Molecular Composition of Crude Oil Stains From Bowser Basin:

K.G. Osadetz ${ }^{1}$; C. A. Evenchick ${ }^{2}$, F. Ferri ${ }^{3}$, L. D. Stasiuk ${ }^{1}$, M. Obermajer ${ }^{1}$ and N. S. F. Wilson ${ }^{1}$
${ }^{1}$ Geological Survey of Canada, Calgary
${ }_{3}^{2}$ Geological Survey of Canada, Vancouver
${ }^{3}$ New Ventures Branch

Introduction:

Three petroleums, that are either residual stains in breeched oil fields or natural seepages, in Bowser Basin have been compositional characterized using standard organic geochemical methods at the GSC's national organic geochemical laboratory in Calgary. Two extracts are from different modes of occurrence with variable petrographic characteristics in a single hand specimen. Petrographic details of those two extracts \#9693 and \#9694 are discussed by Osadetz et al. (2003). The results are presented for gross composition, saturate fraction gas chromatography, saturate fraction biological markers and aromatic hydrocarbon fraction molecular compositions. The results are not generally interpreted (e.g Osadetz et al. 1994), but standard compositional ratios are suggested and may be computed from the data that is provided (for additional significance of these parameters and compounds see Peters and Moldowan, 1993). However, the results clearly show that the crude oil in the two Tsatia Mountain section extracts are similar and probably derived from a late Paleozoic to Triassic carbonate marine source rock deposited in a meshaline to hypersaline environment of deposition, suggesting that the source of this oil occurs in the underlying Stikine Assemblage succession. In contrast the third extract from near the Triangle Zone of the Skeena Fold Belt is clearly drived from a Mesozoic clastic marine source rock, as would be expected from sources in the Spatzisi Formation or the Bowser Lake Group and younger successions. Detailed interpretation will be presented later, elsewhere.

Sample Identification and Location:

The geographic and stratigraphic position of these three samples are:

Solvent Extraction \#9693 GSC Calgary sample C-428547_collected at Tsatia Mountain reference section, NAD 27 Zone 9V, E442468 N6380068 from the Muskaboo Creek Assemblage, Bowser Lake Group, specifically, vein-filling material in an ammonite fossil in a shoreface sandstone.

Solvent Extraction \#9694 GSC Calgary sample C-428547 collected at Tsatia Mountain reference section, NAD 27 Zone 9V, E442468 N6380068, from the Muskaboo Creek Assemblage, Bowser Lake Group, specifically, a shoreface sandstone hosting the ammonite fossil that gives Solvent Extract \#9693.

Experimental Methods:

Three oil stains found in Bowser Basin have been extracted, using the Soxhlet method and the extracts have been fractionated and analyzed following the description below (Osadetz and Snowdon, 1995). The $>210^{\circ} \mathrm{C}$ gross compositions were determined using various fractions obtained from packed column elutions following techniques similar to those discussed by Snowdon (1978).

An aliquot of the fraction boiling above $210^{\circ} \mathrm{C}$ was deasphalted using an excess of pentane (40 volumes) and subsequently fractionated using open column liquid chromatography. Saturated hydrocarbon were analysed using gas chromatography (GC) and gas chromatography -mass spectrometry (GCMS). A Varian 3700 FID gas chromatograph, with 30 m DB-1 column and helium as the mobile phase, was used to obtain saturate fraction gas chromatograms (SFGC=s). The temperature was programmed from $50^{\circ} \mathrm{C}$ to $280^{\circ} \mathrm{C}$ at a rate of $4^{\circ} \mathrm{C} / \mathrm{min}$ and then held for 30 minutes at the final temperature. Successively eluting compounds were detected and quantitatively determined using a hydrogen flame ionization detector. Integration of the resulting gas chromatograms was done using Turbochrom ver. 6.1.1 software. Gasoline range parameters were calculated using measured and normalized percentage peak area while peak heights were used when processing saturate fraction gas chromatograms.

GCMS experiments were conducted using a VG 70SQ mass spectrometer with an HP 5890 gas chromatograph discharging directly to the ion source. A 30 m DB-5MS fused silica column was employed for GC separation. The temperature, initially held at $100^{\circ} \mathrm{C}$ for 2 min, was programmed at $40^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$ and at $4^{\circ} \mathrm{C} / \mathrm{min}$ to $320^{\circ} \mathrm{C}$, then held for 15 min at $320^{\circ} \mathrm{C}$. The mass spectrometer was operated with a 70 eV ionization voltage, 300 mA filament emission current, and an interface temperature of $280^{\circ} \mathrm{C}$. The instrument was operated in selected ion monitoring mode and controlled by an Alpha Workstation using Opus software. Terpane and sterane ratios were calculated from the resulting $\mathrm{m} / \mathrm{z} 191, \mathrm{~m} / \mathrm{z} 217$ and m/z 218 mass fragmentograms.

The aromatic fraction was analyzed on an HP 5973 mass spectrometer (30 m DB-5MS fused silica column) coupled with an HP 6890 gas chromatograph (injector at $250^{\circ} \mathrm{C}$, split ratio $10: 1$, $1.2 \mathrm{ml} / \mathrm{min}$ flow and average velocity $40 \mathrm{~cm} / \mathrm{s}$). The oven temperature was programmed from the initial $100^{\circ} \mathrm{C}$ (no hold) to $300^{\circ} \mathrm{C}$ at a rate of $3^{\circ} \mathrm{C} / \mathrm{min}$ and then held for 10 min at the final temperature. The resulting mass fragmentograms were quantitated using ChemStation ver. B01.

