GEOCHEMISTRY OF EARLY TO MIDDLE JURASSIC ORGANIC-RICH SHALES, INTERMONTANE BASINS, BRITISH COLUMBIA

Filippo Ferri¹ and Michael Boddy¹

ABSTRACT

Rock Eval data are presented for Early to Middle Jurassic black clastics belonging to the Spatsizi and Ashcroft formations. Samples of the Spatsizi Formation originated in northern, northeastern and northwestern parts of the Bowser Basin, and include the Joan Lake, western McConnell Creek and Oweegee Dome areas, respectively. Samples of Ashcroft Formation and equivalent strata were taken in the Ashcroft area and in the vicinity of Likely. Several sample transects of the Spatsizi Formation were made in the Joan Lake area and multi-element, ICP-MS analysis were also acquired for the purposes of characterizing the formation.

Spatsizi and Ashcroft formations are, on average, several hundred metres thick. Total organic carbon contents for these rocks ranges up to 6 % and averages 1.7 %. The Abou Member of the Spatsizi formation averages 30 metres in thickness and contains TOC values of approximately 3.6 %. Rock Eval (S2 peak) and vitrinite reflectance data indicates that these rocks are mature to overmature in these areas and have little to no remaining generative potential. Due to the high thermal maturation levels, very little can be said about the type of kerogen this organic matter represented, although considering the marine origin of the sediments it was either Type I or II. Assuming that much of the organic material was expelled during maturation of these sediments, the original organic content of these rocks may have been from 2 to 4 times greater, suggesting they were excellent source rocks.

These Early to Middle Jurassic black clastic rocks are regional in extent, underlying the entire Bowser Basin and potentially many of the other Mesozoic Intermontane clastic sedimentary basins. Under the proper conditions, these rocks would act as an excellent source rock.

Filippo Ferri and Michael Boddy, Geochemistry of Early to Middle Jurassic Organi-Rich Shales, Intermontane Basins, British Columbia in Summary of Activities 2005, BC Ministry of Energy and Mines, pages 132-151.

¹Resource Development and Geoscience Branch, BC Ministry of Energy and Mines, PO Box 9323, Victoria, BC, V8W 9N3

Keywords: Source rocks, geochemistry, organic, hydrocarbons, metals, Early Middle Jurassic, Bowser Basin, Spatsizi Formation, Ashcroft Formation, Likely, Oweegee Dome

INTRODUCTION

During the summer of 2003 several localities containing Early to Middle Jurassic black clastics within the Quesnel Trough and northern Bowser Basin were sampled for hydrocarbon source rock potential. This organic-rich succession underlies many of the Jura-Cretaceous clastic Intermontane basins of the Canadian Cordillera, and under the right conditions, would have acted as a hydrocarbon source rock. A description of the general geology around the sample areas, together with a regional perspective, was detailed in a Summary of Activities article by Ferri et al. (2004). At the time of publishing, the samples had not been analyzed and no data was available for insertion into the article. These analyses have now been performed and this rock Eval data is included in the following pages. In addition, Rock Eval data for samples of the Spatsizi Formation from its type area are also presented here. These samples were collected during the 2004 field season as part of the Integrated Petroleum Resource Potential and Geoscience Studies of the Bowser and Sustut Basins program, a partnership between Natural Resources Canada (Geological Survey of Canada), the B.C. Ministry of Energy and Mines (Resource Development and Geoscience Branch) and Simon Fraser University (Department of Earth Sciences). The ultimate aim of this project is a better understanding of the geology and hydrocarbon potential of these large, Intermontane sedimentary basins (Evenchick *et al.*, 2004, 2005; Hayes *et al.*, 2004).

Samples collected in 2003 originated in the Ashcroft, Likely and western parts of the McConnell Creek map areas (*see* Ferri *et al.*, 2004; Figures 1 to 7). The intent of this paper is to make this analytical data available together with new geological and geochemical data for the Spatsizi Formation from the Joan Lake area of northern Bowser Basin and from the north end of the Oweegee Dome structure in western Bowser Lake map area (104A).

RESULTS

Data for samples from the Joan Lake, McConnell Creek, Oweegee Dome, Ashcroft, and Likely areas are shown in Table 1. The location of the sample sites are shown in Figures 2 to 7. Samples were analyzed with the

Figure 1. Location of the Bowser and Sustut basins within the geological framework of the Canadian Cordillera (modified from Evenchick *et al.*, 2004).

Rock Eval 6 instrument at the organic petrology laboratories of the Geological Survey of Canada in Calgary. In addition, multi-element ICP-MS analysis of samples from several transects of the Spatsizi Formation in the Joan Lake area were performed via aqua regia and total acid digestion. These analyses were performed at the laboratories of ACME Analytical Ltd. in Vancouver, BC. A description of the analytical technique can be found at the ACME website (www.acmelab.com). The rationale behind these analysis was an attempt at geochemically "finger printing" this sequence via trace metal concentrations. It is commonly understood that many metals are precipitated from seawater due to the reducing environment produced during anoxia. It is hoped that this chemical signature will be useful in future regional correlations of this unit. The aqua regia digestion would primarily dissolve non-silicate material (i.e. organics, sulphides, etc.) and give a signature of metals precipitated during deposition. Results from the total acid digestion would reflect, in part, composition of clastic source terranes. Due to budgetary restrictions, only a portion of the samples were analyzed by total acid digestion.

Spatsizi Formation

Joan Lake Area

Along northern Bowser Basin, in the vicinity of Joan Lake, Thomson *et al.* (1986) describe organic-rich shales and siltstones of Pleinsbachian to Bajocian age (Figures 2 to 4). Thomson *et al.* (1986) originally assigned these to the Spatsizi Group, though these were later lowered to formation status by Evenchick and Thorkelson (2005) and made part of the upper Hazelton Group (*see* Ferri *et al.*, 2004).

Fine grained siliciclastic lithologies of the Spatsizi Formation record the termination of widespread volcanic activity, represented by the Hazelton Group, and delineate the beginning of Bowser Basin sedimentation (Ricketts *et al.*, 1992). The Spatsizi Formation can be up to 900 metres thick and is subdivided into 5 units, which are, from oldest to youngest: Joan, Wolf Den, Melisson, Abou and Quock members (Figure 2; Thomson *et al.*, 1986; Evenchick and Thorkelson, 2005). The formation is characterized by dark grey to black, organic-rich, fine

TABLE 1. ROCK EVAL DATA FOR SAMPLES OF THE SPATSIZI AND ASHCROFT FORMATIONS, TOGETHER WITH UN-NAMED EARLY TO MIDDLE JURASSIC STRATA. UTM COORDINATES IN NAD 27 DATUM.

Sample		Мар									PC	тос		
Number	Rock Unit	Num.	Easting	Northing	Tmax	S1	S2	S3	PI	S2/S3	%	%	HI	01
See Figures 2, 3	3 and 4 for locat	tions												
EPF04-191A	Spatsizi Fm	191A	499192	6373564	-	0.00	0.00	0.39	0.00	0.00	0.00	1.12	0	35
EPF04-191B	Spatsizi Fm	191B	499192	6373564	518	0.00	0.00	1.17	0.00	0.00	0.00	1.91	0	61
EPF04-191C	Spatsizi Fm	191C	499192	6373564	515	0.00	0.00	0.76	0.00	0.00	0.00	1.86	0	41
EPF04-192A	Spatsizi Fm	192A	499147	6373447	-	0.00	0.00	0.30	0.00	0.00	0.00	1.39	0	22
EPF04-192B	Spatsizi Fm	192B	499147	6373447	-	0.00	0.00	0.22	1.00	0.00	0.00	1.87	0	12
EPF04-192C	Spatsizi Fm	192C	499147	6373447	-	0.00	0.00	0.22	1.00	0.00	0.00	1.28	0	17
EPF04-192D	Spatsizi Fm	192D	499147	6373447	-	0.00	0.00	0.34	1.00	0.00	0.01	1.50	0	23
EPF04-193A	Spatsizi Fm	193A	499122	6373305	295	0.00	0.00	0.66	0.50	0.00	0.00	1.40	0	47
EPF04-193B	Spatsizi Fm	193B	499122	6373305	-	0.00	0.00	0.58	1.00	0.00	0.00	2.42	0	24
EPF04-194A	Spatsizi Fm	194A	499107	6373190	-	0.00	0.00	0.42	1.00	0.00	0.00	1.25	0	34
EPF04-194B	Spatsizi Fm	194B	499107	6373190	-	0.00	0.00	0.35	1.00	0.00	0.01	1.28	0	27
EPF04-195A	Spatsizi Fm	195A	499100	6373077	-	0.00	0.00	0.45	1.00	0.00	0.00	1.42	0	32
EPF04-195B	Spatsizi Fm	195B	499100	6373077	-	0.00	0.00	0.49	1.00	0.00	0.00	1.06	0	46
EPF04-195C	Spatsizi Fm	195C	499100	6373077	-	0.00	0.00	0.49	1.00	0.00	0.00	1.12	0	44
EPF04-195D	Spatsizi Fm	195D	499100	6373077	-	0.00	0.00	0.28	1.00	0.00	0.00	0.76	0	37
EPF04-196A	Spatsizi Fm	196A	499110	6372927	-	0.00	0.00	0.21	0.00	0.00	0.00	0.82	0	26
EPF04-196B	Spatsizi Fm	196B	499110	6372927	-	0.00	0.00	0.43	1.00	0.00	0.00	1.09	0	39
EPF04-197A	Spatsizi Fm	197A	499137	6372870	337	0.00	0.00	0.42	0.53	0.00	0.00	0.90	0	47
EPF04-197B	Spatsizi Fm	197B	499137	6372870	433	0.00	0.00	0.15	0.04	0.00	0.00	0.41	0	37
EPF04-197C	Spatsizi Fm	197C	499137	6372870	-	0.00	0.00	0.54	1.00	0.00	0.01	1.41	0	38
EPF04-198A	Spatsizi Fm	198A	499130	6372737	-	0.00	0.00	0.42	1.00	0.00	0.00	1.84	0	23
EPF04-198B	Spatsizi Fm	198B	499130	6372737	-	0.00	0.00	0.30	1.00	0.00	0.00	2.62	0	11
EPF04-198C	Spatsizi Fm	198C	499130	6372737	527	0.00	0.00	1.51	0.00	0.00	0.01	3.03	0	50
EPF04-198D	Spatsizi Fm	198D	499130	6372737	517	0.00	0.01	2.18	0.06	0.00	0.01	4.60	0	47
EPF04-199A	Spatsizi Fm	199A	499472	6372793	391	0.00	0.01	1.25	0.05	0.01	0.01	0.55	2	227
EPF04-200A	Spatsizi Fm	200A	500666	6373358	426	0.00	0.00	0.34	0.19	0.00	0.00	0.71	0	48
EPF04-200B	Spatsizi Fm	200B	500666	6373358	587	0.00	0.00	0.44	0.91	0.00	0.00	0.24	0	183
EPF04-201B	Spatsizi Fm	201B	500625	6373340	345	0.00	0.00	0.40	0.57	0.00	0.00	1.01	0	40
EPF04-201C	Spatsizi Fm	201C	500625	6373340	322	0.00	0.00	0.34	0.88	0.00	0.00	0.79	0	43
EPF04-201D	Spatsizi Fm	201D	500625	6373340	522	0.00	0.00	0.88	0.86	0.00	0.00	1.18	0	75
EPF04-202A	Spatsizi Fm	202A	500586	6373235	352	0.00	0.00	1.04	0.21	0.00	0.01	0.99	0	105
EPF04-202B	Spatsizi Fm	202B	500586	6373235	420	0.00	0.00	0.46	0.72	0.00	0.00	0.76	0	61
EPF04-202C	Spatsizi Fm	202C	500586	6373235	-	0.00	0.00	0.37	1.00	0.00	0.01	1.02	0	36
EPF04-202D	Spatsizi Fm	202D	500586	6373235	362	0.00	0.00	0.59	0.47	0.00	0.00	1.27	0	46
EPF04-203A	Spatsizi Fm	203A	500527	6373166	-	0.00	0.00	0.51	1.00	0.00	0.00	1.16	0	44
EPF04-203B	Spatsizi Fm	203B	500527	6373166	-	0.00	0.00	0.46	1.00	0.00	0.01	1.19	0	39
EPF04-203C	Spatsizi Fm	203C	500527	6373166	522	0.00	0.00	1.04	0.16	0.00	0.00	1.28	0	81
EPF04-203D	Spatsizi Fm	203D	500527	6373166	329	0.00	0.00	0.65	0.44	0.00	0.00	1.12	0	58
EPF04-204A	Spatsizi Fm	204A	500472	6373038	-	0.00	0.00	0.57	1.00	0.00	0.00	1.26	0	45
EPF04-205A	Spatsizi Fm	205A	500364	6372621	606	0.00	0.00	0.74	0.23	0.00	0.00	4.92	0	15
EPF04-205C	Spatsizi Fm	205C	500364	6372621	602	0.00	0.00	0.36	0.81	0.00	0.01	4.20	0	9
EPF04-205D	Spatsizi Fm	205D	500364	6372621	607	0.00	0.00	0.45	0.87	0.00	0.00	4.62	0	10
EPF04-205E	Spatsizi Fm	205E	500364	6372621	519	0.00	0.01	1.72	0.01	0.01	0.01	3.65	0	47
EPF04-206A	Spatsizi Fm	206A	500291	6372595	314	0.00	0.00	0.78	0.84	0.00	0.00	4.78	0	16
EPF04-207A	Spatsizi Fm	207A	500253	6372571	605	0.00	0.00	1.23	0.09	0.00	0.00	4.40	0	28
EPF04-207C	Spatsizi Fm	207C	500253	6372571	-	0.00	0.00	0.38	1.00	0.00	0.01	3.72	0	10
EPF04-207E	Spatsizi Fm	207E	500253	6372571	-	0.00	0.00	0.64	1.00	0.00	0.00	4.03	0	16
EPF04-208A	Spatsizi Fm	208A	500189	6372496	522	0.00	0.02	2.45	0.16	0.01	0.01	2.88	1	85
EPF04-209A	Spatsizi Fm	209A	500068	6372471	524	0.00	0.01	1.70	0.00	0.01	0.01	1.74	1	98
EPF04-210A	Spatsizi Fm	210A	499972	6372463	572	0.00	0.00	1.03	0.04	0.00	0.00	3.45	0	30
EPF04-257B	Spatsizi Fm	OD	460587	6283817	-	0.00	0.00	0.23	1.00	0.00	0.00	0.38	0	61
EPF04-258A	Spatsizi Fm	OD	460562	6283813	-	0.00	0.00	0.27	1.00	0.00	0.00	0.23	0	117
EPF04-259A	Spatsizi Fm	OD	460540	6283886	606	0.00	0.00	0.70	0.00	0.00	0.00	1.47	0	48
EPF04-260A	Spatsizi Fm	OD	460529	6283956	606	0.00	0.01	0.18	0.03	0.06	0.01	1.69	1	11
EPF04-261A	Spatsizi Fm	OD	460489	6284094	521	0.00	0.01	0.44	0.00	0.02	0.01	0.87	1	51

TABLE 1, CONTINUED

Number Nock Unit Num. Easting Northing Thiax 51 52 55 FI 52/55 /6 /6	пі	UI
See Figure 5 for locations		
EPF03-091-1 Bowser Lk Gp 1 599419 6273768 - 0.00 0.00 0.44 1.00 0.00 0.00 0.57	0	77
EPF03-095-1 Spatsizi Fm 2 617036 6223010 441 0.00 0.12 0.51 0.01 0.24 0.02 1.58	8	32
EPF03-135-1 Spatsizi Fm 3 605196 6285736 606 0.00 0.00 0.43 0.60 0.00 0.01 1.75	0	25
EPF03-139-1 Spatsizi Fm 4 604749 6286114 525 0.00 0.05 1.06 0.00 0.05 0.01 1.57	3	68
EPF03-139-3 Spatsizi Fm 4 604749 6286114 440 0.01 0.03 1.03 0.18 0.03 0.01 1.11	3	93
EPF03-139-4 Spatsizi Fm 4 604749 6286114 531 0.00 0.01 0.74 0.38 0.01 0.00 1.49	1	50
EPF03-140-1 Spatsizi Fm 5 604661 6286652 600 0.00 0.00 0.65 0.12 0.00 0.01 1.39	0	47
EPF03-142-1 Spatsizi Fm 6 604317 6287363 295 0.00 0.00 1.27 0.54 0.00 0.01 3.12	0	41
EPF03-161-1 Spatsizi Fm 7 600946 6286619 - 0.00 0.00 0.33 1.00 0.00 0.81	0	41
EPF03-165-1 Spatsizi Fm 8 601148 6285998 - 0.00 0.00 0.20 1.00 0.00 0.59	0	34
EPF03-166-1 Spatsizi Fm 9 601192 6285337 606 0.00 0.00 1.11 0.42 0.00 0.01 3.87	0	29
EPF03-167-3 Spatsizi Fm 10 608444 6292880 604 0.00 0.00 0.34 0.32 0.00 0.00 0.62	0	55
EPF03-168-1 Spatsizi Fm 11 608257 6292354 606 0.00 0.01 0.38 0.03 0.03 0.00 1.15	1	33
EPF03-171-1 Spatsizi Fm 12 608301 6291561 607 0.00 0.03 0.27 0.00 0.11 0.00 0.86	5	31
EPF03-173-1 Spatsizi Fm 13 608915 6291068 605 0.00 0.02 0.32 0.00 0.06 0.00 0.93	2	34
EPF03-177-1 Spatsizi Fm 14 608594 6289218 606 0.00 0.00 0.43 0.33 0.00 0.00 0.66	0	65
EPF03-180-3 Spatsizi Fm 15 598939 6293063 - 0.00 0.00 1.87 1.00 0.00 0.01 6.01	0	31
EPF03-184-1 Spatsizi Fm 16 598577 6292977 446 0.00 0.01 0.96 0.02 0.01 0.01 1.37	1	70
EPF03-184-2 Spatsizi Fm 16 598577 6292977 - 0.00 0.00 0.56 0.97 0.00 0.00 2.23	0	25
EPF03-191-1 Spatsizi Fm 17 605103 6285081 539 0.00 0.04 0.07 0.00 0.57 0.00 0.27	15	26
EPF03-205-1 Spatsizi Fm 18 607857 6279674 605 0.00 0.02 0.27 0.01 0.07 0.01 0.91	2	30
EPF03-224-2 Spatsizi Fm 19 648880 6247807 469 0.01 0.04 0.69 0.21 0.06 0.02 0.18	22	383
EPF03-228-1 Spatsizi Fm 20 596444 6298903 382 0.00 0.02 1.47 0.13 0.01 0.04 1.04	2	141
EPF03-231-1 Spatsizi Fm 21 595830 6297891 315 0.01 0.00 0.45 0.96 0.00 0.00 3.34	0	13
See Figure 7 for locations		
FF04-01A Ashcroft Fm B 619543 5613654 606 0.00 0.00 0.28 0.16 0.00 0.00 1.10	0	25
FF04-01B Ashcroft Fm B 619543 5613654 - 0.00 0.00 0.15 1.00 0.00 0.00 0.60	0	25
FF04-01E Ashcroft Fm B 619543 5613654 606 0.00 0.01 1.21 0.11 0.01 0.01 5.09	0	24
FF-03-1A Ashcroft Fm A 621033 5620414 475 0.00 0.04 0.43 0.00 0.09 0.01 1.32	3	33
FF-03-2A Ashcroft Fm A 621066 5620479 - 0.00 0.00 0.36 1.00 0.00 0.00 1.58	0	23
FF-03-2B Ashcroft Fm A 621066 5620479 315 0.00 0.00 0.24 0.91 0.00 0.00 1.17	0	21
FF-03-3A Ashcroft Fm A 621073 5620505 490 0.00 0.00 3.95 1.00 0.00 0.01 0.73	0	541
FF-03-4A Ashcroft Fm A 621106 5620590 - 0.00 0.00 1.90 1.00 0.00 0.00 1.65	0	115
FF-03-4B Ashcroft Fm A 621106 5620590 606 0.00 0.00 1.16 1.00 0.00 0.00 1.42	0	82
FF-03-5A Ashcroft Fm A 621140 5620636 - 0.00 0.00 1.30 1.00 0.00 0.00 0.73	0	178
FF-03-6A Ashcroft Fm A 621147 5620691 607 0.00 0.00 1.01 1.00 0.00 0.00 2.85	0	35
FF-03-8A Ashcroft Fm A 621046 5620363 324 0.00 0.00 0.55 1.00 0.00 0.01 1.29	0	43
See Figure 6 for locations		
FF-03-13A E-M Jurassic C 589945 5833905 606 0.00 0.13 0.49 0.02 0.27 0.02 5.50	3	9
FF-03-13B E-M Jurassic C 589945 5833905 605 0.00 0.12 0.39 0.02 0.31 0.02 5.05	3	8

OD - Oweegee Dome

Bowser Lake Group

Bathonian to Callovian

Todagin lithofacies assemblage Chert pebble conglomerate with minor

Chert pebble conglomerate with minor volcanic clasts.

Bathonian

Todagin lithofacies assemblage Shale and siltstone, dark grey with brown laminations.

Hazelton Group

Spatsizi Formation

<u>Bajoci</u>an

Quock Member

Banded tuffaceous shale, characteristic reddish-brown weathering.

<u>Aalenian</u>

Abou Member

Platy, grey-weathering shale, poorly exposed.

Upper	Toarcian Melisson Memeber Resistant grey-weathering fine sandstone and siltstone. Thickness variable
Upper	Pliensbachian to Middle Toarcian Wolf Den Member Dark grey to black shales with calcareous concretion beds and minor tuffaceous beds
Lower	Pliensbachian Joan Member Grey-brown weathering siltstones with minor limestone interbeds and locally developed basal conglomerate.
Cold	Fish Volcanics Rhyolite flows and breccias.
210 ₀	Cross-section trace Sample Locality

Modified from Thomson (1985)

Figure 2. Geological map of the Joan Lake area showing location of sampling transects and structural cross-section lines shown in Figure 3. Adapted from Thomson *et al.*, 1986.

Figure 4. Simplified stratigraphic sections of the Spatsizi Formation as seen along sampling transects. Sample locations refer to data in Tables 1, 2 and 3.

Figure 5. General geology map of the west part of McConnell Creek map area showing the location of Spatsizi Formation samples listed in Table 1. Modified from Evenchick *et al.*, 2004.

Figure 6. General geology of the Likely area showing the location of un-named Early to Middle Jurassic samples listed in Table 1. Modified from Panteleyev *et al.*, 1996.

Figure 7. General geology of the Ashcroft area showing the location of Ashcroft Formation samples listed in Table 1. Modified from Travers (1978).

grained siliciclastics which record deposition in anoxic water conditions. The Spatsizi Formation, particularly the upper Abou and Quock members ("Pyjama Beds"), and its equivalents can be traced around the base of the Bowser Basin and found within structural windows, suggesting it underlies the entire basin. The high organic content of Spatsizi shales and siltstones would suggest that, under the proper conditions, this unit may have acted as a hydrocarbon source bed for potential reservoirs in succeeding clastics of the Bowser Lake and Sustut groups.

At Joan Lake, Spatsizi lithologies sit atop rhyolites of the Cold Fish volcanics which are exposed in the core of a doubly plunging anticline. The Spatsizi Formation displays considerable lithologic and thickness variation around this structure. Rocks of the Joan member are only locally developed along the top of the Cold Fish volcanics and the Melisson member is commonly absent due to removal or non-deposition below the sub-Abou unconformity. In the vicinity of Joan Lake, the Spatsizi Formation varies in thickness from 400 to over 900 metres. Although the increased thickness seen at the northwest end of the anticline may in part be structural, cross-sections indicate that the variation is probably a reflection of removal or non-deposition of lithologies below the Abou member (see sections in Figure 3).

The Joan Member is Pliensbachian in age and composed of dark siltstone, mudstone, limestone and locally a thin basal conglomerate. This unit is not developed everywhere above the Cold Fish volcanics and is missing on the south side of the large anticline. This is succeeded by upper Pliensbachian to middle Toarcian dark grey to black, fissile to slaty shale, siltstone or calcareous siltstone of the Wolf Den Member. Thomson et al. (1986) describe tuffaceous beds locally. Bedding is typically developed as colour banding and the rock locally has a slightly fetid odour when broken. Some horizons are characterized by abundant small (5 to 10 mm) bivalves of the genera Bositra or Pseudomytiloides. This is the thickest and most aerially extensive member of the These rocks are conformably Spatsizi Formation. overlain by middle to upper Toarcian, grey-brown resistive siliceous siltstone to fine sandstone of the Melisson Member. The Melisson Member records shallowing conditions, although interbedded siltstone and shales are dark and organic-rich. Unconformably above this and the Wolf Den Member is the Aalenian Abou Member, a sequence of dark grey to black, organic-rich, siltstone to slightly siliceous siltstone up to 100 metres thick. It is usually well cleaved and platy, although it produces blocky rubble where siliceous. These rocks grade into the succeeding Bajocian Quock Member composed of distinctive dark, rusty weathering, blocky, siliceous siltstone characterized by interbeds of thin to moderate bands of beige, white to pinkish bands of fine to medium grained tuff. Regionally, this member is informally referred to as the "Pyjama Beds" due to its characteristic striped nature. This unit locally contains sections of grey to light grey weathering, dark grey to black, fissile calcareous siltstone up to several metres thick. The contact with the overlying Bowser Lake Group

occurs over several metres and Quock siltstones lose their siliceous nature and tuffaceous interbeds, and become brown-grey to grey, crumbly and recessive.

Fine clastic rocks of the Spatsizi Formation are invariably high in organic material. The purpose of this investigation was an attempt at systematically quantifying the amount and nature of this organic material through a series of transects across the formation. Two sections were sampled some 6 and 7.5 kilometres west of Joan Lake where a thick section of Abou shales and siltstones have been delineated (Figures 2 to 4). The Abou has been noted by Thomson et al. (1986) as having the highest organic content within the formation. The sections and sampling scheme were arranged so that as much of the Abou section as possible could be sampled. In addition, rocks of the Wolf Den, and Quock members were sampled. The Joan and Melisson members were not developed within the transect areas. Samples were taken roughly every 25 metres with a total of 50 samples analyzed. Structural sections were drawn across the sampling lines and together with geological control from field observations and unit distributions, the samples were placed in an approximate stratigraphic position.

Rock Eval data results shown in Table 1 suggests that little if any hydrogen (HI) remains in the samples due to either oxidation and/or high thermal maturities. Considering these samples were collected from outcrop, oxidation is a likely possibility. Thermal maturation levels are high in this region, with Ro values in nearby Bowser Lake sediments (within 10 km) range between 1.86 and 2.67 (Evenchick et al., 2005) suggesting that these samples are in the upper end of the gas window. Due to the lack of an S_2 peak (HI) very little can be inferred about the original type of organic material, although, considering the marine nature of these sediments, it was probably Type I or II. Notwithstanding this, the current levels of total organic carbon (TOC) seen in some sections, particularly across the Abou Member, indicates that it was once a very rich source bed. If one assumes that most of the organic material was expelled during oil and gas generation, then original levels of TOC may have originally ranged between approximately 1 and 20 % assuming only a quarter of the original organic matter remains. The Abou Member currently has TOC values between 3.65 and 4.92 % suggesting original levels of approximately 15 to 20 %. Considering this unit appears to be upwards of 100 metres thick in this area, and 30 metres on average, it had the potential to generate considerable amounts of hydrocarbons. Current TOC levels in the Joan Lake Member are 0.24 to 2.42 % and 1.74 to 3.45 % for the Quock Member, indicating that these too were respectable source beds as well.

ICP-MS analytical results are shown in Table 2. Concentrations of various elements, (*e.g.* Zn, Cu, Ni, Mo) increase within the Abou Member probably reflecting the more anoxic water conditions which facilitated metal precipitation. One sample from this horizon has elevated Ba levels (approximately 1400 ppm or 0.14 %). The Abou Member is time equivalent to the horizon hosting the Eskay Creek mine, a syngenetic silver-rich massive sulphide deposit.

TABLE 2. MULTI-ELEMENT ICP-MS DATA FOR SPATSIZI FORMATION SAMPLES FROM THE JOAN LAKE AREA. THESE WERE ANALYZED UTILIZING AN AQUA REGIA DIGESTION. UTM COORDINATES IN NAD 27 DATUM.

		EPF04-	EPF04-	EPF04-	EPF04	EPF04-	EPF04	EPF04	EPF04-	EPF04-	EPF04-	EPF04-	EPF04·
	Sample	191A	191B	191C	192A	192B	192C	192D	193A	193B	194A	194B	195A
	easting	499192 6373564	499192 6373564	499192 6373564	499147 6373447	499147 6373447	499147 6373447	499147 6373447	499122 6373305	499122 6373305	499107 6373190	499107 6373190	499100 6373077
Mo	noranig	0.5	0.4	0.6	0.4	0.5	0.3	0.5	0.4	0.7	0.5	0.5	0.7
Cu	ppm	29.6	36.8	32.1	28.7	36.5	25.4	35.3	35.5	38.2	26.8	27.4	33.5
Pb	ppm	9.3	7.7	7.9	10.5	8.5	9.4	11.2	9	8.6	11.3	13.6	10.4
Zn	ppm	120	98	96	83	102	107	107	103	110	77	92	98
Ag	ppm	0.1	0.1	<.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Ni	ppm	21.1	21.6	18.2	14.9	19.3	21.3	21.6	18.6	22.3	17.7	24.4	18.5
Co	ppm	9.6	8.4	6.5	5.7	8	9.8	9.1	8.5	7.5	7	12.9	8
Mn	ppm	351	325	196	240	266	352	325	414	243	664	496	451
Fe	%	4.86	4.07	4.55	4.38	4.51	4.47	5.22	4.02	4.45	3.13	4.1	3.81
As	ppm	7.6	6.6	5.4	13.7	10.1	7.9	10.1	5.6	4.9	6.6	7	4.6
U	ppm	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Au	ppb	<.5	<.5	0.7	<.5	<.5	<.5	0.7	<.5	<.5	<.5	<.5	<.5
Th	ppm	1.4	1.4	1.6	1.6	1.6	2.1	1.8	1.7	1.8	1.5	1.7	1.8
Sr	ppm	65	40	17	32	33	81	43	61	25	206	180	141
Cd	ppm	0.1	0.1	0.1	0.1	0.1	0.1	<.1	0.1	<.1	0.2	0.1	0.1
Sb	ppm	0.4	0.8	0.5	2.5	1.9	0.9	1	0.5	0.6	0.4	0.5	0.4
Bi	ppm	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1
V	ppm	49	43	44	41	47	36	44	40	48	25	30	35
Ca	%	1.82	1.66	0.23	0.78	0.81	2.1	1.19	1.95	0.52	5.87	4.39	3.39
Р	%	0.078	0.105	0.084	0.082	0.088	0.091	0.092	0.08	0.106	0.062	0.096	0.081
La	ppm	6	9	9	7	8	8	8	8	9	8	8	7
Cr	ppm	61.9	40.5	49.4	38.3	45.3	33.4	35.7	39.1	42.7	27.9	32.8	36.3
Mg	%	1.3	1.1	1.18	1.07	1.11	1.06	1.39	0.96	1.05	0.82	0.97	0.97
Ва	ppm	131	110	115	130	132	141	146	183	154	150	119	144
Ti	%	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
В	ppm	7	6	8	7	6	7	5	7	5	7	6	7
Al	%	2.76	2.33	2.39	2.32	2.43	2.27	2.9	2.22	2.35	1.79	1.99	2.08
Na	%	0.024	0.015	0.02	0.018	0.019	0.017	0.015	0.018	0.014	0.013	0.013	0.014
K	%	0.25	0.17	0.2	0.21	0.2	0.2	0.18	0.23	0.2	0.19	0.18	0.22
W	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Hg	ppm	0.05	0.04	0.04	0.04	0.04	0.03	0.05	0.04	0.05	0.03	0.04	0.03
Sc	ppm	7.8	7.4	7.3	7.2	7.1	6.2	7.2	7.1	7.2	7.5	7.2	7.2
ΤI	ppm	0.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
S	%	0.68	0.17	0.06	0.39	0.34	0.67	0.43	0.23	0.14	0.29	0.39	0.22
Ga	ppm	6	5	6	5	5	5	6	5	5	4	5	5
Se	ppm	0.8	1.1	0.7	0.9	0.9	0.7	0.7	0.7	1.5	0.6	0.7	0.8

		EPF04-	EPF04	EPF04-	EPF04-	EPF04-	EPF04-	EPF04	EPF04-	EPF04-	EPF04-	EPF04-	EPF04-
	Sample	195B	195C	195D	196A	196B	197A	197B	197C	198A	198B	198C	198D
	easting	499100	499100	499100	499110	499110	499137	499137	499137	499130	499130	499130	499130
Mo	northing	03/30//	03/30//	03/30//	1 1	03/292/	03/28/0	0372870	03/28/0	1 5	1 <i>A</i>	12.5	28.8
Cu	nnm	29.8	0.4 24 Q	23.9	31.5	27.6	34.2	23.7	25.8	27.6	10.4	15.6	67.7
Ph	nnm	20.0	24.5 Q <u>4</u>	75	69	5.8	65	53	79	81	5	6	35
7n	nnm	97	90	93	99	91	108	100	76	99	45	100	270
Δa	nnm	< 1	0.1	< 1	< 1	< 1	< 1	< 1	01	0.1	0 1	0.4	02
Ni	nnm	18.7	16.2	13.5	13.9	12.9	16.1	11 7	17 1	17.9	9.1	11 7	46.5
Co	nnm	10.7	12	8.3	84	7.5	10.1	81	96	64	1.5	0.9	2.5
Mn	nom	426	498	602	415	389	440	366	643	282	113	38	339
Fe	%	4 47	3.99	4	3 56	4 49	4 84	3 58	3 15	2.93	1 74	0.92	1 42
As	ppm	4.6	4.8	3.5	2.5	3.5	3.6	2.2	6.8	5.4	3.9	7.7	8.5
U	ppm	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.2	0.3	0.2	0.6	1.4
Au	daa	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5
Th	ppm	1.8	1.8	1.1	1	1.5	1.5	1.1	1.2	1.1	0.8	0.5	1.2
Sr	ppm	103	124	218	129	88	89	114	220	41	14	19	131
Cd	ppm	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.7	3.5
Sb	ppm	0.1	0.3	0.3	0.3	0.3	0.3	0.2	0.4	0.5	0.9	1.6	1.7
Bi	ppm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
V	ppm	42	31	27	27	37	40	32	27	32	27	33	79
Ca	%	2.76	3.6	4.62	2.62	2.15	1.83	2.17	5.5	0.97	0.2	0.21	5.05
Р	%	0.1	0.089	0.053	0.06	0.073	0.084	0.075	0.101	0.121	0.077	0.044	0.072
La	ppm	8	8	5	5	6	7	5	8	9	6	5	7
Cr	ppm	38.3	37.1	27.3	28.6	33.7	39.5	34.4	35.3	31.7	53.4	59.5	36.3
Mg	%	1.12	0.95	0.96	0.82	1.08	1.13	0.86	0.63	0.5	0.26	0.1	0.22
Ва	ppm	152	124	110	138	121	191	163	167	202	204	144	1434
Ti	%	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.047
В	ppm	6	7	4	4	5	7	7	6	6	5	6	6
Al	%	2.4	2.08	1.96	1.78	2.17	2.4	1.98	1.44	1.37	1.02	0.49	0.68
Na	%	0.014	0.015	0.013	0.012	0.015	0.019	0.018	0.014	0.018	0.022	0.034	0.013
Κ	%	0.19	0.19	0.15	0.19	0.16	0.24	0.22	0.16	0.19	0.18	0.13	0.16
W	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	0.2
Hg	ppm	0.02	0.03	0.03	0.02	0.03	0.03	0.02	0.04	0.05	0.03	0.04	0.03
Sc	ppm	6.7	6.8	6.7	6.3	6.6	7.3	5.4	6.6	7.2	4.2	2.2	5.1
ΤI	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	0.1	0.1	0.5	0.5
S	%	<.05	0.23	0.43	0.33	0.24	0.14	0.4	0.29	0.31	0.12	0.11	0.14
Ga	ppm	6	5	5	4	6	6	5	4	3	3	1	2
Se	ppm	<.5	<.5	<.5	<.5	<.5	<.5	<.5	0.7	1.5	2.6	4.5	4.5

		EPF04-	EPF04-	EPF04-	EPF04·	EPF04-	EPF04	EPF04	EPF04-	EPF04-	EPF04-	EPF04	EPF04-
	Sample	199A	200A	200B	201B	201C	201D	202A	202B	202C	202D	203A	203B
	northing	499472 6372793	500666 6373358	500666 6373358	500625 6373340	500625 6373340	500625 6373340	500586 6373235	500586 6373235	500586 6373235	500586 6373235	500527 6373166	500527 6373166
Мо	ppm	0.7	0.8	1.6	0.4	0.4	0.5	0.4	0.3	0.5	0.5	0.6	0.6
Cu	ppm	24.7	11.7	12.4	29.6	29.3	38.3	31.2	34	19.8	32.8	27.3	27.5
Pb	ppm	6.6	4.3	1.8	3.2	4	7.5	8.5	9.4	12.4	10.6	10.6	10.1
Zn	ppm	85	25	30	100	135	105	95	102	56	90	88	82
Ag	ppm	0.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	0.1	0.1	0.1	0.1
Ni	ppm	12.4	3.6	2.7	13.8	11.2	15.2	16.6	18.4	5.9	19.9	16.9	16.3
Co	ppm	5.8	0.8	4.5	5.3	5.2	9.1	9.1	15.1	3.2	10.2	10.7	10.1
Mn	ppm	315	108	6358	365	349	135	584	415	55	258	413	362
Fe	%	3.17	2.27	2.29	4.86	4.76	3.83	4.32	5.31	2.87	4.24	4.35	4.13
As	ppm	5.7	4.9	2.6	4	2.6	3.7	4.2	5	5.8	4.8	6	5.8
U	ppm	0.2	0.1	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.2
Au	ppb	<.5	<.5	<.5	0.8	<.5	<.5	0.5	<.5	<.5	0.8	<.5	<.5
Th	ppm	1.5	0.7	0.5	1.6	1.4	1.7	1.4	1.2	1.4	1.6	1.8	1.8
Sr	ppm	88	10	317	63	86	27	140	84	10	78	170	126
Cd	ppm	0.1	<.1	0.1	0.1	0.1	0.1	0.2	0.2	<.1	<.1	0.1	0.1
Sb	ppm	0.3	0.3	0.1	0.1	0.2	0.3	0.3	0.3	0.5	0.3	0.4	0.3
Bi	ppm	0.1	0.1	<.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
V	ppm	25	17	39	44	35	35	38	57	31	37	32	30
Ca	%	2.32	0.08	25.16	1.8	1.98	0.73	2.98	1.81	0.09	2.04	3.96	3.13
Р	%	0.069	0.029	0.04	0.085	0.07	0.066	0.088	0.084	0.077	0.088	0.108	0.089
La	ppm	8	3	7	4	3	2	3	4	2	3	4	3
Cr	ppm	31.8	38.9	13.5	38.7	28.8	26.2	39.7	32.5	32.4	29.9	29.4	28.6
Mg	%	0.59	0.39	0.36	1.22	1.21	0.85	0.9	1.05	0.53	0.92	0.89	0.85
Ba	ppm	175	73	42	98	130	152	354	99	142	145	111	101
Ti	%	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
В	ppm	6	3	1	7	6	5	7	6	8	6	6	8
Al	%	1.48	1.11	0.53	2.57	2.54	2.07	2.33	2.43	1.93	2.07	2.12	1.88
Na	%	0.016	0.024	0.012	0.018	0.013	0.014	0.021	0.019	0.017	0.017	0.015	0.015
K	%	0.2	0.1	0.01	0.2	0.21	0.19	0.31	0.15	0.27	0.21	0.23	0.2
W	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Hg	ppm	0.03	0.04	0.01	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.02	0.04
Sc	ppm	7.3	3.5	6.4	7.5	7.3	8.4	10.7	10.3	9.6	10	9.7	9
TI	ppm	0.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
S	%	0.18	<.05	0.36	0.17	0.28	0.15	0.21	0.54	<.05	0.19	0.65	0.39
Ga	ppm	4	5	2	6	6	5	6	6	5	5	5	5
Se	ppm	0.9	<.5	0.8	0.6	<.5	0.5	0.5	<.5	0.6	0.8	0.5	0.5

		EPF04-	EPF04-	EPF04-	EPF04	EPF04-	EPF04	EPF04	EPF04-	EPF04-	EPF04-	EPF04	EPF04-
	Sample	203C	203D	204A	205A	205C	205D	205E	206A	207A	207C	207E	208A
	easting	500527	500527	500472	500364	500364	500364	500364	500291	500253	500253	500253	500189
	noruning	0373100	0373100	0373038	10.7	0372021	0372021	63/2621	6372595	6372571	6372571	6372571	6372496
	ppm	0.7	0.7	0.5	18.7	39.6	21.5	27.4	20.1	34.9	0.1	30.9	15.3
Cu	ppm	29.6	30.6	22.4	46.9	6.4	57.2	42.1	50.9	21.1	6.4	33.3	28.7
Pb _	ppm	10.3	11.1	10.6	5.5	9.2	6.2	5.7	8.9	6.6	5.3	7.7	4.5
Zn	ppm	114	98	60	439	58	407	288	358	69	25	144	173
Ag	ppm	0.1	0.1	0.1	0.4	0.5	0.3	0.2	0.3	0.3	0.3	0.2	0.2
Ni	ppm	18.3	21.6	7.6	49.3	8.4	52.9	44.7	54.3	12.3	3.6	18	23.2
Co	ppm	10.3	10.2	3.2	3.5	0.8	5	3.4	4	1.4	0.4	1.8	1.3
Mn	ppm	204	380	100	373	6	537	250	210	35	15	46	168
Fe	%	4.87	4.25	3.64	1.55	0.44	1.89	2.12	1.97	1.05	0.52	1.73	1.6
As	ppm	5.3	4.2	4.3	10.6	16.5	15.3	12.1	17.4	14.6	7.9	17.3	9.1
U	ppm	0.2	0.1	0.1	1	0.3	1.3	1.1	0.9	1.3	0.3	0.7	1.1
Au	ppb	<.5	<.5	0.5	0.8	0.8	<.5	<.5	0.7	0.7	<.5	1.3	<.5
Th	ppm	1.8	1.7	1.6	0.9	0.3	0.8	1	1.7	0.8	0.5	0.8	1
Sr	ppm	29	69	23	93	8	278	41	39	16	7	10	30
Cd	ppm	0.1	0.2	<.1	9.1	<.1	7.6	3.5	4.6	0.3	<.1	0.3	2.1
Sb	ppm	0.4	0.4	0.5	1.6	2.1	1.5	1.9	1.7	2.2	1.3	2.2	1.6
Bi	ppm	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
V	ppm	37	36	33	83	52	56	59	63	66	21	36	75
Ca	%	0.4	2.17	0.22	3.77	0.05	6.88	1.77	1.53	0.22	0.05	0.1	0.59
Р	%	0.103	0.085	0.081	0.064	0.009	0.072	0.075	0.044	0.089	0.044	0.059	0.071
La	ppm	4	3	3	9	2	10	7	8	6	6	6	8
Cr	ppm	34.5	35.5	39.2	35.3	37.9	38.4	28.8	32.4	34.9	44.9	23	39.2
Mg	%	0.89	0.87	0.72	0.26	0.03	0.16	0.32	0.3	0.18	0.06	0.25	0.28
Ba	ppm	144	137	174	184	155	153	148	169	161	152	187	250
Ti	%	0.001	0.001	0.001	0.001	0.001	0.001	0.001	<.001	0.001	0.001	<.001	0.001
В	ppm	5	7	5	5	3	4	4	6	4	3	4	5
AI	%	2.2	2.16	1.92	0.74	0.38	0.5	0.88	0.85	0.62	0.37	0.69	0.94
Na	%	0.015	0.013	0.014	0.013	0.025	0.016	0.014	0.014	0.015	0.019	0.015	0.013
К	%	0.22	0.24	0.25	0.16	0.15	0.13	0.13	0.19	0.14	0.13	0.17	0.18
W	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Ha	maa	0.04	0.04	0.03	0.06	0.09	0.07	0.06	0.07	0.08	0.07	0.07	0.05
Sc	maa	10.5	8.7	6.9	6.8	3.1	8.7	6.1	5.8	4.4	2	4.6	5.5
TI	mag	<.1	<.1	<.1	0.6	1.1	0.5	0.7	0.7	0.5	0.3	0.6	0.5
S	%	0.14	0.23	< .05	<.05	0.09	0.78	0.07	0.13	<.05	0.06	<.05	<.05
Ga	ppm	5	5	5	2	1	2	2	2	2	1	3	2
Se	ppm	0.6	0.6	0.7	8.4	8.7	5.2	_ 5.9	7.1	3.4	3.8	5.1	3.8

		EPF04-	EPF04-	FF04-	FF04-	FF04-	FF03-						
	Sample	209A	210A	1A	1B	1E	1A	13A	13B	15A	15B	15C	2A
	northing	500068 6372471	499972 6372463	619543 5613654	619543 5613654	619543 5613654	621033 5620414	589945 5833905	589945 5833905	600523 5566989	600523 5566989	600523 5566989	621066 5620479
Мо	ppm	6.1	13.7	4.2	0.6	0.3	7.9	43.5	17.8	1	1.3	0.2	11
Cu	ppm	18.4	23.2	86.6	72.1	1.3	14.7	91	86.8	46.1	24	58.4	44.9
Pb	ppm	3.6	8.9	13.7	4.9	<.1	12.2	7.4	6.1	5	5.2	6.8	10.6
Zn	ppm	122	118	173	135	2	25	441	354	59	60	83	154
Ag	ppm	0.1	0.2	0.2	0.1	<.1	0.1	0.5	0.5	<.1	<.1	0.1	0.1
Ni	ppm	23.9	16.3	44.8	34.7	0.8	4.3	175.4	75.9	15.4	21.5	30.8	28.8
Co	ppm	1.1	1.3	12.9	8.2	0.1	1.4	7.2	5.1	9.1	10.1	13.2	10.4
Mn	ppm	1092	88	548	504	2854	20	347	570	841	914	374	421
Fe	%	1.31	1.8	3.62	3.25	0.48	0.74	2.08	2.03	3.9	3.19	2.81	1.81
As	ppm	5.3	12	18.5	5	0.8	16.8	27.5	21.2	10.3	10.3	1.3	11.7
U	ppm	0.6	0.5	0.5	0.4	0.1	0.7	3.7	1.4	1.2	0.3	0.2	0.9
Au	ppb	1.1	1	1.4	0.5	1.3	1.4	1	0.8	0.8	1.6	0.8	<.5
Th	ppm	0.8	0.8	2.6	2.7	<.1	4.6	1.1	0.9	1.1	1.3	0.8	2.8
Sr	ppm	354	10	207	167	3138	37	743	753	366	262	91	205
Cd	ppm	2	0.4	1.4	1	0.1	0.1	4.9	4	0.3	0.2	0.2	1.6
Sb	ppm	0.8	1.3	2	0.4	0.1	1	2.9	3.3	0.6	0.8	0.1	1.5
Bi	ppm	0.1	0.1	0.1	0.2	<.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
V	ppm	70	60	78	71	4	10	195	180	67	41	47	17
Ca	%	8.03	0.15	3.35	2.99	31.82	0.33	9.84	14.66	11.11	10.24	1.6	4.13
Р	%	0.038	0.037	0.118	0.118	0.022	0.036	0.156	0.091	0.436	0.109	0.06	0.056
La	ppm	7	4	9	10	<1	20	6	5	28	13	9	7
Cr	ppm	63.3	60.5	50.2	51.5	11.5	53.3	40.6	42.9	25.7	31.9	30.3	15.5
Mg	%	0.5	0.6	1.31	1.43	0.48	0.05	0.31	0.36	1.07	0.81	0.88	0.1
Ва	ppm	140	117	148	123	225	238	75	95	389	195	132	54
Ti	%	0.001	0.001	0.003	0.003	<.001	0.002	0.001	0.001	0.056	0.067	0.092	0.002
В	ppm	2	2	17	19	1	11	16	9	5	6	6	11
Al	%	0.75	0.95	2.17	2.12	0.03	0.51	0.59	0.43	2.36	1.89	2.37	0.39
Na	%	0.021	0.03	0.016	0.038	0.009	0.059	0.027	0.018	0.015	0.015	0.014	0.038
K	%	0.09	0.13	0.5	0.49	0.01	0.43	0.23	0.16	0.18	0.24	0.29	0.36
W	ppm	<.1	<.1	<.1	<.1	0.1	<.1	<.1	<.1	0.7	0.2	0.1	<.1
Hg	ppm	0.02	0.06	0.13	0.03	0.01	0.03	0.15	0.15	0.11	0.06	0.02	0.08
Sc	ppm	4.1	4.1	7.9	6.5	0.3	1.5	8.3	6.2	4.8	5.4	7.1	4.3
TI	ppm	0.4	0.3	0.2	0.1	<.1	0.1	0.5	0.2	<.1	<.1	0.1	0.3
S	%	<.05	<.05	0.28	0.09	0.14	0.26	1.93	1.8	0.06	0.51	<.05	1.72
Ga	ppm	2	3	7	7	<1	2	2	2	5	4	6	1
Se	ppm	1.4	3.1	2.2	1.1	0.6	1.3	14.2	11.7	1.1	0.8	<.5	2.3

		FF03-						
	Sample	2B	ЗA	4A	4B	5A	6A	8A
	easting northing	621066 5620479	621073 5620505	621106 5620590	621106 5620590	621140 5620636	621147 5620691	621046 5620363
Мо	ppm	8.7	10.4	12.7	11.8	24.7	36.9	10.1
Cu	ppm	30.6	43.1	41.9	41.8	49.2	64.5	40
Pb	ppm	9.7	10.1	9.4	9.1	7.5	8.6	10.5
Zn	ppm	111	128	141	132	304	437	129
Ag	ppm	0.1	0.1	0.1	0.1	0.2	0.2	0.1
Ni	ppm	18.7	26.8	26.2	23.1	55.9	78.9	23.7
Co	ppm	8	9.1	9.6	8.6	9.6	12.6	9.1
Mn	ppm	914	379	670	674	460	409	592
Fe	%	1.42	1.61	2.43	3.4	1.99	2.56	2.28
As	ppm	10.1	10.1	11.7	11.8	14.7	19.5	12.1
U	ppm	0.9	0.7	0.9	0.9	1.1	1.4	0.8
Au	ppb	<.5	<.5	<.5	0.7	0.6	<.5	<.5
Th	ppm	2.8	2.3	2.8	2.6	2.1	2	2.6
Sr	ppm	224	236	265	300	313	311	265
Cd	ppm	1.1	1.5	1.6	1.4	3.1	4.6	1.3
Sb	ppm	1	1.3	1.1	1.1	2.9	3.7	1.2
Bi	ppm	0.1	0.2	0.2	0.1	0.2	0.2	0.2
V	ppm	12	14	14	13	36	39	16
Ca	%	6	4.61	7.66	7.13	8.39	7.34	5.4
Р	%	0.047	0.055	0.059	0.053	0.064	0.068	0.054
La	ppm	10	5	5	7	3	2	8
Cr	ppm	14.9	15	12.4	12.5	15.7	16.2	16.2
Mg	%	0.12	0.18	0.22	0.2	0.58	0.33	0.1
Ва	ppm	152	83	83	79	101	85	95
Ti	%	0.001	0.001	0.001	0.001	0.001	0.001	0.002
В	ppm	10	9	10	9	12	7	9
Al	%	0.45	0.4	0.4	0.39	0.41	0.4	0.44
Na	%	0.033	0.703	0.776	0.268	0.44	0.071	0.023
Κ	%	0.43	0.35	0.29	0.38	0.26	0.21	0.4
W	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Hg	ppm	0.05	0.08	0.08	0.08	0.09	0.14	0.06
Sc	ppm	4	3.9	4.5	4.4	5.8	6.8	4.2
ΤI	ppm	0.2	0.5	0.3	0.3	1.5	0.7	0.3
S	%	1.31	1.77	2.28	3.62	2.85	3.07	2.18
Ga	ppm	2	1	1	1	1	1	1
Se	ppm	1.5	5.4	6	6.1	5	6	2.2

TABLE 3. MULTI-ELEMENT ICP-MS DATA FOR SPATSIZI FORMATION SAMPLES FROM THE JOAN LAKE AREA. THESE WERE ANALYZED UTILIZING A TOTAL ACID DIGESTION. UTM COORDINATES IN NAD 27 DATUM.

	Comple	EPF04	- EP F04-	- EP F04-	EPF04-	EPF04-	EPF04-	EPF04-	EPF04-	EPF04	EPF04	EPF04-	FF04-	FF03-	FF03-	FF03-
	Sample	191A 400102	1920	194 D	190A	190A	200A	202A	203D	2050	2070	210A	010	001A	0150	004 D
	northing	6373564	6373447	6373190	6372927	6372737	6373358	6373235	6373166	6372621	6372571	499972 6372463	5613654	5620414	5566989	5620590
Мо	ppm	1	0.7	0.7	1.3	2	1	0.4	0.8	43.1	6.6	14.1	0.9	9.3	0.3	13.3
Cu	ppm	31.7	28.4	29.5	34.5	28.1	12.4	31.9	30.3	7.1	6.4	24.9	78.1	16.5	62.6	44.6
Pb	ppm	9.9	11.2	13.4	7.4	7.6	5.1	8.4	10.6	8.9	4.8	8.1	6.3	12.8	7.9	9.4
Zn	ppm	133	116	99	114	111	32	107	97	61	28	130	171	35	104	168
Ag	ppm	<.1	0.1	0.1	0.1	0.1	0.1	<.1	0.1	0.8	0.4	0.3	0.1	0.1	0.1	0.2
Ni	ppm	23	22.1	28.2	15.7	19.7	5.1	15.6	18.5	13.5	6.1	16.7	42.1	6.2	38.2	25.8
Co	ppm	9	10	13	8	6	1	8	11	1	<1	1	8	1	15	8
Mn	ppm	370	386	528	472	281	131	564	372	11	18	89	588	50	488	747
Fe	%	5.35	5.3	4.59	4.17	3.39	2.87	4.5	4.48	0.59	0.63	1.94	4.02	1.57	3.89	4.4
As	ppm	8	10	7	3	5	6	5	6	17	8	12	5	20	3	16
U	ppm	0.9	1.5	1.1	0.9	0.9	1	0.8	1	4.2	2.8	2.9	2.2	5.2	0.6	3.4
Au	ppm	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Th	ppm	3	4.5	3.2	2.6	2	2	2.8	3.3	1.2	1.3	1.7	5.4	9.8	2.3	5.1
Sr	ppm	139	155	244	200	87	127	184	195	48	42	46	214	90	150	332
Cd	ppm	0.2	0.2	0.1	0.3	0.1	0.1	0.1	0.1	0.3	0.3	0.7	1.3	0.3	0.3	1.5
Sb	ppm	1	1.9	0.9	0.6	1	0.8	0.7	0.8	4	2.3	1.8	0.9	1.9	0.4	2
Bi	ppm	0.1	0.1	0.1	0.1	0.1	<.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.1
V	ppm	148	127	118	116	111	46	115	120	383	164	127	196	61	144	126
Ca	%	2.1	2.5	4.94	3.04	1.15	0.13	3.04	3.42	0.06	0.06	0.13	3.49	0.39	2.04	8.03
Ρ	%	0.086	0.125	0.109	0.075	0.134	0.039	0.093	0.108	0.013	0.05	0.037	0.133	0.045	0.081	0.057
La	ppm	12.1	14	15.8	15.8	17	4.1	8.1	7.5	5.6	12.2	4.2	20.5	24.8	16.9	13.2
Cr	ppm	97.5	68.1	65.5	60.7	58.8	67.6	68.1	64	66.5	77.8	84.3	113.3	92.9	66.8	37.3
Mg	%	1.38	1.33	1.17	1.11	0.65	0.53	1.01	1.01	0.2	0.23	0.69	2.09	0.3	1.43	0.54
Ba	ppm	910	686	928	1080	686	401	1074	823	968	982	498	551	1019	528	31
Ti	%	0.476	0.442	0.416	0.451	0.337	0.255	0.424	0.428	0.336	0.271	0.208	0.434	0.198	0.394	0.243
Al	%	8.56	8.43	7.69	7.75	6.08	4.87	7.73	7.79	5.19	4.46	3.93	7.59	7.22	7.31	5.28
Na	%	1.239	1.315	1.276	1.275	1.401	1.501	1.151	1.431	1.964	1.388	1.457	1.428	3.599	0.404	1.569
К	%	1.91	1.84	1.73	1.82	1.3	0.75	1.85	1.85	0.97	0.94	0.61	2.42	1.87	1.48	1.91
W	ppm	0.7	0.9	0.7	0.7	0.7	0.4	0.6	0.7	0.5	0.5	0.4	1	1	0.4	0.8
Zr	ppm	34.6	46	42.4	31	40.1	36.8	33.4	38.1	66.4	57.7	48.9	70.8	111	59.1	75
Ce	ppm	23	25	28	30	27	7	17	16	10	20	8	37	48	35	31
Sn	ppm	1.4	1.4	0.9	1	0.9	0.8	1	1.1	0.8	1	0.7	1.5	1.8	0.9	1.2
Y	ppm	18.1	19.5	19.9	17.2	23.8	8.2	16.3	16	9.6	8.9	10.3	22.1	22.8	15.6	22.3
Nb	ppm	6.3	6	5.9	5.5	3.8	2.9	5.7	6.4	2.4	2.5	2	6.7	7.1	3.2	4.5
Та	ppm	0.4	0.6	0.4	0.3	0.3	0.2	0.3	0.4	0.1	0.1	0.1	0.5	0.6	0.2	0.4
Be	ppm	1	1	1	1	1	<1	1	1	1	<1	<1	1	2	1	1
Sc	ppm	21	18	16	19	17	11	18	17	11	10	9	15	7	15	8
Li	ppm	48.3	50.4	36.1	32.3	20.4	22.1	30.1	32.9	1.2	1.7	6.9	58.1	4.7	35	8.6
S	%	0.7	0.9	0.5	0.4	0.4	0.1	0.2	0.5	0.2	0.1	<.1	<.1	0.4	<.1	3.7
Rb	ppm	74.5	72.8	69.3	68.2	44.4	28.4	70.2	70.9	28.1	26.6	15.3	91.3	72.5	52	64.5
Hf	ppm	1.4	1.8	1.4	1.2	1.2	1.5	1.1	1.5	2	1.9	1.7	2.8	4.8	2	3.1

McConnell Creek and Oweegee Dome Areas

In western McConnell Creek, rocks of the Spatsizi Formation show similar compositional trends to those in the Joan Lake area suggesting effects from oxidation and thermal maturation (Figure 5; Table 1). Surface thermal maturation levels, based on vitrinite reflectance data, for Spatsizi rocks in McConnell Creek range from 1.6 to greater that 2.4% (V. Stasiuk, personal communication). Current TOC levels are similar to those seen in the Joan Lake area, ranging between 0.27 to 6.01 % (*see* Table 1).

Oweegee Dome (see Figure 1 for approximate location) is believed to represents a structural window exposing Jurassic and older basement to the Bowser Lake Group. The Spatsizi Formation is exposed below Bowser Lake Group sediments around the entire structure and is several hundred metres in thickness. As in the McConnell Creek area, it is not possible to differentiate all the members defined by Thomson et al. (1986) in the Joan Lake area. Lithologically, the section appears most similar to the Wolf Den Member. The upper half of the Spatsizi section in the northern Oweegee Dome area does not contain well developed tuffaceous horizons of the Instead, the dark siltstones are Quock Member. punctuated by distinctive brown weathering, feldspathic chert sandstone sheets up to several metres thick which, together with features in thinner beds, suggest deposition as turbidic flows. Intervening siltstone may be siliceous and contain thin tuffaceous horizons. This section passes upwards into crumbly siltstone and grey-brown sandstones typical of the Ritchie-Alger lithofacies assemblage.

Several samples were acquired along the northern part of Oweegee Dome returning TOC levels between 0.23 and 1.69 %. Surface R_o levels for Spatsizi and Bowser rocks in the vicinity of the sample localities are between 1.53 and 5%

Un-named Early Middle Jurassic Rocks

Likely Area

In the Likely area, Early to Middle Jurassic organicrich shales and calcareous shales were also sampled for determining organic content (Figure 6; Ferri *et al.*, 2004). TOC values shown in Table 1 are 5.5 and 5.05 %. Thermal maturities at this locality, based on vitrinite reflectance, is in the order of $R_o = 2.11$ (V. Stasiuk, personal communication, 2005), which would explain the low HI levels.

Ashcroft Formation

Ashcroft Area

Sampling in 2003 took place along Highway 97C which leads into the town of Ashcroft (Figure 7). Possible oil shales described along Minaberriet Creek (Macauley, 1984) were sampled during the summer of 2004. Analyses of these samples are shown in Table 1. Thermal maturation levels, based on vitrinite reflectance

data, indicate Ro levels of 1.96 to 2.73% (V. Stasiuk, personal communication, 2005). As in samples from other regions, S_2 values are 0 or less than 0.2, although TOC values range from 0.6 to 5.09 %.

DISCUSSION

The compositional and lithological similarities of Early to Middle Jurassic black clastic sequences observed in Bowser Basin and the southern Intermontane region suggests widespread deposition (Ferri *et al.*, 2004). In addition, Rock Eval data indicates these horizons are rich in organic matter, containing approximately 1 to 6 % TOC. In all areas sampled, thermal maturation levels were high, being at, or exceeding the upper end of the gas window. These high temperatures, together with possible surface oxidation, probably explain the low S₂ (HI) levels observed in the analysis.

Assuming that a considerable amount of the organic matter was driven off during thermal maturation, it is conceivable that these rocks originally had a much higher organic content. As surmised earlier, original TOC may have ranged from 1 to 20 % with some zones having contents between 15 and 20 %.

Although all areas examined as part of this study are overmature, it is possible that in other regions equivalent horizons may occur in the proper thermal window and act as effective source beds. These fine clastic sequences are temporally and lithologically equivalent to the Fernie Group of the Western Canada Sedimentary Basin. TOC levels for the Fernie Group, particularly the Nordegg and equivalent members, are similar to original levels postulated for rocks of this study (Riediger, 2002).

ACKNOWLEDGEMENTS

The authors would like to thank Canadian Helicopters, particularly Darrell Adzich, for timely and safe transportation. We would also like to acknowledge the staff at Bell II for providing excellent base camp accommodation. We appreciate the timely assistance of staff at the Smithers office of the Ministry of Water, Land and Air Protection in providing us with a permit to carry out our research. A special thanks goes to Nicola Focht of The Exploration Place, and Jamel Joseph of the Geological Survey of Canada, for their assistance in the field.

REFERENCES

- Evenchick, C.A. and Thorkelson, D.J. (2005): Geology of the Spatsizi River map area, north-central British Columbia; Geological Survey of Canada, Bulletin 577.
- Evenchick, C.A., Ferri, F., Mustard, P.S., McMechan, M.E., Ritcey, D., McNicoll, V.J., Osadetz, K.G., O'Sullivan, P.B., Stasiuk, L.D., Wilson, N.S.F., Poulton, T.P., Lowe, C., Enkin, R.J., Waldron, J., Snyder, D.B., Turner, R.J.W., Nowlan, G. and Boddy, M. (in press): Highlights of recent research in the Bowser and Sustut Basins Project, British Columbia; in Current Research, Geological Survey of Canada, 2005-

- Evenchick, C.A., Stasiuk, L.D., Osadetz, K.G. and Ferri, F. (2004): New and revised vitrinite reflectance data for the Bowser and Sustut basins, British Columbia; BC Ministry of Energy and Mines, Petroleum Geology Open File 2004-1.
- Evenchick, C.A., Ferri, F., Mustard, P.S., McMechan, M., Osadetz, K.G., Stasiuk, L., Wilson, N.S.F, Enkin, R.J., Hadlari, T. and McNicoll, V.J. (2004): Recent results and activities of the Integrated Petroleum Resource Potential and Geoscience Studies of the Bowser and Sustut basins Project, British Columbia; in Current Research, Geological Survey of Canada, 2003-A13, 11 pages.
- Ferri, F., Mustard, P., McMechan, M., Ritcey, D., Smith, G.T., Evenchick, E. and Boddy, M. (2005): Skeena and Bowser Lake groups, west half of Hazelton map area (93M); in Summary of Activities 2005, BC Ministry of Energy and Mines, pages 113-131.
- Ferri, F., Osadetz, K. and Evenchick, C. (2004): Petroleum source sock potential of Lower to Middle Jurassic clastics, Intermontane Basins, British Columbia; Summary of Activities 2004, BC Ministry of Energy and Mines, pages 87-98.
- Hayes, M., Ferri, F. and Morii, S. (2005): Interior basins strategy; B.C. Ministry of Energy and Mines, Summary of Activities 2004, pages 69-72.
- Macauley, G. (1984): Geology of the Oil Shale Deposits of Canada; Geological Survey of Canada, Paper 81-25, 65 pages.
- Panteleyev, A, Bailey, D.G., Bloodgood, M.A. and Hancock, K.D. (1996): Geology and Mineral Deposits of the Quesnel River-Horsefly Map Area, Central Quesnel Trough, British Columbia; Ministry of Employment and Investment, Bulletin 97, 156 pages.
- Ricketts, B.D., Evenchick, C.A., Anderson, R.G., and Murphy, D.C. (1992): Bowser Basin, northern British Columbia: constraints on the timing of initial subsidence and Stikinia-North American terrane interactions; Geology, Volume 20, pages 1119-112.
- Riediger, C.L. (2002): Hydrocarbon source rock potential and comments on correlation of the Lower Jurassic Poker Chip Shale, west-central Alberta; Bulletin of Canadian Petroleum Geology, Volume 50, Number 2, pages 263-276.
- Thomson, R.C. (1985): Lower to Middle Jurassic (Pliensbachian to Bajocian) stratigraphy and Pliensbachian ammonite fauna of the northern Spatsizi area, north central British Columbia; M.Sc. Thesis, The University of British Columbia, Vancouver, British Columbia, 211 pages.
- Thomson, R.C., Smith, P.L. and Tipper, H.W. (1986): Lower to Middle Jurassic (Pliensbachian to Bajocian) stratigraphy of the northern Spatsizi area, north-central British Columbia; Canadian Journal of Earth Science, Volume 23, pages 1963-1973.
- Travers, W.B. (1978): Overturned Nicola and Ashcroft Strata and Their Relation to the Cache Creek Group, Southwestern Intermontane Belt, British Columbia; Canadian Journal of Earth Science, Volume 15, pages 99-116.