BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-10NAME:GORDON JOHNSTONE

PZq

94-10

PROSPECTORS ASSISTANCE PROGRAM 1994-1997

PROGRAM COMPLETION

AUTHOR GORDON JOHNSTONE DATE NOV.19th / 94

INDEX

PROPERTY LOCATION MAP	pg. 1
CLAIMS MAP	pg. 2
NOTICE OF WORK & RECLAIMATION	pg. 3,4,5,6
A. SUMMARY REPORT	pg .7,8
B. TECHNICAL REPORT	pg. 9
ACCESS & PROSPECTING ACTIVITIES	рд. 10
SAMPLES & DESCRIPTION	pg. 11,12
ASSAYS	pg. 13,14, 15, 16, 17
EXPENDITURES	pg. 18,19
REPORT BY BAPTY RESEARCH	pg. 20
COMMENTS ON PROSPECTING GRANT	pg. 21

з, í.

LOCATION MAP

arters aution

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

T

Ī

ŧ

ł ŧ

1

1

t 1 1

t I

- . 申

One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 and 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

Name GORDON JOHNSTONE

Reference Number <u>94-95-P29</u>

. -

LOCATION/COMMODITIES

Project Area (as listed in Part A.) <u>SAWYER CR.</u> Minfile No. if applicable
Location of Project Area NTS 82F/10 Lat 49"45.5 Long 116"34
Description of Location and Access ST. MARY'S logging road for 51 KM. to SAWYER
CR. RD. then 6.1 KM. of rough 4x4 road and 1500 meters of trail to
steep rock chutes. Some of the area was prospected by rope &
Main Commodities Searched For <u>SILVER, LEAD & ZINC</u>
Known Mineral Occurrences in Project Area NONE
WORK PERFORMED
1. Conventional Prospecting (area)
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) <u>41 rock samples</u>
4. Geophysical (type and line km)
5. Physical Work (type and amount) <u>8 days cutting trail with chainsaw</u>
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS (if any)
Commodities <u>silver, lead & zinc</u> Claim Name <u>SAWYER NO. 8</u>
Location (show on map) Lat <u>49"45.5</u> Long <u>116"34</u> Elevation <u>1923 meters</u>
Best assay/sample type Rock sample GJ.1026 (.01 % pb./ 50.44 % zn. / .29 oz.
per ton ag.)

Description of mineralization, host rocks, anomalies Refer to write up by BAPTY ·

RESEARCH

t i

E

Supporting data must be submitted with this TECHNICAL REPORT.

SAWYER CREEK AREA

ACCESS

Due to very bad forest fire conditions, helicopters were not available. Alders and windfalls were cut off old roadway for 7.5 kilometers and one culvert repaired. Four days for two men were spent building trail on the claims for prospecting access.

PROSPECTING ACTIVITIES

Thirty eight days of prospecting and rock sampling were done. A lot of the property was inaccessible and climbing gear and rope had to be used to do some of the sampling. High grade silver and zinc float were found in large amounts. These samples were found in tight rock chutes, some of the samples were as large as 2x2 ft. of high grade zinc. Due to forest fires I was denied access to this area for part of the summer, because of this and such a short season in this area, I did not have the time to do grid line sampling.

Because of the intense folding and faulting the formations were almost impossible to identify, the samples were tested with hydrochloric acid which strongly indicated carbonates within the samples. Due to this I presume the formations to be mainly Mount Nelson.

I contacted BAPTY RESEARCH LIMITED about the Sawyer property and they are going to act on my behalf to have this property optioned off to one of the few exploration companies which are interested.

SAMPLES AND DESCRIPTION

- GJ1001 Gray argillaceous siltstone with chalcopyrites
- GJ1002 Three foot quartz vein with chalcopyrites
- GJ1003 Two foot eight inch quartz vein with fine grain pyrites
- GJ1004 Red to white carbonate formation with bedded galena
- GJ1005 Brownish to cream colored float with seams of cabonates and zinc
- GJ1006 Brown weathering dolomite with lead and pyrites
- GJ1007 Grayish to black siltstone (very heavy)
- GJ1008 White to yellowish carbonaceous shist with pyrites
- GJi1009 Whiteish to gray tremolite
- GJ1010 White to blueish quartzite with fine grain pyrites
- GJ1011 Quartzite with thin seams of argillite and pyrites
- GJ1012 Six inch wide quartzite vein with fine grain pyrites
- GJ1013 Ten inch wide sugary quartz vein with pyrites
- GJ1014 Rusty quartz with pyrites
- GJ1015 One foot wide quartz vein with fine grain pyrites
- GJ1016 Argillaceous siltstone with seams of calcite and pyrites
- GJ1017 Ten foot wide quartz vein with pyrites and molybdenum
- GJ1018 Calcareous carbonates with thin beds of argillites and pyri
- GJ 1019 Black argillites with pyrites (very heavy)
- GJ1020 Gray argilite with pyrites

- GJ1021 Rusty red quartz with seams of galena
- GJ1022 Black argillite with pyrites
- GJ1023 Grayish toyellow carbonates with zinc
- GJ1024 Grayish to white carbonate with zinc
- GJ1025 Grayish quartzite with fine grain pyrites
- GJ1026 Rusty red carbonate with zinc
- GJ1027 Grayish tremolite with whiteish seams of carbonate
- FF001 Red to white quartz with pyrite
- FF002 White quartz vein with massive pyrites
- FF003 Grayish calcarceous carbonate (very heavy)
- FF004 Yellowish carbonate with pyrites
- FF005 Brown phyillite with pyrites
- FF006 Conglomerate with pyrites
- FF007 Quartzite with lead
- FF008 Argillaceous siltstone with massive pyrites
- FF009 Grayish argillite and pyrites
- FF0010 Quartzite with pyrites
- FF0011 Yellowish carbonate with zinc
- GJ2001 Rusty carbonate with galena
- GJ2002 Gray argillaceous siltstone (very heavy)
- GJ2003 Black argillites with seams of pyrites

		505 20				12	UU -	LINU A		85 (04 76). 1			nissina oʻr	J 30	omitted	l by:	60100			<u>nanak</u>	<u></u>		<u></u>	<u></u>		<u>ىمىنىنىنە</u> 11 - مە	And	
	SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Żn ppm	Ag ppm	Ni ppm p	Co xorn p	Min fi pm	e As % ppm	pbw t	Au ppm p	Th Sr prnppm	Cdi ppm (SID B [*]	i V nppm	Ca X	Р %	La ppm p	Cr xpm	Mg % p	Ba Ti xpm 7	i в ¢ppm	AL %	Nа %	K W X ppm	ppb	
	FF001 FF002 FF004 GJ1001 GJ1002	18 38 <1 6 6	5 3 527 1215 43	<2 <2 1943 2 19	8 3 8620 58 75	<.1 <.1 9.4 .2 .2	23 18 17 29 18	34 21 6 21 80 1 8	43 16.6 27 16.8 17 4.0 66 16.2 72 1.8	52 9 51 10 53 88 53 8 57 4	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6 2 4 2 4 347 6 4 <2 4	<.2 <.2 74.4 <.2 .4	2 ! 3 (8 < 2 (6 <	5 7 5 5 2 11 9 19 2 2	.02 .02 7.63 .09 .10	.003 .002 .033 .017 .013	3 <2 4 6 2	8 9 5 14 10	.24 .12 .16 .97 .08	3 .02 2 .0 25<.0 3 .00 25<.0	2 3 1 4 1 2 6 4 1 <2	.37 .21 .16 1.12 .20	.01 . .01 . .01 . .03 . .02 .	27 2 13 1 13 <1 77 2 09 2	4 5 3 2 1	
	GJ1003 GJ1004 GJ1005 RE GJ1005 GJ1006	5 4 6 7 11	76 206 178 186 53	5 20239 8174 8023 9887	68 90837 99999 99999 670	<.1 240.0 21.7 22.4 27.6	14 6 6 86	6 2 6 50 23 17 23 16 14 4	21 3.1 44 2.3 13 1.6 94 1.6 22 1.9	18 4 51 10 54 51 51 55 29 13	<5 9 8 5 <5	<br <br <br <br <br </td <td>3 2 2 51 <2 21 <2 21 <2 21 <2 76</td> <td><.2 886.4 707.1 700.2 4.4</td> <td>6 < 323 < 497 508 11 4</td> <td>2 8 2 <2 4 <2 3 <2 6 3</td> <td>.09 .50 1.03 1.02 3.66</td> <td>.035 .054 .023 .023 .065</td> <td>10 <2 <2 <2 4</td> <td>15 5 2 1 13</td> <td>.65 .12 .22 .22 .22</td> <td>16 .04 35<.0 5<.0 5<.0 27<.0</td> <td>6 2 1 3 1 2 1 <2 1 <2</td> <td>1.03 .13< .03< .02< .31</td> <td>.03 1. .01 . .01 . .01 .</td> <td>07 3 10 <1 02 <1 02 <1 11 <1</td> <td>1 12 46 43 4</td> <td></td>	3 2 2 51 <2 21 <2 21 <2 21 <2 76	<.2 886.4 707.1 700.2 4.4	6 < 323 < 497 508 11 4	2 8 2 <2 4 <2 3 <2 6 3	.09 .50 1.03 1.02 3 .66	.035 .054 .023 .023 .065	10 <2 <2 <2 4	15 5 2 1 13	.65 .12 .22 .22 .22	16 .04 35<.0 5<.0 5<.0 27<.0	6 2 1 3 1 2 1 <2 1 <2	1.03 .13< .03< .02< .31	.03 1. .01 . .01 . .01 .	07 3 10 <1 02 <1 02 <1 11 <1	1 12 46 43 4	
	GJ1007 STANDARD C/AU-R	<1 19	12 57	252 38	395 123	1.3 6.9	57 74	6 11 31 10	49 2.1 29 3.9	01 5 76 42	<5 16	<2 6	5 171 36 50	2.5 19.0	2 < 16 2	z 2 0 60	13.25 .50	.091 .091	2 42	2 1 56	0.83 .92	19<.0 183 .0	1 <2 8 38	.15< 1.88	.01 . .06 .	06 <' 15 1'	1 470	
1	DATE RECEIVE) :	AUG	25 199	4 DA	TE R	EPOI	RT M	AILED	: A	no, 1	2, 10	24	SIGN	IED B	ч	· <u>h</u> ~		.D.T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED E	.C. AS	SAYERS	
3	DATE RECEIVE	D 1	AUG	25 199	4 DA	TE R	EPOI	RT M	AILED	: A	ng z	31 6	74	SIGN	IED B	ч	<u>.</u>	·	.D.T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED É	.C. AS	SAYERS	
]	DATE RECEIVE	Dı	AUG	25 199	4 DA	TE R	EPOI	RT MJ	AILED	: A	ng z	31 /0	74	SIGN	IED B	¥	<u>.h.</u>	7	.D.T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED E	.C. AS	SAYERS	
1	DATE RECEIVE	Dī	AUG	25 199	4 DA	TE R	EPOI	RT MJ	AILED	: A	ng z	3, 6	74	SIG	ied B	¥	<u></u>		.D.T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED E	S.C. AS	SAYERS	
1	DATE RECEIVE	D1	AUG	25 199	4 DA	TE R	EPOI	M TS	AILED	: A	ing z	31 /a	74	SIGN	IED B	¥.	<u>.</u>		.D.T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED E	S.C. AS	SAYERS	
I	DATE RECEIVE	Dr	AUG	25 199	4 DA	TE R	EPOI	RT MJ	AILED	: A	ing =	31 0	74	SIGN	IED B	x	· <u>h</u>		₽ D. T	DYE,	C.LEO	NG, J.	WANG;	CERTI	FIED E	S.C. AS	SAYERS	

A	CME ANALYTICAL LABORATORIE	S LTD, 852 E, BA	STINGS ST. VANC	COUVER B.C. V6A 1R6 PHONE(604)253-3158 PAX(604)253-17	16
	NA		WHOLE ROCK I	CP ANALYSIS	
	LL	Ram Exploration	PROJECT SAWY	<u>/ER File # 94-2842 Page 2</u> 283 Submitted by: Gordon Johnstone	
<u></u>			SAMPLE#	Ba ppm	
			FF003 GJ1008 GJ1009 RE GJ100	1224 352 16 09 11	
, , ,		· · · · · · · · · · · · · · · · · · ·	BA BY LIBO2 FUSION, A - SAMPLE TYPE: ROCK Samples beginning 'RE	ANALYSIS BY ICP. <u>Ef are duplicate samplés.</u>	
;	DATE RECEIVED: AUG 25 1994	DATE REPORT MAILED:	Huy 31/94	SIGNED BY	
	,				

....

		ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	X	ppm (ppm ;	ppm	ppm p	pm	ppm	ppm p	y mqk	ppm	×	X	ppm -	ppm 🕺	ppm %	pa	<u> </u>	<u> </u>	ppm p	pp bb	ជា
	FF008 FF009 FF0010 FF0011 FF005	4 7 153 3 3	1007 13 80 68 32	14 12 6167 53	3 28 3 8106 83	.8 <.1 .1 21.5 .1	19 16 7 25 43	146 2 4 12 52	31 218 42 2781 180	19.70 4.65 2.53 5.14 7.44	4 5 9 70 95	ং ১ ১ ১ ১ ১ ১ ১	<2 <2 <2 <2 <2 <2 <2 <2	6 3 <2 10-5 7	3 24 1 15 7	<.2 <.2 <.2 67.5 <.2	<2 <2 5 26 <2	38 <2 <2 <2 <2 <2	2 17 <2 13 5	.04 1.27 .02 10.49 .12	.003 .046 .001 .027 .025	24249	6 .11 16 1.77 9 .01 6 7.30 12 .26	4 .01 19 .09 8<.01 20<.01 38 .01	5 . 2 2. <2 . 3 . <2 .	17 .01 98 .25 04 .01 14<.01 57 .01	.03 1.47 <.01 .09	539 5 5 <1 <1	<1 2 6 1	- - -
PAGE 15	FF 306 FF 807 GJ1010 GJ1011 GJ1012	4 27 7 3 6	11 9 158 62 55	21 22194 25 102 6	34 76 6 49 32	<.1 93.0 .3 .1 <.1	26 9 45 18 21	7 1 2 5 18	669 115 161 190 168	1.92 .38 18.48 2.91 5.71	9 14 2 14 7	9 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	8 1 <2 3 8 5	87 16 7 24 10	.2 1.6 <.2 <.2 <.2	<2 8 <2 <2 3	<2 298 4 <2 3	4 <2 9 27 35	7.41 .92 .63 1.26 .32	.016 .005 .018 .024 .017	4 <2 3 11 7	8 6.78 9 .13 8 .14 29 1.65 26 .96	19 .01 2<.01 9 .04 84 .12 24 .13	3 3 3 <2 3 <2 1	.29<.01 .02<.01 .34<.01 .29 .29	1 .21 1 <.01 1 <.01 1 .12 3 1.06	4 3 52 <1 1	2 7 1 7 27 1	- 7
:	GJ1013 RE GJ1013 GJ1014 GJ1016 GJ1017	20 19 2 3 2414	5 5 19 458 9	5 10 15 11 <2	14 14 24 30 1	<.1 <.1 <.1 .2 <.1	16 15 27 16 10	10 10 8 12 15	96 94 130 328 18	2.94 2.86 3.83 3.72 9.52	20 21 5 5 3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 8 2 2	2 2 2 21 2	<.2 <.2 <.2 <.2 <.2	5 6 4 2 3	<2 <2 2 3 2	7 6 14 12 <2	.18 .18 .09 1.61 .02	.054 .053 .026 .013 .002	11 10 8 5 <2	10 .26 9 .25 12 .99 15 .89 8 .03	56 .04 52 .04 35 .07 30 .07 9<.01	2 <2 <2 1. 3 2. <2	.65 .03 .64 .03 .15 .03 .91 .23 .04 .0	3 .50 3 .51 3 .80 2 .56 1 .01	1 2 1 2 3	1 1 2 2 1	-
	GJ1018 GJ1019 GJ1020 GJ1 0 15 GJ2001	16 4 2 54 4	2 44 7 52 59	6 13 39 <2 25117	18 29 133 1 1329	.1 <.1 .2 <.1 86.7	17 35 14 17 12	4 11 5 29 3	354 23 161 18 158	1.63 2.08 1.84 6.94 1.82	2 <2 23 2 21	<5 <5 <5 <5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 4 <2 <2 3	98 5 29 1 11	<.2 <.2 .5 <.2 9.9	2 4 5 2 56	<2 <2 <2 <2 <2 548	13 11 <2 <2 <2	7.92 .17 1.79 .02 .01	.024 .051 .018 .003 .001	9 13 2 <2 2	32 7.60 15 .24 5 1.15 8 .02 13 .01	10 .04 63 .02 34<.01 3<.01 3<.01	<2 . 2 . 2 . 2 . 2 . 2 .	.28<.0 .54 .0 .18<.0 .01 .0 .03<.0	1 .26 2 .40 1 .15 1 <.01 1 <.01	3 1 1 1 4	1 1 90 1 25	8
	GJ2002 GJ2003 STANDARD C/AU-R	2 10 21	24 117 62	615 105 40	129 164 129	1.9 .4 7.1	34 102 72	19 23 32	481 37 1045	4.18 6.14 3.96	13 87 42	<5 <5 16	<2 <2 9	10 10 38	54 6 52	<.2 .4 17.5	<2 5 14	18 5 22	38 14 60	1.09 .18 .49	.077 .042 .090	28 5 41	22 2.36 21 .34 60 .92	81 .07 27 .02 177 .09	<2 2. 2 34 1.	.23 .0 .69 .0 .88 .0	1 .61 1 .52 7 .15	<1 <1 10 4	10 1 60	- - •

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENOED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. BA* .2 GM SAMPLE FUSED WITH 1.2 GM LIBO2, ANALYSIS BY ICP. <u>Samples beginning 'RE' are duplicate samples.</u>

DATE RECEIVED: SEP 13 1994 DATE REPORT MAILED: Sept A

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

PAGE 1

ы

				BINO D	SC T	TD	1997 - E	852	È.	HA	STI	NGS	ST	. v	ANCO	UVI	SRE	.c.	<u>v</u>	6 a 1	R6		PH	ONE	604)25	53-3	158	:::: : :::::::::::::::::::::::::::::::	LX (6	504)	253-1	716
<i></i>	A CAU	ANALITICA		AION					GE	och	EM	ICA	J. 2	AN7	ALYS	3IS	CE	RT	IFI	CAT	e												4
					Ra	1 <u>m</u>]	Exp	lor	ati	<u>on</u>	PR	<u>ojt</u>	CT	<u>S</u>	AWYE	<u>3</u> R	Fj	le	# 1 hw-	94 -	386 on Jo	i5 Anst	P one	ag∈	: 1							L	L
	L	L					1200	- 2nd	Ave	South);::CI		-00K	BC V	rd	Sb	Bi	<u>v 123</u> V	Ca	P	La	Cr	Mg	Ba	3 i	B	Al	Ne	K	W T	l Hg		
	_	SAMPLE#	Mo Cu pprapprapra	Pb ppm p	zn Ag pm ppm	Ni ppna	Со ррп	Mn ppm	Fe %	AS ppm p	ppm I	ppm t	op m op	pm	ppm	ppm	ppm	ppm	*	*	ppm (. may	<u>× I</u>	ppm	<u>× p</u>		<u></u>		<u>~ pp</u> 72	<u>mpp</u> 	<u>1 pps</u> 5 1		<u>.</u>
		GJ 1022 GJ 1023 GJ 1025 GJ 1027 PF GJ 1027	3 32 <1 194 2 15 <1 1 <1 1	33 112 999 22 22 8 5	49 1.0 99 4.7 00 .7 41 .5 38 .6	29 16 20 4 2	13 4 1 5 <1 <1	59 3896 2256 140 132	3.02 5.50 4.09 .26 .25	27 368 33 <2 <2	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	~~~~~~	5 52 61 3	5 11 181 54 51	.3 716.8 16.6 -2 .2	2 73 <2 <2 <2	< < < < < < < < < < < < < < < < < < < <	10 3 4 4 4	.13 7.07 8.72 3.21 3.06	.040 .021 .030 .007 .007	7 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2	15 33 48 3	.19 5.59 3.14 .82 .78	43 28<. 40 11 13	02 01 01 03 .03	5 9 2 3	.47 .06 .31 .26 .25	01 .01 .01 .01	.06 < .26 < .14 .13	1 < 1 < 3 < 3 <	5 <1 5 <1 5 <1 5 <1 5 <1		
	16	STANDARD C	19 60	38 1	26 7.0	69	31	1040	3.96	42	18	7	38	52	18.7	14	2 2	61	.49	.093	40	61	.91	185	.08	34 1	.88	.07	.16	13 <	5 4		
	PAGE		ICP THIS LE ASSAY R - SAMPL	500 GR/ ACH IS RECOMMEN E TYPE	M SAMP PARTIA DED FO ROCK	LE IS L FOR R ROO S	S DIGE MN I CK AND Sample REP	STED FE SR CORI es be	WITH CA P E SAM ginni MAI	3ML LA C PLES <u>ng 'F</u> LED:	3-1- ∷R MG IF C <u>RE' ∎</u>	2 HC 3 BA CU PB are c	L-HNG TIB ZNG <u>Jupli</u>	03-H WA AS > <u>cate</u>	120 AT ND LTI 1%, <u>samp</u>	95 MITE AG > <u>oles.</u> SJ	DEG. (D FOI - 30 - -	C FC NA PPM &		E HOUI D AL. > 100 	R AND	IS	DILUT	rED T	D 10	ML W	JITH '	G; C	K. ERTIF	1ED E	s.c. A	SSAYER	s
l]	DATE RECEIV	ED: OC	T 26 19	94 D/	MTD	Ruit					-0	1	[]																			
																																	,
																													•				
							·																										
			*												-	-	<u> </u>	<u>-</u>	_				-			<u> </u>							

Ram Exploration PROJECT SAWYER FILE # 94-3865

· · · · 🌉

Page 2

. .

		ACHE AHALYT
	SAMPLE# Pb Zn Ag % % oz/t	
<u></u>	GJ 1021 GJ 1024 GJ 1024 GJ 1026 GJ 1026 RE GJ 1026 .01 50.44 .09 .01 50.12 .09	
Sample type: ROCK.	Samples beginning 'RE' are duplicate samples.	

·

BAPTY RESEARCH LIMITED

901 Industrial Rd. No. 2 Crambrook, B.C. V1C 4C9

Fax (604) 426-6219

Tel (604) 426-6277

l

÷.,

ŧй

REPORT ON THE SAWYER PROPERTY

FORT STEELE MINING DISTRICT PROVINCE OF BRITISH COLUMBIA

LOCATION MAP 82F 10/E (TRIM 82F.078) LATITUDE: 49° 44' NORTH LONGITUDE: 116° 35' WEST

PREPARED BY

MICHAEL B. BAPTY, P.ENG. RICHARD T. WALKER, M.SC. P.GEO.

BAPTY RESEARCH LIMITED

OCTOBER 20, 1994

SUMMARY

The Sawyer Property includes a 16 claim block located just east of the Sawyer Pass, in the Purcell Mountains of southeastern B. C. It is a 'new' property in that there are no records of previous work, but there is some evidence of historical trenching over a quartz vein outcropping on the south edge of the claims.

Geographically, the property lies in an east-west mineralized trend extending from the Estella Kootenay King mines in the Rockies to the east, through the Sullivan cluster, and extending through the Bluebell Mine, and Ainsworth Camp to the west.

Geologically, the mineralization is contained at the Horsethief Creek-Mount Nelson Formation contacts, at the top of the Belt-Purcell Supergroup. The location is defined by the proximity of the Toby Conglomerate at the base of the Windermere series. The metallogeny is thought to be sedimentary/exhalite in origin, related to hydrothermal venting into shallow water, occasioned by tension cracks opening on the flanks of the deepening Aldridge Basin. Other known local strataformed sulphide deposits occur on Enterprise Creek, about 10 kilometers to the east, and at Lapointe Creek, approximately three kilometers to the west of the Sawyer group.

Sulphides are contained within a fine grained quartzite and quartz wacke, with bedding being the obvious control of mineralization. Considerable deformation is evident, with some remobilization of sulphides, and development of calcite veinlets.

Despite two visits to the property, precipitous slopes have limited outcrop access and in-situ lead and zinc mineralization has yet to be mapped and sampled. Mineralized float from avalanche chutes grades from 9% lead, 10 oz/ton of silver, and 2% zinc (Sample B52998); to 2% lead, 2 oz/ton of silver, and 20% of zinc (Sample B52999). Mineralized boulders over 0.6 meters diameter are evident.

An iron gossan has been located on a spur between two of the float bearing chutes, at 2010 m elevation. The unit was approximately 5 meters thick, and apparently gently dipping (Sample B52997). No lead or zinc was detected, but ICP analysis showed the leached residue graded from 25-30% Fe. We believe this represents the centre of the sulphide mineralization.

We recommend the property be optioned. Development will take place through:

(1) Continued mapping and structural definition,

1.120

(2) Prospecting, supported by rock climbing specialists,

and (3) Geochemical definition of mineralization in the south portion of the claim block, thought to be an extension of the north face outcrop.

Basic mapping, prospecting, and a geochemical survey will cost approximately \$35,000.

If results are favourable, a two stage drill program will follow.

The drill definition will cost approximately \$500,000 for initial work, with another \$500,000 for fill-in holes to define a reserve.

Ongoing engineering and development will require a separate budget.

The indicated grades, potential size of the deposit, and proximity to Cominco's Sullivan concentrator make this an attractive prospect.

1

54

I.

REPORT ON SAWYER PROPERTY

INTRODUCTION

1....

с. е

÷.

Location and Access

The Sawyer claims are located just east of the Sawyer Pass, about 45 km. west of Kimberley, B.C., and they straddle an unnamed mountain rising to 2399 meters. Geographically, they are referenced at 49° 44' north latitude, and 116° 35' west longitude.

Access is by logging road west from Kimberley until turning off onto the West Fork trunk road approximately 23 km past St. Marys Lake, and later south across the river onto the Sawyer Creek Forest road. Three kilometers beyond is the start of an old trail leading up to Sawyer Pass, which crosses the claim block. A 2.5 km. hike brings the viewer to the base of the avalanche chutes containing the mineralized float (Figure 1).

Physiography

The claim group covers alpine terrain near the top of the St. Marys River drainage. Approximately 80% of the block is forested by mature larch, pine and balsam to 2300 m, with the remainder largely unvegetated due to steep terrain and avalanche scour.

Rain and snowfall levels are above average with accumulated snowfalls reaching 5 meters. The property is free from snow between May and October.

Geological Target

The property is located midway between the Aldridge basin and the Kootenay Arc. The nearest producer is the now dormant Bluebell Mine, located approximately 20 km west of the claims which produced about 4.7 million tonnes of lead and zinc grading 14% combined metal.

Mineralogically, the occurrence is thought to represent a potentially significant strataformed deposit, similar in setting to the Lapointe Creek mineralization located about 3 km to the west (large surface expression grading 0.1% Zn, 5% Fe, Reference 1).

Genesis is thought to follow hydrothermal venting associated with block faulting along the edge of the Purcell basin, synchronous with rifting and deepening within the basin proper (Reference 2). 1

CLAIM GROUP AND STATUS

The eight 2-post Sawyer claims were staked in 1993 by Gordon Johnstone for himself, and an additional 9 unit 4-post block was staked in 1994. The 2-post claim named Sawyer 8 was allowed to lapse, and the new block was named Sawyer 8. Frank Fairclough, a longtime friend and partner of Gordon has a 1/3 beneficial interest, but his name does not appear on the ownership documents.

Prospecting was carried out in 1993 and 1994 by Johnstone. As BRL was active with projects on the adjacent Lapointe Creek property, Johnstone approached Bapty in late summer of 1994 to assist with arranging an option and evaluation program. Bapty Research Limited subsequently signed an agreement with the vendor for exclusive right to place the option with a development company.

The terms of this agreement and the claim information are described in Appendix III.

The claims are in good standing until 1996 and 1997.

Figure 2 shows their configuration.

PROGRAM

1

The examination was designed to locate and verify the source of mineralization, describe the structural controls, and define the economic potential.

Initial helicopter access located a landing site and provided a photographic montage to assist with structural definition. The first examination revealed no mineralization in the upper portion of the mountain, and the need for suitable safety equipment for access to examine the lower slopes.

The second flight included Mr. R. Walker, P. Geo. two mountain climbers, and the author. Roped descent through 300 meters of steep terrain, including traverses across areas of likely sources of mineralization revealed no likely sources. Late in the descent however, at 2010 meters of elevation, the forested slope was noted to be comprised of highly oxydized talus over a 10 m x 35 m area. Impending darkness prevented a wider search but a typical piece of scree, taken for later examination is thought to represent underlying outcrop. Ł

_3

<u>General</u>

The claims straddle stratigraphy identified as Horsethief Creek, characterized by pebble conglomerates and beds of unique blue grey limestone.

Regional mapping by Reesor (Figure 3) features the northerly trend of the steeply dipping beds, and the continuity of structure.

Field mapping showed fault repetition of the control sequence (Figure 4, E-W X-section). The gossan is located approximately 150 meters below the lower pebble conglomerate. Projections indicate that there may be about 300 meters of east side down displacement on a prominent thrust fault cutting through the mineralization. This fault is of importance because it is projected to down thrust a significant portion of mineralized horizon below the outcrop level.

The N-S section shows the axial continuity. If the downthrust model is verified, there is potential for a significant increase in volume of favourable stratigraphy.

<u>Mineralization</u>

The float samples from scree indicate the mineralized horizon is broadly segregated into a lead rich band, combined lead and zinc, and a zinc rich band. The sulphides are contained within well defined bedding planes, with evidence of minor remobilization. The host sequence is a well graded quartzite, with increased dolomite in the zinc horizon.

The lead sulphides are disseminated with little iron mineral. Silver values accompany the lead.

<u>Pb%</u>	<u>(Ag_oz/ton)</u>	<u>Ag/Pb value ratio</u>
2.31	2.26	0.98
9.06	10.05	1.11

Gold values are of no consequence.

The zinc sulphide is a uniform dark brown colour. Iron values are minor.

<u> </u>	<u>Fe%</u>	<u>Cadmium (ppm)</u>	Antimony (ppm)
1.86	1.38	241	431
19.87	3.66	898	917

Cadmium and antimony appear in minor quantities.

Analysis of the gossan specimen revealed shards (to 5 cm) of quartzitic siltstone contained with flow patterns of porous limonite and siderite, with occasional slugs (to 2 cm) of geothite. ICP analysis revealed no lead/zinc, little feldspar, some dolomite, and iron in oxides grading 28% Fe (Sample B52997). Characteristic boxwork patterns in the limonite indicates the initial presence of iron sulphides. ł

	·	
	T	• .
<u> </u>	Granite, pegmatite	
RCELL	L SUPERGROUP (H mate No)	
•	NOUNT NELSON PORMATION: Undivided	
tinn _e	Dolomite, white or dark grey, built or prove weathering	
tenn ₂	Black arguitte and arguitaceous gray and one, our-ordered	
Manna -		
	ante a franci carriera das mus	
-		
Hdc,	DIFFERT MISTORIA, APPLMOR, QUARCHINE Za-carbonaue bearing bods and dolomite	
Hdc,	LOWER: black argillite and argillaceous grey siltstone, thinly inserbedded; la-thun successions of dolomite and/or white quartzite	
•	MOYIEINTRUSIONS: meta-diorite, meta-quartz diorite	
	ETCHENER FORMATION: undivided	
Mk,	Red westhering dolomite, black argillite, quartzite	
Mk,	Black argillise, grey siltstone, tan siltstone all thinly	
-	uner vevueti rare carvamer ven ag norizons Dalamiele siltetane, dalamite, ereen araillise, klark areillise	
Hk,	b-black argillite; buff dolomize and dolomitic silistone, white silistone a-green argulize, buff dolomitic silistone, dolomite	
	CRESTON FORMATION undivided	
Hc.	UPPER CRESTON: deep green siltstone, light and dark, thinly laminated	
	widele CRESTON: ever, blocky silistone and very fine quartrite in bods to	
Mcz	30 cm or more, commonly ripple marked, and conmonly purple lined or motiled; black to deep purple argillite and thin-bedded siltstone; white, medium-grained quartasta commonly associated with purple mud-chip breccias.	
	LOWER CRESTON: thin-bedded dark argillite and grey siltstone characterized	
Mc,	by urregular punching and swelling beds, ripple cross-lamination, mud-cracks, munor cut and till leasures; green sultstone with this interbeds of argillite.	
	basing up have be and a struct a second parameters	
	Budding, Tape unterent Caciford	
	Carrier former	
	secure terms	
	· · · · · · · · · · · · · · · · · · ·	
	Paula landanal, approximate, attattali	
	Thrus have been appropriate, approached a	
	Sand halo land plane, printer, wrant, strap of and	
	Assessed States of sold services	
	· · ·	
	Annderen, Jonizen (Dans of solid beford)	
	Overserved Anaztra, Jackin (Trees at and surface)	
	Quarterined Anderes, Senten (Trans of east parteria)	
		ł
		Į
	BAPTY RESEARCH LTD	ł
		1
		{
	SAWYER PROPERTY	
	Dracilly Manager	1
	KEGIONAL GEOLOGY	4
		{
		ļ
	PEF RESEAR 1968 Dry 1994	
		1
	SCALE 1: 50.000 FIG: 3	
		F

RN

Despite limited field evidence the property has much to commend it.

The sedimentary exhalite model for strataformed deposits typically favours iron production over base metals, and these are often found in quantity near the vent source.

- 1. In our examination, an iron gossan was passed through on the way down the slope at 2010 m. elevation. The extent of the scatter indicated a thickness of several meters.
- Samples of significant grades of lead or zinc are observed across four avalanche chutes within the scree. A width of 150 meters is indicated to the projected fault plane.
- 3. A fold axis on the west side of the fault was observed to strike N-S and plunge at 0-10° to the south. The prospector vendor stated that he had picked up samples of lead and zinc in the outcrop at the same elevation, on the south side of the mountain. This establishes a possible 600 meter trend.
- 4. The mineralized potential may be estimated to size: thickness x length x trend x density = 5 m x 150 m x 600 m x 3.2 m = 1.3 million tonnes.

Projected extension of mineralized structure on the east side of the fault is accessible from the lower side of the valley.

Potential to develop a reserve of 1-2 million tonnes is evident.

There is possibility of selling mined material to a local concentrator.

. .

: 5 The grades of lead/zinc sample from float indicate that the occurrence could be of economic interest.

1

CONCLUSIONS

Lead and zinc sulphides are appearing in avalanche chutes along a mountain face. Their grades are potentially of economic interest. The inferred size of the mineralized structure is adequate to support sustained production.

The property should be optioned and further explored.

Trenching, geochemical sampling, prospecting and structural mapping should be carried out. Outcrop exposure may show sufficient continuity to embark on an aggressive drill program. The drill program should be phased to revalue the results as successive sections are drilled off. It should be possible to quickly establish whether the potential resource is 1/2 or 2x the indicated size, for example.

An optioning company should be prepared to finance this work within a single season.

RECOMMENDATIONS

• 5

2

1

żγ.

Bapty Research Limited is acting on behalf of the vendor. Our interests in optioning the property are described in Appendix IV.

- More work must be spent examining the showings and structure. This is budgetted to cost \$35,000 and could partially be completed this Fall.
- 3. Establishment of an ore reserve can only be accomplished by a drill program. This is relatively easy to define and budget for, but will be controlled by logistics and financing capability. The optioning company should be prepared to drill off the whole structure in one season, but approvals to carry out and continue a program of this magnitude should be based upon staged encouragement.

A drill program is estimated to cost \$1 million.

QUALIFICATION STATEMENT

I, Michael Bruce Bapty, of Cranbrook, in the Province of British Columbia, hereby certify that:

- 1. I am a Consulting Mining Engineer and Contractor at 901 Industrial Road #2, Cranbrook, B.C.;
- 2. I am a graduate of the University of British Columbia with a BASC in Mineral Engineering, and have been active in mine exploration, development, operations and administration for twenty-six years;
- 3. I am a Member of the Association of Professional Engineers of British Columbia;
- This report is based upon property fieldwork conducted by a consultant and myself from the period August to October, 1994.
- 5. My interest in this property is to recover our option cost and and examination fee, and to secure a finders fee, to be determined by negotiation.

Dated at Cranbrook, British Columbia, this 25th day of October, 1994.

M. Bapty, P. Eng.

APPENDIX I

References

- 1. Bapty, M.; Lapointe Creek Period Development Report for Telstar Resources Ltd.; 1991.
- 2. Brown, D.A. and Klewchuck, P.; "Pb-Zn-Ba Mineralization at Wilds Creek: Relevance to Stratabound Deposits along the western Purcell Anticlinorium"; Paper contained within a Conference Publication "Metallogeny of the Belt-Purcell Basin" from a workshop held in Cranbrook, Sept. 1994, Published by Dept. of Earth Sciences, Montana State University, Bozeman. 1994
- 3. Fyles J.T.; Geology of the Ainsworth-Kaslo Area, B.C. B.C. Dept of Mines, Bulletin No. 53.; 1967

: ج

1 - **M**

ł.

APPENDIX II

.....

<u>Assay Results</u>

. .

l,

.

Å Å	LYTI	CAL	LABO	RATO	RIE	S L	ĽD.		85	GI GI	. HA	STIN(GS S CAL	51. 1 AN	VANC ALY	OUVE SIS	CEF	C. NTIR	V6/	A 15 ATE	6	8998 1992 19	РНС)NE (604) 251	200 1	58	FAL	(604	,	
TT									Baj	oty	<u>Res</u> 901	ear Indus	ch stria	Lim L Roa	ite d #2,	d] Cranb	ile ook R	≥ # 90 V10	94 c 40	-36 9	36			anda Katal Magina Wasila			· ·					
AMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn	/ Pi	Ag pm p	i m p	Co ppm	Mn ppm	fe %	As ppm	U ppm	Au ppm	Th ppm	şr ppm	Çd ppm	Sb ppm	Bi ppm	V ppm	Ce	F	l Pf	.a m j	Cr ppm	Mg X	Ba ppm	Ti X	B Bebu	Al X	Na X	к 7.	¥ ppm
52997 52998 52999 52999 E B 52999	4 4 1 1	68 301 869 843	2 28654 17218 16422	52 20749 99999 99999	126 60 59	.1 .2 .2 .0	70 12 9 8	19 4 11 10	140 1984 7855 7 73 5	27.94 1.38 3.66 3.68	5 22 173 168	<5 <5 7 10	<2 <2 <2 <2	9 <u>,</u> 2 6 5	7 47 102 99	<.2 241.6 898.5 858.0	<2 431 917 900	10 2 5 5	11 3 2 <2	.04 .36 4.60	.044 .074 .033 .033		10 <2 <2 <2	10 11 <1 <1	.36 .04 3.07 3.06	55 64 11 11	.03 <.01 <.01 <.01	5 6 3 <2	.53 .24 .05 .05	.01 .02 .01 <.01	.22 .15 .04 .05	<1 3 <1 <1
DATE F	ECEI	VED:	HIS L SSAY SAMP OC	EACH I RECOMM LE TYP T 12 1	S PAI ENDEI E: RI 1994	RTIAL D FOR OCK DA		HN KANI ampl REP	FE SR D COR es be ORT 85	CA P E SAM <u>ginni</u> MAI	LA CF PLES 1 ng 'RE LED:	MG B. F CU C are		BW/ NASS Licate /8 [^] /	12. 2 sam	MITED AG > 1 des. SIG	FOR NO PPM	ака 18 ац ву.	ND A > 1 		РВ	.D.1	OYE .	, C.I	LEONG	, J.W	ANG;	CERT I	FIED	B.C.	ASSA1	ERS
.CME ANA	LYTIC	CAL -	LABO	RATU	RIE	арт. С			00	4 6,	, <u>п</u> аз	Л	38A	YC	ERT	IFIC	ATE								n bred A				, • . ,			ÀÀ
									<u>Bar</u>	ty	Res 901	ear(ch tria	Lim t Road	<u>ite</u> d #2,	d I Cranb	ile ook B	# 10. V10	94 409	-36	36				ing Roma (al ci Roma (al cinita		n an an Saint an Air Saint an Air				ה	ĽĽ
							<u></u>			5	AMP	LE#		P	b b	Zı	A	g**	A	u**		<u></u>		<u></u>								
															*	Ŧ	i C)Z/T	: 0	z/t												
								_		E	3 52 3 52	998 999		9.0 2.3	* 6 1 1	1.8(9.8	10 2).05 2.26	<.	z/t 001 001												
DATE R	ECEI	VED:		T 12 1	994	DA	1 A: -	GM G** SAMI REP	SAHPL & AU* PLE T	E LEAN BY YPE: I MAII	3 52 3 52 CHED I FIRE A ROCK	998 999 N 75 1 SSAY	HL AQ	9.0 2.3 1 A.T	* 1 1 REGIA . SAM	1.8(9.87 , 01LL PLE. SIG	10 10 2 11 10 10	250 BY.	: 0 ;<. HL, ;	2/t 001 ANALY	SIS E	Y 10	OYE,	, c.1	.EONG	, J.¥	ANG;	CERTI	FIED	B.C.	ASSAY	ERS
DATE R	ECEI,	VED :		T 12 1	994	DA	1 At -	GM : G** ; SAM	SAHPL & AU* PLE T	E LEAN * BY YPE: MAI)	3 52 3 52 CHED 1 FIRE A ROCK	998 999 N 75 1 SSAY	HL AG	9.0 2.3 1 A.T	* 1 1 REGIA . SAM	1.8(9.8 , DILL PLE. SIG		250 BY.	HL,	2/t 001 ANAL1	SIS 8	Y 10	CP.	, c.1	.EONG	, J.W	ANG;	CERTI	FIED	B.C.	ASSAY	ERS
DATE R	ECEI	VED :	OC.	τ 12 1	994	DA	1 At	GM : S** SAM	SAMPL & AU* PLE T ORT	E LEA BY YPE: MAI	3 52 3 52 CHED I FIRE A ROCK	998 999 N 75 1 SSAY (ML AG	9.0 2.3 1 A.T	* 1 1 REGIA 7 SAM	1.8(9.87 , DILL PLE. SIG		250 BY.	: 0 ;<. HL, ; ;;;;		sis e	Y 10	CP_	, C.I	.EONG	, J.W.	ANG;	CERTI	FIED	B.C.	ASSAY	ERS
DATE R	ECEI	VED :	00	τ 12 1	994	DA	1 At -	GM : 5** ; Sam REP	SAMPL & AU ⁺ PLE T	E LEA BY YPE: MAI)	3 52 3 52 CHED I FIRE A ROCK	998 999 N 75 1 SSAY	ml aq from	9.0 2.3 NUA - 1 A.T	* 1 1 REGIA	1.8(9.8 9.8 510	: C ; 1C 2 TE TO NED).05 .26 250 BY.	<u>о</u> (-, -) ::::	2/t 001 001	sis e	Y 10	CP.	, c.ı	EONG	, J.W	ANG;	CERTI	FIED	8.C.	ASSAY	ERS
DATE R	ECEI	VED :	QC	τ 12 1	994	DA	1 At - CE: 1	GM : SAH	SAHPL & AU* PLE T ORT	E LEAI * BY YPE: MAI]	3 52 3 52 CHED I FIRE A ROCK	998 999 N 75 1 SSAY	ML AQ FROM	9.0 2.3 1 A.T 1 A.T	* 6 1 1 7 SAM	1.8(9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	1 C 2 TE TO NED	250 BY.	<u>о</u> ;< мL, , ;:::	2/t 001 ANAL1	sis e /	Y 10	OYE,	, c.I	EONG	, J.W	ANG;	CERTI	FIED	Ø.C.	ASSAY	ERS
DATE F	ECE1,	VED :	OC :	τ 12 1	994	DA	1 Ar	GM : G** ; Sam	SAHPL & AU ⁹ PLE T ORT	E LEAI BY YPE: MAI	3 52 3 52 CHED 1 FIRE A ROCK	998 999 N 75 1 SSAY	ML AQ	9.0 2.3 1 A.T 1.Y	* 6 1 1 7 SAM	1.8(9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	1 C	250 BY.	HL,	2/t 001 ANALY	sis e 	Y 10	OYE,	, c.ı	EONG	, J.W	ANG;	CERTI	FIED	B.C.	ASSAY	ERS

Xabara

APPENDIX II ASSAY RESULTS

.

5

COMMENTS

í

I would like to thank V.A. PRETO, Ph., P.Eng. and everyone who helped in planning of the Prospecting Assistance Program, and a special thanks to H. PAUL WILTON, P.Eng. Regional Geologist of Cranbrook, who was more than helpful and (I am sure) went out of his way to accommodate the prospector.

Without the support from the propecting grant, it would have been difficult to meet the costs of promoting the Sawyer property.

THANK YOU Vorden Joh

