, the batholith is in a panel of Quesnel terrane rocks that is faulted against
Cache Creek terrane to the east and south, as established by mapping carried out in 2013 and 2014. Samples collected during this mapping,
dated using the U-Pb zircon chemical abrasion thermal ionization mass spectrometry method (CA-TIMS), provide crystallization ages for the
batholith and two adjacent plutonic units. Three samples from the Granite Mountain batholith yield Late Triassic dates of 217.15 +0.37 Ma
(Granite Mountain phase leucocratic tonalite), 215.71 £0.36 Ma (Mine phase tonalite), and 214.98 +0.38 Ma (quartz-plagioclase porphyry dike
cutting Mine phase tonalite). The Burgess Creek stock, on the northeast margin of the Granite Mountain batholith, provides dates of 222.71
+0.39 Ma (tonalite) and 221.25 £0.39 Ma (quartz diorite), demonstrating that it is also Late Triassic, but several million years older than the
Granite Mountain batholith. Tonalite from the Sheridan Creek stock, south of the Granite Mountain batholith, returns an Early Cretaceous date of
108.57 +£0.18 Ma. The Sheridan Creek contains a foliation with the same orientation and characteristics as a prominent foliation in the southern
part of the Granite Mountain batholith, demonstrating that deformation of both is mid-Cretaceous or younger.

Keywords: Triassic, Granite Mountain batholith, Burgess Creek stock, Cretaceous, Sheridan Creek stock, Quesnel terrane, U-Pb, zircon,
CA-TIMS

1. Introduction

The Granite Mountain batholith (Late Triassic), host to the
Gibraltar porphyry Cu-Mo deposit, is on the Fraser Plateau,
about 18 km east of the Fraser River, in the traditional
territories of the Secwepemec, Tsilhqot’in, and Lhtako Dené
First Nations (Fig. 1). Schiarizza (2014, 2015) carried out
geological mapping of the batholith and surrounding rocks to
better understand its geologic setting and terrane affinity. This
work established that the batholith, previously included in
Cache Creek terrane, is part of Quesnel terrane, and forms the
south end of a panel of Quesnel rocks that is in fault contact
with Cache Creek terrane to the east and south. Supporting
this mapping we conducted isotopic dating (U-Pb zircon CA-
TIMS method) at the University of British Columbia. Herein
we present the geochronologic data and age interpretations for
six samples: three from the Granite Mountain batholith (Late
Triassic); two from the Burgess Creek stock (Late Triassic);
and one from the Sheridan Creek stock (Early Cretaceous).

Granite Mtn.
* area

Cache Creek
terrane

Quesnel
terrane

Fig. 1. Location of the Granite Mountain area and the main exposures
2. Geology of the Granite Mountain area of Quesnel and Cache Creek terranes in British Columbia.

The Granite Mountain area (Fig. 2) is underlain by a north-
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Fig. 2. Geology of the Granite Mountain area, showing the locations of samples dated in this study. Geology modified from Schiarizza (2015).
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trending belt of rocks assigned to Quesnel terrane, including
the Nicola Group (Upper Triassic), the Burgess Creek stock
(Late Triassic), the Granite Mountain batholith (Late Triassic)
and the Dragon Mountain succession (Lower Jurassic). This
panel of Quesnel terrane rocks is in fault contact with the
Cache Creek complex (Cache Creek terrane) to the east, and
with Early Cretaceous tonalite of the Sheridan Creek stock to
the south.

The Nicola Group is exposed mainly in the northern part of
the area, where it is cut by the Burgess Creek stock and, locally,
the north end of the Granite Mountain batholith. It consists of
feldspathic volcanic sandstone and gritty to pebbly sandstone,
with local intercalations of conglomerate, mafic and felsic
volcanic breccia, siltstone, limestone and basalt (Schiarizza,
2014). These rocks are dated at one locality, 4 km north of the
Gibraltar tailings pond, where a limestone lens intercalated
with volcanic sandstone yielded a conodont of probable Lower
Norian age (M.J. Orchard in Schiarizza, 2015).

Rocks assigned to the Nicola Group also form a narrow belt
of feldspathic chlorite schists, foliated limestones and skarns
along the southwest margin of the Granite Mountain batholith
(Fig. 2). These rocks were included in the Cache Creek complex
by Drummond et al. (1976), Panteleyev (1978), Bysouth et al.
(1995), and Ash and Riveros (2001), but Schiarizza (2015)
inferred a protolith of feldspathic volcaniclastic rocks, mafic
volcanic rocks, and limestones that is more likely correlated
with the Nicola Group. Narrow units of sericite-chlorite-
quartz-plagioclase schist in the northern part of the succession
may have been derived from quartz diorite dikes related to the
adjacent Granite Mountain batholith (Schiarizza, 2015).

The Burgess Creek stock intrudes the Nicola Group on the
northeast margin of the Granite Mountain batholith (Fig. 2).
It comprises two mappable units (Schiarizza, 2015): a mixed
unit that includes hornblende-biotite tonalite, hornblende-
biotite quartz diorite, and hornblende diorite; and a tonalite unit
consisting mainly of leucocratic hornblende-biotite tonalite.
Panteleyev (1978) and Bysouth et al. (1995) thought that the
Burgess Creek stock was younger than the Granite Mountain
batholith, whereas Ash et al. (1999a, b) considered it a border
phase of the batholith. The U-Pb zircon dates presented here
show that it is Late Triassic, and several million years older
than the Granite Mountain batholith.

The Granite Mountain batholith is exposed across an area
measuring up to 20 km north-south by 10 km east-west. It is
subdivided into three northwest-trending map units that show a
trend of decreasing mafic content and increasing quartz content
from southwest to northeast (Fig. 2). The Border phase, in the
south, consists of medium- to coarse-grained quartz diorite,
diorite and mafic tonalite. The Mine phase, which hosts
the orebodies at the Gibraltar mine, is mainly medium- to
coarse-grained tonalite with 15-25% chloritized mafic grains
(mainly or entirely hornblende) and 25-35% quartz. The
Granite Mountain phase, which forms most of the batholith, is
predominantly coarse-grained leucocratic tonalite with 5-10%
mafic minerals (hornblende and biotite) and 45-55% quartz.
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Fine- to coarse-grained leucotonalite (0-5% mafic minerals)
and quartz-plagioclase porphyry occur as dikes in all three
units. The dikes are commonly a few cm to tens of cm wide, but
range to several tens of m in the Border phase and Mine phase.
Contacts between phases of the Granite Mountain batholith
and adjacent map units are not well exposed, but the Granite
Mountain phase apparently intrudes the Burgess Creek stock
and Nicola Group on the northeast margin of the batholith, and
the Border phase intrudes Nicola rocks along the batholith’s
southwest margin.

Lower Jurassic sedimentary rocks in the Granite Mountain
area are assigned to the Dragon Mountain succession (Logan
and Moynihan, 2009; Schiarizza, 2015). These include a
small outlier of thin-bedded slate, siltstone, and sandstone
that overlies the Nicola Group 200 m north of the Burgess
Creek stock, and a larger, mainly fault-bounded outlier to the
west, consisting of slate, sandstone, and polymictic pebble
conglomerate, that in part sits directly above the Granite
Mountain batholith (Barker and Grubisa, 1994, diamond-drill
hole 94-3). The succession also includes a northeast-dipping
panel of polymictic conglomerates and sandstones that overlies
the Nicola Group near the northern boundary of the area
(Fig. 2). The conglomerates, here and to the north, include
pebbles and cobbles of tonalite that are very similar to tonalites
of the Granite Mountain batholith (Tipper, 1978; Schiarizza,
2015).

The Cache Creek complex is represented by scattered
exposures of mainly chert, argillite, slate, limestone, and
basalt east of the Triassic and Jurassic rocks of Quesnel
terrane, from which they are separated by an inferred north-
northwest trending fault (Fig. 2). These Cache Creek rocks are
undated, but a limestone unit 10 km east of the southern part
of the Granite Mountain batholith has yielded Permian fossils
(Tipper, 1978).

The Sheridan Creek stock (Early Cretaceous) crops out in
the southern part of the Granite Mountain area and consists
mainly of massive to well-foliated medium-grained hornblende
tonalite. It is in fault contact with the Quesnel terrane rocks to
the north (Nicola Group and Granite Mountain batholith), and
apparently intrudes the Cache Creek complex to the south (Ash
etal., 1999a, b).

Rocks of the Granite Mountain batholith commonly display
a tectonic foliation that dips at gentle to moderate angles to
the south, and which shows a general increase in intensity
from north to south. A foliation with the same orientation and
characteristics in the Sheridan Creek stock is parallel to a well-
developed schistosity in the narrow belt of Nicola rocks that
separates the two plutonic units. The foliation in all three of
these units is locally cut by a crenulation cleavage that strikes
cast-southeast and dips steeply, mainly to the south-southwest,
and by narrow shear zones of similar orientation (Schiarizza,
2015). At the Gibraltar mine the foliation (S1) is ascribed to a
period of deformation (D1) that also produced south-dipping
top-to-the-north ductile shear zones that host or bound ore
zones (Mostaghimi, 2016; van Straaten et al., 2020). A south-
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dipping fault is also inferred to form the contact between
the Nicola Group and the Sheridan Creek stock because the
foliation in both units becomes progressively stronger, and is
locally mylonitic, as the contact is approached (Schiarizza,
2015).

3. Geochronology

Here we present U-Pb zircon isotopic dating results obtained
by the chemical abrasion thermal ionization mass spectrometry
method (CA-TIMS) for samples collected from the Granite
Mountain batholith, the Burgess Creek stock and the Sheridan
Creek stock (Table 1). Samples were collected in 2013 and
2014. Soon thereafter sample preparation and analytical
work was conducted at the Pacific Centre for Isotopic and
Geochemical Research (PCIGR), the Department of Earth,
Ocean and Atmospheric Sciences, the University of British
Columbia.

3.1. Analytical procedures

CA-TIMS procedures described here are modified from
Mundil et al. (2004), Mattinson (2005) and Scoates and
Friedman (2008). After rock samples underwent standard
mineral separation procedures, zircons were handpicked
in alcohol. The clearest, crack- and inclusion-free grains
were selected, photographed and then annealed in quartz
glass crucibles at 900°C for 60 hours. Annealed grains were
transferred into 3.5 mL PFA screwtop beakers, ultrapure HF
(up to 50% strength, 500 uL) and HNO;, (up to 14 N, 50 uL)
were added and caps were closed finger tight. The beakers
were placed in 125 mL PTFE liners (up to four per liner) and
about 2 mL HF and 0.2 mL HNO,, of the same strength as the
acid in the beakers containing the samples, were added to the
liners. The liners were then slid into stainless steel Parr™ high-
pressure dissolution devices, which were sealed and brought
to a maximum of 200°C for 8-16 hours (typically 175°C
for 12 hours). Beakers were removed from the liners and
zircon was separated from the leachate. Zircons were rinsed
with >18 MQ.m water and subboiled acetone. Then 2 mL of
subboiled 6N HCI was added and beakers were set on a hotplate
at 80-130°C for 30 minutes and again rinsed with water and
acetone. Masses were estimated from the dimensions (volumes)
of grains. Single grains were transferred into clean 300 pL PFA
microcapsules (crucibles), and 50 uL 50% HF and 5 uL 14 N
HNO, were added. Each was spiked with a ******U-***Pb tracer
solution (EARTHTIME ET535), capped and again placed in a

Parr liner (8-15 microcapsules per liner). HF and nitric acids,
in a 10:1 ratio, were added to the liner, which was then placed
in a Parr high-pressure device and dissolution was achieved
at 240°C for 40 hours. The resulting solutions were dried on a
hotplate at 130°C, 50 uL 6N HCI was added to microcapsules
and fluorides were dissolved in high-pressure Parr devices for
12 hours at 210°C. HCI solutions were transferred into clean
7 mL PFA beakers and dried with 2 uL of 0.5 N H,PO,. Samples
were loaded onto degassed, zone-refined Re filaments in 2 uL.
of silicic acid emitter (Gerstenberger and Haase, 1997).

Isotopic ratios were measured by a modified single collector
VG-54R or 354S (with Sector 54 -electronics) thermal
ionization mass spectrometer equipped with analogue Daly
photomultipliers. Analytical blanks were 0.2 pg for U and
up to 1 pg for Pb. U fractionation was determined directly
on individual runs using the EARTHTIME ETS535 mixed
233-235J-205Ph isotopic tracer. Pb isotopic ratios were corrected for
fractionation of 0.25 +0.03%/amu, based on replicate analyses
of NBS-982 reference material and the values recommended
by Thirlwall (2000). Data reduction employed the Excel-based
program of Schmitz and Schoene (2007). Standard concordia
diagrams were constructed and weighted averages calculated
with Isoplot (Ludwig, 2003). Interpreted ages for all samples
are based on weighted 2°°Pb/>%U dates reported at the 2 sigma
confidence level in the three error, =X (Y) [Z] format of Schoene
et al. (2006), where X includes internal errors only, largely
comprised of analytical (counting statistics), mass fractionation
and common lead composition uncertainties. The (Y) error
includes X plus isotopic tracer calibration uncertainty and [Z]
additionally includes uranium decay constant errors. Isotopic
dates are calculated with the decay constants A, =1.55125E"
and A ,,.=9.8485E" (Jaffey et al., 1971). EARTHTIME U-Pb
synthetic solutions were analyzed on an on-going basis to
monitor the accuracy of results.

3.2. Granite Mountain batholith

Three samples from the Granite Mountain batholith were
dated: one from the Granite Mountain phase, one from the
Mine phase, and one from a quartz-feldspar porphyry dike that
cuts the Mine phase.

3.2.1. Sample 13PSC-128, Granite Mountain phase

Sample 13PSC-128 was collected from the Granite Mountain
phase near the northeast margin of the batholith, 1.8 km east of
the Gibraltar mine tailings pond and about 150 m west of the

Table 1. Summary of samples dated in this study. Locations given by Easting and Northing for UTM Zone 10, NAD 8&3.

Sample Easting Northing Rock Type Unit Age (Ma)
13PSC-128 553132 5824059 leucocratic tonalite Granite Mountain batholith, Granite Mountain phase ~ 217.15 +0.37
14PSC-387 550105 5815070 tonalite Granite Mountain batholith, Mine phase 215.71 £0.36
14PSC-381 552439 5813890  quartz-plagioclase porphyry  Granite Mountain batholith, dike cutting Mine phase ~ 214.98 +0.38
13PSC-028 555635 5827248 tonalite Burgess Creek stock, tonalite unit 222.71 £0.39
13PSC-129 555392 5827019 quartz diorite Burgess Creek stock, mixed unit 221.25 +0.39
14PSC-374 553598 5812478 tonalite Sheridan Creek stock 108.57 +£0.18
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(unexposed) contact with the Burgess Creek stock (Fig. 2). It
is a coarse-grained equigranular tonalite consisting of subequal
proportions of plagioclase and quartz, and less than 10%
chloritized mafic grains (Fig. 3). Three of the four zircon grains
analyzed (Table 2) are mutually overlapping on concordia,
with a weighted mean 2Pb/**U date of 217.15 +0.20 (0.29)
[0.37] Ma (MSWD=0.45), interpreted as the crystallization age
of the tonalite at this locality (Fig. 4). The fourth grain plots
slightly below concordia near 215 Ma, possibly due to minor

Fig. 3. Leucocratic quartz-rich tonalite, Granite Mountain phase of the
Granite Mountain batholith, sample site 13PSC-128.

3.2.2. Sample 14PSC-387, Mine phase

Sample 14PSC-387 was collected from the Mine phase about
2 km south of the Gibraltar mine pits (Fig. 2). It is a coarse-
grained, moderately foliated tonalite containing 15-20%
chloritized mafic grains, 30-35% quartz, and 50% saussuritic
plagioclase (Fig. 5). Five zircon grains were analyzed. Three are
mutually overlapping on concordia and yield a weighted mean
206Pp/238U date of 215.71 +£0.17 (0.27) [0.36] Ma (MSWD=1.2),
interpreted as the best estimate of the crystallization age of this
tonalite (Table 2, Fig. 4). The other two grains give slightly
older 2*Pb/*8U results (216.56 and 217.17 Ma) and may
include inherited zircon components.

3.2.3. Sample 14PSC-381, quartz-feldspar porphyry dike
Sample 14PSC-381 is from the southeastern part of the
Granite Mountain batholith, about 900 m west of the fault
contact with the Sheridan Creek stock (Fig. 2). Here, a quartz-
feldspar porphyry dike, 10-20 m wide, cuts Mine phase tonalite
and was traced for 80 m along a west-northwest trend (contacts
not exposed). The sample, representative of most of the dike,
comprises 30% quartz and plagioclase phenocrysts (2-8 mm)
in a fine-grained crystalline groundmass consisting of quartz,
plagioclase, and minor amounts of chloritized hornblende.
Locally however, the dike is highly strained and the groundmass
has been converted to quartz-plagioclase-sericite schist (Fig. 6).
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Three of four zircon grains analyzed from sample 14PSC-381
are mutually overlapping on concordia and yield a weighted
mean 2°Pb/>U date of 214.98 +0.22 (0.30) [0.38] Ma
(MSWD=0.28), interpreted as the crystallization age of the
dike (Table 2, Fig. 4). The fourth grain yields an older 2*Pb/>*3U
date of 220.44 £0.93 Ma and may include an inherited zircon
component.

3.3. Burgess Creek stock

Two samples from the Burgess Creek stock were dated: a
tonalite from the tonalite unit, and a quartz diorite from the
mixed unit.

3.3.1. Sample 13PSC-28, tonalite unit

Sample 13PSC-28 was collected from the tonalite unit along
the northern margin of the Burgess Creek stock, 900 m west of
the fault inferred to mark the eastern limit of Quesnel terrane
(Fig. 2). It is a medium-grained equigranular tonalite estimated
to contain 10% mafic minerals (hornblende>biotite), 35%
quartz, and 55% plagioclase (Fig. 7). Three of six zircon grains
analyzed from sample 13PSC-28 are mutually overlapping
on concordia and yield a weighted mean 2°Pb/>*U date of
222.71 £0.22 (0.31) [0.39] Ma (MSWD=1.5), interpreted as
the crystallization age of the tonalite at this locality (Table 3,
Fig. 8). Two other grains overlap concordia at slightly
younger ages (**Pb/*8U dates of 221.84 +0.33 Ma and 220.51
+0.44 Ma), and the sixth grain plots below concordia near
209.5 Ma, probably due to Pb loss.

3.3.2. Sample 13PSC-129, mixed unit

Sample 13PSC-129 was collected from the mixed unit
in the northeastern part of the Burgess Creek stock, 350 m
southwest of sample site 13PSC-28 (Fig. 2). It is a coarse-
grained quartz diorite (Fig. 9) with 30-35% mafic minerals
(hornblende>biotite>magnetite). The five zircon grains
analyzed form a cluster on or very near concordia, with
206pp/238U  dates ranging from 221.06 +0.45 Ma to 221.93
+0.31 Ma (Table 3, Fig. 8). The three youngest grains, mutually
overlapping on concordia, yield a weighted mean 2°°Pb/>®U date
of 221.25 +0.20 (0.30) [0.39] Ma (MSWD=0.60), interpreted
as the crystallization age of the quartz diorite.

3.4. Sheridan Creek stock, Sample 14PSC-374

Sample 14PSC-374 was collected from the northeastern part
of the Sheridan Creek stock, about 1 km east of its fault contact
with the Granite Mountain batholith (Fig. 2). It is a medium-
grained, equigranular, weakly to moderately foliated tonalite
with 20% mafic grains (hornblende>biotite), 30% quartz, and
50% plagioclase (Fig. 10). Five zircon grains were analyzed,
all of which fall on concordia, with 2*Pb/*%U dates ranging
from 108.43 +£0.22 Ma to 108.95 +0.16 Ma (Table 3, Fig. 8).
The four youngest grains form a very tight overlapping cluster
that yields a weighted mean 2°°Pb/>**U date of 108.57 +0.09
(0.14) [0.18] Ma (MSWD=1.0), interpreted as the best estimate
of the crystallization age.
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Fig. 4. Concordia plots and **Pb/**U weighted mean age diagrams for samples from different units in the Granite Mountain batholith. Green
ellipses are zircons used for the 2°Pb/?%U weighted mean calculation. Yellow are zircons that may have inherited components; red are zircons
with lead loss.
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Fig. 6. Foliated quartz-feldspar porphyry, from high-strain zone
dike cutting Mine phase tonalite, near sample site 14PSC-381.
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4. Discussion

Samplesdatedinthisstudyprovide Late Triassiccrystallization
ages for parts of the Burgess Creek stock and Granite Mountain
batholith. The dates from the Burgess Creek stock (222.71
+0.39 Ma and 221.25 +0.39 Ma) are the only isotopic dates
available for this unit and demonstrate that it is, at least in part,
several million years older than the oldest dated rocks in the
Granite Mountain batholith. The three dates from the Granite

30

unit of the Burgess Creek
stock, sample site 13PSC-28.

Mountain batholith (217.15 +0.37 Ma, 215.71 £0.36 Ma, and
214.98 £0.38 Ma) demonstrate magmatic crystallization over a
~3 million-year period. A number of previously reported U-Pb
zircon dates from the Granite Mountain batholith fall within this
same time window, including: 1) a U-Pb zircon CA-TIMS date
of 216.17 £0.39 Ma reported by Mostaghimi (2016) for Mine
phase tonalite from the Gibraltar mine; 2) a 215 £0.8 Ma U-Pb
zircon date reported by Ash and Riveros (2001), from a Granite
Mountain phase sample collected 1.5 km north-northeast of the
Gibraltar mill (Ash et al., 1999a); and 3) U-Pb zircon LA-ICP-
MS dates of 211.9 +4.3 Ma (Mine phase) and 209.6 £6.3 Ma
(Granite Mountain phase) reported by Oliver et al. (2009) for
samples from the Gibraltar mine. However, younger intrusive
rocks in the batholith are indicated by a recent study that
included U-Pb zircon LA-ICP-MS dating of six samples, all
mapped as Mine phase tonalite, from the Gibraltar mine area
(Kobylinski et al., 2018). Two of the dates (218.9 £3.1 Ma and
213.2 £2.4 Ma) are within error of previous dates, but the other
four, ranging from 201.9 £5.0 Ma to 206.8 +£4.0 Ma, document
a younger, latest Triassic, intrusive phase.

The Granite Mountain batholith and Burgess Creek stock are
included in Quesnel terrane because they intrude Triassic rocks
of the Nicola Group, the most widespread component of the
terrane. They are inferred to be part of a belt of Late Triassic
calcalkaline plutons that is restricted to the western part of
Quesnel terrane in southern British Columbia (Schiarizza,
2014), although this belt is not exposed between the Granite
Mountain area and Ashcroft, mainly due to extensive Neogene
and Quaternary cover. The belt is best represented by Late
Triassic granitic to tonalitic plutons between Ashcroft and
Princeton (Fig. 1), including the Guichon Creek batholith (211-
207 Ma, D’Angelo et al., 2017), the Allison pluton (223 Ma,
Mihalynuk et al., 2016), and the Coldwater pluton (210 Ma,
Mihalynuk et al., 2016).

The 108.57 £0.18 Ma date for the Sheridan Creek stock
demonstrates that the deformation that produced the foliations
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Fig. 8. Concordia plots and **Pb/***U weighted mean age diagrams for samples from the Burgess Creek stock and Sheridan Creek stock. Green
ellipses are zircons used for the 2°Pb/>¥U weighted mean calculation. Yellow are zircons that may have inherited components; red are zircons
with lead loss.
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Fig. 9. Hornblende-biotite quartz diorite, mixed unit of the Burgess
Creek stock, near sample site 13PSC-129. Leucotonalite veins and
epidote-altered fractures, such as those in this photo, were avoided
during sampling.

Fig. 10. Weakly foliated hornblende-biotite tonalite, Sheridan Creek
stock, sample site 14PSC-374.

common to the Sheridan Creek stock, Nicola Group, and
Granite Mountain batholith was mid-Cretaceous or younger.
Based on the orientations of structures, and “Ar-*’Ar dates
ranging from 54 to 36 Ma on white mica from fault zones at the
Gibraltar mine, Mostaghimi (2016) linked development of the
foliation and related north-directed thrust faults to northwest-
striking Eocene dextral strike-slip faults. These structures
were then offset by, and rotated between, faults related to
the younger north-striking Fraser fault system. A northwest-
striking fault mapped by Ash et al. (1999a, b) to the south of
the Granite Mountain batholith (Fig. 11, fault PFE) may be the
specific structure to which the south-dipping foliations and
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Fig. 11. Map of selected geologic units and structures in the Williams
Lake-Quesnel area, showing location of the Granite Mountain
batholith with respect to known and inferred dextral strike-slip faults.
Geology from Cui et al. (2017). FF-Fraser fault; PF-Pinchi fault; PFE-
inferred Pinchi fault extension; QRF-Quesnel River fault.

contractional faults are linked, and this fault may be a southern
extension (offset by the Fraser fault system) of the Pinchi fault,
which extends 400 km northwest from Quesnel, marking the
contact between Cache Creek and Quesnel terranes for most of
this length (Struik et al., 2001; Gabrielse et al., 2006).

The panel of Quesnel terrane rocks that includes the Granite
Mountain batholith is juxtaposed against Cache Creek terrane
to the east across an unexposed northerly trending fault (Figs. 2,
11). Schiarizza (2015) suggested that this fault might record
mid-Cretaceous sinistral strike-slip movement. An alternative
explanation is that the fault is an Eocene east-side-down
normal fault that accommodated uplift of the Granite Mountain
batholith and associated rocks as they were being deformed
along the Pinchi and/or Fraser fault systems. This would imply
that the Cache Creek rocks to the east and southeast of the
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Granite Mountain batholith form a relatively thin thrust sheet
that overlies the western part of Quesnel terrane (Fig. 11),
including the belt of Late Triassic calcalkaline plutons.

5. Summary

Samples collected during mapping of the Granite Mountain
areain 2013 and 2014 were dated using the U-Pb zircon chemical
abrasion thermal ionization mass spectrometry method (CA-
TIMS), providing crystallization ages for the Granite Mountain
batholith, the Burgess Creek stock, and the Sheridan Creek
stock. Leucocratic tonalite from the Granite Mountain phase
of the batholith yields a Late Triassic date of 217.15 £0.37 Ma;
Mine phase tonalite is dated at 215.71 +£0.36 Ma; and a quartz-
plagioclase porphyry dike cutting Mine phase tonalite is 214.98
+0.38 Ma. The Burgess Creek stock, on the northeast margin
of the batholith, is also Late Triassic, but several million years
older than the Granite Mountain batholith. A tonalite sample
from the stock yields a date of 222.71 +0.39 Ma, and a sample
of quartz diorite is dated at 221.25 £0.39 Ma. The Sheridan
Creek stock, south of the Granite Mountain batholith, is Early
Cretaceous, based on a date of 108.57 +0.18 Ma obtained from
a tonalite sample collected from the stock.
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