BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1994/95

REPORT #:

PAP 94-12

NAME:

TOM LISLE

GEOCHEMICAL AND GEOPHYSICAL

REPORT

ON THE

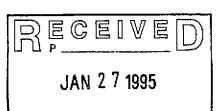
RAINBOW 2 AND 3 MINERAL CLAIMS

Tulameen District - Similkameen Mining Division
British Columbia
49°34' → 120°50'

NTS 92H/10W

Field Work Performed:

October 16, 1994 to November 16, 1994.


Office Work Performed:

November 17, 1994 to January 15, 1995.

by

T.E. Lisle, P. Eng. and E. A. Ostensoe, P. Geo.

January 15, 1995.

PROSPECTORS PROGRAM MÉMPR

CONTENTS

		page
1.	INTRODUCTION	1
2.	LOCATION AND ACCESS	2
3.	PROPERTY	2
4.	CLIMATE, TOPOGRAPHY AND VEGETATION	2
5.	HISTORY	5
6.	1994 WORK PROGRAM	5
7.	REGIONAL SETTING	6
8.	GEOLOGY OF THE RAINBOW CLAIMS	8
9.	MAGNETIC SURVEY	9
10.	VLF-EM SURVEY	10
11.	GEOCHEMISTRY	11
12.	CONCLUSIONS	13
13.	RECOMMENDATIONS	13
14.	REFERENCES	14
15.	PERSONNEL (a) T. E. Lisle, P. Eng. (b) E. A. Ostensoe, P. Geo.	15
16.	STATEMENT OF EXPENDITURES	16
17	APPENDICES	17

ILLUSTRATIONS

	page
FIGURE 1. Location Map - Rainbow Claims	3
FIGURE 2. Claim Map	4
FIGURE 3. Regional Geology	7
FIGURE 4 (a) Ground Magnetometer Survey - Profile Map (b) - Contour Map	in pocket
FIGURE 5. VLF-EM Survey - Fraser Filtered Tilt Angle Data	*1
FIGURE 6. Geochemical Survey	*1
TABLES	
TABLE 1. Rainbow Claims	2
TABLE 2 Work - Proposed and Completed	6

1. INTRODUCTION

The authors submitted, in May, 1994, a proposal to the Prospectors Assistance Program, British Columbia Ministry of Energy, Mines and Petroleum Resources, for partial funding of a limited exploration program of the Rainbow claims, Tulameen district, Similkameen Mining Division, B.C.

The proposal included preparation of 23.3 kilometres of grid lines, 32 line kilometres of geological, magnetic and electromagnetic surveys, and the collection and analysis of 640 soil samples and 100 rock samples. The estimated cost of the combined program was \$27,679.20. The authors wish to acknowledge with thanks the assistance of grants received that funded a significant part of the cost of their work.

The authors, in the period October 16, 1994 to November 16, 1994, completed a large part of the proposed program of work. Unusually early and heavy snowfalls in the project area, combined with time and budget constraints, frustrated geological mapping and caused elimination of parts of the electromagnetic survey.

This report describes exploration work completed with the help of the 1994 Prospectors Assistance Program funding. All technical observations are presented and are discussed in the report Several maps have been prepared and various appendices contain the basic data. Some interpretation has been attempted and suggestions for additional work are included.

2. LOCATION AND ACCESS

The Rainbow claims lie on the north slope of the Tulameen River valley six to ten kilometres west and northwest of the village of Tulameen in southcentral British Columbia (Figures 1 and 2). Geographic coordinates are 49° 43' north and 120°50' west and NTS sheet is 92H/10W.

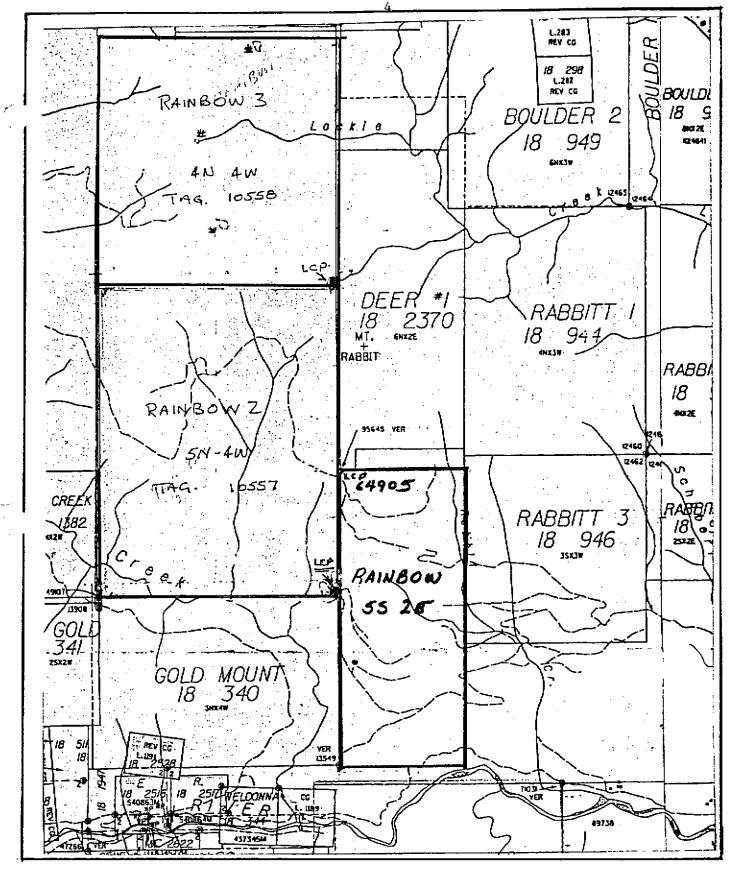
Elevations are between 840 metres asl at Tulameen River and 1646 metres asl in the central part of Rainbow 3 claim. Terrain is relatively subdued but near Lawless Creek and its tributary streams, slopes are steep.

Access to the claims is by the Lawless Creek Forest Service road that passes from the Coquihalla Highway easterly to Tulameen and by the Princeton to Tulameen paved road. A logging road along the north side of Tulameen River west of the town gives access to the south part of the Rainbow 4 claim. Roads have gravelled, all weather surfaces and are maintained throughout much of the year. The common claim line of the Rainbow 2 and Rainbow 3 claims crosses the Lawless Creek Forest Road about 8.1 km northwest of Tulameen.

3. PROPERTY

The Rainbow property comprises three claims with a total of 46 units (Table 1). They are located within the Similkameen Mining Division and are owned jointly by T. Lisle and E. Ostensoe (Figure 2).

Claim Name	Units	Record No.	Located	Expiry		
Rainbow 2 Rainbow 3	20 16	309158 309159	May 6, 1992 May 7, 1992	May 6, 1995 May 7, 1995		
Rainbow 4	10	323956		March 1, 1995		


Table 1. Rainbow Claims.

4. CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the Rainbow claims area is transitional between dry conditions of the southern Interior Plateau and wetter conditions of the Cascade Mountains. Summers are hot and dry and winters are cold with substantial snowfalls. More than one metre of snow fell in the project area in the period October 16 through November 16, 1994.

The Rainbow claims span elevations from the Tulameen River, about 900 metres asl, and the top of Boulder Mountain, about 1675 metres asl. North of the Lawless Creek forest road, the terrain is forested and topography is mostly gentle; the lower portion, south of that road, is steep and

RAINBOW PROJECT, CLAIM MAP.

BRITISH COLUMBIA CLAIM MAP 92 H 056

Figure 2.

characterized by bluffs and canyons. Several small streams originate on Boulder Mountain and flow either southerly to Lawless Creek or easterly to Boulder Creek.

The upper parts of the area are forested with thick stands of spruce, fir, and balsam, and a few red cedar trees. Large yellow pine trees are present but not numerous on south facing parts of upper slopes. Large parts of the area north of the Lawless Creek forest road have been logged in recent years.

5. HISTORY

The mining history of the Tulameen area is documented in numerous government publications and in more than 120 technical reports that have been filed as assessment work on mineral prospects in a 300 square kilometre area approximately centred on Tulameen.

The first comprehensive geological map of the Tulameen area was included in GSC Memoir 26, authored by Charles Camsell and issued in 1913. Camsell showed a small granitic stock intrusive into Nicola Group and dioritic rocks at Boulder Mountain.

Early prospectors were undoubtedly attracted to the Tulameen area by placer mining possibilities, particularly by discoveries of platinum in nearby streams and by production of large nuggets from Lawless and Boulder Creeks. A large gossaned alteration zone, now exposed by sidecuts along the Lawless Creek forest road, occurs along a substantial creek valley that passes through Rainbow 2 claim. Several small bedrock pits located north of the road were excavated many decades ago and expose local concentrations of pyrite and magnetite within the zone.

Geological and geochemical assessment work reports numbered 16016 and 17271 apply to parts of the Rainbow claims. A preliminary prospecting report by Lisle and Ostensoe in 1993 presents some information concerning the geology of the claims. Important background information may be obtained from these and other sources.

6. 1994 WORK PROGRAM

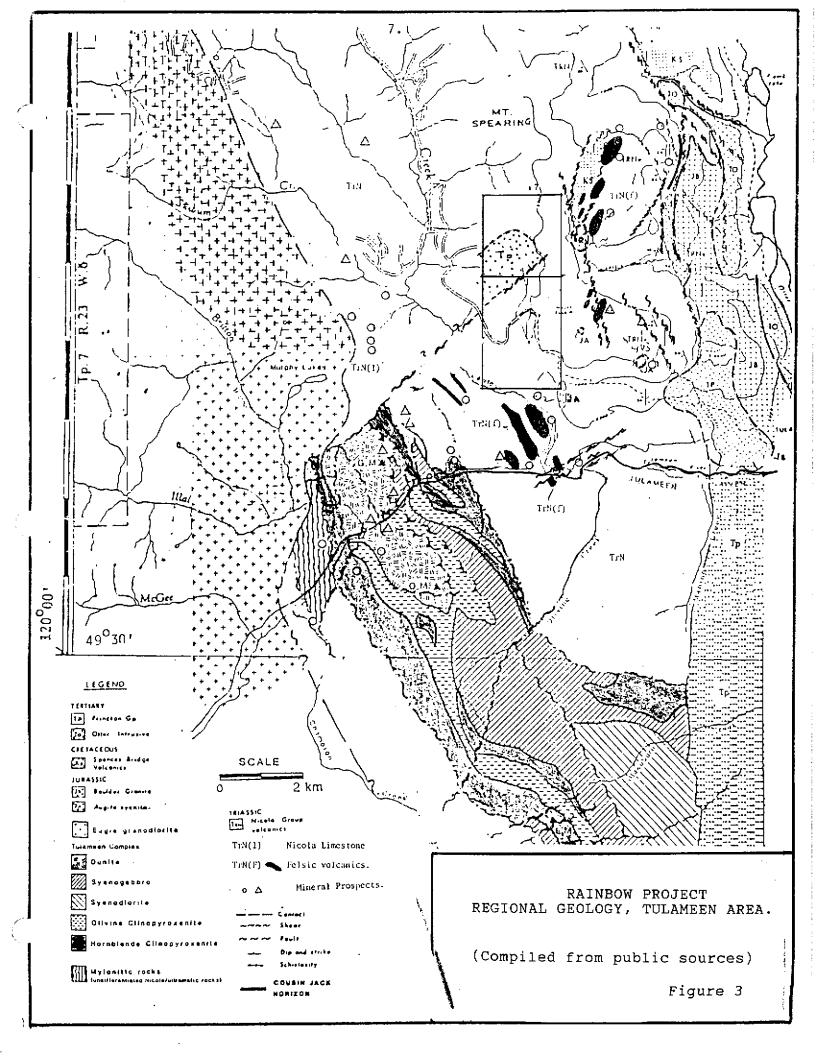
The following work was completed on the Rainbow claim between October 16 and November 16, 1994:

	Rain	bow 2	Rainbow 3				
	Proposed	Completed	<u>Proposed</u>	Completed			
Linecutting (100 m lines - 25 m spacing)	11.3 km	11.3 km	12.0 km	11.0 km			

Soil Geochemistry * - 412 of 608 soil sa	340 imples have bee	359* en analysed.	300`	249*
Rock Geochemistry	50	6	50	0
Magnetic Survey	17.0 km	17.0 km	15.0 km	10.0 km
VLF-EM Survey	17.0 km	10.0 km	15.0 km	7.0 km
Geological Survey	17.0 km	0	15.0 km	0

Table 2. Work - Proposed and Completed

7. REGIONAL SETTING


The Nicola Group in southern British Columbia is part of a linear northwesterly Cordilleran belt of volcanic and sedimentary rocks developed in an Upper Triassic island are environment. The Groups is, at least in the Princeton-Merritt area, a westward younging assemblage comprising

- a) an eastern belt of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows, and high-level syenitic stocks,
- b) a central belt of alkalic and calc-alkalic subaerial and submarine assemblages of andesite, basalt and co-magmatic intrusions of diorite and syenite, and breccia, conglomerate and lahar deposits,
- c) a western belt of calc-alkalic flow and pyroclastic rocks ranging in composition from andesite to rhyolite, with minor interbedded limestone, volcanic conglomerate, sandstone and argillite. This assemblage underlies much of the Tulameen area.

The Nicola Group rocks, west of Tulameen, are bounded on the west by the Eagle Granodiorite, a syntectonic intrusion of apparent Upper Jurassic age. The contact area is marked by an amphibolitic zone. Both the Nicola and Eagle rocks dip westerly along a regionally developed northwest foliation. Figure 3 illustrates some features of the regional geology near the Lawless Creek area.

Several small intrusions are present in the Tulameen area, including Late Traissic to Early Jurassic granites and the Tulameen ultramafic complex of apparent Late Triassic age (Nixon, 1988). Tertiary-age granite stocks, particularly the Otter Granite, are important relatively young plutons.

All of the older rock units are disrupted by northeast faults of mid-Tertiary age that mark significant right-lateral and vertical displacement. One such fault is believed to form the northern

boundary of the Tulameen ultramafic complex at Grasshopper Mountain a few kilometres southwest of the Rainbow claims and to trend northeasterly through the Rainbow. Regional evidence suggests that rocks on the north side of the fault are offset four kilometres northeasterly.

Nicola Group volcanic rocks and related intrusions are hosts to world-class copper-gold porphyry deposits at Kamloops and Princeton, and copper-molybdenum porphyry deposits at Highland Valley, north of Merritt, and elsewhere in the Cordillera. The western belt of the Nicola Group embraces many mineral prospects in addition to the large Craigmont copper-iron deposit.

8. GEOLOGY OF THE RAINBOW CLAIMS

The geology of the Tulameen area was described by C. Camsell in 1913 in GSC Memoir 26. He identified, within the current Rainbow 3 claim, a stock of Otter Granite intrusive into Nicola Group rocks, and to the south, a smaller augite syenite pluton.

The Otter Granite stock is of Early Tertiary age and is commonly medium grained and pink coloured. Composition varies from granite to, in a border phase, quartz diorite. Prospecting by the writers during 1992 (assessment report, 1993) revealed that it may have dimensions about 1.5 by 2.0 kilometres, that it is elongate northwesterly, and it is possibly truncated on its south side by a northeast fault. Enclosing rocks have been to variable degrees altered by siliceous potassic feldspar metasomatism.

Camsell noted the presence of a small elongated intrusion of augite syenite south of the Otter Granite. Rice (GSC Memoir 243, 1947) determined that this intrusion is of Late Triassic to Early Jurassic age, and that it includes some peridotite, pyroxenite and gabbroic phases. Details of the dimensions and composition of this body on the Rainbow claims have not been determined. It is known however to be dark grey-green, fine to medium grained, and dioritic and has been observed to be magnetically distinct from neighboring rock types.

East of the Otter Granite-type stock, a formation previously described as a breccia forms a persistent belt that trends north-northwesterly through much of the eastern part of the Rainbow survey grid. This unit is tuffaceous, locally cherty, and includes sections that contain beige to pink coloured fine-grained clasts up to 40 cms in diameter, as well as subordinate amounts of small mafic clasts. At 27+00N, 5+00W, it is well-bedded, strikes northwest and dips -72⁽⁾ west. The writers believe that this breccia is similar to, possibly part of, a formation known to be present near sulphide mineral occurrences elsewhere on Boulder Mountain. Copper mineralization was noted near the east boundary of Rainbow 2 claim.

Prospecting by the writers during 1992 investigated a large pale coloured alteration zone situated between the Otter Granite-type complex on the west and the above-described breccia on the east. The zone is siliceous, weakly porphyritic, and exhibits strongly developed argillic (clay-sericite-pyrite) alteration. It is well exposed along the Lawless Creek Forest road at 19+50N, 3+50 to 5+50 W and in a logging slash at 25+00N, 5+00 to 6+00W. The presence of finely disseminated

sulphide grains, localized concentrations of coarse grained sulphides, and the weakly to vaguely expressed porphyritic textures are similar to, and suggest an affinity to, a series of mineralized porphyry dykes that is exposed elsewhere in the Princeton-Tulameen district. Old prospector's workings found at 20+00N, 3+50W and 22+00N, 5+00W explored limonitic, very highly altered zones with 10% pyrite and up to 5% magnetite. These workings occur within a distinct magnetic trend that is described in the following section of this report.

Parts of the Rainbow claims are underlain by andesitic to dacitic flows and fragmental rocks of the Nicola Group. A distinctive coarsely porphyritic andesite rock type also occurs in other parts of the Boulder Mountain-Rabbitt Mountain area.

A satisfactory more comprehensive discussion of the petrology, structure, alteration and mineralization of the Rainbow property cannot yet be presented. Detailed geological mapping was planned as part of the 1994 work program but was precluded by onset of winter conditions.

9. MAGNETIC SURVEY

A magnetic survey was conducted over the Rainbow claim grid in the fall of 1994 using two GSM-19 (19-T) high sensitivity proton magnetometer/gradiometers equipped with inbuilt microprocessors and memory. The field instrument was synchronized with a similar unit that was set up in Tulameen as a base station.

The magnetometers were initially tuned to a total magnetic field intensity of 58,000 nT, appropriate for the survey area. Observations were taken at 12.5 metre intervals on all 100 metre spaced grid lines with the exception of lines 35+00N and 36+00N. Steve Lowe, geophysical technician, data processor and auto-cad operator, was given the Rainbow grid data and executed corrections and procedures to produce computer generated plan and profile presentations (Figures 4(a) and (b).

Technical data and specifications of the GSM-19 and 19T magnetometer systems are included in Appendix 2(a) of this report.

The results of the magnetic survey are summarized as follows:

- 1) Magnetic relief in the survey areas low and commonly within a range of 300 nT near 58,000 nT
- 2) Magnetic values tend to be slightly higher in the north and east parts of the grid relative to values observed elsewhere
- 3) The southwest corner of the grid, in particular lines 8+00N through 14+00N from about 5+00W to 10+00W, exhibits high magnetic relief (up to about 1100 nT) and is magnetically distinct from the balance of the grid
- 4) A series of narrow magnetic "highs", up to about 500 nT, form a conspicuous, but locally broken, north-northwesterly linear trend from the southeast to northwest corners of the grid.

This linear trend is locally flanked at distance about 200 metres to the east by a series of magnetic highs that are either isolated or are part of a weaker north-northeasterly linear trend.

5) An overall northerly to northwesterly magnetic grain to the grid is emphasized by a small number of line to line responses of small amplitude, both positive and negative.

Preliminary interpretation of the magnetic data relative to 1992 prospecting and mapping, indicates that the magnetic response noted in 3) above is a reflection of the underlying dioritic unit. The cause of the north northwest linear magnetic texture is more obscure. That part of the grid between 20+00N and 24+00N may reflect pyrite-magnetite accumulations between the large felsic alteration zone to the west and the bedded clastic unit to the east A secondary linear magnetic feature between lines 28+00N and 34+00N is at least in part coincident with an eastern section of the Otter Granite member.

10. VLF-EM SURVEY

A very low frequency electromagnetic survey was conducted over about two-thirds of the Rainbow property grid using a Sabre model 27 VLF-EM receiver.

The VLF-EM technique measures the field-strength of signals that are generated by distant very powerful radio transmitters. Variations in dip angle and field strength are recorded in the field, processed using the Fraser Filter method, plotted, and then interpreted in terms of conductivity contrasts. Conductive areas can be identified and related to geological features including structures and, possibly, mineralization. Results can be confused by conductive clay layers and by terrain effects. Faults and shear zones may produce anomalous data but only if conductivity is associated with them.

The Sabre model 27 VLF-EM instrument is a sensitive precise radio signal receiver. For purposes of the Rainbow grid survey the 18.6 Khz. signal generated by a station near Seattle, Washington, was employed. The ideal station should be located so that the direction of the signal is approximately perpendicular to the direction of the grid lines. The Cutler, Maine and Annapolis, Maryland stations would also have been appropriate signal sources.

Two measurements were recorded in the field:

- 1) tilt angle of the resultant field, measured in degrees of tilt
- 2) field strength of the horizontal component of the VLF field

Tilt angle measurements were "Fraser Filtered", a process that enables data to be presented on a plan map and contoured. Instrument specifications and detailed field procedures are described in Appendix 2(b) of this report.

Figure 5 displays Fraser filtered tilt angle observations. Data have been extended between grid lines where appropriate and have been contoured where sufficient information is available. No overall electromagnetic pattern has been recognized but several trends have been identified. Better interpretation of data will be possible when the remaining grid lines have been surveyed.

11. GEOCHEMISTRY

Bedrock exposure in the Rainbow claims area varies greatly but, in general, outcrop distribution suggests that parts of the property have only shallow overburden cover, in the order of a metre or less. The east part of Rainbow 3 claim has few outcrops and along parts of the Lawless Creek Forest road some till deposits are obviously several metres deep.

Juvenile podzolic soils that prevail in most of the Rainbow area are developed on tills and colluvium deposits. Southwest of the Rainbow property, eutric bronisols are dominant in a plateau-like area and on gentle westerly slopes but both eutric bronisols and humo-ferric podsols are present on steep southerly slopes (Cook, Fletcher, 1994).

Soil samples were taken from the Rainbow claim grid as a means of investigating the distribution of metal values in the underlying bedrock. The samplers recorded the soil characteristics at the time of sample collection (Appendix 1). Where topography is subdued, soil horizons are well developed in the till and the depth of overlying 'A' horizon soils varies from about 10 cm to in excess of one metre. 'B' horizon soils are generally less than 40 cms deep, are reddish brown coloured, and include 10 to 20% gravel-sized fragments and a few cobble-sized clasts. 'B' soils may rest directly on bedrock but more commonly overlie 'C' soils that are pale to yellow-brown with highly variable amounts of clay, silt, sand and clast content. Soil horizon development is rudimentary on steeper terrain where active colluvium or till and colluvium deposits prevail.

The intent of the soil sampling program was to sample the lower 'C' horizon. The practical limit of our sampling tools and methods was about 1 metre and if the 'C' was not encountered then the deepest available soil was sampled. Samples were taken from pits (average depth about 0.5 m) that were dug at 50 metre intervals along the grid lines. Soils were placed in standard kraft soil envelopes. Details of colour, depth, horizon were recorded, along with estimates of clay, silt, sand and fragment contents on sample sheets that comprise Appendix 1(a).

All soil samples were air dried and then transported to Vancouver, B. C. Four hundred and twelve soil samples, up to the time of this report, were submitted to Acme Analytical Laboratories Ltd. for drying and screening, followed by geochemical analysis for gold by acid leach and atomic absorption methods and for 30 other elements by induced coupled plasma determination. Five rock samples, collected from old prospecting workings on lines 20+00N and 22+00N, were analyzed for the same elements plus platinum and palladium. One rock sample was analysed by whole rock ICP methods. Analytical data is contained in Appendix 1(b) of this report. One

hundred and ninety-eight soil samples have been placed in temporary storage and will be analysed when funds are available for that purpose.

The results of the analyses for five of the elements of particular interest to us, gold, silver, copper, lead and zinc, are summarized herewith:

Element	No. of Samples	Range of Contents	Remarks
Gold	412	≤ 1 to 290 ppb	44 samples ≥ 10 ppb
Silver	412	≤ 0.1 to 0.70 ppm	17 samples≥ 0.30 ppm
Copper	412	≤ 1 <i>to</i> 466 <i>ppm</i>	15 samples ≥ 100 ppm
Lead	412	$\leq 2to270ppm$	5 samples≥ 20 <i>ppm</i>
Zinc	412	6 to 517 ppm	8 samples≥ 200 <i>ppm</i>

Contouring, due to wide line spacing and gaps in analytical information, is not practical. The data does not permit much line to line correlation of possibly anomalous metal values but does indicate that some areas of the grid are anomalous.

The strongest clustering of anomalous gold-copper-zinc values occurs in the southeast section of the grid from about 10+00N to 20+00N. The higher responses are located near north to northwest trending magnetic features. The grid section 24+00N, 4+00W to 34+00N, 0+00W contains several soils anomalous in copper and gold and increasingly to the northeast, zinc. Anomalous copper and zinc analyses appear to be related to eastern parts of the grid that are thought to be underlain by a clastic sedimentary unit.

Anomalous gold analyses are to some extent clustered along the western side of the Rainbow grid, an area that is underlain by Otter Granite in the north, a mafic diorite complex in the south, and by Nicola volcanic rocks in the central portion. Some possible zones appear to trend westerly off the grid.

A few, generally isolated, anomalous gold analyses occur within or near the large alteration zone that occupies central parts of the grid. The more easterly section of this zone is partly marked by strong magnetic patterns and old trenches expose significant pyrite-magnetite mineralization. Five rock samples from the alteration zone did not generate analyses of interest but the wide scattering of anomalous gold in soil values suggest that further examination is warranted.

12. CONCLUSIONS

The writers have completed programs of geophysical surveys and geochemical soil sampling on the Rainbow 2 and 3 mineral claims. Data have been plotted and evaluated. Approximately 198 soil samples remain to be analysed. Geological mapping and additional geophysical work are required in order to provide complete coverage of the existing grid. Approximately one half of the property remains to be explored by prospecting and surveys.

The Rainbow claims are located in an area of Nicola Group volcanic and sedimentary rocks that have been intruded by granitic rocks of Jurassic age and by dioritic rocks of Early Tertiary age. One major zone of intense argillic alteration is exposed on Rainbow 3 claim. Geochemically anomalous metal values are present in some areas of magnetic and electromagnetic activity.

It is concluded that the Rainbow claims exhibit geological characteristics favourable for the location of worthwhile deposits of massive sulphide and precious metals.

13. RECOMMENDATIONS

- Analyse remaining soil samples and complete in-fill soil sampling at 25 metre spacing in areas
 of continuing interest
- 2) Map geologically all of the existing grid
- 3) Extend grid to northwest to provide coverage in the area of the apparent geophysical/geochemical trend along the Otter Granite contact. Complete soil sampling, geological mapping, and magnetic and VLF-EM surveys of the grid extension
- Extend grid to southeast onto Rainbow 4 claim to cover anticipated geophysical/geochemical trend in that direction
- Methodically prospect remaining areas of the Rainbow claims
- 6) Compile and correlate Rainbow project data with detailed exploration data from claims that adjoin to the east and compile available data, geology, magnetics, electromagnetics and geochemistry, at suitable scale onto a single map.

7) Investigate other possible contouring configurations of VLF-EM data

Erik A. Ostansoco Perisco

14. REFERENCES

1) Lord, T. and Green, A. Soils and Surficial Geology of the Tulameen Area, Agriculture Canada, 1974

2) Cook, S.J. and Fletcher, W. K. Platinum Distribution in Soil Profiles of the Tulameen Ultramafic Complex, Souther British Columbia, Journ. Geochem. Expl., July, 1994

3) Camsell, C. Geology and Mineral Deposits of the Tulameen District, British Columbia, Geol. Surv. Canada Memoir 26, 1913

4) Monger, J.W.H. Geology of the Hope and Ashcroft Map Areas, British Columbia, Maps 41-1989, 42-1989, Geol. Surv. Canada

5) Preto, V. A. Geology of the Nicola Group between Merritt and
Princeton, Bulletin 69, B.C. Ministry of Energy, Mines and
Petr. Resources, 1979

6) Rice, H.M.A. Geology and Mineral Deposits of the Princeton Map Area, Geol. Surv. Canada, Memoir 243, 1947

7) Nixon, G. T. Geology of the Tulameen Ultramafic Complex, Open File 1988-25, BC Ministry of Energy, Mines and Petr. Resourses, 1988

7) Lisle, T. E. and Ostensoe, E. Prospecting Report on the Rainbow 2 and 3 Mineral Claims, Tulameen Area, Similkameen Mining Division, B. C., January 15, 1993.

15. PERSONNEL

The following persons carried out the field work and prepared the accompanying report:

- 1) T. E. LISLE, P. Eng. geologist, (UBC, 1964)
 - more than thirty years experience in mineral exploration, principally in western and northern North America
 - member of APEGBC, Geol. Assoc. Canada, CIMM
 - performed field work as described in this report in the period October 16 through November 16, 1994
- 2) E. A. OSTENSOE, P. Geo. geologist, (UBC, 1960)
 - more than thirty years experience in mineral exploration, principally in western North America
 - member of APEGBC
 - performed field work as described in this report in the period October 16 through November 16, 1994.

17. APPENDICES

- APPENDIX 1. (a) GEOCHEMICAL DATA SHEETS
 - (b) Certificates of Analysis

APPENDIX 2. GEOPHYSICAL INSTRUMENTS

- (a) Instruction Manual GSM-19T Magnetometer
- (b) Specifications and Instructions Sabre Model 27 VLF-EM Receiver

APPENDIX 1

GEOCHEMICAL DATA

Abbreviations used on data sheets.

Type of survey: S = soil; SS = Silt; R = Rock

Depth : Recorded in meters.

Material : T = Till; Co = Colluvium; A = Alluvial;

GF = Glaciofluvial. F = Fluvial; 0 = Organic

% Organic : L = Low; M = Moderate; H = High

Colour : Br. = Brown; (L = Light; P = Pale; Y = Yellow;

R = Red; G = Grey, Dk = Dark)

B1= Black.
G = Grey.
O = Orange

% Gravel : Estimated % of gravel sized fragments.*

Till commonly contains up to 10% cobble-sized

fragments.

Horizon : A. Commonly black organic-rich surface material.

B. Commonly Brown to red-brown.

C. Commonly pale to yellow brown occurring at

a depth of 0.5 meters or deeper.

Clay : L = Low; M = Moderate; H = High.

Silt : L = Low; M = Moderate; H = High.

Sand : L = Low; M = Moderate; H = High.

	PROJECT -	RAINBON Z.				PLOTTED	AIR PHOTO	9	24056		
	LOCALITY	TULAMEEN !	S.C.			SAMPLER		T,E, L			8N
	SAMPLE L	OCATION STATE	TYPE SURY BORK PT.S		erial organic	colour CON % G	ravel Horiz	on Clay S	ilt Sand	· - REMARK	S
	Z 9,10	NORTH 11,12,13,14,15 16,17,18,19,20,21 0,4,09,18,1,99		26 ₁₂₇ ,28 • 44 <i>5</i>	29 30 T L	31,32 33 34, YBa ± 2		38138 M	40 41 M M	HOOF ECONO Por Same I wish	s set , broad
2		10,4,5,0 18,400		.60		BR. 2	5 C ₁ ?	I'M	M M-H	Clacio Fare	.*
3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,40,0 ,8,4,99		• 45	7 [MBa [] EA	5 G	FW	M		
<u> </u>		1/14/50 18/404		.40	7	P.Ba 5	2c) C	M	M-M		
5		2,4,00 8,4,00		.40	7 L	YB. 7	5 Ç	M	W M-H	. 5 M E of	
s -	1 1 1 1 1	2,4,5,0,8,4,09		.45	T? L	MRe C	5 C	H		Dey clayer	. 4.1/:
7 -		13, too 18, too		.40		YBR -20 PBI -2	E E	L-M	T 18.71	HALD COMPACT	
в	1 1 1 1	3,+5,0 18,+00,		-55		P.B. Z	5 C		MH	New Beileach 20-75 Frans	; A - 5*
9		H17010 , 8+1014		.50	7 4	Pse = 2	p <u>ç?</u>	M	MM		
0		4,+5,0 8,+00, 5100 8+00	5 7.	· 60 •40	T? L		ο c?		MMM	very Hard.	2 9 .

TOSLOSS		Roinson	PLOTTED AIR PHOTO									
	DATE -	Nov. 4, 199						974 056				
	LOCALITY	TUCH MEEN	B.C.			\$ AM	.PLER	7.	٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ			
	SAMPLE L	OCATION GRID	TYPE DR SURY BOOK PLS	Depth	material organ	çolour ic	% Gravel	. Horizo	n CI.ayS	ilt Sand	R EM	ARKS
]		EAST-W NORTH 11.12,13,14,15 16,17,18,19,20,2	22 23124 25	2612712N		31,32 YBa	33 34,35 + 20	36.37 C ?	30,35	40 41 M H	7-7-11	11 h
2		16,7,00 18141010		. 65		BR	+20	<u>C</u> 1	4	M M-H	g: - 30 m	
3 ! 1		16,+,50, 18,+0,0		• 45	TL	P.BR	15120	Ç	L-p1	M MH		
4		17,4,0,0 , ,8+,0,0		.30		PBR	15-20	Ç	MTH	MM	K ~	
5		17,+50 , 18,+,0,0		- 50		PBR	2,0	C	M	M		
6		18,7,00 , 8+0,0	Gst.	.20	[Col. 7]	BR	+30	C3	4	M MH	. 17.3 	
7		8+50 8+00	GST GST	.25	ا يس	BR	#35	ςľ	4	MH	Lames 1	
8	5	9+,00,8+00	5 Gs7 + Die	.25	272	BR	-30	C	<u>Z</u>	M	Blocks	
9	•	9,450 18+00	GST#	./5	TL	PBR	~ 15	C	H	M		
10		1,0,+,0,0 , 8,+,00	3 3	· <u>.5</u>	7 [YBa	15-70	<u>c</u>	M-H	M	Mean of the	
				 					······································		J	

:

	PROJECT	RAINBOW		L9N	PLOTTED	ALR PHOTO		
	DATE	NOVEMBER 4,	1994.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MAP		
	LOCALITY	LAWLESS CR., Tu	LAMEEN, B.C.		\$ AMPLER	ERIK	DSTENSOE	
ì	SAMPLE	LOCATION GRID	TYPE DR SURY BORK PTS	material Depth : organi	colour [%	Gravel Horizo	n Clay Silt Sand-	REMARKS
1	1,2,3,4 5,6,7,8	Z W 2AST NORTH 10 11 112131415 1611718,19120121 1 101+1010 1 91+1010		5127,28 29 30	31,32	36.37	30,39 40 41	j
2		10,4,50		·3'z	br [5 6		
3		1,+,00		.4.0		1 1	田田田	
4		1,+,5,0		.50	47 [[]	/£ £	用日日	Charles Charles
5	1 1 1 1	,2,+,0,0		40	br [10 C	MML	Probably myrd B+C Large Gran
6		, 2+50		·50 []		/D C		dlay +.
7		, 3,+,0,0		17.0	yet [15 C	HMM	Safter till
8		3,4,50		4.0	Yet [13 E	MMG	Hard till
9		A+00		50 [6 - [10 5	H M Z	Till Haro, Toney
10		4+50		50 [B,r [2 B/c	MMM	Sort.
							· - 	· ~-

		77 4 1 m		6 11	V			
	SEQ18C.	RAINBOW			PLOTTED	AIR PHOTO	·	
	DATE		4, 1994.			MA	1	
	LOCAL	IN LAWLESS CR.	TULAMEEN, B.C.		SAMPLER	Erik	Ostenson	
	SAMPLE	LOCATION GRID	TYPE DR Sury bork Pls	Örç Depth material	ganic Colour	% Gravel Hori	zon Clay Silt Sand	R EMARKS
ו	1,2,3,4 5,6,7,8	Z W AST NOR 9,10,111,12,13,14,15,16,17,18,1	TH 19 12012 1 22 23 124 25 +1010	26 ₁ 27 ₁ 28 29	30 31,32 33 DK	34,35 36,37		soil not till Rocky
2		, 5,+,5,0 , , ,		.60		2 B/c	甲四月	Above fill. Also took & Second Spiriton. 3 horizon of deal 400m
3		6,+00		:40		5 C	HML	Till. V. hard.
4		6+50		.30	Sr I	[P] C		Sicke fill Abam
5		17,+,0,0		50		13 C	MME	For Darmer
6		17,+,5,0		.50	br I	10 G	HML	Mediting +
7		8,+,0,0		·40	Red D	3 3		Herraid Good Natura
8		8+50		14.5		15 E		Por more and gra
9		9+00		135	Laren T	12 B.		aght south color
10		9,+5,0		30	ked brown Ltbr.	3 B		Much Collavium stos close by.
		(0.00		50	<u> </u>	<u> </u>	H M L	I near top of slower Side: I drow had

	PROJECT	KAINBOL	J						0.0	TTED AIR	n Hoto					Į	
	DATE	Novemb.	er 3,199	4					PLO	ттер дін	010H9						
•	LOCALITY	LAWLESS C	REEK, Tu	LAMI	EEN'BC				5 AM	IPLER					T.E	LISLE	
3 SAMP	ìE L	OCATION TO	NTS ITM ERIO)	TYPE	DR BDRK PT.5	Depth ma		rgani	c colour	% Grave	l Horiza	n Clav	C:1+	Sand		0.511.405.6	
1,2,3,4 5	Z 1.6.7.8 2.0	WEEST 0 11 ,12,13,14,15	NORTH	2.2					T			1				REMARKS	_
1		1	:(10+1010	5	23,74 25	· 45	7 7	<u>30</u>	31,32 8-P6	23 34,35	36,37	33139 M	<u>40</u>	M	a sept	A new horse	
2		0,+,5,0	1/19+190	5		.125	7	L	980	±15	<u>c</u>	H		L-M.	e in the Armin of	÷ , , , , , , , , , , , , , , , , , , ,	
3		1,+,0,0	1/1017100	S		-35	7	L	PBR	15	Ç	M	M	M			
		1+50	1/10 4:010	5		.60	7		PBr	+ 20	٥	4	M	H		• •	
5		,2,+,0,0	1/10/100	5		.40	7	M	Br	±15	B	Н	<u>M</u>		Torr	(
5		2+,50	1/10+100	5		.70	?	L	PBO	15-20	C?	<u>L</u>		H			
7		3,+00	1/104100	S		.70	7	L	PBe	15-20	C	[<u></u>	LM	н			
3		3,4,5,0	1/104010	5		.60	7	L	X BR RBC	15-20	<u>C</u>	المرب	M	PA-H	es est		-
9	A	4,40,0	(10140101	5		-55	T	L	PBR	15,20	C	L-M	i-m	M	/,		42
0		4,+,5,0	10+00	5		· 45	T	L	YBa.	15-20		L-M	M	P.)-L	Sandy	4.11	
	(5)	4+00W	10400	5		.15	T.	L	RBR	±15	В	м-н	М	L-M.			W

	PROJECT	KAINBOW		PLOTTED	AIR PHOTO		
	DATE	November 3, 1994		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MAP		
	LOCALITY	LAWLESS CREEK, TULAMEEN, B.C.		SAMPLER	ERIC	OSTENSOE	
	SAMPLE (NIS UIM TYPE DR LOCATION GRID SURV DDRK PT.S	organi $ u_{i,j}$ un material		6 Gravel Horiz	on Clay Silt Sand	REMARKS
1 -	112,3,4 5,6,7,8 9,1		26127128 29 30 055 T L	31,32 33 Y1B +	34.35 36.37 15 Ç	38139 40 4: M M M	7.17 TO 10
2 -		5,4,5,0	·50 7 4	WE -		MIH M FM	::::::::::::::::::::::::::::::::::::
3		6400	.5,0	Pale [15 0	MM	Till. On ridge facing
4 -		6,+15,0	.2,5	Sie	70 C	MMM	HARPPAN TILL.
5		1,7,4,00 5	.4,5	Br	5 5	MHM	Not hardpan
6		17.45.0	·40 [Br [10 6	M H M	As above. Some
7		8,4,00	.35	bir	70 C/B	I M H	Angular talks frags from
8 [B.+.5.0	-50	b,T	20 C	I H H	Large bag of sample due to scarcety of fines g. 35W Sandy modified till.
9		9.4.00	.45	br	10 6		Till-like but modifine
10		10+00	·50 [[led br		HML	
ł							

	PROJEC	T RAIN	JBOW					PLĆ	TTED	ΔIR	рното				
	DATE		mber 2,								MAP				
	LOCAL	ITY Lawl	ess Creek	, Tulame	zn, 43 €	-		AAذ	APLER	- 13	Erik	Uste	-~So=	٤	
	SAMPLE		NIS UIM GAID	TYPE SURV	D: _BDRK_PT.	{ 5 Depth ma	orga sterial		C., %	Grave	l Horiz	on Clay	Silt S	Sand	R EM ARKS
1 112	1314 5.6.7.8	F	3,14,15 <u>16,17,</u> 18,	RTH 12,20,21 22 +10,0	23 (24) 25	25127128 1610	29 30	31,32 G/RY	33 3	34,35	36:37 C	30139 H	-	41	clayey and stone
2		, 0,	50 11			150] Lt				H			As above.
3		, , , , +	100			20		Rabr			B		M	M	v. shallow. Bedrock ofp close by.
4		/	-150			.6.0		Tate		1,0	C	M	M	<u> </u>	Tall
5		, ,2,	100			•.5.0		Midal		,5	20	M	H :	M	uppermost +?
6		, ,2,	50			.6.0		Jeg Jeg		5	C	H	M	ې نصا	Till
7		3.	00,00			1.9.0		Br		5		H	$ \wedge $		Till Road cut bank
8	11111	, 3,	<u>,5</u> ,0			:55		Pale		.5	C	ZH	M	? -	Till, Old logger are
9		4.	+1010 1			510		yel		1,0	C	H	M	7: ; ;	y hard till.
10 _		4.	+,5,0			3.5		yel		15	C	H	M	[]	As above.
_															

LIIN

	PROJECT	_KAINUOW	PLOTTED AIR PHOTO	-
	DATE	November 2/3, 1994	MAP	-
	LOCALIT	, LAWLESS CREEK, TULAMEEN.	C. SAMPLER ERIK OSTENSOE	_
	SAMPLE	NTS UTM TYPE LOCATION GRID SURV BOOK P	organi c Depth material colour % Gravel Horizon Clay Silt Sand REMA	ARKS
1	1,2,3,4 5,6,7,8	Z W EAST NORTH 2.1011.1213.141516117.18.12120.21 22 23.24	26,127,26 29 30 31,32 33 36,35 36,37 38,38 40 4: .5,0 Yel 7,0 C H M ? Till .4,0 D A M M M M M M M M M M M M M M M M M M	10 Mg ,
2		151+1510 1111	1 .40 0 0 90 M M M V. Land C	مصلایی 🐣
3		,6,+,0,0	AO DE ED CHM G V. hard till	1/2
4		(6,+,5,0)		ių ∑tiki Kommodio,
5		,7,+,0,0	1 AD D D D D D D D M D Wisher Company	
6		17+510	1.50 0 0 0 0 0 10 1 M H For samula	· V
7		1.8,+,8,		/
8		18+50		WARE.
9		19+1010		
10		/0+00	55,0 Stoney clay. A rocks: 165 Kgybr 2 C H M L Clay with	do çobble
			May be lac	ustrine.

	PROJEC	T KAINROW	•	PLOTTED	AIR PHOTO		
	DATE	Nov. 6, 1994	-		MAP	. 1	
	LOCAL	ITY LAWLESS CR. TULAMEEN!	<u>.</u> Bc.	SAMPLER	Erik C	stensoe	ār
	SAMPLE	LOCATION GRID SURV BOOK PT.	orga R Depth material		% Gravel Hor zon Clay	Silt Sanu	R EM A RK\$
ו	1,2,3,4 5,6,7,8	Z EAST NORTH 9,10 11,12,13,14,15 16,17,18,19,20,21 22 23,74 25	5 <u>26,127,128</u> 29 30 • 4,5	31,32 33 Bir	34.35 36.37 3n,39	40 A: G	ood material from B/C interface area
2		9+50	140	JER [[3] [C] [H]	m L o	kay.
3		9.t.0.0	.40	[tt]	2 C H	MI	
4		, 8,4,5,0	:50	br. [5 C M	ME	larder v
5		,8+,0,0	15.0	B _r r	15 6 4	MHW	ashed till Llavd, Tocky
6	<i>i</i>	. 17,+,5,0	5.0	Lt br	A S M	MM	annals. Spl taken 5 m of line due to b'dis
7		7,+,0,0	17,0	Br	30 [] [parse sand/gravel. eternished till-from reexportexposure.
8	, , , , , , ,	6,t,5,0	150	LE D	ZO CA AA	MIT	71/
9		6,4,0,0	35 [2 - Frank
10		,5,4,5,0,,,,,	-60	[br]	15 C M	m M	oose gravelly tell.
			Photo and the state of the stat				

	PROJECT	KAINBOW			PLOTTED	AIR PHOTO			
	DATE	November 6,	1994			MAP			12 N.
	LOCALITY	LAWLESS CR.	TULAMEEN, BK	-	SAMPLER	Erik	Ostensoe		
	SAMPLE	LOCATION AGRIDI	TYPE DR Sury adak Pt.S	orga Depth material		Gravel Horiz	on Clay Silt San	d ; ,	REMARKS
1	1,2,3,4,5,6,7,8	Z W PAST NOR 10 11 112131415 161718.1	TH 9,20,21 2.2 23,24 25			.35 36.37 B C	30,138 40 A1 M M L	r!	
2		4,+,5,0		.60	ltbr [10 C	MML] T.11	
3		14,+,0,0		.5.0		<u>5</u> [c]	HMZ	Road cu side of r 4+04 w	
4		3+50		4.5	Lt br	5 C	HMZ	711	7.11
5		3,4,0,0		50	LE by	3	HHZ	7.16-	c1 x (64).
ó		1 21+150			Red or [8 B	MMZ	1 Gone 3	san but rocky
7		, 2,+0,0		3,0	brown [] B	MM	J Collago	жу шм + саг.
8	11111	1,4,5,0		13,5			AH M] 711?	
9		1/400		72.5	Pale Yellow P	E/C	HHO	- Rocky - reat. F	ine powdery.
10		0 + 00		·3.5 []	Graybr H	5 C	HHL	Tilvitinely Il Muchou	textured, 501/ Ltcrop. old
								large ro	es. Angular ock frage with fill only

×. . . .

113N _RAINBOW AIR PHOTO PLOTTED NOVEMBER 1/2, 1994. LOCALITY LAWLESS CR. TULAMEEN, BC ERM OSTENSOR SAMPLER organic TYPE DR SURY BDOK PLS TYPE Depth material REMARKS SAMPLE colour % Gravel Horizon Clay Silt Sand 26₁27,28 Hard till. Till. 10

PROJECT RAINBOW								PLOTTED AIR PHOTO										
	DATE	_	Noveml	ser 2	2, 19	14						••••	MAP					.
	LOCALI	7 Y	Lawless	Cr.	Tula	meen,	<u> </u>			ΑŞ	MPLER	<u> </u>	rik	05 10	<u>= US0</u>	E	/: 	3N
_	SAMPLE	L	OCATION TO		ี		DR PT.S	Depth m	orga aterial	anic color	ur	% Grave	el Horiz	on Clay	Silt	Sand	R EM ARKS	
1 4	1,2,3,4 5,6,7,8	Z 9 H C	111.12.13.14.15 16	NORTH 117,13,19,12 1,3,+	0:21 22	23 (24	25	26,27,28 -,5 ₁ 0	29 3	0 31,32 Grey	33	34,35	36.37	30135	40 N	4	Clayey till	
2			5,4,5,0					,2,5		Wey				1-1			Stoney hard to	u.
3			6,4,00	1 1 1				·40		Jaren Jar		[5]	C	H	L		clayey till. Cr at 6+25W	
4		i_	6,+,5,0					:5,0		जिंदू जिंद		_5	C	H	M	Z	Clayer till Sp	S Trage:
5			7+00		ı			:7,0		DX		5	\Box	[//	M	M	Till but loose.	r පස්
6		1	17,+5.0	1 1 1				:50		Br		10	B	4	Н	H	Gravel, 20°shp Cr at 7+25W	2 5.
7			8,+,0,0	1 1 1				:50		Br		5	C	H	M	2	Till steel style Cr. at 8+25W	*
8			8+50	<u>i l l l</u>				13,0		Grey		10	C	H	M	?	Till. Steep s/n	oe to 55E.
9		1	9,4,0,0	1 1 1 1				1.00		by-			5	H	M	M	Disturbed till for cereath tree r	m ont.
10	1 1 1 1		19,45,0	1 1 <u>1 i</u>				.65		St. SreyBr			C	M	M M	?	Till. Hard, stone	<u>.</u>
							•	,		-11 -11 v					<u> </u>		, , , , , , , , , , , , , , , , , , , ,	1

••

114N RAINBOW PROJECT AIR PHOTO PLOTTED OCT 31, NOV. 1,1994 DATE 14N LAWLESS CR. TULAMEEN, BC ERIK OSTENSOE SAMPLER organic TYPE LOCATION ZERID SAMPLE SURY BORK PT.S Depth material colour · REMARKS ..% Gravel Horizon Clay Silt Sand Z WEAST NORTH 5 16 17 18 9 110 11 112113114115 116117118, 19 12012 1 22 23124 工门. may be till likely orb 2 M 0450 Н 3 \mathcal{H} 14 uppermost till. Also took B-horijon sample for comparison 5 12,400 Soil, Not till 6 7 T.11. clayey. Dark soil. 8

Flatter ground than to the west. Not till.

M

4,40,0

4,4,5,0

9

10

LI4N

		DAUDAN			-			
	231026				PLOTTED	AIR PHOTO		<u> </u>
	DATE	NOVEMBER 1.	1994			MAP		
	LOCAL	ITY LAWLESS CR.	TULAMEEN,BO	<u>4</u>	SAMPLER	Erik Ost	ensoe	14 N·
_	SAMPLE	LOCATION — GRIDI	TYPE DR SURY DDRK PT.S	organio		ravel Horizon Cl	ay Si <u>l</u> t Sand	R EM A RKS
1	1,2,3,4 5,6,7,B	Z WFAST NORT 9.10 11.12.13.14.15 16;17,18.15 5+00 1.4.7	TH 2,120,21 22 23,24 25	26,27,28 29 30	31,32 33 34.	35 36,37 3813	19 40 41 -/ M L	Till.
2					Gash I			See below.
ļ.		15,+15,0						Very hard clay till.
3		16+100		150 U	br /	5 6 6	1 1 1	Geens v. sterile. Clay till. This is from
4		6+50		50	by _			Chall landslosears an ald be 3044 mdeep ar at 7+10 W. Spl from ober 10 per Much
5		17,4,0,0		50 🗆	Pr	3 E H		from bide stope. Much clay some foatse gravel, may be moving
6		7,+,5,0		50 [or [3 D D	I A M	Till under versel 30cm thick of 20ars Waterwell to grave to
7		184,0,0		7.0	Grey [clay till. Slope 25°5
8	, , , , , , , , , , , , , , , , , , , ,	, 8+50		:5,0	bir [S C X		Clay till Cr. 2 8+60 Waterfall 10 mustream
9		19400] 150	Grey	5 C H		clay till On steep slope to SE.
10		19,+5,0		55	PKTZ [<u> </u>		Gravel rich , lentdi
		10+00		.60	Relbri 1	0 C I	L H 1-1	Sandy, low day. dark colour Fair

L15N PROJECT RAINBOW AIR PHOTO ___ PLOTTED October 31,1994 DATE LOCALITY LAWLESS CREEK, TULAMEEN, B.C. ERIK OSTENSOE TYPE OR OF SURV DORK PES Deput material organic SAMPLE colour % Cravel Horizon Clay Silt Sand REMARKS 12012 17 18 17 16 1 16 1 14 15 16 17 18 19 120 12 1 36.37 26 (27,28 Fair to good mit. 4+00 2,450 2+00

MA 1. Treamot Rocky.

1,+,0,0

0+00

	PROJECT	RAINBOW	 				PLOTT	D AIR	PHOTO				
	DATE	OCTOBER 31	,1994						MAP				15N
	LOCALITY		TULAMEE	i), BC			SAMPL	ER	ERIK	OST	=NSDE	·	
	SAMPLE	LOCATION WIM	TYPE SURV	DR DD3K PT.S	Depth mate	organi rial	c colour	% Grav	rel Hori2	on Clay	Silt Sand	REMAI	RKS
	1,2,3,4 5,6,7,8	Z WEAST NOT 11011 11213114115116117181 1 /101+1010 1/15	TH	23,24 25		29 30	31 32 31 Rai	34,35	36:37 C	30135	40 41 M H	Sandy. Not Dkreddish. til	
2		, 9,+,5,0			•170		Par [[5]	C	H	m m	7,11 Taken a	(345 5 #
3		9,+,00			.50		Par [10	<i>B</i> 'C	D	T H	Sardy Soli	; ; -1
4		,8,+,5,0			•50			1,5			MM	Uppermost	Est
5		18,+,0,0			.60		िंदी [17.5	C			1
6		. 7,+,50			.50		br [2,0	84			May include townst sandy me	till.
7		7+00			.70		by [[5	B/c		M H	Chorizon ?	Not for
8	11111	, 6,+,5,0			•5.0							Washed to	
9		6+00			:70		Par I	2,0				rock Ends	en land George
10		5,4,5,0			:55		ar		<u>i</u>	4	M· Z		
					. =						<u> </u>	ن	

LIEN RAINBOW PROJECT ALR PHOTO PLOTTED OCT 29/30,1994. DATE Lawless cr. Tulameen BC Erik Ostensoe SAMPLER LOCATION GRID TYPE DR SURM BDRK PT.S SAMPLE % Gravel Hprizon Clay Silt Sand REMARKS Depyh material Z NEST NORTH 9 10 11 12:13:14:15 16:17:18:19:20:21 class of top of 40 M 1,2,3,4¹5,6,7₁8 22 33 36,37. ያይ፣ያይ 23,24 26 (27) 28 31,32 М clay-sound at for M M Ar. Also T. M W 14.00

2 Till M 11.4.50 4 **2.**4.00 5 uppermost 2+50 M 6 1711. M K/I 3,400 Modified till ? M 3+50 8 M 4+100 4+50 10 Coarse rocks. Poor to fair spl.

		\circ		L160			
	PROJEC	CCT. 30,1994		PLOT	TED AIR PH	οτ'ο	
	DATE		TULAMEENIS	- sama	<u></u>	MAP IK OSTENSOE	
	SAMPLE	NTS UTM LOCATION GRID	TYPE DR	organic material colour	-	Horizon Clay Silt Sa	ind REMARKS
1	1,2,3,4 5,6,7,8	Z EAST NORTH ©,10 11,12,13,14,15,16,17,18,17,120,21 	22 23,24 25 26,27, •,4,			5.37 33139 40 4 C L M	.
2 ;		, 5,+,5,0			20 F	70 I M M	Mot till Rounded
3		6,400			<u> </u>		TII). Spot takes from
4		, 6, +, 5, 0			15	PIBE	1/6+ The
5		7.40,0				ZZE	The of till.
6		. 171+50					E TIN
7	_ i	8,4,0,0] [] [.5	5 0 6 6 E	20		H Gravelly, rocky.
8	111	18,4,5,0	·4,	5 bir	70		Sandy/gravelly at DARIDGE, Creek at 8+70 W, Flows
9		19,40,0				C H L J	To Appen till?
10		9,4,5,0					Much organic Poorse
		10+00	·60	D Rac	10	B)C L H 1	of small criffour SE

	PROJEC	:1	C	RAINGE 29							PLC	OTT€D	AIR S	•ното			05	.,	//
	DATE	-		[U LAME			_							MAP			-03	₽	
	LOCAL	. ITY -		NTS JTM	370						5 A1	MPLER			1.6.	۷,		·	
······································	SAMPLE		CATION =	3210	TYPE SURY		DR PT.S	Depth mat		rgani	colour	%	Gravel	Horiz:	on Clay	Silt	Sand	· RF	MARKS
1 1.2.3	314 5161718	Z 9.10	5ASTW 11 (12)13)14(15) 0+00	NORTH 16,17,18,12,20,21 1.7,7+09	3.2	23,24	35	26,27,28 • 45	29 7	30 <u>4</u>	31,32 PBR	33	4,35 ? ()	36:37 C [?]	38138 M	40 M	41 M		
2			0450	1171400				.30	7	<u></u>	BR.		· 25	<i>د</i> ۲	μ,м,	M	M	Bediock! LOCATION	Approx
3	1 1 1		1+00	17,400	5	9 1		.55	7	7	P.B0		20	5	M	M	p.		
4			1,+50	1,7,7,00		7		.45	T		PBY		15	Ç	M	M	M-M		
5			12,7,00	1.7+00				.40		L	P1BG		5-20	Ç	M.	M	M		
6			12+150	117,4,00	5	<u>'</u>		.55	7	7	Ba.	7	15	9	M	M	M+A	1. Top 00	c'é
7			3+00	117+140				.50	7	M.	PK.B.		D .	B	M-H	M		Low Dro	aω-
8	,		3+50	17+00	3	-7		.50	T	乙	P,Br		15	<u> </u>	<u>Î</u>	M	₩.		
9			4400	1.7.+100				.45	7	4	P.Br.	+	5	<u>C</u>	M.	M	$\overline{\mathbb{M}}$		
10	4-31		4,4,50	1.7+,00		, -, -,		.25	7	2	$\rho_{,\beta_{r}}$	_ ~[20	4	H	M	M	Lower BANK	Roma by ditek
										····									

L17N

	PROJECT	- KAINBUL					PLOTTED	AIRI	ното _				
	DATE	OCTOBER	30,1994	+.					MAP _		·	, ,	
		LAWLESS C		MEEN, T	S.C.		SAMPLER		- R1X	027	E113	<u>ం€</u>	
	SAMPLE (LOCATION STIP	TYPE SURV	DR BDBK PT-S	Depth mate	organic erial		% Gravel	Horizon	Clay Sil	t Sand	5	REMARKS
1	1,2,3,4 5,6,7,8 2,1	0 11 12:13:14:15 16:17:	ORTH	23124 25	26127128 -1610	29 30	31,32 33 Vel	34,35 / _O	36-37 C	10139 40 L	M	Till-bor	derline material.
2		5,4,5,0			.50					M		下11.	
3		161400			35		المعلم الم	20					Colory Laws
4		161+1510 11			40			3,5	7,0			Much York:	ecads Boarsel e
5		17,4,0,0			.4,5		br	2,0		/	五	2000	- VACEY
6		17,4,5,0			50					L-W. \		Fair?	9001 901.
7		18,400			.40			1,0	2/B	H		By ro	これが.
8		,8,+,5,0			:50			1,0	<u> </u>	M	y M	1.6t +	,
9		9,+,0,0			:50			2,5				Sar. 1	n. vel
10		10+00			:5,0 •4.5		Rasty 0	20 20		F		Sandg	
							red	<u> </u>			- :	1 7.4 / 115	

T18N

				har.					
	PROJECT	RAINBOW			PLOT	TED AIR	рното́ <u> </u>		···
	DATE	OCT. 29, 1994					MAP		
	LOCALITY	LAWLESS CR. TH	LAMEEN BC	•	\$ AM	PLER I	. 0570	NSOE	
	•••	ZNIS ZUIM			ganic				
;	SAMPLE	LOCATION (GRID)	TYPE DR <u>Sury Bork Pls</u>		colour	% Gravel	Horizon C	lay Silt Sand	REMARK5
_	1,2,3,4 5,6,7,8	Z NORTH 10 11 112:13:14:15 16:17:18:19:20:21	22 23,24 25	26127128 29	30 31,32	33 34,35	36.37 38	39 20 41	Cr. at 5+20W to
1		5,4,00 ,1,8,4,00	,	50	Pre		C	THU	Stoney.
2				<u> </u>				<u> </u>	D = 1 4 + 10 W +0
^ }		4+50	لالبالا	150	52			HHM	Road 4+104 +0
3		1400		50	Yet Bre.			u m m	17711.
· L		1 A:+00	لصا لعنا لمصا ل						
4		3+50		·A.0	Big Big		C	M M	TO 7. 1384
5		3,40,0		3.5	BR BR		B	M M	DN hardsan
-									
6		12,4,5,0		70	B.C.		C	MML	Till make 2 Good
7		12+00		14.5	13 Pan		$\begin{bmatrix} c \end{bmatrix}$	M M H.	Stoney till-Much rock in sample
_									
8	11111	111450		14.0	20 Br			MM	Till. V. hardistone
9		1,400		,2,0	BE		B/c	LMH	BR. very shallow to the trees.
10		,0,+,50		3.5			B	LMM	
		0400	ا نیلیا نا	20	Red Br	,	B	LMM	
			· · · · · · · · · · · · · · · · · · ·		1 (841		مد	.,	poor spill
									,

	PROJECT				PLOTTED	AIR PHOTO	·	
	DATE	Oct. 29, 1		, _	,	MAF	·	
	LOCALI		· TULAMEEN	B.C.	SAMPLER	Erik	Ostensoe	
1	SAMPLE	LOCATION GRID	TYPE DR SURY BORK PT.S	organic		% Gravel Hor.	izon Clay Silt Sand	R EM A RKS
	1,2,3,4 5,6,7,8	Z WZAST NORT 9 110 11 112,13,14 115 16,17,18,19	H 2120121 22 23124 25	26127,28 29 30	31,32 33	34,35 36,37		
1		1,0,4,0,0 ,1,8+	لاليالا	<u>45</u>	हुद्ध 📋	<u>10</u> C	m m m	Sandy material
2		9+50		.45	Beller Parker	100 10	LHH	Similar to IDW
3		, 9,+,00		·A.5	Gran Gran	5 0	HML	Davey till
4		8,+50		15,0	Brd [10 C	MI H M	Marin William
5		8,400		.6.0	Bre	1,0 C	HML	not till design
6		7,4,50		.6.6	Kal Bre	15 C	MHM	Cr. 37 7+80W.
7		7.+0.0		.45	BR	10 C	MHH	side. Good materia
8	, , , , , , , , , , , , , , , , , , , ,	16+50		.50	Be	JO C	M H H	Kocky Jeanny
9	111	16490		75	See [MHH	on slape to Cr. at 5+90W. Good Spl
10		5,+,5,0		.50	BR	5 C	HHL	slope in E. Chayey Rusty.
								· ·

PROJECT .	BAINDER	W	PLOTTED AIR PHOTO
DATE .	007	1994	MAP 924056
LOCALITY	TULAMEST	V,Ba	SAMPLER T.B.LISLE
	OCATION FORD	TYPE DR SURY BDRK PT.S	organie Depth material - colour % Gravel Horizon Clay Silt Sand REMARKS
1,2,3,4 5,6,7,8 2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	EAST W NORT 0 11 112113,14 115 16177,18,15 14+15 P 11,97	120,21 22 23,24 25	26,27,28 29 30 31,32 33 34,35 36,37 38,39 40 41 -40 TF'. L. RBa . 35 B, 2, L-M. H. H.
	14.400 1191	hao 🗍 🔲 🗍	1.20 TF L RB +50 C3 L L M
	3,4,50 1,9,4	ρφ [.55 T L PB 20 C2 M M M
	3,+,90,19,+	-,00	1.45 T L PB. 25 G L-M. M MH,
	121750 119	+,0,0	1 45 T L PBE S S M M M
	121+100 1/191-	rov 7	.50 T L P.B 5 G M-H M M
, []	1,450 197	Closate	LIST L DKB 10-15 C MIH M M
3	1,+,0,0 ,19,	·04 7	-40 T L P.B.O. 15 G M M M
9	0,450 119	400 5 3	1.45 T L P.B +15 G' M. M M
0	0,400 ,19	t,00	-40 7 L PB. 1+15 G'MMM
€ è			

	PROJECT	KAIWISOU			PLOTTED	AIR PHOTO		194
	DATE	051.20/94					9214056	17%
	LOCALITY	TULA MEEN			SAMPLER	7.8.4	ISLE	
	SAMPLE (YPE DR SURY BORK PES	orga Depth material		Gravel Hori	zon Clay Silt Sand	R REMARKS
ן ן ן ן ן	1,2,3,4 5,6,7,8 0,1		22 23,24 25	26127128 22 3	0 31,32 33 34. BR. 15-7		30,39 40 41 M-H M M-K	Clayey Till
2		19,7,50 1/19/4010		80 7	Br 7	<u>o</u> <u>c</u>	HML	EAD SEMPLE Till.
3		9,400 1,9,400		·50 T	Pale 1/4		M M L-M	
4		8,4,5,0 ,1,9,+,00		.40 7 E	y y J	- C	M-H M M	
5		18,4,00 19,2,00		.55	H RB 1=25) B?	MMM	
6		17,+,50 1,9,+,00		.60 7	4B 2	5 9	M-H M M-A	1
7	*	7,4,00 ,192,00		.65 7	4 YB 1=2	0	M-H M M.	!
8		6,4,50 1,9,1,00		160 7	L YB = = Z	υ <u>(</u>	4-M M M	IOM WI of CK.
9		6400 19,400		·50 7	43 2		Z-M. M M-7	, !
10		5+50 19+00	3	-65 T -55 T	L Pat . 15-	5 C?	L-M M M	Rocks Angolav- to soh angolar.
								•

							201
PROJEC		2.		P. OTTE		C-2 14 C2	56
DATE	OCT. 27/94				MAP	7. E. USLE	
LOCAL	NTS UTM		W.	SAMPLE	R		
SAMPLE	LOCATION -GRID	TYPE DR SURV BORK PT.S	Depth materi	organi⊂ al Colour	% Gravel Hori	zon Clay Silt Sand	REMARKS
1,2,3,4 5,6,7,8	Z EAST NORTH		26127,28 29 •60 T	30 31,32 33 L P ₁ Ba.		38139 40 41 M. M.	
1	1 0141010 1210 1016		.60 J	L P.Ba.	ZÓ C		
2	1 101+1510 12:01+1010		·40 T	L Pige	+15 C?	M M M	
3	111500 20140		.50 7	L Y.BR.	15 C	W W	
4	1 11+150 12101 401		.45	L Y.B.	15 C	MM	!
5	1 12141010 ,2,9 4,00		.60	L RB	15 B?	MM	
6	12,4,50 12040		.60	L P.Ba	1,5 B? C	IM M M	23
7	1 3 f 10 p 1 21 cm + 10		.30	L BR	20 B		real core
8	1 34,50 18040		.70	L YB	+15 C		Near old Pits
9	14HOD 130HO		:40	I PBA.	20 C	MMM	
10	5+00 ZO+00		·	T L BR	20 C 20 B	MH M M	Mear Bedrock
		· · · · · · · · · · · · · · · · · · ·					_
	`						
S							
, ,	di-						•
				,			
					•		•

	920350	RAINBOW 2				PLOTTE	D ALR	рното				2
	DATE	OCT 27 /94	f	•		710,11	ν A			निश्स ०९	.e	
	•	ITY TOLAMBON		•		SAMPLE	R	· · ·	. ق ۲۰	L.		
	SAMPLE	LOCATION STATE	TYPE D Sury odrk pt		organ eterial		- ¦%Gravel	Horizo	n Clay S	Silt Sand		REMARKS
֓֞֞֜֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟ ֓֓֞֞֞֞֞֞֞֞֞֞֓֓֞֞֞֞֞֩֞֞֞֞֞֞֩֞֞֩	1,2,3,4 5,6,7,8	Z WEST NORTH 9,10 11,12,13,14,15 16,17,18,19,20,3		26127128 -1 25	25 30 T	31,32 33 YBe	34,35	36-37 C	₩ 38138	40 41 M L		in the figure is the state of the state of t
2		1 16 40 10 12 10 +101		.50	7	P.Ba.	20	ç	MFbt	M M-L	•	
3		, 6,+,5p ,20,+,0,		.60	H	BI	45	A	41	L L	*	
4		71+010 201+10		.50	TL	G.B.	15	C?	M	MM	i de la compania del compania del compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania	
5		7,+,50,20,+,0,		.60		R BR Y BR	15	Cs	М	MiM	i - -	
6		, 18,4,0,0 20,4,0		.65		R Br YBe	20	C?	<u> </u>	MM	İ	
7		1 18+15P 12p 1+10		.70		B 84	- 20	<u>C?</u>	M	M M	!	c'h l
8	4	9HOD 20,10		.60		Br.	15	<u></u>		M. W.	Top	ó4 C
9		19,450 210,+6		.60		BR	15120	[C?]	H	ML		
10		1, 1,0,+,0,0 12,0+,0		.50		X Ba.	20	[C ?	M	MM	:	

	PROJECT	RAINBOW	PLOTTED AIR PHOTO	
	DATE	DC-TOBOR 28, 1914	MAP	2/አ
	LOCALIT	, LAWLESS CROEK TULAMETER	BC SAMPLER EFIL OSTENSCO	
7	SAMPLE	LOCATION GRID TYPE DR	organic S Depoin material colour CON % Gravel Horizon Clay Silt Sand REMARKS	
1	1,2,3,4 5,6,7,8	Z WEAST NORTH 9:10 11:12:13:14:15 16:17:18:19:120:21 22 23:24 25 1 C: -10:0 :21:+,0:0		-
2		10,45,0 1111] 50 BR D D M H M Treavoot. Good naterval.	
3		1,40,0	[40] 图 M M M Far Rocky	
4		1,+,5,0 ,,,,] [35] [] [] [] [] [] [] [] [] [] [] [] [] []	
5		12+00	.40 B B L H L Rocky ground Lower B.	-
6		12,+,5,0	GO GE MHM B/C.	
7		3,t,QO , , , ,	I SO I I I I I I I I I I I I I I I I I I	0 -
8		1 3, -, 5, 0	I iso Rabe C M Hill o.K.	30 W.
9		14,400		
10		4.+,5,0	30 B B A M H Collaboration	9

4211 RAINBOW PROJECT PLOTTED AIR PHOTO Oct. 21N DATE MAP ___ LAWLESS CR. TULAMEEN BC E. OSTENSOE SAMPLER organic TYPE SAMPLE LOCATION - GRID SURV BORK PT.S Depth material % Gravel Horizon Clay Silt Sand colour REMARKS WEAST NORTH 1,2,3,4 5,6,7,8 9 10 11 12 13 14 15 16 17 18 19 120 21 22 23124 31,32 36.37 2 M m 3 4 5 Ó 7 8,400 8 M M 9 SANOY Н Road is 7m Wd 10 9,+50 10+00 .40 Red B(c). M M

	PROJECT	RAINZOW	PLOTTED AIR PHOTO	14
	DATE	OCTOBER 25, 1994.		22 N
	LOCALI	TY LAWLESS CREEK, THEARTEN (TO	SAMPLER ETV OFFERING	
	SAMPLE	LOCATION TYPE DR SURV BORK PT.S	organic Depth material colour Gravel Horizon Clay Silt Sand REMARKS	
	1121314 5161718	Z WEAST NORTH 9 10 11 1213,14 15 1617,18 19 120,21 22 23,24 25		100°
ì		5 chilst	126,127,128 28 30 31,32 33 34,35 36.37 33,38 40 41 Rocky. BR ote = 1,4,0 L M M Rocky. BR ote = 1,5 to 5 + 25 W.	ر ار ه
2		4,+,5,0	170 0 10 10 10 MM M Not till	ጥ ር
3		4400	150 DEMMM TILL	
4		, 13,+15,0 , , , ,	ISO DE LA LE LA M M From MICK AT	is p
5		, 3,+,0,0 , , , , ,	160 0 10 10 M M M H2 100	
ó		, 2,4,5,0	30 5 C/B? M M M 36 30	
7	1 1 1 1	,2,+,0,0	30 Br 70 B M M M College Mand reddis	- .
8		1 1, +, 5,0	14.0 1 10 B/C AM M H Vot . 5011.	
9		1,1,40,0	:40 Br 75 = M M H 5midy , Today =	t. //,
10	1 1 1 1	0+00	·50 Diggey 5 C H L L Muchy till-c	lay be
			·50 JKGrey 5 C H L L bette	~ ~

	PROJECT DATE	RAINBOW OCT 25 1994	PLOTTED AIR PHOTO	+3 22N
	LOCALITY	LANGESS CR TULAMEEN RO	MAP 12 TO TO	
		LOCATION GRID TYPE DR SURV DORK PT.S	organic Depth material Colour % Gravel Horizon Clay Silt Sand REMARKS	
1	1,2,3,4 5,6,7,8 0,	Z MEAST NORTH 10 11 112113114115 16117118,19120121 22 23124 25	26,127,127 25 30 31,32 23 34,35 36,37 37,138 40 41 Topmost layer &	<u> </u>
2		1,9,-,5,0	[1.8.0] [] [[] [] [] [] [] [] [] []	
3		,9,+,0,0	160 THM Not The Usual ha	<u></u>
4		3,+ié,p , , , , ,]	.4,0 Bir Is C M M M Dirt from top =	÷
5		18,4,0,0	13P D D D D D D D D D D D D D D D D D D D	
6		17,4,5,0	9.0 Lir 10 C HM L Rocky Kill layer.	9-1117 4 r ss
7		1,7,+,0,0	-8,0 10 C H M M TIN	19 O.Y
8		1,6,4,5,0		
9		161-1010 1 1 1 1	150 15 MM M Pale brown to go Hard stoney till	rey
10		5,+,5,0	150 Lio C M M M Stoney till From tope willy to error	
			1 2+ 5+54W	

•

. .

	PROJECT _	/KAINBOW			PLOTTED	AIR PHOTO		
	DATE -	OCTOBER	27, 1994		1101112	MAP		
	LOCALITY -		TULAMEEN, F	3 C.	SAMPLER		Ostensoe	
	SAMPLE (OCATION GRID	TYPE DR SURY BORK PT.S	organic Depth material co		avel Horigon	Clay Silt Sand	S REMARKS
1	1,2,3,4 5,6,7,8 9,10	EAST NOR 11,12,13,14,15,16,17,18,1	TH 9,20,21 22 23,24 25	26,27,28 27 30 3	31,32 33 3 1 X	3 36.37 3 B/C	3A 39 40 41	Rocky. Collymin
2		15,+15,0] [-35] [Tay [10 0	T H H	on ben soft. Some
3		16,+,0,0		.55 [[Ø C	MA M	
4		161+1510		.45		5 ,0	HMF	
5		7,1,0,0		·4.5 [[Gr. [5 c		-till
6		17,+,50] [50] [Be [5 C	HIL	
7		(8,+,0,0		50 []	RV [10 C	HHL	TILL Slash at
8		,8,+,5,0		15,0	Br 🗌	3 [MU	C124 11111111111111111111111111111111111
9		9,400		170	Br [3 C	HML	101
10		10+00] <u>:53</u> [] [] [Yel br	8 C	M W H	Sandy +111
				<u> </u>	· · · · · · · · · · · · · · · · · · ·			i -wild

.

DATE OCT. 26,1994 LAWLESS CR. TULAMEEN, BC. SAMPLE LOCATION GRID TYPE DR material SAMPLE LOCATION GRID SURV BOOK PT.S Depth organic colour & Gravel Herizon Clay Silt Sand REMA	
SAMPLE LOCATION GRID SURV BOOK PT.S Depth organic colour * Gravel Hprizon Clay Silt Sand REMA	
NTS UIM TYPE DR material SAMPLE LOCATION GRID SURV BDRK PT.S Depth organic colour % Gravel Sprizon Clay Silt Sand REMA	<u>-</u>
SAMPLE LOCATION GRID SURV BORK PT.S Depth organic colour % Gravel Hyrizon Clay Silt Sand REMA	
	RKS
1,21314 5,6,718 9,1011,1213,14,151617,18,19,20,21 22 23,24 25 26,27,28 27 30 31,32 33 34,35 36,37 38,39 40 41	
1 1.2.13.14 5.6.7.18 9.10.11 1.12.13.14.15 16.17.18.19.120.21 22 23.24 25 26.27.28 29 30 31.32 33 34.35 36.37 38.39 40 41 1 5.4.0.0 2.4.4.00 1 5.5.0 bir 1.0 C M M L	
2	
3	1
4	
5	
·	
7 SE HM L CN2Y +r)	
8	
9	7
10 1,0,+,5,0	}
140 Gybr 3 C A M MI Hard To	١.

¥* •

	PROJECT	KAINBOW Det CHIEF	······································	- 			PLOTTED	AIRP	ното			_
	DATE LOCALIT	Oct. 26,1994 Lawless Cre	ek, Tula	neeni8.	د		SAMPLE	R <u>E</u>	MAP	STEALS	೧೯	_
,	SAMPLE	LOCATION GRID		DR DDRK PT.S	Depth mater	organic rial -	colcur	% Grave	l Horizon Cl	ay Silt San	1 R E A	MARKS
1	1,2,3,4 5,6,7,8	2110 11 112113114115 16117118	RTH ,19,20131 22 1+1010	23,24 25	26127128 15 ₁ 0	27 30	31,32 33 Br	34.35	36:07 30:38 C .H	40 41 L L	Tree root Not till.	special
2 ;		, 9,+,5,0			•45		Pare [5	c M	MM	Possible till	1,
3		, 1,9,+,0,0			,5,0		Greg Jon	10		MM	Till Dens	
4		1 18,+15,0			15,5		br	1.0	À M	MM	3136 to 7-51	5 77.
5		, 8,+,0,0			.5.0		min.	5	,c ,H	M	12 CC CK RED To 8 51254 - 20 Not till	àt 8+3 8+40₩1 To 7+%5й
6		17,+,5,0			<u>15</u> 0		<u>ुष्ट्य</u>	5	[]	[6000 4-	· · · · · · · · · · · · · · · · · · ·
7		7,+,0,0			.40		br	3	C ,H	H [r A . s	4 W
8		16,+,5,0			.6.0		lt.	[5]		MM	(ask	15 m N
9		16+00			.50		المال	5				
10		, 5,+,5,0 ,			:4.0		(Fb)	40	C L	ME		
										******	_	

	PROJECT RAINBOW				PLOTTED AIR PHOT						010 MAP 92H-056				
	DATE LOCALITY	October 24, 1994	A	EN. BC			s A	MPLER			Oste				
,		LOCATION - GRID	TYPE SURV	OR BDRK PT.S	Depth mar	organi terial	ic Colou	r'	%Gravel	Horíz	on Clay	Silt Sand		द <i>'</i>	
ī	1,2,3,4 5,6,7,8 9,	W #AST NORTH 10 11 .12.13.14 15 16 17 18,12 120.21 10 1+ 10 10 12.5 1+ 10 10	22	23,24 25	26127128 •1810	27 30	31,32 FE bir	33	34.35	36.37 C	38139 M	40 41 M W)	<u> </u>	·	
2		12,+15,0 11111			12.0		L _i +		[2]		H	M	uptur.	acked : y till	i Képandiy
3		1,14,0,0			:4.0		RO			[3]	M	W W	N 2NG T	्ट्रं रं.'	
4		1,13450			.4.0		76-		5		\-\\		on t	sum s	
5		12,400			0		Br		3		H		Uppe.	c +,11	
Ó		1214,510 1 1 1 1			:-,0		L+ by		40		M	H	Sura	, in the second	
7		13,+,0,0			,9,0		P.C.		5		Н		in variable	ex pro	
8	1111	,3,+,5,0			100		Br		30	74	<u> </u>	W H	RR 12	materia	à\ Chi
9		J-1-100			,5,0		y- br		20		[H 14	Honey	brown	27
10		, 4,+,50			.3,5		Br		20	BC		M. M	horizo Govert	development Edg at 4: all are	ic 1) + 30 x

1		
	1	7
		/_

	PROJECT						PLOTTE	D AIR	PHOTO				<u></u>	<i></i>
	DATE								MAP			·		
	LOCALITY	, NTS		·			SAMPLE	R						
	SAMPLE	LOCATION (GRID)	TYPE <u>SURV</u>	DR BDRK PT.S	Depth mat	organi erial	c colour	% Grave	el Horiz	on Clay	Silt :	S∋nd	REMARKS	
1	1,2,3,4 5,6,7,8 0	Z MEAST NORTH 1011 112113,14115 16117 (18,19,20,21) 5,4,00 (2,5,4,5,7)	2.2	23,24 25	25,27,28	27 30	31,32 33 Rd	34:35 1 ₁ -5	36137 B	36136 M	40 M	A.J.	White irrock at Rusty soil.	_
2		1 50 50 1111			·1310		JY	2,0		Н	\square		V sticky blue-black day, some brown so. This is test	۔ ت
3					14,5		Red [ار	B	H	M		Mot till.	4 %
4		. (έ, 1, 5,0			1		Apr	10	<u></u>	JA	M		1117	
5		1 7,10,0			:3,0			[2]		H	M	M	40	
6		. 171-1510			. 570		Mid bir	(2)		H.			ust of	
7		1 18 4,00 0 0ct 25/94			.40		TA:	1,5		[M	Μ	M	TII. Rocky:	
8	1 1 1 1	8,+,5,0			,6,0		Vet ar	1,0	ے	<u></u> 4			Till 8475 W. G.	ds
9		19,4,0,0			:50		arcy arcy	40		H	٧)	$\sum_{i=1}^{n}$	Till, v. nard	10 K
10		10+00			·5.5		Pit	1,0	[C] C	H, M		M	TILL STAM FOST	r V
													_ ,	

	PROJECT	RAINROW.			PLOTTED A	LIR PHOTO	
	DATE	OCT 24,1994			7101100	MAP 92	4 05 6
	LOCALIT	TULAMOUN	,		SAMPLER	T. E. LISLE	
۲	SAMPLE	LOCATION - GRIDE	TYPE DR SURM BORK PT.S	organic Depth material		Gravet Horizon Clay :	Silt Sand REMARKS
1	1121314 5161718	7 - EAST NORTH 2,10 11,12,13,14,15 16,17,18,19,20,21	22 23124 25	26,27,28 29 30 5,0 5,1 1,12 .	31,32 23 34,3 BR. 20		MI POSPIC BIRD - Clay- S. It
2		101 1+1510 2161 1+1010	<u>s</u> [170 7	YBR 15	3 F Mr.(1 A	L ISM to SE of sta
3		1 01+1+00261 1+190		65 7	PBR YBB	<u> </u>	My TOD 35'C'
4		1 1+150 26 1+100	3 [.50 7 -	YIB LOT	Q C M1/4 P	A L TABLE IS SENT
5		2 1100261 11 90	5	70 7 4		S C M	
6	1 10 1 1 1	, 21 1+1510 Z161 1+190		.60 7 4	BBR 15		THE POTALE BODY
7		3, 1700 26, 11,00		.50 7 [RB. 15-	20 C ? //	Bother B?
8		3, 1+,50 2,6 1+,00		.50 7	Y β2. 24		Jahanda symus
9	ļ ļ	41 + 1010 2 4 1+190	§	.60 - 1	2 BR + 15	[c] M	
10		1 +150 7.6 1+1010 5 +00 26 +00		-45 7 L	P BR. 15		M M Suberal Frags
	7 1 2 4			,	The state of the s		i

	PROJECT	RAINBOU	· -			PLOTTE	D AIR	рното				
	DATE	<u> </u>	1994						MAP	92	4 056	
	LOCALIT	Y TULAMES		`	_		SAMPLE	R		70	LISLE	
	SAMPLE	LOCATION ST	1.0	DR _8D3K_PT.S	epth mater		colont c	% Gravel	Horizon	Clay Si	1t Sand	REMARKS
1	1,2,3,4 5,6,7,8	Z EAST W 9,1011 112,13,14,15 16,1	NORTH 17 ₁ 18,19 ₁ 20,21 22	23124 25	26,27,28 •60	25 30 T	31,32 33 Re Be	34.35 + 1.5	35.37 C	38,39	40 41 M M	
2		1 6 1+1010 Z	G 1+1010 5		.40		Pale BR.	. 15	Ç	M	M M.	
3		6, +,5,02	6,+,0,0,		.15	74	Pale BR	+15	Z ⁷	7	M	Bababack ?
4		7,1+10,02	6141 1010		.55		Pale YBa	15	e	Z-M	MMH	Edge of M. bon
5		71 +502	G 1+1010 B		2.40	7 4	YBe	2,5	<u>£</u>	L-M	M M-H	
6		8 14,00 Z	G 1+1010 4		030		Y.BR	40		ſγί	M	
7		8 +50 Z	6 4:00 5		٠ <u>٢</u>		Y.Be,	20	6	W	MM	
8	<u> </u>	9 + 00 Z	G + 00		.,2:0	7 2 L	Pale BR	2,5	9	M	M	ON A FOR
9	•	: 91 +150 Z	61 4190 5		.55	才 L	BR	20	B?	M	M M	Poss C
10		1,0,4,002	6 to0 5		-50	7 9	Be	+20	B 7	M.	W M	c ?

	PROJECT KAINBOW)					PLOTTED AIR PHOTO													
	DATE		October	23,159	4									MAP	C	72/	1-0	<u> </u>	
	LOCAL	. (7 Y	Lawless Creel	K. The	<u>مے سرو د</u>	<u>: B</u> c					s AN	PLER		<u>rik (</u>)sten	50€	<u>-</u>		
	SAMPLE	L	NTS ULM OCATION EGRU	Ď	TYPE	BDRK	DR PT.S	Depth mat	% or criál		olour	ş	% Grave	l Horizo	on Clay	Silt	Sand	-R-EMAR	K 5
] } 1 	1,2,3,4 5,6,7,8	Z 2 d (<u> </u>	NORTH 7,18,19,20,21 2,7,+,0,0	2.2	23124	25	26,127,128 •1,5,0	29	30	31,32 Y br	33	34.35	36.37 C	37138 H	40 M		Hard packed +	
2			10,+,5,0	1111				,45			Br		0	7.C	H	M	M	May not be l layer	navd par
3			1,4,0,0	1 1 1 1				:5,0		5	Grey		0	<u> </u>	Н	M	M	y set sp	: -
4			11,+15,0	1 1 1 (No sample	erio Organia
5			12,+10,0	111.				0,0			br		[/ _C]		L	Н	[+1]	Recky Last	,
6			12+1510	11.1.1				.5,0			by		_54		1_	F'	[4-]	Hardpan	
7			13,4,0,0	1 1 1 1				.35			Br		É	<u>4</u> ?	M		M	Not at all yell Hardpan.	lowi
8	1		3,+,50	1 1 1				16,5			DK DK		3	C ?	M	M		May be from top of	
9			A+1010	1111				,5,0			pic.		:5		M	M	$\overline{\mathbb{M}}$	Good Kill	407
10	1 , , , , ,		,4,+,5,0 ,	1 1 1				.6.0			Br		4/0	C	L	#	. M	Poorly dev. he safe of for	oxizor: +30W
														V- ···				•	

	T23t089	RAINBOW		PLOTTED AIR PHOTO							
	DATE	OCTOBER 24			•		92H-0	<u>56 </u>			
	ŁOCALITY		TULAMEEN, 13	Ç.	SAMPLER	E. 05	tensor	· · · · · · · · · · · · · · · · · · ·			
_	SAMPLE	LOCATION GRID	TYPE DR SURY BORK PLS	orq Depth material	ganic . colour %	Gravel Horizo	n Clay Silt Sand	REMARKS			
	1,2,3,4 5,6,7,8 9	Z WOAST NORTH	22 23,24 25	26127128 29 3		34:35 36:37	38139 40 41	Top of rock ridge at 10w.			
1		5,+,0,0 ,2,7,+,0,0		12,5	Dk .	5 B	LMM	on bedrock no chorizi present			
2		5+50 1111		-,2,0	Br	15 C	K H	On broken bedrock			
3		6,+,0,0		.50		10 C?	M M M				
4		6,+,5,0		.5.5	Red	10 C3	M H				
5		17,40,0		<u>.sp</u> [Bv	1.0 C	Wall M				
6		17.450		:40	kg [10 C	MM				
7		, 8,500		.7,0	Arp [10 F	H M M	road out			
8	111	8,4,5,0		12,0		25 C		1. Strain around			
9		19,+,0,0		145] Yb []	20 6	W W	Wees of 14,00			
10		9+,5,0		60 [15 C 20 C	M M M	1 V. rocky			
		10+00	 	.70	R-6	20 6	1/ 14				

	PROJEC	KALWBOW		•		PLOTTED	AIR PHOT	0		<u></u>
	DATE	Oct 14, 198	4	-		, , , , , , ,		92 H	056	
		TUCAMBEN	•	_		\$ AMPLE R		T.C. LISL		
_	SAMPLE	LOCATION GRID	TYPE DE SURV BORK PT.	Ropth mat	organia erial		% Gravel Hor	izon Clay Silt	Sand	REMARKS
	1,2,3,4 5,6,7,8	Z = 457 W NORTH 9,10 11 112,13,14,15 16,17,18,19,1 1 10,10 12,13,14	1 20,21 22 23,24 25		29 7 4	31,32 33 YBR	34.35 36.37 /15 G	37139 40	<u></u>	
2		10,450 284		.55		Be.	15 B	M M		
3 		1+100 284	ac 5 . [45.0		Y.BR	wist G	M M	M.	
		1/1/50 281	999	.60	7 4	BR	+10 B?	M	M	
5		3+100 28+1	ao 3 [.50	日 口	BR	15 4		M :	TOP OF C
6		, 12,45,9,284		.60	7 [YIBA 📗	+15 C	MIH M	og ,	Σ Ε :
7		3HOU 28+		.6,0		YB	1/F C	MiH "	<u> </u>	Trac for: 44 S. Vet
8		3+50 28+	00 3	165	7 4	B.R.	-15 G?	M M	~	1.0 Matris North y st
9	1111	# HOLD 128+	90 8 [.30		y,Bg,	15% 4	MIH W	4	TRUE POOT
10		5+00 28+	00 5 7	.70	7 6	BR. JBR.	10 TIS B	M- M	a4 a4, €	- Below Tree Coot
	3									

5.3.1

	PROJECT		_	PLOTTED AIR	рното		
	DATE	007 23 94			MAP	<u>9240</u>	56
	LOCALI	TULAN SEN	***	SAMPLER		T.P.L.C.LE	
,	SAMPLE	NTS UTM TYPE D LOCATION GRID SURV BORK PT	organi S Depth material		el Horiz	on Clay Silt Sand	R EM A RKS
1	1,2,3,4 5,6,7,8	Z -EASTW- NORTH 2,10 11,112,13,14,15 16,17,18,12,20,21 22 23,24 2 1 5,7159 28,7,99	5 25,27,28 25 30 0.5,0 T L	31,32 33 34,35 BR 162	36:37 C	30,39 40 41 20 4 4 4	lessor TB
2		1 6+100 218+100 []		¥18-	4		,
3		16,+,5,0 Z,8,+,00 [.	50	R.Ba . 15	3	M P P	
4		17,400 28100	.30 - [Be 20	ç ?		مح مرسان الهام
5		7,45P Z8400 []	50 7 4	R.B. 15	C.	M W	
6		1 181,90 128100 5	<u>55</u> <u> </u>	RBB 15	CZ	May	
7	1 1 1	1 8450 28400 5	15 7 4	RB 15	C	MN	B 16
8		19,4,00 Z84,00 S	-,40 T L	BR 20	B?	M M	
9		1945P Z8490 5 1	<u>550</u> 2 4	BR 15	Bic!	M M	
10		10,400,28400 5	030 7	BR. 15	\mathcal{B}	MA	Rosers

		RAINBON		L2911			8
	PROJECT DATE	October 23,19	94	PLOTTED	AIR PHOTO	92H-05	56
	LOCALIT:	سر بار اس		SAMPLER		nstensore	
		,NTS					
ſ	SAMPLE	LOCATION (GRID) Z WEAST NORTH	TYPE DR Depth mate	errar cplour ,	6 Gravel Horizo	n Clay Silt Sand	R EM ARKS
j	1,2,3,4 5,6,7,8 5	2,10 11 (12,13,14,15 16,17,18,19,20,21	22 23124 25 26127128	27 30 31,32 33	34,35 36,37	20139 40 41 M M	l Libert BR.
1		1 5+100 12,9-100		L You			were en
2		14:50 1111			49 [3		d x
3		14,+,0,0	,40		/ <u>0</u>		
4		13;+150		y'by	70 C		Growing - Th
5		13+100 1111	[[60			A H	The Market of the Committee of the Commi
6	1 1 1 1	, 12,+,5,0	.4.0		20 3		Till 2 and
7		12-100	7,0	0 B-gr	40 63	[,2] [H]	stream? Gradeli Sand ain Mick poor spl
8	, , , , ,	1/1-150	[6.0	D ₁ Y	5 0		Fav. + . Glars.
9		1/1+1010	7,0	br [ے امرا		Fair - good Spile
10		0+50	.80		<u>13</u> C		Good stoney till. All organic like
		U 7 00		Black	0 A	<u> </u>	All organic like hole. Of motslope
			~ .,				
	1						

	21024	RAINBOW	Y	,	PLOTTED	AIR PHOTO		<u>/</u>
	DATE	OCT. 23,1994			PEOTICO	MAP	924-0	56
	LOCA		main, TSC		SAMPLER	Erik	Ostensoe	
	SAMPLE	LOCATION GRID	IYPE DR SURV BORK PT.L Dept	organic th material $_{ m J}r$	colour % G	ravel Horizon	Clay Silt Sand	REMARKS
1	1,2,3,4 5,6,7,8	Z WAST NORTH 9:10:11:112:13:14:15:16:17:18:19:20:21 1 /10:4:0:10 12:19:4:0:0		\$127,28 <u>27</u> 30		4.35 36.37	20128 45 41 [V]	
2		, ,9,+,5,0 , , , , ,		·60	YDA [<u>, 5</u> G		K. A. J. Carlotte
3		191+1010		٠,٥ [<u> </u>			2.4 (A)
4		18,4,5,0		·4.0	y þr	20 5		T. (1)
5		.8,0,0		.75	[[]			Dy Broth
6		. 17.+.5.0		13.5				
7		17,4,0,0		,50		/ D 3		Let pables
8		16,4,5,0		14.5	Þκ □ [5 B:		Alexandre Maria
9		16,4,0,0				2 5?		- 73°
10		5,+5,0		3,5	Y-br [30 C		v. rocky till.
				-				

	PROJECT DATE	RAIN BOW. OCT 23/6	<i>y</i> .		PLOTTED AIR PHOTO	924/0	r6
	LOCALI	TULAMBEN		-	SAMPLER	T.E. CISLE	
,	SAMPLE	LOCATION - GRID	TYPE DR Sury Bork Pt.S	organi S , Depth material		on Clay Silt Sand	R EMARKS
1	1,2,3,4 5,6,7,8	Z = EAST V NORTH 9,10 11,12,13,14,15 16,17,18,19; 3,4,0,0,3,0,4		26127128 22 30 0:60 7 L	31,32 23 34,35 36,37 Be 75	33,39 40 41 M M M	
2		14.450 30H	00 8 7] ers9 7 4	Be. 16 G3	M W M.	
3		14,4,00 30,4	20 3 7	0.50 7 [F. 15% C	MMM	
4		3,+50 30+	00 9 1	0,5,0 T L	Rule 1572 67		
5		34,0,0,304	00 9 AP	0:15 7 4	R.B. 5-10 B.	2 2-m M M 0	as rely a right in
6	<u> </u>	, 121+50 301+1	20 8 []	0,5,0 7	Pala 7.5% C		
7		2+ 6 0 30+	00 8	167 7 4	B1. 45 A?	H. L.	Poor Sample
8		1/+50 304		.65 7 6	RB +156 B'C	He ~ 4	
9	\$ 1 P 1 1 1 1	1/400 30+	00 5 7	160 T M	Be 75/ 37	HML	organ Black Bly
10	1 1 1 1	0+00 30+0		·45 7	Be low GT	MMM	
	5			/			

30N.

	PROJEC	RAINBOW.			PLOTTED	AIR PHOTO		
	DATE	8c7 23 /94		•	4	MAP	92 H /	05-6
	LOCAL	TOLAMBEN.	-		SAMPLER	7.	E. EISLB	
	SAMPLE	LOCATION GRID	TYPE DR <u>Sury dork pt.</u> s	organ S Dopth material	ic Colour %	Gravel Horizon C	lay Silt Sand	R EMARKS
ו	1,2,3,4 5,6,7,8	Z NORTH 9110 11 1121311415 16117 18119 12012		26127128 29 30 185 ?		5 A 387 M-1	9 40 A1 4 M) L	BOG. Cft. 750 h OBANGE Feat? OBMETUS Black A
2		19,4,50 13,01-1019	, 5		PBR. 10	15 G M		Bo Hom of B'?
3		19400 30400	<u> </u>	0.55 7	BR [0 C: W	MM	Good sample at edge of bog.
4		: 18H.50 319+100	35 [Bog. No Sente
5	1/,5	BI+100 3,0+100					,	Bog Mo Tay
6	,	7,450 30,400		0.50 ?	0 2	5 A B? 4		209-Thin orange layer, below Black. cloyex A' Horgan
7	¢	7,400 3,04,00		050 7 [Be. =1	82C M		
8	1 1 1	61+50 3,9+100		0,40 T	Pule BR.	5 c? M		subcrop. sericite school 3 M. from OC
9		6 HOO 310HOC		C:55 7 L	B _R C	o e! "		
10		5,50 30+00	3 7	1:40 T Z	R.B.R.	5 Bi A	7 14 14	

3(N

	PROJECT	RAINBOW.			PLOTTED AIR	PHOTO		
	DATE	OCT 22 /94				MAP	924 026	•
	LOCALITY	TULKMERWY			SAMPLER	~~. ₾.	LISCE	
	SAMPLE	LOCATION GRID	TYPE DR SURY BORK PIS	Organic Depth material		vel Hori:	zon Clay Silt San	d REMARKS
1	1121314 5161718 9		22 23,74 25 S 7	26127,28 29 30	31,32 33 34.35 B ₁ e. /\$%	34.37 B?	38138 40 41 4-14 14 145	Jan org meet Bohangla cint
2	- Light I	D+150 1311+1010	5 7		RB. I ISZ	B	MMM	Battom of B? 2% 5-15 cm, sespel
3		11+00 3111+00	3	0,5,0 7 1	Y B 15%	C_{\perp}	M M	MIND B
4		111+1510 311/4:00	5	0:65 7	RIB IS	4	W W	Ben Brian BrasesA
5		12,+,0,0 3,1"+,00	5 7	252 -	VB 152	CAB	M M M	TROP OF CO.
6		1214510 13 (HOP		azs T	Pale + 154	- (g	PÎ M	TALOS +5% +500
7	_1	13,4,0,0,31/400	3	0:50 7	R.B. 52	C?	MMM	Steep Jote Abundand augustus o's
8	1111	13,+,5,0 ,37,+,00	S N,	0i20 7	BR 15%	C	M W	130. 00 6000 / Nucle
9		41+1010 13 4010	3 [[0.45 7	BR 10 K	G	M M W	SM From OC
10		4+50 31+00 5+00W 31+00	5 <u> </u>	1050 A	1.12R. 10:15	الع ا		- ige to distance
		· 	5-541			L	L = sol	-
	•					Mi H	mrown High	
						5 1	" "	

0/ 10 1 -

	P20J2¢1	Rawaow			PLOTTED AIR	 ОТОНЯ 1	_	
	DATE	ØCT 22/94			Profite An	MAP	92 14 056.	
	LOCALIT				SAMPLER		7 <i>E</i> L.	
	SAMPLE	LOCATION GRID	TYPE DR SURY BDRK PTS	organ Depth material		el Horizon	n Clay Silt Sand	REMARKS
1	1,2,3,4 5,6,7,8	Z EAST NORTH 9 110 11 112/13,14/15 16/17/18,19/20/21	22 23,24 25	26,27,28 29 30 • 20 T	31,32 33 34,35 Poli App. 12-1	36-37	38,38 co 41 M M M	on Beelvoel?
2		16+99 BILL 199		120 77.	13BR. 30	G?		Minor organic & P. P. auguste B. P.
3		1 6+150 3111100		[32] [] []	F +19°	Co.		any gether algar
4		17,400 311,00		·36 7	Pale 15	Ç.	W W	Cont Brace Of
5		17.450 311.00		≈0.80 T.	Pale R	G	MH M W	Below Tier Prot HW From Flee
6		. Stow 3.11100		7:80]	Pale 15	4	M-17 on a	But From Flory
7	,	S+50 311 (100		10.70	Pare /	4	M-14 C-AA A-CAA	3 Me Sione Flog.
8	1 2	9+00 31,100		1035 7	y.R.Sn. 15	ß'	M M	Bure of B
9		9150 3,1,100		0.45	R SA POT	Bic		Base of B ?
10		10,+00 36,100		0.50 7	RBn. 10-15	B	17 ag m	Rockett. But the
			Soil.			H W	HIGH HIGH MADOUMI	-

	PROJEC	-	RAIVBON	}							N/O		ALD	отоне						4
	PROJEC			, <u>192</u> , 13	s :						PLO	TTED	Ain	MAP						•
	LOCAL	17 Y	1 1 5 000	300 0 W.	,	·					s AM	PLER		E)sten	soe	,			-
	SAMPLE		OCATION E	NTS UIM GRID	TYPE SURV	BDRK	DR P7. 5	Depth ma	orga terial		olour		% Grav	vel Hori	zon Cla	y 5il	t Sand	!	REMA	rks_
1	1,2,3,4,5,6,7,8	Z 9 را 1	10,+10,0			231 24	25	26,27,28	29 S	30	31,32 L+ br.	<u></u>	34,35 2,0	36.37 B	38138 H	40 M	1	50 slop 20 cm	oe E. Organ	nc. 7.11.
2			10, +, 5,0					1410			Red Gr.		25	ιB	H			ì		h . Charcoal
3			1,+,0,0					,6,0			Red		7,0	C	H	W		Possibl	e deag	4. 4.11;
4			1,+5,0	1111				50			A.P.		1,5		H	$[\underline{\checkmark}]$	M	y. dry.	Care 16	*77م في م: أرج
5			,2+,0,0					[3,5]			Brown mid.		3,0		M	H	\mathcal{H}	Time.	/ rock	1 10 57 57
6			121+1510	1111				2,5			Mr.d br.		35		M	H		V. P. Or		
7			3,+,0,0					,4,0			M 14		3,5		M	H	H	i		. to 10 cm
8	1 1 1 1		3+,50					,6,5			M . d		35		M	H	M	bask more	rocky pale 'e an 3-	ti[: -0/out +00/1
9			4+00					40			10		40	F	M	M	M	+111.	Large	frags.
10			4,+,5,0 5+00	· · · · · · · · · · · · · · · · · · ·							Lt by Red br.		35	E B/C		M M	L	grave		ridge N.
			<u> </u>								rea pr		~~				Ţ	اعر معروب	~ Elked	skely B. gravel gnants

ĺ	-
ĺ	_
١	, J

	project	-	RAINBO	ω							PLOTE	ED ,	QIR P	HOTO						
	DATE			r 22, 10										MAP .	 				· · · · · ·	
	LOCALI	37 Y -	<u>Lawless</u>	Creek,	ていっと	incen	_30	_			SAMP	LER	Ε,	بدي ر	<u> e.ksac</u>	. س				-
	SAMPLE	f (CATION =	NIS JIM SRID	TYPE SURY	<u>BDRK H</u>	DR PT. S	Depth mar		rgani	colour	%	Grave	I Hori	zon Cla	y Sili	t Sand		REMA	ARK\$
ן ו	1,2,3,4,5,6,7,8	Z 9 00		NORTH 16:17:18:19:120:21 13:2:1-10:0	22	1	25	26,27,28 ;2,0	27	30	31,32 3 R-hr Palebr	3 34,		6.37 C	33139 M	40 M	A:	0- of Densely	tp B/s	ad till
2			16,+,0,0					1210			Ybr] 5		5	M	M		Or ro Hien	CAN CONT	ge Gerte
3			10,4 (5,0)	1 1 1				:30			Q.br		<u> </u>	ſ.		<i>/</i> /		TT): -	Sarat s	
4			17,4,00	<u> </u>				:4,0			Yor	2	0	<u></u>	Н	M		Hard s	y- 1000 m	(y 1) 1
5			17,+,5,0	1 1 1 1				:3,5			Ylor	2	0	/^ <u>`</u>		$[\sim]$		p. 1	,	j²
ó			18,40,0					:5,5			46		χ ~	<u>-</u>	H	<u> </u>		For a	i gan det	
7			8450	11				125			Spr [M	्रि	$\Delta_{\rm j}$	1.800	1 / A	ė,
8	111		9,4,0,0	4 4 1 1				13,5			RY LY		5	.4	A	77.	[<u> </u>	1, + .		·
9			19,4,50					14,5			Tr [3 [4 ; [*-]		[-]		-1.	e e	
10			1,0,4,0,0	1 1 1 1 1				·50			Br [/"	F	<u></u>	M	G00	d 50	n/.
																				

PROJECT	Kainbow	PLOTTED AIR PHOTO						
DATE	October 21,1994	MAP						
LOCALITY	Lawless Cr., Tulameen, 3, C.	SAMPLER E. Ostensoe						
SAMPLE	NTS UTM TYPE DR LOCATION GRID SURV DORK PT.S	organic Depth material Colour % Gravel Horizon Clay Silt Sanc REMARKS						
1,2,3,4,5,6,7,8	Z RAST NORTH 110 11 112113114115 1611718119120121 22 23124 25	26,27,28 29 30 31,32 33 34,35 36,37 38,39 40 41 20 BB						
2		[22] [B2 [F						
3	, , , , , , , , , , , , , , , , , , ,	:20 Be H C M M L						
4	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I INTO BE OF BIM LI						
5	, ,2,+,0,0	1 :20 MBM ML						
6	, 2, 4,5,0	NO BE HOL						
7	3+00	LIJ BE H C M M L						
8	3+,50	I TO LES HOLL						
9	A.+0.0							
10	5+00	15 BRY H C H LL						
		Older of the second of the sec						

	PROJECT	RAINBOW				_	PLOTTED	AIR PHO	πο		
	DATE	Oct. 22,1994					,		AP		
	LOCALIT	Y Lawless Creek, Tu	lameen,	<u> </u>			SAMPLER	E	Ostenson.		
	SAMPLE	LOCATION CRID	TYPE SURY BD	DR	%(∂epth materia	organic al	colour	% Gravel	Horizon Cla	y Silt San	d REMARKS
		Z NEAST NORTH	121 22 23	124 25	26127128 29	30	31,32 33 D 8 2		37 3n ₁ 39	40 41 M L	V shallow soil over rock. Poor
2		19,+1570			.A.O			20 6	Yc M	H M	Good soil but not a good c
3		1 91+1010			.3.0		Black.	(0)	H A		BADD Soil - edge of small bog. V. dark
4		1814517			:5,0		BR	10	C H	M	General Confidence
5		90,+,3,			:50		BR.	25		M	Fair Rocky of Cs
6	1 1 1 1	17,4,50			3.5		Be	20	CH	14 1	Good material. Rocky
7	1]]	7,4,0,0			:25		Brenn	30	c W	H 3	shallow soil over bedrock
8		6,+,5,0			·Z.0		BIR.	30	CA	AM Jud	
9		16,+,0,0			00		EL	75	CM	MM	good spl. (TEC)
10		, 5,+,5,6			1.5		re b		8767 M	MM	on ofp. Downslope from bedrock - 2M (TEL)
					. <u> </u>						i

		-		,								.2	3)
	PROJECT	RAINB 007 21				-		PLOTTI	ED AIR	отонч чам		924	056
	LOCALITY			LAMA	<i>ት</i>			SAMPL	ER		E. 115		
SAMP	LE	LOCATION =	ITS ITM GRID 2	TYPE _SURV	DDRK PT	R Depth ma	organic Eterial	coloni	% Grave	el Horizo	on Clay	Silt San	. REMARKS
112,3,4	, 6, 7, 8	z EAST W 1011 1121131141151 1 19 17 90	NORTH 6,17,18,17,20,2 1 3,4 4,00	1	23124 7	26127,28	2 <u>9</u> 30	31,32 33 D ₁ B ₁ R.	34,35 4 .5	36-37 3	30138	40 A:	
2		l lors i	B1411010	<u>></u>	7	170		Y-R Be	נפונ	Btc	LIM	M M	Thomas = " home - 10 Com
3		11:00	34'000			,50		Pale RBR	10115	B'G'	<i>L</i> ,	M	2 th Collins
4		I I A S P	34,00			165		PBE YBQ	[/ Ø	B+1C	4	M	Total China
5		24 PY	3,4,00			.50		DK BR Pale Gy.	10	B+ C	M		. Programme 1987
6		1 2159	34 00			,50		RBR	IOIS	B?	M	M	Sub comp
7		1 3+ 100	13H100	S		.45		Ÿ.Be	+10	C	M	MW	THE ROHA-B
8		1 3450	34100			.50		y Be 2 Ba.	15	B+ C	J-W	MM	esse for one
9		1-14,29	3.4100			2 .45		Y BR.	15	C	L-)M	MN	Top of 6
10		4+5P 5+00	34,000 34,00			.20	7	YBQ. [BR.	10-15	G B	L M	MW	Now BR

34N

	PROJECT _	Bum Bo M.				PLOTTED	AIR PHOTO		L
	DATE -	De7 22/94				,	MAP		1/056.
	LOCALITY -	TULHMEEN , BC				SAMPLER	<u></u>	LISLE	,
1	SAMPLE LC	CATION = GRID - SI	KPE DR JRV_DDRK PT.S	Depth materi	organic al	colour	% Gravel Hor:	zon Clay Silt	Sand REMARKS
1	1,2,3,4 5,6,7,8 9,10 ~ 9,9CW	-EAST W NORTH	22 23,724 25		7 30	31,32 33 XB4 Ri Ba	34.35 36.37, 107 C.?	30139 40 M M	4 995W.
2		91+1510 13141 1010	5 3 0	2,40		RBR.	evo? [6?]	M	M.
3		9400 34 00		:30		P.Be	10	<u>"1</u>	3m 5:00 B. #
4	4	18HED 34, 00	3 W C	.20	3 🗆	PiBe.	10 8,0	M	M De Bediocit
5		8,4,00 34,00		+0.45		R 80 7 Be	10 B+C	M	al Base of B'
6	,	171450 34 00		125		y Br RiBr	16 C',	M M	m gram poperation
7		7+00 34,1,00	S	+0.50		BR	<u>15</u>	MM	M 3 Neter from
8		6+30 34100		+0150	7	RBE YBE	19-15 8+0	لـــا لـــلــــا	
9	Ď.	6+1010 3141 100		0.20		DBR RIBE	15 B+G	M- M	H Pro Bl. Sample.
10	1 1 1 1 1	5,+50 3,400		0.45		Y Ba.	15 C+13		M TOLY C
						<u> </u>			

	PROJECT	RAINIBOW 3		PLOTTED	AIR PHOTO		
	DATE -	OCT 21/94	<u></u>		MAP	92 H 05	6
	LOCALITY -	TOLAMEEN: B.C.		\$ AM? LER		TELISLE	·
_	SAMPLE (C	OCATION GRID TYPE SURV ROCK	DR pepts material	qanic colour	% Gravel Hor	izon Clay Silt Sand	R EM A RKS
]	Z 2 12 13 1 4 5 16 17 18 2 9 10	5.410.0 (3.57.10.0)	25 25,27,28 27	THE PERSON AND THE	.35 36.37 5 B?	30139 40 41 L M L	> 75c4 FRAG
2		14+1510 1315T+1010 S	[1/3 B?	LM MM	50 - 50 - 1 4515
3		4400 361100	.50 1	L RIBE, 5-	yo B?	F M M-H	120
4 		3450 35+00	.45 T	L P.Be,	5 B1		
5		3+00 35+00	5.5.0	L RB.	5 B?	E M M	
6		2+50 35+00 S	<u>.35</u> T	L RBA /	0 B?	LM MM	
7		2400 35400	-40 T	Red /	P B'c?	LM MM	
8		11+50 35+00	.50	L BR -1	o c2	LM M M	· w.,
9		11400 35+ PP	50 T	L RB. 5	40 B3	L-M M M	
10		0400 35400	.40 ? .50 T.	L RBa E	25 B ²	W M ?	ng mengan medili mengan Panganan mengan di Pangan Panganan Pangan Seria
				L (DE T	<u>م ن</u>		

	-30.567	RAINBOW.				· · · · · ·		
	PROJECT DATE	Bc7060, 21/94.			PLOTTED	AIR PHOTO	924056	
	LOCALI				SAMPLER			
		NTS UIM TYPS	DR	%organ		-		
٦	SAMPLE	LOCATION - GRID SURV D	DOK PT.S	Depts material	Colour	% Gravel Horiz	on Clay Silt Sand	REMARKS
,	1,2,3,4 5,6,7,8		23,24 25	26127,28 29 30 016,0 67?	31,32 33 BB	34.35 36.37 10% B	30,30 40 41 M M M	15ags5.2 em.
2		197510 13151+100 5		0:510 07.	R-Y D	10% 810	M+H M M	DIL BIOWN B' to 03:
3		19+1010 351+1010 9	5	0:3.0 7.	R-Y BR	0-152 B+C	M M M	
4		1 18+50 35:+,00 5		0:60 7.	R-Y Ba	10% BAC	A A M	10% . Cho locu Frogs.
5 (B+00 35+00 5		0:5,0 7	R.Y Be	10% 8+0	MMM	102 Rosel to Sold R 0.5 to 10 cm.
6		1 7+50 35+00 S		0:55	R.B.	5-8° B?	MMM	3% closts to 10°
7		7+100 35+100 5		0.50 7.	RB.	COYS BAC	MMM	frogs - 10-15%
8	1 1 1 1	6+50 35+0P S		0.40 7	YBA	1075 % C	I M M	
9		6+00 35+00 5		0:35 7	YBR [5-10% C	L-M. M M	
10		5+50-35,400 9		0.40 A7	BR.	5-10% E		Hard Compact x = Beral Tell.
				,		A A	Low A Nenwer	لـ

į.

PROJECT	RAINBOW		PLOTTED	AIR PHOTO			2
DATE	OCTOBER 21, 1994		PLOTTED	MAP.			
LOCALITY	Lawless Cr., Tulameen, B.	۵.	SAMPLE	ا احماد			
SAMPLE	LOCATION OR SURV BORK PT.S	organ Depth material		% Gravel Horizon	n Clay Silt Sand	REMAI	RKS
1,2,3,4,5,6,7,8	WEAST NORTH 10 11 ,12,13,14,15 16,17,18,19,20,21 22 23,24 25		31,32 33 Bil	34,35 36.37 O A	38139 40 41 Hi-l M L		
2	14,450	14	Be -	MC	MHL		
3	[4,+,0,0]	:12	Gr Br	H C	MHM		
•	3+50	.20	BR	MB	MHM		
5	3,+00	2.0	LT BR	MC		-	
5	2+50	.15	LT BIR	MC	M M L	,	
7	12,400	.15	12 T	H C	MMI	-	
B	1,4,50	.20	節	E C	HI		
9	1,400	1/5	LT Biz	HÇ	围 田田	T.	
0	0+00	20 [ET .	M C	HML	V ₁ (
			-			•	

L36N

	92035	RAINBOW	PLOTTED AIR PHOTO	[
	DATE	October 21,1994.	MAP 92 H-056	•
	LOCAL	174 Lawless Creek, Tulameen, B.C.	SAMPLER ENT	
,	SAMPLE	LOCATION GRID TYPE DR. SURV BORK PT.S	organic Septh material colour % Gravel Horizon Clay Silt Sand REMAR	K.S
Î.	1,2,3,4 5,6,7,8	Z WEAST NORTH 9.10 11 112,13,14,15 16,17,18,19,20,21 22 23,74 25	·	
1	. 0,2	36400 5	LILS S BR LOBLLE	
2		19,4,5,0	ILS [BR M B L HM	
3		9,+,00	I C? H H L	
4		8+50	ILC? IHHM	
5		[] [] [] [] [] [] [] [] [] []	BR H C H M M	
6		7,4,5,0	IJS DE M C'HML	
7	1 1 1 1	7,4,0,0	20 BE LA HHL	
8		,6,4.5,0	J.Z.O DE MM C AHL	
9		6,400	JA A H H O	
10		5.+5.0		

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VAMOUVER B.C. V6A 1R6

1R6

PHONE (604) 253-3158 PAX (604) 253-1716

GEOCHEMICAL ANAL SIS CERTIFICATE

GEOCHEMICAL ANAL 318 CERTIFICAT
Tom Lisle PROJECT R-1 File # 94-4193

Lisle PROJECT R-1 File # 94-4193 Page 1
145 W. Rockland Road, North Vancouver BC V7W 2V8

SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn pp m	Fe %	As ppm	U ppm		Th ppm	\$r ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	DDM Cr	Mg %	8a ppm	τi *	ppm B	Al X	Na %	K %	ppm W	Au*
L36N 10+00W L36N 9+50W RE L36N 9+50W L36N 9+00W L36N 8+50W	1 1 1 2 1	44 32 30 29		53 - 50 - 58	<.1 <.1 <.1 <.1 <.1	18 22 20 15 21	14 11 13	1198 - 1047 - 1033 - 723 - 977 -	4.30 4.19 4.60	4 4 5 2 <2	ক ক ক ক	<2 <2 <2 <2 <2 <2	2 <2 <2 2 2	24 27 26 31 23	.3 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2	<2 2 4 <2 11	69 68 72	.31 .30 .40	.106 .071 .069 .062 .088	12 12 11 29 9	33 32 30	1.05 .95 .93 .97 1.16	148 141 229	.08 .09 .09 .08 .06	4 3 <2 3 2 3	3.56 3.45 3.96	.01	.10 .10 .10 .11	<1 <1 <1 <1 <1	2 1 1 1 3
L36N 8+00W L36N 7+50W L36N 7+00W L36N 6+50W L36N 6+00W	1 1 13 5 5	32 33 54 57 104	6	66	< .1 < .1 .1 .3	25 21 17 12 25	14 20 10	1081 786 5266 2690 1514	4 .65 5 .18 3 .56	<2 5 <2 4 3	<5 <5 10 13 <5	<2 <2 <2 <2	<2 2 3 2 <2	35 25 81 73 63	<.2 <.2 .4 .6	<2 <2 <2 <2 <2 <2	<2 5 <2 6 4	66	.26 1.10 1.13	.069 .062 .152 .084 .075	15 16 40 19 36	34	1.20 1.06 .77 .87 .92	157 329 190	.06 .08 .05 .04	<2 / <2 / <2 /			.10 .08 .08 .08	<1 <1 <1 <1	2 4 3 4 4
L36N 5+50W L36N 5+00W L36N 4+50W L36N 4+00W L36N 3+50W	2 1 <1 <1	67 64 33 28 34	8	104 93 150 114 107	.2	22 18 16 17 15	12 13 10	640 951 715 487 615	4.16 4.08 3.49	9 <2 <2 2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 <2 2 <2 <2	42 61 24 34 32	<.2 .6 <.2 .2	<2 <2 <2 6 3	<2 <2 <2 <2 <2	67	.97 .29 .36	.059 .067 .084 .043 .089	21 28 9 10 12	34 30 32 29 30		214 131	.06 .05 .09 .08	5 < <2 :	4.38 4.27 2.95 2.36 3.02	.02 .02 .01 .02	.09 .08 .07 .05 .07	<1 <1 <1 <1 <1	3 3 1 5 32
L36N 3+00W L36N 2+50W L36N 2+00W L36N 1+50W L36N 1+00W	<1 1 1 <1 1	34 26 29 29 42	6 10 6 10	89 82 109	<.1 <.1 <.1 <.1	12 12 15	11 10 13	563 418 593 672 712	3.88 3.46 3.89	4 3 <2 6 10	<5 <5 <5 <5	<2 <2 <2 <2	<2 <2 <2 3 2	25 29 23	<.2 <.2 <.2 <.2 <.2	2 <2 2 2 <2	<2 <2 <2 <2 <2	66 61 57 59 55	.27 .33 .26	.051 .088 .043 .078 .080	13 8 11 10 13		.69	114	.08 .07 .06 .07	<2 <2 <2	2.29 2.37 2.43 2.62 2.26	.01 .01 .02 .01	.06 .06 .06 .07	<1 <1 <1 <1 <1	4 3 2 6 2
L36N 0+50W L36N 0+00W L34N 10+00W L34N 9+50W L34N 9+00W	<1 1 2 2 1	29 32 35 23 33	-	118 51 57	.1 .1 <.1 <.1	16 10 19 14 19	12 16 13	711 600 462 512 1332	4.17 4.53 3.86	3 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 5 3 3	25 28 18 17 25	<.2 <.2	4 3 5 <2 <2	4 <2 <2 <2 9	62 63 66 65 73	.23 .13 .16	.092 .080 .054 .054 .068	11 11 14 11 10	26 32 26	.91 1.04 1.19 .68 1.04	83 113 103	.06 .06 .06 .10	<2 <2 <2	2.58 2.65 3.89 3.17 3.51	.01 .01 .01 .01	.09 .07 .09 .08	<1 <1 <1 <1 <1	2 9 27 4 18
L34N 8+50W L34N 8+00W L34N 7+50W L34N 7+00W L34N 6+50W	1 7 1 1	53 38	15 / 3	89 101	-	24 16 26	11 15 16	826 517 891 1010 532	3.91 4.39 4.98	7 4 2 4 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 3 3 5	17 38 17 19 22	.7 <.2 <.2	4 5 5 2 6	<2 <2 5 <2 <2	70 62 71 74 63	.47 .15	.075 .046 .112 .100	13 26 11 11		.99 .94 1.43	107 255 100 111 191	.08 .07	<2 5 <2	3.53 5.45 3.57 4.09 3.53	.01 .02 .01 .01	.07 .09 .09 .13	<1 <1 <1 <1 <1	1 3 2 3 1
L34N 6+00W L34N 5+50W L34N 5+00W L34N 4+50W L34N 4+00W	2 2 2 1 1	28 31 44 34 36	/ 9 , 7 : 11	109 118	<.1 <.1 <.1 <.1	15 21 18	10 14 13	2185 708 755 685 685	3.89 4.21 3.94	2 5 5 <2 3	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 2 <2 <2 2		.4	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	69	.58 .63 .49	.101 .045 .046 .056 .047	42 24 15 14 13	32 36 27	.96 1.09			<2 <2 <2	3.60 2.75 2.82 2.55 2.58	.01 .01 .02 .01	.07 .06 .08 .08	<1 <1 <1 <1	1 2 2 1 3
STANDARD C/AU-S	19	57	41	141	6.5	74	31	1051	3.96	41	15	7	35	51	18.7	15	21	62	.51	. 094	39	62	.92	190	.08	34	1.88	.06	.15	9	50

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1-P10 SOIL P11-P12 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples,

DATE RECEIVED: NOV 18 1994 DATE REPORT MAILED:

Nov 25/94

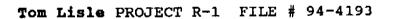
Page 2

44

ACME AMALYTICAL						<u> </u>																									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppn	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe X		U ppm		Th. ppm	ppm \$r	Cd ppm	Sb ppm	8 i ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Tî X	ppm 8	Al X	Na X	K X	ppm W	Au* ppb
L34N 3+50W L34N 3+00W L34N 2+50W L34N 2+00W L34N 1+50W	1 1 2 1	35 39 25	/ 13 / 13 / 18 / 19 / 10	142 · 148 · 132 ·	*<.1 *<.1 *<.1	18 17 14 11 13	13 18 13	821 751 1053 615 613	4.03 5.03 3.46	5 <2 3 <2 <2	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	4 <2 <2 <2 3	28 36 27 41 20	.3 .6 .9 .4	<2 <2 <2 <2 <4	2 3 <2 <2 <2	67 64 83 59 61	.40 .30 .60	.087 .051 .111 .035 .075	15 15 11 15 14	32 30 23 21 23	.92 .90 .85 .84	142 155	.06 .08 .07 .05	3 4 2		.02 .02 .03	.11 .08 .07 .06 .10	1 <1 1 <1 2	3 3 1 2
L34N 1+00W L34N 0+50W L34N 0+00W L32N 10+00W L32N 9+50W	1 <1 1 1	49 94 29	/ 11 / 12 / 19 / 11 / 17	141 198 79	.1 .2 <.1	13 14 22 23 23	12 13 15	844 472 1196 930 820	4.28 4.97 4.30	3 3 <2 <2	ঠ ঠ ঠ ঠ ঠ	<2 <2 <3 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	3 2 3 2 3	29 32 49 38 40	.6 .3 1.0 .3	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	64 62 69 72 72	.37 .63 .46	.096 .052 .072 .060 .049	16 18 42 14 19	23 31 37	.98 .89 1.08 1.33 1.09	152 161 234 101 170	.05 .05	<2 7 3	3.37 3.06 4.71 2.65 2.86		.12 .10 .16 .12	1 <1 <1 <1 1	2 2 4 3
L32N 9+00W L32N 8+50W L32N 8+00W L32N 7+50W L32N 7+00W	2 3 2 5 2	17 34		96 100 135	1 1 2	15 9 16 24 21	11 15 15	874 522 819 938 815	5.35 4.51 4.85	3 <2 4 <2 5	5 5 5 5	<2 <2 <2 <2 <2	3 5 3 3 <2	32 14 27 48 45	1.0 .4 .4 .3	<2 <2 <2 <2 <2	<2 <2 <2 5 <2	63 84 68 75 65	.11 .24 .58	.084 .219 .066 .031 .062	33 10 18 42 16	20 30 38	.82 1.08 1.12	173 76 113 192 154	.05 .08	7 7 6	3.99 3.38 2.69 3.88 3.02	.02 .01 .02 .03	.14 .08 .11 .11	1 <1 <1 <1	11 22 6 2
L32N 6+50W L32N 6+00W L32N 5+50W L32N 5+00W RE L32N 5+00W	3 2 1 5 5	55 39 75	 10 10 16 15 14 	75 121 176	.1 -<.1 -<.1		24 11 31	818 559 979 2424 2390	6.23 4.73 6.11	2 6 <2 9 6	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	<2 4 <2 4 5	51 16 20 49 49	1.2 .9 1.0 1.3	<2 <2 <2 <2 <2 <2	<2 <2 <2 <5 <2	68 103 72 80 81	.14 .23	.050 .206 .170 .108 .107	20 11 9 42 42	24 28	1.12 .97 .94	140 103 116 147 137	.06 .06 .08	6 3 <2	2.99 3.40 3.58 3.96 3.98	.02 .01 .02 .01	.11 .07 .12 .09	1 <1 <1 <1	2 2 1 3 3
L32N 4+50W L32N 4+00W L32N 3+50W L32N 3+00W L32N 2+50W	1 1 1	112 321 66	/ 12 / 16 / 17 / 14 / 20	99 85 122	1 2 - <.1 1 3	20 20	24 19 21	680 1015 830 902 1101	4.78 4.43 4.74	7 6 2 10 7	5 5 5 5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 4 3 2 3	21 31 21	.7	2 <2 <2 <2 5	<2 <2 <2 <2 <2	63 74 68 82 72	.20 .40 .22	.052 .088 .042 .068 .084	13 15 29 11 11	27 34	1.06 1.18 1.54 1.34 .95	117 134 167 171 141	.07	4 3 3	2.44 3.82 3.09 3.95 3.60	.03 .02 .03 .01	.09 .08 .10 .09	<1 1 1 2 <1	2 2 2 1 3
L32N 2+00W L32N 1+50W L32N 1+00W L32N 0+50W L32N 0+00W	2 1 2 3 2	51 49 64	/ 15 / 15 / 18 / 23 / 17	156 183 172	- 1 - 3	14 15 18	17 13 12	618 796 841 1035 825	4.71 4.24 4.44	<2 5 3 6 3	ও ও ও	<2 <2 <2 <2 <2	2 2 2	18 36 46	.5 .7 1.0 1.2	<2 <2 <2 <2 <2	<2 10 <2 5 <2		.17 .51 .74	.059 .063 .072 .056 .053	10 14 27 35 22	23 25 24 25 26	.74 .98 .87 .90 .89	170 209 207 288 161	.06	3 3 <2	3.51 3.92 3.32 3.83 2.55	.02 .01 .02 .03	.09 .13 .12 .12	<1 <1 <1 <1	4 2 3 4 3
L30N 10+00W L30N 9+50W L30N 9+00W L30N 7+50W STANDARD C/AU-S	6 1 1 1	38 36 30	/ 20 / 11 / 13	89 84 6	- <.1 - <.1 1 - <.1 - 7:1	15 18	11 1	490 331	3.62 .31	9 8 5	<5 <5 <5	<2 <2 <2 <2 7	2 <2 3	25 29 2 8	.4 .7 .6 <.2 19.3	6 <2 <2 9 13	<2	71 65 13	.24 .29 .21	.056 .059 .041 .059	10 11 19 56 40	35 29 7	.08 1.05 .80 .09 .91	46 139 139 89 185	.08 .08 .10	2 3 2	2.28 3.11 3.52 2.64 1.88	.05 .02 .02 .04 .06	.01 .08 .08 .02	<1	1 2 2 <1 48

Page 3

ACME AMALYTICAL											· · · · · · · · · · · · · · · · · · ·	·																		HOME MAA	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bî ppm	bbut A	Ca %	P X	La ppn	Cr ppm	Mg %	Ba ppm	Tî %	B ppm	Al X	Na %	K %	¥ ppm	Au* ppb
L30N 7+00W L30N 6+50W L30N 6+00W L30N 5+50W L30N 5+00W	3 4 2 4 2	40 37	13	73 - 68 - 46-	<.1 <.1 <.1 <.1	13 17 23 22 21	17 21 20	358 637 1082 889 850	4.94 4.67 4.89	7 <2 <2 <2 <2 2	ক ক ক ক	<2 <2 <2 <2 <2 <2 <2 <2 <2 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	8 5 3 2 4	16 28 23 25 27	.2 .7 <.2 .7	10 2 7 7 7	3 5 4 <2 2		.13 .21 .25	.110 .118 .078 .066	16 19 12 9	27 26 29	.95	138 131	.05 .10 .06 .08	<2 3 <2 3 <2 3	3.50 5.18 5.58	.01 .01	.07 .09 .09 .09	<1 <1 <1 <1	1 4 4 1 2
L30N 4+50W L30N 4+00W L30N 3+50W L30N 3+00W L30N 2+50W	1 1 1 1	71 · 67 81	√ 16 - 17 √ 15	122 1 101 1 149 1 109 1	1 -<.1 -<.1	21 22 17 21 21	18 20 27	1061 - 909 - 1107 - 1413 811 -	4.56 4.61 5.02	2 6 6 <2 5	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 3 2 3 3	27 33 28 30 25	.8 .5 .6	6 5 <2 5 4	11 8 <2 <2 <2 <2	69 66 80	.30 .29 .33	.096 .061 .081 .144 .087	15 13 15 12 14	29 27 25 26		141 126 202 155	.05 .06 .06 .06	<2 3 <2 3 <2 3	5.26 5.10 5.39	.01 <.01	. 12 . 14	<1 <1 <1 1 <1	1 1 1 2 4
L30N 2+00W L30N 1+50W L30N 1+00W L30N 0+50W L30N 0+00W	8 4 5 2 1	75 . 62		135 -	. 2	15 19 21 23 18	21 10 10	553 1117 1442 802 521	6.33 3.78 4.09	<2 6 <2 <2 3	9 <5 <5 <5	<2 <2 <2 <2 <2	<2 2 <2 <2 <2	90 64 69 69 43	.2 1.2 .6 .8 .4	<2 2 <2 <2 7	5 7 3 2 4	72 50 60	2.60 1.32 1.39 1.43 .67	.099 .063	12 21 19 24 18	27 21		204 177	.02 .05 .05 .06	<2 3 4 2 <2 3	1.77 3.91 2.51 3.29 2.90	.01 .02 .03 .02	.07 .07 .06 .08	<1 <1 <1 <1	2 14 12 3 2
L28N 10+00W RE L28N 10+00W L28N 9+50W L28N 9+00W L28N 8+50W	4	27 - 27 - 25 - 26 - 20 -	10 10 9	105 104~ 55~	.1 .1 <.1 <.1 <.1	19 21 20 20 15	13 15 18	430 433 470 602 539	4.19 4.30 5.11	<2 <2 <2 4	<5 7 <5 5	<2 <2 <2 <2 <2	2 3 4 6 5	33 33 26 31 18	.3 .6 .2 .2	6 4 <2 3 3	6 3 4 <2 <2		.45 .25 .36	.087 .089 .093 .077 .116	11 11 16 36 14	30 27 24	.91 .72		.09	3 3 5 3 3 2	3.37 3.26 2.98	<.01		<1 <1 <1 <1 <1	2 1 3 4 6
L28N 8+00W L28N 7+50W L28N 7+00W L28N 6+50W L28N 6+00W	4 5 3 3 2	\ 24 \ 45 47	6 8 12 5 15	56 64 59	<.1 <.1 <.1 .1		14 19 20	652 305 822 576 491	4.79 5.18 4.98	2 4 <2 <2 5	<5 <5 <5 <5	<2 <2 <2 <2 <2	5 8 5 6 6		.6 <.2 <.2 <.2 <.2	<2 <2 3 <2 7	<2 5 8 5 8	65 68 78 66 72	.18 .23 .14	.085 .098 .158 .184 .091	41 78 15 16 19	24 26 22	.90 .81 1.20 .89 1.14	111 65 86 54 89	.08 .08 .05 .08	<2 : 4 : <2 :	3.42 3.31 3.90 4.42 5.85		.09 .05 .08 .07	1 <1 <1 <1 <1	3 6 1 6 2
L28N S+50W L28N S+00W L28N 4+50W L28N 4+00W L28N 3+50W	2 1 2 4 2	84 60 52	√10 √18 √13 −14 ←13	49~ 82-	<.1 <.1 <.1 .2 <.1	28 49 36 25 16	24 23 17	771 824 1161 950 648	5.40 4.73 4.38	<2 <2 <2 3 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	2 5 3 2 2		.4 <.2 .3 .2 <.2	4 <2 <2 2 <2	4 3 <2 11 4	75 93 82 67 64	.26 .18 .65	.059 .108 .114 .047 .101	18 14 13 24 17	68 36 26	1.27		.07	<2 / <2 : <2 :	1.18 1.33 3.78 3.06 3.50	.01	.09 .09 .07 .09	<1 <1 <1 <1	1 1 2 2 2
L28N 3+00W L28N 2+50W L28N 2+00W L28N 1+50W L28N 1+00W	1 2 2 3 2	84 65 42	√ 17 ✓ 13	102	1. <.1	16	21 20 12	610 839 925 920 743	4.93 5.08 3.98	7 8 2 2 4	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 5 2 2 <2	46 55 85	<.2 .2 .3 .7 <.2	<2 <2 <2 <2 <2	<2 10 10 8 9	67 77 68 60 59	.48 .55 .86	.062 .073 .072 .040 .037	16 25 20 18 20	28 25 24		87 90 97 131 116	.06	2 7 <2 7 <2 3	2.85 2.94 2.87 3.04 2.56	.02 .01 .01	.09 .08 .07 .07	<1 <1 <1 <1 <1	5 7 47 2 4
STANDARD C/AU-S	20	56	43	134	6.9	74	33	1048	3.96	39	22	6	38	52	19.1	13	22	60	.52	.094	40	61	.93	190	.08	34	1.88	.06	. 16	10	49



Page 4

22

SAMPLE#	Mo ppm	Cu ppm		2n ppm	Ag ppm	Ni ppm	Со	Mn ppm	Fe %	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb	Bi ppm	V ppm	Ca %	P %	La pom	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	K %	ACRE AHAI	Au* ppb
L28N 0+50W L28N 0+00W L26N 10+00W L26N 9+50W L26N 9+00W		55 · 38 ·	14 8 5 9	123 - 130 - 100 - 78 -	.3	16 22 12 8 8	10 12 11 13	1018 819 761 476 854	4.19 3.86 4.06 3.69	7 3 5 3 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2	2 3 4 4 3	80 45 31 24	.5 .4 <.2 <.2	<5 5 5 5 5 7 8	3 <2 2 <2 <2 <2 <2	51 61 64 52	1.25 .56 .54 .34 .35	.077 .041 .054 .083	14 16 40 17 11	26 33 25 21	.73 .98 .88 .68	141		<2 3 4 2 <2 3 <2 2	3.17 2.65 3.10 2.50		.08 .10 .09	<1 <1 <1 <1 <1	<1 4 3 2
L26N 8+50W L26N 8+00W L26N 7+50W L26N 7+00W L26N 6+50W	<1 1 2 <1	31 × 28 × 27 × 17 × 30 ×	2 2 6	47 - 47 - 43 -	٠<.1	14 12 21 13 17	15 16 17	560 650 580 406 778	3.93 4.03 3.63	<2 5 2 6 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	5 4 3 3 2	27 20 22	<.2 <.2 <.2 <.2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 <2 <2 3 <2	58 54 61 54 73	.22 .29 .20 .21 .27	.0 7 9 .074 .110	15 11 11 25 11	22 25 22	1.19 1.05 .84		.05 .04 .05	4 2 <2 2 3 2	2.23 2.64	<.01	.07 .08	<1 <1 <1 <1 <1	2 1 <1 1 2
L26N 6+00W L26N 5+50W L26N 5+00W L26N 4+50W L26N 4+00W	<1 1 <1 1	63 /	14	97 147 - 88 - 170 94 -	.2	15 33 19 20 13	23 15 21	1021 - 856 - 742 - 2292 - 1122 -	4.94 4.13 4.80	7 3 5 <2 2	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 5 2 3 2	28 60 23 26 26	.4 <.2 .4 .5 <.2	<2 <2 <2 <2 <2	<2 5 <2 <2 2	70 62 61 76 70	.27 .80 .23 .29 .27	.075 .092 .183	11 37 13 13 16	29 23 22	1.07 1.00	150 129 118 157 105	.09	2 3 2 2 <2 3			.08	<1 <1 <1 <1	4 6 2 3 2
L26N 3+50W L26N 3+00W RE L26N 3+00W L26N 2+50W L26N 2+00W		84 × 87- 72 ×		84 - 79 - 84 - 95 - 100 -	-1 1- -4	21 21 19 23 14	27 28 23	858 : 1110 : 1129 : 1011 : 688 :	4.65 4.73 4.93	<2 <2 <2 4 <2	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2	3 <2 3 4 4	26 27 26 22 28	.3 .5 .5 .7 <.2	<2 <2 <2 <2 <3	<2 <2 <2 <2 <2	66 66	.24 .25 .25 .20 .27	.135 .140 .103	14 13 13 16 17	21 23 23	1.32 1.06 1.07 .99 1.07	104 110 107	.05 .06 .06 .07	2 3 3 3 4 3	3.51 3.21 3.27 3.32 2.83	.01	.08 .08	<1 <1 <1 <1	2 2 5 9 3
L26N 1+50W L26N 1+00W L26N 0+50W L26N 0+00W L24N 10+00W	1 1 2 1	49 - 55 - 79 -	9 13 8 12 12	84 ~ 84 ~ 94 ~ 124 ~ 80 ~	.1	19 14 17 29 15	9 13 11	687 4 946 1 1302 1 852 4 442 6	3.91 3.86 4.77	3 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 3 2 3	44 54 60 68 26	.4 .2 .3 1.1	2 <2 <2 <2 <2	<2 <2 <2 <2 <2	55 54 61	.56 .92 .77 1.18	.056 .080 .080	18 17 19 30 19	27 30 34	.75 1.00 98.	141 121 149 210 113	.07	<2 2 <2 2	2.54 2.21 3.68	.03 .03	.07 .05 .08 .10	<1 <1 <1 <1	3 2 3 3 24
L24N 9+50W L24N 9+00W L24N 8+50W L24N 8+00W L24N 7+50W	1 1 1 1	29 \		91 ~ 123 ~ 90 -		13 17 14 16 10	14 11 14	471 6 636 3 716 6 656 6 749 3	3.83 4.27 4.31	<2 <2 <2 <2 4	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 4 <2 3 2	29 25 27 26 28	.6 .3 .4 .8	<2 <2 <2 <2 2	<2 5 7 <2 <2	67 63	.28 .27 .29 .25	.082 .099 .076	16 12 13 14 16	22 f 31 f 25 f	1.07	109 83 119 157 90	.05 .05	<2 2 <2 2 <2 3		.01	.06 .09 .11 .11	<1 <1 <1 <1 <1	2 4 1 3 17
L24N 7+00W L24N 6+50W L24N 6+00W L24N 5+50W L24N 5+00W	2 1 2 1 <1	36 32 33 ×	10 13 10 2 12	81- 72-	<.1 .1 .1 <.1	14 16	20 20 21	640 (1026 (750 (955 (754 (32 84 73	<2 <2 <2 <2 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	3 4 7 8 <2	34 24 27 35 29	.3 .2 .6 .5	2 <2 4 <2 <2	<2 <2 <2 5 <2	61 70 65	.39 .22 .20 .33 .30	.111 .129 .087	19 19 21 40 14	20 19 18		96 142 151 96 86	.06	<2 2 <2 3 <2 2		.01 .01 .02	.10 .11 .10 .07	<1 <1 <1 <1 <1	5 9 5 13 6
STANDARD C/AU-S	19	58	38	124	6.7	70	31	1048	.96	40	14	6	36	51	18.9	14	22	63	.51	.093	40	60	.92	186	.08	38 1	.88	.06	.16	9	49

ACHE AMALYTICAL

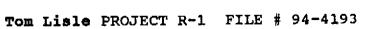
ACHE AMALYTICAL																															
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As ppm	U. ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	dS	8 î ppm	V	Ca %	P X	Le ppm	Cr ppm	Mg X	Ba pont	Ti %	8 ppm	At X	Na X	K %	ppm	Au* ppb
	bbw	bbu	ppiii	ppm	ppm	bbu	Phin	ppm		PANI	- Print	ppin	PPIII	Phin	P-P-11	67	- Prince	PP			FF	FF		F F							
L24N 4+50W	2	56 v	/ 14	69	1	7	21	572	5.78	9	<5	<2	7	30	.6	<2	<2	77			16			119	. 05		2.84		.10	<1	23
L24N 4+00W	Ž		10		~ < .1	24	27	885		9	<5	<2	5	29	≺.2	4	4	66		.105	21		1.05	87	.06	-		.02	.09	<1	3
L24N 3+50W	1		16	97	1	20	25	898	4.63	3	< 5	<2	4	24	<.2	<2	2	66		.095	16		1.08	134	.08	_	3.11	-	.09	<1	11
L24N 3+00W	<1	44	15	136	2	25	17	885	4.10	5	<5	<2	4	25	.5	<2	3	58		-085	13			148	-06				.10	<1	1
RE L24N 3+00W	_1_	44	/ 15	138	1	22	18	923	4.27	11	<5	<2	4	25	.2	4	<2	60	-24	.088	14	23	1.00	160	.06	< 2	3.01	.01	.10	<1	3
L24N 2+50W	,	65 -	Z 15	134	3	34	15	754	4.58	5	<5	<2	4	47	.2	3	10	66	.51	.063	17	33	1.17		.05	_	3.39		.09	<1	3
L24N 2+00W	1		20		z	17		968	4,08	5	<5	<2	2	30	.6	4	7	66	.33	.097	15	26	.86	155	.06	_	3.01		.09	<1	4
L24N 1+50W	i i		17		~ < . 1	15	15	628	4.15	10	<5	<2	3	23	.2	3	<2	66	.22	.068	12	25	. 78	148	.06		3.06		.08	<1	3
L24N 1+00W	أأ	33 '	9	88	3	12	12	687	3.70	8	<5	<2	4	62	.6	5	2	64		.023	17		1.03	148	,10			.02	.09	<1	3
L24N 0+50W	<1	39 •			2	15		369		5	<5	<2	2	29	<.2	3	3	64	. 27	.029	14	26	.78	147	.06	< 2	3.25	.01	.07	<1	6
124N 0+00W	1	31 \	16	138	 2	8	13	511	3.61	10	< 5	<2	3	36	.6	7	4	60	.41	.042	12	23	.77	155	.06		2.66		.08	<1	_7
L22N 10+00V	1		11		- <.1	22		633		7	<5	<2	. 3	38	. 5	<2	8	60	.40	.049	22		1.04	96	.06		2.22		.07	<1	20
L22N 9+50W	1		20		- <.1	19		1178		13	<5	<2	6	48	.4	3	<2	67	.61	. 103	28	28	1.29	151	. 05		2.27		-11	<1	11
L22N 9+00W	l i			210		18		1557		6	<5	<2	2	28	.9	<2	5	67		.118	18	30		163	.06		3.73		-14	<1	3
LZ2N 8+50W	i		17			22	16	900	4.17	7	<5	<2	4	33	.2	3	4	64	.30	.083	27	27	.88	162	.07	<2	3.14	.01	.11	<1	5
L22N 8+00W		38	× 16	81	··· .1	18	17	649	4.11	7	< 5	<2	4	36	<.2	5	9	59	.38	.078	15	26	1.22	56	.07	<2	2.05	<.01	.08	<1	5
L22N 7+50W		30 v			~<.1	16		707		<2	<5	<2			.2	<2	<2	60	.38	.059	20	24	1.05	84	. 05	<2	2.08	.01	.09	<1	4
L22N 7+00W	1		/ 12		-<.1	22	18			6	<5	<2		***		4	2	65		.094	23	23	1.39	96	.06	<2	2.36	<.01	.08	<1	5
L22N 6+50W	;	-	14		2	18		540		6	< 5	<2			.2	5	<2	57	.24	.089	15	19	.92	111	.06	<2	2.65		.08	<1	18
L22N 6+00W	1	36			-<.1	19		555		5	<5	<2		37	.3	3	<2	55	.34	.066	24	18	.96	79	.05	<2	2.06	.01	.07	<1	2
L22N 5+50W	,	`23	/ 11	48	-<.1	10	14	554	3.94	6	<5	<2	4	68	<.2	2	<2	55	.37	.092	22	16	1.08	52	.05	<2	1.75	.02	.09	<1	10
L22N 5+00W	7		√ 15		~ <.1	8		326		<2	<5	<2	5	150	.6	<2	<2	144	. 29	.275	25	13	1.46	208	. 12	<2	2.72		.11	1	3
L22N 4+50W	2		v 12		- <.1	12	20			5	<5	<2	5	63	<.2	6	3	83	.31	.123	20		1.18		.10	_	2.95		.11	<1	3
L22N 4+00W	1		√ iī		- 1	22	27	554	5.26	<2	<5	<2	4			9	5	88		. 131	22		1.05		.11		3.03		.10	<1	2
L22N 3+50W	i		- 16		2	18	19	563	4.49	10	<5	<2	5	35	.5	7	<2	79	. 28	.078	13	23	1.01	145	.09	<2	3.07	.02	.12	<1	1
L22N 3+00W	١,	42	/ 0	133	~ .1	16	17	654	4.15	3	< 5	<2	4	30	.4	2	<2	66	.26	.094	14	25	.92	176	. 09	_	2.97		.11	<1	2
L22N 2+50W	1		√ 17	-	~ <.1	21		813		7	<5	<2	4	29	.4	<2	3	73	.29	. 140	19	22	.81		.12		3.62		.08	<1	12
L22N 2+00W	8		/ 12		2	18	34	577	8.02	8	<5	<2	7	21	<.2	<2	3	86	. 14	.332	18	16	.94	81	. 12			.02		<1	
L22N 1+50W	3		,		· <.1			660			<5	<2	3	45	<.2	3	2	87	.44	.056	29		1.58		.07		3.97			<1	
L22N 1+00W	1				- < 1			669					2	23	<.2	5	2	63	.22	.060	11	32	1.28	108	.05	<2	2.66	≺.01	.06	<1	2
L22N 0+50W	2	72	√ 21	139	2	13	13	864	4.31	6	<5	<2	4	32	1.0	5	7	58	.55	.055	27	25	.99	156	.05			.02			_
L22N 0+00W	1				· < 1			846									3	60	. 38	.054	18	25	1.12	100	.05		2.35		.09	<1	
120N 10+00W	1			_	- 1			823										60	.30	.080	20	25	.91	140	.07		2.73		.10		_
L20N 9+50W	1		_		- < 1			799									7	64	.40	.057	26	27	.85	104	.08	<2	2.14	.02	.08		
L20N 9+00W	1		v 17		· - < .1			688												.093		22	.96	92	.06		2.10		.09	<1	5
STANDARD C/AU-S	19	59	37	133	2 6.9	72	. 31	1042	3.96	39	15	. 7	37	52	19.3	15	19	60	.51	.095	40	63	.92	184	.08	34	1.88	.06	. 16	12	50
SINHUNKU C/AU-S	17										•••	<u> </u>														<u> </u>					

Page 6

44

ACHE AMALYTICAL																											•••				4.4
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe		U ppm		Th ppm	Sr ppm	Cd ppm	Sp Sp	8î ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Tí X	ppm ppm	AL X	Na %	K X	_	Au* ppb
	ppm	ppm	bbu	bbw	ppm	ppm	bbu	bbu		ppii	PPIII	Private	PP"	- Physi	PANII.	- Popul	- Paris	PP													
L20N 8+50W	1	44	15	115 -	' <.1	7		770		<2	<5	<2	5		<.2	<2	<2	54		, 102	12	19	.67	94	.07		2.32		.07 .05	<1	2 3
L20N 8+00W	1		10	76 -	1	11		506		2	<5	< 2	5	20	<.2	<2	3	49		.063	13	19 17	.71 .66	120 93	.06		1.68 · 1.87 ·		.05	<1	3
L20N 7+50W	1		10	-	1	11		458		<2	<5	<2	4	15	<.2	<2	<2 <2	49 42		.076 .029	8 37	21	.81	128	.04			.01	.07	<1	3
L20N 7+00₩	2		<u> 11 </u>		< 1	12	10	621		3	<5 <5	<2 <2	3 2	34 55	.3 <.2	3	5	46		.069	77	13	.52	85	.01		2.25	.01	.06	<1	2
L20N 6+50W	5	35	5	52	· < . 1	21	14	157	1.50	<2	43	٧2	~	23	٠.٤	•	-	70	.,,	.007	• • •	,,,			•••	-					
L20N 6+00W	1	30	/ 4	58	-<.1	13	16	522	3.96	<2	<5	<2	2	24	<.2	<2	<2	53		.167	11	16	.81	78	.06			.01	.05	<1	2
L20N 5+50W	3	29	5		· < . 1	6		1008		<2	<5	<2	14	25	.4	<2	4	42		.128	92		1.28	56	.02		1.94		.07	<1	6
L20N 5+00W	1	35	16	132	1.	23	23	993	3.97	<2	<5	<2	4	21	.4	2	<2	56		.094	29	19		79	.07			.01		<1 <1	2 2
L20N 4+50W	<1	36	8	98	~ . 1	10		541		3	<5	<2	4	30	.4	4	<2	58		.074	14		.93	81 87	.08 .06			<.01 .01		<1	<u>د</u> ًا
L20N 4+00W	5	> 24	- 6	74	<.1	12	12	575	3.96	<2	<5	<2	3	36	.2	3	<2	56	.28	.082	10	10	1.25	10	-00	~2	2,10			-,	*1
	3	7/	14	105	1	15	10	614	. A1	<2	<5	<2	4	31	.7	<2	<2	66	.20	.117	14	20	1.03	116	.05	<2	2.71	<.01	.08	<1	1
L20N 3+50W	<1		· 10		·	17		997		<2	₹5	<2	Ž	25	.2	<2	<2	55	.38	.102	7	23	.90	99	.05		2.35		.09	1	1
L20N 3+00W L20N 2+50W	1		14			8		1293		<2	<5	<2	3	20	.3	<2	<2	60		.116	12	24		139	.07		2,80	.01	.09	<1	3
L20N 2+00W	20	35			< 1	8		435		<2	<5	<2	4	37.	.4	<2	<2	59		.098	10	24	.86	137	.04		2.10	.01	.09	<1	1
L20N 1+50W	1		/ 11			12		829		<2	<5	<2	2	20	.4	<2	<2	54	. 24	.062	12	23	.92	103	.05	<2	2.23	.01	.08	<1	3
													_				_		••		47		-00	114	.05	-3	2.14	01	.07	<1	2
L20N 1+00W	1		12			13		675		<2	<5	<2	3	22	7	<2	<2	54 55		.042 .043	13 13	22 24		119	.05	_	2.15		.07	<1	_
- RE L20N 1+00W	1	37		112		13		680		2		<2	2	21	1.0	<2 <2	<2 <2	61		.072	12	24		120	.06		3.03		.08	<1	
LZON 0+50W	<1		v 13			12		952		2	<5 <5	<2 <2	3 3	15 15	.6 .4	2	₹ 2	62		064	14	23		122	.06	_	3.44		.07	<1	
LZON 0+00W	1	43	-:	128		13		711 548		5 5		<2	3		.6	5	<2			.060	19	20		128	.06	_	2.23		.07	<1	3_
L18N 10+00W	1	38	. 8	ΑĐ	- <.1	11	12	740	2,02	,	~,	٠.	•	-		•	_	-		,											
L18N 9+50W	1	40	· 4	93	- <.1	12	15	530	4.27	4	<5	<2	3			3	8	53		.089	10	20			.06		2.03		.08	<1	_
L18N 9+00W	<1	34	7	101	2	20	13	514	3.40	<2		<2	2			3	<2			.082		20		90	.05		1.80	.01	.08	1 <1	_
L18N 8+50W	1	43	. 6	133	~ <.1	15		658		2		<2	4			<2	5			.095	15	22		112 110			2.81		.08	<1	
L18N 8+00M	<1	_		109				1019		2		<2	2			<2	<2 <2			.085	10 9	18 17					1.92		.06	1	3
118N 7+50W	1	`21	۶ ۶	89	1	7	14	763	3.42	<2	<5	<2	3	20	.3	<2	*2	22	, 10	.003	7	17	./0	103	.03	~_	1.72			'	-
L18H 7+00W	١.	32	. a	102	_ 1	10	15	662	3.76	4	<5	<2	3	20	.6	<2	<2	53	.21	.108	11	18	.68	108	.06	<2	2.41	.01	.07	<1	
L18N 6+50W			11					630		<2	_	<2				2	<2	54		.103	9	18	. 63	101	.07		2.24		.06	<1	
L18N 6+00W	1		15					530		4	<5	<2		25		<2	<2	56		.108		17		103	.07		2.24		.06	<1	
L18H 5+50W	i	35		115				734		7	<5	<2				2				.106					.06		1.95		.07		
L18N 5+00W	1	54	√ 9	104	<.1	17	18	9 07	4.22	<2	<5	<2	3	35	.5	<2	<2	58	.49	.058	20	26	.99	120	.06	<2	2.22	.01	.08	1	5
1								,,,	7 00		J#		. م	30	.8	4	< 2	58	71	3 .074	10	20	.98	87	.06	<2	1.82	.01	.07	<1	4
L18N 4+50W	1		/ 8		ر.> ~. إ				3.91	≺2 4		<2 <2								.099							2.44		.08		
L18N 4+00W	1 1		√ 13 √ 10					641	4.46	4			_				_			2 .061							2.14		.09		6
L18N 3+50W]		✓ 10 ✓ 11		1.≻ ⊶ د				4.44	10										4 .044					.07		4.28		.09	<1	4
L18N 3+00W			1 × 11		2.7				3.66		_									.055					.07		2.81		. 05	<1	8
LIGH C+3UW	'										_	•																^=	4-		
STANDARD C/AU-S	20	59	38	129	6.9	74	33	1042	3.96	41	18	7	37	52	18.6	15	17	60	.5	1 .094	40	62	.92	182	.08	53	1.88	.07	.15	15	5 48

Page 7


SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Ço	Нn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Ĉr	Mg	Ba	Ti	B	AL	Na	ĸ	CHE ARAL	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	*	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	×	X	ppm	ppm	×	ppm	×	ppm	*	×	×	ppm	ppb
L18N 2+00W	1	65 -	10	99 -	2	12	14	917	4.00	5	<5	<2	4	50	1.4	<2	<2	66	.70	.087	20	18	1,12	114	.05	2	3.31	.01	-09	1	2
L18N 1+50₩	1			517		15		881		<2	<5	<2	3		3.5	<2	<2			.051	21			120	.08			.01		<1	4
L18N 1+00W	1			245		15		1615		<2	₹5	<2	3	25	.8	<2	<2			.114	14		.99	154	.06				.10	<1	30
L18N 0+50W L18N 0+00W	1			134 - 123 -		15 13		1142 ·		4 <2	<5 <5	<2 <2	4	26 30	.5 .8	<2 <2	- 5 <2	70		.085	15 13		1.19	137 154	.05			.01	.11 .09	্ব ব	4 2
LIGH O.COM	•	2037	1-7	123	• • •	1.5	17	1107	•.07	```	13	`~	•	30	.0	~2	~2	"	40	.067	13	20	.04	174	.06	4 ,	3.81	-01	.09		
L16N 10+00W	1			129		9		1010		8	<5	<2	<2	27	.8	3	5	56	.28	.127	10	20	.70	116	.06	<2	2.25	.01	.07	<1	1
L16N 9+50W	1		14	142		10		936		<2	<5	<2	3	44	.7	5	3	61		.044	28	23	.74	147	.07		2.47		.09	<1	4
L16N 9+00W	<1		- 8		· <.1	11		798		8	<5	<2	3	32	.4	3	<2			.071	14		1.03	62	.06			.01	.09	<1	25
L16N 8+50W L16N 8+00W	1	× 24	/ 15 11		· .1	17		499		3	<5 <5	<2 -2	2	45	.4	<2	9	60		.106	13		.92	157	.06		2.33		.09	<1	16
FION GADOM	•	` 24	, 11	O.) .	. 1	9	12	714	>.11	<2	45	<2	5	52	1.0	<2	<2	59	.27	.142	17	16	-64	215	.09	< Z .	2.13	.02	.09	<1	4
L16N 7+50W	1	42	14	94 -	<.1	17	17	635	4.62	4	<5	<2	5	38	.7	<2	2	63	.32	.087	16	21	1.10	98	.08	<2	2.26	.01	.07	<1	2
L16N 7+00W	3			113		16		574		3	<5	<2	8	22	.3	<2	3	64		.137	19	18	.69	99	.11	<2 .	2.93	.01	.07	<1	5 /
L16N 6+50W	3	44				21		575		<2	<5	<2	6	27	.2	<2	<2	68		. 157	16		.97	106	.06		2.80	.01	.07	<1	4
L16N 6+00W	7			51		8		623		5	< 5	<2	11	36	.3	<2	<2			.166	67		1.17		.05			.01	.08	<1	8
L16N 5+50W	2	81 *	14	141 -	1	19	17	940	•./0	<\$	<5	<2	4	38	.5	<2	<2	60	.52	.083	53	21	.78	174	.07	2	3.32	.02	.09	<1	3
L16N 5+00W	1	50 -	12	169 -	~<.1	16	17	747	4.40	7	≺5	<2	3	32	.7	<2	<2	66	.32	.121	14	21	.79	130	.09	<2	2.62	.02	.07	<1	3
L16N 4+50W	1			126		20	20	690 ·	4.60	6	<5	<2	2	36	.9	<2	3			. 121	14	22	.86	123	.08			.01	.09	<1	1
116N 4+00W	<1			118		17		713		5	<5	<2	2	33	.5	3	<2			.120	11	22	.93	102	.07	<2 .	2.24	.01	.10	2	6
L16N 3+50W	1		10			14		702		6	< <u>5</u>	<2	<2	28	.5	5	5	59		.081	10	55		116	.08		2.47		.10	<1	< 1
~L16N 3+00W	<1	20.	•	136	**1	11	14	696	5.99	<2	<5	<2	3	36	.5	<2	<2	65	.38	.055	13	23	.82	126	.09	2 .	2.50	.01	.09	1	9
RE L16N 3+00W	1	59 \	/ 10	138	·<.1	13	14	711	4.10	4	<5	<2	2	36	<.2	<2	<2	68	.38	.056	14	23	.83	133	.09	<2	2.53	.01	.08	1	8
L16N 2+50W	<1			135~		12	14	694	3.90	2	<5	<2	<2	33	.5	2	<2	64	.41	.064	13	22	.79	-	.08		2.58	.01	.09	1	10
L16N 2+00W	1			126		15		656		7	<5	<2	<2	36	.6	<2	3			.044	13	22	.98	88	.07		2.05	.01	.07	<1	10
116N 1+50W	1			166		19		998		7	<5	<2	Z	30	-4	<2	<2	66		.087	17	24			.06		2.74		.12	<1	2
L16N 1+00W	<1	O 1 \	10	170	~ < . 1	16	14	996	4.14	2	<5	<2	3	27	.3	<2	3	66	.29	.079	15	26	.96	129	.06	<2	2.73	<.01	.10	<1	1
L16N 0+50W	<1	45 -	12	110	1	16	12	806	3.86	10	<5	<2	2	29	.2	6	<2	63	.35	.067	14	23	.98	91	.06	<2	2.28	<.01	.08	<1	4
L16N 0+00W	<1			130 -		14		775		6	<5	<2	<2	29	.3	<2	<2	61		.076	11	24	.88	108	.07			.01	.08	<1	10
L14N 10+00W	1			117		15		570		8	<5	<2	3	24	.4	5	<2	55		.056	9	18	.62		.08		1.82		.07	<1	3=
L14N 9+50W] 1			106		12		561		5	<5	<2	4	24	<.2	<2	7	60		.071	17		.74		.10		2.53		.09	<1	6
L14N 9+00W	<1	35	8	78-	<.1	11	12	578	5.82	3	<5	<2	2	33	<.2	<2	₹2	63	. 33	.033	10	23	1.10	67	.07	<2	2.03	.01	.10	<1	2 ·
1.14N 8+50W	<1	75 •	/ 11	90 -	. <.1	17	18	965	4.67	6	<5	<2	3	42	.6	<2	10	72	.58	.091	19	33	1.51	85	.08	۷	2.90	.01	.13	<1	5∕
114N 8+00W	<1	39	/ 9	105 -	1	16	15	648	3.79	ž	<5	<2	3	34	.7	9	3	60		.087	13	23	.93	170	.09		2.71	.01		सं	3-
L14N 7+50W	<1			124~		14		647		6	5	<2	2		<.2	4	9	55	.32	.124	9	19		101	.09			.01		<1	Ž-
L14N 7+00W	<1			101		13		778		8	<5	<2	3			<2	7	60		.095	17		1.20	78	.07		2.00	.02		<1	5 -
L14N 6+50W	1	71	· 20	132-	· <.1	17	14	953	4.45	7	<5	<2	2	46	.4	<2	<2	64	.65	.091	20	30	1.15	108	.06	4	2.13	.06	.13	<1	8-
STANDARD C/AU-5	19	59	39	123	6.8	72	32	1037	3.96	39	22	6	37	52	18.4	14	22	60	.51	.095	۷0	63	.91	197	ŊŔ	77	1 88	07	.16	14	50
								. 7-7					٠,٠	76	.0.7	14		- 00	100	. 473		02	.71	103	.00	33	1.00	.07	110	14	70

AA MALYTICAL

SAMPLE#	Мо	Çu	Pb ppm	Zn ppm	-	Ni ppm	Co	Mn ppm		As ppm				Sr.			Bi ppm	V ppm	Ca %	P %		Dicina Cr	Mg %	Ba ppm	Ti %	ppm 8	Al %	Na %	K X	bbw A	Au* ppb
L14N 6+00W L14N 5+50W L14N 5+00W L14N 4+50W L14N 4+00W	1 1 1 2	36 33	5 7 6	115 140 118 183 157	1 2 - <.1	11 12 14 18 13	12 12 19	586 691 569 830 814	3.36 3.52 4.83	3 5 5 4 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	4 3 2 4 <2	33 28 33 31 34	.3 <.2 .3 .2	<2	<2 <2 <2 <2 <2 <2	55 57 65	.35 .35 .31	.043 .116 .050 .114 .079	15 10 13 13 16	23 24 23	1.01 .76 .85 .86 .83	124 89 147		<2 <2	1.66 2.08 1.89 2.97 2.61	.03 .01 .02	.10 .14 .10	1 <1 <1 <1 <1	4 - 4 - 4 - 21 = 7
L14N 3+50W L14N 3+00W L14N 2+50W L14N 2+00W A L14N 2+00W B	1 1 1 <1 <1	55 39	13 6 10	145 - 123 - 219 - 113 - 186 -	4	13 13 14 11 12	12 13 12	604 662 908 606 781	3.58 3.90 3.51	<2 5 4 <2 5	<5 <5	<2 <2 <2	2 3	28	.2 .5 .4	<2 <2	<2 <2 <2 <2 <2	60 61 56	.33 .28 .32	.041 .044 .113 .084 .139	16 11 13 11 12	22 23	.71 .89 .81 .81		.08 .07 .07	<2 <2 3	1.95 1.86 3.11 1.76 2.17	.01 .02 .01	.10 .14 .08	<1 <1 <1 <1 <1	7/ 3/ 14/ 5/
L14N 1+50W L14N 1+00W L14N 0+50W L14N 0+00W L12N 10+00W	1 1 1 1 1	52 39 48	19		2	13 15 14 14 10	15 11 11	649 850 813 545 496	4.30 4.12 3.77	5 9 7 6 2	<5 <5 <5	<2 <2 <2	2 2 2	30 24 32	.2 .6 .4 .2 <.2	<2 <2 <2	<2 <2 <2 <2	67 65 63	.37 .28 .39	.074 .129 .154 .052 .047	11 12 17 12 11	21 19 26	.90 .83 .66 1.03 .93	159 121 44		2 <2 <2	1.91 2.19 2.09 1.74 1.70	.01 .01	.10	<1 <1 <1 <1 <1	2 / 10 / 8 / 3 /
RE L12N 10+00W L12N 9+50W L12N 9+00W L12N 8+50W L12N 8+00W	<1 <1 1 <1	37 30 27	/ 13 / <2 / 4 / <2 - 8	74 70 104	.1 1 - <.1 2 - <.1	8 16 12 13 9	13 13 11	609 540 540	3.55 3.65 3.55 3.23 2.88	5 <2 <2	<5 <5 <5	<2 <2 < 2	2 2	34 29	<.2 <.2 .2	<2	<2 <2 <2 <2 5	61 64 55	.39 .39 .33	.047 .058 .044 .046 .078	10 11 9 9	26 26	.94 1.01 .98 .94	74 57	.10 .07	<2 <2 <2	1.69 1.87 1.77 1.92 1.77	.01 .01 .01	.13 .10 .13	<1 <1 <1 <1 <1	4 / 1 / 2 4 3
L12N 7+50W L12N 7+00W L12N 6+50W L12N 6+00W L12N 5+50W	1 2 1 1 1	45 41 34	/ 7 < 12 / 11	109 70 117 76 149	1 2 1	15 12 10 11 13	13 11 10	857 641 547	3.89 4.11 3.40 3.37 3.87	6 3 <2	<5 <5	<2 <2	3 2 <2	39 35 37	<.2 <.2	5 <2	<2 <2	51 54	.57 .41 .38	.091 .087 .077 .058	18 17 14 13 12	25 22 24	1.02 1.00 .81 .83 .79	74 84 40		<2 <2 <2	1.86 1.73 1.61 1.56 2.30	.02 .01 .01	.10 .13 .13	<1	7 / 5 23 / 3 / 1 /
L12N 5+00W L12N 4+50W L12N 4+00W L12N 3+50W L12N 3+00W	1 1 1 <1 1	47 50 43	2 11 2 11 2 2	192 201 121 101 117	3 2 2	14 16 17	15 11 16	880 769 653	4.26 3.68 4.09 4.19 3.76	6 13 6	<5 <5	<2 <2 <2	2 3 2	27 49 34	.5 .2 .7	4 2 5	4 <2	58 74 71	.30 .51	.090 .084 .068 .058	15 11 16 13 13	22 26 35	.86 .71 .84 1.14 1.04	151 127 103	.08 .11	<2 <2 <2	2.66 2.28 2.41 1.97 1.88	.02 .02 .01	. 10 . 12	<1 <1 <1	10
L12N 2+50W L12N 2+00W L12N 1+50W L12N 1+00W L12N 0+50W	<1 1 1	36 61 39	/ 9 / <2 / 11	199 118 89 131	3 2 3	8 15 10	13 13 9	1016 624 705	3.96 4.07 3.79 3.06 3.80	6 11 5	<5 <5 <5	<2 <2 <2	3 <2 4	42 36 16	.4. 4.2	3 3 <2	2 <2 <2	57 63 51	.40 .42 .14	.220 .136 .133 .085 .164	14 11 7	19 21 20	.88 .59	144 181 119 154 208	.06 .06	<2 <2 <2	2.41 2.14 1.94 3.04 2.85	.03 .01 .02	. 10 . 07	<1 <1 <1	5 / 48 / 26 /
STANDARD C/AU-S	19		_				33	1043	3.96	5 41	15	- 6	37	52	18,9	14	21	60	.49	.094	40	62	.92	188	.08	35	1.88	,07	. 16	13	53

Page 9

ACME AMALTTICAL																															
SAMPLE#	Mo	Cu ppm	Pb	Zn ppm	Ag ppm	N i ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm v	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Tí %	ppm 8	AL %	Na %	X X		Au* ppb
		<u></u>							•									40	77	.079	13	21	.93	185	.06	<2	2.49	.01	.10	<1	5
12N 0+00W	1	152 *		116		8		644		5	<5	<2	4		<.2	3	9	69 54		.124	11	20	.63	140	.09		2.26	.02	.09	2	1.
.10N 10+00W	1	33 ′		167		8	11	695		4	<5	<2	3	28	.3	_	_	68		.091	12		1,08	73	.10		1.86		.13	<1	3
.10N 9+50W	1	36			< .1	10		640		<2	<5	<2	3	44	<.2	<2	8				10		.92	74	.10		1.75	.01		<1	1
L10N 9+00W	<1		/ 5			10		586		4	<5	<2	3	37		<2	4	60		.057		24	.90	68	.08		1.72		.07	< 1	5
10N 8+50W	<1	30	7	77	· <.1	5	11	496	3.51	6	6	<2	2	30	<.2	<2	3	61	.32	.040	8	24	.90	00	.00	~_	1.72	-101			_
10N 8+00W	<1	` 25 <i>-</i>	<2	50-	∕ ≺.1	10	13	547	3.49	5	<5	<2	5		<.2	4	7	69	-	.053	11		1.07	74	.14		1.88	.01		<1 -1	<1 <1
E L10N 8+00W	_1_	- 26	/	51	`≺.1	⁻ 10	13	550	3.52	5	<5	<2	5	66	<.2	<2	<2	70		.051	11	_	1.07	72	.14		1.85	.01	.10	<1	
10N 7+50W			9			14	13	738	4.11	<2	6	<2	3	44	<.2	<2	4	73	.49	.059	13		1.25	86	.09	-	2.31	.01	. 14	<1	2
10N 7+00W	1	33	· 3	107	<.1	18	8	457	3.30	<2	<5	<2	<2	36	<.2	<2	<2	55	.37	.053	12		.85	87	. 10		1.88		.12	<1	2
L10N 6+50W		\24			<.1	9		589		5	<5	<2	<2	41	<.2	<2	5	58	.49	.045	10	29	1.08	53	.10	4	1.71	.01	.12	<1	88
		90	. 7	107	1	11	12	569	. 17	4	<5	~2	3	45	<.2	3	<2	71	.50	.056	20	27	1.26	49	-07	5	1.99	<.01	.09	<1	13
L10N 6+00W			· 7					650		3	-> <5	<2	3			<2	<2	68		.088	13	29	1,08	93	.09	4	2.07	.01	. 11	<1	7
10N 5+50W	<1	42			- < 1	13		603		3	<5	₹2	4		<.2	\$	3	64		.051	15	27		92	.08	<2	2.02	.01	.09	<1	5
L10N 5+00W	<1	53	_		1.	12					<5	₹2	<2		₹.2	4	5	61		.101	11	23	.91	103	.07		1.96		.10	1	9
L10N 4+50W	<1	42		129		11		612		5	<5	·2	<2		٠.2	<2	3	61		.086	12	25	.92	119	.08		2.10		.10	<1	4
L10N 4+00W A	1	38	7	145	~ <. 1	11	15	776	3.83	4	۲)	*2	12	32	٦.٤	``	,	01	,31	.000	'-		•/-			_			•		_
10N 4+00W B	<1	`25	· 12	273	× .3	12	12	1368	3.41	5	<5	<2	3		<.2	3	3	56		.148	10	21		171	.07	_	2.26		.11	<1 <1	1
10N 3+50W	1	36	′ 8	122	1	12	11	606	3.67	6	<5		3			3	<2	61		.063	10	24	.87	103	.08		1.75		.09	-	
L10N 3+00W	1	42	. 12	151	٠. 1	15	15	740	4.04	5	<5	<2	3	32	< .2	7	2	66		.091	12	28	.85	118	.08		2.00		.08	<1	_
L10N 2+50W	1 1	66	- 9	125	1	15	14	847	4.11	6	5	<2	4	26	<.2	3	2	65		.054	15	25	.86	113	.08		1.89		.08	<1	
L10N 2+00W	1	30	/ 12	152	<.1	13	15	1494	3.97	3	<5	<2	<2	47	.3	5	7	60	.58	. 192	12	22	.80	219	.07	<2	2.22	.02	. 14	<1	ı
L10N 1+50W	3	169	√ g	67.	~<.1	15	26	590	5-24	4	<5	<2	2	44	<.2	<2	8	93	.50	.100	14	31	.87	66	.08	2	1.73		. 12	<1	
	;	42	_		1	14		637		5	< 5	₹2	3		<.2	<2	<2	66	.41	.066	14	33	.91	60	.07	. 5	1.62	.01	. 15	1	- 4
L10N 1+00W	1 4		7		-	19		1393		7	5		3			2	<2		-	.118	22	38	1.36	117	.07	9	2.36	.03	.17	1	2
L10N 0+50W	.4	32			· `.ż			705		ż	< 5		3			3	_			.076	13	30	.84	106	.09	4	1.76	.02	. 19	<1	
L10N 0+00W	<1							615		7			ž			ž	<2	71		.066	11						2.46		.11	<1	
L8N 10+00W	<1	97	✓ 5	97	∽≺.1	23	20	013	4.09	,	13	~2	_	ى د	٠.٤	-		• • •	.42		• • •	٠,		-							
L8N 9+50W	1	57	v 4	117	1	14		694		10	<5		2			5	<2	73		.045	23		1.09			_	2.36				
L8N 9+00W	<1	37	′ <2	345	2			887		8	6					2				.076			1.15								
L8N 8+50W	1	62	-/ 9	67	1	24	31	1108	5.46	5	<5									.065			2.35				2.99				
L&N 8+00W	1 <1	45	✓ 3	62	1	9	13	511	3.60	<2	7									.042			.94				1.88				
L8N 7+50W	<1	26	· <2	109	2. ~	14	10	385	3.39	<2	<5	<2	3	26	<.2	5	<2	58	. 29	.060	9	26	.71	83	.08	5 3	1.60	.01	,11	<1	
L8N 7+00W	1	` 22	- 6	62	1	9	۰	412	3.20	3	5	<2	3	38	≺.2	3	4	63	.45	.041	10	25	.80	58	.10			_01			
L8N 6+50W	<1	30	_		- 2			510		5	_	<2	_				8	59	.44	.055	12	25	.77	72	.08		1.64		.10		-
	1		· 3		.2			759		8	7									.134						7 <2	2.19	.01	.09	<1	-
L8N 6+00W	1 <1		-		.2			373		6										.058							1.42		.08	<1	1
L8N 5+50W	1	`25	, –	-				473		5		₹2								.065							1.78			<1	1
L8N 5+00W	1	34	' 5	90	.1	16	10	4/3	3.42	-	_	_	_			_	_														
STANDARD C/AU-S	19	57	70	14.1	6.8	68	32	1032	3 06	42	16	. 6	34	51	18.0	14	19	62	.51	.094	40	60	91	190	.08	3 33	1.88	.07	. 15	17	25

Page 10

ACME ANALYTI

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cđ	Sb	Βī	٧	Ca	P	La	Çг	Mg	Ba	Ti	8	Αl	Na	K	W	
	bbw	þþm	ppm	bbw	ppm	ppm	bbu	bbu	*	ppm	ppm	bbw	bbw	bbw	ppm	bbw	ppm	ppm	*	X	ppm	ppm	74	ppm	7.	ppm	7.		%	ppm	ppb
L8N 4+50W	1	47 -	13	103 1	`<.1	19	15	1011 3	3.86	9	<5	<2	3	34	.5	<2	3	66	.41	. 126	16	29	.92	119	.10	4 2	.19	.01	.11	1	2
L8N 4+00W	<1	46	. 8		<.1	12	13	781	3.92	6	<5	<2	2	33	.4	<2	7	63	.39	.062	18	29	.98	96	.09	2 1	. 95	<.01	. 13	<1	3
L8N 3+50W	2	26	6	56 -	<.1	5	12	494	3.02	4	<5	<2	5	43	<.2	5	<2	50	.34	.051	17	14	.73	69	.03	3 1	.63	<.01	.10	<1	57
L8N 3+00W	1	33	10	98	1	13	13	703 3	3.70	7	<5	<2	3	35	.3	3	2	66	.44	.071	11	31	1.07	96	.09	2 1	. 83	.01	. 13	<1	4
L8N 2+50W	2	33	. 9	141 -	-4	15	12	895	3.50	3	<5	<2	3	54	.4	8	3	53	.74	.041	13	25	.85	150	- 10	3 2	.48	.03	.10	<1	2
RE L8N 2+50W	2	33 -	- 13	-136	.2	17	12	888 3	3.58	2	<5	<2	<2	53	.7	4	<2	53	.74	.040	13	26	.86	138	.10	5 2	.52	.02	.10	<1	7
L8N 2+00W	1	29	13	75	. 1	12	12	564	3.75	7	<5	<2	2	38	.4	7	3	74	.49	.067	10	34	.84	53	. 10	2 1	.68	.02	.10	2	3
L8N 1+50W	3	63	17	96	3	14	13	881	4.28	<2	<5	<2	2	61	.3	<2	<2	65	.83	.039	23	32	1.00	184	.08	<2 2	.62	.02	.11	<1	4
L8N 1+00W	2	40	12	79	<.1	16	15	938 3	3.94	11	<5	<2	<2	54	.6	5	10	65	74	.034	18	32	.96	150	.09	2 2	. 23	.01	.17	<1	3
L8N 0+50W	2	29	10	71	<.1	15	14	636	3.83	3	<5	<2	2	51	.5	<2	9	66	.70	.017	19	30	.98	161	.09	2 2	2.21	.02	.13	<1	6
L8N 0+00W	1	27	10	102 -	1	16	15	672	3.70	8	< 5	<2	2	29	.3	2	3	57	.39	.072	14	27	.92	118	.06	3 1	.81	.01	.16	<1	1
STANDARD C/AU-S	22	62	42	128	7.5	72	32	1078 4	4.09	41	24	7	41	53	19.1	14	22	62	-51	.095	42	62	.92	190	.09	34 1	94	.07	.17	14	49

Page 11

ACRE AMALYTICAL		
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** P ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	bbp bbp
91618 91619 91620 91621 91622	 1 157 16 6 < .1 7 167 604 17.19 < 2 < 5 < 2 5 43 .8 < 2 7 51 .74 .119 9 4 2.75 7 .12 < 2 2.29<.01 .01 < 1 11 1 8 < 2 9 < .1 25 9 434 3.99 6 < 5 < 2 3 73 .7 < 2 < 2 65 1.10 .154 10 29 2.96 7 .18 < 2 2.56 .03 .03 < 1 15 4 4 2 < 1 < .1 9 3 84 1.41 2 < 5 < 2 7 6 < .2 < 2 < 2 9 .04 .023 21 8 .46 10 < .01 < 2 .57 .06 .10 < 1 <	3 3 3 3 3 3
RE 91622 STANDARD C/FA-100	1 7 <2 <1 <.1 8 12 112 3.80 <2 <5 <2 2 41 .3 <2 9 57 .71 .159 7 7 1.55 13 .26 3 1.26 .05 .10 <1 3 os 19 59 38 123 7.0 71 31 1052 3.96 44 18 7 38 53 19.4 14 21 60 .49 .096 40 60 .93 184 .08 32 1.88 .07 .16 15 50	3 3 53 51

Sample type: ROCK. Samples beginning 'RE' are duplicate samples.

AU** PT** & PD** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANQUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

WHOLE ROCK _JP ANALYSIS

Tom Lisle PROJECT R-1 File # 94-4193 Page 12 145 W. Rockland Road, North Vancouver BC V7N 2V8

SAMPLE#	Si02 Al203 Fe															
91623 RE 91623	69.83 16. 3 2 2	2.13 .69 2.11 .70	.42 5.79 3	2.01 .67 2.10 .67	.16 .15	.02 <.002 .01 <.002	273 271	<10 11	206 204	248 251	19 20	10 11	6 6	1.9 2.0	100.05 99.53	

.200 GRAM SAMPLES ARE FUSED WITH 1.2 GRAM OF LIBO2 AND ARE DISSOLVED IN 100 MLS 5% HNO3. Ba IS SUM AS BASO4 AND OTHER METALS ARE SUM AS OXIDES.

Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: P1-P10 SOIL P11-P12 ROCK

DATE RECEIVED: NOV 18 1994 DATE REPORT MAILED: NOV 25/94

......D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

GSM-19T

Instruction Manual

teeraphus

TERRAPLUS INC.,

52 West Beaver Creek Road, Unit 14,

Richmond Hill, Ontario L48 119 (Canada)

Telephone: (416) 764-5505 Fax: (416) 764-9329

GEM Systems Inc.

52 West Beaver Creek Rd. Unit 14 Richmond Hill, Ontario Canada L4B 1L9

Phone: (905) 764-8008 Fax: (905) 764-9329

1. THEORETICAL DESCRIPTION

1.1 Introduction

The GSM-19T is a portable standard proton magnetometer/gradiometer designed for handheld or base station use for geophysical, geotechnical, or archaeological exploration, long term magnetic field monitoring at Magnetic Observatories, volcanological and seismic research, etc. The GSM-19T is a secondary standard for measurement of the Earth's magnetic field, having O.2 nT resolution, and 1 nT absolute accuracy over its full temperature range.

The GSM-19T is a microprocessor based instrument with storing capabilities. Large memory storage is available (up to 2 Mbytes). Synchronized operation between hand held and base station units is possible, and the corrections for diurnal variations of magnetic field are done automatically. The results of measurement are made available in serial form (RS-232-C interface) for collection by data acquisition systems, terminals or computers. Both on-line and post-operation transfers are possible.

The measurement of two magnetic fields for determination of gradient is done concurrently with strict control of measuring intervals. The result is a high quality gradient reading, independent of diurnal variations of magnetic field.

Optionally the addition of a VLF sensor for combined magnetometer/gradiometer-VLF measurement is available.

1.2 Magnetic Field Measurement

The magnetic field measuring process consists of the following steps:

- a) **Polarization.** A strong DC current is passed through the sensor creating polarization of a proton-rich fluid in the sensor.
- b) Deflection. A short pulse deflects the proton magnetization into the plane of precession.
- c) Pause. The pause allows the electrical transients to die off, leaving a slowly decaying proton precession signal above the noise level.
- d) **Counting.** The proton Precession frequency is measured and converted into magnetic field units.
- e) Storage. The results are stored in memory together with date, time, and coordinates of measurement. In base station mode, only the time and total field are stored.

Page 1

1.3 Earth's Magnetic Field

Appendix B shows the nominal distribution of the Earth's magnetic field, with dotted lines separating the equatorial and polar regions. In polar regions the inclination of the magnetic field vector is approximately vertical, while in equatorial regions it is horizontal. To obtain the best precession signal the sensor must be aligned with the magnetic field. In polar regions the sensor axis must be horizontal, in equatorial vertical. Horizontal orientation of the sensor can be universal if the operator keeps the sensor oriented in an East-West direction (important only in equatorial regions).

Magnetic field direction should ideally be perpendicular to sensor axis

Initially, the tuning of the instrument should agree with the nominal value of the magnetic field shown for the particular region in Appendix

B. After each reading the instrument will tune itself automatically. If large changes in magnetic field are encountered between successive readings, a warning will be given to the operator and it may be necessary to repeat the reading to obtain an accurate result.

Local ferromagnetic objects like screws, pocket knives, wristwatches, tools etc. may impair the quality of measurement or in drastic cases even destroy the proton precession signal by creating excessive gradients. For best results, **ferromagnetic objects should be kept away from** the sensor. In normal applications, the magnetometer console does not produce appreciable effects on measurements provided that the sensor is installed on the staff and kept at least at arms length from the operator and the console.

2.1 Magnetometer / Gradiometer

Sensitivity:

+/- 0.2 nT (gamma), magnetic field and gradient.

Accuracy:

+/- 1 nT over operating range.

Range:

18,000 to 120,000 nT, automatic tuning requiring initial set-up.

Gradient Tolerance:

Over 7,000 nT/m

Operating interval:

3 seconds minimum. Readings initiated from keyboard, external

trigger, or carriage return via RS-232-C.

Input/Output:

6 pin weatherproof connector, RS-232C, and (optional) analog

output.

Power Requirements:

12 V, 730 mA peak (during polarization), 30 mA standby. 1500mA

peak in gradiometer mode.

Power Source:

Internal 12 V, 1.9 Ah sealed lead-acid battery standard, others op-

tional. An External 12V power source can also be used.

Battery Charger:

Input: 110/220 VAC, 50/60 Hz and/or 12 VDC (optional).

Output: 12V dual level charging.

Operating Ranges:

Temperature: -40 °C to +60 °C.

Battery Voltage: 10.0 V minimum to 15V maximum.

Humidity: up to 90% relative, non condensing.

Storage Temperature:

-70°C to +65°C

Dimensions:

Console: 223 x 69 x 240mm. Sensor staff: 4 x 450mm sections.

Sensor: 170 x 71mm dia.

Weight: Console 2.1kg, Staff 0.9kg, Sensors 1.1kg each.

2.2 VLF

Frequency Range:

15 - 30.0 kHz.

Parameters Measured:

Vertical In-phase and Out-of-phase components as percentage of

total field.

2 components of horizontal field. Absolute amplitude of total field.

Resolution:

0.1%.

Number of Stations:

Up to 3 at a time.

Storage:

Automatic with: time, coordinates, magnetic field/gradient, slope,

EM field, frequency, in- and out-of-phase vertical, and both horizon-

tal components for each selected station.

Terrain Slope Range:

0° - 90° (entered manually).

Sensor Dimensions:

14 x 15 x 9 cm. (5.5 x 6 x 3 inches).

Sensor Weight:

1.0 kg (2.2 lb).

3. INSTRUMENT DESCRIPTION

3.1 Physical Overview

The parts of the GSM-19T magnetometer/gradiometer are as follows.

- The sensor is a dual coil type designed to reduce noise and improve gradient tolerance. The coils are electrostatically shielded and contain a proton rich liquid in a pyrex bottle.
- The sensor cable is coaxial, typically RG-58/U, up to 100m long.
- The staff is made of strong aluminum tubing sections (plastic staff optional). This construction allows for a selection of sensor elevations above ground during surveys. For best precision the full staff length should be used. Recommended sensor separation in gradiometer mode is one staff section (56cm from sensor axis to sensor axis), although two or more sections are sometimes used for maximum sensitivity.
- The console contains all the electronic circuitry. It has a 16 key keyboard, a 4 x 20 character alphanumeric display, and sensor and power/input/output connectors. The keyboard also serves as an ON-OFF switch.
- The power/input/output connector also serves as R\$232C input/output and optionally as analog output and/or contact closure triggering input.
- The keyboard, front panel, and connectors are sealed i. e. the instrument can operate under rainy conditions.
- The charger has 2 levels of charging, full and trickle, switching automatically from one to another. Input is normally 110V 50/60Hz. Optionally, 12 VDC input can be provided.
- · The all-metal housing of the console guarantees excellent EMI protection.

3.2 Software Version 4.0

There are several major versions of software for the GSM-19. As of August 92, GEM Systems added a major software upgrade to its GSM-19 family, enhancing its capabilities. This new generation of software (version 4.0) has the following advantages.

- 1. Diurnal correction (reduction) with interpolation can be used in conjunction with other GSM-19 models with software version 4.0. This allows the base mag to run with longer cycle time. Previous software could do interpolation only with fast GSM-19 types.
- 2. Memory filing system. Now 50 files can be stored in a directory, and mode of operation can be changed without erasing memory. With the software previous to version 4.0, only 1 file could be retained in memory, and this would be lost when modes of operation were switched.
- 3. Line and station numbers have been enlarged. Lines can now be 5 digits as opposed to 4 digits in previous software. Station numbers are now 7 digits as opposed to 6 in the previous software.
- 4. Transmission time has been significantly shortened.

Determining your instrument's software version

There are several visible indications that can be checked to determine if the GSM-19 has Version 4.0 software installed. Upon turning on the unit, if Version 4.0 software is present the third line of the display will indicate **v4.0**. Otherwise just the date of the software will be shown. Furthermore, from the main menu, **B-diurn.cor** is displayed in version 4.0 units. **B-reduction** is displayed in previous software version units. Finally, the header for every RS-232C transmission will have a v4.0 indicator and a file name.

Files

A new file will be opened in the following cases:

- 1. New file programmed by user.
- 2. Survey on a new day will automatically create a new file.
- 3. A base restart will automatically create a new file.
- 4. After the erase function is performed.

Note: The walking mag or grad has further modifications. See section 4.5 under the Walking Mag Mode subheading.

4245 EAST HASTINGS STREET

BURNABY, B.C. V5C 2J5

TELEPHONE: 291-1617

SABRE MODEL 27 VLF-EM RECEIVER

The Model 27 EM unit was designed originally for a large Canadian mining company to overcome the deficiencies inherent in existing units.

The instrument is so stable and selective that completely reliable measurements can be made on distant stations without interference from nearby powerful transmitters. Stability and selectivity are especially important when making field-strength measurements, which are now being emphasized as a means of locating conductors.

This EM receiver is very compact, requires no earphones or loudspeakers and is housed in a heavy scotch saddle leather case. All of these features add up to make an ideal one-man EM unit of unexcelled electrical performance and mechanical ruggedness.

SPECIFICATIONS

Source of Primary Field - VLF radio stations (12 to 24 KHz.)

Number of Stations - 4, selected by switch; Cutler, Maine on 17.8 KHz.

and Seattle, Washington on 18.6 KHz. are standard, leaving 2 other stations that can be selected by the user.

Types of Measurement

- 1. Dip angle in degrees, read on a meter-type inclinometer with a range of $^{+}_{-60}$ ° and an accuracy of $^{+}_{-\frac{1}{2}}$ °.
- 2. Field strength, read on a meter and a precision digital dial with an accuracy exceeding 1%.
- 3. Out of phase component, read on the field strength meter as a residual reading when measuring the dip angle.

Dimensions and Weight

Approximately $9\frac{1}{2}$ " x $2\frac{1}{2}$ " x $8\frac{1}{2}$ "; Weighs 5 lbs.

Batteries

8 alkaline penlite cells. The instrument will run continuously on 1 set of batteries for over 200 hours; so that in normal on-off use, the batteries will last all season. The battery condition under load is shown by pushing a button and reading voltage on the field strength meter.

VLF-EM OPERATING INSTRUCTIONS

The equipment is operated in the usual way as follows:

- 1) With the instrument held horizontal in front of you, turn around until a null appears on the field strength meter. You should now be facing the station.
- 2) With the receiver still facing the station, lift it to the vertical position and rotate it slightly in the vertical plane to your right or left until the best null appears on the field strength meter.

 Record the angle on the inclinometer at which the null appears.

 This is the DIP ANGLE (Positive or Negative).
- 3) Return the instrument to the horizontal plane and turn around until the field strength meter is at its maximum reading. Set this maximum reading at 100 on the meter and record the reading on the gain control dial. This is the Field Strength Reading.
- 4. Repeat steps 1, 2, and 3 at each station.
- 5) To test the batteries turn the power switch on and push the test button. The field strength meter should read above the red mark. Battery life is approximately 200 hours and if the instrument is turned off between readings, the batteries should last for an entire season.

NOTE: An alternative way of measuring field strength is as follows:

Proceed as in step 3, setting the meter to 100. Now push the field strength button (marked FS) and the meter will read 50. (If it doesn't, adjust the gain control slightly). Leave the Gain Control setting where it is and take comparative Field Strength readings at each station by pressing the Field Strength button and recording the meter reading, which will vary from its Base Station Reading as you pass over the conductive zones.

This is the method used in Part 2 of this book entitled: "DETAILED FIELD PROCEDURE".

SELECTION OF STATIONS:

The stations are selected by the switch on the control panel, with the following abbreviations being used:

C = Cutler, Maine Frequency = 17.8 Khz.
S = Seattle, Wash. Frequency = 18.6 Khz.
A = Annapolis, Md. Frequency = 21.4 Khz.
H = Hawaii Frequency = 23.4 Khz.

The two most useful stations are Cutler and Seattle and these will be used almost exclusively. Note that Seattle is off the air for several hours on Thursday for maintenance (between 10 A.M. and 2 P.M. usually). Cutler is off the air for the same length of time every Friday.

If Equipment fails to operate:

- (a) Check that station is transmitting (see above). If one station appears to be dead, check another one to see if it is operating normally.
- (b) Check batteries. If they are low or the reading begins to drop after the test button is held down for a few seconds, replace them. Note also that there are 8 batteries in the instrument and they cannot be individually checked by the test button. If the batteries have been in the unit for a long time it is possible that one is dead or very weak but that the total voltage indicated by the test button is near normal. It is cheap insurance to instal new batteries before starting a big survey.
- (c) If unit still fails to operate check that battery connectors are tight, then check wiring of battery connectors for breaks or damage.

PART 2: DETAILED FIELD PROCEDURE

OPERATING INSTRUCTIONS

SABRE VLF-EM RECEIVER

INTRODUCTION:

The VLF-EM method utilizes electromagnetic fields transmitted from radio stations in the 15-25 KHz range. The signals are propagated with the magnetic component of the field being horizontal in undisturbed areas.

Conductivity contrasts in the earth create secondary fields, producing a vertical component and changes in the field strength or amplitude. These conductive areas may be located, and to a degree, evaluated by measuring the various parameters of this electromagnetic field.

The Sabre VLF-EM receiver is tuned to receive any 4 transmitter stations: usually C - Cutler, Maine; S - Seattle; H - Hawaii; and A - Annapolis.

The station used in the survey should be selected so that the direction of the signal is roughly perpendicular to the direction of the grid lines which, in turn, should be laid out perpendicular to the regional strike.

MEASUREMENTS:

The Sabre VLF-EM receiver can be used to measure the following characteristics of the VLF field:

- (a) Tilt angle of resultant field;
- (b) Field strength of (a) horizontal component of field;
 - (b) vertical component of field.

Field Procedure

The following procedure should be followed to measure the dip angle of null and the field strength of the horizontal component of the VLF field.

Initial Field Strength Adjustment

Adjust the gain control to provide a suitable relative field strength measurement, as follows:-

- (a) hold receiver in horizontal position (meter faces horizontal) and rotate in a horizontal plane until a null is indicated on the F.S. meter; rotate 90° in this horizontal plane (F.S. meter reads maximum)
 - (b) adjust gain control so that the F.S. meter reads 100
- (c) record gain control setting (000 to 999), and do not readjust unless a major field strength occurs.

The above procedure should be carried out at the beginning of each day's survey and checked during the day.

Dip Angle Measurement Procedure

- 1. Hold receiver in horizontal position and rotate in the horizontal plane until a null is observed. This aligns receiver in the field and the operator should be facing southerly or easterly depending on transmitter location.
- 2. Bring receiver up to the vertical positon (meter faces vertical) and rotate the receiver in the vertical plane perpendicular to the transmitter direction until a null or minimum reading is observed on the field strength meter.
- 3. Hold the receiver in this field strength null position and read the inclinometer in degrees. Record this dip angle of null along with sign (+ or -).

Horizontal Field Strength Measurement Procedure

- Return receiver to the horizontal position.
- 2. Re-establish null bearing in horizontal plane.
- 3. Rotate receiver 90° in the horizontal plane.
- 4. Depress F.S. push button switch and observe field strength meter reading for sufficient time to obtain an average F.S. meter reading. (Depressed F.S. switch slows needle action and reduces meter reading

by half. The reading will normally range around 50).

5. Record F.S. reading.

Filtering Technique For VLF-EM Dip Angle Data

The standard profile method of presenting dip angle data may be difficult to interpret. A filtering technique, described by D.C. Fraser, 1969 (Geophysics, Vol. 34, No. 6, p. 958-967) enables the data to be presented on a plan map with conductive areas defined by contours.

The following explains the calculation:-

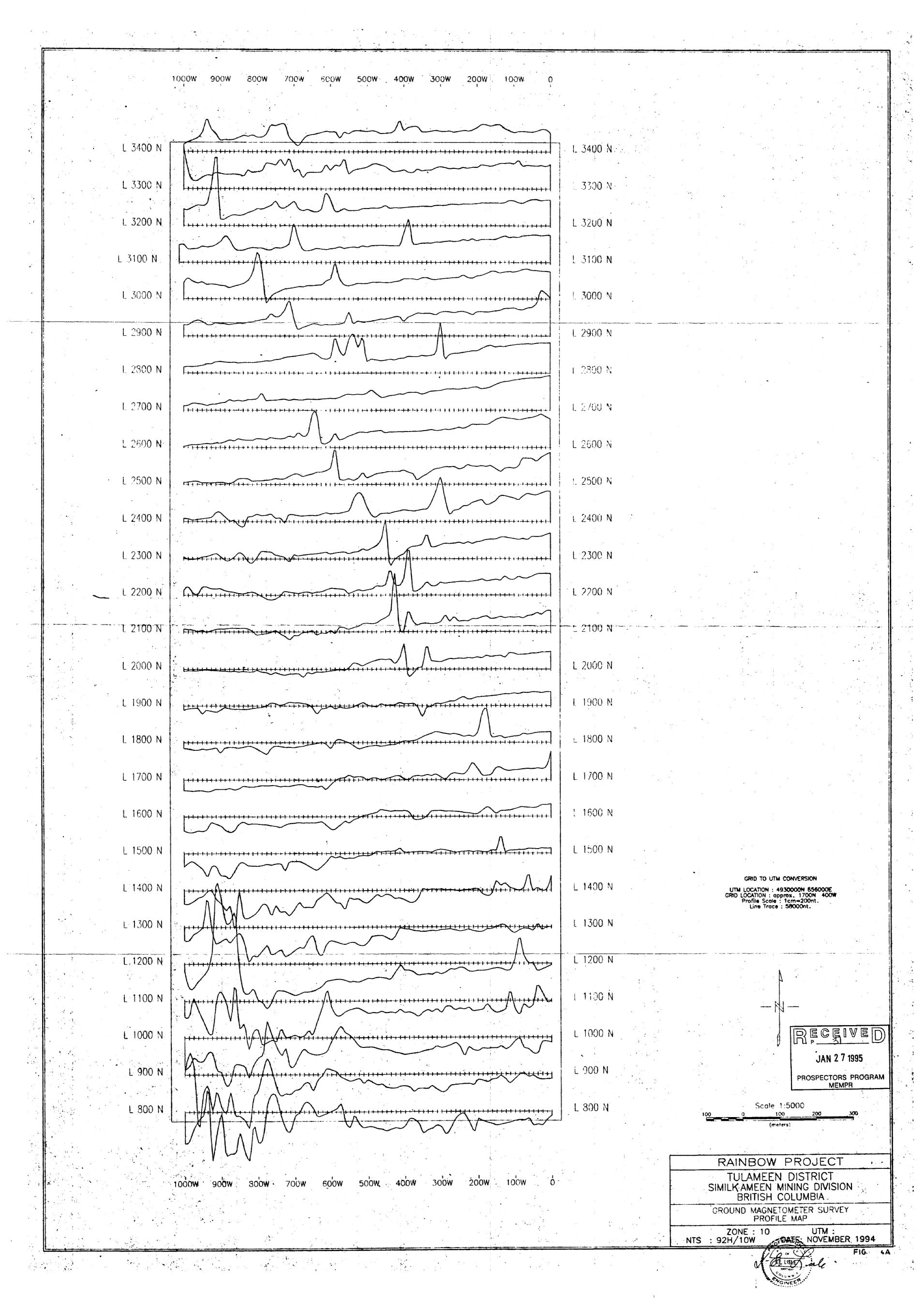
<u>Line</u> .	<u>Station</u>	<u>Null</u>	<u>Fil</u>	<u>te</u> r
<u>Line</u> 8N	0 E 1 E 2 E 3 E 4 E 5 E 6 E	+3 +4 +4 +6 +7 +9 +12	+3+4= +7 +4+4= +8 +4+6= +10 +13 +10-(+16)= +16 +21 +28	-3 -5 -6 -8 -12 +3
	7 E 8 E 9 E 10 E	+16 +2 -4 -10	+18 -2 -14 -16 > -14-(-7)=	+30 +32 +14 -7
	11 E 12 E	-6 -1	► -6-1= -7	•

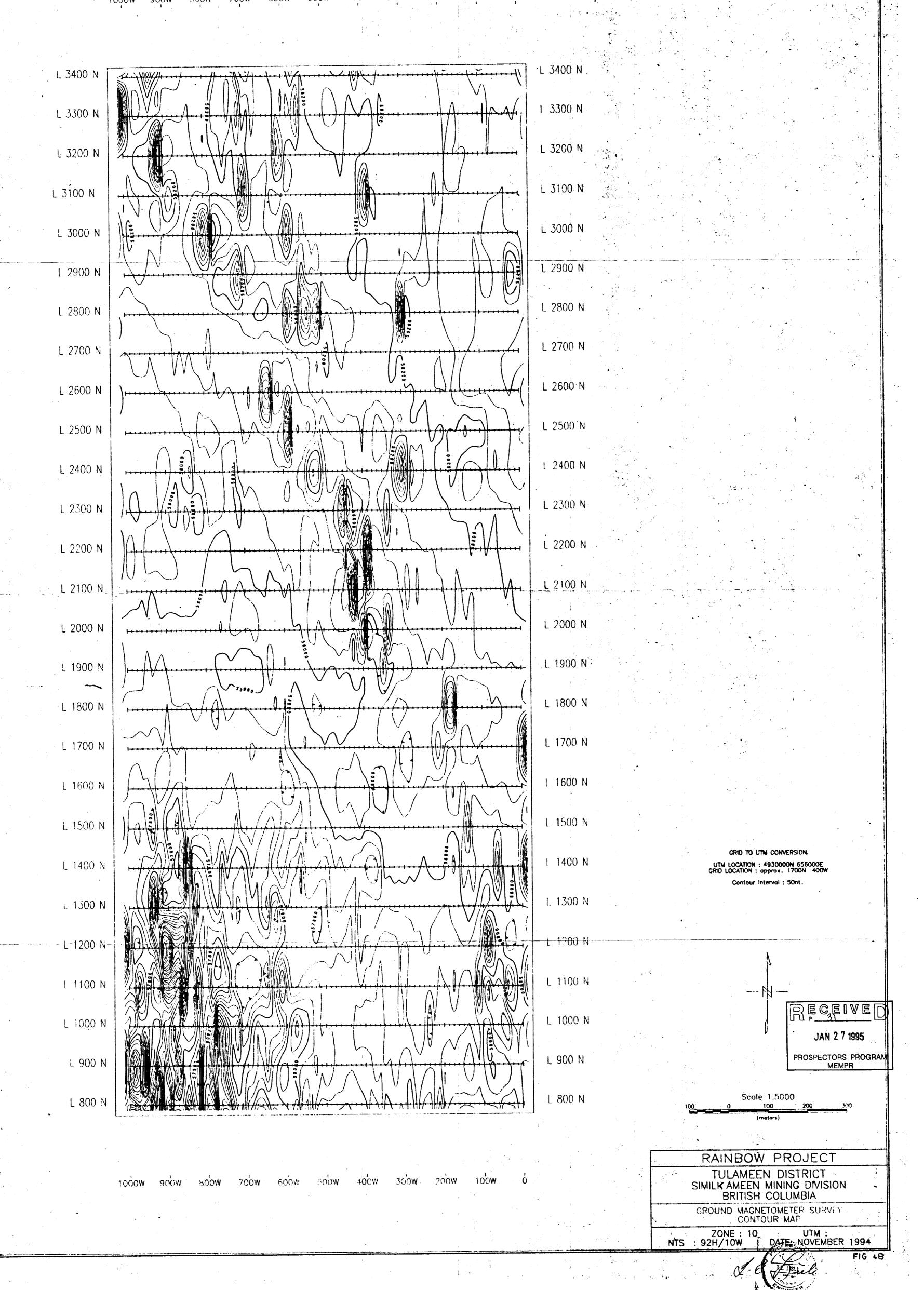
Figure 1 is an example of a field sheet showing null angle reading, filtered reading and relative field strength. Figure 2 shows the field sheet with filter card overlaid. The small window in the side of the card shows the four readings used to calculate the filtered reading, and an arrow showing that the filter reading is to be plotted between Station 8E and 9E as indicated in Figure 1. The card is moved down the field sheet, one reading at a time as a guide while carrying out the filter procedure. Throughout the survey care must be taken to ensure that the filtered data has the correct sign. The positive values only are plotted and contoured while for negative values, only the negative sign is plotted.

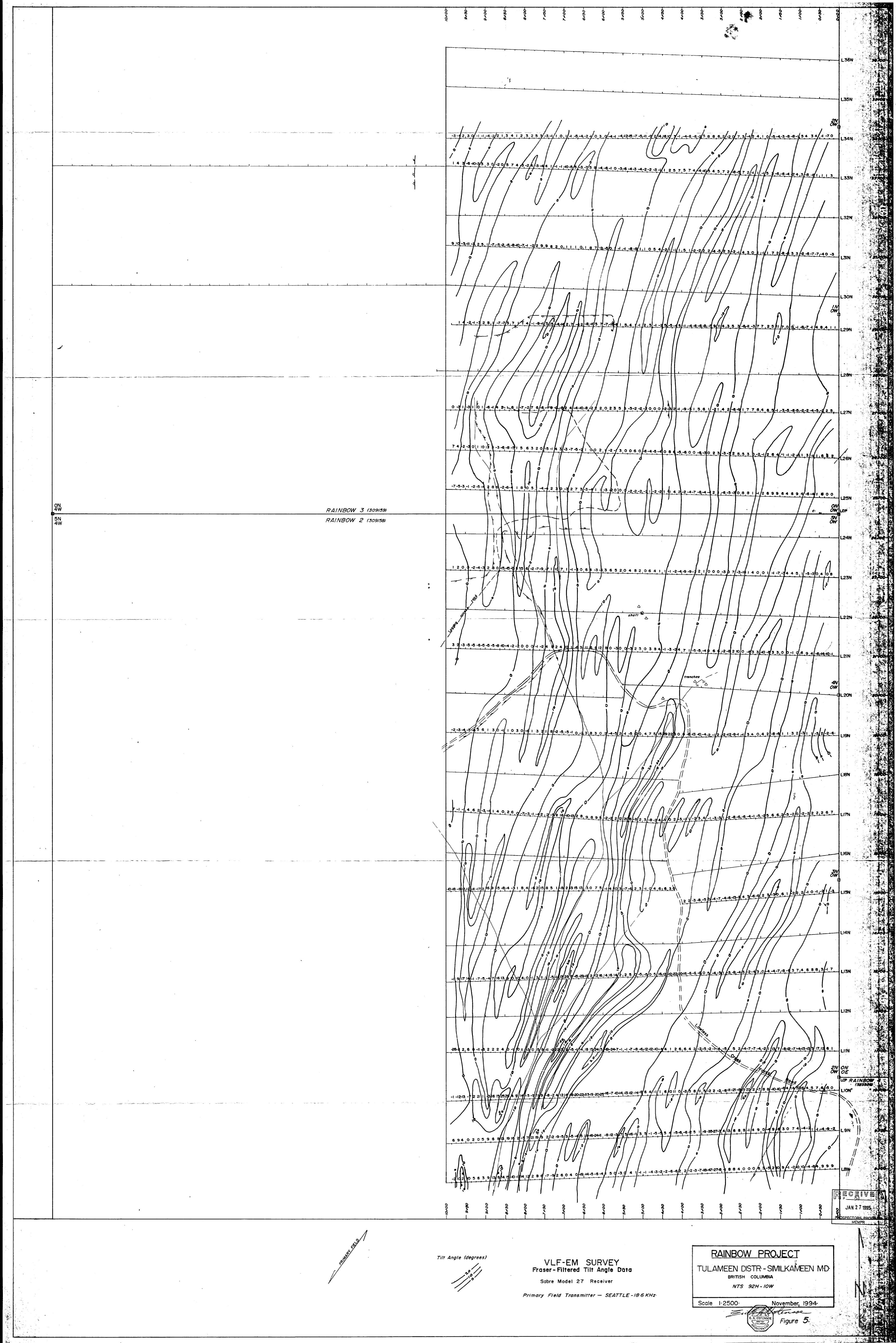
Crone suggests in instructions for the Radem VLF-EM, the use of N-S or E-W notation instead of (+ or -) signs, however, for filtering a sign must be substituted.

The following convention may be used to ensure the correct sign of filtered data and provide a consistent cross-over pattern when studying the profiled null angle data.

- 1. When taking a reading, <u>always</u> face southerly, on east-west lines, and always face easterly on north-south lines.
 - 2. Record data on field sheets (top to bottom) as follows:
 - on N-S lines record from south to north on E-W lines record from west to east.
- 3. Plot and profile dip angle data on plan maps facing map north or map west.


The above convention will provide correct data regardless of the property location relative to the transmitter being used.


Gain-	024 ^V	LF-EM SL	JRYEY	· 	-
PPOPERTY_ QPERATOR_	G.1.7:5.	_ TRANS _ INSTR.	SEATTLE SABRE		1
Line	Stn.	Holl	Filter	FS	The many
8 N	OE	¥ 3		50	
	1E	+4	3	50	-
	2.5	+4	=5	52	
	35	76	=6	52	-j
	4E	≠7	8	52	
	5E	+9	-/2-	52	7
- 	6 E	+12	+3	53	
	7E	+16	+30	60	
	8 €	+2	-+32-	65	XOYER
—— ·—,— ·—.	9 €	-4	+ 14	62	
	10 E	-/0	-2	50	
	118	-6	18	48	
	/2 E	-/	-14-	48	
	/3€	+2	6	50	
	145	+4		<u>52</u>	··
	15 E	+4	-+6	<u>50</u>	
	16E	-4	-+/o-	<i>5</i> 5	Y OYER
	17E	- 2		55	
	/8 E	-	=2	. <u>50</u>	
	19 E	+/		· · · ·	
	AUE	-/			<u></u>
		·· <u>[</u>			
-(·			· ·
			- 		
	·				
	-:				
·					
<u> </u>	<u>-</u>	_ <u></u>		<u> </u>	


Fig. 1 Example of Field Sheet

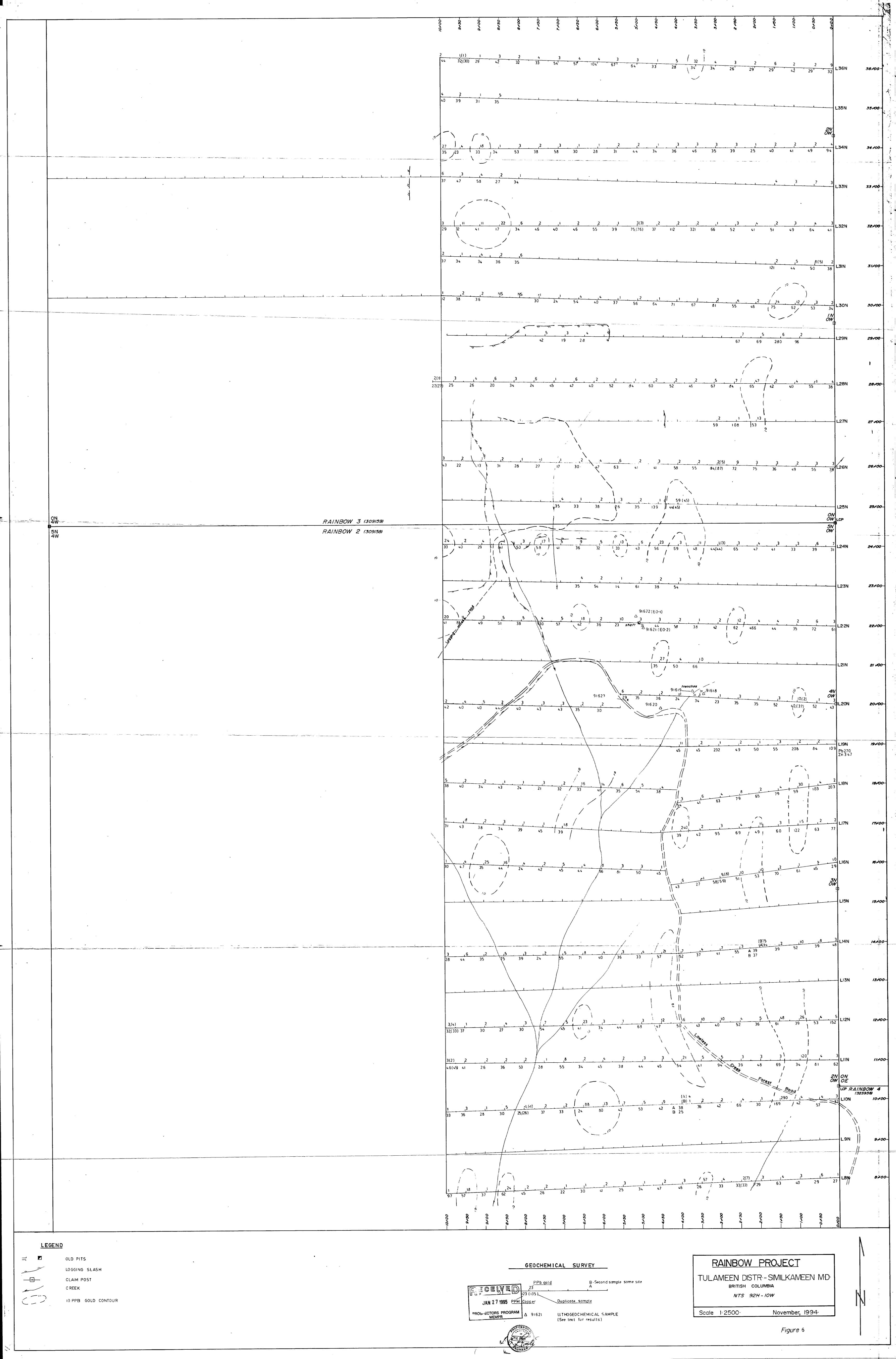

	Gain-0	24 VLF-EM SUR	YEY	· · · · · · · · · · · · · · · · · · ·
	PPOPERTY G.	/.J.S. TRANS INSTR.	Seattle Saure	PAGE /. DATE MAY 9/24
			Filter	F. S.
	<u> </u>		. 	50
			3	50
FILTER	CARD		5	52
		- -	6	. 52
			8	52
			-/2	52
			+3	53
·	+ a	+16	+·30-	-60
SISCRED PERSON	(c + b	+2	-+32	65
(a+b) - (C+d)	- C	4	+14	.62
	- a.	-/0	-7	50
(+16+2) -(-4+)(-	(10)		18	48
(+18) - (-14)	= +32			48
			6	50
			_=/	50.
			+6	50
			- 7-10	55
			+/	55
			-2	50
			<u></u>	
			<u> </u>	
			} ···	
		<u> </u>	ļ. 	
	<u> </u>		- -	
	-			
	-		 	
·	<u> </u>		<u> </u>	<u> </u>

Fig. 2 Field Sheet with Filter Card Overlayed

