BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:

1994/95

REPORT #:

PAP 94-11

NAME:

ALLAN BLOMQUIST

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM **PROSPECTING REPORT FORM (continue**

7							
		0		П	$I\!\!I\!\!I$		
MIH.	Ę	\forall	اکار	Ш	W	嘎	[[]
dh ⊓	Ρ_	3	<u>) </u>				رك
7/		-					-

JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area

٠	Refer to Pr	ogram Req	uirements/	Regulations,	section 15,	16 and 17
_					4" 1 "	

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT PROSPECTORS PROGRAM **MEMPR**

Name ALLIAM BLOMOUIST Reference Number 94-95-930
LOCATION/COMMODITIES
Project Area (as listed in Part A.) WALACHIN Minfile No. if applicable
Location of Project Area NTS 92 1 14 Lat 50°47.68 Long 121°02.65
Description of Location and Access 22.5 Km EAST OF CACHE CREEK AND
I KM NORTH OF T.C.H. AT A POINT IKM WEST OF
LALACHIN TURNOFF
Main Commodities Searched For Co ZN
Known Mineral Occurrences in Project Area 2n

WORK PERFORMED
1. Conventional Prospecting (area) Km x 1.5 Km
2. Geological Mapping (hectares/scale) 10 Ha 1:5000
3. Geochemical (type and no. of samples) SOILS AND CHIP 39
4. Geophysical (type and line km) SP SURUGY 1.5 Km.
5. Physical Work (type and amount) PITS WITH SHOUSE
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS (if any)
Commodities CuZn Claim Name JASPAR
Location (show on map) Lat 50°47.68 Long 121'02.65 Elevation 650,4.
Best assay/sample type Cu low 2n 1.58%
Description of mineralization, host rocks, anomalies
Typile chalcopyrito sphalenile in Nicola
Pyrite chalcopyrito sphalerite in Nicola Andesitic flows AND porphyries

JAN 27 1995

PROSPECTORS PROGRAM MEMPA

TABLE OF CONTENTS

Page No.
Introduction 1
Geology 1
Summary of work 1
Resultsi
Conclusions 2
LIST OF ILLUSTRATIONS
1Location Map
2Geology and claims
3Soils and chip samples upper area
4Soil samples lower area
5SP survey upper area
6SP survey lower area
Assay results(included)

PROSPECTORS PROGRAM
MEMOR

Introduction

The Jaspar Claims consist of six units staked as two post claims. The claims are located one kilometre north of the Trans Canada Highway and one kilometre west of the Walachin turnoff and 22.5 kilometres east of Cache Creek.

The claims are on a gently south facing slope between the Thompson River on the south and the basalt capped Interior Plateau on the north. Elevations on the claim block vary from 500 metres on the south end to 800 metres on the north end. A broad "U" shaped gully (Cabin Gulch) trending north-south runs up the centre of the claims. Two northwest trending tributary "V" shaped gullies with 10-20 metre depths take off from the main gully.

Geology

The Jaspar claims are located within a small window of Triassic Nicola Group volcanics intruded by a north-west trending granitic plug from the northernmost end of the Guichon Batholith of Jurassic Age.

Summary of work carried out in this report

- (a) Two grids were established over previously located anomalies for purposes of soil sampling.
- (b) Two grids of various length were established over previously located anomalies for a self potential survey.
- (c) Numerous gullies were prospected and sampled in an attempt to locate mineral source.
- (d) Mapping was carried out in the vicinity of the two known zones.

Results

(a) GRIDS (Soil Sampling)

Grid A. A 50 metre survey line extending through the centre of anomaly "A" and soil sampled at 12.5 metre intervals. The results of this line ranged as follows: cu(ppm) 47 - 113 zn(ppm) 110-594

Grid B. Consists of one line of samples taken over a distance of 660 metres and adjacent to a trail and also cutting through previously located anomaly "C". The results of this line ranged as follows: cu(ppm) 11 - 228 zn(ppm) 31 - 189

PROSPECTORS PROGRAM*

(b) GRIDS (SP SURVEY)

Grid A. Consists of two lines 50 metres apart and intersecting anomaly "C" perpendicular to its length. Readings were taken 10 metres apart. The northerly line was 220 metres in length and the south one was 100 m.

Grid B. Consists of 6 lines 20 metres apart with readings at 10 metre intervals. This survey covers the area which was soil sampled in grid A and is known as anomaly "A".

(c) GRAB SAMPLES

Samples taken from both the Main Zone and East Zone show values in copper and zinc as follows:

cu(%) zn(%)
Main Zone 1.02 0.19
East Zone 0.40 1.58

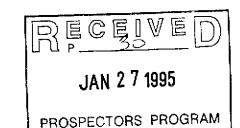
CONCLUSIONS

Grid A soil samples indicate high copper and zinc values are present and this area deserves further investigation. The SP survey indicates an anomalous zone running east-west. lines running north-south should give a better definition of anomaly.

Grid B soil samples indicate the anomaly could be further south than shown on a previous mag survey. A few more SP lines to the south may be of help in defining the anomaly.

Main and East Zones could use further trenching to determine strike and size.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)


JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area
Refer to Program Requirements/Regulations, section 15, 16 and 17
If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

PROSPECTORS PROGRAM MEMPR

Name ALLAN BLOM QUIST Reference Number 94-95 - P30
LOCATION/COMMODITIES
Project Area (as listed in Part A.) FERGUSON CREEK Minfile No. if applicable
Location of Project Area NTS 92 1 N/W Lat 50°56 Long 121'23
Description of Location and Access 16 Km NORTH OF CACHE CREEK
AND 3KM EAST OF HIGHWAY 97 ACCESS BY
LOGGING ROAD
Main Commodities Searched For ZEOL17E
Known Mineral Occurrences in Project Area CHRomits
WORK PERFORMED
1. Conventional Prospecting (area) 6 Km ALONG ROADS 3Km ALONG STA
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) Num Erous Courected 1 AMACYSED
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS (if any)
Commodities ZEOWITE? Claim Name
Location (show on map) Lat 50°56 Long (21°23 Elevation 1000 m
Best assay/sample type CATION EXCHANGE CAPACITY MEQ.
(NH3/100g) 169
Description of mineralization, host rocks, anomalies
VOLCHAIC SEDIMENTS

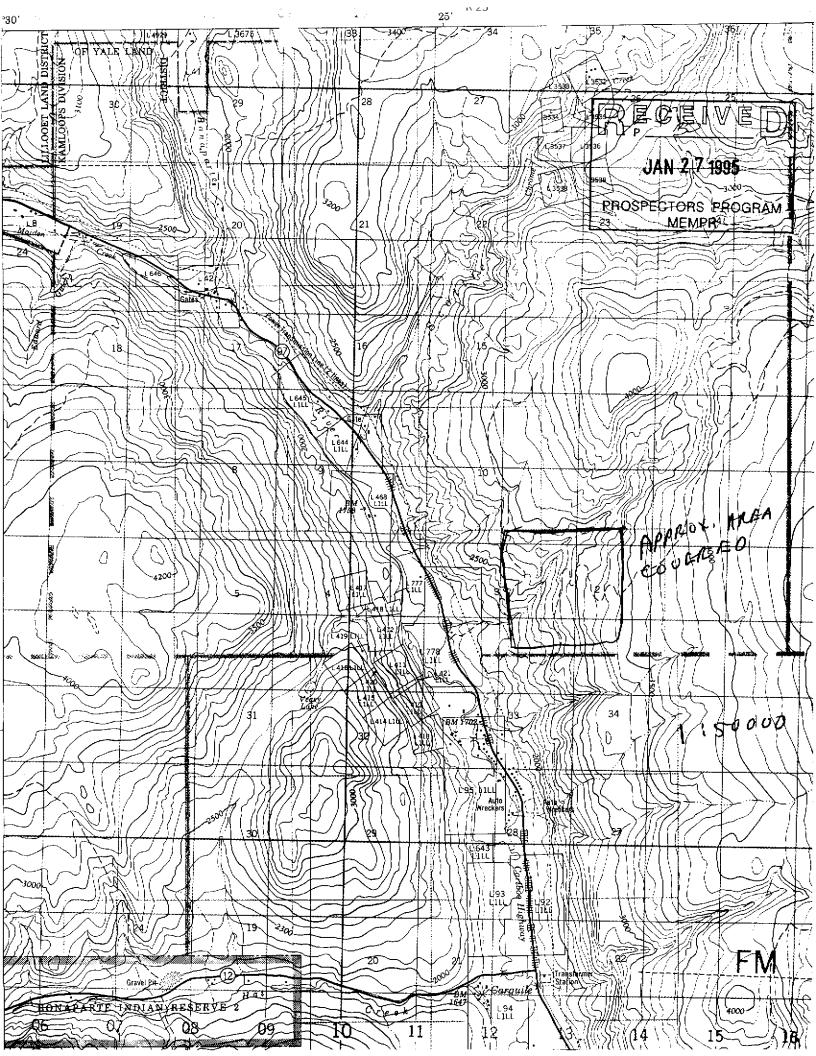
MEMPR

SITE 2

Scottie and Ferguson Creeks north of Cache Creek

Accessed by taking highway 97 north from Cache Creek for 16 km onto a logging road to the east for 3km

Geology


This area is underlain by Permian (greenstone; chert argillite, minor limestone and quartzite and chlorite and quartz mica schists with a covering to the east of Tertiary (Kamloops Group) basalt and associated tuffs and breccias.

Work carried out

Prospecting and sampling was carried out in this area over a period of five days. The area was traversed by road and along the two creek gullies with numerous samples being taken. The results from the sample of zeolite? taken for analysis are Cation exchange capacity meq.(NH3/100g) 169. It will have to be determined whether this material is of any value.

Conclusions

If the material is of value further work can only be carried out by drilling or trenching to prove up tonnage.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK94-908

ALLAN BLOMQUIST P.O. BOX 1062 ASHCROFT, B.C. VOK IAO Nov 16, 1994

1 ZEOLITE sample received October 27, 1994

 Cation Exchange Capacity

 ET #.
 Tag #
 meq. (NH3/100g)

 1
 Zeolite
 169

RECEIVED

JAN 27 1995

PROSPECTORS PROGRAM MEMPR

XLS/kmisc

ECO-TECH ABORATORIES LTD.

Frank J. Pezzotti, A.Şć.T. B.C. Certified Assayer

PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (*) PROSPECTING REPORT FORM (continued)

JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

PROSPECTORS PROGRAM MEMPR

Name ALLAN	BLOMQ UIST	Reference Number 94-95 P30	
LOCATION/COMM	ODITIES		
•		1640 LAKEMinfile No. if applicable	
•		γω Lat <u>5/°54'</u> Long /21 °03	
_	· · · · · · · · · · · · · · · · · · ·	n MORTH OF 100 MILE HOUSE U	
-) FOR 21 Km TO FOREST	
	*	AD 313 (BRADLEY CREEK RUAN)	
		THROUGH BUSH FOR 4 Km.	
	earched For Goco		
Known Mineral Occu	rrences in Project Area	NOME	
WORK PERFORM			
		N6 CREEKS	
2. Geological Mappi	ing (hectares/scale)		
3. Geochemical (typ	e and no. of samples)	3 SAMPLES SEDIMENTS	
4. Geophysical (type	and line km)		
5. Physical Work (ty	pe and amount)		
		1)	
7. Other (specify)			
SIGNIFICANT RESI			
Commodities	PU	_ Claim Name	
Location (show on m	ap) Lat	Long Elevation	
Best assay/sample typ	ne 20 <i>PPB</i> /	AU	
Description of minera	alization, host rocks, anon	nalies	
	and the first of the same of t	- 1	

JAN 27 1995

MEMPR

PROSPECTORS PROGRAM

SITE 3

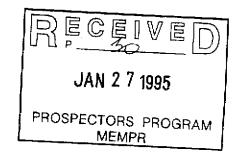
BEDINGFIELD LAKE AREA

Location

The site is located northeast of 100 Mile House accessed by going up Road 318 (Canim Lake Road) for 21 km to Forest Grove then up Road 313 (Bradley Creek Road) for 18 km then northeast through the bush for 4 km.

Geology

This area consists mostly of granodiorite of the Late Tertiary period.


Information obtained from MEMPR BC RGS 36 the Stream Sediment and Water Geochemical Data for Bonaparte lake (NTS 92P) indicated stream sediment values for gold at 99 and 120 ppb or in the 98th percentile.

Summary of work carried out

This area is difficult to access as there are no roads in the vicinty and must be reached by foot. Three samples were taken from what is believed to be the right area. One sample had a reading of 20 ppb which indicates we may have been close to the original sampling.

Conclusions

This area deserves a further sampling program with possibly a Magellan Nav 5000D or similar instrument for locating the original point with more accuracy.

BEDWGFIELD 5013 51354 Berolas CRat SAMPLE POINTS SCALE 1:50,000

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK 94-909

ALLAN BLOMQUIST P.O. BOX 1062 ASHCROFT, B.C. VOK IAO 21-Nov-94

34 SOIL/SEDIMENT samples received October 28, 1994

_	ET#.	Tag #	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
- 	A 1	Oct 26 # 1 Sediment	<5	_	-	_	-	
BEDINK (7′2	Oct 26 # 2 Sediment	20	-	-	-	-	
DELKI	. З	Oct 26 # 4 Sediment	<5	_	-	-	-	
	4	Opt 19#1/	<5 /	⁷ ~ < 1/	113	8	594	
	5	ØgK 1/9 #/2 //	<5/	//.1/	/ /5 0 /	// 6/	336	
	6	/Oct49#3/	€5	61	/,58	10	148/	
	7	Oct 19#4	<5	<.1	47	12	118	

XLS/Kmisc7

ECO-TECH JABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

JAN 2 7 1995
PROSPECTORS PROGRAM
MEMPR

4-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

- BEDINGFIELD AREA

P.O. BOX 1062 ASHCROFT, B.C. VOK IAO

34 SOIL/SEDIMENT samples received October 28, 1994

Values reported in ppm unless otherwise indicated

		سيعكم	_ [
Et#	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La M	/lg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	Ų	v	w	Υ	Zn
1	Oct 26 # 1 Sediment	0.4	2.14	5	220	<5	0.79	<1	13	43	36	3.20	<10	0.53	628	<1	0.01	31	510	12	10	<20	47	0.10	<10	61	<10	10	68
2	Oct 26 # 2 Sediment	<.2	0.65	<5	80	5	0.41	<1	9	20	11	2.73	<10	0.42	359	<1	<.01	15	440	<2	<5	<20	22	0.07	<10	66	<10	<1	31
\ 3	Oct 26 # 4 Sediment	<.2	0.58	<5	55	<5	0.44	<1	8	21	13	2.29	<10	0.49	223	<1	0.01	18	450	<2	5	<20	19	0.06	<10	55	<10	1	25
8	Oct 24 # 1	<.2	2.11	<5	260	5	0.74	1	22	40	41	4.09	<10	0.72	1082	<1	0.03	30	680	14	5	<20	59	0.19	<10	83	<10	8	129
9	Oct 24 # 2	<.2	2.15	<5	250	5	0.75	1	22	41	43	4.19	<10	0.75	1043	<1	0.03	32	600	14	<5	<20	60	0.19	<10	84	<10	8	132
10	Oct 24 # 3	<.2	2.09	<5	245	5	0.72	2	22	42	46	4.21	<10	0.76	1014		0.02	20	640	4.4	40	~20	r	0.40	-40	0.5	-40	^	444
11	Oct 24 # 4	<.2	2.10	<5	265	<5	0.72	2	23	43		4.25		0.76	1118	<1 <1	0.03	32 32	610 810	14	10	<20	57	0.19	<10	85	<10	8	144
12	Oct 24 # 5	0.2		<5	275	<5	0.75	1	19	38		3.86		0.76	952	<1	0.03 0.03		940	14	10	<20	63	0.19	<10	88	<10	8	162
13	Oct 24 # 6	<.2	2.00	<5	260	~5	0.74	2	19	39		3.84		0.67	932 844			29		14	10	<20	65	0.16	<10	76	<10	<u>/</u>	171
14	Oct 24 # 7	<.2		<5	260	<5	0.79	1		39		3.88		0.70		<1	0.03	29	820	14	10	<20	63	0.17	<10	78 70	<10	/	158
17	OCI 24 # 1	∼.∠	2.01	~0	200	~3	0.75	ı	19	38	52	3.00	<10	0.70	7 9 6	<1	0.03	30	850	14	5	<20	66	0.17	<10	78	<10	1	159
15	Oct 24 # 8	<.2		<5	225	<5	1.46	<1	18	21	43	4.12	<10	0.92	781	<1	0.02	18	780	8	10	<20	44	0.11	<10	78	<10	8	82
16	Oct 24 # 9	<.2	1.55	<5	165	<5	1.19	<1	18	27	48	3.80	<10	0.87	725	<1	0.03	21	710	10	<5	<20	62	0.16	<10	81	<10	7	74
17	Oct 24 # 10	<.2	1.76	<5	140	<5	1.29	<1	20	36	51	4.39	<10	1.09	808	<1	0.04	27	910	12	10	<20	65	0.19	<10	109	<10	8	85
18	Oct 24 # 11	<.2	2.02	<5	180	5	2.56	<1	21	30	50	4.50	<10	1.22	864	<1	0.04	27	840	12	10	<20	91	0.20	<10	104	<10	9	73
19	Oct 24 # 12	<.2	1.46	<5	225	<5	2.34	1	30	14	228	7.91	<10	0.97	1683	<1	0.01	21	1710	4	5	<20	58	0.03	<10	135	<10	13	140
20	Oct 24 # 13	<.2	2.02	<5	215	5	0.75	<1	- 22	39	38	4.07	<10	0.72	1034	<1	0.03	32	420	12	10	<20	56	0.20	<10	80	<10	8	112
21	Oct 24 # 14		2.07	<5	215	<5	0.90	1	22	40		4.24		0.86	1073	<1	0.03	35	530	14	10	<20	61	0.20	<10	86	<10	8	129
22	Oct 24 # 15		2.41	<5	200	< 5	1.00	1	21	38		4.13		0.80	918	<1	0.04	33	440	60	10	<20	59	0.18	<10	82	<10	8	141
23	Oct 24 # 16		2.07	<5	260	5	0.76	2	21	38		3.95		0.70	1063	<1	0.03	29	660	14	10	<20	60	0.18	<10	80	<10	7	123
24	Oct 27 # 1		2.13	<5	300	<5	0.81	2	26	40		4.53		0.93	1383	<1	0.03	34	1030	16	10	<20	62	0.18	<10	96	<10	8	176
																								U . 10	-15	•	-10	J	170
25	Oct 27 # 2	<.2	2.16	<5	295	<5	0.85	2	23	41	58	4.33	<10	0.86	1173	<1	0.03	32	930	16	10	<20	66	0.18	<10	89	<10	8	177
26	Oct 27 # 3	<.2	2.16	<5	275	<5	0.82	2	23	40	64	4.46	<10	0.93	1156	<1	0.03	33	940	16	10	<20	62	0.17	<10	90	<10	8	189
27	Oct 27 # 4	<.2	2.01	<5	235	<5	0.74	1	22	41	58	4.33	<10	0.90	981	<1	0.03	32	780	14	10	<20	56	0.18	<10	89	<10	6	166
28	Oct 27 # 5	<.2	1.83	<5	205	10	0.70	1	22	43	55	4.45	<10	0.92	1000	<1	0.03	33	670	16	<5	<20	50	0.18	<10	96	<10	6	159
29	Oct 27 # 6	<.2	2.16	<5	225	<5	3.82	1	23	44	75	4.58	<10	1.43	899	<1	0.05	40	1060	14	15	<20	110	0.18	<10	102	<10	7	138
30	Oct 27 # 7	<.2	2.21	<5	255	<5	3.59	1	24	43	78	4.61	<10	1.46	899	<1	0.06	40	1080	16	15	<20	110	0.18	<10	101	<10	7	138
31	Oct 27 # 8	<.2	1.85	< 5	185	< 5	0.79	1	23	45	62	4.63	<10	1.09	1012	<1	0.03	36	710	14	10	<20	51	0.19	<10	100	<10	6	167

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., Fl.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-826

A. BLOMQUIST BOX 1062 ASHCROFT B.C. V0K 1A0 4-Nov-94

2 Rock samples received October 5, 1994

		Ag	Ag	Pb	Zn	
ET #.	Description	(g/t)	(oz/t)	%	%	<u>_</u>
1	#1 Grab	<.1	<.01	< .01	0.30	
2	#2 Grab	·<.1	<.01	<.01	0.34	

XLS/KMISC7

ECO-TECH LABORATORIES Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

JAN 2 7 1995
PROSPECTORS PROGRAM

MEMPR

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamiloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK826

A. BLOMQUIST BOX 1062 ASHCROFT, B.C. VOK 1A0

14-Oct-94

2 ROCK samples received October 5, 1994

		Au	Cu	
ET#.	Tag #	(ppb)	(ppm)	
1	#1 Grab	10	2173	
2	#2 Grab	10	326	

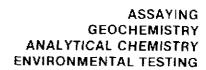
Q C DATA:

Repeat:

1 #1 Grab

2168

RECEIVED


JAN 27 1995

PROSPECTORS PROGRAM MEMPR

XLS/Kmisc#6 df/826

ECO-TECH LABORATORIES LTD.

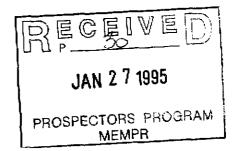
Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. *2. Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK907

A. BLOMQUIST BOX1062 ASHCROFT, B.C. VOK 1A0

21-Nov-94


4 CHIP samples received October 27, 1994

ET#.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu %	Pb %	Zn %
1	7-Oct #3	<.03	<.001	<.1	<.01	<.01	<.01	<.01
2	7-Oct #4	<.03	<.001	<.1	<.01	<.01	<.01	<.01
3	7-Oct #5	<.03	<.001	0.5	0.02	<.01	<.01	0.02
4	7-Oct #6	<.03	<.001	9.1	0,27	0.16	<.01	0.06

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/Kmisc#7

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ANALYSIS ETK 94-909

ALLAN BLOMQUIST P.O. BOX 1062 ASHCROFT, B.C. **VOK IAO**

21-Nov-94

34 SOIL/SEDIMENT samples received October 28, 1994

ET#.	Tag#	Au (ppb)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
1	Oct 26/# 1/Sediment	<5/	-	_	_	-	
2	Oct/26 #/2 Sediment	20	_	-	-	-	
3	Oct 26 # 4 Sediment	< 5	-	-	-	-	
4	Oct 19 # 1	<5	<.1	113	8	594	
5	Oct 19 # 2	<5	<.1	50	6	336	
6	Oct 19 # 3	<5	<.1	56	10	148	
7	Oct 19 # 4	<5	<.1	47	12	110	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

XLS/Kmisc7

JAN 27 1995

PROSPECTORS PROGRAM MEMPR

4-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557 ALLAN BLOMQUIST ETK94-909

P.O. BOX 1062 ASHCROFT, B.C. VOK IAO

34 SOIL/SEDIMENT samples received October 28, 1994

Values reported in ppm unless otherwise indicated

Et #.	Tag #	Ag	AI %	As	Ва	Bi C	Ca %	Cd	Co	Cr	Cu	Fe%	Lal	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
1	Oct 26 # 1 Sediment	0.4	2.14	5	220	<5	0.79	<1	13	43	36	3.20	<10	0.53	628	<1	0.01	31	510	12	10	<20	47	0.10	<10	61	<10	10	68
2	Oct 26 # 2 Sediment	<.2	0.65	<5	80	5	0.41	<1	9	20	11	2.73	<10	0.42	359	<1	<.01	15	440	<2	<5	<20	22	0.07	<10	66	<10	<1	31
3	Oct 26 # 4 Sediment	<.2	0.58	<5	55	<5	0.44	<1	8	21	13	2.29	<10	0.49	223	<1	0.01	18	450	<2	5	<20	19	0.06	<10	55	<10	1	25
8	Oct 24 # 1	<.2	2.11	<5	260	5	0.74	1	22	40	41	4.09	<10	0.72	1082	<1	0.03	30	680	14	5	<20	59	0.19	<10	83	<10	8	129
9	Oct 24 # 2	<.2	2.15	<5	250	5	0.75	1	22	41	43	4.19	<10	0.75	1043	<1	0.03	32	600	14	<5	<20	60	0.19	<10	84	<10	8	132
10	Oct 24 # 3		2.09	<5	245		0.72	2	22	42	46	4.21		0.76	1014	<1	0.03	32	610	14	10	<20	57	0.19	<10	85	<10	8	144
11	Oct 24 # 4	<.2	2.10	<5	265		0.79	2	23	43	51	4.25	<10	0.76	1118	<1	0.03	32	810	14	10	<20	63	0.19	<10	88	<10	8	162
12	Oct 24 # 5		2.09	<5	275		0.77	1	19	38	50	3.86	<10	0.68	952	<1	0.03	29	940	14	10	<20	65	0.16	<10	76	<10	7	171
13	Oct 24 # 6	<.2	2.00	<5	260		0.74	2	19	39	51	3.84	<10	0.67	844	<1	0.03	29	820	14	10	<20	63	0.17	<10	78	<10	7	158
14	Oct 24 # 7	<.2	2.01	<5	260	<5	0,79	1	19	39	52	3.88	<10	0.70	796	<1	0.03	30	850	14	5	<20	66	0.17	<10	78	<10	7	159
15	Oct 24 # 8	<.2	1.82	<5	225	<5	1.46	<1	18	21	43	4.12	<10	0.92	781	<1	0.02	18	780	8	10	<20	44	0.11	<10	78	<10	8	82
16	Oct 24 # 9	<.2	1.55	<5	165	<5	1.19	<1	18	27	48	3.80	<10	0.87	725	<1	0.03	21	710	10	<5	<20	62	0.16	<10	81	<10	7	74
17	Oct 24 # 10	<.2	1.76	<5	140	<5	1.29	<1	20	36	51	4.39	<10	1.09	808	<1	0.04	27	910	12	10	<20	65	0.19	<10	109	<10	8	85
18	Oct 24 # 11	<.2	2.02	<5	180	5	2.56	<1	21	30	50	4.50	<10	1.22	864	<1	0.04	27	840	12	10	<20	91	0.20	<10	104	<10	9	73
19	Oct 24 # 12	<.2	1.46	<5	225	<5	2.34	1	30	14	228	7.91	<10	0.97	1683	<1	0.01	21	1710	4	5	<20	58	0.03	<10	135	<10	13	140
20	Oct 24 # 13	<.2	2.02	<5	215	5	0.75	<1	22	39	38	4.07	<10	0.72	1034	<1	0.03	32	420	12	10	<20	56	0.20	<10	80	<10	8	112
21	Oct 24 # 14	<.2	2.07	<5	215	<5	0.90	1	22	40	44	4.24	<10	0.86	1073	<1	0.03	35	530	14	10	<20	61	0.20	<10	86	<10	8	129
22	Oct 24 # 15	<.2	2.41	<5	200	<5	1.00	1	21	38	55	4.13	<10	0.80	918	<1	0.04	33	440	60	10	<20	59	0.18	<10	82	<10	8	141
23	Oct 24 # 16	<.2	2.07	<5	260	5	0.76	2	21	38	39	3,95	<10	0.70	1063	<1	0.03	29	660	14	10	<20	60	0.18	<10	80	<10	7	123
24	Oct 27 # 1	<.2	2.13	<5	300	<5	0.81	2	26	40	56	4.53	<10	0.93	1383	<1	0.03	34	1030	16	10	<20	62	0.18	<10	96	<10	8	176
25	Oct 27 # 2	<.2		<5	295		0.85	2	23	41	58	4.33	<10	0.86	1173	<1		32	930	16	10	<20	66	0.18	<10	89	<10	8	177
26	Oct 27 # 3	<.2	2.16	<5	275		0.82	2	23	40	64	4.46	<10	0.93	1156	<1		33	940	16	10	<20	62		<10	90	<10	8	189
27	Oct 27 # 4	<.2	2.01	<5	235		0.74	1	22	41	58	4.33	<10	0.90	981	<1	0.03	32	780	14	10	<20	56	0.18	<10	89	<10	6	166
28	Oct 27 # 5	<.2	1.83	<5	205		0.70	1	22	43	55	4.45	<10	0.92	1000	<1	0.03	33	670	16	<5	<20	50	0.18	<10	96	<10	6	159
29	Oct 27 # 6	<.2		<5	225		3.82	1	23	44	75	4.58	<10	1.43	899	<1	0.05	40	1060	14	15	<20	110	0.18	<10	102	<10	7	138
30	Oct 27 # 7	<.2	2.21	<5	255	<5	3.59	1	24	43	78	4.61	<10	1.46	899	<1	0.06	40	1080	16	15	<20	110	0.18	<10	101	<10	7	138
31	Oct 27 # 8	<.2	1.85	<5	185	<5	0.79	1	23	45	62	4.63	<10	1.09	1012	<1	0.03	36	710	14	10	<20	51	0.19	<10	100	<10	6	167

ALLAN BLOMQUIST ETK94-909 Eco-Tech Laboratories Ltd.

Et #.	Tag #	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %_	U	V	W	Υ	Zn
32	Oct 27 # 9	<.2	2.22	<5	220	<5	0.92	1	24	42	83	4.87	<10	1.25	1157	<1	0.03	38	830	18	15	<20	55	0.17	<10	96	<10	7	185
33	Oct 27 # 10	<.2	2.01	<5	205	<5	1.00	1	23	43	75	4.78	<10	1,26	1043	<1	0.03	38	850	16	<5	<20	56	0.18	<10	102	<10	6	172
34	Oct 27 # 11	<.2	2.06	<5	210	<5	3.56	2	23	38	90	4.65	<10	1.37	1053	<1	0.04	34	970	26	10	<20	84	0.17	<10	104	<10	7	181
QC DAT	^A :																												
Repeat:	Oct 26 # 1 Sediment	0.2	2.15	5	220	< 5	0.77	<1	14	44	37	3.27	<10	0.56	644	<1	0.01	34	520	12	10	<20	45	0.10	<10	61	<10	10	62
Standa	rd 1991:	1.4	1.87	70	165	<5	1.79	<1	20	62	82	4.15	<10	0.96	684	<1	0.01	26	710	20	10	<20	64	0.10	<10	83	<10	7	79

XLS/Kmisc#7 df/6446a ECO-TECH LABORATORIES LTD. Frank J.Pezzotti, A.Sc.T. B.C.Certified Assayer

17-Nov-94

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 2J3

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

A. BLOMQUIST ETK94-937 BOX 1062 ASHCROFT, B.C. V0K 1A0

4 ROCK samples received November 9, 1994

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %	u	v	w	Y	Zn
1	135113	6.6	2.04	<5	25	<5	0.03	15	16	261	9764	6.85	<10	2.39	1860	64	<.01	20	280	6	10	<20	1	<.01	20	115	10	<1	1856
2	135114	4.2	0.15	<5	25	<5	0.01	1	4	145	1531	7.60	<10	0.03	71	26	0.01	4	90	2	<5	<20	3	<.01	20	52	<10	<1	176
3	135115	14.4	0.87	10	15	<5	0.07	89	18	234	3164	3.45	<10	1.07	476	131	<.01	37	190	22	5	<20		<.01	20	56	70	-	>10000
4	135116	1.6	1.28	<5	25	<5	0.06	3	5	76		4.22	<10	0.84	1197		0.02	4	210	2	5	<20		<.01	20	16	<10	<1	480
QC/DA Repea 1		6.6	2.02	<5	25	<5	0.03	15	16	260	9646	6.85	<10	2.37	1856	63	<.01	21	290	6	15	<20	1	<.01	20	114	<10	<1	1846
Standa	ard	1.2	1.73	60	155	<5	1.88	<1	19	58	82	4.02	<10	0.94	658	<1	0.02	24	680	20	4	<20	55	0.11	<10	75	<10	5	76

XLS/kmisc#7 df/6483 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

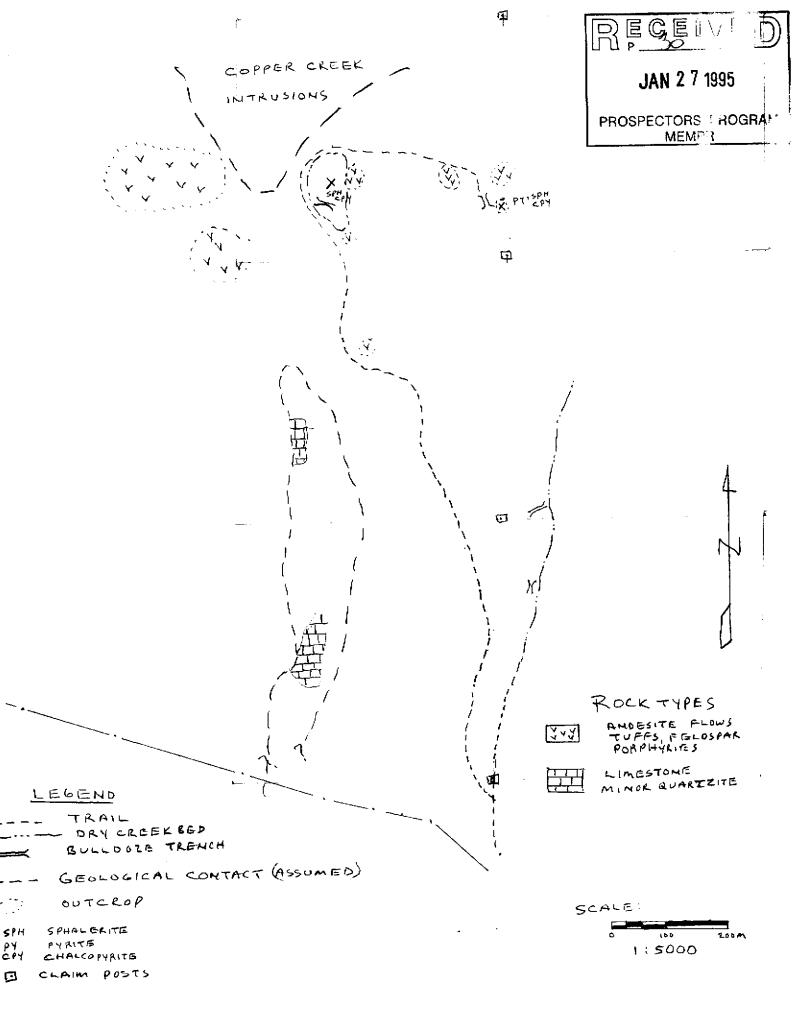
ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. *2, Kamloops, B.C. V2C 2J3 Phone (604) 573-5700 Fax (604) 573-4557

CERTIFICATE OF ASSAY ETK 94-937

A. BLOMQUIST BOX 1062 ASHCROFT, B.C. VOK 1A0 17-Nov-94

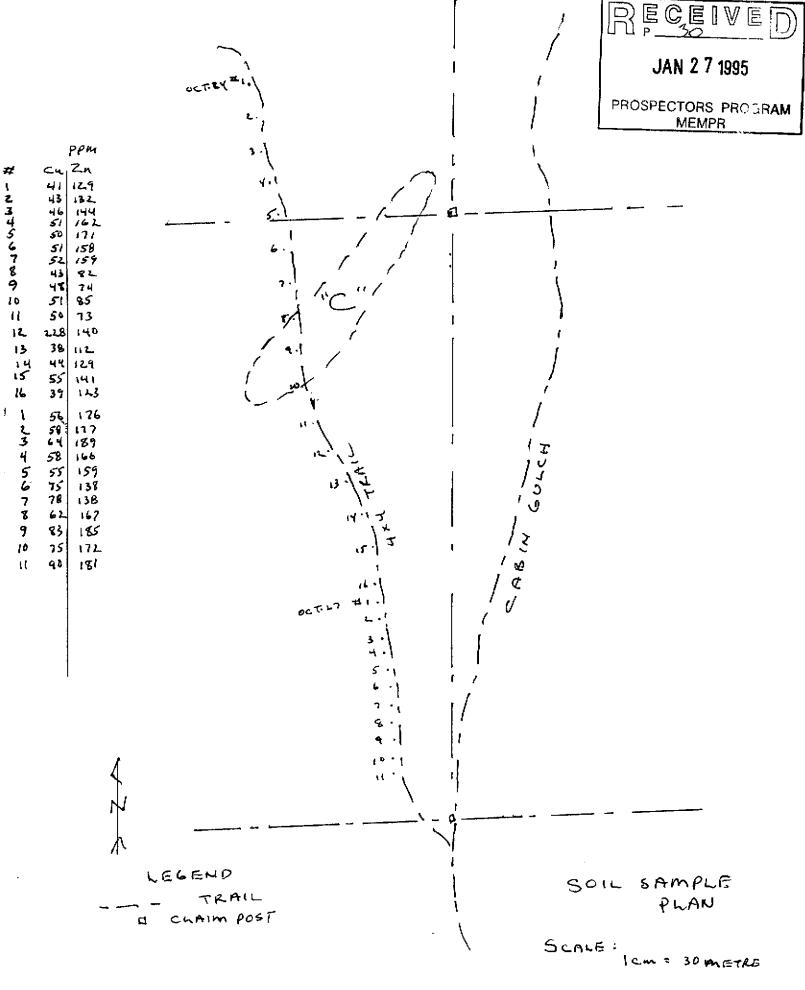
4 ROCK samples received November 9, 1994

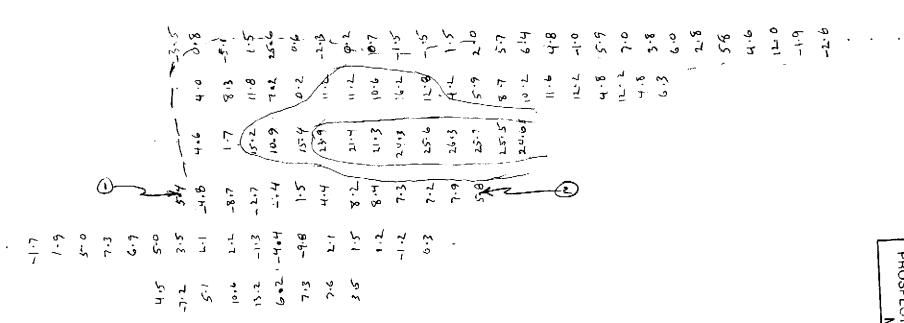

		Au	Аu	Ag	Ag	Cu	Zn
_ET #	Description	(g/t)	(oz/t)	(g/t)	(oz/t)	<u>%</u>	<u> </u>
1	135113	0.11	0.003	6.5	0.19	1.02	0.19
2	135114	0.03	0.001	4.6	0.13	0,20	0.02
3	135115	0.16	0.005	14.0	0.41	0.40	1.58
4	135116	0.03	0.001	1.4	0.04	0.08	0.05

XLS/KMISC7

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

JAN 27 1995


PROSEECTORS PROGRAM
________MEMPR



RECEIVE JAN 27 1995 COPPER CREEK IMTRUSIONS PROSPECTORS PROGRAM MEMPR OI # 2 3 OLD 1 EAST WORKINGS ZONE MAIN ZONE Solus ppm 一回《回》回 Zn 594 336 148) i û 47 ABOUE OMCERT, ETK949091 CHIP SAMPLE LOCATIONS CU4. Zn %. 135113 1.02 0.19 0.01 (3) 135 114 1.58 0,40 (3) 135115 0105 0.08 (B) 135 116 ABOUE ON CERT, ETK 94-937 Zn Cu 0.30% .21% CERT. ETK 94-86

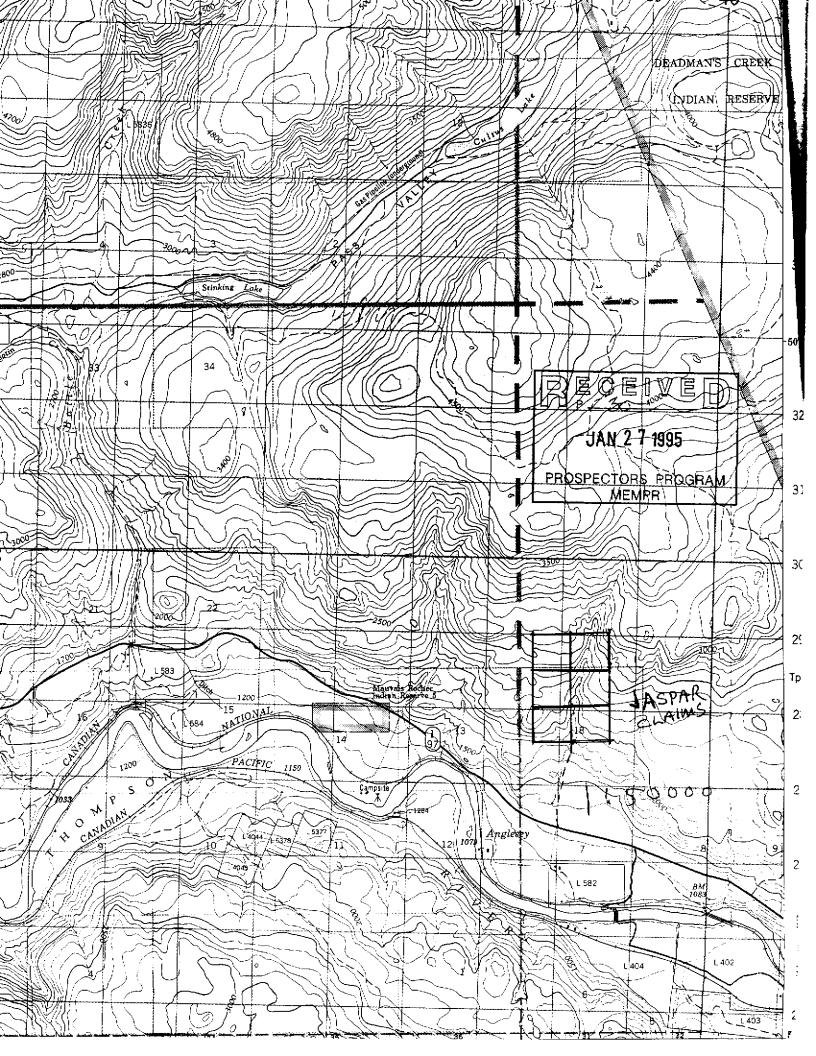
0.34%.03%

1

JAN 2 7 1995
PROSPECTORS PROGRAM
MEMPR

POINTS LOCATED WITH MAGGLLAN NAV 5,000D

- 1) 50° 47.686 121°02,656 ELGY.602 m
- (1) 50° 47.482 121" of .648 ELEY. 770 m


_ - TRAIL

SCALE : 1 cm = 15 METRES

S

RECEIVER JAN 27 1995 PROSPECTORS 「RC-MEN-71 SP SURVEY OUER KNOWH MAG AMOMALY "C" SCALE: 1cm = 30metres

6

