

Suite 120 - 10751 Shelibridge Way Richmond, British Columbia *Canada V6X 2W8* Telephone (604) 273-1601 Telex: 04-357721

> Date: June 8, 1982 File: K4635

## HAT CREEK PROJECT

### ASSESSMENT OF THE IMPACT OF CONSTRUCTION WATER SUPPLY: LONG-TERM PUMP TEST PROGRAM ON GROUND AND SURFACE WATER RESOURCES

## PREPARED FOR:

## BRITISH COLUMBIA HYDRO & POWER AUTHORITY VANCOUVER, B.C.

## SUBMITTED BY:

BEAK CONSULTANTS LIMITED VANCOUVER, B.C.

604H-E040

# Beak

## REPORT SECTIONS

SECTION A - REPORT SUMMARY SECTION B - SURFACE WATER STUDY SECTION C - GROUND WATER STUDY

K4635

•

Copy No.3



| <u>TAB</u> | LE OF CONTENTS | Page |
|------------|----------------|------|
| 1.0        | INTRODUCTION   | l    |
| 2.0        | DISCUSSION     | 2    |
| 3.0        | CONCLUSIONS    | 4    |
| 4.0        | RECOMMENDATION | 5    |
|            |                |      |

K4635

## 1.0 INTRODUCTION

Beak

This report is to provide fulfilment of work presented in BEAK's 22 January 1981 proposal to B.C. Hydro and the 22 May 1981 revision.

The scope of this project was to examine the surface water and ground water effects of long-term pumping of ground water at the site of B.C. Hydro's future thermal electrical generating station at Hat Creek. Ground water is going to be required during the construction of the generating station.

BEAK investigated the surface water effects and retained Golder Associates to provide interpretation of the ground water regime.

This report has been divided into three sections. This section (Section A) provides a summary of the overall findings of the whole project. Section B provides a description of the surface water monitoring and Section C contains a report to BEAK by Golder Associates on the ground water aspects of the study.

K4635

- | -

### 2.0 DISCUSSION

🗄 Beak

Two wells capable of pumping ground water from two different aquifers have been drilled at the Hat Creek site.

Well PWI produces water from an interval of 100 to 113 metres below ground level. Since PWI produces from a deep aquifer and the aquifer lies below 67 metres of impervious silty clay, Golder Associates determined that pumping from here would not affect Hat Creek. Hence, this well was neither pumped nor assessed for impact during this investigation. A further investigation is planned to identify the extent and characteristics of this aquifer at the northern pit rim.

Pumping well PW2 was the only well pumped during this study. It produces ground water from the Marble Canyon aquifer which is located downstream and north of the Hat Creek aquifer of PW1. The producing interval of PW2 is located from 26 to 29 metres below ground level and hence was believed that pumping from here might affect the flows in Hat Creek. Hence, PW2 was pumped for 30 days from 6 October until 5 November, 1981 in order to investigate possible effects on the creek from long term pumping.

Pumping well PW2 was pumped at a near constant rate of 9.4 l/s (148 U.S. gpm) for 30 days. This resulted in a drawdown of approximately 14 m in the well after 30 days. Three metres of available drawdown remained at the end of the test. Approximately 95 per cent recovery of the well occurred within one hour after pumping ceased. The pumping test was carried out at the end of the dry season (which usually occurs from September to October) to permit the maximum impact on the creek flows to be assessed.

BEAK established stream gauging stations approximately 400 metres apart on Hat Creek, upstream and downstream of the pumping well. For the first 24 days of pumping, the upstream flow measured 10 to 14% greater than downstream flows. Immediately before pumping commenced on 6 October, the upstream flow was 14% greater than the downstream measurement. This 10 - 14% upstream/

K4635

downstream difference was 4 to 6 times greater than the removal rate of ground water. On the last 6 days of pumping, the upstream/downstream flow difference was virtually zero.

Since the difference in upstream and downstream creek flows did not increase over the pumping period (in fact it decreased), it is concluded that long-term ground water removal will not affect the volume of Hat Creek. This bears out the conclusion from the ground water monitoring program. While the pumping well was drawn down by 14 metres, the water level in the observation wells dropped by only 2 and 0.13 metres at distances of 47 and 90 metres respectively. Golder Associates accounts for the early difference in upstream and downstream creek flows by the loss of creek water in this interval to surficial gravel deposits because of the depression of the water table during the dry season.

Twenty-five water quality parameters were examined on water sampled from the well and in the creek at the upstream and downstream gauging stations. The water analyses indicated that the water quality in the creek did not suffer during the pumping. In addition, both the ground water and creek water had water acceptable for aquatic life and drinking health standards. Only manganese in the well water was high which is aesthetically undesirable for drinking water.

K4635

## がす Beak —

## 3.0 CONCLUSIONS

The following conclusions are drawn from the overall study:

- 1. Long-term pumping of ground water will not affect the flow volumes in Hat Creek.
- 2. Long-term pumping of ground water will not affect the water quality of Hat Creek if the ground water is used as a source of supply.
- 3. The creek's water and the ground water should be acceptable for the health of aquatic life and drinking water standards. However, slightly high manganese concentrations make the ground water aesthetically undesirable for drinking water use.
- 4. The pumping well in this test appears to be capable of pumping continuously a maximum of 800 cubic metres per day (at least 9.4 litres per second or 148 U.S. gallons per minute).
- 5. The cone of drawdown of the pumping well in this test appears to be limited in extent.

## 4.0 RECOMMENDATION

Because of the difference in flow rates measured at the upstream and downstream gauging stations in this study, it would be advisable to re-monitor the flows at these same points at a similar time of the year in 1982. Another set of similar data would solidify the findings of the unexpected upstream/ downstream flow differences encountered in this study and would provide more of a data base for the future comparison.

K4635



| TABLE OF CONTENTS              | Page |
|--------------------------------|------|
| I.0 INTRODUCTION               | 1    |
| 2.0 DESCRIPTION OF FIELD WORK  | 2    |
| 3.0 SURFACE WATER FLOW RESULTS | 3    |
| 4.0 WATER QUALITY              | 5    |
| 5.0 CONCLUSIONS                | 6    |
| 6.0 RECOMMENDATION             | 7    |
| FIGURES                        |      |
| FIGURE I HAT CREEK             |      |

## TABLES

| TABLE | I F | FL.OW | DATA |
|-------|-----|-------|------|
|       |     |       |      |

- TABLE II WATER QUALITY ANALYSES DURING THE PUMP TEST
- TABLE III WATER QUALITY ANALYSES BEFORE AND DURING THE PUMP TEST

## APPENDICES

| APPENDIX I   | WATER QUALITY DATA OCTOBER 6, 1981  |
|--------------|-------------------------------------|
| APPENDIX II  | WATER QUALITY DATA OCTOBER 13, 1981 |
| APPENDIX III | WATER QUALITY DATA OCTOBER 26, 1981 |
| APPENDIX IV  | WATER QUALITY DATA NOVEMBER 3, 1981 |

K4635

- i -

## 1.0 INTRODUCTION

During the 30 day test (October 6 - November 5, 1981) of continuous pumping of ground water from the Hat Creek aquifer, Beak Consultants Limited examined the possibility for changes that could have occured in the surface water of Hat Creek.

Two stream gauging stations were established to determine creek flows upstream and downstream of the pumping well. In addition, water samples were taken for chemical analysis from the two gauging stations and the pump discharge. The following is a report on these aspects of the ground water pumping test.

K4635

- - -

## 2.0 DESCRIPTION OF FIELD WORK

🕅 Beak

Two sites were selected on Hat Creek to serve as stations for water quality sampling and discharge measurements. It was desired to locate both stations outside of the drawdown cone of pumping well PW2 (see Figure 1). One gauging station was located upstream and the other downstream from the potentially affected portion of Hat Creek. It was decided that the Downstream Gauging Station would be situated upstream of where the pump water was discharged into Hat Creek in order to best simulate the situation which would result if the construction camp were consuming the pumped ground water. To ease the analysis of results, it was ensured that Hat Creek received no tributaries between the two gauging stations so that the pump test was the sole influence on this portion of the creek. In addition, to ensure optimium results for stream discharge, the gauging stations were located in a section of the creek where the flow regime was uniform and unimpeded and where the velocity of flow was within the ideal range of the velocity meter.

Based on the proceeding considerations, the Upstream Gauging Station was located about 300 metres upstream from the B.C. Hydro Information Centre and the Downstream Gauging Station was situated about 100 metres downstream from the Information Centre. Water samples were taken at these two gauging stations and from the pumping well's (PW2) discharge. The locations of the two gauging stations, pumping well and observation wells are shown in Figure 1.

K4635

- 2 -

### 3.0 SURFACE WATER FLOW RESULTS

狩 Beak

Before the results of the creek's flow measurements are presented and discussed, a brief description of the means by which these measurements were determined will be made.

The objective of stream discharge measurement procedure is to determine the volume of water passing through a selected cross section of the stream in a given period of time. First, a channel profile is constructed by measuring the water depth at regular intervals across the width of the stream. Next, the velocity of flow is measured at the same positions across the stream width. The velocity measurements are made at 60% depth (where the average velocity in vertical section is found) using a velocity meter. For this project, a velocity meter manufactured by A.Ott (Kempton, West Germany) was employed. The Ott meter consists of a propeller mounted on a rod and an electrical digital counter which counts rotations of the propeller. Hence, this instrument has been calibrated by the manufacturer to allow calculation of stream velocity from the rate of revolution of the propeller.

When measurements have been completed, usually at ten or more points across the stream width, the velocities are calculated and the corresponding depths are recorded. A plot of velocity X depth versus the stream width is then made after which the stream discharge is determined by measuring the area under the resulting curve.

Since it was expected that any changes in the surface water flow regime in Hat Creek during the pump test would be relatively small, it was thought worthwhile to determine the Ott meter's sensitivity with which discharge could be measured. To carry out this determination, two measurements were made in a very short time space during which there was no rain. These two measurements were made on October 5, 1981, the day before the 30 day pump test began. Measurements were made at the Upstream Gauging Station and at a site 3 metres upstream of the Upstream Gauging Station. Based on the flows calculated at these two sites,

K4635

the accuracy for the Ott meter in this project appears to have been within  $\pm 0.003$  cubic metres per second:

| SITE                                         | TIME  | FLOW (m <sup>3</sup> /s) |  |
|----------------------------------------------|-------|--------------------------|--|
| 3 m upstream of the Upstream Gauging Station | 17:00 | 0.363                    |  |
| Upstream Gauging Station                     | 17:45 | 0.360                    |  |

Creek discharge (flow) measurements were made at the Upstream and Downstream Gauging Stations on five days of the 30 day pumping period. In addition, on October 6, 1981 just before the pumping commenced, flows were measured at the two stations. This data along with the pumping well's discharge rate is presented in Table 1.

From Table 1, after the pumping began, it is seen that the first three upstream flow measurements were 10 - 14% higher than the corresponding downstream flows. These first three measurements span the first 24 days of the 30 day pumping period. Before the pumping began, the upstream flow was 14% higher than the downstream flow. The last two flow determinations show the upstream and downstream flows which are close to being equal when considering the accuracy of the Ott meter previously discussed.

The first upstream/downstream flow measurements in Table 1, which were taken just before the pumping began, indicates that the upstream – downstream difference in the first 24 days was not caused by the pumping. In addition, the differences of the first three upstream/downstream measurements after pumping began were 4 – 5 times greater than the pumping rate.

K4635

Beak

## 4.0 WATER QUALITY

Samples analyzed for 25 water quality parameters, were collected on four occasions from each stream gauging station on October 6, 13, 26 and November 3, 1981. The October 6 sample was taken just before the pumping commenced. The pump discharge water was sampled for the same 25 analyses on October 13, 26 and November 3. The water quality analyses varied little to not at all for each sampling source. The water quality parameters (after pumping began) were averaged and are presented in Table II. Table III compares the analyses before and during the pump test.

All of the 25 parameters analyzed fall within the recommended health limits for acceptable water for aquatic life and drinking water standards. However, the manganese level in the well water is higher than the recommended (0.05 mg/L) and objective (0.01 mg/L) levels for drinking water. Manganese concentrations over 0.05 mg/L are not aesthetically ideal for drinking water. The pumping does not appear to have affected the water quality at the Upstream and Downstream Gauging Stations. Further, the discharging of all of the pumped ground water into Hat Creek during the test does not appear to have changed the water quality in the creek as seen in the last column of Table II.

The total dissolved solids (nonfiltrable residue) of the well water averaged about 350 mg/L which is typical of ground water from surficial materials as sampled by B.C. Hydro\*. The Hat Creek surface water total dissolved solids of approximately 290 mg/L is also within the range of previously measured samples although this parameter has been shown to vary widely during the year\*.

This sampling program should now provide a baseline water quality against which any progressive changes in the creek or ground water can be assessed.

British Columbia Hydro & Power Authority, Thermal Generation Projects Division: "Hat Creek Project 1979 Environmental Field Programmes" (April, 1981).

## 5.0 CONCLUSIONS

Beak

- 1. The pumping of ground water from well PW2 does not appear to have influenced the creek's flow because:
  - (a) The upstream flow was greater than the downstream flow before pumping started and continued to be greater by about the same magnitude during the first 24 days of the test. Before pumping, the upstream/downstream flow difference was 6 times greater than the ground water pumping rate and 4 - 5 times greater than the pumping rate during the first 24 days of the test.
  - (b) The upstream/downstream flow difference on the last 6 days of the test was virtually zero. If the pumping had affected the creek's flow, the upstream/downstream flow difference should have increased.
- 2. The water quality of Hat Creek was not affected by the pumping of ground water from pumping well PW2.
- 3. The water quality of Hat Creek was not materially affected by the discharge of ground water into the creek (see Column 4 of Table II).
- 4. The water quality of the creek appears to be suitable for aquatic life.
- 5. The ground water appears to be generally suitable for drinking water and only its manganese concentration is slightly high from an aesthetic standpoint.

K4635

## 6.0 RECOMMENDATION

The creek flow at the two gauging stations should be remonitored during the dry season in 1982 to determine if the upstream/downstream flow difference is a normal phenomenon during this time of year.

K4635



Beak

## TABLE I

# FLOW DATA (m<sup>3</sup>/s)

| Date<br>(1981)              | (1)<br>Upstream<br>Gauging<br>Station | (2)<br>Downstream<br>Gauging<br>Station | (3)<br>Difference<br>of<br>(1) - (2) | (4)<br>Well<br>Discharge | (5)<br>Sum of<br>(2) + (4) |
|-----------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|--------------------------|----------------------------|
| October 6<br>Pumping Commer | 0.442<br>nced                         | 0.387                                   | 0.055                                | 0.0094                   | 0.3964                     |
| October 27                  | 0.358                                 | 0.317                                   | 0.041                                | 0.0094                   | 0.3264                     |
| October 28                  | 0.387                                 | 0.340                                   | 0.047                                | 0.0094                   | 0.3494                     |
| October 30                  | 0.355                                 | 0.322                                   | 0.033                                | 0.0094                   | 0.3314                     |
| November 1                  | 0.338                                 | 0.332                                   | 0.006                                | 0.0094                   | 0.3414                     |
| November 3                  | 0.332                                 | 0.330                                   | 0.002                                | 0.0094                   | 0.3394                     |
| Average During<br>Pumping   | 0.354                                 | 0.328                                   | 0.026                                | 0.0094                   | 0 <b>.</b> 3374            |

### TABLE II

### WATER QUALITY ANALYSES DURING THE PUMP TEST OF HAT CREEK WELL WATER AND THEORETICAL CALCULATION DOWNSTREAM OF THE WELL WATER DISCHARGE INTO HAT CREEK

| ANALYSIS                             | UPSTREAM E<br>GAUGING<br>STATION | DOWNSTREA<br>GAUGING<br>STATION | M<br>WELL (<br>WATER | *THEORETICAL<br>CALCULATION<br>DOWNSTREAM<br>OF WELL WATER<br>DISCHARGE |
|--------------------------------------|----------------------------------|---------------------------------|----------------------|-------------------------------------------------------------------------|
| Total Cyanide                        | <0.005                           | <0.005                          | <0.005               | <0.005                                                                  |
| Dissolved Fluoride                   | 0.09                             | 0.08                            | 0.12                 | 0.08                                                                    |
| Nitrate Nitrogen                     | 0.021                            | 0.011                           | 0.011                | 0.011                                                                   |
| рH                                   | 8.3                              | 8.3                             | 7.9                  | 8.3                                                                     |
| Filtrable Residue                    | 291                              | 285                             | 346                  | 287                                                                     |
| Nonfiltrable Residue                 | 2                                | 1                               | <                    | <                                                                       |
| Dissolved Aluminum                   | 0.006                            | 0.012                           | 0.007                | 0.012                                                                   |
| Dissolved Antimony                   | <0.001                           | <0.001                          | <0.001               | <0.001                                                                  |
| Dissolved Arsenic                    | 0.009                            | 0.007                           | <0.005               | <0.007                                                                  |
| Dissolved Cadmium                    | <0.005                           | <0.005                          | <0.005               | <0.005                                                                  |
| Dissolved Chromium                   | <0.01                            | <0.01                           | <0.01                | <0.01                                                                   |
| Dissolved Cobalt                     | <0.01                            | <0.01                           | <0.01                | <0.01                                                                   |
| Dissolved Copper                     | <0.005                           | <0.005                          | <0.005               | <0.005                                                                  |
| Dissolved Iron                       | 0.03                             | 0.03                            | 0.02                 | 0.03                                                                    |
| Dissolved Lead                       | 0.02                             | 0.02                            | 0.02                 | 0.02                                                                    |
| Dissolved Manganese                  | 0.01                             | 0.01                            | 0.12                 | 0.01                                                                    |
| Dissolved Molybdenum                 | <0.03                            | <0.03                           | <0.03                | <0.03                                                                   |
| Dissolved Nickel                     | <0.01                            | <0.01                           | <0.01                | <0.01                                                                   |
| Dissolved Selenium                   | <0.001                           | <0.001                          | <0.001               | <0.001                                                                  |
| Dissolved Silver                     | <0.01                            | <0.01                           | <0.01                | <0.01                                                                   |
| Dissolved Uranium                    | 0.0044                           | 0.0043                          | 0.0047               | 0.0043                                                                  |
| Dissolved Zinc                       | 0.008                            | 0.007                           | 0.022                | 0.007                                                                   |
| Total Arsenic                        | 0.009                            | 0.007                           | <0.005               | <0.007                                                                  |
| Total Mercury                        | <0.00025                         | <0.00025                        | <0.00025             | <0.00025                                                                |
| Radium 226 Radioactivity<br>(Bq/L)** | 0.02                             | 0.02                            | 0.02                 | 0.02                                                                    |

- I. All units are in mg/L except pH and Radium 226.
- 2. Upstream and downstream numbers tabulated are averages of 3 samples taken on separate days.
- \* The theoretical concentrations are calculated from:

### (Average Downstream Flow X Concentration) + (Well Discharge Rate X Concentration) Average Downstream Flow + Well Discharge Rate

\*\* IBq/L = 27 pCi/L

월 Beak

- A MEMBER OF THE SANDWELL GROUP -

## TABLE III

## BEFORE AND DURING PUMP TEST

| UPSTR<br>GAUGING S<br>BEFORE<br>TEST                                                                                                                                                                                                   | EAM<br>STATION<br>DURING<br>TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DOWNS<br>GAUGING<br>BEFORE<br>TEST                                                                                                                                                                                                        | TREAM<br>STATION<br>DURING<br>TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <0.005<br>0.09<br>0.025<br>8.3<br>298<br>3<br>0.032<br><0.001<br>0.009<br><0.005<br><0.01<br><0.005<br>0.03<br>0.02<br>0.01<br><0.03<br><0.01<br><0.03<br><0.01<br><0.001<br><0.001<br><0.001<br><0.0032<br>0.005<br>0.009<br><0.00025 | <pre>&lt; 0.005<br/>0.09<br/>0.021<br/>8.3<br/>291<br/>2<br/>0.06<br/>&lt; 0.001<br/>0.009<br/>&lt; 0.005<br/>&lt; 0.01<br/>&lt; 0.005<br/>0.03<br/>0.02<br/>0.01<br/>&lt; 0.03<br/>&lt; 0.01<br/>&lt; 0.001<br/>&lt; 0.005<br/>&lt; 0.001<br/>&lt; 0.0005<br/>&lt; 0.001<br/>&lt; 0.005<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.002<br/>&lt; 0.001<br/>&lt; 0.002<br/>&lt; 0.002<br/><!-- 0.002<br--><!-- 0.002</td--><td>&lt;0.005<br/>0.09<br/>0.019<br/>8.2<br/>289<br/>2<br/>0.014<br/>&lt;0.001<br/>0.008<br/>&lt;0.005<br/>&lt;0.01<br/>&lt;0.005<br/>0.04<br/>0.02<br/>0.01<br/>&lt;0.03<br/>&lt;0.01<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.0002<br/>&lt;0.005<br/>0.014<br/>&lt;0.00025</td><td>&lt;0.005<br/>0.08<br/>0.011<br/>8.3<br/>285<br/>1<br/>0.012<br/>&lt;0.001<br/>0.007<br/>&lt;0.005<br/>&lt;0.01<br/>&lt;0.005<br/>0.03<br/>0.02<br/>0.01<br/>&lt;0.005<br/>0.03<br/>&lt;0.01<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.005<br/>0.03<br/>0.02<br/>0.01<br/>&lt;0.001<br/>&lt;0.005<br/>0.03<br/>0.02<br/>0.01<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.005<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.001<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>&lt;0.007<br/>007<br/>0007<br/>0</td></pre> | <0.005<br>0.09<br>0.019<br>8.2<br>289<br>2<br>0.014<br><0.001<br>0.008<br><0.005<br><0.01<br><0.005<br>0.04<br>0.02<br>0.01<br><0.03<br><0.01<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.0002<br><0.005<br>0.014<br><0.00025 | <0.005<br>0.08<br>0.011<br>8.3<br>285<br>1<br>0.012<br><0.001<br>0.007<br><0.005<br><0.01<br><0.005<br>0.03<br>0.02<br>0.01<br><0.005<br>0.03<br><0.01<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.005<br>0.03<br>0.02<br>0.01<br><0.001<br><0.005<br>0.03<br>0.02<br>0.01<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.007<br><0.005<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br><0.007<br>007<br>0007<br>0 |
| 0.03                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                        | UPSTR<br>GAUGING S<br>BEFORE<br>TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UPSTREAM<br>GAUGING STATION<br>BEFORE         DURING<br>TEST           < 0.005                                                                                                                                                            | UPSTREAM<br>GAUGING STATION<br>BEFORE<br>TEST         DOWNS<br>GAUGING<br>TEST           < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

1. All units are in mg/L except pH and Radium 226.

Results during pumping are averages of 3 samples. Results before pumping are from one sample.

## APPENDIX I

Beak

## WATER QUALITY DATA OCTOBER 6, 1981

## BEFORE PUMP TEST COMMENCED

| ANALYSIS                        | UPSTREAM<br>GAUGING<br>STATION | DOWNSTREAM<br>GAUGING<br>STATION |
|---------------------------------|--------------------------------|----------------------------------|
| Total Cyanide                   | <0.005                         | < 0.005                          |
| Dissolved Flouride              | 0.09                           | 0.09                             |
| Nitrate Nitrogen                | 0.025                          | 0.019                            |
| pH                              | 8.3                            | 8.2                              |
| Filtrable Residue               | 298                            | 289                              |
| Nonfiltrable Residue            | 3                              | 2                                |
| Dissolved Aluminum              | 0.032                          | 0.014                            |
| Dissolved Antimony              | <0.001                         | <0.001                           |
| Dissolved Arsenic               | 0.009                          | 0.008                            |
| Dissolved Cadmium               | <0.005                         | <0.005                           |
| Dissolved Chromium              | <0.01                          | <0.01                            |
| Dissolved Cobalt                | <0.01                          | <0.01                            |
| Dissolved Copper                | <0.005                         | <0.005                           |
| Dissolved Iron                  | 0.03                           | 0.04                             |
| Dissolved Lead                  | 0.02                           | 0.02                             |
| Dissolved Manganese             | 0.01                           | 0.01                             |
| Dissolved Molybdenum            | <0.03                          | <0.03                            |
| Dissolved Nickel                | <0.01                          | <0.01                            |
| Dissolved Selenium              | <0.001                         | <0.001                           |
| Dissolved Silver                | <0.01                          | <0.01                            |
| Dissolved Uranium               | 0.0032                         | <0.00002                         |
| Dissolved Zinc                  | <0.005                         | <0.005                           |
| Total Arsenic                   | 0.009                          | 0.014                            |
| Total Mercury                   | <0.00025                       | <0.00025                         |
| Radium 226 Ŕadioactivity (Bq/L) | 0.03                           | 0.02                             |

Results are in mg/L except pH and Radium 226.

-- A MEMBER OF THE SANDWELL GROUP

## APPENDIX II

## WATER QUALITY DATA OCTOBER 13, 1981

| UPSTREAM<br>GAUGING<br>STATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DOWNSTREAM<br>GAUGING<br>STATION                                                                                                                                                                                                                   | PUMP<br>WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <0.005<br>0.09<br>0.022<br>8.3<br>292<br>1<br>0.005<br><0.001<br><0.005<br><0.01<br><0.005<br>0.04<br>0.03<br><0.01<br><0.03<br><0.01<br><0.03<br><0.01<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.003<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.001<br><0.003<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.007<br>0.008<br><0.0025 | <0.005<br>0.08<br>0.009<br>8.3<br>276<br>1<br>0.013<br><0.001<br>0.006<br><0.005<br><0.01<br><0.005<br>0.03<br>0.03<br>0.03<br>0.01<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001<br><0.007<br>0.006<br><0.00025 | <0.005<br>0.12<br>0.010<br>7.8<br>340<br><1<br>0.005<br><0.001<br>0.005<br><0.005<br><0.01<br><0.005<br>0.02<br>0.03<br>0.11<br><0.03<br><0.01<br><0.001<br><0.003<br><0.01<br><0.003<br><0.01<br><0.003<br><0.001<br><0.003<br><0.005<br><0.005<br><0.001<br><0.005<br><0.001<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.001<br><0.003<br><0.001<br><0.003<br><0.005<br><0.005<br><0.001<br><0.003<br><0.005<br><0.001<br><0.003<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.0005<br><0.005<br><0.005<br><0.005<br><0.0005<br><0.005<br><0.005<br><0.005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0005<br><0.0 |
| 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UPSTREAM<br>GAUGING<br>STATION                                                                                                                                                                                                                     | $\begin{array}{c cccccc} UPSTREAM & DOWNSTREAM \\ GAUGING & GAUGING \\ STATION & STATION \\ \hline \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $                                                                                                                                                                                                                                 |

Results are in mg/L except pH and Radium 226.

Beak

# Beak

## APPENDIX III

## WATER GUALITY DATA OCTOBER 26, 1981

| ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                    | UPSTREAM<br>GAUGING<br>STATION                                                                                                                                         | DOWNSTREAM<br>GAUGING<br>STATION                                                                                                                                                                                   | PUMP<br>WATER                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Cyanide                                                                                                                                                                                                                                                                                                                                                                                                               | <0.005                                                                                                                                                                 | <0.005                                                                                                                                                                                                             | <0.005                                                                                                                                                                        |
| Dissolved Flouride                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09                                                                                                                                                                   | 0.08                                                                                                                                                                                                               | 0.12                                                                                                                                                                          |
| Nitrate Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                            | 0.015                                                                                                                                                                  | 0.007                                                                                                                                                                                                              | 0.012                                                                                                                                                                         |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3                                                                                                                                                                    | 8.3                                                                                                                                                                                                                | 7.9                                                                                                                                                                           |
| Filtrable Residue<br>Nonfiltrable Residue<br>Dissolved Aluminum<br>Dissolved Antimony<br>Dissolved Arsenic<br>Dissolved Cadmium<br>Dissolved Cadmium<br>Dissolved Chromium<br>Dissolved Cobalt<br>Dissolved Cobalt<br>Dissolved Copper<br>Dissolved Iron<br>Dissolved Lead<br>Dissolved Lead<br>Dissolved Manganese<br>Dissolved Molybdenum<br>Dissolved Nickel<br>Dissolved Selenium<br>Dissolved Silver<br>Dissolved Jinc | 294<br>2<br>0.005<br>< 0.001<br>0.009<br>< 0.005<br>< 0.01<br>< 0.01<br>< 0.005<br>0.03<br>0.02<br>0.02<br>< 0.03<br>< 0.01<br>< 0.001<br>< 0.001<br>< 0.0046<br>0.008 | 292<br>1<br>0.014<br>< 0.001<br>0.007<br>< 0.005<br>< 0.01<br>< 0.005<br>0.03<br>0.02<br>0.01<br>< 0.03<br>< 0.01<br>< 0.03<br>< 0.01<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.005 | 351<br>< 1<br>0.005<br>< 0.001<br>< 0.005<br>< 0.01<br>< 0.01<br>< 0.02<br>0.12<br>< 0.03<br>< 0.01<br>< 0.03<br>< 0.01<br>< 0.001<br>< 0.001<br>< 0.001<br>< 0.0046<br>0.023 |
| Total Arsenic                                                                                                                                                                                                                                                                                                                                                                                                               | 0.009                                                                                                                                                                  | 0.007                                                                                                                                                                                                              | < 0.005                                                                                                                                                                       |
| Total Mercury                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.00025                                                                                                                                                              | < 0.00025                                                                                                                                                                                                          | < 0.00025                                                                                                                                                                     |
| Radium 226 Radioactivity (Bq/L.)                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                   | 0.01                                                                                                                                                                                                               | 0.02                                                                                                                                                                          |

Results are in mg/L except pH and Radium 226.

- A MEMBER OF THE SANDWELL GROUP -

## APPENDIX IV

## WATER GUALITY DATA NOVEMBER 3, 1981

| ANALYSIS                        | UPSTREAM<br>GAUGING<br>STATION | DOWNSTREAM<br>GAUGING<br>STATION | PUMP<br>WATER    |
|---------------------------------|--------------------------------|----------------------------------|------------------|
| Total Cyanide                   | < 0.005                        | <0.005                           | <0.005           |
| Dissolved Flouride              | 0.08                           | 0.08                             | 0.11             |
| Nitrate Nitrogen                | 0.027                          | 0.018                            | 0.012            |
| pH                              | 8.4                            | 8.4                              | 8.1              |
| Filtrable Residue               | 286                            | 288                              | 346              |
| Nontritrable Residue            | 2                              | 2                                | <                |
| Dissolved Aluminum              | 0.009                          | 0.010                            | 0.010            |
| Dissolved Antimony              | <0.001                         | <0.001                           | <0.001           |
| Dissolved Arsenic               | 0.010                          | 0.00/                            | <0.005           |
| Dissolved Cadmium               | <0.005                         | <0.005                           | <0.005           |
| Dissolved Chromium              | <0.01                          | <0.01                            | <0.01            |
| Dissolved Cobalt                | <0.01                          | <0.01                            | <0.01            |
| Dissolved Copper                | <0.005                         | <0.005                           | <0.005           |
| Dissolved Iron                  | 0.03                           | 0.03                             | 0.02             |
| Dissolved Lead                  | 0.02                           | 0.02                             | 0.02             |
| Dissolve Manganese              | 0.01                           | 0.01                             | 0.12             |
| Dissolved Molybdenum            | <0.03                          | <0.03                            | <0.03            |
| Dissolved Nickel                | <0.01                          | <0.01                            | <0.01            |
| Dissolved Selenium              | <0.001                         | <0.001                           | <0.001           |
| Dissolved Silver                | <0.01                          | <0.01                            | <0.01            |
| Dissolved Uranium               | 0.0044                         | 0.0048                           | 0.0056           |
| Dissolved Zinc                  | <0.005                         | 0.007                            | 0.021            |
| I OTOL Arsenic                  | 0.010                          | 0.008                            | <0.005           |
| Radium 226 Radioactivity (Bq/L) | <0.00025<br>0.02               | <0.00025<br>0.02                 | <0.00025<br>0.03 |

Results are in mg/L except pH and Radium 226.

Beak





|     |                           | Page |
|-----|---------------------------|------|
| 1.0 | INTRODUCTION              | 1    |
| 2.0 | PROJECT OBJECTIVE         | 1    |
| 3.0 | TEST PROCEDURE            | 2    |
| 4.0 | TEST RESULTS AND ANALYSIS | 3    |
| 5.0 | SUMMARY AND CONCLUSIONS   | 5    |

### APPENDICES

| Appendix A   | Pump Test Results |
|--------------|-------------------|
| Appendix A-1 | Data              |
| Appendix A-2 | Theis Analysis    |
| Appendix A-3 | Jacob Analysis    |

### LIST OF FIGURES

| Figure | 1 | Well | Location | Plan |
|--------|---|------|----------|------|
|--------|---|------|----------|------|

- Figure 2 Schematic Sketch Section Marble Canyon Aquifer System
- Figure 3 Long Term Pump Test Hydrograph, Marble Canyon Aquifer System

### LIST OF TABLES

- Table 1Summary of Pump Test Results
- Table 2
   Streamflow Measurement in Hat Creek

### 1.0 INTRODUCTION

The terms of reference for the work covered by this report are contained in Golder Associates proposal 812-1512 dated January 1981. The work involved the assessment of the impact on the ground and surface water resources at Hat Creek, caused by the long-term pump testing of wells drilled for the purpose of providing a water supply for construction purposes. The details of the exploration, design and construction of the wells has been reported on in Golder Associates report 812-1507 submitted to British Columbia Hydro and Power Authority (BCH) in January 1982.

Golder Associates hydrogeological staff carried out the ground water field work during October and November 1981. Field work for the surface water program involving water quality sampling and stream gauging was separately undertaken by Beak Consultants. Routine ground water measurements were made by the BCH site staff.

### 2.0 PROJECT OBJECTIVE

Production wells have been installed in two separate aquifers; one the Hat Creek Valley aquifer lies just north of the proposed pit and the other the Marble Canyon aquifer is at the Hat Creek road junction close to the BCH temporary office (see Figure 1). Because of the proximity of these aquifers to Hat Creek itself, it was considered necessary to assess the impact that pumping from them would have on the flows in the creek. This has particular significance due to the fact that the water is abstracted from the creek by the Boneparte Indian Band downstream of the well sites. It was decided that the optimum time for carrying out this assessment would be at the end of the dry season in say September/October time when flows would be minimal.

Of the two wells installed, only that in the Marble Canyon aquifer (PW2) is considered to be able to impact the creek flows. Well PW1 installed in the Hat Creek aquifer was screened between 100 and 113 m below ground; some 67 m of silty clay overlies the sandy gravel aquifer in this well.

The methods used to assess the impact of pumping on the creek were as follows:

2

- establishment of gauging stations on Hat Creek both upstream and downstream of the area likely to be impacted by pumping (see Figure 1).
- monitoring of creek flows both before, during and after pumping.
- execution of a 30-day pumping test on well PW2 with monitoring in the surrounding observation wells.
- measurement of flows from the well (returned to the creek downstream of the test)
- sampling and chemical analysis of creek and well water at periodic intervals during testing.
- analysis of data and assessment of potential impacts.

### 3.0 TEST PROCEDURE

During June and July 1981, two production wells 203 mm (8") in diameter (PW1, PW2), three observation wells 152 mm (6") in diameter (OW2, OW3, OW4) and two standpipe piezometers (OW1, OW5) were completed in the Hat Creek area north of the proposed pit for the purpose of providing a water supply for construction purposes. The locations of these installations are shown on Figure 1 and presented in schematic hydrogeological section in Figure 2; the wells are described in GA report 812-1507 dated January, 1982. Following the completion of the wells, and prior to the long-term pump testing, a program of ground water monitoring was carried out by B.C. Hydro staff during August and September. Over this period water levels in all completed installations was recorded daily.

A five horsepower submersible pump was installed in production well PW2 by A and H Construction of Abbotsford, B.C. under the supervision of Golder Associates. The pumped water was discharged through a 100 mm diameter hose into Hat Creek at the location shown on Figure 1. This site was selected to be downstream of the stream gauging locations so as not to interfere with the pumping test results. A digital flow meter was attached to the discharge pipe approximately 2 m from the well.

Pumping of this well commenced on the 6th of October 1981 and was continued for 30 days. A near constant pumping rate of 9.4 l/s was maintained throughout the length of the test. It was found that as the drawdown in the well increased, the pump rate decreased, since the water had to be pumped against an increasing hydraulic head. It was thus necessary to occasionally adjust the pump rate.

3

It was intended to produce as much drawdown in the well as was available, and hence create as large an impact as possible on the surrounding ground water regime. This aim was achieved, since at the end of the test period only 3 m of available drawdown in the pump well remained.

The response of the ground water regime to pumping was monitored in the nearby wells and piezometers. For the first two days of the test, water levels were monitored by Golder Associates field staff. Thereafter BCH staff took daily readings of water levels and pumping rates and reported to Golder Associates.

Pumping ceased on the 5th of November. The first day of the recovery was monitored by Golder Associates with BCH field staff continuing the monitoring program until sufficient stabilisation had been achieved.

### 4.0 TEST RESULTS AND ANALYSIS

The pump test data was reduced using Golder Associates' pump test program. The reduced data was then used to plot hydrographs to permit analysis by conventional methods.

The pump test hydrograph shown in Figure 3 illustrates the response of the wells in Marble Canyon to pumping. Three conventional methods of analysis were used for this test. The Theis and Jacob methods were used to analyze drawdown data and the Theis recovery method was used to analyze the recovery data. Although many of the assumptions inherent in all these methods could not be completely satisfied, due mainly to the geological nature of the material being tested, it is felt that the results of analysis are adequate for the purposes of this study. In the absence of analytical techniques for complex situations, it is acceptable to utilize conventional techniques as long as the limitations and inaccuracies are kept in mind.

For the interpretation a pumping rate of 9.4 1/s (148 U.S. gpm) was used although at times during the pumping a slight fluctuation was recorded. Analysis of the recovery data should be considered more reliable since the curves are smooth and not influenced by a fluctuating pump rate. It was only considered possible to analyse the responses in OW3 and PW2 to pumping. OW2 is screened in a lower aquifer, while the piezometers in OW5 and OW1 showed only slight response to pumping PW2 even though they were screened within the same aquifer. It is considered that the decline in water level of 70 mm in OW5 is due to the natural ground water recession associated with a period of no recharge. Water levels in OW4 and PW1, completed in the deep Hat Creek Aquifer, continued to rise during the pump test in PW2. The recovery of water levels in these wells was associated with the pump test carried out in PW1 during July, 1981 and reported in Golder Associates' report 812-1507 submitted to B.C. Hydro and Power Authority, January 1982.

The results of the analysis are contained in Table 1.

It can be seen that the results from the various methods are in good agreement with a median hyraulic conductivity for the sandy gravel of  $5 \times 10^{-5}$  m/s. The value of storage calculated is in the order of  $1 \times 10^{-4}$ .

The time drawdown graphs for both PW2 and OW3 can be matched to the Theis type curve for early times (less than 10 minutes). Thereafter the response can be matched to "leaky" type curves indicating a probable semi-confined recharging aquifer system. At times greater than 1000 minutes, a deviation from the leakage curves is observed and this is assumed to be due to a boundary effect limiting the extent of the expanding cone of depression.

A schematic geological section of Marble Canyon is presented in Figure 2. This area is a zone of ground water discharge to Hat Creek and is characterized by increasing hydraulic heads with depth (i.e. near vertical upward ground water flow). It is suspected that the recharging response seen in the time drawdown curves is due to leakage from the underlying gravelly sand aquifer screened in OW2. A value of hydaulic conductivity for the intervening aquitard is calculated as 7.8 x  $10^{-7}$  m/s.

The results of streamflow gauging of Hat Creek during the pumping test is shown in Table 2. The results indicate a greater decline in upstream flows over downstream flows over the duration of the test. This is contrary to what would be expected if test pumping was affecting streamflow. It is considered that this decline in streamflow upstream is possibly due to increased abstraction for irrigation purposes or due to the loss of stream water flow into the surficial gravels as ground water levels declined seasonally. Pumping PW2 does not appear to have had any effects on the aquifer in the vicinity of Hat Creek.

5

### 5.0 SUMMARY AND CONCLUSIONS

Drawdown in PW2 was approaching stabilization after only 100 minutes of pumping at 9.4 l/s. Fluctuations after this time are considered more a function of fluctuating pumping rate rather that aquifer characteristics.

The cone of drawdown appears to be very steep and limited in extent. A drawdown of approximately 14 metres at the pump well-produced only 2.0 metres of drawdown at a distance of 47 metres (OW3) and only about .13 metres of drawdown at a distance of 90 metres (OW1). Approximately 95 per cent recovery of the pumping well, after 30 days of pumping occurred within 1 hour.

There are no indications that the pumping of well (PW2) at the rates being considered will have any impact on flow rates in Hat Creek.

We trust that this report provides the information you require at this time. If you should have any questions or comments, please do not hesitate to contact us.

Yours very truly, GOLDER ASSOCIATES

G.E. Rawlings, P. Eng.

R.S. Guiton

GER/RSG/km 812-1512







## TABLE 1 Summary of Pump Test Results

Ě.

Ű.

Ë.

Ï

Ľ.

į,

Ì

Ê

۳.

Ť.

1

| Well<br>Numbe <del>r</del> | Method of<br>Analysis | Transmissivity<br>m´/s        | Storage<br>Coefficient | Hydraulic<br>Conductivity m/s | Estimated<br>Acquifer<br>Thickness<br>m |
|----------------------------|-----------------------|-------------------------------|------------------------|-------------------------------|-----------------------------------------|
| PW2                        | Theis Drawdown        | $1.52 \times 10^{-4}$         |                        | $1.52 \times 10^{-5}$         | 10.0                                    |
| Ħ                          | Theis Recovery        | $2.25 \times 10^{-4}$         |                        | $2.25 \times 10^{-5}$         | 10.0                                    |
| #                          | Jacob Drawdown        | $4.3 \times 10^{-4}$          |                        | $4.3 \times 10^{-5}$          | 10.0                                    |
| OW3                        | Jacob Drawdown        | $1.92 \times 10^{-3}$         | $1.31 \times 10^{-4}$  | $3.0 \times 10^{-4}$          | 6.4                                     |
| 79                         | Theis Drawdown        | 9.6 $\times$ 10 <sup>-4</sup> | $1.67 \times 10^{-4}$  | $1.5 \times 10^{-4}$          | 6.4                                     |
|                            | Theis Recovery        | $2.04 \times 10^{-3}$         |                        | $3.2 \times 10^{-4}$          | 6.4                                     |

| Date(1981)   | Upstream<br>Station<br>l/s | Downstream<br>Station<br>l/s | Qu/Qd |
|--------------|----------------------------|------------------------------|-------|
| 6th October  | 442                        | 387                          | 1.14  |
| 27th October | 358                        | 317                          | 1.13  |
| 28th October | 387                        | 340                          | 1.14  |
| 30th October | 355                        | 322                          | 1.10  |
| lst November | 338                        | 332                          | 1.02  |
| 3rd November | 332                        | 330                          | 1.01  |

# TABLE 2 Streamflow Measurements in Hat Creek(Beak Consultant)

## APPENDIX A

A-1 Data A-2 Theis Analysis A-3 Jacob Analysis

. . . . . . . . . . GULDER ASSOCIATES ٠ . . . . . . . . . . . . . . . . . . . . PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMMER -PH2, 20/11/01-12.07.50 . . PUMPED WELL NUMBER - PW2, - H.C. HYCRO, CLIENT - HAT ERFEK ENVIRONMENTAL STUDY, PROJECT NAME PROJECT NUMBER - #121512, LOCATION OF TEST . HAT CHEEK H.C., TYPE OF TEST - EUNSTANT HATE . DATE PUMP STARTED = 6/10/81=28.0/13 (DAY/HO/YR-HIN/HRS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON OBSERVATION WELL 822.26 METHES GROUND ELEVATION + DATUM POINT -TOP OF WELL CASING, HEIGHT OF DATUM ABOVE GROUND LEVEL -.41 METRES 5.98 METHES DEPTH TO STATIC HATER LEVEL -ELEVATION OF STATIC WATER LEVEL -816.69 METRES SCREENED WELL TYPE OF DHSERVATION WELL -25,93 TO 29,16 METHES DEPTH OF SCREENED INTERVAL -DISTANCE FROM PUMPING WELL -0.00 METHES DATA ON PUMPED WELL WELL DIAMETER -. 203 m SUMMERSINCE PUMP TYPE -FLOW MEASUHEMENT FLOWMETEN, TYPE -DIGITAL, PUMPING RATE -9.399E+00 LITHES/S AUUIFER DATA UNCONFINED. AGHIFER CONDITIONS . SANDY GRAVEL, AGUIFER DESCRIPTION = AQUIFER THICKNESS -IOO METHES TEST DETAILS WEATHER CUNDITIONS - VARIABLE. TESTED BY - UNIDER ASSOCIATES, COMMENTS - HUNE,

•

| -     |      |                |      |               |                  |          |          |          | •                |              |                               |
|-------|------|----------------|------|---------------|------------------|----------|----------|----------|------------------|--------------|-------------------------------|
|       | DATE |                | 1146 |               | FLAPSED          | PHESSURE | DEPTH TO | DRANDOWN | HATER            | DISCHARGE    | COMMENTS                      |
|       |      |                |      |               | 11ME             | READING  | HATER    |          | ELEVATION        | PATE         |                               |
| ΥH    | MON  | DAY            | нк в | 4 I N         | MINUTES          | PSI      | METHES   | METRES   | METRES           | LITRES/S     |                               |
| Ď     | 0    | 0              | n    | 0.0           |                  |          | 0.00     |          | A55.67           |              |                               |
| 0     | 0    | 0              | 0    | 0_0           |                  |          | 0,00     |          | 472.67           |              |                               |
| 81    | 10   | 6              | 9 5  | 55.0          |                  |          | 5.98     |          | A10.69           |              |                               |
| 81    | 10   | -              | 13 2 | A L           | 0.3              |          | 10.82    | 4,84     | 811.85           | 9.46         | START PURP 13:28 METER        |
| 61    | 10   | 6              | 15 2 | A b           | 0.6              |          | 13.66    | 7.6A     | 809.01           | -            | HEADING 212090                |
| 81    | 10   | 6              | 13 2 | <b>9</b> 7    | 1.2              |          | 14.84    | 8,86     | H07 H3           |              |                               |
| 81    | 10   | 6              | 13 2 | 9.5           | 1.5              |          | 15.74    | 9,76     | HILE 95          |              |                               |
| 81    | 10   | 6              | 13 3 | 10 <b>.</b> n | 2.0              |          | 16.29    | 10.31    | HD6.38           |              |                               |
| 81    | 10   | 6              | 153  | 10.5          | 2,5              |          | 16.71    | 10.75    | H05,96           |              |                               |
| - A j | 10   | 6              | 13 3 | 51.0          | 3.0              |          | 17.07    | 11.09    | 805 <b>.6</b> 0  |              |                               |
| 81    | 10   | - 6            | 11.5 | 11.5          | ۲.5              |          | 17.34    | 11.36    | M05.33           |              |                               |
| 81    | 10   | 6              | 13 3 | 15*0          | 4.0              |          | 17.50    | 11.52    | 805.17           |              |                               |
| 81    | 10   | 6              | 13 3 | 12.5          | 4.5              |          | 17.71    | 11.73    | H04_96           |              |                               |
| - 8 1 | 10   | b              | 13 3 | 13.0          | 5.0              |          | 17.80    | 11.02    | 604.67           |              |                               |
| - 61  | 10   | 6              | 133  | la • U        | 6.0              |          | 18.01    | 12,03    | 884.66           |              |                               |
| 61    | 10   | 6              | 13 3 | 56.5          | 8.5              |          | 18.22    | 12.24    | 804,45           |              |                               |
| 81    | 10   | - 6            | 153  | 17.0          | 9.0              |          | 18,35    | 15*31    | 40 <b>4</b> 35   |              |                               |
| 61    | 10   | 6              | 133  | 10.0          | 10.0             |          | 18.47    | 15.46    | 804 50           |              |                               |
| 81    | 10   | 6              | 15 4 | 13.0          | 15.0             |          | 18.73    | 12.75    | P(13,+94         |              |                               |
| 81    | 10   | . 6            | 13 4 | 19.5          | 50.5             |          | 18.96    | 15.48    | 803.71           |              |                               |
| 81    | 10   | 6              | 13 5 | 50 <b>.</b> 2 | 55.5             |          | 19.00    | 13.05    | HU3.67           |              |                               |
| 81    | 10   | 6              | 15.5 | 53.0          | 25.0             |          | 19.04    | 13,06    | 403.63           |              |                               |
| 81    | 10   | 9              | 13 5 | 0,0           | 30.0             |          | 19,09    | 13,11    | <u>#03,58</u>    |              |                               |
| A 1   | 10   | 6              | 14   | A . U         | 40.0             |          | 19.16    | 13.18    | M03.51           |              |                               |
| 81    | 10   |                | 14 1 | 9.0           | 51.0             |          | 19.20    | 13.55    | 803.47           | _            |                               |
| R 1   | 10   | 6              | 14 2 | 1.65          | 61.0             |          | 19.25    | 13.27    | 803.42           | 9.64         | METER READING 221255 AT 14128 |
| 61    | 10   | 6              | 14 5 | 51.0          | R5.0             |          | 19.30    | 15,52    | 805.57           |              |                               |
| 81    | 10   | 6              | 15 1 | 0.0           | 105.0            |          | 19.35    | 13.55    | BO 5 34          |              |                               |
| 81    | 10   | 6              | 16   | 0.0           | 152.0            |          | 19,40    | 13,42    | NO3.27           |              |                               |
| 81    | 10   | 6              | 16 4 | 1 <b>H</b> _0 | 500.0            |          | 19.34    | 13,40    | N01.54           |              |                               |
| 81    | 10   | 6              | 17 1 | 10.0          | 250.0            |          | 19.40    | 13.42    | 603.27           |              |                               |
| 81    | 10   | 6              | 18 2 |               | 300.0            |          | 19.46    | 13,48    | 803.21           |              | METER MEADING 257430 AT 6124  |
| 81    | 10   |                | 20   | м, п          | 400.0            |          | 19,44    | 15,45    | 803,23           |              |                               |
| 81    | 10   | 6              | 21 4 | 1H 0          | 500,0            |          | 19.46    | 13.44    | 893.21           |              | METER READING 207350 AT 21148 |
| - 84  | 10   | <u><u></u></u> | 53.5 | 0.0           | 600.0            |          | 19.51    | 13,53    | MO3,16           |              | METER READING SUESED AT 25120 |
| 81    | 10   |                | 24   | 14.0          | M00.0            |          | 19.52    | 13.54    | 803.15           | <b>•</b> "F  |                               |
|       | 10   |                |      | 8.0           | 1000.0           |          | 19.53    | 13.55    | M03.14           | 4,45         |                               |
|       | 10   |                | 14 2 | 28.0          | 1500.0           |          | 14.54    | 15.61    | MA 5.0M          |              | WEIER NEADING ASUMIN          |
| - 1   | 10   |                | 10 1 | 0,10          | 1643.0           |          | 14.07    | 13,54    | 803.00<br>807.01 |              |                               |
| 81    | 10   |                |      | 0.0           | 2552.0           |          | 14.62    | 15.64    | HU1.05           | <b>0</b> 14  | METER AFADIAN 445770          |
| 21    | 10   |                | 10   | 0.0           | 1026.0           |          | 14.60    | 13,02    | 893.07           | 7.27         | WEICH HEADING BOJIIV          |
|       | 30   |                |      | 1,0           | 5442.1           |          | 10 14    | 13.04    | 803 0A           | 7,34         |                               |
| - 1   | 10   |                |      | 0.0           | 44/24"<br>5013 H |          | 14.11    | 13.71    | 802 GB           | 7,3/<br>Q 24 | METER READING 1023300         |
| 21    | 10   | 10             |      | 0 A           | 743 <b>7.</b> 0  |          | 17,07    | 13471    | NUC.440          | 7.60         | NETER REPORTS INCOME          |
|       | 1.0  | 17             | 10   |               | 241690           |          | 17010    | 12,16    | 11 C . 7 I       | 7 <b>.</b>   |                               |

1 1

# PUMP TEST SUMPARY FUR WELL/PIF70METER NUMBER = PN2, +# 20/11/81-12.07.50 ## PAGE 2

Ĭ.

Ľ

Ť.

.

Ĩ.

Ĩ.

1 1 1

| •          |      | ٢    | чне  | TEST       | SIMPARY +        | IN WELLZPIE | ZOMETER                                 | NUMBER   | - Pk        | ٤.                         | 44 207           | 11/81-12.07.50                        |         | PAGE   | J   |
|------------|------|------|------|------------|------------------|-------------|-----------------------------------------|----------|-------------|----------------------------|------------------|---------------------------------------|---------|--------|-----|
| I          | DATE |      | 11   | -1         | ELAPSED<br>TIME  | PHESSURF    | DEPTH                                   | 10<br>FW | DRAHDIINN   | NAT <u>ER</u><br>Elevation | DISCHARG<br>RATE | E COMMENTS                            |         |        |     |
| ۲R         | MON  | DAY  | HR   | MIN        | MINUTES          | PS1         | METI                                    | HES      | METRES      | METHES                     | LITHESIS         |                                       |         |        |     |
|            |      |      |      |            |                  |             |                                         |          |             |                            |                  |                                       |         |        |     |
| 41         | 10   | 11   | R    | 0.0        | 6872.0           |             | 19                                      | .71      | 13,73       | 802.96                     | 9,37             |                                       |         |        |     |
| 81         | 10   | 12   | *    | 0.0        | A312,0           |             | 19.                                     | . 7 5    | 13.75       | HA2.94                     | 9.36             |                                       |         |        |     |
| 81         | 19   | 13   | 8    | 0.0        | 9752.0           |             | 19                                      | .78      | 13,80       | 605-86                     | 9.36             | METER READIN                          | G 1664  | 150    |     |
| R 1        | 10   | 14   | A    | 0.6        | 11192.0          |             | 19                                      | . 61     | 13.83       | 802.86                     | 4,50             | INCREASE PUP                          | P RATE  |        |     |
| M 1        | 10   | 15   | - 14 | Ű.Ü        | 12632.0          |             | 50                                      | .10      | ja, j2      | 802,57                     | 9.44             | 1                                     |         |        |     |
| R 1        | 10   | 16   | M    | 0.0        | 14072.0          |             | 50                                      | .13      | 14.15       | MA5.54                     | 9.45             | METER HEADIN                          | 6 5555  | 100    |     |
| 81         | 1.0  | 17   | 8    | 0.0        | 15532.0          |             | 50                                      | .13      | 14.15       | 802,50                     | 9,41             |                                       |         |        |     |
| - 81       | 10   | 18   | ĸ    | 0.0        | 16952.0          |             | 50                                      | .16      | 14.18       | 802 <b>.</b> 51            | 9,46             | i i i i i i i i i i i i i i i i i i i |         |        |     |
| P 1        | 1.0  | 19   | 6    | 0.0        | 14305*0          |             | 20.                                     | •17      | 14.19       | 802.50                     | 9,47             |                                       |         |        |     |
| R 1        | 10   | 50   | 8    | 0.0        | 19432.0          |             | 50                                      | .19      | 14,21       | 802 <b>.4</b> 8            | 9.42             |                                       |         |        |     |
| <b>H</b> 1 | 10   | 51   |      | 0.0        | 515250           |             | 20                                      | .20      | 14.22       | A02.47                     | 9,42             |                                       |         |        |     |
| - 81       | 10   | 55   | 8    | 0.0        | 25115.0          |             | 20.                                     | .17      | 14,19       | H02.50                     | 9,4]             |                                       |         |        |     |
| 81         | 10   | 53   | H    | 0.0        | 24152.n          |             | 50                                      | .25      | 14.27       | 805.45                     | 9,39             |                                       |         |        |     |
| 81         | 10   | 29   | 8    | 0.0        | 26205.0          |             | 50                                      | - 25     | 14.27       | H05-45                     | 4.43             |                                       |         |        |     |
| - P j      | 10   | - 25 |      | 0.0        | 27032.0          |             | 50                                      | .27      | 14,29       | KU5 40                     | 9.39             | TCHANGE TO P                          | S1-FX1  | RA HUI | UŘÍ |
|            | 10   | 59   |      | 0.0        | 28472.0          |             | 56                                      | .35      | 24.34       | MO2.35                     | 0,44             |                                       |         |        |     |
|            | 10   | 27   |      | 0.0        | 54415.0          |             | 20.                                     | • 29     | 14.31       | 805.38                     | 9,41             |                                       |         |        |     |
|            | 10   | 28   |      | 0.0        | 51352.0          |             | 50                                      | . 33     | 14,35       | H02,34                     | 9,40             |                                       |         |        |     |
|            | 10   | 29   | 8    | 0.0        | 32792.0          |             | 20                                      | . 32     | 14,54       | 802.55                     | 9,59             |                                       |         |        |     |
|            | 10   | 30   |      | 0.0        | 54232.0          |             | 20.                                     | . 50     | 14,32       | NO2.37                     | 9.34             |                                       |         |        |     |
|            | 10   | 31   |      |            | 35680.0          |             | 20                                      | - 24     | 14.31       | KO2 38                     | 9.44             |                                       |         |        |     |
| 1          | 11   |      | _ !  | 51+0       | 57309.0          |             | 20                                      | . 54     | 14.56       | MO2.55                     | 9.21             |                                       |         |        |     |
|            | 11   | ~ ~  |      | 0.0        | 50002.0          |             | 20                                      | . 4 1    | 14.45       | 1112.20                    | 4.3/             |                                       |         |        |     |
| - 51       |      |      | - 2  | 0.9        | 14445.0          |             | 20                                      | • • •    | 14.57       | MP2. 12                    | 4.3/             |                                       |         | 700    |     |
|            |      | 4    |      | 0.0        | 41452.0          |             | 20                                      | .40      | 14,42       | BU2.27                     | 4.34             | - MEICH MEAUIT                        | 16 034G | 540    |     |
|            |      | - 2  | - !! | 0.0        | #30 <u>52</u> #0 |             | 211                                     | - 42     | 14.00       | HUC+23                     |                  | MECOACH19461                          | EN NEA  | 111140 |     |
|            |      | 2    |      |            | 4397242          |             | 10                                      |          | 10.00       | 896.47                     |                  | 0040000 1110                          | Ų       |        |     |
| 21         |      | 2    |      |            | 43057.5          |             | 11                                      | • 6 1    | 0.04        | 613 AG                     |                  |                                       |         |        |     |
|            |      | 2    |      | . • 7      | 43053 4          |             | 10                                      |          | 4.01        | PLA 00                     |                  |                                       |         |        |     |
|            |      | 2    |      |            | 43033.0          |             |                                         |          | 7,07<br>0 K | 613.00<br>611.60           |                  |                                       |         |        |     |
| 01         |      | -    | 11   |            | 43073.3          |             |                                         |          | 2.07        | 610-00<br>610-31           |                  |                                       |         |        |     |
|            |      | 2    | - 11 | - 4.17     | 43033,7          |             | e.<br>                                  |          | 2 1 3       | N14_23                     |                  |                                       |         |        |     |
|            | - 11 |      | 11   | 2 6        | 43034,0          |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | 2 00        | 810 69                     |                  |                                       |         |        |     |
| 81         |      |      |      | 1 1        | 43056 0          |             | ,                                       | 71       | 1 75        | A14 04                     |                  |                                       |         |        |     |
| 81         |      | Š    | - 11 | 1.5        | 41055 S          |             | ,<br>,                                  | .,,      | 1.55        | 815 04                     |                  |                                       |         |        |     |
| 81         |      | - ć  | - 11 | ,,,<br>a h | 41056 0          |             | 7                                       | 45       | 1 57        | 815 12                     |                  |                                       |         |        |     |
| 81         |      | Ś    | - 11 | 5 0        | 43057 0          |             | , ,                                     |          | 1 4 5       | 815 21                     |                  |                                       |         |        |     |
| A          | 11   | -    |      | 6.0        | 43058.0          |             | 7                                       | 14       | 1.16        | 815 1                      |                  |                                       |         |        |     |
| R I        | 11   | É    |      | M. N       | 41040.0          |             | ,<br>7                                  | .21      | 1.25        | P15 40                     |                  |                                       |         |        |     |
| 81         | 11   | - ś  | 11   | 10.1       | 41062.0          |             | ż                                       | .10      | 1.16        | H15.51                     |                  |                                       |         |        |     |
| 81         | 11   | Ś    | - 11 | 15.0       | 43067-0          |             | ,                                       | .10      | 1.12        | 815.57                     |                  |                                       |         |        |     |
| R I        | - 11 | Ś    | 11   | 0.0        | 43072.0          |             | Å                                       | .94      | 0.94        | 815.74                     |                  |                                       |         |        |     |
| ค่         | 11   | 5    | 11   | 25 n       | 45077.0          |             |                                         | 49       | 0.91        | 815 78                     |                  |                                       |         |        |     |
|            | 11   | 5    | 11   | 30.0       | 43082.0          |             | 6                                       | .85      | 0 07        | 815 A2                     |                  |                                       |         |        |     |

.

1

ŧ.

1

Ű.

l t

|   | ٠          |      | F   | Plimb | TEST | SUMMARY F       | ON WELLZPIEZ        | UMETER NUM        | HER - PH2 | *                  | ++ 20711          | /81-12.07.50 | * * | PAGE | 4 |
|---|------------|------|-----|-------|------|-----------------|---------------------|-------------------|-----------|--------------------|-------------------|--------------|-----|------|---|
|   | I          | DATE |     | 11    | Mł   | ELAPSED<br>TIME | PRESSURE<br>HEADING | DEPTH TO<br>WATER | DRAWDOWN  | WATER<br>FLEVATION | DISCHARGE<br>RATE | CUMMENTS     |     |      |   |
| • | ¥R         | MON  | D∎¥ | HF    | MIN  | MINUTES         | PS1                 | METRES            | METHES    | METHES             | LITHES/S          |              |     |      |   |
|   | 81         | 11   | 5   | 11    | 40.0 | 43092.0         |                     | 6,84              | 0,86      | 415.83             |                   |              |     |      |   |
|   | H 1        | 11   | 5   | - 11  | 50,0 | 43102.0         |                     | 6.82              | 0,84      | <i>ላየአ</i> ለካ      |                   |              |     |      |   |
|   | 81         | 11   | 5   | - 12  | 0.0  | 43112.0         |                     | F.79              | 0,81      | H15.88             |                   |              |     |      |   |
|   | 81         | - 11 | - 5 | 15    | 40.0 | 43152.0         |                     | 6.72              | 0,74      | 815.95             |                   |              |     |      |   |
|   | 81         | 11   | 5   | 13    | 50.0 | 43202.0         |                     | 6.68              | 0,70      | 815.99             |                   |              |     |      |   |
|   | A 1        | 11   | 5   | 14    | 30,0 | 43262.0         |                     | 5.64              | 0.66      | H16.03             |                   |              |     |      |   |
|   | 81         | 11   | 5   | 15    | 30.0 | 43322.0         |                     | 6.62              | 0.64      | B16.05             |                   |              |     |      |   |
|   | M1         | 11   | 5   | 16    | 15.0 | 43367.0         |                     | 6.62              | 0.04      | 816.05             |                   |              |     |      |   |
|   | 81         | 11   | 5   | 17    | 40.0 | 41452.0         |                     | 6.60              | 0.62      | 816.07             |                   |              |     |      |   |
|   | 81         | 11   | 5   | 19    | 20.0 | 43552.0         |                     | 6.58              | 0.60      | P16.09             |                   |              |     |      |   |
|   | 81         | 11   | 5   | - 21  | 20.0 | 43677.0         |                     | 6.57              | 1.59      | H16.10             |                   |              |     |      |   |
|   | 81         | 11   | 5   | - 23  | 10.0 | 437H2,0         |                     | 6,56              | 0,58      | 816,11             |                   |              |     |      |   |
|   | <b>H</b> 1 | 11   |     | 7     | 10.0 | <u>aoşkş</u> a  |                     | 6.53              | 0.55      | A16.14             |                   |              |     | •    |   |
|   | 81         | 11   | 6   | 12    | 0.0  | 44552.0         |                     | 6.52              | 0,54      | H16,15             |                   |              |     |      |   |
|   | H 1        | 11   | 6   | 16    | 0,0  | 44792.0         |                     | 4.51              | 0.53      | 816.16             |                   |              |     |      |   |
|   | 81         | 11   | 7   | 6     | 0,0  | 45752.0         |                     | 6.08              | 0,50      | 816.19             |                   |              |     |      |   |
| - | 81         | 11   | 7   | 16    | 0,0  | 46232.0         |                     | 6.47              | 0,49      | 816.20             |                   |              |     |      |   |
|   | B1         | 11   |     | 8     | 0 n  | 47192.0         |                     | 6.44              | 0.46      | 816.23             |                   |              |     |      |   |
|   | 81         | 11   | 9   | Я     | 0.0  | 48632.0         |                     | 6.43              | 0.45      | H16.24             |                   |              |     |      |   |
|   | <b>P1</b>  | 11   | 10  | 8     | 0.0  | 50072.0         |                     | 6.43              | 0.45      | #16.24             |                   |              |     |      |   |
|   | 81         | 11   | 11  |       | 0,0  | 51512.0         |                     | 6.41              | 0,43      | H16.26             |                   |              |     |      |   |
|   | 81         | 11   | 15  | 6     | 0,0  | 52952.0         |                     | 6.38              | 0.40      | H16.29             |                   |              |     |      |   |

1

Ĭ

ł

Ĩ

### MESTOJAL DHANDURN

1

Ĩ

Ì.

\*

1

1

.

1

Ť.

Ĭ

ŧ.

Ë

| ERVATION WELL | - Pr2,       |           |             |
|---------------|--------------|-----------|-------------|
|               | TTHE STAFF   |           |             |
| FLAPSED TIME  | PUMP STUPPED | PATIO     | DRAWDOWN    |
| (1)           | (11)         | (1/1)     | (5)         |
| 43052.2       |              | 253248-06 | 10.22       |
| 43052.5       |              | 86105.00  | 6.29        |
| 43052 H       | . M          | 57403.67  | 4.61        |
| 43055.0       | 1.0          | 43054.00  | 3.69        |
| 43053.3       | 1.3          | \$4442.00 | 5.49        |
| 41453.5       | 1.5          | 24702.33  | 2.46        |
| 4 054.0       | 2.6          | 21527.00  | 5,15        |
| 43054.5       | 2.5          | 17221.80  | 2.00        |
| 43055.0       | 3.0          | 14351.67  | 1.75        |
| 45055.5       | 3.5          | 12301.57  | 1.66        |
| 43056.0       | 4.0          | 10764.00  | 1,57        |
| 43057.0       | 5.0          | 8611.40   | 1.46        |
| 43058.0       | 6.0          | 7176.33   | 1.36        |
| 43060.0       | <b>F</b> .0  | 5382.50   | 1.25        |
| 43062.0       | 10.0         | 4306.20   | 1.16        |
| 43667.0       | 15.0         | 2871.13   | 1,12        |
| 43072.0       | 20.0         | 2153.60   | .96         |
| 43077.0       | 25.0         | 1723.0#   | .91         |
| 43082.0       | 30.0         | 1436.07   | .87         |
| a 1045°O      | 40.0         | 1077.30   | . 86        |
| 43102.0       | 50.0         | 862.04    | .84         |
| 43112.0       | 60.0         | 718,93    | .81         |
| 43152.0       | 100.0        | 431.52    | .74         |
| 44202.0       | 150.0        | 288.01    | .70         |
| 43595*0       | 210.0        | 206.01    | . 66        |
| 43522.0       | 270.0        | 160.45    | . 64        |
| 44367.0       | 315.0        | 137.67    | .64         |
| 43452.0       | 400.0        | 108.63    | .62         |
| 44552.0       | 500.0        | 67.10     | • 6.0       |
| 43672.0       | 620.0        | 70,44     | . 59        |
| 41762.0       | 730.0        | 59.98     | .58         |
| 44595"0       | 1210.0       | 30.54     | , 55        |
| 44552.0       | 1500.0       | 29.70     | • 54        |
| 44792.0       | 1740.0       | 25.74     | .53         |
| 45752.0       | 2700,0       | 10,95     | <b>,</b> 50 |
| 44575*0       | 3100.0       | 14.54     | .49         |
| 47192.0       | 4140.0       | 11,40     | .46         |
| 48632.0       | 5580.0       | R.72      | .45         |
| 50072.0       | 7020.0       | 7.13      | .45         |
| 51512.0       | 8460,0       | 6.09      | .43         |
| 52952.0       | 9900.0       | 5.35      | .40         |

```
.
                          GOLDER ASSOCIATES
             PUMP TEST SUMMANY FOR WELL/PIEZOMETER NUMBER -
                                                     UKL,
                          20/11/81-12.08.00
   . .
   PUMPED WELL NUMHER - PH2;
                   - H.C. HYDRO,
   CLIENT
   PPRJECT NAME
                   - HAT CREEK ENVIRONMENTAL STUDY,
   PROJECT NUMBER
                   - M121512,
   LOCATION OF TEST - HAT CHEER B.C..
                   - CUNSTANT RATE
   TYPE OF 1EST
   DATE PUMP STARTED = 6/10/01-28,0/13
   (DAY/HO/YR-HIN/HRS)
   DATE PUMP STOPPED - 5/11/81- 0,0/11
DATA ON DUSERVATION WELL
   GROUND ELEVATION -
                                        B22.40 METHES
                                             TOP OF 19MM PVC PIPE.
   DATUM PUINT -
   HEIGHT OF DATUN ABOVE GROUND LEVEL +
                                          .61 METHES
   DEPTH TO STATIC WATER LEVEL -
                                         2.43 METHES
   ELEVATION OF STATIC WATER LEVEL -
                                        820,58 METHES
                                             STANDPIPE PIEZUMETER
   TYPE OF OBSERVATION WELL +
   DEPTH OF GRAVEL PACK INTERVAL -
                                        23.06 TD 26.41 METHES
   DISTANCE FROM PHMPING WELL -
                                        90.00 METRES
DATA ON PUMPED WELL
   WELL DEAMETEN -
                                        .203 m
   PUMP TYPE -
                                             SUBMERSIBLE
FLOW MEASUNEMENT
   FLOWHETER, TYPE -
                                             DIGITAL
   PUMPING HATE +
                                     9.399E+00 LITRES/5
AQUIFER DATA
   ADDJEEN CONDITIONS -
                                             UNCONFINED
   ADUTEER DESCRIPTION -
                                             SANDY GRAVEL,
   ADUIFER THICKNESS -
                                         4.90 METRES
TEST DETAILS
   WEATHER CONDITIONS - VARIAHLE,
   TESTED BY
                   - GOLDER ASSOCIATES,
   COHMENTS
                   - HONE -
```

ĥ

ľ

1

|       |      | F   | PUMP     | TEST         | SUMMARY F        | OR WELLZPIEZ | NHETER NUMH | IER - UH1 |                    | ** 20/1           | 1/81-12.08.00 | **    | PAGE | s |
|-------|------|-----|----------|--------------|------------------|--------------|-------------|-----------|--------------------|-------------------|---------------|-------|------|---|
|       | DATE |     | 11       | ME           | ELAPSED<br>TIME  | PRESSURE     | DEPTH TO    | DRAWDOwN  | WAIFN<br>Fifvation | DISCHARGE<br>RATE | CUMMENTS      |       |      |   |
| YH    | MON  | DAY | HR       | MIN          | MINUTES          | PSI          | METHES      | METRES    | METHES             | LITHESIS          |               |       |      |   |
|       |      |     |          |              |                  |              |             |           |                    |                   |               |       |      |   |
| 0     | 0    | 0   | 0        | 0.0          |                  |              | 0,00        |           | H23.01             |                   |               |       |      |   |
| 0     | 0    | 0   | 0        | 0.0          |                  |              | 0,00        |           | 825-01             |                   |               |       |      |   |
| 81    | 10   | . 6 | 9        | 35.0         |                  |              | 2,43        |           | 420.54             |                   | PUMPING PH2   | 13158 |      |   |
| 81    | 10   | 6   | 14       | 0.0          | 32.0             |              | 2.51        | 0.00      | M20.50             |                   |               |       |      |   |
| 81    | 10   | 6   | 14       | 55.0         | 54.0             |              | 2.53        | 0,10      | 820,48             |                   |               |       |      |   |
| 81    | 10   | 6   | 14       | 41,0         | 73.0             |              | 2.52        | 0,09      | 820,49             |                   |               |       |      |   |
| 81    | 10   | 6   | 14       | 53.0         | 85.0             |              | 2.51        | 0,08      | K20,50             |                   |               |       |      |   |
| 81    | 10   | 6   | 16       | 4.0          | 156,0            |              | 2.54        | 0.11      | A20_47             |                   |               |       |      |   |
| 81    | 10   | 6   | 16       | 45.0         | 197.0            |              | 2,54        | 0.11      | H20_47             |                   |               |       |      |   |
| - 81  | 10   | - 6 | 17       | 35.0         | 247.0            |              | 2.54        | 0.11      | 820.47             |                   |               |       |      |   |
| 81    | 10   | Ð   | 18       | 25.0         | 247.0            |              | 2.54        | 0.11      | 620.47             |                   |               |       |      |   |
| A J   | 10   | •   | 50       | 5,0          | 397.0            |              | 2,53        | 0,10      | 850*14             |                   |               |       |      |   |
| - A I | iv   | ÷   | - 21     | 45 ņ         | 497 <u>.</u> 0   |              | 2,53        | 0,10      | H20,4H             |                   |               |       |      |   |
| 81    | 10   | 7   | 10       | 40.0         | 1272.0           |              | 2,57        | 0,14      | M50+44             |                   |               |       |      |   |
| 81    | 10   | 7   | 14       | 24.0         | 1500.0           |              | 2.57        | 0.14      | A20.44             |                   |               |       |      |   |
| 81    | 10   | 7   | 18       | 47.0         | 1639.0           |              | 2,56        | 0.13      | 820,45             |                   |               |       |      |   |
| 81    | 10   | A   |          | 0.0          | 2552.0           |              | 2,58        | 0.15      | 420.43             |                   |               |       |      |   |
| 81    | 10   |     | 10       | 0 <b>,</b> n | 2672.0           |              | 2,61        | 0,1A      | 820,40             |                   |               |       |      |   |
| 81    | 10   | 9   | H        | 0.0          | 3992.0           |              | 2.52        | 0.09      | H50.44             |                   |               |       |      |   |
| 81    | 10   | 9   | 18       | 0.0          | 4472.0           |              | 2,52        | 0.09      | N50-98             |                   |               |       |      |   |
| 81    | 10   | 10  |          | 0.0          | 5432.0           |              | 2,56        | 0,13      | A20.45             |                   |               |       |      |   |
| 81    | 10   | 10  | 16       | 0.0          | 5912.0           |              | 2,55        | 0.15      | 820.46             |                   |               |       |      |   |
| 81    | 10   | 11  | . 8      | 0.0          | 6872.0           |              | 2,57        | 0.14      | M20.44             |                   |               |       |      |   |
| 81    | 10   | 12  |          | 0.0          | A315°0           |              | 2,56        | 0,13      | A50.45             |                   |               |       |      |   |
|       | 10   | 13  | . 8      | 0.0          | 9752.0           |              | 2.56        | 0,13      | 820.45             |                   |               |       |      |   |
| 81    | 10   | 14  | 8        | 0.0          | 11192.0          |              | 2,58        | 0.15      | N20.43             |                   |               |       |      |   |
| P 1   | 10   | 15  | . 8      | 0.0          | 15935.0          |              | 2.59        | 0.15      | M20.42             |                   |               |       |      |   |
| 81    | 10   | 16  | . 8      | 0.0          | 14072.0          |              | 2.57        | 0.14      | 820.44             |                   |               |       |      |   |
| 81    | 10   | 17  | 7        | 55.0         | 15507.0          |              | 2.54        | 0.11      | H20.47             |                   |               |       |      |   |
| R 1   | 10   | 16  |          | 55,0         | 16947.0          |              | 2,54        | 0.11      | R20,47             |                   |               |       |      |   |
| 61    | 10   | 19  | 7        | 55.0         | 18387.0          |              | 2.55        | 0.15      | H20.43             |                   |               |       |      |   |
| 81    | 10   | 50  | ĉ        | 9.0          | 19841.0          |              | 2.54        | 0,11      | 820 <b>.47</b>     |                   |               |       |      |   |
| 61    | 10   | 51  | <u> </u> | 8.0          | 21280.0          |              | 2.54        | 0.11      | A20.47             |                   |               |       |      |   |
| 61    | 10   | 55  | 1        | 57.0         | 22709.0          |              | 2.53        | 0,10      | K20.4M             |                   |               |       |      |   |
| 81    | 10   | 53  | 1        | 55.0         | 24147.0          |              | 2.53        | n.10      | N20,4N             |                   |               |       |      |   |
| A I   | 10   | 24  | 1        | 57.0         | 25589.0          |              | 2,52        | 0,09      | H20,49             |                   |               |       |      |   |
| 81    | 10   | 25  |          | _8.0         | 27040.0          |              | 2,48        | 0.05      | 820,53             |                   |               |       |      |   |
|       | 10   | 56  |          | 57 0         | 28469,0          |              | 2,54        | 0,11      | H20.47             |                   |               |       |      |   |
| 61    | 10   | 51  | _ 7      |              | 29907.0          |              | 2.55        | 0.15      | M20.46             |                   |               |       |      |   |
| - 11  | 10   | 24  | 1        | 55.0         | 31347.0          |              | 2.55        | 0,12      | H20.46             |                   |               |       |      |   |
| A 1   | 10   | 59  |          | 55.0         | 32787.0          |              | 2.57        | 0,14      | P20.44             |                   |               |       |      |   |
| 81    | 10   | 30  | <u>1</u> | 55.0         | 54227.0          |              | 2,56        | 0,13      | 820,45             |                   |               |       |      |   |
| 81    | 10   | 31  | 8        | 5.0          | 35677.0          |              | 2.57        | 0,14      | N20,44             |                   |               |       |      |   |
| - M T | 11   | 1   |          | 55.0         | 37107.0          |              | 2.57        | 0.14      | 820,44             |                   |               |       |      |   |
| 81    | 11   | - 2 | 7        | 55.0         | 58547 <b>.</b> 0 |              | 2.61        | 0.1A      | P50.40             |                   |               |       |      |   |

. . . . . . . . . . . .

1

.

| ٠     |      | ٢   | UMP TES | T SUMPARY F | OM WELL/PIEZ | DHETER HUMH | EH - 061 | *               | ** 20/11/H1-12,0H.00 ** PAUE | 5 |
|-------|------|-----|---------|-------------|--------------|-------------|----------|-----------------|------------------------------|---|
|       | DATE |     | TIME    | + LAPSED    | PHESSURE     | DEPTH TO    | DRAWDDWN | WATER           | DISCHANGE COMMENTS           |   |
|       |      |     |         | 71 MF       | READING      | WATER       |          | FLEVATION       | HAIE                         |   |
| YR    | MON  | DAY | HR MIN  | MINUTES     | PSI          | METRES      | METHES   | METRES          | L 1 1HE 5/5                  |   |
| 81    | 11   | 3   | 7 55.   | n 39987.n   |              | 2.56        | 0.15     | 820,45          |                              |   |
| 61    | 11   | 4   | 1 55.   | 0 41427.0   |              | 2.50        | 0.15     | 820.45          |                              |   |
| - P 1 | 11   | 5   | 7 55    | 0 42867.0   |              | 2.53        | 0.10     | 828 <b>.</b> 48 |                              |   |
| 81    | 11   | 5   | 11 30   | 0 45082.0   |              | 2.45        | 0.02     | 420.50          | RECOVERY IN PW2 11:00        |   |
| - A J | 11   | 5   | 12 45.  | 0 43157.0   |              | 2.43        | 0.00     | 820,58          |                              |   |
| 81    | 11   | 5   | 15 45   | n 43537 n   |              | 2.40        | -0,03    | 820,61          |                              |   |
| - Aj  | 11   | 5   | 17 40.  | 0 43452.0   |              | 2.40        | =0,05    | 820.61          |                              |   |
| - 81  | 11   | 5   | 19 25   | 0 43557.0   |              | 2.40        | -0,03    | 820.61          |                              |   |
| 61    | 11   | 5   | 23 5    | 0 43777.0   |              | 2,40        | -0.03    | 820.61          |                              |   |
| 81    | 11   |     | 7 15.   | 0 44267.0   |              | 2.40        | -0,03    | H20.61          |                              |   |
| 81    | 11   | 6   | 12 0.   | 0 44552.0   |              | 2.58        | -0.05    | H20.63          |                              |   |
| 6)    | - 11 | 6   | 16 0.   | 0 44792.0   |              | 2.40        | -0.03    | 820.61          |                              |   |
| 81    | 11   | 7   | - A - 0 | 0 45752.0   |              | 2,43        | 0.00     | 828,58          |                              |   |
| 81    | 11   | 7   | 16 0    | 0 46232.0   |              | 2.47        | 0.04     | M20,54          |                              |   |
| 81    | 11   | н   | ΒÚ,     | a 47192.a   |              | 2 48        | 0.05     | H20.53          |                              |   |
| 81    | 11   | 9   | A D     | 0 48632.0   |              | 2.46        | 0,03     | P20.55          |                              |   |
| 61    | 11   | 10  | A 0.    | 0 50072.0   |              | 2.42        | -0,01    | 820.59          |                              |   |
| - 81  | 11   | 11  | 8 0     | 0 51512.0   |              | 2.40        | -0.03    | H20,61          |                              |   |
| 81    | - 11 | 12  | A 0.    | 0 52952.0   |              | 2.37        | -0.06    | 820.64          |                              |   |

.

Ď

١

#### RESIDUAL DRABUDAN

**X** 

i i

### OBSERVATION HELL - OHL.

t

t

Ĩ

1

É

|              | 11MF SINCE   |         |          |
|--------------|--------------|---------|----------|
| FLAPSED TIME | РИМР ЗТОРРЕВ | RATIO   | DRAWDOwN |
| (1)          | (11)         | (1711)  | (5)      |
| 43042.0      | 30.0         | 1436.07 | .02      |
| 43157.0      | 105.0        | 411.02  | .00      |
| 43537,0      | 245.0        | 152.00  | ÷.03     |
| 43452.0      | 400.0        | 108.63  | • 03     |
| 43557.0      | 505.0        | An. 25  | • 03     |
| 43777.0      | 725.0        | 60.38   | • 0 3    |
| 44267.0      | 1215.0       | 36.43   | • 03     |
| 44552.0      | 1500.0       | 29.70   | •.05     |
| 44192.0      | 1740.0       | 25.74   | - 03     |
| 45752.0      | 2700.0       | 16,95   | .00      |
| 46232.0      | 3180.0       | 14.54   | .04      |
| 47192.0      | 4140.0       | 11.40   | 0.5      |
| 48632.0      | 5580.0       | 8.72    | .03      |
| 50072.0      | 7020.0       | 7.13    | •.01     |
| 51512.0      | 8460.0       | 6.09    | - 01     |
| 52952.0      | 9400.0       | 5.35    | - 06     |

٠ GULDER ASSOCIATES ٠ ٠ ٠ . . PUMP TEST SUMMARY FOR WELL/PIFZOMETER NUMBER . UP5. 20/11/81-12.08.00 ٠ PUMPED WELL NUMBER - PW2. - P.C. HYCRO, ١ CLIENT . HAT CHEEK ENVIRONMENTAL STUDY, PROJECT NAME PROJECT NUMBER - #121512, - HAT CHEEK H.C.. LOCATION OF TEST - CONSTANT RATE TYPE OF 1EST DATE PUMP STANTED + 6/10/81-28.0/13 (DAY/MO/YR+MIN/HRS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON DESERVATION WELL GRIUND ELEVATION -H23.60 METHES DATUM POINT -TOP OF WELL SEAL, .25 METHES HEIGHT OF DATUM ABOVE GROUND LEVEL -DEPTH TO STATIC WATER LEVEL -7.28 METHES B16.57 METRES ELEVATION OF STATIC HATER LEVEL -TYPE OF UNSERVATION WELL -SCRFENED WELL 30.00 TH 32.90 METRES DEPTH OF SCHEENED INTERVAL -122.00 METHES DISTANCE FRUM PUMPING WELL + DATA ON PUMPED WELL WELL DIAMETER -.203 m SUMMEPSTHLE PUMP TYPE . FLOW MEASUREMENT FLOWMETER, TYPE -DIGITAL, 9.3991+00 LITHES/S PUMPING HATE -AQUEFER DATA AUUIFER CONDITIONS -UNCONFINED AQUIFER DESCRIPTION -SANDY GRAVEL. 2.40 METRES AQUIFER THICKNESS . TEST DETAILS WEATHER CONDITIONS - VARIAHLE, TESTED BY - GOLDER ASSOCIATES, COMMENTS - NUME,

|           | DATE |        | 10      | *E   | ELAPSED<br>TIME | PRESSURE | DEPTH TO<br>WATER | DRAHDUHN       | ATER<br>FLEVATEIN | DISCHARGE<br>Halt | COMMENTS              |
|-----------|------|--------|---------|------|-----------------|----------|-------------------|----------------|-------------------|-------------------|-----------------------|
| ¥ F       | MON  | D A Y  | Hk      | MIN  | MENDIES         | 431      | METHES            | METRES         | METHES            | LITHES/S          |                       |
| ſ         | 0    | Û      | 0       | 0.0  |                 |          | 0.00              |                | H23.85            |                   |                       |
| C C       | 0    | 0      | 0       | 0,0  |                 |          | 0.00              |                | H23,H5            |                   |                       |
| 61        | 10   | 6      | 9       | 45,0 |                 |          | 7,28              |                | H16.57            |                   | PUMPING PW2 13128     |
| 81        | 10   | 6      | 14      | 5.0  | 37.0            |          | 7,50              | 0,22           | H16,35            |                   | INSTALL PUMP AND FILL |
| 81        | 10   | 6      | 14      | 24,0 | 5A,0            |          | 7,52              | 0.24           | P16.53            |                   | PRESSURE TANK         |
| 81        | 10   | 7      | 10      | 45,0 | 1277.0          |          | 7.64              | 0.36           | P16,21            |                   |                       |
| 81        | 10   | 6      |         | 5°*u | 2577.0          |          | 7.64              | 0.36           | 816.21            |                   |                       |
| - A (     | 10   | 9      | R       | 10,0 | 4005*0          |          | 7,67              | 0.34           | A10,18            |                   |                       |
| P 1       | . 10 | 10     | 8       | 15.0 | 5447.0          |          | 7,69              | 0,41           | 816,16            |                   |                       |
| 81        | 10   | - 11   | 8       | 10,0 | PHH5*0          |          | 7.71              | 0.43           | K1n,14            |                   |                       |
| 81        | 10   | 15     | A,      | 10,0 | H322.0          |          | 7,72              | 0.44           | A14.13            |                   |                       |
| <u>81</u> | 10   | 13     | A       | 10,0 | 9762.0          |          | 7,74              | 0.46           | H16.11            |                   |                       |
| A 1       | 10   | 14     | H.      | 15.0 | 31207.0         |          | 7,75              | 0,47           | P16,10            |                   |                       |
|           | to   | 15     |         | 10,0 | 15645.0         |          | <u>'•</u>         | 0 4 9          | H16,00            |                   |                       |
|           | 10   | 10     |         | 10.0 | 14042.0         |          | 1.14              | 9.71           | 815,85            |                   |                       |
|           | 10   | - 11   |         | 7,0  | 17517.0         |          | 7.00              | 11.7C          | n   0 , 0 3       |                   |                       |
|           | 10   | 10     | 2       | 10,0 | 14307.0         |          | 1.02              | (* 14<br>() EE | <i>ala</i> .03    |                   |                       |
|           | 10   | 20     | 0       | 1,0  | 10347-0         |          | 7.00              | 0.77           | 816 01            |                   |                       |
| 81        | 10   | 20     |         | 18 0 | 21290 0         |          | 7 85              | 0.57           | 816.00            |                   |                       |
|           | 10   | 52     | , R     | 10.0 | 2427020 n       |          | 7.67              | 0.59           | A15 0A            |                   |                       |
|           | 10   | 21     |         | 5 0  | 20157.0         |          | 7.87              | 0.59           | 815.98            |                   |                       |
| 81        | 10   | 24     | . N     | 10.0 | 25602.0         |          | 7 86              | 0.40           | H15.97            |                   |                       |
| 8         | 10   | 25     | 8       | 15.0 | 27047 0         |          | 7.89              | 0.61           | H15.96            |                   |                       |
| A         | 10   | 26     | M       | 10.0 | 28482.0         |          | 7.90              | 0.62           | 415.95            |                   |                       |
| 8         | 10   | 27     | 8       | 5.0  | 29917.0         |          | 7.92              | 0.64           | A15.93            |                   |                       |
| 81        | 10   | 28     | A       | 6.0  | 31354.0         |          | 7,93              | 0.65           | R15,92            |                   |                       |
| B         | 10   | 29     | R       | 10.0 | 35995*0         |          | 7,94              | 0,66           | H15,91            |                   |                       |
| 61        | 10   | 30     | Ĥ       | 6,0  | \$423A,n        |          | 7,95              | 0.67           | #15,90            |                   |                       |
| 8 (       | 10   | 31     | 8       | 50.0 | 35642.0         |          | 7.96              | 0.68           | 815,89            |                   |                       |
| 81        | 11   | 1      | - 1     | 50,0 | 37102.0         |          | 7,97              | 0.49           | 815.AB            |                   |                       |
| M 1       | . 11 | 5      | H       | 6,0  | 34558.0         |          | 7,97              | 0.69           | 815 NA            |                   |                       |
| 81        | 11   | 3      | м       | 5.0  | 34997.0         |          | 7,99              | 0.71           | 815,86            |                   |                       |
| 81        | 11   | 4      | B       | h.0  | 41438.0         |          | A,00              | 0.72           | M15,85            |                   |                       |
|           | 11   | 5      | M       | -0.0 | 42H7H.N         |          | N 02              | 1,74           | H15,H3            |                   |                       |
| H         | 11   | 5      | 15      | 50.0 | 43162.0         |          | 7,76              | 0 <b>4</b> H   | 816,09            |                   | NECOVERA IN NMS 11100 |
| 81        | 11   | 5      | 13      | 20.0 | 41145.0         |          | 7.75              | n <b>u</b> 7   | 816,10            |                   |                       |
| H 1       | 11   | 2      | 15      | 50.0 | 45542.0         |          | 1.15              | 0,45           | 416,12            |                   |                       |
| р.<br>А.  |      |        |         | 20.0 | 44272.0         |          | 7.00              | 0 5 B          | MIN,19            |                   |                       |
| (1)<br>2  | 11   |        | 12      |      | 44772.0         |          | 7.07              | 11 1 1<br>A 31 |                   |                   |                       |
|           | 11   |        | 10      | 0,0  | 44747.U         |          | 7,73<br>7 LM      | 14 C 3         |                   |                   |                       |
|           | 11   | ,      | 16      | 5.0  | 4.212 4         |          | 7 60              | 0 10           | 816.25            |                   |                       |
| , н<br>н  | 1 1  | ,<br>k | 10<br>H | 0 0  | 47192 0         |          | 7                 | 0 42           |                   |                   |                       |
|           |      |        |         |      |                 |          |                   |                |                   |                   |                       |

. . . . . . . . . . . . . . .

8

•

| ŧ   |      |     | PUMP | TEST | SUMPARY F       | OR WELL/PIEZ | THE TER       | NUMBER    | + tt     | m2,                | ** 50/11          | 781-12.08.00 |
|-----|------|-----|------|------|-----------------|--------------|---------------|-----------|----------|--------------------|-------------------|--------------|
|     | DATE |     | 111  | ٩F   | ELAPSED<br>TIME | PRESSURE     | DEPTH<br>WATE | 10 I<br>H | DRAKDOwN | WATER<br>Flfvation | DISCHARGE<br>RAIF | COMMENTS     |
| ¥ R | MON  | DAY | г ня | MIN  | MENUTES         | PSI          | METH          | E 5       | METRES   | METHES             | LITRESIS          |              |
| A 1 | 11   | 10  | н (  | 0.0  | 50072.0         |              | 7.            | 58        | 0,30     | B16.27             |                   |              |
| 81  | 11   | 11  | і В  | 0.0  | 51512.0         |              | 7.            | 57        | 0_24     | H16.28             |                   |              |
| 81  | 11   | 12  | Р В  | 0.0  | 52952 0         |              | 7.            | 57        | 0.29     | 816.2H             |                   |              |

. . . . . . .

1

1

Ì

## PAGE 3

Î

#### RESEDUAL DRANDOWN

OMSERVATION WELL - OW2,

|              | TTME STPLE   |        |          |
|--------------|--------------|--------|----------|
| FLAPSED TIME | PUMP STUPPED | PATIO  | DHAwDOwN |
| (1)          | (1)          | (1711) | (5)      |
| 45162.0      | 110.0        | 392.38 | .46      |
| 41142.0      | 140.0        | 508.51 | .47      |
| 43542.0      | 290.0        | 149.46 | .44      |
| 44212.0      | 1220.0       | 36.29  | • 34     |
| 44552.0      | 1500.0       | 29,70  | .37      |
| 44742.0      | 1740_0       | 25.74  |          |
| 45752.0      | 2700_0       | 16.95  | . 50     |
| 46232.0      | 3140.0       | 14.54  | • 35     |
| 47192.0      | 4140.0       | 11.40  | . 32     |
| 48652.0      | 5580.0       | 8.72   | .31      |
| 50072.0      | 7020.0       | 7.13   | . 50     |
| 51512.0      | 8460.0       | 6.04   | .29      |
| 52452.0      | 9900.0       | 5,35   | 20       |

. . GOLDER ASSOCIATES . . . . . . . . . PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMBER -U=3, 20/11/01-12.08.05 PUMPED WELL NUMBER - PW2, CLIENT - H.C. HYDRO, PROJECT NAME - HAT CREEK ENVIRONMENTAL STUDY, PROJECT NUMBER + #121512, LOCATION OF TEST . . HAT CHEEK B.C.. TYPE OF TEST - CONSTANT HATE DATE PUMP STARTED - 6/10/81-28.0/13 (DAY/HO/YR-HIN/HRS) DATE PUMP STUPPED . 5/11/81- 0.0/11 DATA ON OBSERVATION WELL GROUND ELEVATION + H22.20 METRES DATUM PUINT -TOP OF CASING, HEIGHT OF DATUM ABOVE GROUND LEVEL -.61 METRES DEPTH TO STATIC WATER LEVEL + 6,11 METHES H16.70 HETHES FLEVATION OF STATIC HATER LEVEL . TYPE OF OBSERVATION WELL . SCREENED WELL DEPTH OF SCREENED INTERVAL -23,80 TO 26,20 METRES DISTANCE FROM PHMPING WELL -47.00 METHES DATA ON PHIMPED WELL WELL DIAMETER + .203 m PUMP TYPE + SUBMERSIBLE FLOW MEASUREMENT DIGITAL FLOWMETER, TYPE -PUMPING HATE -9.3991+00 LITHES/S AQUIFER DATA UNCONFINED AQUIFER CONDITIONS -AQUIFER DESCRIPTION -SAPDY GRAVEL, ARIITER THICKNESS -6.4 METHES TEST DETAILS WEATHER CONDITIONS . VARIABLE, TESTED BY - GULDER ASSOCIATES, COMMENTS + NONE,

| I            | DATE |          | 10       | <b>*†</b> | ELAPSED<br>TIHE | PRESSURE<br>READING | DEPTH TO<br>NATER | DRANDOwN | WATER<br>FLEVATION | DISCHAPLE<br>Hate | CUMMENTS          |
|--------------|------|----------|----------|-----------|-----------------|---------------------|-------------------|----------|--------------------|-------------------|-------------------|
| ¥ H          | MON  | DAY      | HR       | HIN       | MINUTES         | PSI                 | HETRES            | HETHES   | HETHES             | LITHES/S          |                   |
| 0            | n    | 0        | 0        | 0.0       |                 |                     | 0,00              |          | 822.81             |                   |                   |
| 0            | 0    | 0        | 0        | 0.0       |                 |                     | 0.00              |          | 822.81             |                   |                   |
| 81           | 10   | 6        | 4        | 50.0      |                 |                     | 6.11              |          | H16.70             |                   |                   |
| 81           | 10   | 6        | 13       | 25.0      |                 |                     | 6.11              |          | 816.70             |                   |                   |
| 81           | 10   | 6        | 13       | 24.5      | 0.5             |                     | 6.13              | 0.02     | 816.68             |                   | PUMPING PH2 13128 |
| 81           | 10   | 6        | 13       | 29.0      | 1.0             |                     | 6.19              | 0,04     | 810.62             |                   |                   |
| 81           | 10   | h        | 13       | 29.5      | 1.5             |                     | 6.26              | 0,15     | M16.55             |                   |                   |
| 81           | 10   | 6        | 13       | 30.0      | 2.0             |                     | 6.34              | 0.23     | H16.47             |                   |                   |
| 81           | 10   | b        | 13       | 30.5      | 2.5             |                     | 6.41              | 0.30     | R16.40             |                   |                   |
| 81           | 10   | 6        | 15       | 31.0      | 3.0             |                     | 6.48              | 0.37     | H16.35             |                   |                   |
| 81           | 10   |          | 13       | 32.0      | 4.0             |                     | 6.60              | 0,49     | 816.21             |                   |                   |
| 81           | 10   | 6        | 13       | 33.0      | 5.0             |                     | 6,70              | 0,59     | A16.11             |                   |                   |
| 81           | 10   | h        | 13       | 34.0      | 6.0             |                     | 6.77              | 0.65     | 816.04             |                   |                   |
| 81           | 10   |          | 13       | \$6.0     | 8.0             |                     | 6.90              | 0,79     | H15.91             |                   |                   |
| - <b>R</b> J | 10   | 6        | 15       | 38.0      | 10.0            |                     | 6.9B              | 0.47     | H15.H3             |                   |                   |
| Ai           | 10   | <b>±</b> | -13      | 43.0      | 15.0            |                     | 7.11              | 1,00     | R15,70             |                   |                   |
| 81           | 10   | 6        | 13       | 48.0      | 20.0            |                     | 7.18              | 1.07     | 815.65             |                   |                   |
| - R J        | 10   | 6        | 13       | 51.0      | 25.0            |                     | 1.22              | 1.11     | 815.59             |                   |                   |
| 81           | 10   | 6        | 13       | 58.0      | 59.0            |                     | 7.25              | 1.14     | P15.56             |                   |                   |
| <b>P</b> 1   | 10   | 6        | 14       | н, о      | 40.0            |                     | 7.27              | 1,16     | *15.54             |                   |                   |
| 81           | 10   | 6        | 14       | 18.0      | 50.0            |                     | 7.28              | 1.17     | H15.53             |                   |                   |
| 81           | 10   | •        | 14       | 2H,0      | 60.0            |                     | 7.30              | 1.19     | P15,51             |                   |                   |
| 81           | 10   | 6        | 14       | 49.0      | 81.0            |                     | 7.31              | 1,20     | 415,50             |                   |                   |
| 81           | 10   | 6        | 15       | н, о      | 100.0           |                     | 7.33              | 1.22     | 815.48             |                   |                   |
| 81           | 10   | 6        | 15       | 58.0      | 150.0           |                     | 7.55              | 1,24     | 815,46             |                   |                   |
| 81           | 10   | 6        | 16       | 48.0      | 200.0           |                     | 7.36              | 1.25     | 815,45             |                   |                   |
| 81           | 10   | 6        | 17       | 38.0      | 250.0           |                     | 7.57              | 1.26     | A15.44             |                   |                   |
| 81           | 10   | 6        | 18       | 54.0      | 300.0           |                     | 7.39              | 1,28     | 815,42             |                   |                   |
| R 1          | 10   | ħ        | 50       | N.0       | 400,0           |                     | 7.37              | 1.26     | R15,44             |                   |                   |
| 81           | 10   | ÷        | 21       | 48.0      | 500.0           |                     | 7.38              | 1.27     | 815.43             |                   |                   |
| H 1          | 10   | th i     | - 23     | 2M.O      | 600.O           |                     | 7.40              | 1.29     | 815.01             |                   |                   |
| P 1          | 10   | 7        | - 2      | 48.0      | 800.0           |                     | 7.41              | 1.30     | H15.40             |                   |                   |
| 81           | 10   | 7        | . 6      | . H.O     | 1000*0          |                     | 7.42              | 1.31     | P15.39             |                   |                   |
| 81           | 10   | 7        | 14       | 54.0      | 1500.0          |                     | 7.45              | 1.54     | 815,36             |                   |                   |
| - M L        | 10   | 7        | İÐ       | 55.0      | 1847.0          |                     | 7.45              | 1.34     | 815.30             |                   |                   |
| - 41         | 10   | A        |          | 0.0       | 2552.0          |                     | 7.49              | 1.38     | 815.32             |                   |                   |
| 81           | 10   | Ņ        | 16       | 0.0       | 3032.0          |                     | 7.50              | 1.39     | 815.41             |                   |                   |
| A 1          | 10   | 9        | R        | 0.0       | 3492.0          |                     | 7.54              | 1.45     | #15.27             |                   |                   |
| 81           | 10   | 9        | 16       | 0.0       | 4472.0          |                     | 7.55              | 1.44     | #15,28             |                   |                   |
| - 81         | 10   | 10       | н        | 0,0       | 5432.0          |                     | 7.57              | 1.46     | H15,24             |                   |                   |
| 81           | 10   | 10       | 16       | 0.0       | 5912.0          |                     | 7,59              | 1.48     | A15.22             |                   |                   |
| 81           | 10   | 11       | 8        | 0.0       | 6472.0          |                     | 7.61              | 1.50     | 415.20             |                   |                   |
| M 1          | 10   | 15       | н        | 0.0       | H312.D          |                     | 7.64              | 1.53     | H15.17             |                   |                   |
| 81           | 10   | 13       | R.       | 0.0       | 9752.0          |                     | 7.68              | 1.57     | H15,13             |                   |                   |
| - 81         | 10   | 14       | <b>H</b> | 30.0      | 11555*0         |                     | 7,71              | 1.60     | H15.10             |                   |                   |

Ĭ.

ï

PUMP TEST SUMPARY FUR WELL/PIEZOMETER NUMBER - 063,

Ť.

1

\*

## 20/11/01+12.08.05 ## PAGE 3

Ť.

ł

| 1     | DATE |     | TI    | 46      | ELAPSED<br>TTME | PPE SSURE<br>READING | DEPTH TO<br>MATER | DRAWDUwn | WATER<br>FIEVATION | DISCHARGE<br>RATE | COMMENTS           |
|-------|------|-----|-------|---------|-----------------|----------------------|-------------------|----------|--------------------|-------------------|--------------------|
| YR    | MON  | DAY | HN    | MIN     | MINUTES         | P51                  | METHES            | METHES   | METHES             | LITHES/S          |                    |
| Aj    | 10   | 15  | H     | 0.0     | 12632.0         |                      | 7.76              | 1.65     | 815.05             |                   |                    |
| 81    | 10   | 16  | R     | 0.0     | 14072.0         |                      | 7,78              | 1.67     | M15.03             |                   |                    |
| 61    | 10   | 17  | 8     | 0.0     | 15512.0         |                      | 7,80              | 1.69     | 815.01             |                   |                    |
| 61    | 10   | 18  | 8     | 0.0     | 16952.0         |                      | 7,82              | 1.71     | N14.99             |                   |                    |
| 81    | 10   | 19  | H     | 0.0     | 18392.0         |                      | 7_84              | 1.73     | H14 97             |                   |                    |
| 81    | 10   | 50  | 8     | 0.0     | 14832.0         |                      | 7.86              | 1.75     | 814 95             |                   |                    |
| 81    | 10   | 21  | 8     | 3,0     | 21275.0         |                      | 7.A8              | 1.77     | 814,93             |                   |                    |
| 81    | 10   | 55  | 8     | 5.0     | 22717.0         |                      | 7.90              | 1.79     | H14 91             |                   |                    |
| 81    | 10   | 23  | H     | 3.0     | 24155.0         |                      | 7,92              | 1.81     | A14,89             |                   |                    |
| 81    | 10   | 24  |       | 4.0     | 25596.0         |                      | 7,93              | 1,42     | HJU, AB            |                   |                    |
| 81    | 10   | 25  |       | 4.0     | 27036.0         |                      | 7.94              | 1.63     | 814 A7             |                   |                    |
| 81    | 10   | 26  | N     | 4.0     | 28476.0         |                      | 7.47              | 1.46     | M10 M0             |                   |                    |
| 81    | 10   | 27  | 8     | 3.0     | 29915.0         |                      | 7.98              | 1.87     | A14.83             |                   |                    |
| A 1   | 10   | 28  | 8     | 3.0     | 31355.0         |                      | 8.00              | 1.89     | 814.81             |                   |                    |
| 81    | 10   | 29  | 5     | 3.0     | 32795.0         |                      | e.02              | 1.91     | 814.79             |                   |                    |
| 81    | 10   | 30  | A     | - 2 î n | 34234.0         |                      | P.03              | 1.92     | H14 7H             |                   |                    |
| 81    | 10   | 31  | 6     | 12.0    | 356A4.0         |                      | 8.03              | 1 9      | A14 7A             |                   |                    |
| 81    | 11   | - 1 | 6     | 0.0     | 37112.0         |                      | R. 06             | 1.95     | H 4 75             |                   |                    |
| 81    | 11   | 2   | A     | 2.0     | 38554.0         |                      | 8.07              | 1.96     | B14 74             |                   |                    |
| 81    | 11   | 3   | R     | 2.0     | 34994.0         |                      | H 0H              | 1.97     | H14.73             |                   |                    |
| 81    | 11   | ā   | 8     | 3.0     | 41435.0         |                      | 8.10              | 1.99     | 814.71             |                   |                    |
| 81    | 11   | 5   | 8     | 3.0     | 42875.0         |                      | 8.11              | 2.00     | H14.70             |                   |                    |
| 81    | 11   | Ś   | 11    | 0.0     | 43052.0         |                      | 8.11              | 2.00     | H14 70             |                   | RECOVERY PH2 11100 |
| 81    | 11   | Ś   | 11    |         | 43052.3         |                      | M.10              | 1.90     | R14 71             |                   |                    |
| HI    | 11   | 5   | 11    | Ā       | 41052.8         |                      | 8.06              | 1.95     | 814.75             |                   |                    |
| 81    | 11   | ŝ   | 11    | - 1.3   | 43053.3         |                      | B.00              | 1.89     | 814_ <b>8</b> 1    |                   |                    |
|       | 11   | ś   | 11    | 1.6     | 44053.8         |                      | 7.91              | 1.80     | 814.90             |                   |                    |
| 81    | 11   | ŝ   | 11    | 2.3     | #305#.3         |                      | 7.83              | 1.72     | 814,98             |                   |                    |
| AI    | 11   | ś   | 11    | 2.8     | 41054 8         |                      | 7 75              | 1.64     | 815.06             |                   |                    |
| 81    |      | Ś   | 11    | 3.8     | 41055.8         |                      | 7.62              | 1.51     | 415.19             |                   |                    |
| 81    | 11   | Ś   | 11    | 4.8     | 4305 N. H       |                      | 7.52              | 1.41     | 815.29             |                   |                    |
| 81    | 11   | Ś   | 11    | 5.8     | 44057.8         |                      | 7.45              | 1.34     | H15.36             |                   |                    |
| 81    |      | Ś   |       | 8.0     | 43060.0         |                      | 7.34              | 1.23     | 615.47             |                   |                    |
| 81    |      | Ś   | - 11  | 10.0    | 43062.0         |                      | 7.26              | 1.15     | 615.55             |                   |                    |
| 81    |      | Ś   | 11    | 15.0    | 43067.0         |                      | 7.16              | 1.05     | 815.65             |                   |                    |
| A     | 11   | Ś   | 11    | 20.0    | 41072.0         |                      | 7.09              | 0.94     | R15.72             |                   |                    |
|       |      | Ś   | 11    | 25.0    | 43077.0         |                      | 7.05              | 0.94     | B15.76             |                   |                    |
| 81    |      | ΞĹ. | 11    | \$0.0   | 44082.0         |                      | 7.02              | 0.91     | 815.79             |                   |                    |
|       |      | Ś   |       | 40.0    | 43092.0         |                      | 6.9H              | 0.47     | 815.8T             |                   |                    |
| 81    |      | ś   | 11    | 50.0    | 41102.0         |                      | 6.96              | 0.45     | 815.85             |                   |                    |
| 8     | - 11 | Ś   | 12    | 0.0     | 41112 0         |                      | 6.95              | 0.84     | H15 86             |                   |                    |
| H I   | - 11 | 5   | 12    | 40.0    | 41152 0         |                      | 6.89              | 0.74     | A15.97             |                   |                    |
|       |      | ,   | 11    | 10.0    | 41202.0         |                      | 6.87              | 0.7      | 815.90             |                   |                    |
| 84    | 11   | ś   | 14    | 30.0    | 41262.0         |                      | 6.84              | 0.74     | 815.97             |                   |                    |
| - A I | 11   | ś   | 15    | 10.0    | 43322.0         |                      | 6.82              | 0.7      | A15.99             |                   |                    |
|       |      |     | • • • |         |                 |                      |                   |          | 013111             |                   |                    |

1

Ľ

| •     |      | •   | PUMP | TEST | SUMMARY I       | FOR WEL    | L 7P ] | EZUMETE | P         | NUMH₽   | H -     | 05  | 3,    |                    | • •      | 5011            | 1/41-12.04.05 | **  |
|-------|------|-----|------|------|-----------------|------------|--------|---------|-----------|---------|---------|-----|-------|--------------------|----------|-----------------|---------------|-----|
|       | DATE |     | 11   | Mţ   | ELAPSED<br>TLHE | NH4<br>NH4 | SURE   | DE P    | TH<br>ATE | TO<br>R | DRANDO  | WN  |       | NATER<br>ELEVATION |          | SCHANGE<br>HATE | CUMMENTS      |     |
| ۲H    | MON  | D≜¥ | нн   | MIN  | MINUTES         |            | P\$1   | м       | ETH       | H S     | ₩E \$ R | ł S |       | METRES             | ET.      | INES/S          |               |     |
| 81    | 11   | 5   | 16   | t5.0 | 45367,0         |            |        |         | ۴.        | #1      | ο,      | 70  |       | H16.00             |          |                 |               |     |
| - B 1 | 11   | 5   | 17   | 40.0 | 43452.0         |            |        |         | ÷.,       | 80      | 0.      | 69  |       | H16.01             |          |                 |               |     |
| 81    | 11   | 5   | 19   | 20.0 | 43552.0         |            |        |         | 6.        | 7A      | n,      | 61  |       | H16.04             |          |                 |               |     |
| - 81  | 11   | 5   | - 21 | 20.0 | 45672.0         |            |        |         | 6.        | 77      | 0.      | hÐ  |       | 816.04             |          |                 |               |     |
| 81    | 11   | 5   | 21   | 10.0 | 45782.0         |            |        |         | 6.        | 76      |         | hŚ  |       | 816.05             |          |                 |               |     |
| - R 1 | 11   | 6   | 7    | 10.0 | 44262.0         |            |        |         | 6.        | 12      | 0.      | 61  |       | 816.09             |          |                 |               |     |
| - 01  | 11   | 6   | 12   | 0 0  | 44552.0         |            |        |         | 6.        | 58      | 0.      | 47  | •44   | A16.23             | 116-06   |                 | INSTALL PUMP  | 871 |
| A1    | 11   | 6   | 16   | 0.0  | 44792.0         |            |        |         | 6.        | 55      | 0.      | 44  | • 41  | A16.26             | 816.09   |                 | ADD .17H TO D | RAI |
| 81    | 11   | 7   | 8    | 0.0  | 45752.0         |            |        |         | 6.        | 53      | 0.      | 42  | •59   | H16.28             | 11-01    |                 | -             |     |
| R į   | 11   | 7   | 15   | 0.0  | 46232.0         |            |        |         | 6,        | 50      | 0.      | 59  | .56   | 616.311            | 116 - 14 |                 |               |     |
| 81    | 11   | A   | N    | 0.0  | 47192.0         |            |        |         | 6.        | 48      | 0.      | 37  | .54   | 816.331            | 1-16-16  |                 |               |     |
| -81   | 11   | 9   | B    | 0.0  | 48632.0         |            |        |         | 6.        | 45      | 0       | 34  | ∎i    | 616.361            | 816 - 19 |                 |               |     |
| 81    | 11   | 10  | м    | 0 0  | 50072.0         |            |        |         | - 6 Î     | 39      |         | 28  | .45   | A16 421            | 116-25   |                 |               |     |
| 81    | 11   | 11  | 8    | 0.0  | 51512.0         |            |        |         | 6.        | 19      | 0.      | 28  | .15   | H16.421            | 16-25    |                 |               |     |
| 81    | 11   | 12  | 8    | 0.0  | 52952.0         |            |        |         | ٥.        | 34      | 0.      | 21  | - 4.4 | R16.43             | 516 -20  | 6               |               |     |

PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMBER - ONS.

1

l

t

ŧ

1

l l

1

1

### \*\* 20/11/H1-12.08.05 \*\* PAGE 4

Ŭ

Ĩ.

Î

ł

U**t,4**4M HDUwN

#### RESIDUAL DRANDONN

1

1

1

Ĩ

Ë.

### ORSERVATION WELL - 044,

|                   | TIME SENCE   |           |          |
|-------------------|--------------|-----------|----------|
| ELAPSED TIME      | PUMP STOPPED | RATIO     | DRANDOWN |
| (1)               | (11)         | (1/11)    | (5)      |
| 43052.4           | .3           | 143507.67 | 1,49     |
| 41052.8           |              | 53816.00  | 1.95     |
| 41051 1           | 1.3          | 33117.92  | 1.89     |
| 41058 4           | 1.8          | 23418.78  | 1.80     |
| 41060 1           | 2 1          | 14719.20  | 1.72     |
| 43054.3           | 2 4          | 15376.71  | 1.64     |
| 113034 <u>.</u> 0 | r            | 11330.47  | 1.51     |
| 43034             | 3,C<br>// 11 | 8970.17   | 1.41     |
| 4,9030.0          | 4.F<br>5. A  | 7423.76   | 1.34     |
|                   |              | 5382.50   | 1,23     |
| 45060.0           | 1000         | 4306.20   | 1,15     |
| 43062.0           | 10.0         | 2871.13   | 1.05     |
| 45051.0           | 20 0         | 2153.60   | AP.      |
| 43072.0           | 35.0         | 1723.08   | . 94     |
| 43077.0           | 27.0         | 1416.07   | . 91     |
| 43012.0           | 30.0         | 1077 10   | .87      |
| 43042.1           | 40.0         | 842 04    | .85      |
| 45102.0           | 50.0         | 718.51    | . #4     |
| 43112.0           | 60±0         | 411 52    | .78      |
| 43152.0           | 100.0        | J4 A 01   | .76      |
| 43202.0           | 150.0        | 206.01    | .73      |
| 43262.0           | 210.0        | 1.0 45    | .71      |
| 43355.0           | 271.0        | 117 67    | .70      |
| 43567.0           | 517.0        |           | . 69     |
| 44452.0           | 400.0        | 100.00    | 67       |
| 43552.0           | 500.0        | 70 44     |          |
| 43672.0           | 620.0        | 50 0A     | . 65     |
| 43742.0           | 730.0        | 14 58     | . 61     |
| 44545*0           | 1210.0       | 30.30     | . 47     |
| 44552.0           | 1500.0       | 24.10     |          |
| 44742.0           | 1740.0       | 27.74     | <br>u2   |
| 45752.0           | 2700.0       | 10.70     |          |
| 46252.0           | 3160.0       | 14.74     | 17       |
| 47192.0           | 4140.0       | 11,40     | . 34     |
| 48632.0           | 5580.0       | P./2      |          |
| 50072.0           | 7020.0       | 7.13      | 2 A C    |
| 51512.0           | 8460.0       | 6.09      | ***      |
| 52952.0           | 4900.0       | 5,35      | • * *    |

GOLDER ASSOCIATES PUMP TEST SUMMART FOR WELL/PIEZUMETER NUMBER -1)54, 20/11/01-12.08.19 . PUMPED WELL NUMBER - PW2, - H\_C, HYDRD, CLIENT . HAT CREEK ENVIRONMENTAL STUDY, PROJECT NAME PROJECT NUMBER + 6121512v TYPE OF TEST - LUNSTANT RATE DATE PUMP STARTED - 6/10/81-28-0/13 (DAY/PO/YR-MIN/HPS) DATE PUHP STOPPED - 5/11/81- 0.0/11 DATA ON OBSERVATION WELL 838.06 METRES GROUND ELEVATION -TOP OF PVC CASING, DATUM PUINT -3.07 METHES HEIGHT OF DATUM AMOVE GROUND LEVEL -DEPTH TO STATIC WATER LEVEL -. OU METHES ELEVATION OF STATIC WATER LEVEL -841.09 METHES TYPE OF DHSERVATION WELL -SCREENED WELL DEPTH OF SCREENED INTERVAL -104.10 TO 106.70 METHES DISTANCE FROM PUMPING WELL -2000.00 METRES DATA ON PUMPED WELL .203 m WELL DIAMETER + PUMP TYPE -SUDMENSIBLE FLOW MEASUREMENT ЕСОНИЕТЕН, ТҮРЕ -UIGITAL 9,399E+00 LITRES/S PUMPING RATE -AQUIFER DATA ADUIFER CONDITIONS -UNE ONFINED. SANDY GRAVEL. AGHIFFF DESCRIPTION -ADUTEER THICKNESS + UNKNOWN TEST DETAILS WEATHER CONDITIONS - VARIABLE, - GREDER ASSOCIATES. TESTED BY COMMENTS - THE WATER LEVEL IN THIS WELL CONTINUED. . TO RECOVER TO STATIC LEVEL DURING OCT ...

| DATE11MLELAPSID<br>11MLPMESSUME<br>MEADING<br>PS1DEPTH TO<br>MATHH<br>METMESDRANDUMN<br>MATHH<br>METMESWATHA<br>HETMESDISCHARGE<br>RATH<br>LEVATION<br>METMESDISCHARGE<br>RATH<br>LEVATION<br>METMESCOMMENTS<br>RATH<br>LITKES000.00.00.0Rul,15000.00.00.00Hul,15000.00.00Hul,15000.00.00Hul,15000.00.00Hul,15000.02240.20001452.0.240.401088.45.02597.6.230.141088.45.02597.6.220.181110114.15.06MH7.0.220.18M110114.15.06MH7.0.220.18M110138.35.09/47.0.220.18M110138.50.01/212.0.230.14M110158.20.01/2652.0.220.18M110158.20.01/2652.0.220.18M110168.20.01/2652.0.220.18M110178.20.01/2652.0.220.18M110168.20.01/2652.0.220.18M110178.20.01/2652.0.220.18M110168.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| YH       MIN       DAY       HR       HIN       HINLITES       PSI       METHES       HETHES       HETHES       ITHES       ITHES<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th0< th=""></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <th0< th=""> <th0< th=""></th0<></th0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| A1       10       6       10       10 $1452.0$ $24$ $n.2n$ $n40.47$ $PUMPING PH2 13128$ H1       10       7       13 $40.0$ $1452.0$ $.24$ $n.2n$ $n40.40$ H1       10       8 $45.n$ $2597.0$ $.23$ $0.19$ $Ha0.40$ H1       10       8 $45.n$ $2597.0$ $.23$ $0.19$ $Ha0.40$ H1       10       11 $H15.0$ $5447.n$ $.22$ $n.18$ $Ha0.41$ H1       10       11 $H15.0$ $6HH7.n$ $.22$ $0.18$ $Ha0.41$ H1       10       12 $8.15.n$ $H57.0$ $.23$ $0.17$ $Ha0.92$ H1       10       12 $8.15.n$ $H57.0$ $.23$ $0.17$ $Ha0.92$ H1       10       15 $R.20.n$ $12652.n$ $.22$ $0.18$ $Ha0.91$ H1       10       15 $R.20.n$ $12652.n$ $.22$ $0.16$ $Ha0.92$ H1       10       17 $R40.91$ $.41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Hi       10       7       13 $ah, 0$ $1452, 0$ .24 $h, 2n$ $Hu, Hv$ Hi       10       R $45, n$ $2597, h$ .23 $0, 19$ $Hac, 40$ Ri       10       R $45, n$ $2597, h$ .22 $n, 1R$ $Hau, 91$ Ri       10       R $825, n$ $4017, h$ .22 $n, 1R$ $Hau, 91$ Ri       10       R $55, n$ $5447, n$ .22 $n, 1R$ $Hau, 91$ Ri       10       R $55, n$ $5447, n$ .22 $n, 1R$ $Hau, 91$ Hi       10       11 $H 5, n$ $5447, n$ .22 $n, 1R$ $Huu, 91$ Hi       10       12 $8.15, n$ $457, n$ .22 $0, 1R$ $Huu, 90$ Hi       10       13 $8.35, n$ $97H7, 0$ .23 $n, 19$ $Adu, 90$ Hi       10       15 $R 20, n$ $12652, n$ .22 $0, 1R$ $Hu, 90$ Hi       10       17 $R 20, n$ $12652, n$ .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| $H_1$ 10 $R$ $A_45$ , $n$ $2597$ , $6$ .23 $0, 19$ $Hat, 90$ $R_1$ 10 $R$ $25$ , $n$ $a017$ , $6$ .22 $n, 18$ $Hau, 91$ $R_1$ 10 $H$ $15$ , $n$ $5447$ , $n$ .22 $n, 18$ $Hau, 91$ $R_1$ 10 $H$ $15$ , $n$ $5447$ , $n$ .22 $n, 18$ $Hau, 91$ $H_1$ 10 $H$ $H_5$ , $n$ $6H7$ , $n$ .22 $n, 18$ $Hau, 91$ $H_1$ 10 $11$ $H$ $H_5$ , $n$ $H_57$ , $n$ .21 $n, 17$ $Hau, 90$ $H_1$ $10$ $13$ $R$ $35$ , $n$ $9747$ , $n$ .23 $n, 19$ $Aau, 90$ $H_1$ $10$ $15$ $R$ $0, n$ $1212, n$ .23 $n, 19$ $Aau, 90$ $H_1$ $10$ $15$ $R$ $14092, n$ .22 $0, 18$ $Hau, 90$ $H_1$ $10$ $17$ $Rau, 91$ $Rau, 91$ $Rau, 91$ $Rau, 92$ $H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| R1       10       9       8.25° n       4017° n       .22 $n, 18$ $Rau, 91$ R1       10       11 $R_{15}$ , 0       5447° n       .22 $n, 18$ $Rau, 91$ R1       10       11 $R_{15}$ , 0       5447° n       .22 $n, 18$ $Rau, 91$ R1       10       11 $R_{15}$ , 0       6MR7° n       .22 $n, 18$ $Rau, 91$ R1       10       12 $R_{15}$ , 0 $RS7°$ , 0       .22 $n, 18$ $Rau, 91$ R1       10       15 $R_{25}$ , 0 $RS7°$ , 0       .23 $n, 17$ $Rau, 90$ R1       10       15 $R_{20}$ , n $12652$ , n       .23 $n, 19$ $Rau, 90$ R1       10       15 $R_{20}$ , n $12652$ , n       .22 $n, 18$ $Rau, 90$ R1       10       15 $R_{20}$ , n $12652$ , n       .22 $n, 18$ $Rau, 91$ R1       10       15 $R_{20}$ , n $12652$ , n       .22 $n, 18$ $Rau, 91$ R1       10       17 $R_{20}$ , n $15532$ , n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| A1       10       10 $4$ $5$ $6$ $447$ $n$ $22$ $0$ $18$ $440$ $91$ H1       10       11 $4$ $15$ $6$ $6447$ $n$ $22$ $0$ $18$ $840$ $91$ H1       10       11 $415$ $6447$ $n$ $22$ $0$ $18$ $840$ $91$ H1       10       12 $8$ $15$ $477$ $23$ $n$ $17$ $840$ $92$ H1       10       15 $8$ $20$ $n$ $1212$ $n$ $23$ $n$ $19$ $840$ $91$ H1       10       15 $8$ $20$ $n$ $12652$ $n$ $12652$ $n$ $140$ $840$ $91$ H1       10       15 $8$ $20$ $12652$ $n$ $22$ $n$ $18$ $840$ $91$ H1       10       17 $840$ $92$ $n$ $16$ $140$ $93$ H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| H1       10       11       H       15.0 $6MH7_{*}$ n       .22       0.18 $H40.91$ H1       10       12       8       15.0 $H57.0$ .21       0.17 $H40.92$ H1       10       13 $H35.0$ $97H7.0$ .25 $0.19$ $H40.90$ H1       10       13 $H35.0$ $177.0$ .25 $0.19$ $H40.90$ H1       10       15 $H20.0$ $1212.0$ .23 $0.19$ $H40.90$ H1       10       15 $H20.0$ $12652.0$ .22 $0.18$ $H40.90$ H1       10       16 $H20.0$ $12652.0$ .21 $0.17$ $H40.90$ H1       10       17 $R40.91$ .22 $0.18$ $H40.91$ H1       10       17 $R40.91$ .22 $0.18$ $H40.93$ H1       10       17 $R40.93$ .20 $0.16$ $H40.93$ H1       10       19 $R25.0$ $16977.0$ .20 $0.16$ $H40.95$ H1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| H1       10       12       8       15, n $H_{27,0}$ .21 $n, 17$ $H_{40,92}$ H1       10       13 $H_{35,n}$ $97H7_{10}$ .23 $n, 19$ $H_{40,90}$ H1       10       14 $B_{20,n}$ $11212,n$ .23 $n, 19$ $H_{40,90}$ H1       10       15 $H_{20,n}$ $1212,n$ .23 $n, 19$ $H_{40,90}$ H1       10       15 $H_{20,n}$ $12652,n$ .22 $0, 18$ $H_{40,91}$ H1       10       15 $H_{20,n}$ $14092,n$ .22 $0, 18$ $H_{40,91}$ H1       10       17 $H_{20,n}$ $14092,n$ .22 $0, 18$ $H_{40,91}$ H1       10       17 $A_{20,n}$ $15532,n$ .22 $0, 18$ $H_{40,91}$ H1       10       17 $A_{20,n}$ $15532,n$ .22 $0, 18$ $H_{40,93}$ H1       10       17 $A_{25,n}$ $16977,n$ .20 $n, 16$ $H_{40,93}$ H1       10       19 $A_{25,n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| $H1$ 10       13 $H$ $55$ $n_114$ $Ha0_1an$ $H1$ 10       14 $B$ $20$ $n_11212$ $a_23$ $n_114$ $Ha0_1an$ $H1$ 10       15 $B$ $20$ $n_11212$ $a_23$ $n_114$ $Ha0_1an$ $H1$ 10       15 $B$ $20$ $n_12652$ $a_116$ $Ha0_1an$ $H1$ 10       15 $A$ $20_1n$ $a_252$ $a_116$ $Ha0_1an$ $H1$ 10       17 $A$ $20_n$ $15532_n$ $a_22$ $a_116$ $Ha0_1an$ $H1$ 10       17 $A$ $20_n$ $15532_n$ $a_22$ $a_116$ $Ha0_1an$ $H1$ 10       17 $A$ $20_n$ $a_156$ $Ha0_1an$ $Aan a^2 + a_1an$ $H1$ 10       17 $A$ $20_n$ $a_166$ $Ha0_1an$ $Aan a^2 + a_1an$ $H1$ 10       17 $A$ $25_n$ $16877_n$ $a_180$ $a_140_1an$ $Aan a^2 + a_1an$ $H1$ <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| H1       10       14 $B$ 20, n       11212, n       .23 $n_119$ $A40, 90$ H1       10       15 $B$ 20, n $12652, n$ .22 $n_118$ $Ha0, 91$ H1       10       15 $B$ $20, n$ $12652, n$ .22 $n_118$ $Ha0, 91$ H1       10       16 $A$ $20, n$ $14092, n$ .21 $0, 17$ $Ha0, 92$ H1       10       17 $A$ $20, n$ $15532, n$ .22 $0, 18$ $Ha0, 41$ H1       10       17 $A$ $20, n$ $15532, n$ .22 $0, 18$ $Ha0, 41$ H1       10       17 $A$ $25, n$ $16977, n$ .20 $n, 16$ $H40, 93$ H1       10       19 $A$ $25, n$ $18417, n$ .18 $n, 14$ $H40, 95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| H1       10       15       H       20.n       12652.n       .22       0.18       H40.91         H1       10       16       H       20.n       14092.n       .21       0.17       H40.92         H1       10       17       H       20.n       15532.n       .22       0.18       H40.91         H1       10       17       H       20.n       15532.n       .20       n.18       H40.93         H1       10       17       H       25.n       16977.n       .20       n.16       H40.93         H1       10       19       H       25.n       14417.n       .18       0.14       H40.95         H1       10       20       1.24       1.4444.95       .14       .25       .14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| A1       10       16       A 20,n       14092,n       .21       0.17       H40,92         H1       10       17       A 20,n       15532,n       .22       0.18       H40,91         H1       10       16       A 25,n       16977,n       .20       n.16       H40,93         H1       10       19       A 25,n       14417,n       .18       0.14       H40,95         H1       10       20       n.14       .14       .44,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| H1 10 17 A 20,0 15532,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| H1 10 18 8 25,0 16977,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| H1 10 19 A 25,0 14417,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| H1 10 20 H 25 B 19657.0 . TH 0.14 Ruli 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 81 10 24 8 25-0 256L7-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| H1 10 25 H 25.0 27057.0 .12 0.08 R41.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| A1 10 26 A 25.0 28497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 81 10 27 8 25 0 29937.0 .06 0.02 641.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| H1 10 28 7 50.0 31342.0 .04 0. H41.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| B1 10 29 A 26.6 \$2812.0 .05 0.01 A41.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 81 10 30 8 20 n 34252 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| B1 10 31 B 40.0 35712.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| A 11 1 2 45 6 32997 6 .11 0.07 841.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| AL 11 5 A 20 A 4242-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| H1 11 7 H D 0 45752.0 0.00 -0.00 H41.13 2.50 ΝΑΤΙΗΑΕ ΟΥΕΝΕΙΩΝ RECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IDE D |
| $\begin{array}{c} \mathbf{A}_{1} \\ \mathbf{A}_{1} \\ \mathbf{A}_{2} \\ \mathbf{A}_{3} \\ \mathbf{A}$ | //    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |

Ĭ

.

1 1

•

1 1

Ű

Ť.

1

. . ٠ GOLDER ASSOCIATES ٠ ٠ . . . . . . . \* PUMP 1EST SUMMARY FUR WELL/PIEZOMETER NUMBER -0+5, 20/11/81-12.08.22 PUMPED WELL NUMBER - PW2, - H.C. HYDRO, CLIENT PHOJECT NAME . HAT CREEK ENVIRONMENTAL STUDY, PHOJECT NUMBER - +121512, TYPE DE TEST - CONSTANT RATE DATE PUMP STARTED - 6/10/81-28.0/13 (DAY/HU/YR-HIN/HRS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON ORSERVATION WELL 820.94 METRES GROUND FLEVATION -DATUM POINT -TOP OF 19MM PVC PIPE, HEIGHT OF DATUM ABOVE GROUND LEVEL -.61 METRES 5,24 METHES DEPTH TO STATIC WATER LEVEL -816.31 METHES ELEVATION OF STATIC WATER LEVEL -STANDPIPE PIEZOMETER TYPE OF OBSERVATION WELL . DEPTH OF GRAVEL PACK INTERVAL . 13.94 10 19.22 METHES DISTANCE FROM PUMPING WELL -326.40 ME18ES DATA ON PUMPED WELL .203 M WELL DIAMETER . PUMP TYPE -SUBMERSINLE FLOW MEASHREMENT DIGITAL, FIDAMETER, TYPE -9.399E+00 LITRES/5 PUMPING RATE -AQUIFER DATA AQUIFER CONDITIONS + UNCONFINED ADUIFER DESCRIPTION . SANUY GRAVEL. 12.5 HETRES AQUIFER THICKNESS -TEST DETAILS WEATHER CUNDITIONS - VARIABLE. TESTED HY - GOLDER ASSUCIATES, COMMENTS + NONF .

.

| ٠            | PUMP IEST              | SUMPARY F | FUR WELLZPIEZOMETER NUM | 8FH + 0F5 |                     | ** 20/11/81-12.08.22 ** PAGE 2 |
|--------------|------------------------|-----------|-------------------------|-----------|---------------------|--------------------------------|
| DATE         | TIME                   | ELAPSED   | PRESSURE DEPTH TO       | DRAWDOWN  | WATEH<br>FLEVATION  | DISCHARGE COMMENTS             |
| YR MON DA    | AY HR HEN              | MINUTES   | PSI METHES              | METHES    | METHES              | LITHES/S                       |
|              |                        |           |                         |           |                     |                                |
| 0 0          | 0 0 0,0                |           | 0,00                    |           | H21,55              |                                |
|              | 0 0 0 0 n              |           | 0,00                    |           | N21.55              | Prove 1107 11 1 1 1 1 2 3      |
| A1 10        | 6 9 42.0               |           | 5,24                    | <b>aa</b> | P10,51              | PUMPING PR7 13120              |
| <b>NI 10</b> | 0 14 3C.0              | na_0      | 3.23                    | 0.00      | 10.11               |                                |
| 01 10        | 5 10 10 10 0           | 10/_0     | 2.63                    | 0.01      | ~10,30<br>HIN 10    |                                |
| 81 10        | 7 10 45 0              | 1277 0    | 5.70                    | 0.01      | R16.30              |                                |
| HI 10        | 8 6 10 6               | 2542 0    | 5,55                    | 0.01      | HI6 10              |                                |
| 81 10        | 9 8 0 6                | 1992 1    | 5 25                    | 0 01      | 816.30              |                                |
| A1 10 1      | 10 8 0.0               | 5432.0    | 5.24                    | 0.        | H10.11              |                                |
| 81 10 1      | 11 8 0.0               | 6872.0    | 5.24                    | 0         | H16.31              |                                |
| 81 10 1      | 12 8 0.0               | 8312.0    | 5,24                    | 0         | 816.31              | ,                              |
| 81 10 1      | 13 8 0.0               | 9752.0    | 5.24                    | 0.        | 616.31              |                                |
| P1 10 1      | 14 8 0.0               | 11192.0   | 5.24                    | 0         | 816.31              |                                |
| 81 10 1      | 15 8 15.0              | 12647 0   | 5,24                    | ο.        | P16.31              |                                |
| 81 10 1      | 16 8 15.0              | 14047.0   | 5.24                    | Ο.        | H16.51              |                                |
| 81 19 1      | 17 8 10.0              | 15522.0   | 5,24                    | υ.        | H16.31              |                                |
| M1 10 1      | 18 8 15.0              | 16967.0   | 5.24                    | Ο.        | 816.51              |                                |
| 81 10 1      | 19 # 10,0              | 18402.0   | 5.25                    | 0.01      | M16,30              |                                |
| B1 10 2      | 20 8 10,0              | 19842,0   | 5.25                    | 0.01      | 816.50              |                                |
| 61 10 Z      | 21 A 15°0              | 51544*0   | 5.24                    | 0.        | 616.31              |                                |
| A1 10 2      | 25 8 12.0              | 55151.0   | 5.25                    | 0.01      | 816.30              |                                |
| 61 10 2      | 25 0 10.0              | 24162.0   | 5.20                    | 0.02      | M16.29              |                                |
| M1 10 2      | 24 8 15,0              | 25607.0   | 5,26                    | 0.02      | 010.29              |                                |
| B1 10 Z      | 25 M 11.0              | 27045.0   | 5.21                    | 0,03      | njn <sub>+</sub> 20 |                                |
| 01 10 Z      | 20 0 17.0              | 20407.0   | 5.00                    | 0.92      | H16 24              |                                |
|              | 27 0 10,0              | 11163 0   | 7.57<br>5.37            | 0 03      | 816 28              |                                |
|              | 20 0 10.0              | 13802.0   | 5 DR                    | 0 04      | 816.27              |                                |
| HI 10 2      | 27 01010<br>10 8 10 0  | 14242 0   | 5.28                    | 0,04      | 816.27              |                                |
| A1 10 1      | 30 0 10.0<br>31 A 25.0 | 35697.0   | 5.28                    | 0.04      | 816.27              |                                |
| 81 11        | 1 8 5.0                | 37117.0   | 5.29                    | 0.05      | 816.26              |                                |
| 81 11        | 2 8 10.0               | 18562.0   | 5.29                    | 0.05      | H16.26              |                                |
| A1 11        | 3 8 10.0               | 40002.0   | 5,30                    | 0,06      | 816.25              |                                |
| 81 11        | 4 A 10.0               | 41442.0   | 5.30                    | 0.05      | 816.25              |                                |
| 81 11        | 5 6 10.0               | 42882.0   | 5, 51                   | 0.07      | A16.24              | PW2 RECOVERY 11:00             |
| 81 11        | 5 12 55.0              | 43167.0   | 5,30                    | 0,06      | 816.25              |                                |
| 81 11        | 6 7 20.0               | 44272.0   | 5,30                    | 0.06      | A16.25              |                                |
| H1 11        | 6 16 0.0               | 44742.0   | 5.30                    | 0.06      | H14.25              |                                |
| e1 11        | 7 8 0.0                | 45752.0   | 5.50                    | 0_06      | #10.25              |                                |
| P1 11        | 8 6 0.0                | 47192.0   | 5.30                    | 0.05      | H16.25              |                                |
| 81 11        | 9 A 0,0                | 48632.0   | 5.29                    | 0.05      | H16.26              |                                |
| H1 11 1      | 10 N 0.0               | 50072.0   | 5,10                    | 0,06      | H16.25              |                                |
| 81 11 1      | 11 8 0.0               | 51512.0   | 5.30                    | 0.06      | 710.25<br>844 N     |                                |
| 81 11 1      | 1c ∺ 0+0               | 2425.0    | 5,30                    | 0.06      | "IN. (S             |                                |

. . . . . . . . . . . . .

Ű.

.

#### RESIDUAL DRANDOWN

Ĩ

ŧ

Ĩ

1

.

.

Ĩ

### OBSERVATION WELL - UW54

1

|              | TIME STNCE   |        |          |
|--------------|--------------|--------|----------|
| ELAPSED TIME | PUMP STOPPED | PATIO  | DRANDUWN |
| (1)          | (11)         | (1/1)  | (\$)     |
| 43167.0      | 115.0        | 375.37 | .06      |
| 44272.0      | 1220.0       | 36.29  | .06      |
| 44792.0      | 1740.0       | 25.74  | .06      |
| 45752.0      | 2700.0       | 14.45  | .06      |
| 47192.0      | 4140.0       | 11.40  | .06      |
| 48632.0      | 5580.0       | 8,72   | 05       |
| 50072.0      | 7020.0       | 7.13   | .04      |
| 51512.0      | R460.0       | 6.09   | .0+      |
| 52952.0      | 8800 0       | 5,35   | 06       |

. . GOLDER ASSOCIATES . . . . PUMP TEST SUMMARY FOR WELL/PIEZOMETER NUMBER -Pat, 20/11/81+12.08.24 ٠ PUMPED WELL NUMBER - PW2, CLIENT = H\_C, HYDRD, PROJECT NAME - HAT CREEN ENVIRONMENTAL STUDY, PROJECT NUMBER - 0121512, LOCATION OF TEST - HAT CREEK H.C., TYPE OF TEST - CONSTANT RATE DATE PUMP STARTED - 6/10/81-28.0/13 (DAY/MU/YR-MIN/HRS) DATE PUMP STOPPED - 5/11/81- 0.0/11 DATA ON DESERVATION WELL GROUND ELEVATION -H38.34 HETHES DATUM POINT -TOP OF 19MM PVC CASING. HEIGHT OF DATUM ABUVE GROUND LEVEL -2.80 METHES DEPTH TO STATIC WATER LEVEL . .45 METRES 840,69 HETHES FLEVATION OF STATIC WATER LEVEL -TYPE OF UNSERVATION WELL -SCREENED WELL DEPTH OF SCREENED INTERVAL . 100,28 TO 109,91 METRES DISTANCE FROM PUMPING WELL -2000.00 METHES DATA ON PUMPED WELL .203 m WELL DIAMETER -PUMP TYPE -SURMERSTREE FLOW MEASUREMENT FLOWMETER, TYPE -DIGITAL, PUMPING RATE -9.399E+00 LITHE5/5 AQUIFER DATA AUUIFER CONDITIONS -UNCONFINED. SANDY GRAVEL, ADUTEEN DESCRIPTION -AQUIFER THICKNESS -UNKNOWN TEST DETAILS WEATHER CONDITIONS - VARIABLE, TESTED HY . GILDER ASSOCIATES, COMMENTS - THE WATER LEVEL IN THIS WELL CONTINUED - TO RECOVER UNAFFECTED BY PUMPING PH2.

| *          |      | ;    | PIIMP | 1651 | SUMMARY F       | OR WELL/PIEZ | OMF TE K | NUMB     | FW PW1,   |                    | **           | 20/11       | 1/41+12.08.24 | **    | PAGE  | 2 |
|------------|------|------|-------|------|-----------------|--------------|----------|----------|-----------|--------------------|--------------|-------------|---------------|-------|-------|---|
|            | DAIE |      | TI    | ME   | ELAPSED<br>TIME | PRESSURE     | DEPTH    | TO<br>FR | DRANDUNN  | WATER<br>Elevation | n15C)<br>H#* | HARGE<br>Te | CUMMENTS      |       |       |   |
| ΥR         | MON  | DAY  | HR    | HJN  | MINUTES         | PSI          | MET      | HE S     | MF 1 4F 9 | METHES             | LTTH         | 5/5         |               |       |       |   |
| Ű          | 0    | ø    | U     | 0,0  |                 |              | n        | .00      |           | 841.14             |              |             |               |       |       |   |
| 0          | 0    | 0    | 0     | 0.0  |                 |              | 0        | .00      |           | H41.14             |              |             |               |       |       |   |
|            | 10   | 6    | 10    | 12.0 |                 |              |          | .66      |           | 800.48             |              |             |               |       |       |   |
| 85         | 10   | 7    | 13    | 40.0 | 1452.0          |              |          | .65      | 0.18      | 849.51             |              |             |               |       |       |   |
| A 1        | 10   | 4    |       | 45.0 | 2547.0          |              |          | .62      | 0.17      | 840.52             |              |             |               |       |       |   |
| AI         | 10   | Q    | 8     | 23.0 | 4015.0          |              |          | . 62     | 0.17      | H40.52             |              |             |               |       |       |   |
| 81         | 10   | 13   | 8     | 35.0 | 9747.0          |              |          | . 63     | 0.18      | H40.51             |              |             |               |       |       |   |
| 81         | 10   | 14   | A     | 20.0 | 11212.0         |              |          | .64      | 0,19      | H40.50             |              |             |               |       |       |   |
| 81         | 10   | 15   | 8     | 20.0 | 12652.0         |              |          | 50       | 0.17      | 840,52             |              |             |               |       |       |   |
| мį         | 10   | 16   | Ä     | 20.0 | 14092.0         |              |          | 61       | 0.16      | H40.55             |              |             |               |       |       |   |
| 81         | 10   | 17   | я     | 20.0 | 15532.0         |              |          | . 62     | 0.17      | 840,52             |              |             |               |       |       |   |
| 81         | 10   | 19   | н     | 25.0 | 18417 0         |              |          | 59       | 0.14      | 840.55             |              |             |               |       |       |   |
| 81         | 10   | 20   | 8     | 20.0 | 14852.0         |              |          | 59       | 0,14      | 640.55             |              |             |               |       |       |   |
| <b>R</b> I | 10   | 24   | A     | 25.0 | 25017.0         |              |          | 52       | 0.07      | H40.62             |              |             |               |       |       |   |
| 81         | 10   | 26   | A     | 25.0 | 26497.0         |              |          | 48       | 0,03      | 840.66             |              |             |               | •     |       |   |
| 81         | 10   | 21   | ä     | 25.0 | 24437.0         |              |          | 45       | -0.00     | BHO AG             |              |             |               |       |       |   |
| 81         | 10   | 20   | 1     | 50.0 | 51342.0         |              |          | 45       | -0,00     | 840.69             |              |             |               |       |       |   |
| 81         | 10   | - 11 | , R   | 35.0 | 35707.0         |              |          | 50       | 0,05      | B40.64             |              |             |               |       |       |   |
| 81         | 11   | 1    | 7     | 45.0 | 37097.0         |              |          | .52      | 0.07      | 840.62             |              |             |               |       |       |   |
| 81         | - 11 | 2    | 8     | 30.0 | 34542.0         |              |          | .50      | 0.05      | H40.64             |              |             |               |       |       |   |
| 81         | - 11 | 6    | 16    | 0.0  | 44792.0         |              | 2        | 20       | 1.75      | A34.94             |              |             | PUMP INSTALLE | DIN   | ()#4= |   |
| 81         | 11   | 7    | ß     | 0.0  | 45752.0         |              | Ż        | 10       | 1.65      | H 59.04            |              |             | OVERFLOW CASE | S DRA | WDOWN |   |
| 81         | - 11 | 8    |       | 0.0  | 47192.0         |              | 1        | 9.8      | 1.53      | 859.16             |              |             | -             |       |       |   |
| 81         | 11   | 9    |       | υ    | 44632.0         |              | 1        | 96       | 1.51      | A39.1A             |              |             |               |       |       |   |
| <b>A</b> 1 | - 11 | 10   | A     | 0.0  | 50072.0         |              | 1        | .43      | 1.38      | 854.51             |              |             |               |       |       |   |
| 81         |      | 11   | A     | 0.0  | 51512.0         |              |          | .80      | 1.35      | 819.14             |              |             |               |       |       |   |
| 81         | - ii | 15   | , A   | 0,0  | 52952.0         |              | i        | ,79      | 1.34      | 839,35             |              |             |               |       |       |   |
| -          |      |      |       | •    |                 |              |          |          |           |                    |              |             |               |       |       |   |

Ť.

Ê

.

Ť

ł

Ë.









|                | TIME - DF<br>Well No.    | RAWDOWN GRAF                                                  | PH FOR PU<br>Data obser              | MP TEST No<br>ved in <u>PV</u>                | Figure A.3.3                                       |
|----------------|--------------------------|---------------------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------------|
| - <i>L</i> H   | Depth to<br>static water | t/t' = Ratio                                                  | time since pumping ceased.           |                                               |                                                    |
| -              | level<br>5.98 m          | .1 1                                                          | ю                                    | 100                                           | 1000 100 000 100 000                               |
|                |                          | - ·                                                           |                                      |                                               |                                                    |
| -              |                          | -                                                             |                                      |                                               | Pump test: x data point<br>Recovery : O data point |
| -              |                          |                                                               |                                      |                                               |                                                    |
|                |                          |                                                               |                                      |                                               |                                                    |
| -              |                          | -                                                             |                                      |                                               |                                                    |
| -              |                          | 3                                                             |                                      |                                               |                                                    |
| _              | E 6                      | ,                                                             |                                      |                                               | A5 = 7.8m                                          |
|                | <b>z</b><br><b>3</b> 4   |                                                               |                                      |                                               |                                                    |
|                | A V D                    | F                                                             |                                      |                                               | 2/2                                                |
|                | <b>E</b> 2               |                                                               |                                      |                                               |                                                    |
| -              | 0                        | ·                                                             | 00000000                             | • • • • • • • • • • • • • • • • • • •         |                                                    |
|                |                          |                                                               |                                      |                                               |                                                    |
| -              |                          |                                                               |                                      |                                               |                                                    |
| <b>1</b> 11.'8 |                          |                                                               |                                      |                                               |                                                    |
| 1010           | drawdown to<br>piezo tip |                                                               |                                      |                                               |                                                    |
| - 2            | <b></b>                  | .5 1                                                          | 5 10                                 | 50 100                                        | 500 1000 10000 100000                              |
| 2 bewe         |                          | TIME SINCE PU                                                 | MPING STARTED                        | (minutes)                                     | i 3 5 10 30 50 10<br>TIME (days)                   |
| - 2<br>0       |                          | CALCULATIONS                                                  | 3 9                                  | Pumping<br>1.83 x                             | Recovery<br>1.83 x                                 |
| •              |                          | Δs                                                            | x 104                                | 10 <sup>+4</sup> x                            | 10***                                              |
| ()raw          |                          | Leg no                                                        | x 10 <sup>4</sup>                    | 10 <sup>+4</sup> x                            |                                                    |
| 1512           |                          | S = -135                                                      | 5T.te = 135 (                        | ) <sup>2</sup> =                              |                                                    |
| 812-           |                          | t *                                                           | 42 r <sup>2</sup> S42                | <u>, , , , , , , , , , , , , , , , , , , </u> |                                                    |
| ຊີ<br>ໜີ       |                          | WHERE r = Radius from                                         | r (<br>m pumped well                 | )<br>(metres)                                 | ∆s = Drawdawn(metres per log cycle)                |
| Proje          |                          | Q = Pumping r                                                 | ote <u>9.4</u>                       | (litres / sec.)                               | T = Transmissivity (metres <sup>2</sup> /sec.)     |
| -              |                          | t <sub>o</sub> ∓ sime interi<br>t <sub>min</sub> = Approx. mi | cept tor zero dro<br>nimum value for | which $u < 0.01$                              | a = Storage coetticient (Traction)                 |
|                |                          |                                                               | Golder                               | Associates                                    |                                                    |