# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-13NAME:ERIK OSTENSOE

#### GEOCHEMICAL AND GEOPHYSICAL

# REPORT

#### ON THE

# **RAINBOW 2 AND 3 MINERAL CLAIMS**

Tulameen District - Similkameen Mining Division British Columbia 49°34′ → 120°50′

NTS 92H/10W

Field Work Performed: October 16, 1994 to November 16, 1994.

Office Work Performed:

November 17, 1994 to January 15, 1995.

by

T.E. Lisle, P. Eng. and E. A. Ostensoe, P. Geo.

January 15, 1995.

| RECEIVED                     |
|------------------------------|
| JAN 27 1995                  |
| PROSPECTORS PROGRAM<br>MEMPR |

# CONTENTS

| page |
|------|
|------|

| 1. INTRODUCTION                                                                                          | 1  |
|----------------------------------------------------------------------------------------------------------|----|
| 2. LOCATION AND ACCESS                                                                                   | 2  |
| 3. PROPERTY                                                                                              | 2  |
| 4. CLIMATE, TOPOGRAPHY AND VEGETATION                                                                    | 2  |
| 5. HISTORY                                                                                               | 5  |
| 6. 1994 WORK PROGRAM                                                                                     | 5  |
| 7. REGIONAL SETTING                                                                                      | 6  |
| 8. GEOLOGY OF THE RAINBOW CLAIMS                                                                         | 8  |
| 9. MAGNETIC SURVEY                                                                                       | 9  |
| 10. VLF-EM SURVEY                                                                                        | 10 |
| 11. GEOCHEMISTRY                                                                                         | 11 |
| 12. CONCLUSIONS                                                                                          | 13 |
| 13. RECOMMENDATIONS                                                                                      | 13 |
| 14. REFERENCES                                                                                           | 14 |
| <ul> <li>15. PERSONNEL</li> <li>(a) T. E. Lisle, P. Eng.</li> <li>(b) E. A. Ostensoe, P. Geo.</li> </ul> | 15 |
| 16. STATEMENT OF EXPENDITURES                                                                            | 16 |
| 17. APPENDICES                                                                                           | 17 |

# **ILLUSTRATIONS**

|                                                                            | page           |
|----------------------------------------------------------------------------|----------------|
| FIGURE 1. Location Map - Rainbow Claims                                    | 3              |
| FIGURE 2. Claim Map                                                        | 4              |
| FIGURE 3. Regional Geology                                                 | 7              |
| FIGURE 4 (a) Ground Magnetometer Survey - Profile Map<br>(b) - Contour Map | in pocket<br>" |
| FIGURE 5. VLF-EM Survey - Fraser Filtered Tilt Angle Data                  | н              |
| FIGURE 6. Geochemical Survey                                               | **             |

.

ĺ.

# TABLES

| TABLE 1. | Rainbow Claims                | 2 |
|----------|-------------------------------|---|
| TABLE 2. | Work - Proposed and Completed | 6 |

#### 1. INTRODUCTION

The authors submitted, in May, 1994, a proposal to the Prospectors Assistance Program, British Columbia Ministry of Energy, Mines and Petroleum Resources, for partial funding of a limited exploration program of the Rainbow claims, Tulameen district, Similkameen Mining Division, B.C.

The proposal included preparation of 23.3 kilometres of grid lines, 32 line kilometres of geological, magnetic and electromagnetic surveys, and the collection and analysis of 640 soil samples and 100 rock samples. The estimated cost of the combined program was \$27,679.20. The authors wish to acknowledge with thanks the assistance of grants received that funded a significant part of the cost of their work.

The authors, in the period October 16, 1994 to November 16, 1994, completed a large part of the proposed program of work. Unusually early and heavy snowfalls in the project area, combined with time and budget constraints, frustrated geological mapping and caused elimination of parts of the electromagnetic survey.

This report describes exploration work completed with the help of the 1994 Prospectors Assistance Program funding. All technical observations are presented and are discussed in the report Several maps have been prepared and various appendices contain the basic data. Some interpretation has been attempted and suggestions for additional work are included.

#### 2. LOCATION AND ACCESS

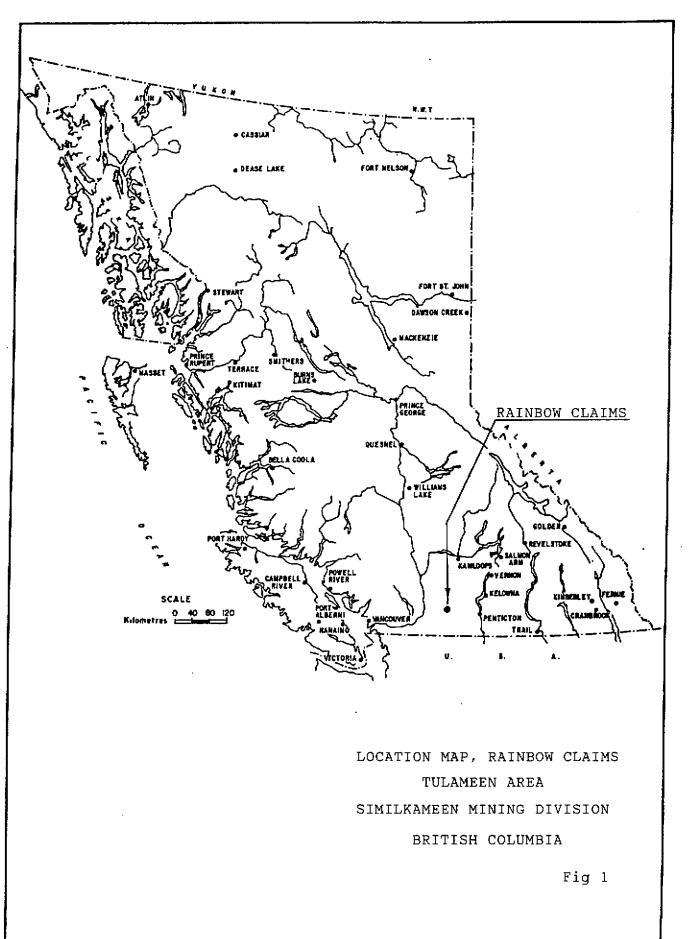
The Rainbow claims lie on the north slope of the Tulameen River valley six to ten kilometres west and northwest of the village of Tulameen in southcentral British Columbia (Figures 1 and 2). Geographic coordinates are 49° 43' north and 120°50' west and NTS sheet is 92H/10W.

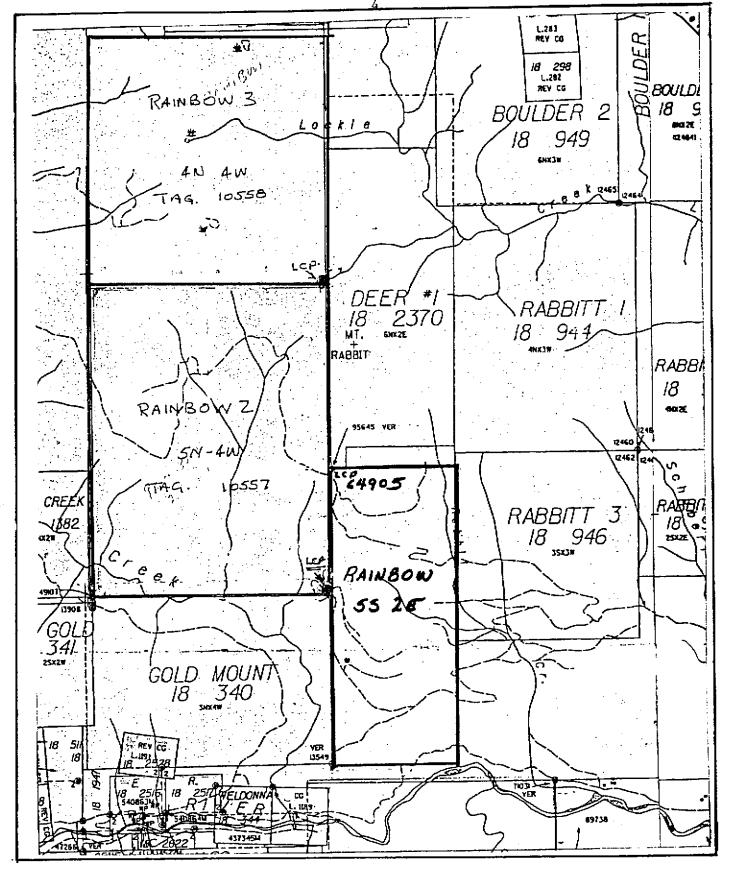
Elevations are between 840 metres asl at Tulameen River and 1646 metres asl in the central part of Rainbow 3 claim. Terrain is relatively subdued but near Lawless Creek and its tributary streams, slopes are steep.

Access to the claims is by the Lawless Creek Forest Service road that passes from the Coquihalla Highway easterly toTulameen and by the Princeton to Tulameen paved road. A logging road along the north side of Tulameen River west of the town gives access to the south part of the Rainbow 4 claim. Roads have gravelled, all weather surfaces and are maintained throughout much of the year. The common claim line of the Rainbow 2 and Rainbow 3 claims crosses the Lawless Creek Forest Road about 8.1 km northwest of Tulameen.

#### **3. PROPERTY**

The Rainbow property comprises three claims with a total of 46 units (Table 1). They are located within the Similkameen Mining Division and are owned jointly by T. Lisle and E. Ostensoe (Figure 2).


| Claim Name | Units | Record No. Located Expi |               |               |
|------------|-------|-------------------------|---------------|---------------|
|            |       |                         |               |               |
| Rainbow 2  | 20    | 309158                  | May 6, 1992   | May 6, 1995   |
| Rainbow 3  | 16    | 309159                  | May 7, 1992   | May 7, 1995   |
| Rainbow 4  | 10    | 323956                  | March 1, 1994 | March 1, 1995 |


Table 1. Rainbow Claims.

#### 4. CLIMATE, TOPOGRAPHY AND VEGETATION

The climate in the Rainbow claims area is transitional between dry conditions of the southern Interior Plateau and wetter conditions of the Cascade Mountains. Summers are hot and dry and winters are cold with substantial snowfalls. More than one metre of snow fell in the project area in the period October 16 through November 16, 1994.

The Rainbow claims span elevations from the Tulameen River, about 900 metres asl, and the top of Boulder Mountain, about 1675 metres asl. North of the Lawless Creek forest road, the terrain is forested and topography is mostly gentle; the lower portion, south of that road, is steep and





RAINBOW PROJECT, CLAIM MAP. BRITISH COLUMBIA CLAIM MAP 92 H 056

Figure 2.

characterized by bluffs and canyons. Several small streams originate on Boulder Mountain and flow either southerly to Lawless Creek or easterly to Boulder Creek.

The upper parts of the area are forested with thick stands of spruce, fir, and balsam, and a few red cedar trees. Large yellow pine trees are present but not numerous on south facing parts of upper slopes. Large parts of the area north of the Lawless Creek forest road have been logged in recent years.

#### 5. HISTORY

The mining history of the Tulameen area is documented in numerous government publications and in more than 120 technical reports that have been filed as assessment work on mineral prospects in a 300 square kilometre area approximately centred on Tulameen.

The first comprehensive geological map of the Tulameen area was included in GSC Memoir 26, authored by Charles Camsell and issued in 1913. Camsell showed a small granitic stock intrusive into Nicola Group and dioritic rocks at Boulder Mountain.

Early prospectors were undoubtedly attracted to the Tulameen area by placer mining possibilities, particularly by discoveries of platinum in nearby streams and by production of large nuggets from Lawless and Boulder Creeks. A large gossaned alteration zone, now exposed by sidecuts along the Lawless Creek forest road, occurs along a substantial creek valley that passes through Rainbow 2 claim. Several small bedrock pits located north of the road were excavated many decades ago and expose local concentrations of pyrite and magnetite within the zone.

Geological and geochemical assessment work reports numbered 16016 and 17271 apply to parts of the Rainbow claims. A preliminary prospecting report by Lisle and Ostensoe in 1993 presents some information concerning the geology of the claims. Important background information may be obtained from these and other sources.

#### 6. 1994 WORK PROGRAM

The following work was completed on the Rainbow claim between October 16 and November 16, 1994:

|                                                | Rain     | bow 2     | Rain     | bow 3     |  |  |
|------------------------------------------------|----------|-----------|----------|-----------|--|--|
|                                                | Proposed | Completed | Proposed | Completed |  |  |
| Linecutting<br>(100 m lines -<br>25 m spacing) | 11.3 km  | 11.3 km   | 12.0 km  | 11.0 km   |  |  |

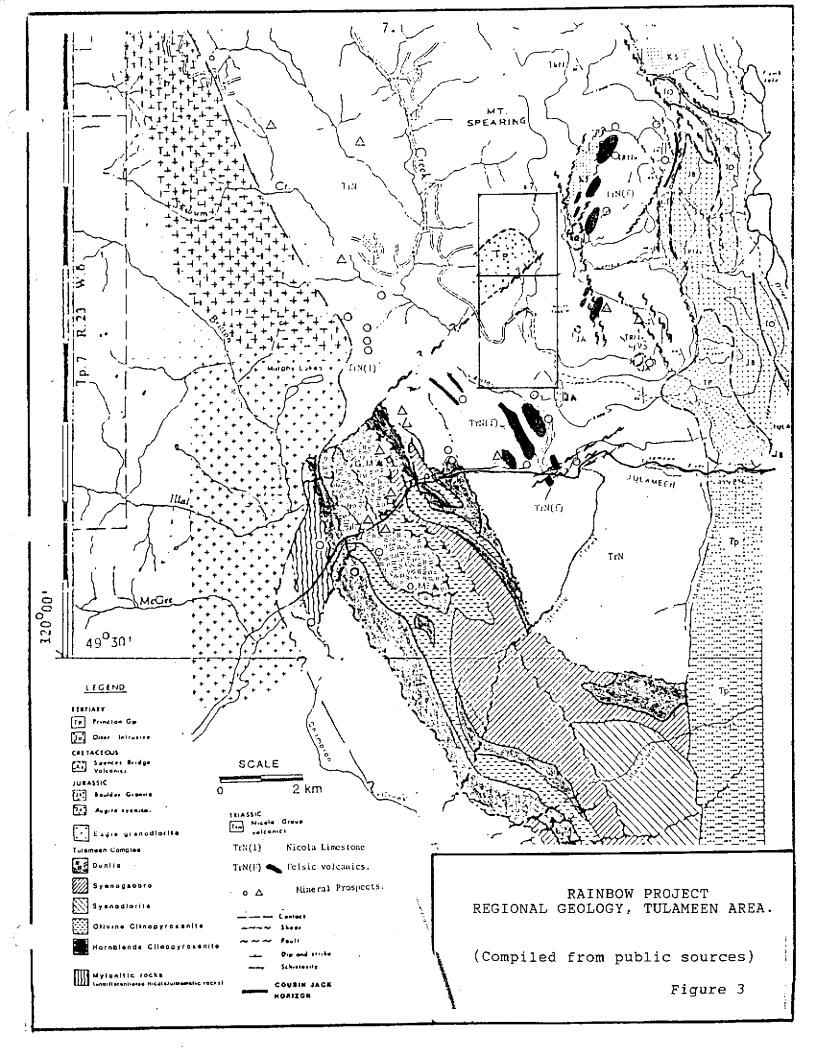
| Soil Geochemistry 340 359<br>* - 412 of 608 soil samples have been ana |         | 359*<br>n analysed. | 300`    | 249*    |
|------------------------------------------------------------------------|---------|---------------------|---------|---------|
| Rock Geochemistry                                                      | 50      | 6                   | 50      | 0       |
| Magnetic Survey                                                        | 17.0 km | 17.0 km             | 15.0 km | 10.0 km |
| VLF-EM Survey                                                          | 17.0 km | 10.0 km             | 15.0 km | 7.0 km  |
| Geological Survey                                                      | 17.0 km | 0                   | 15.0 km | 0       |
|                                                                        |         |                     |         |         |

Table 2. Work - Proposed and Completed

#### 7. REGIONAL SETTING

The Nicola Group in southern British Columbia is part of a linear northwesterly Cordilleran belt of volcanic and sedimentary rocks developed in an Upper Triassic island arc environment. The Groups is, at least in the Princeton-Merritt area, a westward younging assemblage comprising

a) an eastern belt of alkalic and calc-alkalic submarine volcanic rocks, lahar deposits, basaltic flows, and high-level syenitic stocks,


b) a central belt of alkalic and calc-alkalic subaerial and submarine assemblages of andesite, basalt and co-magmatic intrusions of diorite and syenite, and breccia, conglomerate and lahar deposits,

c) a western belt of calc-alkalic flow and pyroclastic rocks ranging in composition from andesite to rhyolite, with minor interbedded limestone, volcanic conglomerate, sandstone and argillite. This assemblage underlies much of the Tulameen area.

The Nicola Group rocks, west of Tulameen, are bounded on the west by the Eagle Granodiorite, a syntectonic intrusion of apparent Upper Jurassic age. The contact area is marked by an amphibolitic zone. Both the Nicola and Eagle rocks dip westerly along a regionally developed northwest foliation. Figure 3 illustrates some features of the regional geology near the Lawless Creek area.

Several small intrusions are present in the Tulameen area, including Late Traissic to Early Jurassic granites and the Tulameen ultramatic complex of apparent Late Triassic age (Nixon, 1988). Tertiary-age granite stocks, particularly the Otter Granite, are important relatively young plutons.

All of the older rock units are disrupted by northeast faults of mid-Tertiary age that mark significant right-lateral and vertical displacement. One such fault is believed to form the northern



boundary of the Tulameen ultramafic complex at Grasshopper Mountain a few kilometres southwest of the Rainbow claims and to trend northeasterly through the Rainbow. Regional evidence suggests that rocks on the north side of the fault are offset four kilometres northeasterly.

Nicola Group volcanic rocks and related intrusions are hosts to world-class copper-gold porphyry deposits at Kamloops and Princeton, and copper-molybdenum porphyry deposits at Highland Valley, north of Merritt, and elsewhere in the Cordillera. The western belt of the Nicola Group embraces many mineral prospects in addition to the large Craigmont copper-iron deposit.

#### 8. GEOLOGY OF THE RAINBOW CLAIMS

The geology of the Tulameen area was described by C. Camsell in 1913 in GSC Memoir 26. He identified, within the current Rainbow 3 claim, a stock of Otter Granite intrusive into Nicola Group rocks, and to the south, a smaller augite syncite pluton.

The Otter Granite stock is of Early Tertiary age and is commonly medium grained and pink coloured. Composition varies from granite to, in a border phase, quartz diorite. Prospecting by the writers during 1992 (assessment report, 1993) revealed that it may have dimensions about 1.5 by 2.0 kilometres, that it is elongate northwesterly, and it is possibly truncated on its south side by a northeast fault. Enclosing rocks have been to variable degrees altered by siliceous potassic feldspar metasomatism.

Camsell noted the presence of a small elongated intrusion of augite syenite south of the Otter Granite. Rice (GSC Memoir 243, 1947) determined that this intrusion is of Late Triassic to Early Jurassic age, and that it includes some peridotite, pyroxenite and gabbroic phases. Details of the dimensions and composition of this body on the Rainbow claims have not been determined. It is known however to be dark grey-green, fine to medium grained, and dioritic and has been observed to be magnetically distinct from neighboring rock types.

East of the Otter Granite-type stock, a formation previously described as a breccia forms a persistent belt that trends north-northwesterly through much of the eastern part of the Rainbow survey grid. This unit is tuffaceous, locally cherty, and includes sections that contain beige to pink coloured fine-grained clasts up to 40 cms in diameter, as well as subordinate amounts of small mafic clasts. At 27+00N, 5+00W, it is well-bedded, strikes northwest and dips  $-72^{(-)}$  west. The writers believe that this breccia is similar to, possibly part of, a formation known to be present near sulphide mineral occurrences elsewhere on Boulder Mountain. Copper mineralization was noted near the east boundary of Rainbow 2 claim.

Prospecting by the writers during 1992 investigated a large pale coloured alteration zone situated between the Otter Granite-type complex on the west and the above-described breccia on the east. The zone is siliceous, weakly porphyritic, and exhibits strongly developed argillic (clay-sericite-pyrite) alteration. It is well exposed along the Lawless Creek Forest road at 19+50N, 3+50 to 5+50 W and in a logging slash at 25+00N, 5+00 to 6+00W. The presence of finely disseminated

sulphide grains, localized concentrations of coarse grained sulphides, and the weakly to vaguely expressed porphyritic textures are similar to, and suggest an affinity to, a series of mineralized porphyry dykes that is exposed elsewhere in the Princeton-Tulameen district. Old prospector's workings found at 20+00N, 3+50W and 22+00N, 5+00W explored limonitic, very highly altered zones with 10% pyrite and up to 5% magnetite. These workings occur within a distinct magnetic trend that is described in the following section of this report.

Parts of the Rainbow claims are underlain by andesitic to dacitic flows and fragmental rocks of the Nicola Group. A distinctive coarsely porphyritic andesite rock type also occurs in other parts of the Boulder Mountain-Rabbitt Mountain area.

A satisfactory more comprehensive discussion of the petrology, structure, alteration and mineralization of the Rainbow property cannot yet be presented. Detailed geological mapping was planned as part of the 1994 work program but was precluded by onset of winter conditions.

#### 9. MAGNETIC SURVEY

A magnetic survey was conducted over the Rainbow claim grid in the fall of 1994 using two GSM-19 (19-T) high sensitivity proton magnetometer/gradiometers equipped with inbuilt microprocessors and memory. The field instrument was synchronized with a similar unit that was set up in Tulameen as a base station.

The magnetometers were initially tuned to a total magnetic field intensity of 58,000 nT, appropriate for the survey area. Observations were taken at 12.5 metre intervals on all 100 metre spaced grid lines with the exception of lines 35+00N and 36+00N. Steve Lowe, geophysical technician, data processor and auto-cad operator, was given the Rainbow grid data and executed corrections and procedures to produce computer generated plan and profile presentations (Figures 4(a) and (b).

Technical data and specifications of the GSM-19 and 19T magnetometer systems are included in Appendix 2(a) of this report.

The results of the magnetic survey are summarized as follows:

1) Magnetic relief in the survey areas low and commonly within a range of 300 nT near 58,000 nT

- 2) Magnetic values tend to be slightly higher in the north and east parts of the grid relative to values observed elsewhere
- 3) The southwest corner of the grid, in particular lines 8+00N through 14+00N from about 5+00W to 10+00W, exhibits high magnetic relief (up to about 1100 nT) and is magnetically distinct from the balance of the grid
- 4) A series of narrow magnetic "highs", up to about 500 nT, form a conspicuous, but locally broken, north-northwesterly linear trend from the southeast to northwest corners of the grid.

This linear trend is locally flanked at distance about 200 metres to the east by a series of magnetic highs that are either isolated or are part of a weaker north-northeasterly linear trend.5) An overall northerly to northwesterly magnetic grain to the grid is emphasized by a small number of line to line responses of small amplitude, both positive and negative.

Preliminary interpretation of the magnetic data relative to 1992 prospecting and mapping, indicates that the magnetic response noted in 3) above is a reflection of the underlying dioritic unit. The cause of the north northwest linear magnetic texture is more obscure. That part of the grid between 20+00N and 24+00N may reflect pyrite-magnetite accumulations between the large felsic alteration zone to the west and the bedded clastic unit to the east A secondary linear magnetic feature between lines 28+00N and 34+00N is at least in part coincident with an eastern section of the Otter Granite member.

#### 10. VLF-EM SURVEY

A very low frequency electromagnetic survey was conducted over about two-thirds of the Rainbow property grid using a Sabre model 27 VLF-EM receiver.

The VLF-EM technique measures the field-strength of signals that are generated by distant very powerful radio transmitters. Variations in dip angle and field strength are recorded in the field, processed using the Fraser Filter method, plotted, and then interpreted in terms of conductivity contrasts. Conductive areas can be identified and related to geological features including structures and, possibly, mineralization. Results can be confused by conductive clay layers and by terrain effects. Faults and shear zones may produce anomalous data but only if conductivity is associated with them.

The Sabre model 27 VLF-EM instrument is a sensitive precise radio signal receiver. For purposes of the Rainbow grid survey the 18.6 Khz signal generated by a station near Seattle, Washington, was employed. The ideal station should be located so that the direction of the signal is approximately perpendicular to the direction of the grid lines. The Cutler, Maine and Annapolis, Maryland stations would also have been appropriate signal sources.

Two measurements were recorded in the field:

- 1) tilt angle of the resultant field, measured in degrees of tilt
- 2) field strength of the horizontal component of the VLF field

Tilt angle measurements were "Fraser Filtered", a process that enables data to be presented on a plan map and contoured. Instrument specifications and detailed field procedures are described in Appendix 2(b) of this report.

Figure 5 displays Fraser filtered tilt angle observations. Data have been extended between grid lines where appropriate and have been contoured where sufficient information is available. No overall electromagnetic pattern has been recognized but several trends have been identified. Better interpretation of data will be possible when the remaining grid lines have been surveyed.

#### **11. GEOCHEMISTRY**

Bedrock exposure in the Rainbow claims area varies greatly but, in general, outcrop distribution suggests that parts of the property have only shallow overburden cover, in the order of a metre or less. The east part of Rainbow 3 claim has few outcrops and along parts of the Lawless Creek Forest road some till deposits are obviously several metres deep.

Juvenile podzolic soils that prevail in most of the Rainbow area are developed on tills and colluvium deposits. Southwest of the Rainbow property, eutric bronisols are dominant in a plateau-like area and on gentle westerly slopes but both eutric bronisols and humo-ferric podsols are present on steep southerly slopes (Cook, Fletcher, 1994).

Soil samples were taken from the Rainbow claim grid as a means of investigating the distribution of metal values in the underlying bedrock. The samplers recorded the soil characteristics at the time of sample collection (Appendix 1). Where topography is subdued, soil horizons are well developed in the till and the depth of overlying 'A' horizon soils varies from about 10 cm to in excess of one metre. 'B' horizon soils are generally less than 40 cms deep, are reddish brown coloured, and include 10 to 20% gravel-sized fragments and a few cobble-sized clasts. 'B' soils may rest directly on bedrock but more commonly overlie 'C' soils that are pale to yellow-brown with highly variable amounts of clay, silt, sand and clast content. Soil horizon development is rudimentary on steeper terrain where active colluvium or till and colluvium deposits prevail.

The intent of the soil sampling program was to sample the lower 'C' horizon. The practical limit of our sampling tools and methods was about 1 metre and if the 'C' was not encountered then the deepest available soil was sampled. Samples were taken from pits (average depth about 0.5 m) that were dug at 50 metre intervals along the grid lines. Soils were placed in standard kraft soil envelopes. Details of colour, depth, horizon were recorded, along with estimates of clay, silt, sand and fragment contents on sample sheets that comprise Appendix 1(a).

All soil samples were air dried and then transported to Vancouver, B. C. Four hundred and twelve soil samples, up to the time of this report, were submitted to Acme Analytical Laboratories Ltd. for drying and screening, followed by geochemical analysis for gold by acid leach and atomic absorption methods and for 30 other elements by induced coupled plasma determination. Five rock samples, collected from old prospecting workings on lines 20+00N and 22+00N, were analyzed for the same elements plus platinum and palladium. One rock sample was analysed by whole rock ICP methods. Analytical data is contained in Appendix 1(b) of this report. One

hundred and ninety-eight soil samples have been placed in temporary storage and will be analysed when funds are available for that purpose.

The results of the analyses for five of the elements of particular interest to us, gold, silver, copper, lead and zinc, are summarized herewith:

| Element | No. of Samples | Range of Contents              | Remarks                   |
|---------|----------------|--------------------------------|---------------------------|
| Gold    | 412            | $\leq 1$ to 290 ppb            | 44 samples $\geq 10$ ppb  |
| Silver  | 412            | ≤0.1 <i>to</i> 0.70 <i>ppm</i> | 17 samples≥ 0.30 ppm      |
| Copper  | 412            | ≤1 <i>to</i> 466 <i>ppm</i>    | 15 samples $\geq$ 100 ppm |
| Lead    | 412            | ≤ 2 <i>to</i> 270 <i>ppm</i>   | 5 samples≥ 20 <i>ppm</i>  |
| Zinc    | 412            | 6 to 517 ppm                   | 8 samples≥ 200 <i>ppm</i> |

Contouring, due to wide line spacing and gaps in analytical information, is not practical. The data does not permit much line to line correlation of possibly anomalous metal values but does indicate that some areas of the grid are anomalous.

The strongest clustering of anomalous gold-copper-zinc values occurs in the southeast section of the grid from about 10+00N to 20+00N. The higher responses are located near north to northwest trending magnetic features. The grid section 24+00N, 4+00W to 34+00N, 0+00W contains several soils anomalous in copper and gold and increasingly to the northeast, zinc. Anomalous copper and zinc analyses appear to be related to eastern parts of the grid that are thought to be underlain by a clastic sedimentary unit.

Anomalous gold analyses are to some extent clustered along the western side of the Rainbow grid, an area that is underlain by Otter Granite in the north, a mafic diorite complex in the south, and by Nicola volcanic rocks in the central portion. Some possible zones appear to trend westerly off the grid.

A few, generally isolated, anomalous gold analyses occur within or near the large alteration zone that occupies central parts of the grid. The more easterly section of this zone is partly marked by strong magnetic patterns and old trenches expose significant pyrite-magnetite mineralization. Five rock samples from the alteration zone did not generate analyses of interest but the wide scattering of anomalous gold in soil values suggest that further examination is warranted.

# 12. CONCLUSIONS

The writers have completed programs of geophysical surveys and geochemical soil sampling on the Rainbow 2 and 3 mineral claims. Data have been plotted and evaluated. Approximately 198 soil samples remain to be analysed. Geological mapping and additional geophysical work are required in order to provide complete coverage of the existing grid. Approximately one half of the property remains to be explored by prospecting and surveys.

The Rainbow claims are located in an area of Nicola Group volcanic and sedimentary rocks that have been intruded by granitic rocks of Jurassic age and by dioritic rocks of Early Tertiary age. One major zone of intense argillic alteration is exposed on Rainbow 3 claim. Geochemically anomalous metal values are present in some areas of magnetic and electromagnetic activity.

It is concluded that the Rainbow claims exhibit geological characteristics favourable for the location of worthwhile deposits of massive sulphide and precious metals.

# **13. RECOMMENDATIONS**

- 1) Analyse remaining soil samples and complete in-fill soil sampling at 25 metre spacing in areas of continuing interest
- 2) Map geologically all of the existing grid
- 3) Extend grid to northwest to provide coverage in the area of the apparent geophysical/ geochemical trend along the Otter Granite contact. Complete soil sampling, geological mapping, and magnetic and VLF-EM surveys of the grid extension
- 4) Extend grid to southeast onto Rainbow 4 claim to cover anticipated geophysical/geochemical trend in that direction
- 5) Methodically prospect remaining areas of the Rainbow claims
- 6) Compile and correlate Rainbow project data with detailed exploration data from claims that adjoin to the east and compile available data, geology, magnetics, electromagnetics and geochemistry, at suitable scale onto a single map.
- 7) Investigate other possible contouring configurations of VLF-EM data



# 14. REFERENCES

| 1) Lord, T. and Green, A.         | Soils and Surficial Geology of the Tulameen Area,<br>Agriculture Canada, 1974                                                                |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2) Cook, S.J. and Fletcher, W. K. | Platinum Distribution in Soil Profiles of the Tulameen<br>Ultramafic Complex, Souther British Columbia, Journ.<br>Geochem. Expl., July, 1994 |
| 3) Camsell, C.                    | Geology and Mineral Deposits of the Tulameen District,<br>British Columbia, Geol. Surv. Canada Memoir 26, 1913                               |
| 4) Monger, J.W.H.                 | Geology of the Hope and Ashcroft Map Areas, British<br>Columbia, Maps 41-1989, 42-1989, Geol. Surv. Canada                                   |
| 5) Preto, V. A.                   | Geology of the Nicola Group between Merritt and<br>Princeton, Bulletin 69, B.C. Ministry of Energy, Mines and<br>Petr. Resources, 1979       |
| 6) Rice, H.M.A.                   | Geology and Mineral Deposits of the Princeton Map Area,<br>Geol. Surv. Canada, Memoir 243, 1947                                              |
| 7) Nixon, G. T.                   | Geology of the Tulameen Ultramafic Complex, Open File<br>1988-25, BC Ministry of Energy, Mines and Petr.<br>Resourses, 1988                  |
| 7) Lisle, T. E. and Ostensoe, E.  | Prospecting Report on the Rainbow 2 and 3 Mineral Claims,<br>Tulameen Area, Similkameen Mining Division, B. C.,<br>January 15, 1993.         |

:

#### **15. PERSONNEL**

The following persons carried out the field work and prepared the accompanying report:

1) T. E. LISLE, P. Eng. - geologist, (UBC, 1964)

- more than thirty years experience in mineral exploration, principally in western and northern North America
- member of APEGBC, Geol. Assoc. Canada, CIMM
- performed field work as described in this report in the period October 16 through November 16, 1994

#### 2) E. A. OSTENSOE, P. Geo. - geologist, (UBC, 1960)

- more than thirty years experience in mineral exploration, principally in western North America
- member of APEGBC
- performed field work as described in this report in the period October 16 through November 16, 1994.

# **17. APPENDICES**

.

# APPENDIX 1. (a) GEOCHEMICAL DATA SHEETS (b) Certificates of Analysis

# **APPENDIX 2. GEOPHYSICAL INSTRUMENTS**

- (a) Instruction Manual GSM-19T Magnetometer
- (b) Specifications and Instructions Sabre Model 27 VLF-EM Receiver

# APPENDIX 1

.

# GEOCHEMICAL DATA

# Abbreviations used on data sheets.

| Type of survey | : | S = soil; SS = Silt; R = Rock                                                                                                                                                                             |
|----------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth          | : | Recorded in meters.                                                                                                                                                                                       |
| Material       | : | T = Till; Co = Colluvium; A = Alluvial;<br>GF = Glaciofluvial. F = Fluvial; O = Organic                                                                                                                   |
| % Organic      | : | L = Low; M = Moderate; H = High                                                                                                                                                                           |
| Colour         | : | <pre>Br. = Brown; ( L = Light; P = Pale; Y = Yellow;<br/>R = Red; G = Grey, Dk = Dark)<br/>Bl= Black.<br/>G = Grey.<br/>O = Orange</pre>                                                                  |
| % Gravel       | : | Estimated % of gravel sized fragments.*<br>Till commonly contains up to 10% cobble-sized<br>fragments.                                                                                                    |
| Horizon.       | : | <ul> <li>A. Commonly black organic-rich surface material.</li> <li>B. Commonly Brown to red-brown.</li> <li>C. Commonly pale to yellow brown occurring at<br/>a depth of 0.5 meters or deeper.</li> </ul> |
|                |   |                                                                                                                                                                                                           |
| Clay           | : | L = Low; M = Moderate; H = High.                                                                                                                                                                          |
| Clay<br>Silt   |   | L = Low; M = Moderate; H = High.<br>L = Low; M = Moderate; H = High.                                                                                                                                      |

|    |                     |                     |           |                                       |                   |                  |                  |          |              |            |              | 7° N             | 814.             |         |
|----|---------------------|---------------------|-----------|---------------------------------------|-------------------|------------------|------------------|----------|--------------|------------|--------------|------------------|------------------|---------|
|    | PROJECT .<br>Date - | RAINBOR<br>Nou 4,   |           |                                       |                   |                  | PLOTTE           | D AIR    | ρηοτό<br>Μαρ | <b></b>    | 921405       | 6                |                  |         |
|    | LOCALITY            | TOLAME              |           | · · · · · · · · · · · · · · · · · · · |                   |                  | SAMPLI           | ER       |              |            | -1545        |                  | <i>E</i>         | 3N      |
| -  | SAMPLE L            | OCATION ST          | D - TYPE  | BD3K PT.S                             |                   | erial<br>organia | colour           | V % Grav | el Horiz     | on Clay    | Silt Sand    | · _              | REMARKS          | 5       |
| 1  |                     | 011 12131415 161    | NORTH     | 23,74 25                              | 26127.28<br>• 415 | 29<br>T<br>L     | 31,32 33<br>71Ba |          | 36-37<br>C   | 38138<br>M | 40 41<br>M M | Her              | 1 87.62          | 1.1     |
| 2  |                     | 0450                | Sitiaci S |                                       | ·60               |                  | BR.              | 25       | C ?          | LIM        | M m          | Sam              |                  | •       |
| 3  |                     | 1,000               | 8,4,09    | 2                                     | •45               | 7 L              | MB&              | =1,5     | G            | 1-M        | M            |                  |                  |         |
| 4  |                     | 1450                | Staa S    |                                       | ·40               | TL               | P.Be             | 5.20     | Ç            | M          | M M-H        | )<br>            |                  |         |
| 5  |                     | 12,4,00             | 8,4,00 5  | Ĵ                                     | • 40              | 7 L              | YB:              | ¥ 15     | Ç            | M          |              | 51               | 3 2 <sup>2</sup> | 11 X_1  |
| 6  |                     | 2,4,5,0             | 811.44 5  | 2                                     | ·45               | T.T              | MBR              | K15      | C            | 4          | LL           | Dey              | clay oy          | 4.11    |
| 7  |                     | 13, t, U,C,         | 817100    | 2                                     | ·40               |                  | YBA<br>PiBa      | - 20-    | Ç            | L-M        | M 1          |                  | Compact.         |         |
| 8  |                     | 3,7,50              | 8.+0e. S  | 2                                     | - 55              |                  | P.B.             | Z5       | Ç            | Ă          | MH           | 10+20 1<br>20-55 | Contrary &       | A - 5 K |
| 9  |                     | 4,700               | 81+1014 E | 7                                     | .50               | 7 L              | PB               | ±20      | ¢?           | M          | MM           |                  |                  |         |
| 10 |                     | A.+.5.0 ,<br>5+00 0 | BHOU S    | 7                                     | • 60<br>• 40      |                  | P.Be             | 20%      | े र<br>२     | M          | MM           | to", st<br>Very  | Hard.            |         |
|    |                     |                     |           |                                       |                   |                  |                  |          |              |            |              |                  |                  |         |

| PROJECT                    | Roinsow                                               |                                        |                            |                            |                        |                                        | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------|-------------------------------------------------------|----------------------------------------|----------------------------|----------------------------|------------------------|----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE                       | Nov. 4, 19+                                           | 4                                      |                            |                            | PLOTTED AIR            | мар                                    | 92 H C       | 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LOCALITY                   | TUCAMBON                                              | B. C.                                  |                            |                            | SAMPLER                | 7.8.4.                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | OCATION EGRID                                         | TYPE DR<br>SURM BDRK PT.S              | ma<br>Depth                | aterial col<br>organic     | Lour<br>% Grave        | l Horizon Cl.ay                        | Silt Sand    | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                            | 0 11 1213,14,15 16,17,18,19,20,21<br>5,7,5,0,0,8,4,90 |                                        | 26127,28<br>• 1 <b>4 5</b> | 29<br>7 <sup>°</sup> . L Y | 32 33 34,35<br>Be + 20 | 36.37 30139<br><b>C</b> <sup>3</sup> 4 | 40 41<br>M H | Topologica 200 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                          | 16,4,0,0 1 18141010                                   |                                        | · 65                       | T L B                      | R                      | C1 4                                   | M M-H        | 20% SA-SR Pebbles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                          | 16+50, 8+00                                           |                                        | • 45                       | T L P.E                    | Se 5.20                | Ç L-M                                  | M M-H        | an the state of th |
| 4                          | 7.+00, 8+00                                           |                                        | •30                        | TLP,                       | Be 15-20               | C MTH                                  | m m          | Steep Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5                          | 7,7,50 8,4,0,0                                        |                                        | - 50                       | TLP                        | <u>Be</u> 20           | C M                                    | M            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 <u>, i , i , i , i</u> , | 8,700 8+00                                            | ] < G\$7.                              | .20                        | GI!L                       | R + 30                 | C? 4                                   | M MHH        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                          | 8+50,8+0,0                                            | G GST                                  | · 2 5                      | ۲. L E                     | 3R +35                 | <b>Ç</b> ? <b>4</b>                    | MH           | Laure Tree of the State of the  |
| B 5                        | 9+00, 8+0,0                                           | 5 GS7<br>+ Die                         | ·25                        | CIIL B                     | R 30                   | C K                                    |              | Bonne in the test of a<br>traffer<br>Alogfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9                          | Q1750 B+00                                            |                                        | .15                        | TLE                        | ba ~ 15                | G H                                    | MM           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            | 1,0,+,0,0 , 8,+,90                                    | , s <u>r</u>                           | .50                        | 7 L Y                      | Ba 15-20               | C M-H                                  |              | New BALL warden in<br>SAL GLAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                            |                                                       | ······································ |                            |                            |                        |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SN.

 $\subseteq$ 

,

| PROJECT K   | AINBOW            |                                       | L9N                                   | PLOTTED           | ALR PHOTO           |                 |                                              |
|-------------|-------------------|---------------------------------------|---------------------------------------|-------------------|---------------------|-----------------|----------------------------------------------|
| -           | LOVEMBER 4, 1     |                                       |                                       |                   | MAP                 |                 |                                              |
| LOCALITY LA | WLESS CR., Tur    | AMEEN, B.C.                           |                                       | SAMPLER           | ERIK                | OSTENSO         | ε                                            |
|             | ALLON $-(GRU)$ SI | YPE DR<br>MRY ADRK PT.S               | material<br>Depth : organ             | colour<br>1. ;% G | ravel Horizon       | n Clay Silt San | a. REMARKS                                   |
|             | ZAST NORTH        | 22 23124 25 26                        | 5127.28 27 30<br>• 6 -                | 31,32 <u>33</u>   | 1.35<br>36.37<br>// | 30139 40 4      |                                              |
| 2           | 0+1510            |                                       | ,2,5 [                                | Er [              | 56                  |                 |                                              |
| 3           | 1.+.ad            |                                       | .4,0                                  |                   | 50                  | H.              |                                              |
|             | 1+50              |                                       | ·50 [] []                             |                   | ÷ <                 | H               | - Charlowsky Kyme<br>- Liensger Gage - m     |
| 5           | 2,+,0,0           |                                       | ·4.0                                  |                   | 10 [                | M M C           | - Probably award B+C<br>Large Broght - Court |
| ٥ ( ( )     | 2+50              |                                       | · <u>50</u>                           |                   | <u>2</u> C          |                 | ] d lay +."                                  |
|             | 3,+,0,0           |                                       | •70                                   | Vet 0             | 55                  | HMW             | ] Softer till                                |
|             | 3,+,50            |                                       | 4.0                                   | Vet []            | S C                 | MM              | Hard till<br>Hard till                       |
|             | A,+,00            |                                       | 50 []                                 |                   | 04                  | FI M            | Till Have, Tray                              |
|             | 4+50              |                                       | 50 🗌                                  | Br                | 2 <b>B</b> <u>/</u> | MM              | 1 Sort.<br>Logged ion ago                    |
|             |                   | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                   |                     |                 |                                              |

,

•

.

**6**...

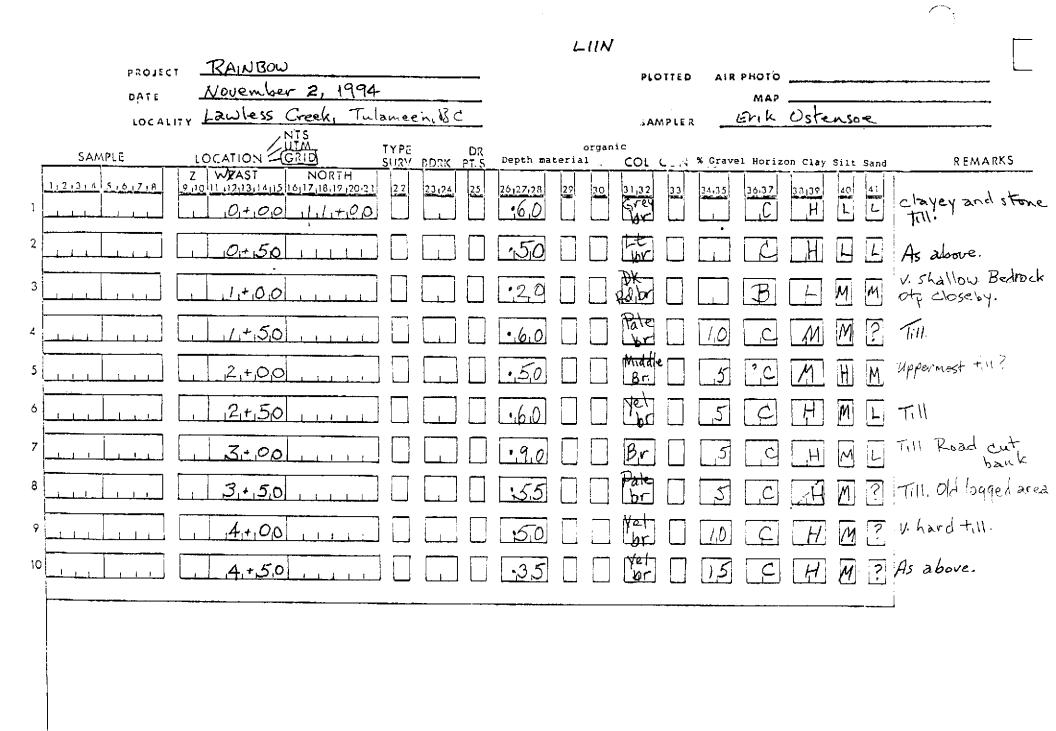
 $\sim \infty$ 

.

.

,

|          |                               | _                                                      |                           | 19                 | N                        |                         |                      |                                                                                    |
|----------|-------------------------------|--------------------------------------------------------|---------------------------|--------------------|--------------------------|-------------------------|----------------------|------------------------------------------------------------------------------------|
|          | PROJECT                       | RAINBOW                                                |                           |                    | PLOTTI                   | D AIR PHOT              | <u></u>              |                                                                                    |
|          | DATE                          | ,                                                      | 1994.                     |                    |                          | MA                      |                      |                                                                                    |
|          | LOCALITY                      | LAWLESS CR., To                                        | LAMEEN, B.C.              |                    | SAMPL                    | ER Erik                 | Ostensor             |                                                                                    |
|          | SAMPLE                        | LOCATION GRID                                          | TYPE DR<br>SURV BDRK PT.S | o<br>Depth materia | rganic<br>1 colcar       | % Gravel Hori           | zon Clay Silt Sand   | R EM A RK S                                                                        |
| ۱        | <u>1,2,3,4</u> <u>5,6,7,8</u> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                           | 26127128 29<br>•50 | 30 31,32 33<br>DK<br>Vor | 34.35 36.37<br>3 B/C    | 38139 40 41<br>H M M | Soil not till. Rocky.<br>Flat ground.                                              |
| <u>.</u> |                               | , 5,+,5,0 , , , , , , ,                                |                           | 160                |                          | 2 1/2                   | HMM                  | Aboue till. Also took à<br>Record spliform B<br>horizon at depti 40cm              |
| 3        |                               | 16,+00                                                 |                           | :40                |                          | 56                      | HML                  | Flatter terrain than the W.                                                        |
| 4        |                               | 6+50                                                   |                           | ·30                | l Gr                     |                         |                      | Clay till V.haro.<br>Slope 25' 1.                                                  |
| 5        |                               | 17,+00                                                 |                           | 50                 |                          |                         |                      | As below.                                                                          |
| 6        |                               | 7.+50                                                  |                           | ·50                | br [                     |                         | H M L                | Modified till.                                                                     |
| 7        |                               | 8,+,0,0                                                |                           | •40                | Red<br>hv                | ] [] []                 | M M L                | Wear top of STeepest<br>terraid. Good visterial                                    |
| 8        |                               | 8,+50                                                  |                           | · <del>1</del> 4.5 | Lt lar                   | ] रिइ ि                 |                      | Tree moto car 21<br>Por Mill 2009, AT<br>Bar Mill 2009, AT<br>Bar Ast Cr. at 8+60W |
| 9        |                               | 9+00                                                   |                           | :35                | Land Land                | ] <u>7</u> 5 <b>B</b> e |                      | light soil is call in                                                              |
| 10       |                               | 9.+50<br>10+00                                         |                           | 30                 | Lt br                    | ] [3] [B]<br>5. C       | H M M                |                                                                                    |
|          |                               |                                                        |                           |                    | <i>p D</i> ,             |                         |                      | _ Near top of Slope.<br>Side hill drove off<br>Stamply to East                     |

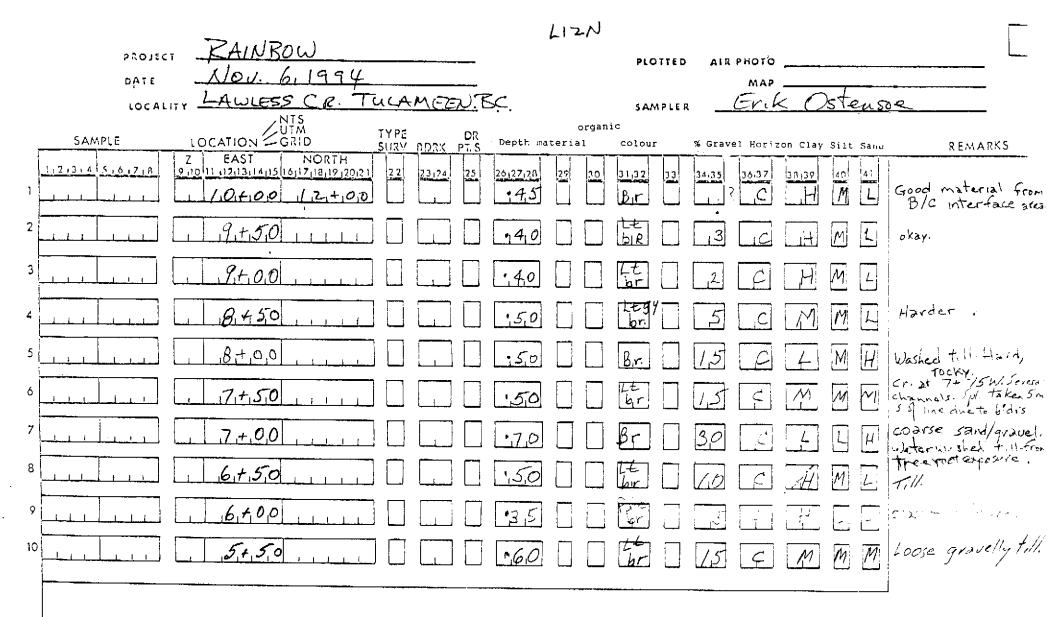

 $i \in \mathbb{N}$ 

LION

 $\sim$ 

|    | PROJECT         | RAINBOL                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |                |    | F              | LOTTED | A 1 P 3      | отон              |            |         |       |            |              |
|----|-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------|----|----------------|--------|--------------|-------------------|------------|---------|-------|------------|--------------|
|    | DATE            | Novemb                   | er 3,199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4          |          |                |    | •              |        |              | MAP               |            |         |       |            |              |
|    | LOCALIT         | , LAWLESS C              | REEK, Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -AMET      | EN, BC   |                |    | \$             | AMPLER |              |                   |            |         |       | TE         | LISLE        |
|    | SAMPLE          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYPE       | <br>D3   | . Depth ma     |    | anic<br>colo   |        |              |                   | n Clay S   |         |       |            |              |
|    | 1,2,3,4 5,6,7,A | Z WEAST I                | NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          | 1              |    |                |        | iavel        | HOFIZO            | n Clay :   | Silt Sa | and.  |            | REMARKS      |
| 1  |                 | <u>10,11,12,13,14,15</u> | $\frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} = \frac{1}$ | 22 2<br>5  | 23124 25 | • <b>45</b>    |    | 10 31,3<br>BrP |        | 4,35<br>5-20 | 36,37<br><b>C</b> | 38139<br>M | 40<br>₩ | 4<br> | 1 24       | top man have |
| 2  |                 | 10+50                    | 1/19+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5          |          | 125            | 7  | L PB           | d []≠[ | 5            | c                 | Н          | L       | L-14  | ة رمينو، م | •••          |
| 3  |                 | ,1,+,0,0                 | 1/10++1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>s</u> [ |          | -35            | 7  | PB             |        | 15           | C                 | M          | M       | 3     |            |              |
| 4  |                 | 1+50                     | LIQAOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5          |          | .60            | 7  | PB             |        | 20           | C                 | 4          | Μ       | н     |            | .•.          |
| 5  |                 | ,2,+,0,0                 | 110400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5          |          | •40            | 7  | B              |        | 5            | ß                 | μ          | Μ       | Ŀ     | <b>1</b>   | • .          |
| 6  |                 | 2+50                     | 1/10/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u></u>    |          | $\cdot 7 \rho$ | ?  | PB             |        | 5-20         | C?                | <u>L</u>   |         | H     |            |              |
| 7  |                 | ,3,+,0,0                 | 1/10+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5          |          | .70            | 7  | L PB           |        | 5-20         | ç                 |            | ЬМ      | н     |            |              |
| 8  |                 | ,3,+,5,0                 | 1/10+010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5          |          | .60            |    | L XB           |        | 5-20         | C                 | ĿM         | M       | ᡔᢇᡰ   | ,          | e            |
| 9  |                 | A 4,40,0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          |          | ·55            | T  | PB             |        | 5-20         | Ç                 | L-M        | ĻΜ      | M     |            |              |
| 10 |                 | 4,+,5,0                  | 1.0+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5          |          | ·45            | 6  | L YB           | g. 🗌 🛛 | 5-20         | Ç                 | L-14       |         | 1-13  | Sandy      | 4.11         |
|    |                 | 4+00W                    | 10400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5          |          | .15            | T. | L RB           | 2. ±1  | 5            | в                 | M-H        | ruj [   | rM.   | · · ·      | · A          |

|    | LION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|    | PROJECT RAINBOW PLOTTED AIR PHOTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                |
|    | DATE November 3, 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|    | LOCALITY LAWLESS CREEK, TULAMEEN, B.C. SAMPLER, ERIK OSTENSOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| •  | NTS<br>UIM TYPE DR organic<br>SAMPLE LOCATION GRID SURV BDRK PT.S Ver of material colour % Gravel Horizon Clay Silt Sand REMAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RK S                             |
| 1  | $\frac{1}{1,2},\frac{1}{3},\frac{1}{4},\frac{5}{5},\frac{6}{6},\frac{7}{1,8}$ $\frac{2}{9,10}$ $\frac{1}{1,12},\frac{1}{3},\frac{1}{4},\frac{15}{16},\frac{1}{1,0},\frac{1}{1,0},\frac{1}{2,0,021}$ $\frac{22}{23,24}$ $\frac{23}{25}$ $\frac{26}{27,28}$ $\frac{27}{30}$ $\frac{31}{32}$ $\frac{34}{35}$ $\frac{36}{37}$ $\frac{38}{38}$ $\frac{40}{41}$ $\frac{41}{41}$ $\frac{5}{1,0}$ $$ | TE-1.                            |
| 2  | I J.F.F.S.O IIII S I O ED A L ME I E MA MAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>TC</i> 1.                     |
| 3  | Libition II. On ridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Facing                         |
| 4  | HARDPAN TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>L.L.</u>                      |
| 5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| 6  | 111 1714510 111 5 . CAO Br 10 FM H M As above. So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me<br>stps                       |
| 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and tran                         |
| 8  | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112 due 70<br>15 8+ 35W<br>1711. |
| 9  | 19+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al 100 00 15                     |
|    | 10+00 .50 Red br 5 B L M M sandy, rusty, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>B</i> .                       |




|          | PROJECT               | RAINBOW                                                               |                     |                     | . IIN            | PLOTTED       | AIR PHOTO            |                   |              |                                |                                          |
|----------|-----------------------|-----------------------------------------------------------------------|---------------------|---------------------|------------------|---------------|----------------------|-------------------|--------------|--------------------------------|------------------------------------------|
|          | DATE<br>LOCALITY      | November 2/3,<br>LAWLESS CREEK.                                       |                     | <u>3</u> .C.        |                  | SAMPLER       | MAP<br>ERIK          |                   | TENSO        | E                              |                                          |
| <b>p</b> | SAMPLE                | LOCATION CRID                                                         | TYPE<br>SURM BORK P | DR<br>TS Depth mate | organi d<br>Fial |               | % Gravel Hori:       | on Clay :         | Silt Sand    | R                              | EMARKS                                   |
|          | <u>.2.3.4 5.6.7.8</u> | Z W EAST NORTH<br>101111211311411511611711811212<br>15+10.01111111111 | 0121 22 23,24       |                     |                  | 31,32<br>Yez  | 34,35 36.37<br>(10 0 | <u>эпізу</u><br>Н | 40 41<br>M ? | Till                           |                                          |
| 2        |                       | 151+1510                                                              |                     | •4.0                |                  | AT .          | 20 30                | M                 | MM           | Mixed Elc. 1<br>V. Lard C.     | steep                                    |
| 3        |                       | . 6.+0.0                                                              |                     | •4,0                |                  | ay<br>lar     |                      | H                 | ML           | V. hardt                       |                                          |
| 4        |                       | 6,+50                                                                 |                     | •60                 |                  | Et ]          | 25 C                 | M                 | M            | Hart                           | sney tu<br>and mail.                     |
| 5        |                       | ,7,+,0,0                                                              |                     | 4.0                 |                  | ter [         | 15 C                 | H                 |              | T.II.<br>V.Steer               |                                          |
| - ا      |                       | , 1,+,5,0                                                             |                     | 50                  |                  | Dkr 🗌         | 60 ? 0               | 1                 | ΜH           | Poorsan                        |                                          |
| 7        |                       | , <u>8,+,00</u> , , , , , ,                                           |                     | 150                 |                  |               | 20 C                 | Н                 | ML           | Hard Car<br>St at 7-           | 1-17<br>75707+85 J.                      |
| 8        |                       | B+,50                                                                 |                     | 150                 |                  |               | 25 [0                |                   | MH           | Water Wa                       | the defines.                             |
| 9        |                       | , 9,+0,0                                                              |                     |                     |                  |               | S C                  | H                 | M            | Till. 11                       | : 10.<br>                                |
| 10       |                       | 9,+,5,0<br>10+00                                                      |                     | ·50<br>•65          |                  | Lyr<br>IKgybr | 5 C<br>2 C           | H                 | ML           | Stoney cle<br>rocks:<br>Clay u | y. Rounded<br>with cobbles<br>lacuetrine |
|          |                       |                                                                       |                     |                     |                  | U1            |                      |                   |              | May be                         | acustrine.                               |

.

•

~~ `\

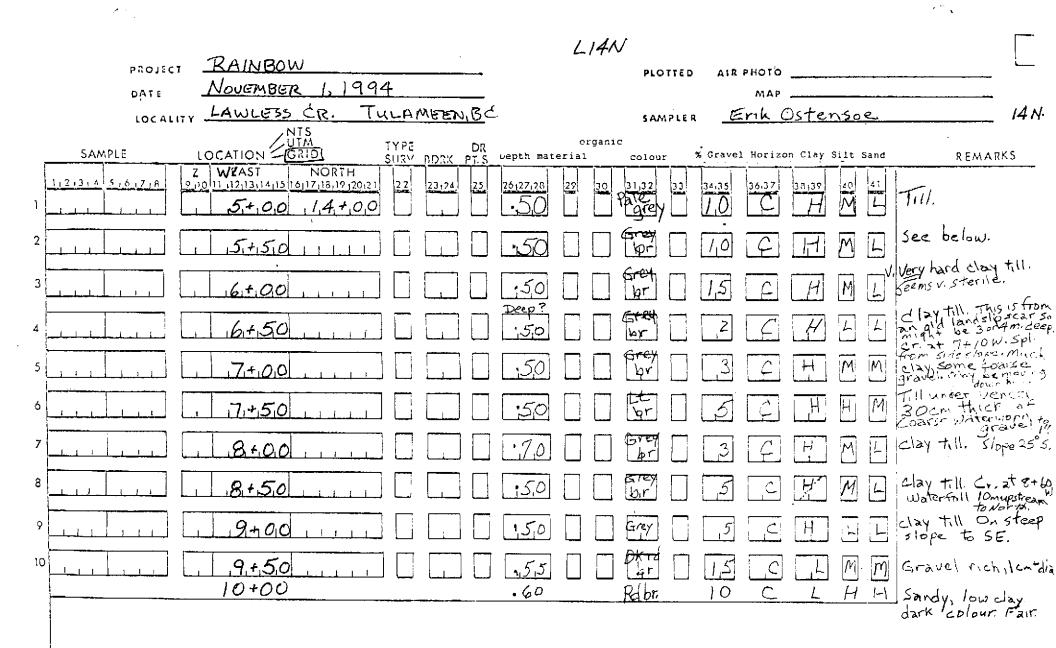


| PROJEC                                  |                                                       | <del></del>            |                        | PLOTTED              | AIR PHOTO        | e                      |                                                                                  |
|-----------------------------------------|-------------------------------------------------------|------------------------|------------------------|----------------------|------------------|------------------------|----------------------------------------------------------------------------------|
| DATE                                    | November 6, 1994<br>IT LAWLESS CR. TULAM              | man Re                 |                        |                      | MAP              | Ostensoe               | 12N.                                                                             |
| LOCAL                                   | ITY HADLESS CK. TUCAM                                 | EENINC                 | org                    | SAMPLER<br>anic      | Crik             | <u>Uniterise</u>       |                                                                                  |
| SAMPLE                                  | LOCATION GRID SURV                                    | DR<br><u>DDRK PT.S</u> | Depth material         | colour %             | Gravel Horiz     | on Clay Silt Sand      | REMARKS                                                                          |
| 1,2,3,4 5,6,7,8                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <u>23124</u> 25        | 26127128 29 30<br>•5-5 | 31,32 33             | 34.35 36.37<br>B | 3.7.139 40 41<br>M M L | Т.11                                                                             |
|                                         | 4+50                                                  |                        | .6.0                   | ] Lebr               | 10 IC            | MML                    | T.11                                                                             |
|                                         | 4,+,0,0                                               |                        | .50                    | ] 🚰 🗌 [              | _ح [c            | HML                    | Road cut. East<br>side of road is at<br>4+04 w. w side<br>thout 4+12 m           |
|                                         | 3+50                                                  |                        | •4.5                   | LE<br>br             | ,5 C             | HMZ                    | Till                                                                             |
| 5                                       | , ,3,+,0,0                                            |                        | :50                    |                      | _3 _C            | H H L                  | Till-c'aley.                                                                     |
|                                         | 1 21+1510                                             |                        | .35                    | Reder.               | BB               | MML                    | 1                                                                                |
| , , , , , , , , , , , , , , , , , , , , | , ,Z,+,0,0 , , , , , , , , , , , , , , , , ,          |                        | 13.0                   | Drewn                | B                | MM                     | Virocky<br>Colluvium + soi                                                       |
|                                         | /,4,5,0                                               |                        | -3.5                   | Br                   |                  | H M L                  |                                                                                  |
| 9                                       |                                                       |                        | <u>·2.5</u>            | Pele<br>Yellew<br>Br | BC               | H H O                  |                                                                                  |
| 0                                       | 0 + 00                                                |                        | •25                    | Graybr               | 5 C<br>High B/C  | H H L<br>H M L         | Much outcrop. old                                                                |
|                                         |                                                       |                        |                        | ·                    |                  |                        | Much outcrop. old<br>trenches. Angular<br>large rock frags wi<br>Clay infilling. |

٠

< j

|     | PROJECT RAINBOW<br>DATE NOVEMBER 1/2, 1994            | -   | L13N                         | PLOTTED            | AIR PHOTO     |                      | /3N                                 |
|-----|-------------------------------------------------------|-----|------------------------------|--------------------|---------------|----------------------|-------------------------------------|
|     | IDEALITY LAWLESS CR. TULAMEEN, B                      |     |                              | SAMPLER            |               | OSTENSOE             |                                     |
| ,   | SAMPLE LOCATION GRID SURV BOOK PT                     | R D | organi<br>Depth material     |                    | Gravel Horiz  | on Clay Silt Sand    | R EMARKS                            |
| J   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |     | <u>6127128</u> 22 30<br>1710 | 31,32<br>DX<br>EDX | 34.35<br>50 B | 38139 40 41<br>L L M | much talks fones.<br>Angular fongs. |
| 2   |                                                       |     | .60                          | Val.Br             | 73 R          | MMM                  | Til Da sore<br>20050-5              |
| 3   |                                                       |     | .70                          |                    |               | MMM                  | ? Det used the                      |
| 4   |                                                       |     | .7.0                         | lyet               | R C           | MML                  | Π.Π.                                |
| 5   | <u>, z, t, 0, 0</u>                                   |     | ·60                          |                    |               |                      | Not it is to be                     |
| 6   | ····                                                  |     | .50                          |                    |               | H M M                |                                     |
| 7   |                                                       |     | .50                          | grey [             | 13 C          | HMM                  | Hard till.                          |
| 8   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                |     | 140                          | Gray               | 20 5          | FI                   |                                     |
| . 9 | 4400                                                  |     | :50                          | br [               | 15 5          | HMM                  | TillROAD                            |
| 10  | 4,4,5,0                                               |     | 50 [                         | br                 | 1,0 C         | H M                  | Tī11.                               |
|     |                                                       |     |                              |                    | <u> </u>      |                      | <u>.</u>                            |
|     |                                                       |     |                              |                    |               |                      |                                     |


|    | PROJECT RAINBOW PLOTTED AIR PHOTO                                                                                                                                                                                                                                                                                                                   |                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|    | DATE November 2, 1994 MAP                                                                                                                                                                                                                                                                                                                           | <br>/3N                     |
|    | IOCALITY Lawless Cr. Tulanieen, B.C. SAMPLER Erik OSTENSOE                                                                                                                                                                                                                                                                                          |                             |
| -  |                                                                                                                                                                                                                                                                                                                                                     | REMARKS                     |
| 1  | $\frac{1}{12}, 3, 4, 5, 6, 7, 8 = \frac{2}{9}, \frac{10}{11}, \frac{12}{13}, \frac{14}{15}, \frac{15}{16}, \frac{17}{18}, \frac{19}{20021} = \frac{22}{23}, \frac{23}{24} = \frac{25}{25}, \frac{26}{27}, \frac{29}{30} = \frac{30}{31, 32} = \frac{34}{33} = \frac{36}{34, 35} = \frac{36}{27}, \frac{36}{31, 39} = \frac{40}{41} = \frac{41}{21}$ |                             |
| 2  | LILLI I SHISOLILI I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                 | hard till.                  |
| 3  |                                                                                                                                                                                                                                                                                                                                                     | +111.<br>6+25W              |
| 4  | LI LE SOLITION CONSIGNATION CALLANEY                                                                                                                                                                                                                                                                                                                | till. Spl is                |
| 5  | HMM TILlow                                                                                                                                                                                                                                                                                                                                          | t <i>loosened</i><br>ait    |
| 6  | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                               |                             |
| 7  |                                                                                                                                                                                                                                                                                                                                                     | eep Stope to S.<br>8+7 5W   |
| 8  |                                                                                                                                                                                                                                                                                                                                                     | ceps/speto                  |
| 9  | HILL 19, +, 0,0                                                                                                                                                                                                                                                                                                                                     | L till from<br>L tree root. |
| 10 |                                                                                                                                                                                                                                                                                                                                                     |                             |
|    | 10+00 .45 GreyBr C H M L TIll. Ha                                                                                                                                                                                                                                                                                                                   | ard, stoney.                |

1

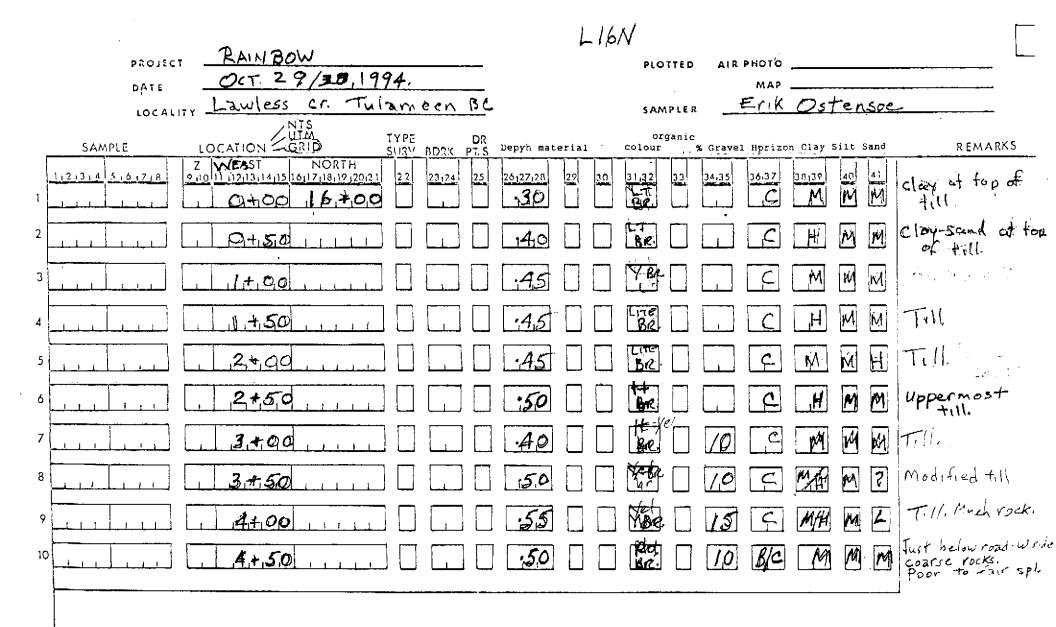
| × 1                             |                                                                      |                           | Ž,                       |         |                  |                  | ۲.<br>او ۱۰                               |                         |
|---------------------------------|----------------------------------------------------------------------|---------------------------|--------------------------|---------|------------------|------------------|-------------------------------------------|-------------------------|
|                                 |                                                                      |                           | L14N                     | /       |                  |                  |                                           |                         |
| PROJECT                         | RAINBOW                                                              | ·····                     |                          |         | AIR PHOTO        | •                |                                           |                         |
| DATE                            | OCT 31, Nov. 1,                                                      |                           |                          | ,       | MAP              | · · · · · ·      |                                           | - 14N                   |
| LOCALITY                        | LAWLESS CR. T                                                        | ULAMBEN, BC               |                          | SAMPLER | ERIK             | OSTENS           | TOE                                       | _                       |
|                                 | LOCATION GRID                                                        | TYPE DR<br>SURV ADAK PT.S | organ<br>•Depth material | _       | ravel Horizo     | n Clay Silt Sar  | nd REM                                    | ARKS                    |
| 1 <u>1121314</u> <u>5161718</u> | Z WEAST NORTH<br>10 11 12 13 14 15 161 7 18,17 20<br>1 D + 00 1 Arto |                           | 26127128 29 30<br>• S O  | 14005   | .35 36.37<br>3 C | 37,139 40 4<br>H |                                           |                         |
| 2                               | 19+50 111                                                            |                           |                          | Bre.    | 5 C              | HAP              | Maybe ti<br>likely or                     | н<br>Ъ.                 |
| 3                               | 1.4.90                                                               |                           | 50 🛛                     | Br. []  | 0 C              | MH               |                                           |                         |
| 4                               | 1,1,1,5,0                                                            |                           | .50                      |         | 0 C              | MMF              |                                           | +11                     |
| 5                               | 12-ti010                                                             |                           | .50                      |         | 5 <u>c</u>       | MM M             | Also took<br>Sample for                   | B-horijon<br>Comparison |
| 6                               | 121450                                                               |                           | 17.0                     |         | 3 ØC             | H H              | 5012.1/0+                                 | -T11/ +                 |
| 7                               | , 3, 40,0 , , , ,                                                    |                           | -50                      |         | হ                | HM               |                                           |                         |
| 8                               | 3,+50                                                                |                           | .53 🗌 🗌                  | br [    | 2 7              | HM               | Clayey. Da                                | rk soil.                |
| 9                               | 4,4010                                                               |                           | -5.5                     |         | 3 98             | MM               | Clayey. Da<br>Fair to good<br>Road E side | at 4+ 08W               |
|                                 | . 4.4.5.0                                                            |                           | - <u>5</u> 5 [] [        |         | <b>5</b> B/C     | MM               | M. Flatter gri<br>to the west             | Not till.               |

-

-



|    |                 | T a.                              |                |                  | L                 | 15N            |                      |              |                            |                                       |                                        |    |
|----|-----------------|-----------------------------------|----------------|------------------|-------------------|----------------|----------------------|--------------|----------------------------|---------------------------------------|----------------------------------------|----|
|    | PROJEC          |                                   | 711000         |                  |                   |                | PLOTTED              | AIR PI       | ното                       | · · · · · · · · · · · · · · · · · · · |                                        |    |
|    | DATE            | October                           |                |                  |                   |                |                      |              | MAP                        |                                       |                                        |    |
|    | LOCAL           | ITY LAWLESS CREE                  | K, LULAME      | <u>en, U.C</u> . |                   |                | SAMPLES              | a <u>Eri</u> | K OSTER                    | 1506                                  |                                        |    |
| -  | SAMPLE          | LOCATION - GRID                   | D TYPE<br>SURV | DR<br>BD3K P7.S  | Depun maler       | organic<br>1al | colour               | % Gravel     | Horizon Clay               | Silt Sand                             | REMARKS                                |    |
| 1  | 1,2,3,4 5,6,7,8 | Z WE ST N<br>21011.1213.141516117 |                | 23124 25         | 26127128<br>- 5-9 | 30             | 31,32<br>31,32<br>33 | 34.35<br>25  | 16.37 38139<br>C O         |                                       | Washed gravel.<br>Like'y of ngalie     |    |
| 2  |                 | 4,+,50                            |                |                  | িন্দ্রন           |                | br [                 | 15           | CL                         | MM                                    | Fair to good in ."                     |    |
| 3  |                 | 4+00                              | 3_4            |                  | ·35               |                | BR                   | 70           | <u>C</u> H                 | [4] M                                 | not till                               |    |
| 4  |                 | 3+50                              |                |                  | ·45               |                | BE                   |              | СН                         | HL                                    | B ALL ALL ALL                          |    |
| 5  |                 | 3,+00                             |                |                  | .5,0              |                |                      | 20           |                            | ME.                                   |                                        |    |
| 6  |                 | , 2,+,5,0                         | 1              |                  | <u>.</u> 55       |                | YB4                  |              | CM                         | M                                     | ······································ |    |
| 7  |                 | ,2,+,00,                          |                |                  | • 25              |                | 6. B                 | 5            | CM                         | M M                                   |                                        |    |
| 8  |                 | 1+50                              |                |                  | .50               |                | BR.                  |              | C M                        | MM                                    |                                        |    |
| 9  |                 | 1,1,+,0,0                         |                |                  | •20               |                | ER []                |              | E M                        |                                       | er en en en la fertil.<br>F            |    |
| 10 |                 | 0+00                              |                |                  | :50<br>35         |                |                      | 5<br>5       | <b>C</b> 114<br><b>C</b> H | M L                                   | Tree 1 15th Rock;                      | 1- |


|    |                         |                     |                                                        |                 |                 | L15N           |                             |             |           |              |                                |              |
|----|-------------------------|---------------------|--------------------------------------------------------|-----------------|-----------------|----------------|-----------------------------|-------------|-----------|--------------|--------------------------------|--------------|
|    | · •                     | RAINBOW             |                                                        |                 |                 |                | PLOTTED                     | AIR PHOT    | °         |              |                                | <b></b> _    |
|    |                         | OCTOBER             |                                                        |                 |                 |                |                             | MA          | P         |              |                                | 15N          |
|    | LOCALITY -              |                     | R. TULAMER                                             | N. BC           |                 |                | SAMPLES                     | ERII        | c Os-     | TENSOE       | ,<br>                          |              |
|    | SAMPLE LO               |                     |                                                        | DR<br>BD3K PT.S | Depth mate      | organ:<br>rial | ic<br>colour                | % Gravel Ho | rizon Cla | y Silt Sand  | REMARK5                        |              |
|    | Z 13 14 5 16 17 18 0 10 | 11,12,13,14,15[16]1 | NORTH<br>7 <u>113117,20121</u> 22<br>7 <b>.5.+</b> 100 | 23,24 25,       | 26127128<br>•55 | 27 30          | 31, <u>32</u><br>Kar<br>but | 34,35<br>10 |           | 40 41<br>M H | Sandy. Not<br>Dkreddlsh, till. |              |
| 2  |                         | 9,+,5,0             |                                                        |                 | •1710           |                | Greek [                     | S C         | ЭН        | MM           | Till Taken at 1-               | +≶SW         |
| 3  |                         | 9,+00               |                                                        |                 | .50             |                | Kar [                       | ID B        | 1 D       |              | Sandy Sol'.<br>Real to 1k -    |              |
| 4  |                         | 8+50                |                                                        |                 | •50             |                | Ra<br>Vor                   | 12 (        |           | MM           | Nepermast<br>till              | L            |
| 5  |                         | 8,+,0,0             |                                                        |                 | •60             |                | िल्ला 🗌                     |             |           |              | 的建立的                           |              |
| 6  |                         | 7,+50               | + ī _ ↓                                                |                 | .50             |                | Br []                       | 20 3        |           |              | May include<br>topmost tr      | 11.          |
| 7  |                         | .7+00               |                                                        |                 | •70             |                | lar D                       | 15 B/       |           | M            | Chorizon ?No                   | <i>t 1</i> , |
| 8  |                         | 6+50                |                                                        |                 | •.5,0           |                | Pate [                      |             |           |              | Washed to                      | e'           |
| 9  |                         | 6+00                |                                                        |                 | •70             |                |                             | 20          |           |              | reck = and                     |              |
| 10 |                         | 5,4,5,0             |                                                        |                 | •55             |                | lare [                      |             | 2 4       | M: F         |                                | ÷.,          |
| F  |                         |                     |                                                        |                 |                 |                |                             |             |           |              | 4                              |              |

.

١

1151

 $e^{-\lambda}$ 



|     | LIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                       |  |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|--|--|--|--|--|--|--|--|--|
|     | PROJECT RAINBOW PLOTTED AIR PHOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٥٢٥                                      |                       |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAP<br>IK OSTERUSOE                      |                       |  |  |  |  |  |  |  |  |  |
|     | NTS<br>UIM TYPE DR organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Horizon Clay Silt Sand REMAR             | KS                    |  |  |  |  |  |  |  |  |  |
| 1   | Z EAST NORTH<br>1121314 5161718 21011 12131415161171819 20121 22 23174 25 26127128 27 30 31,22 33 34.35 36.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                       |  |  |  |  |  |  |  |  |  |
| 2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ZA LA M H Not till Road                  | inded<br>evel         |  |  |  |  |  |  |  |  |  |
| 3   | 3 $1$ $6$ $7$ $6$ $7$ $6$ $7$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C M M M TILL Stol take                   | 00W<br>Seren<br>Ceren |  |  |  |  |  |  |  |  |  |
| 4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E I II II //₀+ till                      |                       |  |  |  |  |  |  |  |  |  |
| 5   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                       |  |  |  |  |  |  |  |  |  |
| 6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMMETIN                                  |                       |  |  |  |  |  |  |  |  |  |
| 7   | 7 [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] | C L H Gravely, roc                       | . ky.                 |  |  |  |  |  |  |  |  |  |
| . 8 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C Z M H Sandy/gravelly<br>Daridge, Creek | cat<br>1, flows,      |  |  |  |  |  |  |  |  |  |
| 9   | ° · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHEM?                                    |                       |  |  |  |  |  |  |  |  |  |
| 10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLAM Mor bearock or<br>BCLHHGravelly. 20 | 1                     |  |  |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of small cr. (flo                        | WS SEly               |  |  |  |  |  |  |  |  |  |

|       | PROJECT           |                              | k                   | AINGUN                                | -                                              |             |                   |            |               |                   |                   |                                              |              |                      | 17N               |
|-------|-------------------|------------------------------|---------------------|---------------------------------------|------------------------------------------------|-------------|-------------------|------------|---------------|-------------------|-------------------|----------------------------------------------|--------------|----------------------|-------------------|
|       | DATE              |                              | Ct7                 | 29/9                                  |                                                |             |                   |            | PLC           | DITED AIS         | MAP               | 9                                            | 2 11 03      | 6                    |                   |
|       | LOCALI            | TY                           |                     | AM 5 87                               | <u>v •                                    </u> |             |                   |            | 5 A.M         | APLER             |                   | T.B.L                                        |              | •••••                |                   |
| SAMPL |                   |                              | NTS<br>UTM<br>GRIDI | SI                                    | YPE<br>13V DD3K                                | DR<br>PT, S | Depth mate        | organ<br>' | nic<br>Colour | % Grav            | el Horiz          | on Clay :                                    | Silt Sand    | β                    | REMARKS           |
|       | 6 17 18           | 2 5AS<br>2,1011,12,13<br>0,+ |                     | הדאכ 🗌                                | 22 23124                                       | 25          | 26127128<br>• 445 | 20<br>T L  | 31,32<br>PBR  | 33<br>34,35<br>ZQ | 36.37<br><b>4</b> | эл <u>і</u> зу<br>М                          | 40 41<br>M M |                      |                   |
| 2     |                   | O,+                          | 50 11               | 71+1010                               |                                                |             | .30               | 7          | BR            | +25               | <u>ح</u> ۲        | <u></u> н_м,                                 | M M          | Bediocle<br>Loc ATIO | · · Approx        |
| 3     |                   | 1+                           | 00 1                | 7,+00                                 | < 7                                            |             | .55               | 7 4        | P.Ba          | 20                | Ç                 | M                                            | m M          |                      |                   |
| 4     |                   | / _+                         | 50 J                | 7+00                                  |                                                |             | .45               | T L        | P .Y<br>Ba    | + 15              | Ç                 | M                                            | M M-M        |                      |                   |
| 5     |                   | 2,7                          | 00 1                | 7+ 00                                 |                                                |             | .40               | - L        | PBr.          | 15-20             | Ç                 | м,                                           | MM           |                      |                   |
| 6     |                   | , 27                         | 50 1                | 7+00                                  | 5                                              |             | .55               | 74         | P-Y<br>BR     | -+ 15             | C                 | <b>M</b> 1                                   | M M4         | H. Top               | of C              |
| 7     |                   | 3+                           | 00 ,/               | 7,+,00                                |                                                |             | -50               | TIM        | DK-B-         | 0                 | B                 | M-H                                          | M [L]        | Low Di               | aw.               |
| 8     |                   | 37.                          | 50 J                | 7+,00                                 | 3 7                                            |             | .50               | 7 L        | P,Br.         | 5                 | <u>C</u> ?        | M                                            | M.M.         |                      |                   |
| 9     | <u>1</u> <u>1</u> | 4+                           | 00 1                | 7+100                                 |                                                |             | .45               | 22         | PBA           | +15               | Ę                 | M.                                           | MM           | -<br>-<br>-          |                   |
| 10    | i nin             | 4,+                          | 50 1                | 7+00                                  |                                                |             | -25               | 7          | P.B.          | -20               | 4                 | Н                                            | m m          | Lower<br>BANK        | Roan<br>by ditch- |
|       |                   | <u> </u>                     |                     | · · · · · · · · · · · · · · · · · · · |                                                |             |                   |            |               |                   |                   | <u>.                                    </u> |              |                      |                   |

•

.-

.\*\*

 $\sim 10^{-1}$  N

|              |                |                                                    |                           | L171                                                | <b>v</b>                                  |                                           |                            |                               |
|--------------|----------------|----------------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|-------------------------------|
|              | PROJECT        | TRAINBOW                                           | ( <b>5 Q</b> <i>A</i>     |                                                     | PLOTTED A1                                | R PHOTO                                   |                            | -                             |
|              | DATE           | OCTOBER 30                                         | <u>(17<del>4</del>)</u>   | • •                                                 |                                           | MAP                                       |                            |                               |
|              | LOCALITY       | LAWLESS CR.                                        | TULAMEEN,                 | 2.C.                                                | SAMPLER                                   | ERIK OS                                   | 1 E N20E                   | -                             |
| _            | SAMPLE         | LOCATION - GRID                                    | TYPE DR<br>SURY BDRK PT.S | organi<br>Depth material                            |                                           | vel Horizon Clay Si                       | It Sand REM.               | ARKS                          |
|              | 121314 5161718 | Z W#AST NORTH                                      |                           | 26127,28<br>2610<br>2610<br>27,28<br>29<br>30<br>30 | 31,32<br>33<br>34,35<br>24,35<br>70<br>10 | 36.37<br><u>7</u><br><u>7</u><br><u>7</u> | M M Till-border            | therial.                      |
| 2            |                | 15450 1111                                         |                           | -50                                                 |                                           |                                           | M M T.I.                   |                               |
| 3            |                | 16,+,0,0                                           |                           | 35                                                  | Ter 20                                    |                                           | E E Colimz 1               | i y i v jus<br>Si je je je je |
| 4            |                | 6+150                                              |                           | 40                                                  |                                           |                                           | M I Much so                |                               |
| 5            |                | 7,40,0                                             |                           | •4.5                                                | br 20                                     |                                           | M H Correr                 | 5 hy                          |
| 6            |                | 7,+,570                                            |                           | 50                                                  |                                           | ] [] [] [] []                             | M M 521-19 900             | ;                             |
| 7            |                | , 8,4,0,0                                          |                           | :40                                                 |                                           |                                           | H M By rocks               |                               |
| 8            |                | ,8,+,5,0                                           |                           | 50                                                  |                                           |                                           | M M Not +:                 |                               |
| 9            |                | . 9,+00                                            |                           | <u>.20</u>                                          |                                           |                                           | M H Sand                   | . avel                        |
| ן<br>סנ<br>ן |                | <b>9</b> , <b>+</b> , <b>5</b> , <b>0</b><br>(0+00 |                           | 50 []<br>145                                        | Rusty 20                                  |                                           | M. H. Sandy<br>M. H. Sandy | G + (                         |
|              |                |                                                    |                           |                                                     | red                                       |                                           | 1                          |                               |

|    | PROJECT                              | RAINBOW                                                                |                           |                          |                                       |                                  |                       |                                            |
|----|--------------------------------------|------------------------------------------------------------------------|---------------------------|--------------------------|---------------------------------------|----------------------------------|-----------------------|--------------------------------------------|
|    | DATE                                 | Oct. 29, 190                                                           | 14 (SAT.)                 |                          | PLOTTED                               | MAP _                            |                       | IBN-                                       |
|    | LOCALITY                             | LAWLESS CR.                                                            | TULAMEEN                  | B.C.                     | SAMPLER                               | Erik O                           |                       |                                            |
| 1  | SAMPLE                               |                                                                        | TYPE DR<br>SURY DDRK PT.S | organ:<br>Depth material |                                       | % Gravel Horizo                  | on Clay Silt Sand     | REMARKS                                    |
| 1  | <u>1,2,3,4</u> 5,6,7,8<br><u>2,1</u> | ₩₩7AST NORTH<br>011_1213,14,15<br>16117,18,19,20<br>1,0,4,0,0 1/,8,+,0 |                           | 26127,28 29 30<br>•45    |                                       | 34,35<br><u>36,37</u><br><u></u> | 38.139 40 41<br>M M M | Sandy restant                              |
| 2  |                                      | 9+5P                                                                   |                           | .4.5                     |                                       | 10 10                            | LHH                   | Similar to 1001                            |
| 3  |                                      | 9.+00                                                                  |                           | ·45 [                    | Bren [                                | 5 0                              | HML                   | the second second                          |
| 4  |                                      | 8+50                                                                   |                           | .50                      | Bra                                   | 10 C                             | M H M                 | •                                          |
| 5  |                                      | 8, 4,0,0                                                               |                           | .6.0                     |                                       | 10 C                             | HML                   | port a constant                            |
| 6  |                                      | 7, +50                                                                 |                           | ] [.6.6] [               | Bre                                   | 15 C                             | MHM                   | ar a practic                               |
| 7  |                                      | .7.+0.0                                                                |                           | .4.5                     | हित्                                  |                                  | MHH                   | State which we have                        |
| 8  |                                      | 6+50                                                                   |                           | .50                      | Be                                    | 10 C (                           | M H H                 | Rockey and the                             |
| 9  |                                      | 6190                                                                   |                           | ] .75 [] [               |                                       |                                  | MHH                   | on since the creat<br>54 90 his creat spin |
| 10 |                                      | 5,4,5,0                                                                |                           | 50                       | Bre -                                 | 5 C                              | HHL                   | Start Resty.                               |
|    |                                      | · · · · · · · · · · · · · · · · · · ·                                  |                           |                          | · · · · · · · · · · · · · · · · · · · |                                  |                       | ·                                          |

 $\gamma = N_{1}$ 

| , | N |
|---|---|
|   |   |
|   |   |

|          |                           |                           | L                           | 8N                                |                 |               | [                         |
|----------|---------------------------|---------------------------|-----------------------------|-----------------------------------|-----------------|---------------|---------------------------|
| PROJECT  | RAINBOW                   |                           |                             | PLOTT                             | D AIR PHOTO     |               |                           |
| DATE     | OCT. 29, 1994             |                           |                             | <u> </u>                          |                 |               |                           |
| LOCALITY | LAWLESS CR. THI           | AMEENBO                   |                             |                                   |                 |               |                           |
| SAMPLE   |                           | TYPE DR<br>SURV DDRK PT.S | or<br>Depth material        | ganic<br>colour                   | % Gravel Horizo | n Clay Silt S | and REMARKS               |
|          | 5400 13141516117181970121 | 22 23124 25               | 26127128 29<br>1 <b>510</b> | 30 31,32 3:<br><b>30 31,32</b> 3: | 34,35<br>36,37  | 30130 40<br>H | Cr. + 5+20416<br>5+254.   |
| 2        | 4+50                      |                           | <u>,5</u> 0                 |                                   |                 | H H           | M Road 1 +104 14          |
| 3        | A.+0,0                    |                           | 50                          | Vet<br>Bre                        |                 | MM            |                           |
| 4        | 3,+50                     |                           | ·A.0                        | Be C                              |                 | M             |                           |
| s        | , 3,+,0,0                 |                           | 35                          |                                   |                 | M M           |                           |
| 6        | 12,+,5,0                  |                           | :7.0                        |                                   |                 | MW            |                           |
| 7        | ,2,+,0,0                  |                           | .45                         |                                   |                 | HM            | M Strong Hundhich         |
| 8        | 1+50                      |                           | ;4,0                        | 20 Bre                            |                 | MM            | M Till V. S. staston      |
| 9        |                           |                           | <u>120</u>                  |                                   |                 |               |                           |
|          | 0+09                      |                           | · <u>3</u> 5                | Red Br                            |                 | MM            | M FALL<br>M V. Focky grow |
|          |                           |                           |                             |                                   |                 |               | Pear Pr                   |

-4

| 2001501    | RAINBON        | ر.             |                 |                        | 2                |                  | PHOTO                     |             |               | L       |
|------------|----------------|----------------|-----------------|------------------------|------------------|------------------|---------------------------|-------------|---------------|---------|
| DATE .     | OCT            | 1994           | _               |                        |                  |                  | MAP                       | 92          | 4056          |         |
| LOCALITY   | TULAMET        |                | `               |                        | 57               | AMPLER           |                           | T. B. LISL  | . ඌ           |         |
| SAMPLE L   | OCATION - GRID | - TYPE<br>SUBY | DR<br>BDRK PT.S | c<br>Depth materia     | rganie<br>1 colo | ur %Grav         | el Horiz                  | on Clay Sil | t Sand        | REMARKS |
|            | EAST W NO      | RTH            | 23,74 25        | 26127,28 29<br>-40 TF? | 30 31,32<br>L RG | 33 34.35         | 36.37<br>B <sup>7</sup> , | 38139 4     | 2 41          |         |
| 2          | 4+00 119       | 1400           |                 | ·120 TF                | L RIB            | ] [] + <u>50</u> | $C^{3}$                   | 4           |               |         |
| 3          | 3+50 19        | 17 pc          |                 | .55 T                  | LPB              | 20               | C 2                       | M           |               |         |
|            | 3+00 12        | R+,00          |                 | .45 7                  | L P.B.           | , 25             | <u>ر</u> ۲                | L-M. M      | <b>у</b> м-н, |         |
| 5          | 1217,50 1      | 7,4,0,0 5      |                 | .45 T                  | L P.B.           | 2 5              | <i>C</i>                  | M. A        | M             |         |
|            | 121+100 119    | 7,7,00         |                 | .50                    | L P.B            | g. 5             | 5                         | M-H         | M             |         |
|            | 1,450 19       | 400 5          | Classe          | ·125 T                 | L DK             | 3. 10-15         | Ę                         | MTH.        | 4 M           |         |
| 8          | 1+00 19        | 100            | ?               | ·40 T                  | L P.B            |                  | G                         | M           |               |         |
| 9 <b>*</b> | 0+50 1         | 9.+00          | ?               | ·45 T                  | L P.B            | d. +15           | <u>,</u>                  | M           | 1             |         |
|            | ,0+00 ,1,      | 9,7.90         |                 | · 40 7                 | L P.E            | 4-15             |                           | <u>M</u> .  | M. M. C.      |         |
| C,<br>e    |                |                |                 |                        |                  |                  |                           |             |               |         |

1 3

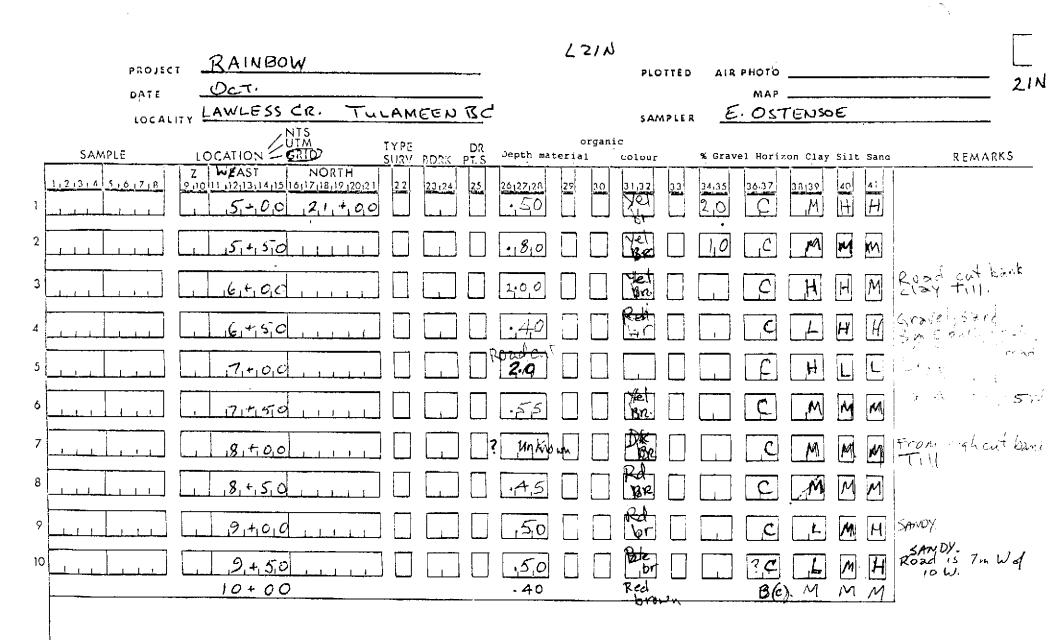
 $c \propto$ 

1 9N

19N

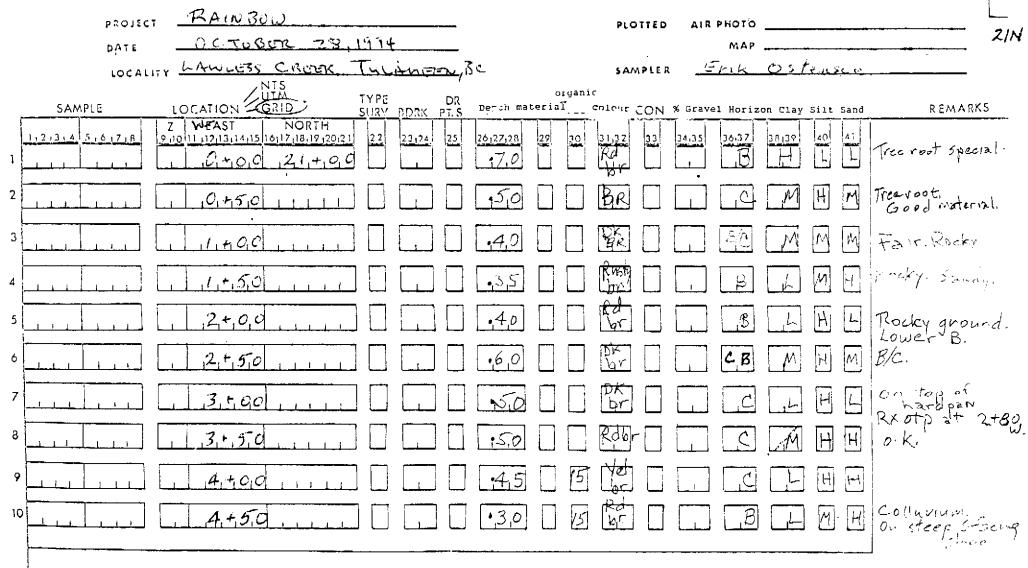
|    | PROJECT .                                                                  | RAINTSOUL                        |                           |                | PLOTTED                      | AIR PHOTO                        |                | [9,4         |
|----|----------------------------------------------------------------------------|----------------------------------|---------------------------|----------------|------------------------------|----------------------------------|----------------|--------------|
|    | DATE -                                                                     | 007 .20/94<br>TULAMOON           | · · · ·                   |                |                              | MAP                              |                |              |
|    | LOCALITY                                                                   | , NTS                            |                           | org            | \$AMPLER<br>manic            |                                  |                |              |
| 1  | ······                                                                     |                                  | TYPE DR<br>SURY DORK PT.S | Depth material | colour %                     | Gravel Horizon Cl                | ay Silt Sand R | EMARKS       |
| 1  | 1,2,3,4         5,6,7,8         2,13           -1,-1         -1         -1 | $\frac{2}{10} + 0.0 + 1.9 + 0.0$ | 2 2<br>23,724<br>2.5      |                | 30 31,32 33 34,<br>L Be. 15- |                                  |                | T. (1        |
| 2  |                                                                            | 1917150 111914019                |                           | 807            | Br Z                         | 0 C H                            | ML EAD SZM     | Playey till. |
| 3  |                                                                            | 9700 19400                       |                           | -50 7          | L Pale 1                     | s C M                            |                |              |
| 4  |                                                                            | 18,7,50 ,1,9,7,00                |                           | ·40 7          |                              | 5 C M+                           |                |              |
| 5  |                                                                            | BTOP 1.9.1.00                    |                           | · <i>55</i> 7  | 4 RB +2                      | p 32, M                          | MM             |              |
| 6  |                                                                            | 17,+,50 1,9,+,00                 |                           | - 60 7         | L YB Z                       | 0 G M-H                          | M m-44         |              |
| 7  |                                                                            | 7,7,00 ,1,9,2,00                 |                           | .65 7          | L YB ±2                      | р <u>С</u> м-н                   | + m m          |              |
| 8  |                                                                            | 6750 19200                       |                           | .60 7          |                              |                                  | M M IOM W      | of CK.       |
| 9  |                                                                            | 6400 19.400                      |                           | 1.5e 7         |                              | <i>.</i>                         | m m-4.         | Ango lev     |
| 10 |                                                                            | 5+50 19+00<br>5+00 19+00         |                           | -65 T<br>-55 T | L 13 1 2<br>L 995. 15        | 5 C <sup>2</sup> t=n<br>20 C t-m | M M Rocker     | ing o lar.   |
|    |                                                                            | ·                                |                           |                |                              |                                  |                |              |

.


· ``,

|           |                                                                                     |                                       | ι,                               |                 |                     |             |                                            |                     |              |      |         |      |
|-----------|-------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-----------------|---------------------|-------------|--------------------------------------------|---------------------|--------------|------|---------|------|
|           |                                                                                     |                                       |                                  |                 |                     |             |                                            |                     |              |      |         |      |
| PROJECT - | KAINBOW.                                                                            | 2                                     |                                  |                 | P. OTTED            | AIR F       | ното                                       |                     |              |      |         |      |
| DATE -    | OCT. 27 (94                                                                         | · · · · · · · · · · · · · · · · · · · |                                  |                 |                     |             | MAP                                        |                     | 1240         |      |         |      |
| LOCALITY  | TULAMUTEN.                                                                          |                                       |                                  |                 | SAMPLE              | <del></del> |                                            | <u> ب</u>           | USLE         |      |         |      |
| SAMPLE L  | OCATION STA                                                                         | TYPE DR<br>SURY BORK PLS              | Depth mater                      | organic<br>rial | colour              | % Grave     | 1 Horiz                                    | on Clay             | Silt Sand    |      | REMARKS |      |
| 7         | DIT 12131415 161718.19120121<br>DIT 12131415 161718.19120121<br>DIT 101 12 12 10 10 | 22 23174 25<br>5 ?                    | 26 <u>127128</u><br>• <b>6 0</b> |                 | 31,32 33<br>P1Be    | 34.35<br>Zp | 36:37<br>C                                 | 3 <u>8139</u><br>M. | 40 41<br>M M |      |         |      |
| 2         | 101+1510 12101+1010                                                                 | 570                                   | •40                              |                 | Pibe.               | +15         | <b>¢</b> ?                                 | M                   |              |      |         |      |
| 3         | 11+00 20+00                                                                         |                                       | .50                              |                 | Y.Ba                | 15          | C                                          | M                   | M H          |      |         |      |
|           | 11+150 12101000                                                                     |                                       | .45                              | TL              | Y.B.                | 15          | Ģ                                          | M                   | MM           |      |         |      |
| 5         | 121+1010 ,219+100                                                                   |                                       | .60                              |                 | RBe 🗌               | 15          | <u>B?</u>                                  | M                   | MM           |      |         |      |
| 6         | 121+159 1210+100                                                                    |                                       | •,6,0                            |                 | Þ.Ba                | 15          | B <sup>2</sup> <sub>1</sub> C <sup>2</sup> | M                   | MM           |      |         |      |
|           | 31,00 ,20,400                                                                       |                                       | .30                              | 7               | BR                  | 20          | B                                          | M                   | M            |      |         |      |
| 8         | 3+159 120+100                                                                       |                                       | • 70                             |                 | YBe                 | +15         | C                                          | κή.                 | MM           | Near | ord Pi  | 45   |
| 9         | HHUN JUHAC                                                                          |                                       | •40                              |                 | P.B.                | 20          | C                                          | M                   | MM           |      |         |      |
|           | A.+50 120+00                                                                        |                                       | ·50<br>·65                       |                 | 7 <b>8</b> 2.<br>BR | 20<br>20    | ß                                          | M-H<br>M            | M M<br>M N   | Near | Bedroc  | 216- |

20N


 $\sum_{i=1}^{n}$ 

|    | 21039           | RAINE                                   | ാധ 2.              |              |                     |                                   |                |                  |        |        | ρκοτό      |                   |        |       |                           |       | 20N. |
|----|-----------------|-----------------------------------------|--------------------|--------------|---------------------|-----------------------------------|----------------|------------------|--------|--------|------------|-------------------|--------|-------|---------------------------|-------|------|
|    | DATE            |                                         | 27 194             |              |                     | -                                 |                | PL               | OTTED  | дік    | мар        | •                 | 9214   | 056   |                           |       |      |
|    | LOCAL           | ITY TOLAM                               | 1 5 B W            |              | •                   | _                                 |                | 5 A              | MPLER  |        | ·          | - (- E - ,        | ۲.     |       |                           |       |      |
|    | SAMPLE          | LOCATION                                | NTS<br>UTM<br>GRID | TYPE<br>Sury | D<br><u>2038 PT</u> | R<br>S Depth m                    | or<br>naterial | ganic<br>colo    | ve  %  | Gravel | Norizo     | n Clay            | Silt 5 | and   |                           | REMAR | K\$  |
| 1  | 1,2,3,4 5,6,7,R | Z WSAST<br>0.10 11.02030405<br>1.51+5 P |                    | 22           | 23124 2             | s <u>26127128</u><br>•1 <b>25</b> |                | 0 31,32<br>L YBR |        | 34.35  | 36.37<br>Ç | 38139<br><b>H</b> | 40     |       | t.<br>Serve               |       | •    |
| 2  |                 | 161400                                  | 1210+1010          |              |                     | ·150                              | 7              | PiBa             |        | 20     | Ę          | MTH               | Μ      | M-L   |                           |       |      |
| 3  |                 | 6_+_S p                                 | 20,400             |              |                     | -6.0                              |                | BI               |        | -5     | A          | 4'                | 2      |       |                           |       | · .  |
| 4  |                 | 17,+00                                  | 1201+,00           |              |                     | .50                               |                | GR               |        | 15     | <i>C</i> ? | M                 | Μ      | M     | 1997 - 19<br>19 - 19 - 19 |       |      |
| 5  |                 | , ,7,+,S,O                              | 120,+,00           |              |                     | •60                               | ] 7 [          | L YBA            |        | 15     | C 2        | M                 | Μ      | M     |                           |       |      |
| 6  |                 | , <u>181400</u>                         | 201+190            | ] [3]        |                     | .65                               |                | 4 X-9<br>X-8     |        | 20     | C?         | M                 | Μ      | M     |                           |       |      |
| 7  |                 | 8+,5P                                   | 20,400             |              |                     | .70                               |                | L RB             |        | 20     | <u>c</u> ? | M                 | М      | M     |                           |       |      |
| 8  |                 | , 9rt pp                                | 20,100             | ] []         |                     | .60                               | ] 🖻 (          | L YBA<br>BR      | ] []-/ | 15     | C          | M                 | M      | MA. T | ίορ                       | of C' |      |
| 9  |                 | 9,450                                   | 12101+160          | ] []         |                     | ·6 <sub>0</sub>                   |                | L BR             |        | 15720  | ٢?         | Н                 | Μ      | L     |                           |       |      |
| 10 |                 | , 1,0,+, o,c                            |                    | , []         |                     | .59                               | ] - []         |                  | å.     | 20     | ٢,2        | M                 | М      | M     |                           |       |      |
|    |                 |                                         | <u>+</u>           |              |                     |                                   |                |                  |        | ····   |            |                   | ••••   |       |                           |       |      |



· ~ .

| 121 | N |
|-----|---|
|-----|---|



1

÷

|           | project    |   | RAINBOW            |                     |      |                    |                   |                   | PLOT               | TED | AIR          | рното         |                     |         |         |                 |                                    | H.                                                 |
|-----------|------------|---|--------------------|---------------------|------|--------------------|-------------------|-------------------|--------------------|-----|--------------|---------------|---------------------|---------|---------|-----------------|------------------------------------|----------------------------------------------------|
|           | DATE LOCAL |   | OCTORES<br>LAWLESS |                     |      | MAR BC             | _                 |                   | SAM?               | LER | H            | MAP<br>Erik ( | <u>92</u><br>2: Ken |         |         | 6               |                                    | 22N                                                |
| SAMPLE    |            | L | OCATION H          | NTS<br>JTM<br>SRIDJ |      | DR<br>DDRK PT.S    |                   | organ<br>material | _                  |     |              | Horiz         |                     |         |         |                 | , R E M A                          | RKS                                                |
| 2+314 510 | 61718      | Z | WEAST              | NORTH               | 1 22 | 23.74 25<br>Schist | 26127128<br>•14,0 | 29 30             | 31,32<br>Red<br>hr | 33  | 34,35<br>1_0 | 36:37<br>C    | 20139<br>L          | 40<br>M | A1<br>M | Rocky<br>Splist | 1 x6 x<br>BR of<br>e. Rus<br>st fm | to adjoins<br>by sericit<br>cy sericit<br>SW. moti |
|           |            |   | 4,+,5,0            |                     |      |                    | • 70              |                   | lar [              |     | 10           |               | M                   | M       | M       | -to<br>Not      | 5+2:<br>tilli                      | S WE PROVE                                         |
| i         | 1 1        |   | 4-00               |                     |      |                    | 150               |                   | <u>ак</u><br>'яу [ |     | 1,0          | <u> </u>      | M                   | M       | М       | Till            |                                    |                                                    |
|           |            |   | 3+50               |                     |      |                    | •50               |                   | hind<br>br         |     | 5            | LC            | Щ                   | Μ       | M       | From            |                                    | l ately<br>mer                                     |
|           |            |   | 13,-10,0           |                     |      |                    | •6,0              |                   | Mor A              |     | 10           |               | M                   | نبيت    | فببيا   | <i>+-</i> : -   |                                    |                                                    |
|           |            |   | 121+150            |                     |      |                    | ·3.0              |                   | DK<br>br           |     | 5            | C/.B?         | M                   | M       | M       | 1200<br>28 A    | т. С.<br>Т. С.                     |                                                    |
|           | 1          |   | ,2,+0,0            |                     |      |                    | .30               |                   | Br                 |     | [/]0]        | В             | M                   | 1       | M       | Colly<br>and    | reddis<br>y. soil                  | a-br.                                              |
| 1.4       |            |   | 1, +, 5,0          |                     |      |                    | :4.0              |                   | br                 |     | 10           | <u> </u>      | M                   | 1       | H       | V.rock<br>Not = | y. 5017                            | ,                                                  |

:40

:6,0

·50

1.1.2

1

2

3

4

5

6

7

8

9

10

1+00

0+50

0+00

L-22N

Br

Grey br DKGrey

15

149

M

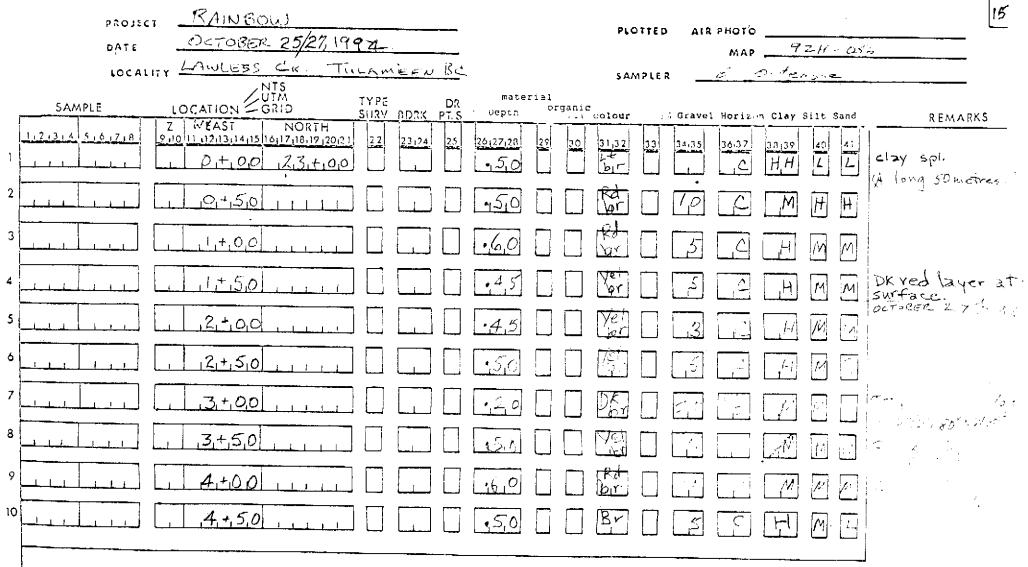
<u>,</u>

Ç

Ċ

M

H Sandy , tocky 7.11.

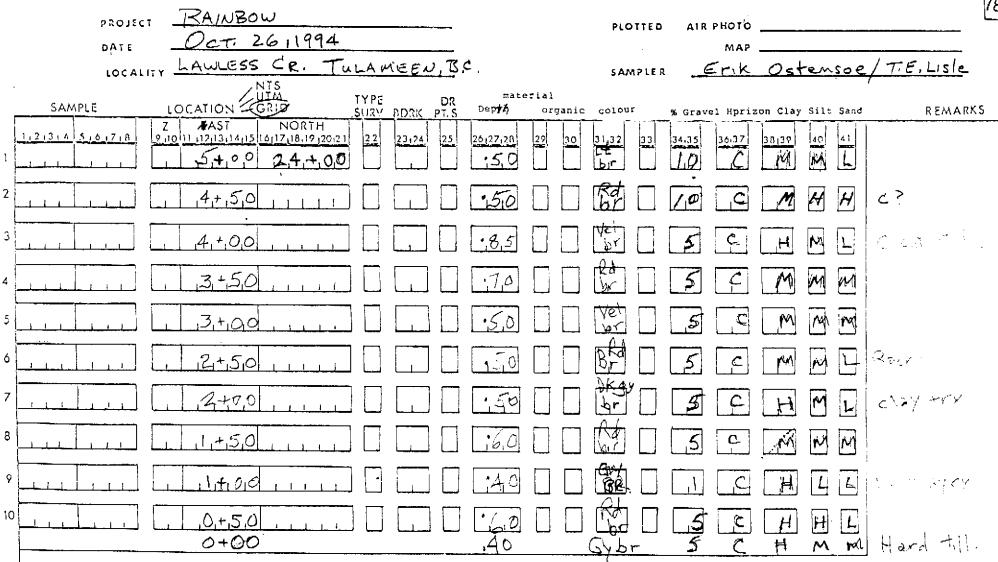

Muchy till-clay Would busty B'be better? Tree root. All clay.

Ň

|    | PROJECT               | RAINBOW<br>OCT. 25 194 | ef.                        |                     |                 |             | PLOTI                   | TED AIR         | PHOTO       |            |              |                                                         | - 22N                           |
|----|-----------------------|------------------------|----------------------------|---------------------|-----------------|-------------|-------------------------|-----------------|-------------|------------|--------------|---------------------------------------------------------|---------------------------------|
|    | •                     | LANGESS CR<br>NIS      |                            | <u>Re</u> 1         |                 |             | \$AMP                   | 1 E R           | MAP<br>Erik |            | H - D.       | ··· (,,                                                 |                                 |
|    | SAMPLE                |                        | TYPE<br><u>Surv Dork F</u> | DR<br>9 <u>7. S</u> | Dopth materi    | organ<br>al | ic<br><sup>Colour</sup> | % Grav          | ei Horiz    | on Clay    | Silt Sand    | B REA                                                   | A A RKS                         |
| 1  | <u>12,314</u> 5,617,8 | 10111203040508012080   | 2 120:21 2.2 23:24         | 25                  | 26127.28<br>•50 | <u>30</u>   | 31,32<br>Dir            | 13 34.35<br>1,5 | 36:37<br>C  | 37,39<br>M | 40 41<br>M M | Topmost 12<br>till?                                     | iver of                         |
| 2  |                       | 9,+,5,0                |                            |                     | 1.810           |             | br [                    |                 | ĹĈ          | Ч          | ML           | Soil Hake                                               | A 25                            |
| 3  |                       | 9,4,0,0                |                            |                     | .60             |             |                         |                 |             | M          | HM           | Not the use                                             | Good spin                       |
| 4  |                       | .3,+,≞,o               |                            |                     | •,4,0           |             | dk<br>bir               | 5               | C           | M          | MM           | Deep soil<br>Dirt mon.<br>till laye                     | 1.<br>Top of                    |
| 5  |                       | 18,-10,0               |                            |                     | · 8p            |             | ler [                   |                 | C           | М          | MM           | Till                                                    | r                               |
| 6  |                       | 17141510 111           |                            |                     | .9.0            |             | le<br>br                | [70]            | C           | ,H         |              | Corgeks at 7.<br>Sp Aron or<br>Rocky HIN<br>Forest Fast | 1) 7-165W<br>COU LOANY<br>DAVER |
| 7  |                       | ,7,+,0,0 , , ,         |                            |                     | .8.0            |             | tt<br>br                | ] []0]          | C           | ,H         |              | Forest Fast                                             | JA 7+50×                        |
| 8  |                       | 6-50                   |                            |                     | .6.5            |             |                         |                 | <u>د</u>    | M          |              | <b></b>                                                 |                                 |
| 9  |                       | 1611010 111            |                            |                     | 150             |             | br [                    | 1.5             | F           |            |              | Pale brown<br>Hard stone                                | to grey                         |
| 10 |                       | 5,1,5,0                |                            |                     | ·20             |             | LE<br>bir               | 10              |             | M          |              | Stoney t. 1<br>slope W'ly +                             | From<br>o creek                 |
|    |                       |                        |                            |                     |                 |             |                         |                 |             |            |              | 1 24 5+541                                              | ~                               |

ł

L23N




|    |          |                                                 |                        | L23/                                  | V                     |                                               |                  |                                    |
|----|----------|-------------------------------------------------|------------------------|---------------------------------------|-----------------------|-----------------------------------------------|------------------|------------------------------------|
|    | PROJECT  | RAINBOW                                         |                        | _                                     |                       |                                               |                  | 16                                 |
|    | DATE     | OCTOBER                                         | 27, 1994               | -                                     | PLOTTED               | аі <b>г</b> рното<br>Мар                      |                  |                                    |
|    | LOCALITY | LAWLESS CR.                                     | TULAMEEN,              | BC                                    | SAMPLER               |                                               | Ostensoe         |                                    |
|    | SAMPLE ( | OCATION SRID                                    | TYPE D                 | R organ                               | nic                   |                                               |                  |                                    |
| 1  | Z        | EAST NORT                                       |                        |                                       | colour % G            | ravel Horigon                                 | Clay Silt Sand   | REMARKS                            |
| 1  |          | <u>11 (12)3(14)15 16)17(18)15</u><br>5+00 2.3,4 | الافا المستعين المستحي | 5 <u>26127,28</u> <u>29</u> <u>30</u> | 31,32 33<br>DVK<br>Ba | 34.35 36.37<br>3 B/C                          | 30,39 40 41<br>H | Rocky Collovium?                   |
| 2  |          | 5,+50                                           |                        | 35                                    | LBe [                 | 10 C                                          | LHH              | on Bedrock.                        |
| 3  |          | 16,+,0,0                                        |                        | 55 🛛                                  | LBR,                  | ρÇ                                            | M M.             |                                    |
| 4  |          | 161+50                                          |                        | .4,5                                  |                       | 5 [C                                          | HML              |                                    |
| 5  |          | 77.00                                           |                        | ] ·A.5                                |                       | 5 C                                           | H L L            | -++ 11.                            |
| 6  |          | 7,+,50                                          |                        |                                       |                       | 5 C                                           |                  |                                    |
| 7  |          | 8, -, 0, 0                                      |                        | 50                                    |                       | 10 C                                          |                  | Till slash sty<br>Cresh at 8+10 W. |
| 8  |          | ,8,+,50,,,,                                     |                        | -5,0                                  | Br                    | 3                                             |                  | Cred at 8+10 ~.<br>Road el 8+60-70 |
| 9  |          | 9,+0,0                                          |                        |                                       |                       | 3 C                                           | HML              | Clay Till W                        |
| 10 |          | 9+50<br>10+00                                   |                        | ] [53]                                |                       | S C                                           | HMM              | 711                                |
|    |          |                                                 |                        |                                       | Yet's                 | <u>/ 0                                   </u> | MMH              | Sandy +,11                         |

i.

L23N

24N



. .

( ....

ì

r 1

LZ4N

|         |                                                                                    |                                                                              |                                | LZ4N                                      |                                                    |                                        | 10                        |
|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------|
|         | PROJECT                                                                            | RAINBOW                                                                      |                                | PLOTTE                                    |                                                    |                                        | 17                        |
|         | DATE                                                                               | Oct. 26, 1994                                                                |                                |                                           | MAP                                                | ······································ |                           |
|         | LOCALITY                                                                           | Lawless Creek. T.                                                            | limeer, B.C                    | SAMPLE                                    | R ERKO                                             | STENSOE                                |                           |
| -       | SAMPLE                                                                             |                                                                              | PE DR<br>RV NDRK PT.S Depth ma | organic<br>terial colcur                  | % Gravel Horizon Cl                                | ay Silt Sand REMAR                     | KS                        |
| 1       | 1,2,3,4         5,6,7,β         2,1           -1,2,3,4         5,6,7,β         2,1 | WZAST NORTH<br>0 11 112113114115 16117 18,19,20,21<br>1 10,7 10,0 12,4,+10,0 | 22 23,24 25 26127,28<br>15,0   | 29 <u>30</u> <u>31,32</u> <u>33</u><br>Br | 34.35<br>36.37<br>30.37<br>30.39<br>10<br>10<br>10 |                                        | ccial                     |
| 2       |                                                                                    | 9,+,5,0,,,,,,                                                                | -1415                          | Pate                                      | 5 C M                                              | M M Possible Till,                     |                           |
| 3       |                                                                                    | , 3, +, 0, 0                                                                 |                                | Grey<br>br                                | 10 [] [M                                           | M M Till Dense B<br>RODA From 8+       | 72 +                      |
| 4       |                                                                                    | 13,+15,0,                                                                    | <u> </u>                       |                                           | M. 2 0.1                                           | U II II Till On stop                   | inii.<br>Nair<br>Aran ann |
| 5       |                                                                                    | 8,+;0,0                                                                      |                                | br                                        |                                                    | M L slash e 20 to                      | 0₩1<br>7+75 W.            |
| 6       |                                                                                    | 17,+,5,0                                                                     |                                |                                           |                                                    |                                        |                           |
| 7       |                                                                                    | .7.+.0.0                                                                     |                                |                                           |                                                    |                                        |                           |
| 8       |                                                                                    | 6, +, 5, 0                                                                   |                                |                                           |                                                    |                                        | , Ν                       |
| 9<br>10 |                                                                                    |                                                                              |                                |                                           |                                                    |                                        |                           |
|         |                                                                                    | 5,+,5,0                                                                      |                                |                                           |                                                    |                                        |                           |
|         |                                                                                    |                                                                              |                                |                                           |                                                    |                                        |                           |

ÿ.

i.

i

. . . .

L25+00N

|    | PROJECT                      | RAINBOW                                                | PLOTTED AIR PHOTO                                                        |     |
|----|------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-----|
|    | DATE                         | October 24, 1994                                       | MAP 924-056                                                              |     |
|    | LOCALITY                     |                                                        | SAMPLER Erik Ostensoe                                                    |     |
|    | SAMPLE                       | LOCATION GRID SURV BORK PT.S                           | organic<br>Depth material Colour %Gravel Horizon Clay Silt Sand R        |     |
| 1  | <u>1,2,3,14</u> 5,16,17,8 9, | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                    |     |
| 2  |                              |                                                        |                                                                          | - 4 |
| 3  |                              |                                                        |                                                                          |     |
| 4  |                              |                                                        |                                                                          |     |
| 5  |                              |                                                        | LEO Br 3 C H U M Upper til                                               |     |
| 6  |                              |                                                        |                                                                          |     |
| 7  |                              |                                                        | . 90 DET I SCHEL Motored the                                             |     |
| 8  |                              | 3,+,5,0                                                | B. B. C. C. M. H. Stratter                                               |     |
| 9  |                              |                                                        | 550 CEEEEEEEEEEEEEEEEEEEEEE                                              | 1   |
| 10 |                              | <u>4, +, 50</u>                                        | 3.5 Br 20 B/C 1 M M Hoorly developed<br>horizon: Edge &<br>forest at 4+3 | J.  |
|    |                              |                                                        | Otps an aroun                                                            | d.  |

r

L 25N

|    | PROJEC                                | r                                   |                                             |                 |                |              |                  |                         |         |              |            |              |           | 12                                                                                                              |
|----|---------------------------------------|-------------------------------------|---------------------------------------------|-----------------|----------------|--------------|------------------|-------------------------|---------|--------------|------------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------|
|    | DATE                                  |                                     |                                             |                 |                | -            |                  | PLOT                    | TED AIR | рното<br>Мар |            |              |           |                                                                                                                 |
|    | LOCALI                                | 7.7                                 |                                             |                 | •              | -            |                  | SAMP                    | LER     |              |            |              |           |                                                                                                                 |
|    | SAMPLE                                | LOCATION                            | NTS<br>UTM<br>GRID                          | Ť Y PE<br>SU 2V | D.<br>BD3K PT. |              | organi<br>terial | c<br>Colour             | % Grave | ≥l Horiz     | on Clay    | Silt Sand    | r R       | EMARKS                                                                                                          |
| 1  | 1,2,3,4,5,6,7,B                       | Z //EA5T<br>9.10111.12,13,11<br>5.4 | NORTH<br>4115(16)17,18,19,20<br>29 2.5.5.10 | 21 22           | 23124          |              | 29 30            | 31,32<br>Rd             | 1,5     | 36.37        | 38138<br>M | 40 41<br>M M | What is   | rock at                                                                                                         |
| 2  |                                       |                                     | 1                                           |                 |                | 130          |                  |                         |         |              | H          |              | c1211501  | soil.<br>the black<br>the brown                                                                                 |
| 3  |                                       |                                     |                                             |                 |                | •4,5         |                  | Rea<br>Jori             |         | 3            | Ц          |              |           | Sate Sate - S |
| 4  |                                       |                                     |                                             |                 |                | •4 ×         |                  |                         | ] [/,0] |              | M          |              |           |                                                                                                                 |
| 5  |                                       | 17,*.                               | 20                                          |                 |                | <u>;</u> 30  |                  | Por [                   |         |              | H          | MM           |           |                                                                                                                 |
| 6  | · · · · · · · · · · · · · · · · · · · | 7.4                                 | 50                                          |                 |                | · <u>5</u> 0 |                  | Mid                     |         | Ĺ            | H          |              | 1.7       |                                                                                                                 |
| 7  |                                       | . jô, 4                             | 0.0<br>Oct. 25/94                           |                 |                | .40          |                  | l'ar                    | 1,5     | C            | M          | MM           | TIL RO    | ocky!                                                                                                           |
| 8  |                                       |                                     |                                             |                 |                | 16,0         |                  | yei<br>br               | 1,0     | 2            | [          | M Z          | Tilli Fin | re of woods<br>175 W. Cr. 27<br>8 + 70W.                                                                        |
| 9  |                                       | <b>19</b> ,+,,                      | 0011                                        |                 |                | :50          |                  | V pale<br>brown<br>grey | [10]    |              | [H]        |              |           |                                                                                                                 |
| 10 |                                       | (0+c                                |                                             |                 |                | ·55          |                  | bir [                   |         |              | [H]<br>M   | M M<br>M M   | T.II.     | ave post                                                                                                        |
|    |                                       |                                     |                                             |                 |                |              |                  |                         |         | <u> </u>     |            | 1*1 1*1      | <u></u>   | * 9+ 75W                                                                                                        |

r'

26 N.

Ì

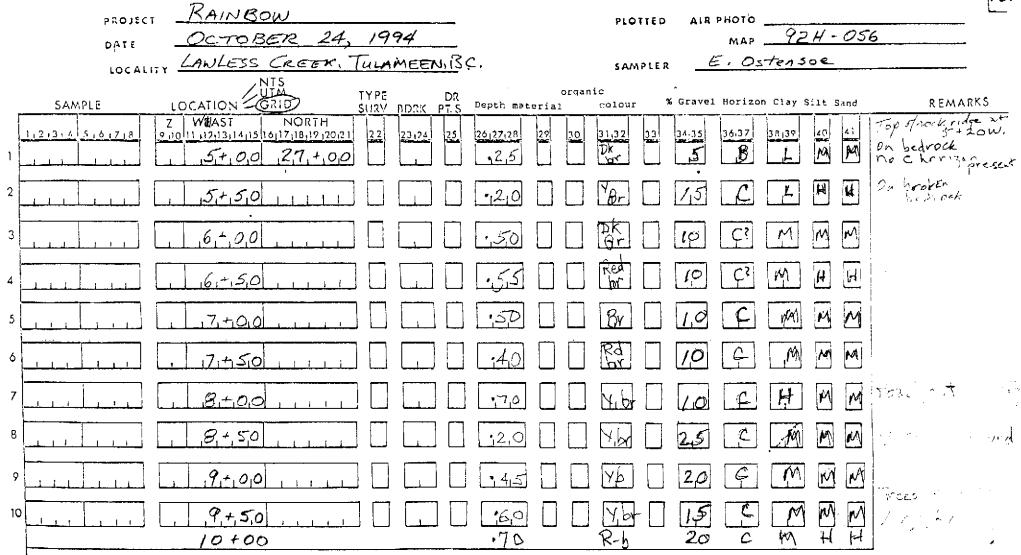
|    | PROJEC<br>DATE  | 0 CT 24, 199                                                       |                |                        |             |                                 | PLOTTED         | AIR                | рното<br>мар                                                                                                                                 | 92 4            | 1 05       | 6                                                 |
|----|-----------------|--------------------------------------------------------------------|----------------|------------------------|-------------|---------------------------------|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------------------------------------|
|    |                 | ITY TULAMOUN                                                       |                |                        |             |                                 | SAMPLER         | <b></b>            |                                                                                                                                              | E. LISUS        |            | <b>_</b> , , <b>_</b>                             |
| -  | SAMPLE          | LOCATION GRIDE                                                     | TY PE<br>SURM  | ם<br><u>הסגר את סק</u> | epth materi | organi <b>c</b> c<br>ial        | colour          | % Grav             | vel Hori                                                                                                                                     | zon Clay 5      | ilt San    | a REMARKS                                         |
| 1  | 1,2,3,4,5,6,7,8 | Z EAST NOF<br>9,1011,12,13,14,15<br>1.0,17,18,<br>1.0,14,10,026,17 | 19 12012 1 2.2 | 23,24 25               | 26127128    | 27 <u>30</u><br>51 <b>6 2</b> L | 31,32 33<br>BR. | 34.35<br><b>ZO</b> | 36.37<br><b>B</b>                                                                                                                            | 30139 40<br>H M | K          | CRBEIL BOB - Clay-Si<br>Poise Squepler + Grove 1- |
| 2  |                 | 1 01 1+1510 2141                                                   | +1010 S        |                        | 70          | 74                              | y Br            | 153                | 4                                                                                                                                            | M-IH M          | L          | ISM to SE of Star                                 |
| 3  |                 | 1 de +1 +100 Z 161 1                                               | + 90 \$        |                        | .65         | 74                              | P BR<br>Y Be    | 15-22              | G                                                                                                                                            | <u>w</u> w      | <b>\$9</b> | Top se'c'                                         |
| 4  |                 | 1 + 50 26                                                          | HOC S          |                        | .50         | 74                              | YIB             | 10115              | ¢                                                                                                                                            | M [14]          |            | TPEE Proving                                      |
| 5  |                 | 21110026                                                           | + 00 5         |                        | .70         | 74                              | XB ]            | 15                 | C                                                                                                                                            | MM              |            |                                                   |
| 6  |                 | 1 21 171510 2161                                                   | +190 5         |                        | . 60        |                                 | Bfe             | 15                 | <u> </u>                                                                                                                                     | M M             |            | THE CONTRACTOR                                    |
| 7  |                 | 3. 17.00 2.6                                                       | +190           |                        | .50         | 7 2                             | RBe -           | 15-20              | <b>C</b> <sup>-</sup> ?                                                                                                                      | 1 P             |            | Bistoner 15'                                      |
| 8  |                 | 3 1+ 1510 ZG                                                       | +1010          |                        | .50         | 72                              | YB2.            | 20                 | C                                                                                                                                            |                 | ]          | thender service                                   |
| 9  |                 | 4 1 10024                                                          | + 90 5         |                        | . 60        | Ŧ 4                             | Per -           | - 15               | <u>c</u> ?                                                                                                                                   |                 |            |                                                   |
| 10 |                 | 4 + 50 26                                                          |                |                        | • 4.5       |                                 | Be              | 20                 | <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                 |            | suberap-<br>angular Frags                         |
|    |                 | 5+00 26                                                            | +06 5          |                        | .55         | +                               | PBR.            | 15                 | C.                                                                                                                                           | ~ ,             | u m        |                                                   |

26 N.

| PROJECT<br>DATE |                                                                                 |                           |                | PLOTTED A                           | MA2                                                      | 92H 056     |                   |
|-----------------|---------------------------------------------------------------------------------|---------------------------|----------------|-------------------------------------|----------------------------------------------------------|-------------|-------------------|
| •               | TULAMEEN'                                                                       |                           |                | SAMPLER                             | م.<br>مربق <u>مربق میں میں میں میں میں میں میں میں م</u> | TC LISIE    | <u></u>           |
| SAMPLE          | LOCATION - GRID                                                                 | TYPE DR<br>SURY BORK PT.S | Depth material | nic colour % Grav                   | el Horizon Cl <b>a</b>                                   | Y Silt Sand | REMARKS           |
| 1,2,3,4,5,6,7,8 | Z EAST NORTH<br>9 110111 1211311411516117118119120121<br>1 51 1+1515 ZIG 14 190 | 22<br>23124<br>25         | 26127178 29 3  | 0 31,32 33 34,3<br><b>A ic</b> 4/15 |                                                          |             |                   |
| 2               | 6 1+1010 ZIG 1+1010                                                             |                           | .40 7          | Pale Ise                            |                                                          |             |                   |
| 3               | 6, + 50 26+00                                                                   |                           | .15 7          | Pare +15                            |                                                          |             | Brocoric?         |
|                 | 7 +10,02,61+1010                                                                |                           | .55 7          | Pole<br>YBA                         | e 4-                                                     | MMH         | Edge of NK brank. |
| 5               | 7, +5026 +100                                                                   |                           | 2.40 7         | 4 YBe 25                            |                                                          | M M-H       | ·<br>·<br>·       |
| 6               | 1 8 1+ 00 2 6 1+ 1010                                                           | ⊈ <u> </u>                | •30 F          | (- 7,BR - 2,0                       |                                                          |             |                   |
| 7               | 8 +50 Z 6 + 1010                                                                |                           |                | - YiBe, Ze                          |                                                          | A M M       |                   |
| 8               | 9 + 00 2 6 + 00                                                                 |                           | 1.2:0 77       | 4 BR 24                             |                                                          |             | ON Strong ?       |
| 9<br>           | 4 +150 ZG1 +190                                                                 |                           |                | L BR 29                             |                                                          |             | Poss ć            |
|                 | 1,0,1,00 Z.G. 1,00                                                              |                           |                | G Be 1+2                            | 0 <u>B</u> <sup>7</sup> N                                | 1. m. mt    |                   |
|                 |                                                                                 |                           |                |                                     |                                                          |             | •                 |

Ĩ,

LZ7N

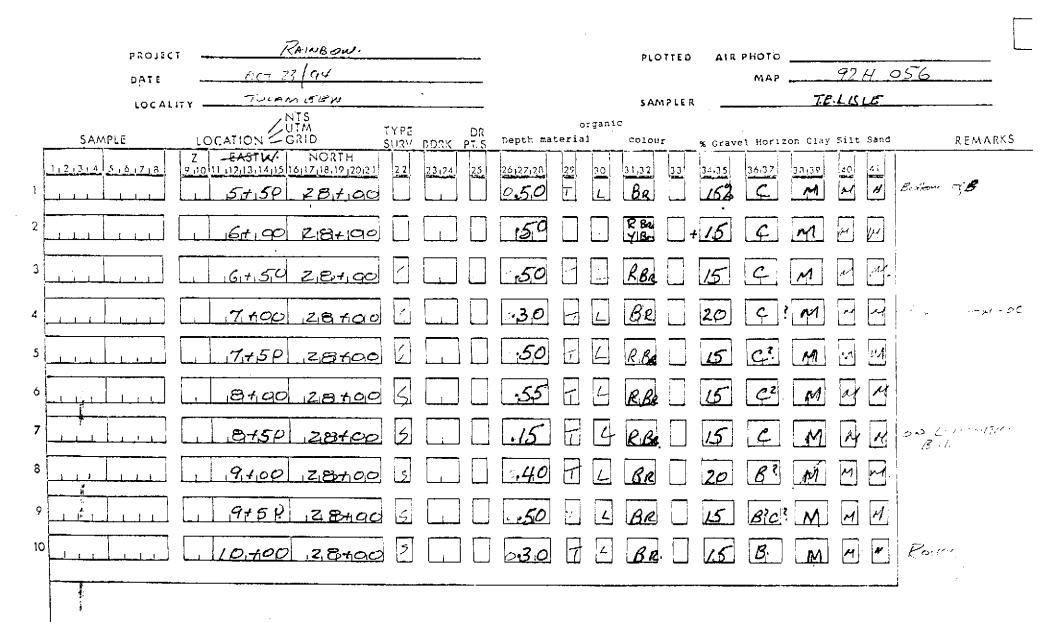

r i

.

|     | PROJECT<br>DATE              | RAINBOW<br>October 23                                                  | ,1994                |             |                 |                     | PLOT          | TED  |          | MAP         |            | 2H-              | 056                                                                                     |
|-----|------------------------------|------------------------------------------------------------------------|----------------------|-------------|-----------------|---------------------|---------------|------|----------|-------------|------------|------------------|-----------------------------------------------------------------------------------------|
|     | LOCALITY                     | Lawless Creek.                                                         | Talameen Ba          |             |                 |                     | S AM          | PLER | <u> </u> | <u>ak O</u> | )stens     | 50- <del>2</del> | ,                                                                                       |
|     | SAMPLE                       | OCATION CRID                                                           | TYPE<br>Sury Bork    | DR<br>PT. S | Depth mate      | % organie<br>rial ( | colour        | %    | Gravel   | Horizo      | n Clay S   | ilt_sam          | -R-EMARKS                                                                               |
| 1   | Z 1, 2, 3, 4 5, 6, 7, 8 0, 1 | 011.121314115 1611711819<br>011.121314115 1611711819<br>01+1010 12.7.4 | H<br>120121 22 23124 | 25          | 26127128<br>15D | 27 30               | 31,32<br>7 br | 33   | 14,35    | 36.37<br>_C | 30136<br>H | 40 A:<br>M IM    | Hard packed till                                                                        |
| 2   |                              | 10,450                                                                 |                      |             | 45              |                     | Br            |      | 0        | <u>"C</u>   | H          | MM               | ] May not be hardp                                                                      |
| 3.  |                              |                                                                        |                      |             | .50             | 5                   | Grey          |      | 0        |             | H          |                  | 1 production Section 2000<br>production and Section 2000<br>production and Section 2000 |
| * 4 |                              | 11+150                                                                 |                      |             |                 |                     |               |      |          |             |            |                  | Ny service services                                                                     |
| 5   |                              | 12,+,0,0                                                               |                      |             | ·60             |                     | cr<br>cr      |      | /,C      | <br>        |            | H                | ] Rocky                                                                                 |
| 6   |                              | 21510                                                                  |                      |             | ·5-0            |                     | br            |      | _5-      |             |            |                  | Hardpan                                                                                 |
| 7   |                              | ,3,+,0,0                                                               |                      |             | ·35             |                     | <u>Br</u>     |      | - É      | <u>[</u> 2] | M          |                  | _ ក្រុងស្ទុង ហ                                                                          |
| 8   |                              | 3,+,5,0                                                                |                      |             | 16,5            |                     |               |      | 5        | 62          | Ń          | <u>m</u>         |                                                                                         |
| 9   |                              | A+0,0                                                                  |                      |             | •,570           |                     |               |      | : 5      |             |            | <u></u>          | į                                                                                       |
| 10  |                              | 4,+5,0                                                                 |                      |             | •.6.0           |                     | Br            |      | < 10     |             |            | <i>#</i> - 7     | Poorly dev. horizon<br>I class of forest a<br>4+30w                                     |
|     |                              | · · · · · · · · · · · · · · · · · · ·                                  |                      |             |                 | •                   |               |      |          |             |            |                  |                                                                                         |

LZ7N

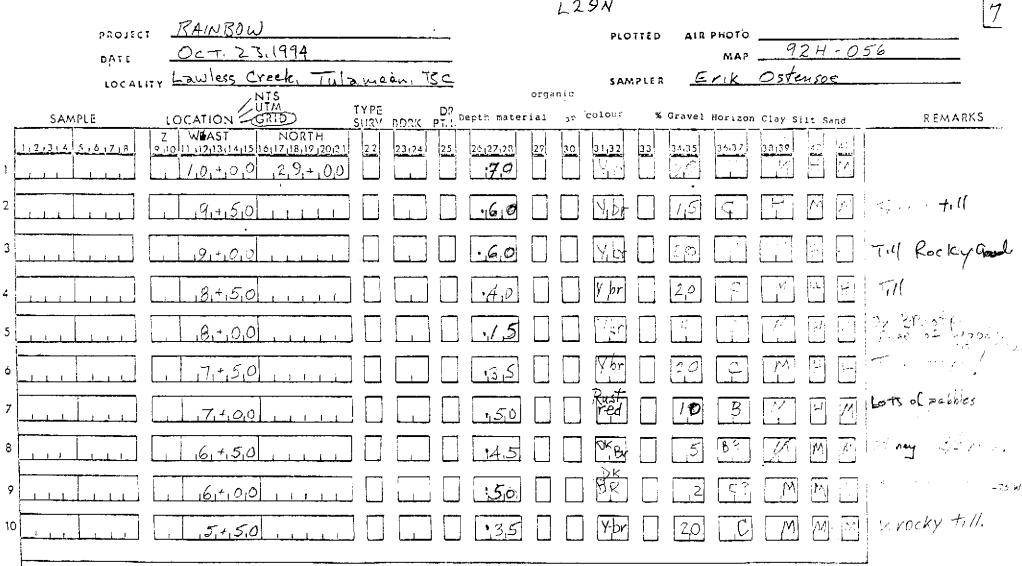
e' .




|    | PROJECT .                | RAIWBOW                                                                               |                           |                  |                  | PLOTTED          | AIR PHOTO             |            |         |                       |
|----|--------------------------|---------------------------------------------------------------------------------------|---------------------------|------------------|------------------|------------------|-----------------------|------------|---------|-----------------------|
|    | DATE                     | OCT 24, 1994                                                                          |                           |                  |                  |                  | MAP                   |            | 056     |                       |
|    | LOCALITY                 | TULAMEEN                                                                              | •                         |                  |                  | SAMPLER          |                       | 7.E ()     | SLE     |                       |
| F  | SAMPLE L                 |                                                                                       | TYPE DR<br>SURY RDRK PT.S | Depth mater      | organic<br>isl   |                  | 6 Gravel Horiz        | on Clay Si | lt Sand | REMARKS               |
| 1  | Z<br>1121314 5161718 910 | - <del>EAST</del> W NORTH<br>11.12,13,14,15,16,17,18,19,20,21<br>10,17,10,0 12,18,400 | 22<br>23124<br>25         | 25127128<br>0,40 | 2 <u>30</u><br>T | 31,32 33<br>YBR  | 34,35<br>7,5<br>26,37 | 30,39      |         |                       |
| 2  |                          | 0,7,50 121871010                                                                      | 2                         | .55 7            | M                | BR.              | 15 B                  | 11         | 4 14    |                       |
| 3  |                          | 1+100 28+90                                                                           | 5                         | -50              | 70               | YBR [            | wist G                | M .        | 1 M.    |                       |
| 4  |                          | 11+50 28+00                                                                           |                           | .60              | 7 4              | BR               | +10 B?                | M -        |         |                       |
| 5  |                          | 2,+10,0 28,+,00                                                                       | 9                         | .50              | 76               | Be               | 15 4                  |            | 4 M     | TOP OF C              |
| 6  |                          | 121+519 128+00                                                                        | 8                         | ·16 P -          | 7                | YR [             | +15 4                 | MIH        |         | we z                  |
| 7  |                          | 3+00 28+00                                                                            |                           | · ,6 ,0 7        | - 4              | Y <sub>1</sub> B | +1 E C                | Mitt       |         | TREE ROOT ANS.<br>NBT |
| 8  |                          | 3+50 28+00                                                                            | 3                         | 165              |                  | B.e.             | -15 4?                | M          |         | 4.0 Motris Noilly St. |
| 9  |                          | EHOID 28+ 90                                                                          | §                         | .30              | 7 [_             | YBe [            | 15° G                 | MTH        |         | TRUE ROOT             |
| 10 |                          | 4+50 28+00<br>5+00 28+00                                                              |                           | -70              | T<br>T<br>L      | Br               | 10715 B<br>15 C       | M-H        | M . M.  | e Below Tree Coot     |
|    |                          |                                                                                       | 5= 81                     |                  |                  | -                |                       |            |         |                       |

Ì,

ZBU


281



,

| PROJECT RAINBOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L2911 8                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE Detober 23,195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLOTTED AIR PHOTO<br>24 MAP 92H-055                                                                                                                        |
| LOCALITY Lawless Creek, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ulameen. B.C. SAMPLER Erit Mostensore                                                                                                                      |
| SAMPLE LOCATION GRID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Organic<br>YPE DR Depth material epicur % Gravel Horizon Clay Silt Sand REMARKS                                                                            |
| Z MEAST NORTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| 5 3 5 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                            |
| 6 1 12 + 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\square \square $ |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I I I I I I I I I I I I I I I I I I I                                                                                                                      |
| $10 \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $ | <u>Go</u><br><u>Bir</u> <u>J</u>               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CM hole. OT of stope.                                                                                                                                      |

| 12 | 29 | Ņ |
|----|----|---|
|----|----|---|



30 N'

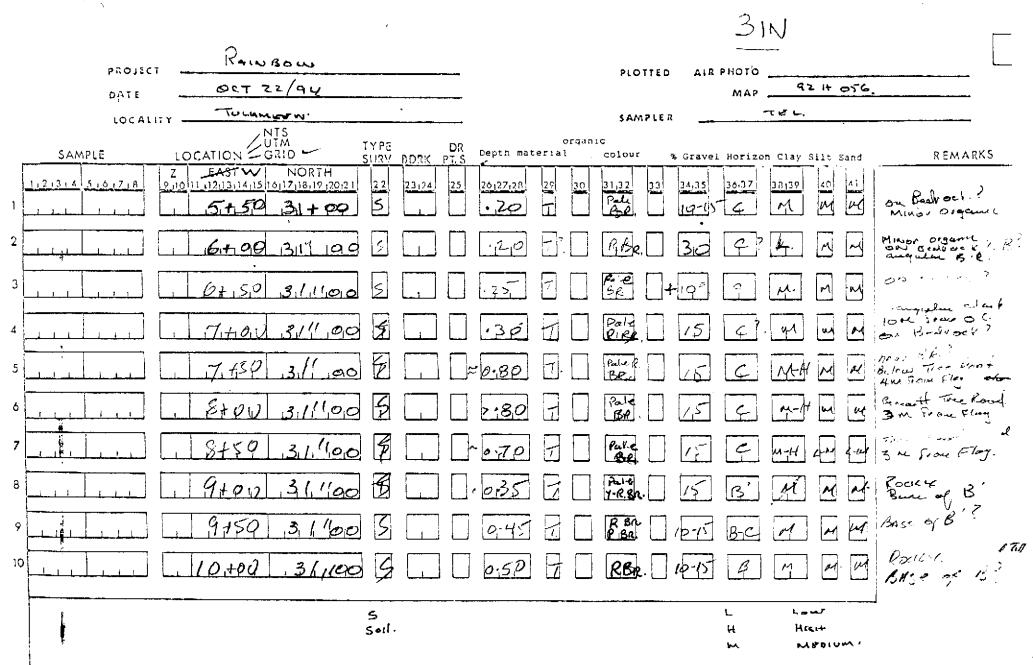
|    | PROJEC          | т <u>Rains</u><br>Ост                        | 23/84 ·             |          |             |                 | PLOTTED        | AIR PH         | -                | 924/         | 256     |             |
|----|-----------------|----------------------------------------------|---------------------|----------|-------------|-----------------|----------------|----------------|------------------|--------------|---------|-------------|
|    | DATE            | TILA                                         | NEEN                | •        |             |                 | SAMPLER        |                | MAP              | T.E.C.ISL    |         |             |
|    | SAMPLE          |                                              | TS<br>TM TYP<br>RID |          | . Depth mat | organı<br>erial | _              | % Gravel H     | orizon Clay      | Silt Sand    |         | REMARKS     |
| 1  | 1121314 5161718 | Z EAST V<br>9,10 11,12,13,14,151.<br>St. 0,0 |                     | 23,24 25 | 26127128 2  | 2 30<br>T       | 31,32 33<br>BR | 24.35<br>15    | 25155 75.0<br>M  | 40 41<br>M M |         |             |
| 2  |                 | 14.4.50                                      | 30141010 2          | 2        | 0150        |                 | Be.            | 15             | f? M             | k m.         |         |             |
| 3  |                 | .4,+,00                                      | 30,400              | ?        | 0,50        |                 | Pole           | 15%            | E M              | MM           | :       |             |
| 4  |                 | 3+50                                         | 30+100 9            |          | o,S,O       |                 | Pale<br>BR     | 15,72          | 1                | 7            |         |             |
| 5  |                 | 3,+,0,0                                      | 30100               | AP       | 0.15        | í 🖌             | RBe            | 5-10           | g 1' <u>2</u> m  | ~ 4          | on entr | gr + follow |
| 6  |                 | 12+50                                        | 30,400 4            |          | 0150        | 7               | Pula<br>R.P.   | 15%            | g []             |              | :       |             |
| 7  |                 | 12.t <b>O</b> Q                              | 30+00               |          | .67         | 7 [H]           | <u>B1.</u>     | <b>~</b> 5     | A? H.            | <u> </u>     | Poor    | Somple.     |
| 8  |                 | 1:+50                                        | 30+00 6             |          | ·65         | 1 4             | RB             | +15%           | 3'c' <b>H</b>    | M 4          |         |             |
| 9  |                 | 1400                                         | 30+00 5             | ] []     | .60         | T M             | Be             | 15%            | 3 <sup>7</sup> H | ~ 4          | 0.5 K.# | Black - Mar |
| 10 |                 | 0+50<br>0+00                                 | 30+00 S             |          | •#5<br>•#5  | 7 E<br>7        | BR.<br>Pale    | 10-15 [<br>150 | C? L-M<br>C M    | M.L.         | ,<br>-  |             |
|    |                 |                                              |                     |          |             |                 |                |                |                  |              |         |             |

|     | ,                          |                                                                    |                           |                            | 30N;               |                   |                          |                                                                                |
|-----|----------------------------|--------------------------------------------------------------------|---------------------------|----------------------------|--------------------|-------------------|--------------------------|--------------------------------------------------------------------------------|
|     | PROJECT<br>DATE<br>LOCALIT | ·                                                                  |                           |                            | PLÖTTED<br>SAMPLET | MAP               | 92 H<br>T.E. HISLE       | /056                                                                           |
|     | SAMPLE                     | LOCATION - GRID                                                    | TYPE DR<br>SUBV_BDRK_PT.S | Depth material             | organic<br>Colour  | % Gravel Horiz    | on Clay Silt Sand        | REMARKS                                                                        |
| 1   | 1,21314 5161718            | Z<br>2.10<br>11.12,13,1415<br>16,17,18,19,20,2<br>10,709<br>30,700 | 21 22 23124 25            | 26127,28 29<br>1 <b>85</b> | 30 31,32 33<br>Q   | 34,35<br>-5 A 38? | 38139 40 41<br>M-1+ M' L | BOG. Cfto 7+50 W<br>ORANGE Feat?<br>OBANGE Feat?<br>below<br>OBANCHI Black 'A! |
| 2   |                            | 12+150 1310+1010                                                   | o S                       | .45                        | PiBe -             | 615 4             | MMM                      | Bo Hom of B'?                                                                  |
| 3   |                            | 19,400 30,4,90                                                     | a s 🗔 🗌                   | 0.55                       | Be                 | 10 C?             | MMM                      | Good sample at<br>edge of bog.                                                 |
| 4   |                            | 1 1814150 319+101                                                  | 0 2 [] []                 |                            |                    |                   |                          | Bog. Decempton<br>weber 3 55024.                                               |
| · 5 | 11.5                       | B1+10P ,319,+10.0                                                  | 0200                      |                            |                    |                   |                          | Bog 11 and                                                                     |
| 6   |                            | 171+15P 13101+190                                                  |                           | 050 ?                      | 0                  | 45 A B?           | # # ?                    | BOG - Thin orange<br>layer, below Black<br>cloyey A' He igun                   |
| 7   |                            | 7+00 3,0+100                                                       |                           | 0.50 7                     | L BR               | ±15 B?C?          | MMM                      |                                                                                |
| 8   |                            | 6,+50 3,9+00                                                       |                           | 0 <b>.40</b> 7             | L Pule<br>BR       | 15 C?             |                          | Subcrop-<br>Service schust<br>3 M- from OC                                     |
| 9   |                            | 6+00 30+00                                                         | 23 🗌 🗌                    | 2:55 7                     | LBR                | 1015 e?           | MMM                      |                                                                                |
| 10  |                            | 5,+50 3,0+,04                                                      | 0 8 7                     | ]40 7                      | L R.B.             | 15 B?             | M M M                    | ¢                                                                              |
| -   |                            | <u></u>                                                            |                           |                            |                    |                   |                          |                                                                                |
|     | ,                          |                                                                    |                           |                            |                    |                   |                          |                                                                                |

,

.

30N;


|    |                | _                                                   | ,                         |           |          |                   |             |                | 3(         | N                                              | [               |
|----|----------------|-----------------------------------------------------|---------------------------|-----------|----------|-------------------|-------------|----------------|------------|------------------------------------------------|-----------------|
|    | PROJECT        | RAINBOW.                                            | ·····                     |           |          | PLOTTED           | AIR PHOT    |                |            |                                                | L               |
|    | DATE           | OCT 22 (94                                          |                           |           |          |                   | MA          | ·              | 14056      |                                                |                 |
|    | LOCALIT        | TULAMEENI                                           | ·                         |           | organ    | SAMPLER           | <u> </u>    | E. LISUE       |            |                                                |                 |
|    | SAMPLE         | LOCATION - GRID -                                   | TYPE DR<br>SURY_DDRK_PT.S | Depth mat |          |                   | % Gravel Ho | rizon Clay     | Silt Sand  | REMAR                                          | <s< th=""></s<> |
|    | 121314 5 6 7 8 | Z EAST NORTH<br>NORTH 12/13/14/15/16/17/18/19/20/21 | 2 2 23.24 25              | 2612712B  | 29 30    | 31,32 33          | 34.35 36.37 | 38138          | 40 41      |                                                | <u>.</u>        |
| 1  |                | 1 19400 31 400                                      | \$ ?                      | 0:40      | 7        | B <sub>l</sub> e. | 153 B       |                | ~ ~5       |                                                |                 |
| 2  |                | 0+150 1311+1010                                     | 57.                       | 01710     | <b>-</b> | RB                | 152 B       | M              |            | RAHTWOER B                                     | s in almost     |
| 3  |                | 1+00 311+0P                                         | 8                         | 050       |          | XA<br>RIBE        | 15% C       | M              |            | минь, 'В'                                      | . 1             |
| 4  |                | 11,+15,0 ,3,VA-100                                  |                           | 0:65      | 90       | RIBE              | 15 4        | 4              | 21         | Den hargen 1                                   | E<br>1, 58 -54  |
| 5  |                | 12,+10,0 ,3,1"+,00                                  |                           | 0.67      |          | YB .              | 152 CAB     |                | a a        | Tour of Car                                    | af an e         |
| 6  |                | 121+1510 13 (+ 0P                                   | 3                         | 0,25      | 70       | Poste +           | 157- 9      | 4              | a) 21      | TALOS +5%<br>Storf store                       | ±5см<br>Стані   |
| 7  |                | 13,+10,0,31/FOP                                     | 3                         | 0:50      | 50       | R.BR              | 15% C?      | M              |            | At when any any any any any any any any any an |                 |
| 8  |                | 3+50 31+00                                          | S Nº                      | 0;20      | 50       | ÅR.               | 152 C       | ] In           | 11 14      | ion actional                                   | Nucla           |
| 9  |                | 41100 3400                                          | 3                         | 0:45      | 30       | Pale<br>BR        | 10 A C      | <u>M</u>       |            | SN Firm OC                                     |                 |
| 10 |                | 4+50,31/+00<br>5+00W 31+00                          | 5                         | 0:50      |          | 1.15R.            | 10:15 C     | ? <u>m</u>     |            | - ige in vision                                |                 |
|    |                |                                                     |                           |           | ·        |                   | 1           | <u>ل ب ب ا</u> |            |                                                |                 |
|    |                |                                                     | Sesal                     |           |          |                   | ہے۔<br>کسکر | Mar Di         |            |                                                |                 |
|    | •              |                                                     |                           |           |          |                   | н           | Hug            | <b>k</b> . |                                                |                 |
|    |                |                                                     |                           |           |          |                   |             |                |            |                                                |                 |
|    |                |                                                     |                           |           |          |                   |             |                |            |                                                |                 |
|    |                |                                                     |                           |           |          |                   |             |                |            |                                                |                 |

,

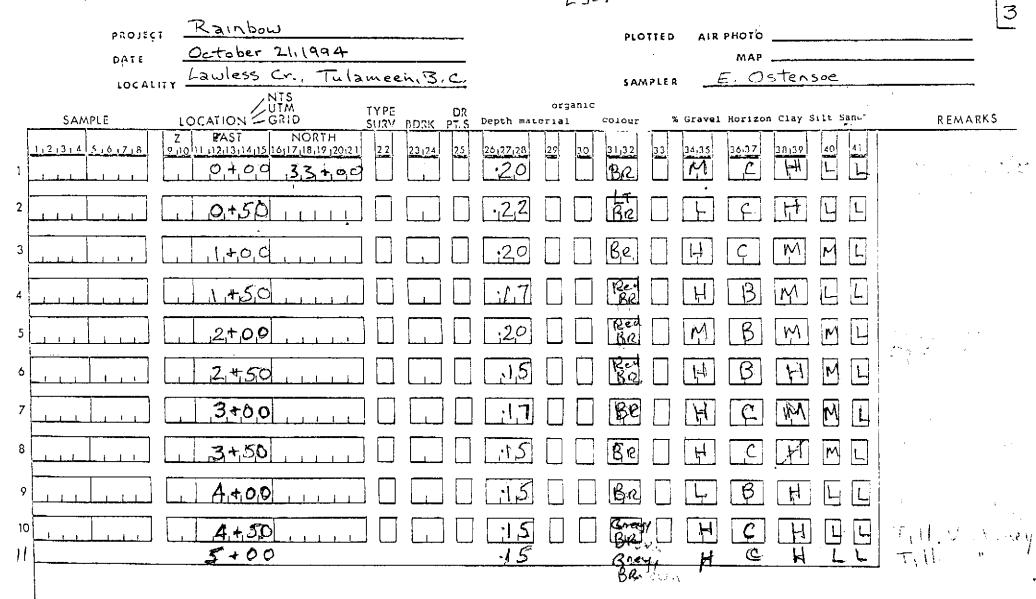
ŕ

i

· · · .



L 32N


|    |                        | <i>,</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |
|----|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|    | PROJECT                | RANKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - PLOTTED AIR PHOTO                                                                        |
|    | DATE                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAP                                                                                        |
|    | LOCALITY               | the second state of the second s | SAMPLER <u>E Ostensoe</u>                                                                  |
|    | SAMPLE                 | OCATION GRID SURM DOAK PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | organiv<br>R Depth material Colour % Gravel Horizon Clay Silt Sand REMARKS                 |
| 1  | <u>1,2,3,4</u> 5,6,7,8 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                      |
| 2  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.0 Bed 25 B H L Fair Spl. Much                                                           |
| 3  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.60 D R. D TO C H M C Possible deep B-                                                    |
| 4  |                        | 1,1,+5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I I I I I I I I I I I I I I I I I I I                                                      |
| 5  |                        | 2,+,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
| 6  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 BE 35 CM MM KANA                                                                        |
| 7  |                        | 3,+,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.0 Mild 3.5 S M H H bass to Ker                                                          |
| 8  |                        | 3,+,5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16,5 MAR 35 C M F M back work with<br>bir 35 C M F M more pale colored                     |
| 9  |                        | 4,+,0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 G G G M M M Hall save frage                                                             |
| 10 |                        | 4 + 5,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5 Br 35 C H M L barrer + cobbiles                                                        |
|    |                        | 5+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 Redbr: 20 B/C L M M Drainage. Likely B.<br>Denser practiced gravel<br>augular fragments |

<u>``</u>

|        |                            | L 32N                                                                                                              | 5                                        |
|--------|----------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|        | PROJECT                    | RAINBOW PLOTTED AIR PHOTO                                                                                          | Ľ                                        |
|        | DATE                       | October 22, 1994                                                                                                   |                                          |
|        | LOCALITY                   | Y Lawless Creek, Tulaincen.BC SAMPLER E. Ostensoe.                                                                 |                                          |
| -      | SAMPLE L                   | NTS<br>UIM TYPE DR Depth material colour: % Gravel Horizon Clay Silt Sand REMARI<br>LOCATION - GRID SURV BDDK PT.S | RK S                                     |
| -<br>۱ | 1,2,3,4<br>5,6,7,8<br>0,10 |                                                                                                                    | d +(1).                                  |
| 2      |                            | Lieutione IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                     | e<br>14 B                                |
| 3      |                            | Librison III III III 20 III Realist                                                                                | Are as                                   |
| 4      |                            | 1,7,+,a0,,,,, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                      | ник страни.<br>                          |
| 5      |                            | I T, + 15,0                                                                                                        | an a |
| 6      |                            |                                                                                                                    | t de la                                  |
| 7      |                            | 13+50,                                                                                                             | 6 <b>.</b>                               |
| 8      |                            | 19, top III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                        |                                          |
| 9      |                            |                                                                                                                    | ·,                                       |
| 10     |                            | 1.0,+0,0                                                                                                           | Ι.                                       |
|        |                            |                                                                                                                    |                                          |

 $e^{i}$   $\propto$ 

L33N



|    |                 |                                                                               |                           | 23                         | 30               |                                             |                      | 6                                                 |
|----|-----------------|-------------------------------------------------------------------------------|---------------------------|----------------------------|------------------|---------------------------------------------|----------------------|---------------------------------------------------|
|    | PROJECT         | RAINTOW                                                                       |                           |                            | PLOTTED          | AIR PHOTO                                   |                      |                                                   |
|    | DATE            | Oct. 22, 1994                                                                 |                           | · ·                        |                  | MAP_                                        |                      |                                                   |
|    | LOCALI          | TY Lawless Creek, Tula                                                        | meen, B.C.                |                            | SAMPLER          | <u>E</u> Dete                               |                      |                                                   |
|    | SAMPLE          | LOCATION -GRID                                                                | TYPE DR<br>SURY BORK PT.S | %Organic<br>depth material | colaur           | % Gravel Horiz                              | on Clay Silt Sa      | nd REMARKS                                        |
| 1  | 1121314 5161718 | Z NEAST NORTH<br>9,10011,12,13,14,15,16,17,18,12,20,21<br>1,0,4,0,0 ,3,3,40,0 | ⊐ {""!   "" "\            | 26127128 29 30<br>15       | 31,32 33<br>Dige | 34.35 36.37<br>Hit B                        | 38139 40 41<br>M M L | V shallow soil<br>over rock. Poor<br>spi.         |
| 2  |                 |                                                                               |                           | .40                        | BR [             | 20 B/C                                      | MHM                  | Good soil but<br>not a good c<br>horizon          |
| 3  |                 | <u> </u>                                                                      |                           | .30                        | Black.           |                                             |                      | BADE Som - edge of<br>small wraw dark             |
| 4  |                 | 1 2 m ( )                                                                     |                           | .50                        | BR               | 10 C                                        | HML                  |                                                   |
| 5  |                 | 1,2,+,0P                                                                      |                           | ] [50] []                  | Vellen<br>BR     | 25 C                                        | H M L                | Fair bocky one                                    |
| 6  |                 | 17,4,50                                                                       |                           | ] 35 🛛 🖓                   | Kellow<br>BF     | 20 C                                        | HHL                  |                                                   |
| 7  |                 | μ, τ, f, θ, θ, μ,                         |                           | 25                         | BRUM             | 30 C                                        | M H                  | Shallon Indi                                      |
| 8  |                 | 6,+57                                                                         |                           | ] ·,Z,Ø                    | BiR,             | 30 C                                        |                      |                                                   |
| 9  |                 | 6,40,0                                                                        |                           | ·60                        |                  | 75 C                                        | MM                   | good spl. (TUL)                                   |
| 10 |                 | 5,+,5,0                                                                       |                           | ] :15                      | Rβ.β₽            | <b>B</b> <sup>2</sup> <b>C</b> <sup>3</sup> |                      | Mon otp. Downslope<br>from bodrock - 2M.<br>(TEL) |
|    |                 |                                                                               |                           | · -                        |                  | · · · · · · · · · · · · · · · · · · ·       |                      | ×                                                 |

ł

11 8

|                | PROJECI                               |                                                                                                                 | RAINB                        |                                       |              |             |              |                 |            |              |           | PLO.          | TTED       | AIR                 | ркотю             |               |         |          |                                       | -           |
|----------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|--------------|-------------|--------------|-----------------|------------|--------------|-----------|---------------|------------|---------------------|-------------------|---------------|---------|----------|---------------------------------------|-------------|
|                | DATE                                  |                                                                                                                 | <u>017 21</u>                |                                       |              |             |              |                 |            |              |           |               |            |                     | MAP               |               | 920     | 4 0      | 56                                    |             |
|                | LOCALI                                | τ¥                                                                                                              |                              | 2-4-N<br>115                          | Tout         | me          | 870-         |                 |            |              |           | 5 AM          | PLER       |                     | 7.                | <u>e. 213</u> | s L C   |          |                                       |             |
| SAMI           | PLE                                   | The second se | ION ZO                       |                                       | T<br>5       | 7 PE<br>187 | <u>ndak</u>  | DR<br><u>P7</u> | Depth ma   | org<br>teria | anic<br>1 | colour        | ,          | 6 Grave.            | . Horizo          | n Clay        | silt    | Sand     |                                       | REMAR       |
| <u>1,2,3,4</u> | 5 <u>161718</u>                       | 1000                                                                                                            | AST WI<br>2131141151<br>2499 | NORT<br>6;17;18;17<br>1 <b>3:4</b> -4 | H<br>12013 1 |             | 23174)<br>2, | 25              | 26127128   | 29<br>7      | 30        | 31,32<br>D,BR | 32         | 34.15<br><b>2.5</b> | 36.37<br><b>3</b> | 38139<br>H    | 40      | 41       | c. 1 quan                             | iel și<br>S |
| <u> </u>       | - 1 4 - 1 -                           |                                                                                                                 | <u>14 při</u>                | 13141                                 | 1010         | 5           | 7            |                 | - 10       | F            |           | Y-R<br>Be     | [] I       | 0-15                | BAC               | LJM           | M       |          | . I can't                             | Mary - I    |
|                |                                       |                                                                                                                 | 100                          | ,3,4:'                                | 00           | 5           | 7            |                 | .50        | 7            |           | Phit<br>RBR   |            | 10:15               | BC?               | L             | Μ       | Μ        | وم م <sup>2</sup> 2 2 2<br>روا م مارو | Paleer.     |
|                | · · · · · · · · · · · · · · · · · · · |                                                                                                                 | 459                          | 34                                    | 00           |             |              |                 | که،        |              |           | P Be<br>Y Be  |            | 10^                 | B+C               | L.            | M       | M        | Seal -                                |             |
|                |                                       |                                                                                                                 | <u>+ PY  </u>                | 3.4                                   | 00           |             |              |                 | .50        | 2            |           | KBR<br>LCGY.  |            | 10                  | Bt C              | M             | LT<br>M | 1-<br>14 | 1 <b>1 1</b>                          | <b>?</b> 1  |
|                | · · · · · · · · · · · · · · · · · · · | [                                                                                                               | 1 22                         | 3.4                                   |              | 5           |              |                 | .50        |              |           | RBR           |            | 10-15               | <u>B</u> ?        | M             | M       | 2        | kali a<br>sul a                       |             |
|                |                                       |                                                                                                                 |                              | 314.11                                | ······       |             |              |                 | .45        |              |           | YiBe          | ∐ <b>≁</b> | 10                  | C                 | M             | M       | M        | TELC<br>25MC                          | Batter.     |
| <u>+ + 1</u>   | <u></u>                               | [                                                                                                               | 1 2 2 4                      | 3.4/1                                 |              | R           | <b>.</b>     |                 | <u>.50</u> |              |           | Y 82<br>R 80  |            | 15                  | B+C               |               | <b></b> |          | - 190                                 |             |
|                |                                       |                                                                                                                 | 1+15P                        | 341                                   | ,            | 2           |              |                 | 2.45       | 17<br>Fr     |           | YBR           |            | 10                  |                   |               |         | M        | Tor of<br>Noan                        |             |
|                |                                       |                                                                                                                 | + 00                         | 34                                    |              | s<br>S      |              |                 | -50        | <u>1</u>     |           | BR            | نيا        | U.V. 5              | B                 |               |         | ₩1 ·     | Bodere                                |             |

F

-----

|     |                                                             |                     | ,                                     |                                   |                   |                      | 34N.                                 | )                         | [                      |
|-----|-------------------------------------------------------------|---------------------|---------------------------------------|-----------------------------------|-------------------|----------------------|--------------------------------------|---------------------------|------------------------|
|     | PROJECT                                                     | RAINBOW-            |                                       |                                   |                   | PLOTTED              |                                      |                           |                        |
|     | DATE                                                        | TULAMEEN, BC        |                                       | •                                 |                   |                      |                                      | <u>92 H</u>               | 1056                   |
|     | LOCALITY                                                    | ZNIS                | · · · · · · · · · · · · · · · · · · · | -                                 |                   | SAMPLER              | 1, 5                                 | LISLE                     |                        |
|     |                                                             | OCATION - GRID - SI | YPE DA<br>JRY DDRK PT.:               | S Depth mater                     | organic<br>ial    | colour               | % Gravel Hori                        | zon Clay Silt :           | sand REMARKS           |
| . 1 | 1121314 5161718 21<br>1121314 5161718 21<br>1121314 5161718 |                     | 22 23174 <u>75</u><br>S 3             | 2 <u>0127128</u><br>01• <b>50</b> | 29 <u>30</u><br>7 | 31,32<br>2BA<br>RIGR | 34.35 36.37<br>107 C. <sup>7</sup> . |                           | 1 995W                 |
| 2   |                                                             | 191+1510 13141 1010 | 5 7                                   | 0,40                              | 7                 | Riber 🗌              | ε.γοβ β?                             |                           | grading for Y-R. Brown |
| 3   |                                                             | 1911 PP 341 OP      | 5 4 [                                 | 30                                | 7                 | P.Be                 | 10 1                                 | ·· ·· [                   | 34 Stor 0 B. R         |
| 4   |                                                             | 18-1-1-2 34 00      | G M C                                 | .29                               | 50                | PiBe                 | 10 8.2                               |                           | it ous Bedrocit.       |
| 5   |                                                             | B1+1010 341 00      |                                       | 40.45                             | - I               | R Be                 | 10 Btc                               | M                         | Base of B'             |
| 6   |                                                             | 171+150 341,00      |                                       | 125                               | 77                | X BR                 | 10 (1)                               | m M                       | - on Bedrock 1.0 M     |
| 7   |                                                             | 7+09 3411,00        | 3                                     | +0.50                             | 20                | Br                   | 15                                   | M M                       | Bedrock                |
| 8   |                                                             | 67 50 341.00        |                                       | + 0,50                            | 20                | RBE.                 | 19-15 B+C                            |                           |                        |
| 9   |                                                             | 6+00 34100          | 3                                     | 0.20                              |                   | DBR<br>Ribe          | 15 Btc                               | M- M-                     | 4 CA BE Sample .       |
| 10  |                                                             | 5+50 3400           | \$ [] [                               | 0.45                              | 7                 | YBa.                 | 15 (+13                              | Al. M                     | Top of C               |
|     |                                                             |                     | . <u> </u>                            | <u> </u>                          |                   |                      |                                      | • • • • • • • • • • • • • | ]                      |
|     |                                                             |                     |                                       |                                   |                   |                      |                                      |                           |                        |

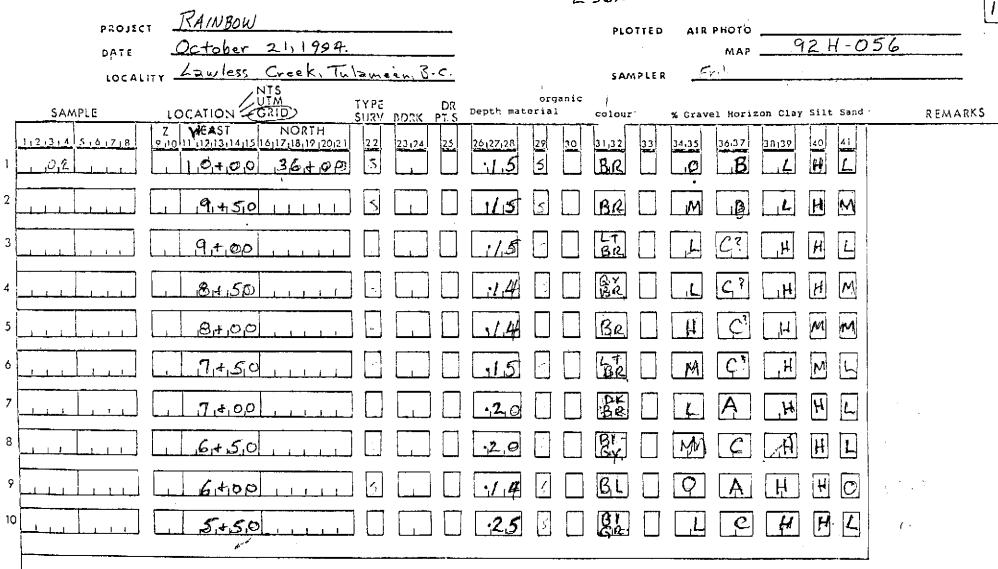
|  | ٠. |    |     |     |    |  |
|--|----|----|-----|-----|----|--|
|  |    |    |     |     |    |  |
|  |    | Υ. | ۰ - | - F | 11 |  |
|  |    |    |     |     |    |  |

|    | PROJECT                  | RAINBO     |                         |                      |                                |              |            | PLO         | TTED A   | IR PHOTO                      |          |            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|--------------------------|------------|-------------------------|----------------------|--------------------------------|--------------|------------|-------------|----------|-------------------------------|----------|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | DATE                     | OCT 21     | 194                     |                      |                                |              |            |             |          | MAP                           |          | 92H0       | 56                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | LOCALITY                 | TOLAN      | MEENS: B.               | <u>c.</u>            |                                |              |            | S AA        | 12 L E R |                               | TEL      | ISLE       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |                          | LOCATION S | - S                     |                      |                                |              | % orga     | niç         |          |                               |          |            | *                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -  | SAMPLE                   |            |                         | YPE<br><u>Nav be</u> | DR.<br><u>DRK <u>P</u>1.5_</u> | Depts mate   | rial       | ' colour    | %        | Gravel Ho                     | izon Cl  | ay Silt Sa | na                            | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | <u>1,2,3,4,5,6,7,8</u> Z | 545TW      | NORTH<br>17,18,19,20,21 | 2 2 2 2 3            | 3124 2.5                       | 26127128     | 27 30      | 31,32       | 33 34.3  | 5 36.37                       | 38139    | 40 41      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1  |                          |            | 35+109                  |                      |                                | .4.0         |            | Barker      |          |                               | Ļ        | MH         | -, · , .                      | 15 cm FRAGE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2  |                          | 14+1510    | 13157+1010              | 5                    |                                | <u>،ح</u> ام | TL         | RIBR,       | [] [0]   | s <u>B</u> ?                  | LM       | MM         | St M                          | ● 公式1 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3  |                          | 4,4,0,0    | 361+1010                | 5                    |                                | .50          |            | R.B.        | 5-1      | a B?                          | <u> </u> | M m-1      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4  |                          | 3450       | 13:51+100               | 2                    |                                | 1.45         |            | P.B.        |          | - <u>B</u> !                  | L_       | M          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5  |                          | 3,4,00     | 3.57.00                 |                      |                                | ·5 O         |            | R.B.        |          | B?                            | <u> </u> | M          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6  |                          | RH510      | 13:57+100               | 5                    |                                | .35          |            | RBh         |          | β?                            | LiM      | MM         | ;                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7  |                          | 12+00      | 3.5+00                  | 5                    |                                | .40          | T          | Rele<br>Ble |          | B <sup>2</sup> C <sup>2</sup> | LiM      | MM         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8  |                          | 1+50       | 35+00                   | 2                    |                                | .50          |            | BR.         | #[[      | دع                            | LM       | MM         | ₹54 ÷                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9  |                          | 1.1.100    | 35+P,0                  |                      |                                | ە ك.         | Ī          | R Ba        |          | 0 B5                          | L-M      | MM         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 |                          | 0+50       | 35,4,00<br>35+00        |                      |                                | . 40<br>.50  | <u>ר ו</u> | RBa<br>YBe  | <u>-</u> | 5 B <sup>2</sup><br>C         | 4<br>LM  |            | 2215-14<br>Decision<br>1200-1 | <ul> <li>The second second</li></ul> |

i

•

.


|             | •.              |                                            |                            |                  |   |                   |                  |              |          |                    |                      | 35                      |                          | $\bigcirc$           |
|-------------|-----------------|--------------------------------------------|----------------------------|------------------|---|-------------------|------------------|--------------|----------|--------------------|----------------------|-------------------------|--------------------------|----------------------|
|             | PROJEC<br>DATE  |                                            | · 21/94.                   | ,                |   |                   |                  | PLO          | TTED     | AIR PHO            | ото<br>ПарЯ          | A OSE                   | ÷                        |                      |
|             | LOCAL           |                                            |                            | . <u>c</u> .     |   |                   |                  | \$ AM        | PLER     |                    | · < 1.56             |                         |                          |                      |
|             | SAMPLE          | · · · / /                                  |                            | TYPE<br>SURV_DDR |   | .Depth ma         | %organ<br>teria] | re<br>Colour | 9        | 6 Gravel H         | orizon Clay          | Silt San                | d RF                     | MARKS                |
| ך<br>ו<br>ו | 1 2 3 4 5 6 7 8 | Z EAST-W<br>9,1011,12,13,14,15<br>1,01+,00 | NORTH<br>16117,18,19,20,21 | 22<br>231        |   | 26127,28<br>016,D | 27 30<br>67?     | 31,32<br>RBA |          | 34.35 36.<br>10% [ |                      | 40 41<br>M 4            | 1Frags 5-2               | e sus -              |
| 2           |                 | 9+50                                       | 13151+1010                 | 3                |   | 0.50              | a T.             | R-Y<br>BR:   | <u>+</u> | 10% B1             | C M+H                | u m                     | DIL Brown<br>degs        | 'B' to 0-35*         |
| 3           |                 | 19t,00                                     | 35,+0,0                    |                  | 2 | 0,30              | 7                | R-Y<br>BR    | 1        | -15 B B+           | c M                  | 4 14                    |                          | . 6 f                |
| 4           |                 | 8750                                       | 35+00                      | 5                |   | 0.60              | <b>7</b> .       | R-Y<br>Ba    |          | 10% 8+             | C M                  | MM                      |                          |                      |
| 5           |                 | BTPQ                                       | 35+00                      | 5                |   | 0:5,0             | 7                | R.Y<br>Be    |          | 10% B+             | C M                  | M 4                     |                          | o cut                |
| 6           |                 | 1 4+50                                     | 35+00                      | 2 [              |   | 0:55              |                  | RB           |          | 5-8% B             | 2 41                 | ~ ~                     | 3% clasts<br>5% q1 - 001 | Lo IDEM.<br>La ISMI. |
| 7           |                 | 7+00                                       | 35+00                      | 5                |   | 0.50              | 7.               | RB           |          | COYS BA            | c M                  | N M                     | Guyolar k<br>frays - 10  | - Suf Kour<br>5.15 % |
| 8           |                 | 6+59                                       | 3570P                      | 5                |   | a-40              |                  | YBO          |          | 10-15%             | - 4                  | M                       |                          |                      |
| 9           |                 | 6700                                       | 35+00                      |                  |   | 0.35              | z 🗌              | YB           |          | 5-10%              | 2 4-41-              | nd M                    |                          |                      |
| 10          |                 | 5+50                                       | 35,+00                     | 3                |   | 0.40              | A7 🗌             | BR.          |          | 5-10%              |                      | 44 - A4                 | Hard Co<br>Baral         | Till-                |
|             |                 |                                            |                            |                  |   |                   |                  |              |          | <u></u>            | L LO<br>M NO<br>H HE | س<br>۵ ان علم<br>جالم - |                          |                      |
|             |                 |                                            |                            |                  |   |                   |                  |              |          |                    |                      |                         |                          |                      |

1 ....

|          | PROJECT  | RAINBOW                                                |                                                                          | 2        |
|----------|----------|--------------------------------------------------------|--------------------------------------------------------------------------|----------|
|          | DATE     | OCTOBER 21, 1994                                       | PLOTTED AIR PHOTO                                                        | <u> </u> |
|          |          | Lawless Cr., Tulameen, BC                              | MAP                                                                      |          |
|          | LOCALITY | NIS                                                    | SAMPLER <u>E. Ostensoe</u>                                               |          |
| r        | SAMPLE L | OCATION - GRID TYPE DR                                 | organic<br>Depth material / colour % Gravel Horizon Clay Silt Sand REMAR | KS       |
| 1        |          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                    |          |
| 2        |          |                                                        |                                                                          |          |
| 3        |          | 4,4,0,0                                                |                                                                          |          |
| 4        |          | 3+50                                                   | 20 I II M B M H M                                                        |          |
| 5        |          | 3,+00                                                  | 20 I I I M G M M L                                                       | <b></b>  |
| 6        |          | ,2,+5,0                                                | IS C M C M M C                                                           |          |
| 7        |          | 2+00                                                   |                                                                          |          |
| 8        |          | 1+50                                                   |                                                                          |          |
| 9        |          | 1,400,                                                 |                                                                          |          |
| 10<br>{{ |          | 0+00                                                   | 20 BR. MCHML<br>20 BR. LCHLL                                             |          |

**BON** 

| 1 | 3 | 6 | N |
|---|---|---|---|
|   |   |   |   |



36N

1

|                                                                            |                         |                                |                                    |                                 |                                                                    |                            | Tor                 | <u>a L</u>                      | <u>isl</u>                           | ≥ <u>P</u> ]<br>145                  | ROJE<br>W. Ro                    | CT<br>klan                                                                       | R-<br>Roa             | L 1<br>d, No            | ?il€<br>rth V                          | 2 #<br>ancour              | 94-<br>ver Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -419<br>: V7N      | ) 3<br>2V8          | Pa                                   | ige                        | 1              |                                    |                   |                                 |                      |                                      |                   |                                 | L                          |                       |
|----------------------------------------------------------------------------|-------------------------|--------------------------------|------------------------------------|---------------------------------|--------------------------------------------------------------------|----------------------------|---------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------|----------------------------|----------------|------------------------------------|-------------------|---------------------------------|----------------------|--------------------------------------|-------------------|---------------------------------|----------------------------|-----------------------|
| AMPLE#                                                                     | Мо<br>ррпп              | Cu<br>ppm                      | Pb<br>ppm                          |                                 | Ag<br>ppm                                                          | Ni<br>ppm                  |                     |                                 | Fe<br>X                              |                                      | U<br>ppm                         |                                                                                  |                       |                         |                                        |                            | Bi<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Ca<br>X             |                                      | La<br>ppm                  |                |                                    | Ba<br>ppm         |                                 | 8<br>ppm             | Al<br>X                              | Na<br>X           | к<br>Х                          | ¥<br>ppm                   | Au*<br>ppt            |
| 36N 10+00W<br>36N 9+50W<br>E L36N 9+50W<br>36N 9+00W<br>36N 8+50W          |                         | 44<br>32<br>30 -<br>29 -<br>42 |                                    | 53<br>50<br>58                  | ~<.1<br>~<.1<br>~<.1<br>~<.1<br>~<.1                               | 18<br>22<br>20<br>15<br>21 | 14<br>11<br>13      | 1047<br>1033<br>723             | 4.49<br>4.30<br>4.19<br>4.60<br>4.84 | 4<br>4<br>5<br>2<br>2                | ১<br>১<br>১<br>১<br>১<br>১       | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2                         |                       | 26                      | .3<br><.2<br><.2<br><.2<br><.2<br><.2  |                            | <2<br>2<br>4<br><2<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68<br>72           | .31<br>.30<br>.40   | .106<br>.071<br>.069<br>.062<br>.088 |                            | 33<br>32<br>30 | 1.05<br>.95<br>.93<br>.97<br>1.16  | 148<br>141<br>229 | .08                             | 4<br><2<br>Z         | 3.45                                 | .02<br>.01<br>.02 | .10<br>.10                      | <1<br><1<br><1<br><1       | 2<br>1<br>1<br>1<br>3 |
| 36n 8+00w<br>36n 7+50w<br>36n 7+00w<br>36n 6+50w<br>36n 6+50w              | 5                       | 57                             | 6                                  | 66<br>109<br>76                 | <.1<br>- <.1<br>3<br>5                                             | 25<br>21<br>17<br>12<br>25 | 14<br>20<br>10      | 786<br>5266<br>2690             | 4.69<br>4.65<br>5.18<br>3.56<br>5.20 | <2<br><2<br>4<br>3                   | 10<br>13                         |                                                                                  | 2<br>3                | 25<br>81                | <.2<br><.2<br>.4<br>.6<br>.9           | <2<br><2                   | <2<br>5<br><2<br>6<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75<br>66<br>59     | .26<br>1.10<br>1.13 | .069<br>.062<br>.152<br>.084<br>.075 |                            | 34<br>30       | 1.20<br>1.06<br>.77<br>.87<br>.92  | 157<br>329<br>190 | .08<br>.05                      | <2 <<br><2 <<br><2 : | 2.88                                 | .03<br>.02        | .08<br>.08                      | <1<br><1<br><1<br><1<br><1 |                       |
| 36n 5+50w<br>36n 5+00w<br>36n 4+50w<br>36n 4+00w<br>36n 3+50w              | 2<br>1<br><1<br><1      | 28                             | × 8<br>5<br>7                      | 93<br>150<br>114                | .2<br>.3<br>~.1<br>.2<br>.1                                        | 22<br>18<br>16<br>17<br>15 | 12<br>13<br>10      | 951<br>715<br>487               | 4.35<br>4.16<br>4.08<br>3.49<br>4.28 | 9<br><2<br><2<br>2<br>3              | <5<br><5<br><5                   |                                                                                  | <2<br>2<br><2         | 24                      |                                        |                            | <2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62<br>67<br>64     | .97<br>.29<br>.36   | .059<br>.067<br>.084<br>.043<br>.089 | 21<br>28<br>9<br>10<br>12  | 30<br>32<br>29 | 1.04<br>.94<br>.83<br>.73<br>.75   | 214<br>131        | .06<br>.05<br>.09<br>.08<br>.08 | 5<br><2<br><2        | 4.27<br>2.95                         | .01<br>.02        | .08<br>.07                      | <1<br><1<br><1<br><1<br><1 | :                     |
| 36N 3+00W<br>36N 2+50W<br>36N 2+00W<br>36N 1+50W<br>36N 1+50W<br>36N 1+00W | <1<br>1<br>1<br><1<br>1 |                                | 6<br>10<br>6<br>10<br>10           | 89<br>82<br>109                 | <.1<br><.1<br><.1<br><.1                                           | 18<br>12<br>12<br>15<br>11 | 11<br>10<br>13      | 418<br>593<br>672               | 4.03<br>3.88<br>3.46<br>3.89<br>4.44 | 4<br>3<br><2<br>6<br>10              | <5<br><5<br><5                   | <2                                                                               |                       | 25<br>29<br>23          | <.2<br><.2<br><.2<br><.2<br><.2<br><.2 | Ŝĸĉĉ                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61<br>57<br>59     | .27<br>.33<br>.26   | .051<br>.088<br>.043<br>.078<br>.080 | 13<br>8<br>11<br>10<br>13  |                | .83<br>.69<br>.81<br>.72<br>1.10   | 114               |                                 | <2<br><2<br><2       | 2.37                                 | .02<br>.01        | .06<br>.06<br>.06<br>.07<br>.09 | <1<br><1<br><1<br><1<br><1 |                       |
| 36n 0+50w<br>36n 0+00w<br>34n 10+00w<br>34n 9+50w<br>34n 9+50w             | <1<br>1<br>2<br>2<br>1  | × 23                           | 17<br>10                           | 118<br>51<br>57                 | , 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1<br>, 1 | 10<br>19<br>14             | 12<br>16<br>13      | 600<br>462<br>512               | 4.10<br>4.17<br>4.53<br>3.86<br>4.27 | 3<br><2<br>2<br><2<br><2<br><2<br><2 | <5<br><5<br><5                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                           | 2<br>2<br>5<br>3<br>3 | 28<br>18<br>17          | <.2<br><.2<br><.2<br><.2<br><.2        | 4<br>3<br>5<br>2<br>2<br>2 | 4<br><2<br><2<br><2<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63<br>66           | .23<br>.13<br>.16   | .092<br>.080<br>.054<br>.054<br>.054 | 11<br>11<br>14<br>11<br>10 | 26<br>32<br>26 | .91<br>1.04<br>1.19<br>.68<br>1.04 | 83                | .06<br>.06<br>.06<br>.10<br>.07 | <2<br><2<br><2       |                                      | .01<br>.01<br>.01 | .09<br>.07<br>.09<br>.08<br>.09 | <1<br><1<br><1<br><1       | 2                     |
| 34n 8+50w<br>34n 8+00w<br>34n 7+50w<br>34n 7+00w<br>34n 6+50w              | 1<br>7<br>1<br>1<br>3   | 53<br>38<br>58                 | / 14<br>/ 13<br>/ 15<br>/ 3<br>/ 4 | 89<br>101<br>93                 | - <.1<br>1<br>- <.1<br>- <.1<br>- <.1                              | 24<br>16<br>26             | 11<br>15<br>16      | 517<br>891<br>1010              | 4.27<br>3.91<br>4.39<br>4.98<br>4.10 | 7<br>4<br>2<br>4<br>2                | <5<br><5<br><5                   | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 3<br>3<br>3<br>5      | 38<br>17                | .7<br><.2<br><.2                       | 4<br>5<br>2<br>6           | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>62<br/>71<br/>74</td> <td>.47<br/>.15<br/>.16</td> <td>.075<br/>.046<br/>.112<br/>.100<br/>.049</td> <td>13<br/>26<br/>11<br/>11<br/>17</td> <td>37<br/>33</td> <td>.83<br/>.99<br/>.94<br/>1.43<br/>.90</td> <td>100<br/>111</td> <td>.08</td> <td>&lt;2<br/>5<br/>&lt;2</td> <td></td> <td>.01</td> <td>.09<br/>.09<br/>.13</td> <td>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td></td> | 62<br>71<br>74     | .47<br>.15<br>.16   | .075<br>.046<br>.112<br>.100<br>.049 | 13<br>26<br>11<br>11<br>17 | 37<br>33       | .83<br>.99<br>.94<br>1.43<br>.90   | 100<br>111        | .08                             | <2<br>5<br><2        |                                      | .01               | .09<br>.09<br>.13               | <1<br><1<br><1<br><1<br><1 |                       |
| 34N 6+00W<br>34N 5+50W<br>34N 5+00W<br>34N 4+50W<br>34N 4+50W              | 2<br>2<br>2<br>1        | 31<br>44<br>34                 | / 9<br>/ 7<br>/ 11                 | 109<br>118<br>95                | <.1<br><.1<br>< .1                                                 |                            | 10<br>14<br>13      | 708<br>755<br>685               | 3.89<br>4.21<br>3.94                 | 5<br>5                               | <5<br><5<br><5                   | <2<br><2                                                                         | 2<br><2               | 51<br>54<br>38          | .4<br>.4<br>.2                         | <2<br><2<br>2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63<br>69<br>62     | .58<br>.63<br>.49   | .101<br>.045<br>.046<br>.056<br>.047 |                            | 32<br>36<br>27 |                                    | 168<br>161<br>104 | .08<br>.08<br>.06               | <2<br><2<br><2       | 3.60<br>2.75<br>2.82<br>2.55<br>2.58 | .01<br>.02<br>.01 | .06<br>.08<br>.08               | <1<br><1                   |                       |
| STANDARD C/AU-S                                                            | 19                      | ICP<br>THIS<br>ASS<br>- S      | 5<br>5 LEA<br>AY RE<br>AMPLE       | DO GR<br>CH IS<br>Comme<br>Type | AM SA<br>PART<br>NDED<br>: P1-                                     |                            | SDI<br>WRMN<br>NCKA | GESTE<br>FE S<br>ND CO<br>11-P1 | D WITI<br>R CA I<br>RE SAI<br>2 ROCI | 1 3ML<br>2 LA (<br>1PLES             | 3-1-2<br>CR MG<br>IF CU<br>AU* A | HCL-<br>BA TI<br>PB Z                                                            | HNO3-<br>BW<br>NAS    | H2O A<br>AND L<br>> 1%, | T 95<br>IMITE                          | DEG.<br>D FOR              | CFOR<br>NAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ONE<br>AND<br>AU > | HOUR<br>AL.<br>1000 |                                      |                            |                |                                    |                   |                                 |                      |                                      | . 06              | . 15                            | 9                          | 5                     |

**£**£

٩.

Tom Lisle PROJECT R-1 FILE # 94-4193



44

| ACHE ANALYTICAL                                                                  |                              |                                    |                                                                        |                   |                                       |                            |                |                                            |                      |                               |                                 |                                                                                 |                          |                            |                                |                                                                                 |                                                          |                             |                      |                                      |                                   |                            |                                     |                                        |                                 |              |                                      |                                 |                                 |                            |                         |
|----------------------------------------------------------------------------------|------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------|---------------------------------------|----------------------------|----------------|--------------------------------------------|----------------------|-------------------------------|---------------------------------|---------------------------------------------------------------------------------|--------------------------|----------------------------|--------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|----------------------|--------------------------------------|-----------------------------------|----------------------------|-------------------------------------|----------------------------------------|---------------------------------|--------------|--------------------------------------|---------------------------------|---------------------------------|----------------------------|-------------------------|
| SAMPLE#                                                                          | Mo<br>ppm                    | Çu<br>ppm                          | Pb<br>ppm                                                              | Zn<br>ppm         | Ag<br>ppm                             | Ni<br>ppm                  | Co<br>ppm      | Min<br>ppm                                 | fe<br>X              | As<br>ppm                     | U<br>ppm                        | Au<br>ppm                                                                       | Th<br>ppm                | Sr<br>ppm                  | Cd<br>ppn                      | Şb<br>ppm                                                                       | Bi<br>ppm                                                | V<br>PPM                    | Ca<br>%              | P<br>X                               | La<br>ppm                         | Cr<br>ppn                  | Mg<br>X                             | Ba<br>ppm                              | ті<br>Х                         | B<br>ppm     | AL<br>X                              | Na<br>X                         | K<br>X                          | W<br>ppm                   | Au*<br>ppb              |
| L34N 3+50W<br>L34N 3+00W<br>L34N 2+50W<br>L34N 2+50W<br>L34N 2+00W<br>L34N 1+50W | 1<br>1<br>2<br>1             | 35 -<br>39 -<br>25 -               | <ul> <li>13</li> <li>13</li> <li>18</li> <li>19</li> <li>10</li> </ul> | 142<br>148<br>132 | ~<.1<br>*<.1<br>*<.1                  | 18<br>17<br>14<br>11<br>13 | 13<br>18<br>13 | 821 4<br>751 4<br>1053 5<br>615 3<br>613 4 | 4.03<br>5.03<br>5.46 | 5<br><2<br>3<br><2<br>2<br><2 | ও<br>ও<br>ও<br>ও                | ~~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                       | 4<br><2<br><2<br><2<br>3 | 28<br>36<br>27<br>41<br>20 | .3<br>.6<br>.9<br>.4<br>.6     | ₹<br>₹<br>₹<br>₹<br>₹<br>₹<br>₹                                                 | 2<br>3<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | 67<br>64<br>83<br>59<br>61  | .40<br>.30<br>.60    | .087<br>.051<br>.111<br>.035<br>.075 | 15<br>15<br>11<br>15<br>14        | 32<br>30<br>23<br>21<br>23 | .85<br>.84                          | 149<br>142<br>155<br>205<br>123        | .06<br>.08<br>.07<br>.05<br>.06 | 3<br>4<br>2  | 3.72<br>2.60<br>3.32<br>3.45<br>3.40 | .02<br>.02<br>.03               | -08<br>-07                      | 1<br><1<br><1<br><1<br>2   | 3<br>3<br>1<br>2        |
| L34N 1+00W<br>L34N 0+50W<br>L34N 0+00W<br>L32N 10+00W<br>L32N 9+50W              | 1<br><1<br>1<br>2            | 49<br>94<br>29                     |                                                                        | 141<br>198<br>79  | 1<br>2<br>1                           | 13<br>14<br>22<br>23<br>23 | 12<br>13<br>15 | 844 /<br>472 /<br>1196 /<br>930 /<br>820 / | 4.28<br>4.97<br>4.30 | 3<br>3<br>3<br>2<br>2<br>2    | ৎ<br>ও<br>ও<br>ও<br>ও           | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2                              | 3<br>2<br>3<br>2<br>3    | 29<br>32<br>49<br>38<br>40 | .6<br>.3<br>1.0<br>.3<br>1.0   | <2<br>4<br>2<br>2<br>2<br>2                                                     | ~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                | 62<br>69                    | .63<br>.46           | .052<br>.072                         | 16<br>18<br>42<br>14<br>19        | 23<br>31<br>37             | .98<br>.89<br>1.08<br>1.33<br>1.09  | 161<br>234<br>101                      | .05<br>.05<br>.05<br>.09<br>.10 | <2<br>7<br>3 | 3.37<br>3.06<br>4.71<br>2.65<br>2.86 | .03<br>.03<br>.03               | .12<br>.10<br>.16<br>.12<br>.11 | 1<br><1<br><1<br><1<br>1   | 2<br>2<br>4<br>3<br>11  |
| L32N 9+00W<br>L32N 8+50W<br>L32N 8+00W<br>L32N 7+50W<br>L32N 7+00W               | 2<br>3<br>2<br>5<br>2        | 41<br>- 17<br>- 34<br>- 46<br>- 40 | -                                                                      |                   | 1<br>.1<br>.2                         | 15<br>9<br>16<br>24<br>21  | 11<br>15<br>15 | 874<br>522 5<br>819<br>938<br>815          | 5.35<br>4.51<br>4.85 | 3<br>2<br>4<br>2<br>5         | ও<br>ও<br>ও<br>ও<br>ও           | ~~~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                       | 3<br>5<br>3<br>3<br>2    | 32<br>14<br>27<br>48<br>45 | 1.0<br>.4<br>.4<br>.3<br>.9    | <2<br>3<br>2<br>2<br>2<br>2<br>2                                                | <2<br><2<br><2<br>5<br>2                                 | 63<br>84<br>68<br>75<br>65  | .11<br>.24<br>.58    | .084<br>.219<br>.066<br>.031<br>.062 | <b>33</b><br>10<br>18<br>42<br>16 | 20<br>30<br>38             | 1.09<br>.82<br>1.08<br>1.12<br>1.01 | 76<br>113                              | .05<br>.05<br>.08<br>.06<br>.07 | 7<br>7<br>6  | 3.99<br>3.38<br>2.69<br>3.88<br>3.02 | .03                             | .14<br>.08<br>.11<br>.11<br>.11 | 1<br><1<br><1<br><1<br><1  | 11<br>22<br>6<br>2<br>1 |
| L32N 6+50W<br>L32N 6+00W<br>L32N 5+50W<br>L32N 5+00W<br>RE L32N 5+00W            | 3<br>2<br>1<br>5<br><b>5</b> | 55<br>39                           | 10<br>16<br>15                                                         | 75<br>121<br>176  | <.1<br><.1<br>< .1                    | 23<br>23<br>16<br>24<br>23 | 24<br>11<br>31 | 818<br>559<br>979<br>2424<br>2390          | 6.23<br>4.73<br>6.11 | 2<br>6<br>2<br>9<br>6         | <5<br><5<br><5<br><5<br><5      | <2<br><2<br><2<br><2<br><2<br><2<br><2                                          | <2<br>4<br>2<br>4<br>5   | 16                         | 1.2<br>.9<br>1.0<br>1.3<br>1.1 | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br>< | <2<br><2<br><2<br>5<br><2                                | 68<br>103<br>72<br>80<br>81 | . 14<br>. 23<br>. 49 | .050<br>.206<br>.170<br>.108<br>.107 | 20<br>11<br>9<br>42<br>42         | 24<br>28<br>35             | 1.16<br>1.12<br>.97<br>.94<br>.95   | 103                                    | .08<br>.06<br>.06<br>.08<br>.08 | 6<br>3<br><2 | 2.99<br>3.40<br>3.58<br>3.96<br>3.98 | .02<br>.01<br>.02<br>.01<br>.01 | .11<br>.07<br>.12<br>.09<br>.09 | 1<br><1<br><1<br><1        | 2<br>2<br>1<br>3<br>3   |
| L32N 4+50W<br>L32N 4+00W<br>L32N 3+50W<br>L32N 3+00W<br>L32N 3+00W               | 1<br>2<br>1<br>1             | 112<br>321<br>66                   | 12<br>16<br>17<br>17<br>14<br>20                                       | 99<br>85<br>122   | 1<br>2<br>- <.1<br>1<br>3             | 21<br>22<br>20<br>20<br>15 | 24<br>19<br>21 | 680<br>1015<br>830<br>902<br>1101          | 4.78<br>4.43<br>4.74 | 7<br>6<br>2<br>10<br>7        | ৩<br>৩<br>৩<br>৩<br>৩<br>৩<br>৩ | <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <                                        | 3<br>4<br>3<br>2<br>3    | 26<br>21<br>31<br>21<br>20 | 1.0<br>.7<br>1.0<br>.5<br>.8   | 2<br>2<br>2<br>2<br>2<br>2<br>5                                                 | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2 | 63<br>74<br>68<br>82<br>72  | .20<br>.40<br>.22    | .052<br>.088<br>.042<br>.068<br>.084 | 13<br>15<br>29<br>11<br>11        | 27<br>34                   |                                     | 117<br>134<br>167<br>171<br>141        | .07<br>.07<br>.07<br>.08<br>.07 | 4<br>3<br>3  | 2.44<br>3.82<br>3.09<br>3.95<br>3.60 | .03<br>.02<br>.03<br>.01<br>.01 | .09<br>.08<br>.10<br>.09<br>.09 | <1<br>1<br>2<br><1         | 2<br>2<br>1<br><b>3</b> |
| L32N 2+00W<br>L32N 1+50W<br>L32N 1+00W<br>L32N 0+50W<br>L32N 0+00W               | 2<br>1<br>2<br>3<br>2        | 51 ·<br>49<br>64                   | v 23                                                                   | 156<br>183<br>172 | - <b>.</b> i<br>- 1                   | 16<br>14<br>15<br>18<br>19 | 17<br>13<br>12 | 618<br>796<br>841<br>1035<br>825           | 4.71<br>4.24<br>4.44 | <2<br>5<br>3<br>6<br>3        | <5<br><5<br><5<br><5            | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br>< | 2<br>2<br>2<br>2<br>2    | 46                         | .5<br>7<br>1.0<br>1.2<br>.9    | <<br>2<br>3<br>2<br>2<br>2<br>2<br>2<br>2                                       | <2<br>10<br><2<br>5<br><2                                | 73<br>65<br>62<br>62<br>59  | .17<br>.51<br>.74    | .059<br>.063<br>.072<br>.056<br>.053 | 10<br>14<br>27<br>35<br>22        | 23<br>25<br>24<br>25<br>26 | .74<br>.98<br>.87<br>.90<br>.89     | 170<br>209<br>207<br>288<br>161        | .11<br>.06<br>.06<br>.07<br>.07 | 3<br>3<br><2 | 3.51<br>3.92<br>3.32<br>3.83<br>2.55 | .01                             | .09<br>.13<br>.12<br>.12<br>.11 | <1<br><1<br><1<br><1<br><1 | 4<br>2<br>3<br>4<br>3   |
| L30N 10+00W<br>L30N 9+50W<br>L30N 9+00W<br>L30N 7+50W<br>STANDARD C/AU-S         | 6<br>1<br>1<br>1<br>19       | 30                                 | _                                                                      | 89<br>84<br>6     | - <.1<br>- <.1<br>1<br>- <.1<br>- <.1 | 5<br>15<br>18<br>4<br>72   | 1              | 490<br>331                                 | 3.62                 | ≪2<br>9<br>8<br>5<br>43       |                                 | <2<br><2<br><2<br><2<br><2<br>7                                                 | - 3                      | 28                         | .4<br>.7<br>.6<br><.2<br>19.3  | 6<br><2<br><2<br>9<br>13                                                        | <2<br><2<br><2<br><2<br>18                               | 8<br>71<br>65<br>13<br>60   | .24<br>.29<br>.21    | .056<br>.059<br>.041<br>.059<br>.095 | 10<br>11<br>19<br>56<br>40        | 29<br>7                    | 1.05                                | 46<br>1 <b>3</b> 9<br>139<br>89<br>185 | .11<br>.08<br>.08<br>.10<br>.08 | 2<br>3<br>2  | 2.28<br>3.11<br>3.52<br>2.64<br>1.88 | .05<br>.02<br>.02<br>.04<br>.06 | .01<br>.08<br>.08<br>.02<br>.16 | <1<br><1<br><1<br><1<br>13 | 1<br>2<br><1<br>48      |

**£**£

Tom Lisle PROJECT R-1 FILE # 94-4193



44

| ACHE ANALYTICAL                                                                  |                       |                            |                           |                              |                               |                            |                |                                            |                      |                               |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                            |                                     |                                      |                            |                            |                                     |                                 |                                 |                     |                                      |                                   |                                      | CRE ANA                    | LYTICAL                 |
|----------------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|------------------------------|-------------------------------|----------------------------|----------------|--------------------------------------------|----------------------|-------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-------------------------------------|--------------------------------------|----------------------------|----------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------|-------------------------|
| SAMPLE#                                                                          | Мо<br>ррпя            | Cu<br>ppm                  |                           | 2n<br>ppm                    | Ag<br>ppm                     | Ni<br>ppm                  | Со<br>ррт      | Mn<br>ppm                                  | Fe<br>X              | As<br>ppm                     | U<br>ppm                                                                                    | Au<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Th<br>ppm                        | Sr<br>ppm                  | Cd<br>ppm                    | Sb<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bi<br>ppm                 | V<br>ppm                   | Ca<br>X                             | р<br>Х                               | La<br>ppm                  | Cr<br>ppm                  | Mg<br>X                             | Ba<br>ppm                       | τi<br>X                         | 8<br>ppm            | Al<br>X                              | Na<br>X                           | K<br>X                               | V<br>ppm                   | Au*<br>ppb              |
| L30N 7+00W<br>L30N 6+50W<br>L30N 6+00W<br>L30N 5+50W<br>L30N 5+50W               | 3<br>4<br>2<br>4<br>2 |                            | - 13<br>- 11<br>- 8       | 73 -<br>68 -<br>46-          | 1<br>- <.1<br>- <.1<br>- <.1  | 13<br>17<br>23<br>22<br>21 | 17<br>21<br>20 | 358 5<br>637 4<br>1082 4<br>889 4<br>850 4 | 4.94<br>4.67<br>4.89 | 7<br><2<br><2<br><2<br>2<br>2 | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও | <<br>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>5<br>3<br>2<br>4            | 16<br>28<br>23<br>25<br>27 | .2<br>.7<br><.2<br>.7<br>.7  | 10<br>2<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>5<br>4<br>2<br>2     |                            | .25                                 |                                      | 16<br>19<br>12<br>9<br>23  | 26<br>29                   | .88<br>.95<br>1.06<br>1.23<br>1.41  | 92<br>110<br>138<br>131<br>113  | .05<br>.10<br>.06<br>.08        | <2<br><2<br><2      | 3,92<br>3,50<br>3,18<br>3,58<br>3,92 | .02<br>.02<br>.01<br>.01<br>.02   | .07<br>.09<br>.09<br>.09<br>.09      | ণ<br><1<br><1<br><1<br><1  | 1<br>4<br>4<br>1<br>2   |
| L30N 4+50W<br>L30N 4+00W<br>L30N 3+50W<br>L30N 3+00W<br>L30N 3+00W<br>L30N 2+50W | 1<br>1<br>1<br>1      | 71 -<br>67<br>81           |                           |                              | 1<br>-<.1<br>-<.1             | 21<br>22<br>17<br>21<br>21 | 18<br>20<br>27 | 1061<br>909<br>1107<br>1413<br>811         | 4.56<br>4.61<br>5.02 | 2<br>6<br>6<br>2<br>5         | জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ<br>জ      | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>3<br>2<br>3<br>3            | 27<br>33<br>28<br>30<br>25 | .8<br>.8<br>.5<br>.6         | 6<br>5<br>2<br>5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>8<br><2<br><2<br><2 | 72<br>69<br>66<br>80<br>66 | .30<br>.29<br>.33                   | .096<br>.061<br>.081<br>.144<br>.087 | 15<br>13<br>15<br>12<br>14 | 27<br>25<br>26             | 1.57<br>1.36<br>1.24<br>1.38<br>.86 | 141<br>126<br>202<br>155<br>164 | .05<br>.06<br>.06<br>.06<br>.09 | <2<br><2<br>2       | 3.26<br>3.10<br>3.39<br>3.77<br>3.35 | .01<br>.01<br>.01<br>.01<br>.01   | . 12<br>. 12<br>. 14<br>. 13<br>. 09 | <1<br><1<br>1<br><1        | 1<br>1<br>2<br>4        |
| L30N 2+00W<br>L30N 1+50W<br>L30N 1+00W<br>L30N 0+50W<br>L30N 0+00W               | 8<br>4<br>5<br>2<br>1 | 75 \<br>62<br>53 \         | 4<br>31<br>15<br>12<br>12 | 135 <sup>-</sup><br>99 -     | .2<br>1                       | 15<br>19<br>21<br>23<br>18 | 21<br>10<br>10 | 553<br>1117<br>1442<br>802<br>521          | 5.33<br>5.78<br>4.09 | <2<br>6<br><2<br><2<br>3      | 9<br><5<br><5<br><5                                                                         | <2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <2<br><2<br><2<br><2<br><2<br><2 | 90<br>64<br>69<br>69<br>43 | .2<br>1.2<br>.6<br>.8<br>.4  | <2<br><2<br><2<br><2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>7<br>3<br>2<br>4     | 72<br>50                   | 2.60<br>1.32<br>1.39<br>1.43<br>.67 | .099<br>.063                         | 12<br>21<br>19<br>24<br>18 | 13<br>27<br>21<br>24<br>25 | 1.02<br>.90<br>.62<br>.82<br>.88    | 106<br>204<br>177<br>212<br>169 | .02<br>.05<br>.05<br>.06<br>.08 | <2 :<br>4 :<br><2 : | 1.77<br>3.91<br>2.51<br>3.29<br>2.90 | .02<br>.03<br>.02                 | .07<br>.07<br>.06<br>.08<br>.08      | <1<br><1<br><1<br><1<br><1 | 2<br>14<br>12<br>3<br>2 |
| L28N 10+00W<br>RE L28N 10+00W<br>L28N 9+50W<br>L28N 9+00W<br>L28N 8+50W          | 4                     | 27<br>27<br>25<br>26<br>20 | 10<br>10<br>10<br>9       | 105<br>104 <sup></sup><br>55 | .1<br>.1<br><.1<br><.1<br><.1 | 19<br>21<br>20<br>20<br>15 | 13<br>15<br>18 | 470                                        | 4.19<br>4.30<br>5.11 | <2<br><2<br><2<br>4<br>9      | <5<br><5<br>7<br><5<br><5                                                                   | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2<br>3<br>4<br>5                 | 33<br>33<br>26<br>31<br>18 | .3<br>.6<br>.2<br>.2         | 6<br>4<br><2<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>3<br>4<br>~2<br>~2   | 68<br>68<br>69<br>64<br>66 | .45<br>.25<br>.36                   | .087<br>.089<br>.093<br>.077<br>.116 | 11<br>11<br>16<br>36<br>14 | 24                         | .91<br>.91<br>.72<br>.97<br>.74     | 169<br>165<br>107<br>161<br>104 | .09<br>.09<br>.10<br>.07<br>.07 | 3<br>5<br>3         | 3.37<br>3.26                         | <.01<br>.02<br>.01<br><.01<br>.01 | .08<br>.08<br>.07<br>.08<br>.07      | <1<br><1<br><1<br><1       | 2<br>1<br>3<br>4<br>6   |
| L28N 8+00W<br>L28N 7+50W<br>L28N 7+00W<br>L28N 6+50W<br>L28N 6+00W               | 4<br>5<br>3<br>2      | 47                         | 8<br>12                   | 56                           |                               | 18<br>15<br>19<br>14<br>20 | 14<br>19<br>20 | 652<br>305<br>822<br>576<br>491            | 4.79<br>5.18<br>4.98 | 2<br>4<br>2<br>2<br>5         | ৩<br>৩<br>৩<br>৩<br>৩<br>৩<br>৩                                                             | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>5<br/>8<br/>5<br/>6<br/>6</td> <td>23<br/>18<br/>25<br/>18<br/>26</td> <td>.6<br/>&lt;.2<br/>&lt;.2<br/>&lt;.2</td> <td>&lt;2<br/>&lt;2<br/>3<br/>&lt;2<br/>7</td> <td>&lt;2<br/>5<br/>8<br/>5<br/>8</td> <td>65<br/>68<br/>78<br/>66<br/>72</td> <td>.18<br/>.23<br/>.14</td> <td>.085<br/>.098<br/>.158<br/>.184<br/>.091</td> <td>41<br/>78<br/>15<br/>16<br/>19</td> <td>22</td> <td>.90<br/>.81<br/>1.20<br/>.89<br/>1.14</td> <td>111<br/>65<br/>86<br/>54<br/>89</td> <td>.08<br/>.08<br/>.05<br/>.08<br/>.06</td> <td>&lt;2<br/>4<br/>&lt;2</td> <td>3.31</td> <td>.02<br/>.01<br/>&lt;.01<br/>.01<br/>.01</td> <td>.09<br/>.05<br/>.08<br/>.07<br/>.08</td> <td>1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td>3<br/>6<br/>1<br/>6<br/>2</td> | 5<br>8<br>5<br>6<br>6            | 23<br>18<br>25<br>18<br>26 | .6<br><.2<br><.2<br><.2      | <2<br><2<br>3<br><2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <2<br>5<br>8<br>5<br>8    | 65<br>68<br>78<br>66<br>72 | .18<br>.23<br>.14                   | .085<br>.098<br>.158<br>.184<br>.091 | 41<br>78<br>15<br>16<br>19 | 22                         | .90<br>.81<br>1.20<br>.89<br>1.14   | 111<br>65<br>86<br>54<br>89     | .08<br>.08<br>.05<br>.08<br>.06 | <2<br>4<br><2       | 3.31                                 | .02<br>.01<br><.01<br>.01<br>.01  | .09<br>.05<br>.08<br>.07<br>.08      | 1<br><1<br><1<br><1<br><1  | 3<br>6<br>1<br>6<br>2   |
| L28N 5+50W<br>L28N 5+00W<br>L28N 4+50W<br>L28N 4+00W<br>L28N 3+50W               | 2<br>1<br>2<br>4<br>2 | 84<br>60                   | - 14                      | 49<br>82<br>81               | <.1<br><.1<br><.1<br>.2       | 28<br>49<br>36<br>25<br>16 | 24<br>23<br>17 | 771<br>824<br>1161<br>950<br>648           | 5.40<br>4.73<br>4.38 | <2<br><2<br><2<br>3<br><2     | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>5<br>3<br>2<br>2            | 53                         | .3<br>.2                     | 4<br>~2<br>~2<br>~2<br>~2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>3<br><2<br>11<br>4   | 75<br>93<br>82<br>67<br>64 | .26<br>.18<br>.65                   | .059<br>.108<br>.114<br>.047<br>.101 | 18<br>14<br>13<br>24<br>17 | 68 3<br>36<br>26           | 1.38<br>3.00<br>1.24<br>1.27<br>.89 | 156<br>109<br>115<br>116<br>118 | .07<br>.04<br>.10<br>.07<br>.07 | <2<br><2<br><2      |                                      | .01<br><.01<br>.01<br>.02<br>.01  | .09<br>.09<br>.07<br>.09<br>.10      | <1<br><1<br><1<br><1<br><1 | 1<br>1<br>2<br>2<br>2   |
| L28N 3+00W<br>L28N 2+50W<br>L28N 2+00W<br>L28N 1+50W<br>L28N 1+50W               | 1<br>2<br>3<br>2      | 84<br>65                   | √ 13<br>< 13              | 101-<br>92.<br>102           | . <.1                         | 20<br>17<br>16<br>18<br>17 | 21<br>20<br>12 | 610<br>839<br>925<br>920<br>743            | 4.93<br>5.08<br>3.98 | 7<br>8<br>2<br>2<br>4         | <5<br><5<br><5<br><5                                                                        | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>5<br>2<br>2<br>2            | 32<br>46<br>55<br>85<br>46 | <.2<br>.2<br>.3<br>.7<br><.2 | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>&lt;2<br/>10<br/>10<br/>8<br/>9</td> <td>67<br/>77<br/>68<br/>60<br/>59</td> <td>.55<br/>.86</td> <td>.062<br/>.073<br/>.072<br/>.040<br/>.037</td> <td>16<br/>25<br/>20<br/>18<br/>20</td> <td>28<br/>25<br/>24</td> <td>1.20<br/>1.06<br/>1.02<br/>.75<br/>.90</td> <td>87<br/>90<br/>97<br/>131<br/>116</td> <td>.06<br/>.06<br/>.05<br/>.06<br/>.05</td> <td>2<br/>&lt;2<br/>&lt;2</td> <td>2.85<br/>2.94<br/>2.87<br/>3.04<br/>2.56</td> <td>.01<br/>.02<br/>.01<br/>.01<br/>&lt;.01</td> <td>.09<br/>.08<br/>.07<br/>.07<br/>.07</td> <td>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td>5<br/>7<br/>47<br/>2<br/>4</td> | <2<br>10<br>10<br>8<br>9  | 67<br>77<br>68<br>60<br>59 | .55<br>.86                          | .062<br>.073<br>.072<br>.040<br>.037 | 16<br>25<br>20<br>18<br>20 | 28<br>25<br>24             | 1.20<br>1.06<br>1.02<br>.75<br>.90  | 87<br>90<br>97<br>131<br>116    | .06<br>.06<br>.05<br>.06<br>.05 | 2<br><2<br><2       | 2.85<br>2.94<br>2.87<br>3.04<br>2.56 | .01<br>.02<br>.01<br>.01<br><.01  | .09<br>.08<br>.07<br>.07<br>.07      | <1<br><1<br><1<br><1<br><1 | 5<br>7<br>47<br>2<br>4  |
| STANDARD C/AU-S                                                                  | 20                    | 56                         | 43                        | 134                          | 6.9                           | 74                         | 33             | 1048                                       | 3.96                 | 39                            | 22                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38                               | 52                         | 19.1                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                        | 60                         | .52                                 | .094                                 | 40                         | 61                         | .93                                 | 190                             | .08                             | 34                  | 1.88                                 | .06                               | <u>. 16</u>                          | 10                         | 49                      |

**44** 

Tom Lisle PROJECT R-1 FILE # 94-4193



| ppm         p           L28N         0+50W         1           L28N         0+00W         <1           L26N         10+00W         2           L26N         9+50W         1           L26N         9+50W         3           L26N         9+00W         3           L26N         8+50W         <1           L26N         8+00W         <1 | Cu<br>ppm p<br>55 -<br>38 -<br>43 -<br>22 -<br>13 -<br>31 -<br>28 -<br>27 - | 14 12<br>8 13<br>5 10<br>9 7 | n Ag<br>m ppm<br>33<br>03<br>02<br>82<br>9 - <.1 | ррт<br>16<br>22 | 10<br>12<br>11 | 1018 4<br>819 3 | . 19 | 7  | U<br>ppmr<br><5 | Au<br>ppm<br><2 |    | Sr<br>ppm | Cd<br>PPM | Sb<br>ppm | Bi<br>ppm | V<br>ppm | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>X | 8а<br>ррл | Ti<br>X | B<br>ppm                                                                          | Al<br>X | Na<br>X | К<br>% | ¥<br>ppm | Au*<br>ppb |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|--------------------------------------------------|-----------------|----------------|-----------------|------|----|-----------------|-----------------|----|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|-----------------------------------------------------------------------------------|---------|---------|--------|----------|------------|
| L28N 0+00W <1<br>L26N 10+00W 2<br>L26N 9+50W 1<br>L26N 9+00W 3<br>L26N 8+50W <1<br>L26N 8+50W <1                                                                                                                                                                                                                                          | 38-<br>43-7<br>22-7<br>13-7<br>31-7<br>28-                                  | 8 13<br>5 10<br>9 7<br>6 5   | 03<br>02<br>82                                   | 22<br>12<br>8   | 12<br>11       | 819 3           |      | 7  | <5              |                 | _  |           |           |           |           |          |         |        |           |           |         |           |         |                                                                                   |         |         |        |          |            |
| L28N 0+00W <1<br>L26N 10+00W 2<br>L26N 9+50W 1<br>L26N 9+00W 3<br>L26N 8+50W <1<br>L26N 8+50W <1                                                                                                                                                                                                                                          | 38-<br>43-7<br>22-7<br>13-7<br>31-7<br>28-                                  | 8 13<br>5 10<br>9 7<br>6 5   | 03<br>02<br>82                                   | 22<br>12<br>8   | 12<br>11       | 819 3           |      | •  |                 |                 | 2  | 80        | .5        | <2        | 3         | 51 1     | .25     | 077    | 14        | 26        | .73     | 141       | .07     | <2 ·                                                                              | 3.17    | .03     | .08    | <1       | <1         |
| L26N 10+00W 2<br>L26N 9+50W 1 ×<br>L26N 9+00W 3 ×<br>L26N 8+50W <1<br>L26N 8+50W <1                                                                                                                                                                                                                                                       | 43 ×<br>22 ×<br>13 ×<br>31 ×<br>28 ×                                        | 5 10<br>9 7<br>6 5           | 0~ .2<br>82                                      | 12<br>8         | 11             |                 |      | 3  | <5              | <2              | 3  | 45        | .4        | 6         | <2        |          | .56     |        | 16        | 33        |         | 165       | .06     |                                                                                   | 2.65    |         | .10    | <1       |            |
| .26N 9+50W 1 ≤<br>.26N 9+00W 3 ≤<br>.26N 8+50W <1<br>.26N 8+00W <1                                                                                                                                                                                                                                                                        | <ul> <li>22 ✓</li> <li>13 ✓</li> <li>31 ✓</li> <li>28 ✓</li> </ul>          | 97<br>65                     | 82                                               | 8               |                | 761 4           |      | 5  | <5              | <2              | ž  | 31        | <.2       | <2        | 2         |          | .54     |        | 40        | 25        |         | 244       | .07     |                                                                                   | 3.10    | .02     | .09    | <1       | 4-<br>3-   |
| 26N 9+00W 3 x<br>26N 8+50W <1<br>26N 8+00W <1                                                                                                                                                                                                                                                                                             | 13 <<br>31 √<br>28 ↓                                                        | 65                           |                                                  | -               | 15             | 476 3           |      | ŝ  | <5              | <2              | 4  | 24        | <.2       | 2         | <2        |          | .34     |        | 17        | 21        |         | 200       | .05     |                                                                                   | 2.50    |         | .08    | <1       | 2          |
| L26N 8+00W <1                                                                                                                                                                                                                                                                                                                             | 28 🗸                                                                        | 67                           |                                                  | J.              |                | 854 4           |      | 4  | <5              | <2              | 3  | 37        | <.2       | <2        | <2        |          | .35     | •      | 11        | 11        |         | 438       | .02     |                                                                                   | 2.55    |         | .11    | <1       | 1          |
| .26N 8+00W <1                                                                                                                                                                                                                                                                                                                             | 28 🗸                                                                        |                              | 5 - <.1                                          | 14              | 17             | 560 4           | . 19 | <2 | <5              | <2              | 5  | 25        | <.2       | <2        | 4         | 58       | .22     | 082    | 15        | 23        | 1.11    | 116       | .06     | <2                                                                                | 2.82    | .01     | .09    | <1       | 2          |
| -                                                                                                                                                                                                                                                                                                                                         |                                                                             | 5 4                          | 7~ .2                                            | 12              |                | 650 3           |      | 5  | <5              | <2              | 4  | 27        | <.2       | 2         | <ż        |          | .29     |        | 11        |           | 1.19    | 95        | .05     |                                                                                   | 2.23    |         | .07    | <1       | 1          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                             |                              | 7 ~ < 1                                          | 21              |                | 580 4           |      | ź  | <5              | <2              | 3  | 20        | <.2       | <2        | <2        |          | .20     |        | 11        |           | 1.05    | 94        | .04     |                                                                                   |         |         | .08    | <1       | <1         |
|                                                                                                                                                                                                                                                                                                                                           | 17/                                                                         |                              | 3 - < 1                                          | 13              |                | 406 3           |      | 6  | <5              | <2              | 3  | 22        | <.2       | <2        | 3         |          | .21     |        | 25        |           | .84     | 82        | .05     |                                                                                   | 2.28    |         | .05    | <1       | 1          |
|                                                                                                                                                                                                                                                                                                                                           | 30                                                                          |                              | 72                                               |                 |                | 778 4           |      | <2 | <5              | <2              | 2  | 26        | <.2       | <2        | <2        |          | .27     |        | 11        |           |         | 107       | .05     |                                                                                   | 3.08    | .01     | .09    | <1       | ż          |
| 26N 6+00W <1                                                                                                                                                                                                                                                                                                                              | 47 × 1                                                                      | 17 0                         | 7 ~ .1                                           | 15              | 20             | 1021 4          | 77   | 7  | <5              | <2              | 3  | 28        | .4        | <2        | <2        | 70       | .27     | 173    | 11        | 26        | 1.13    | 150       | .06     | 2                                                                                 | 3.35    | .02     | .11    | <1       | 4          |
| 1                                                                                                                                                                                                                                                                                                                                         |                                                                             | 14 14                        |                                                  | 33              |                | 856 4           |      | 3  | <\$             | <2              | 5  | 60        | <.2       | <2        | 5         | 62       | .80     |        | 37        |           |         | 129       | .09     |                                                                                   | 3.93    | .02     | .08    | <1       | 6          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                             |                              | 82                                               | 19              |                | 742 4           |      | 5  | <5              | <2              | 2  | 23        | .4        | 2         | <2        |          | .23     |        | 13        |           | 1.00    |           | .05     |                                                                                   | 2.82    |         | .08    | <1       | 2          |
|                                                                                                                                                                                                                                                                                                                                           | 41 \                                                                        | 6 17                         |                                                  |                 |                | 2292 4          |      | <2 | <5              | <2              | 3  | 26        | .5        | <2        | <2        |          | .29     |        | 13        |           | •       |           |         |                                                                                   |         |         |        |          | 3          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                             |                              | 4-<.1                                            |                 |                | 1122 4          |      |    | <5              | <2              | 2  | 26        |           |           |           |          |         |        |           |           |         | 157       | .07     |                                                                                   | 3.28    |         | .09    | <1       |            |
|                                                                                                                                                                                                                                                                                                                                           | 207                                                                         | ( 9                          | 4 ~ 4.1                                          | 13              | 21             | 1122 4          | .14  | 2  | <>              | <2              | 2  | 20        | <.2       | <2        | 2         | 70       | .27     | .095   | 16        | 25        | 1.12    | 105       | .06     | <2 .                                                                              | 3.50    | .01     | .09    | <1       | 2          |
|                                                                                                                                                                                                                                                                                                                                           | 55 /                                                                        |                              | 41                                               | 21              | -              | 858 5           |      | <2 | <5              | <2              | 3  | 26        | .3        | <2        | <2        |          | .24     |        | 14        |           | 1.32    | 90        | .05     |                                                                                   | 3.51    | .02     | .09    | <1       | 2          |
|                                                                                                                                                                                                                                                                                                                                           | 84 🗸                                                                        |                              | 9 - 1                                            | 21              |                | 1110 4          |      | <2 | <5              | <2              | <2 | 27        | .5        | <2        | 2         |          | .25     |        | 13        |           |         | 104       | .06     |                                                                                   | 3.21    | .01     | .08    | <1       | 2          |
|                                                                                                                                                                                                                                                                                                                                           | 87                                                                          |                              |                                                  | 19              |                | 1129 4          |      | <2 | <5              | <2              | 3  | 26        | .5        | <2        | <2        |          | . 25    |        | 13        |           |         | 110       | ,06     |                                                                                   | 3.27    | .01     | .08    | <1       | 5          |
|                                                                                                                                                                                                                                                                                                                                           | 72 <b>-</b> ′                                                               |                              | 5 .4                                             | 23              |                | 1011 4          |      | 4  | <5              | <2              | 4  | 22        | .7        | <2        | <2        |          | .20     |        | 16        |           |         | 107       | .07     | 4                                                                                 | 3.32    | .02     | .10    | <1       | 5          |
| 6N 2+00W . 2                                                                                                                                                                                                                                                                                                                              | 75 <sub>K</sub>                                                             | 10 10                        | 04                                               | 14              | 18             | 688 4           | .71  | <2 | <5              | <2              | 4  | 28        | <.2       | 3         | <2        | 76       | .27     | .069   | 17        | 23        | 1.07    | 123       | .08     | <2                                                                                | 2.83    | .01     | .06    | <1       | 3          |
| 26N 1+50W 1                                                                                                                                                                                                                                                                                                                               | 36 🗸                                                                        | 98                           | 43                                               | 19              |                | 687 4           |      | 3  | <5              | <2              | 3  | 44        | .4        | z         | <2        | 60       | .56     | .047   | 18        | 29        | .89     | 141       | .07     | <2                                                                                | 2.38    | .01     | .07    | <1       | 3          |
| 6N 1+00W 1                                                                                                                                                                                                                                                                                                                                | 49 V                                                                        | 13 8                         | 41                                               | 14              | 9              | 946 3           | .91  | <2 | <5              | <2              | 2  | 54        | .2        | -2        | <2        |          | . 92    |        | 17        | 27        | .75     | 121       | .07     |                                                                                   | 2.54    | .03     | .05    | <1       | 2          |
| :6N 0+50W 1                                                                                                                                                                                                                                                                                                                               | 55 🗸                                                                        | 8 9                          | 4 2                                              | 17              |                | 1302 3          |      | <2 | <5              | <2              | 3  | 60        | .3        | <2        | <2        |          | .77     |        | 19        |           |         | 149       | .06     |                                                                                   | 2.21    | .03     | .08    | <1       |            |
| 6N 0+00W 2                                                                                                                                                                                                                                                                                                                                | 79 ¥                                                                        | 12 12                        | 4~ .4                                            | 29              | 11             | 852 4           | .77  | <2 | <5              | <2              | 2  | 68        | 1.1       | <2        | <2        | 61 1     |         |        | 30        | 34        |         | 210       | .04     |                                                                                   | 3.68    |         | .10    | <        |            |
| 4N 10+00W 1                                                                                                                                                                                                                                                                                                                               | 33 🗸                                                                        | 12 8                         | 01                                               | 15              | 14             | 442 4           | .09  | <2 | <5              | <2              | 3  | 26        | .4        | <2        | <2        | 57       |         |        | 19        | 23        |         | 113       | .06     |                                                                                   | 2.58    |         | .08    | <1       | 24         |
| 4N 9+50W 1                                                                                                                                                                                                                                                                                                                                | 40 -                                                                        | 47                           | 9~ <.1                                           | 13              | 13             | 471 4           | .04  | <2 | <5              | <2              | 3  | 29        | .6        | <2        | <2        | 60       | .28     | 051    | 16        | 74        | 1.11    | 100       | .05     | -2                                                                                | 2.47    | .01     | .06    | <1       | ź          |
|                                                                                                                                                                                                                                                                                                                                           | 29 🗸                                                                        |                              | 1.3                                              | 17              |                | 636 3           |      | <2 | <5              | <2              | 4  | 25        | .3        | <2        | 5         | 56       | .27     |        | 12        |           | 1.02    | 83        | .05     |                                                                                   | 2.26    |         | .09    | <1       | 2          |
|                                                                                                                                                                                                                                                                                                                                           |                                                                             |                              | 3~ .2                                            |                 |                | 716 4           |      | <2 | <5              | <2              | <2 | 27        | .4        | <2        | 7         |          | .29     |        | 13        |           |         | 119       | .05     |                                                                                   | 2.73    |         | .11    | <1       |            |
|                                                                                                                                                                                                                                                                                                                                           | 50 2                                                                        |                              | 01                                               | 16              |                | 656 4           |      | <2 | <5              | <2              | 3  | 26        | .8        | ~2        | <2        |          | .25     |        | 14        |           |         |           | .05     |                                                                                   | 3.49    |         |        |          | 3          |
|                                                                                                                                                                                                                                                                                                                                           | 58                                                                          |                              | 3                                                |                 |                | 749 3           |      | 4  | <5              | <2              | 2  | 28        | .0        | ž         | <2        |          | .25     |        | 16        |           |         |           |         |                                                                                   |         |         | .11    | <1       |            |
|                                                                                                                                                                                                                                                                                                                                           | 20,                                                                         | 7 0                          | J~ .C                                            | 10              | 10             | 147 3           | .07  | 4  | • • •           | ~2              | 2  | 20        | - 2       | 2         | ×2        | 22       | .51     | .020   | 10        | 20        | .81     | 90        | .05     | <2                                                                                | 1.79    | .01     | .10    | <1       | 17         |
|                                                                                                                                                                                                                                                                                                                                           | 41 🗸                                                                        |                              | 2 - <.1                                          | 17              |                | 640 4           |      | <2 | <5              | <2              | 3  | 34        | .3        | 2         | <2        | 62       | .39     |        | 19        |           | 1.09    | 96        | . 05    |                                                                                   | 2.12    |         | .10    | <1       | 9          |
|                                                                                                                                                                                                                                                                                                                                           | - 36 🏹                                                                      |                              | 1~.1                                             | 14              |                | 1026 4          |      | <2 | <5              | <2              | 4  | 24        | .2        | <2        | <2        |          | .22     |        | 19        | 20        |         | 142       | .06     | <2                                                                                | 2.85    | .01     | .11    | <1       | 9          |
|                                                                                                                                                                                                                                                                                                                                           | 32 🗸                                                                        |                              | 11                                               | 14              |                | 750 4           |      | <2 | <5              | <2              | 7  | 27        | .6        | 4         | <2        |          | .20     |        | 21        | 19        | .81     | 151       | .05     | <2                                                                                | 3,11    | .01     | .10    | <1       |            |
|                                                                                                                                                                                                                                                                                                                                           | 33 🗸                                                                        | 27                           | 2 <.1                                            | 16              | 21             | 955 4           | .73  | <2 | <5              | <2              | 8  | 35        | .5        | <2        | 5         | 65       | .33     | .087   | 40        | 18        | .84     | 96        | .06     | <z (<="" td=""><td>2.66</td><td>.02</td><td>.07</td><td>&lt;1</td><td>1:</td></z> | 2.66    | .02     | .07    | <1       | 1:         |
| 24N 5+00W <1                                                                                                                                                                                                                                                                                                                              | 43 ¥                                                                        | 12 9                         | 21                                               | 14              | 15             | 754 4           | .34  | <2 | <5              | <2              | <2 | 29        | 1.0       | <2        | <2        | 63       | .30     | .084   | 14        | 21        | 1.27    | 86        | .05     |                                                                                   | 2.57    |         | .11    | <1       | 6          |
| ANDARD C/AU-S 19                                                                                                                                                                                                                                                                                                                          | 58                                                                          | 38 12                        | 4 6.7                                            | 70              | 31             | 1048 3          | .96  | 40 | 14              | 6               | 36 | 51        | 18.9      | 14        | 22        | 63       | .51     | .093   | 40        | 60        | .92     | 186       | .08     | 7.9                                                                               | 1 88    | .06     | 16     | 9        | 49         |

**44** 

Tom Lisle PROJECT R-1 FILE # 94-4193



| i i i i i i i i i i i i i i i i i i i                                             |                                         |                      |                                           |                         |                                     |                      |                      |                                           |                                                |                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                            |                              |                          |                                       |                            |                                                |                      |                            |                                                         |                         |                                 |                |                                      |                    |                                 | NCHE ANA                   | 1111046            |
|-----------------------------------------------------------------------------------|-----------------------------------------|----------------------|-------------------------------------------|-------------------------|-------------------------------------|----------------------|----------------------|-------------------------------------------|------------------------------------------------|-------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|------------------------------|--------------------------|---------------------------------------|----------------------------|------------------------------------------------|----------------------|----------------------------|---------------------------------------------------------|-------------------------|---------------------------------|----------------|--------------------------------------|--------------------|---------------------------------|----------------------------|--------------------|
| SAMPLE#                                                                           | Mo<br>ppm                               |                      | Pb<br>ppm                                 |                         | Ag<br>ppr                           |                      | Co<br>ppm            |                                           |                                                | As<br>ppm               |                                | Au<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Th<br>ppm             | Sr<br>ppm                  | Cd<br>ppm                    | Sb<br>ppm                | Bi<br>ppm                             | V<br>ppm                   | Ca<br>%                                        | P<br>X               | La<br>ppm                  | Cr Mg<br>ppm X                                          | Ba<br>ppm               | ті<br>Х                         | B<br>ppm       | AL<br>X                              | Na<br>X            | K<br>X                          |                            | Au*<br>ppb         |
| L24N 4+50W<br>L24N 4+00W<br>L24N 3+50W<br>L24N 3+00W<br>RE L24N 3+00W             | 2<br>2<br>1<br><1                       | 69<br>48<br>44       | ✓ 14<br>v 10<br>✓ 16<br>✓ 15<br>v 15      | 96<br>97<br>136         |                                     | 24<br>20<br>25       | 27<br>25<br>17       | 898                                       | 5.08<br>4.63<br>4.10                           | 9<br>9<br>3<br>5<br>11  | ৎ<br>ৎ<br>৩<br>৩<br>৩<br>৩     | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>7<br/>5<br/>4<br/>4<br/>4</td> <td>30<br/>29<br/>24<br/>25<br/>25</td> <td>.6<br/>&lt;.2<br/>&lt;.2<br/>.5<br/>.2</td> <td>&lt;2<br/>4<br/>&lt;2<br/>&lt;2<br/>4</td> <td>&lt;2<br/>4<br/>2<br/>3<br/>&lt;2</td> <td>77<br/>66<br/>66<br/>58<br/>60</td> <td>.23 .1<br/>.26 .1<br/>.20 .0<br/>.23 .0<br/>.24 .0</td> <td>05<br/>)95<br/>)85</td> <td>16<br/>21<br/>16<br/>13<br/>14</td> <td>19 1.16<br/>23 1.05<br/>23 1.08<br/>23 .96<br/>23 1.00</td> <td>87<br/>134<br/>148</td> <td>.05<br/>.06<br/>.08<br/>.06<br/>.06</td> <td>&lt;2<br/>&lt;2<br/>&lt;2</td> <td>2.84<br/>3.00<br/>3.11<br/>2.92<br/>3.01</td> <td>.02<br/>&lt;.01<br/>.01</td> <td>.10<br/>.09<br/>.09<br/>.10<br/>.10</td> <td>া<br/>&lt;া<br/>&lt;া<br/>&lt;া</td> <td>23<br/>3<br/>11<br/>3</td> | 7<br>5<br>4<br>4<br>4 | 30<br>29<br>24<br>25<br>25 | .6<br><.2<br><.2<br>.5<br>.2 | <2<br>4<br><2<br><2<br>4 | <2<br>4<br>2<br>3<br><2               | 77<br>66<br>66<br>58<br>60 | .23 .1<br>.26 .1<br>.20 .0<br>.23 .0<br>.24 .0 | 05<br>)95<br>)85     | 16<br>21<br>16<br>13<br>14 | 19 1.16<br>23 1.05<br>23 1.08<br>23 .96<br>23 1.00      | 87<br>134<br>148        | .05<br>.06<br>.08<br>.06<br>.06 | <2<br><2<br><2 | 2.84<br>3.00<br>3.11<br>2.92<br>3.01 | .02<br><.01<br>.01 | .10<br>.09<br>.09<br>.10<br>.10 | া<br><া<br><া<br><া        | 23<br>3<br>11<br>3 |
| L24N 2+50W<br>L24N 2+00W<br>L24N 1+50W<br>L24N 1+50W<br>L24N 1+00W<br>L24N 0+50W  | 1<br>1<br>1<br><1                       | 65<br>47<br>41<br>33 | √ 15<br>√ 20<br>√ 17                      | 134<br>165<br>132<br>80 |                                     | 2 17<br>1 15<br>3 12 | 14<br>15<br>12       | 628<br>687                                | 4.58<br>4.08<br>4.15<br>3.70<br>3.76           | 5<br>5<br>10<br>8<br>5  | ৎ<br>ৎ<br>ৎ<br>ও               | ∾ ∾ ∾ ∾ ∾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br>2<br>3<br>4<br>2 | 47<br>30<br>23<br>62<br>29 | .2<br>.6<br>.2<br>.6<br><.2  | 3<br>4<br>3<br>5<br>3    | 10<br>7<br><2<br>2<br>3               | 66<br>66<br>64<br>64       | .51 .0<br>.33 .0<br>.22 .0<br>.49 .0<br>.27 .0 | 097<br>068<br>023    | 17<br>15<br>12<br>17<br>14 | <b>33</b> 1.17<br>26 .86<br>25 .76<br>27 1.03<br>26 .76 | 155<br>148<br>148       | .06<br>.06<br>.10               | <2<br><2<br><2 | 3.39<br>3.01<br>3.06<br>2.35<br>3.25 | .01<br>.01         | .09<br>.09<br>.08<br>.09<br>.07 | ব<br>ব<br>ব<br>ব<br>ব      |                    |
| L24N 0+00W<br>L22N 10+00W<br>L22N 9+50W<br>L22N 9+00W<br>L22N 9+00W<br>L22N 8+50W | 1<br>1<br>1<br>1                        | 41<br>81<br>49       |                                           | 9<br>12<br>21           |                                     | 1 22<br>1 19<br>1 18 | 14<br>20<br>17       | 511<br>633<br>11 <b>78</b><br>1557<br>900 | 4.02<br>5.32<br>4.40                           | 10<br>7<br>13<br>6<br>7 | ৎ<br>১<br>২ <b>১</b><br>১<br>১ | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>3<br>6<br>2<br>4 | 36<br>38<br>48<br>28<br>33 | .6<br>.5<br>.4<br>.9         | 7<br><2<br>3<br><2<br>3  | 4<br>8<br>2<br>5<br>4                 | 60<br>60<br>67<br>67<br>64 | .41 .0<br>.40 .0<br>.61 .<br>.27 .<br>.30 .0   | 049<br>103<br>118    | 12<br>22<br>28<br>18<br>27 | 23 .77<br>24 1.04<br>28 1.29<br>30 .91<br>27 .88        | 96<br>151<br>163        | .06<br>.05<br>.06               | <2<br><2<br><2 | 2.66<br>2.22<br>2.27<br>3.73<br>3.14 | .01<br>.01<br>.01  | .08<br>.07<br>.11<br>.14<br>.11 | <1<br><1<br><1<br><1<br><1 | 2                  |
| L22N 8+00W<br>L22N 7+50W<br>L22N 7+00W<br>L22N 6+50W<br>L22N 6+50W                | 1<br>1<br>1<br>1                        | 30<br>57<br>42       | 16<br>17 12<br>17 12<br>14 14<br>17 9     | 6<br>8<br>11            | 1<br>9 ~ <<br>8 - <<br>0 -<br>9 - < | 1 10<br>1 23<br>2 10 | 5 14<br>2 18<br>3 17 | s 637<br>7 540                            | 4.11<br>3.92<br>4.94<br>3.97<br>3.95           | 6<br>6                  | <5                             | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>2<br>4<br>3<br>2 | 41<br>26                   | .2<br>2.><br>2.              | 5<br><2<br>4<br>5<br>3   | 9<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2 | 59<br>60<br>65<br>57<br>55 | .38 .0<br>.38 .1<br>.41 .1<br>.24 .1<br>.34 .1 | 059<br>094<br>089    | 15<br>20<br>23<br>15<br>24 | 26 1.2<br>24 1.0<br>23 1.3<br>19 .9<br>18 .9            | i 84<br>9 96<br>2 111   | .05<br>.06<br>.06               | <2<br><2<br><2 | 2.08                                 | <.01<br>.02        | .08<br>.09<br>.08<br>.08<br>.07 | <1<br><1<br><1<br><1<br><1 |                    |
| L22N 5+50W<br>L22N 5+00W<br>L22N 4+50W<br>L22N 4+00W<br>L22N 3+50W                | 2<br>7<br>2<br>1<br>1                   | 31<br>44<br>58       | i√ 11<br> √ 15<br> √ 12<br> √ 11<br> ↓ 16 | 26                      | 8 - <.<br>7 - <.<br>9 - <.<br>2     | 1 1<br>1 1<br>1 2    | 3 10<br>2 20<br>2 2  | 5 326<br>) 511<br>7 554                   | 3.94<br>9.90<br>5.46<br>5.26<br>4.49           | <2<br>5<br><2           | <5<br><5<br><5                 | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>4<br/>5<br/>5<br/>4<br/>5</td> <td>150<br/>63<br/>42</td> <td>.6<br/>&lt;.2<br/>.5</td> <td>2<br/>&lt;2<br/>6<br/>9<br/>7</td> <td>&lt;2<br/>&lt;2<br/>3<br/>5<br/>&lt;2</td> <td>144<br/>83<br/>88</td> <td>.37 .<br/>.29 .<br/>.31 .<br/>.41 .<br/>.28 .</td> <td>275<br/>123<br/>131</td> <td>22<br/>25<br/>20<br/>22<br/>13</td> <td>16 1.0<br/>13 1.4<br/>20 1.1<br/>18 1.0<br/>23 1.0</td> <td>5 208<br/>8 157<br/>5 228</td> <td>.10</td> <td>&lt;2<br/>&lt;2<br/>3</td> <td>1.75<br/>2.72<br/>2.95<br/>3.03<br/>3.07</td> <td>.05<br/>.02<br/>.02</td> <td>.11<br/>.11<br/>.10</td> <td></td> <td></td>                                                                                                                                                                   | 4<br>5<br>5<br>4<br>5 | 150<br>63<br>42            | .6<br><.2<br>.5              | 2<br><2<br>6<br>9<br>7   | <2<br><2<br>3<br>5<br><2              | 144<br>83<br>88            | .37 .<br>.29 .<br>.31 .<br>.41 .<br>.28 .      | 275<br>123<br>131    | 22<br>25<br>20<br>22<br>13 | 16 1.0<br>13 1.4<br>20 1.1<br>18 1.0<br>23 1.0          | 5 208<br>8 157<br>5 228 | .10                             | <2<br><2<br>3  | 1.75<br>2.72<br>2.95<br>3.03<br>3.07 | .05<br>.02<br>.02  | .11<br>.11<br>.10               |                            |                    |
| L22N 3+00W<br>L22N 2+50W<br>L22N 2+00W<br>L22N 1+50W<br>L22N 1+00W                | 1<br>1<br>8<br>3<br>1                   | 62<br>460<br>44      | 2 × 17<br>2 × 17<br>5 × 12<br>5 × 14      | 7 11<br>2 7<br>5 6      | 3 ~ .<br>0 ~ < .<br>9 ~ .<br>9 ~ .  | 1 2<br>2 1<br>1 7    | 1 1<br>B 3<br>7 2    | 8 813<br>4 577<br>6 660                   | 4.15<br>4.33<br>7 8.02<br>5.47<br>9 4.08       | 7<br>8<br>              | <5<br><5<br><5                 | <2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4<br>7<br>3           | 29<br>21<br>45             | .4<br><.2<br><.2             | 2<br><2<br><2<br>3<br>5  | 3<br>3<br>2                           | <b>73</b><br>86<br>87      | .29 .<br>.14 .<br>.44 .                        | 140<br>332<br>056    | 14<br>19<br>18<br>29<br>11 | 25 .9<br>22 .8<br>16 .9<br>75 1.5<br>32 1.2             | 4 81<br>8 137           | .12<br>.12<br>.07               | <2<br><2<br><2 |                                      | . 02               | .06<br>.06                      | <1<br><1                   |                    |
| L22N 0+50W<br>L22N 0+00W<br>L20N 10+00W<br>L20N 9+50W<br>L20N 9+00W               | 211111111111111111111111111111111111111 | 6<br>4:<br>4         | 2 √ 2<br>1 √ 1<br>2 ← 1<br>0 √ 1<br>0 √ 1 | 8 12<br>7 1<br>9        |                                     | .1 2<br>.1 1<br>.1 1 | 0 1<br>6 1<br>6 1    | 4 84<br>4 82<br>3 79                      | 4 4.31<br>6 4.26<br>3 4.00<br>9 3.70<br>8 3.87 | ) 7<br>) 3<br>) <2      | <5<br><5<br><5<br><5           | <2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4<br>3<br>3           | 27<br>30<br>40             | ) <.2<br>) .3                | 5<br><2<br>8<br>5<br>3   | 3<br>9<br>7                           | 60<br>60<br>64             | .30<br>.40                                     | .054<br>.080<br>.057 | 27<br>18<br>20<br>26<br>15 | 25 .9<br>25 1.1<br>25 .9<br>27 .8<br>22 .9              | Z 100<br>1 140<br>5 104 | ) .05<br>) .07<br>, 08          | <2<br><2<br><2 | 2.43<br>2.35<br>2.73<br>2.14<br>2.10 | .01<br>.02         | .09<br>.10<br>.08               | 1                          | 1<br>1<br>1        |
| STANDARD C/AU-S                                                                   | 19                                      | 5                    | 93                                        | 7 1                     | 32 6                                | .9 7                 | 2 3                  | 1 104                                     | 2 3.9                                          | 5 39                    | 2 15                           | ; 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37                    | <u> </u>                   | 2 19.3                       | 15                       | 15                                    | 60                         | .51                                            | .095                 | 40                         | 63 .9                                                   | 2 184                   | 02                              | 3 34           | 1.88                                 | . 06               | .16                             | 12                         | 2                  |

ACHE ANALYTICAL

-

.

Tom Lisle PROJECT R-1 FILE # 94-4193

Page 6

CHE ANALITICAL

|                                                                                  |                        |                              |                                                                       |                              |                                                 |                           |                      |                                 |                                                |                                                                                              |                        |                                                                                 |                       |                                   |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                   |                                                |                            |                            |                                  |                                 |                                 |                |                                                          | . <u>.</u>              |                                 |                            |                               |
|----------------------------------------------------------------------------------|------------------------|------------------------------|-----------------------------------------------------------------------|------------------------------|-------------------------------------------------|---------------------------|----------------------|---------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|-----------------------|-----------------------------------|--------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|------------------------------------------------|----------------------------|----------------------------|----------------------------------|---------------------------------|---------------------------------|----------------|----------------------------------------------------------|-------------------------|---------------------------------|----------------------------|-------------------------------|
| ACHE ANALYTICAL                                                                  | Mo                     | Cu<br>ppm                    |                                                                       |                              | -                                               | Ni<br>ppm                 | Co<br>ppm            | Mn<br>ppm                       | Fe<br>%                                        | As<br>ppm                                                                                    | U<br>ppm               | Au<br>ppm                                                                       | Th<br>ppm             | Sr<br>ppm                         | Cd<br>ppm                      | Sb<br>ppm                | 8i<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>ppm                   | Ca<br>X           | P<br>X                                         | La<br>ppm                  | Cr<br>ppm                  | Mg<br>X                          | Ba<br>ppnt                      | Ti<br>X                         | 8<br>ppn       | Al<br>X                                                  | Na<br>X                 | K<br>X                          | ¥<br>ppm                   | Au*<br>ppb                    |
| L20N 8+50W<br>L20N 8+00W<br>L20N 7+50W<br>L20N 7+00W<br>L20N 6+50W               | 1<br>1<br>2<br>5       | 40<br>43<br>43               | <ul> <li>15</li> <li>10</li> <li>10</li> <li>11</li> <li>5</li> </ul> | 76<br>67<br>70               | 1<br>1<br>1<br>1<br>1                           | 7<br>11<br>11<br>12<br>21 | 16<br>14<br>10       | 770<br>506<br>458<br>621<br>157 | 4.07<br>4.04<br>2.97                           | <2 ~2<br>~2 ~3<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2<br>~2 | ও<br>ও <b>ও</b><br>ও ও | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          | 5<br>5<br>4<br>3<br>2 | 18<br>20<br>15<br><b>34</b><br>55 | <.2<br><.2<br><.2<br>.3<br><.2 | <2<br><2<br><2<br>3<br>3 | <2<br>3<br><2<br>5<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54<br>49<br>49<br>42<br>46 | .21<br>.18<br>.43 | .102<br>.063<br>.076<br>.029<br>.069           | 12<br>13<br>8<br>37<br>77  | 19<br>19<br>17<br>21<br>13 | .67<br>.71<br>.66<br>.81<br>.52  | 94<br>120<br>93<br>128<br>85    | .07<br>.06<br>.05<br>.04<br>.01 | <2<br>4<br><2  | 2.32<br>1.68<br>1.87<br>1.90<br>2.25                     | <.01<br><.01<br>.01     | -07<br>-05<br>-05<br>-07<br>-06 | <1<br><1<br><1<br><1       | 2<br>3<br>3<br>3<br>2         |
| 120N 6+00W<br>L20N 5+50W<br>L20N 5+00W<br>L20N 5+00W<br>L20N 4+50W<br>L20N 4+00W | 1<br>3<br>1<br><1<br>5 | 30<br>29<br>35<br>36<br>~ 24 | 5<br>16<br>8                                                          | 60<br>132<br>98              | -<.1<br>-<.1<br>-<.1<br>-<.1                    | 13<br>6<br>23<br>10<br>12 | 24<br>23<br>14       |                                 | 4.59                                           | <2<br><2<br><2<br>3<br><2                                                                    |                        | <2<br><2<br><2<br><2<br><2<br><2                                                | 2<br>14<br>4<br>3     | 24<br>25<br>21<br>30<br>36        | <.2<br>.4<br>.4<br>.4<br>.2    | <2<br><2<br>2<br>4<br>3  | ~<br>4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53<br>42<br>56<br>58<br>56 | ,37<br>,24<br>,32 | .167<br>.128<br>.094<br>.074<br>.082           | 11<br>92<br>29<br>14<br>10 | 17                         |                                  | 78<br>56<br>79<br>81<br>87      | .06<br>.02<br>.07<br>.08<br>.06 | <2<br><2<br><2 | 2.02<br>1.94<br>2.37<br>1.78<br>2.10                     | <.01<br>.01<br><.01     | .05<br>.07<br>.08<br>.07<br>.11 | ব<br>ব<br>ব<br>ব<br>ব      | 2<br>6<br>2<br>2<br><1        |
| L20N 3+50W<br>L20N 3+00W<br>L20N 2+50W<br>L20N 2+50W<br>L20N 2+00W<br>L20N 1+50W | 3<br><1<br>1<br>20     | °23<br>35<br>35              |                                                                       | 107<br>120                   | <.1<br>'1<br>'1<br>'- <.1                       | 15<br>17<br>8<br>8<br>12  | 14<br>16<br>10       | 1293<br>435                     | 4.81<br>3.57<br>3.97<br>8.03<br>3.95           | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><  |                        | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br>< | 4<br>2<br>3<br>4<br>2 | 20<br>37                          | .7<br>.2<br>.3<br>.4           | <2                       | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><><br><><br><><br><><> </td <td>55<br/>60<br/>59</td> <td>.38<br/>.23<br/>.19</td> <td>.117<br/>.102<br/>.116<br/>.098<br/>.062</td> <td>14<br/>7<br/>12<br/>10<br/>12</td> <td>20<br/>23<br/>24<br/>24<br/>23</td> <td>1.03<br/>.90<br/>.74<br/>.86<br/>.92</td> <td>116<br/>99<br/>139<br/>137<br/>103</td> <td>.05<br/>.05<br/>.07<br/>.04<br/>.05</td> <td>&lt;2<br/>2<br/>&lt;2</td> <td>2.71<br/>2.35<br/>2.80<br/>2.10<br/>2.23</td> <td>.01<br/>.01</td> <td>.08<br/>.09<br/>.09<br/>.09</td> <td>&lt;1<br/>1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td>1<br/>1<br/>3<br/>1<br/>3</td> | 55<br>60<br>59             | .38<br>.23<br>.19 | .117<br>.102<br>.116<br>.098<br>.062           | 14<br>7<br>12<br>10<br>12  | 20<br>23<br>24<br>24<br>23 | 1.03<br>.90<br>.74<br>.86<br>.92 | 116<br>99<br>139<br>137<br>103  | .05<br>.05<br>.07<br>.04<br>.05 | <2<br>2<br><2  | 2.71<br>2.35<br>2.80<br>2.10<br>2.23                     | .01<br>.01              | .08<br>.09<br>.09<br>.09        | <1<br>1<br><1<br><1<br><1  | 1<br>1<br>3<br>1<br>3         |
| L20N 1+00W<br>RE L20N 1+00W<br>L20N 0+50W<br>L20N 0+00W<br>L18N 10+00W           | 1<br>1<br><1           | 37<br>52<br>43               | 7 11<br>2 m 13                                                        |                              | , - < 1<br> - < 1<br> - < 1<br> - < 1<br> - < 1 | 13<br>12<br>13            | 12<br>12<br>14       | 680<br>952<br>711               | 3.59<br>3.66<br>3.98<br>4.02<br>3.63           | 2<br>2<br>5                                                                                  | <5<br><5<br><5         | <2<br><2<br><2<br><2<br><2<br><2<br><2                                          | 2<br>3<br>3           | 21<br>15<br>15                    | .7<br>1.0<br>.6<br>.4          | <2<br><2<br>2            | ~<br>~<br>~<br>~<br>~<br>~<br>~<br>~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55<br>61<br>62             | .30<br>.20<br>.14 | .042<br>.043<br>.072<br>.064<br>.060           | 13<br>13<br>12<br>14<br>19 | 22<br>24<br>24<br>23<br>20 | .88<br>.89<br>.82<br>.81<br>.78  | 114<br>119<br>120<br>122<br>128 | .05<br>.05<br>.06<br>.06<br>.06 | <2<br><2<br>2  | 3.44                                                     |                         | .07<br>.07<br>.08<br>.07<br>.07 | <1<br><1<br><1<br><1<br><1 | 2<br>17<br>1<br><u>3</u><br>5 |
| L18N 9+50W<br>L18N 9+00W<br>L18N 8+50W<br>L18N 8+50W<br>L18N 8+00W<br>L18N 7+50W | 1                      | 34<br>43                     | 5 e<br>4 e                                                            | 7 10                         |                                                 | 20<br>15<br>15            | 13<br>14<br>14       | 514<br>658<br>1019              | 4.27<br>3.40<br>3.98<br>3.63<br>3.42           | √2<br>2<br>2                                                                                 | <5<br><5<br><5         | <2<br><2<br><2<br><2<br><2                                                      | 2<br>4<br>2           | 31<br>22<br>27                    | .5                             | 3<br><2<br><2            | 5<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52<br>58<br>54             | .34<br>.20<br>.28 | .089<br>.082<br>.095<br>.085<br>.083           | 13<br>15<br>10             | 20<br>20<br>22<br>18<br>17 | .74<br>.76<br>.71<br>.84<br>.70  | 114<br>90<br>112<br>110<br>103  | .05<br>.07<br>.05               | <2<br><2<br>3  |                                                          | .01<br>.01<br>01        | . 08<br>. 08<br>. 09            | 1<br><1<br><1              | 2<br>1<br>1                   |
| L18N 7+00W<br>L18N 6+50W<br>L18N 6+00W<br>L18N 5+50W<br>L18N 5+50W               |                        | 3<br>  3<br>  4<br>  3       | 2 1<br>3 1<br>1 1<br>5 1                                              | 8 10<br>1 11<br>5 11<br>8 11 | 2 - 1<br>2 - 1<br>1 1<br>5 1<br>5 1             | 1 18<br>1 13<br>1 16      | 3 14<br>2 17<br>5 16 | 630<br>530<br>734               | 3.76<br>3.83<br>4.24<br>4.06<br>4.22           | <2<br>4<br>7                                                                                 | <5<br><5<br><5         | <2<br><2<br><2                                                                  | 3                     | 19<br>25<br>23                    | .2<br>.7<br>.6                 | 2<br><2<br>2             | <2<br><2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54<br>56<br>55             | .18<br>.25<br>.21 | .108<br>.103<br>.108<br>.106<br>.106<br>.058   | 9<br>16<br>10              |                            | .68<br>.63<br>.75<br>.75<br>.99  | 108<br>101<br>103<br>88<br>120  | .07<br>.07<br>.06               | <2<br><2<br>2  | 2 2.41<br>2 2.24<br>2 2.24<br>2 2.24<br>2 1.95<br>2 2.22 | .01<br>.02<br>5 .01     | .06<br>.06<br>.07               | <1<br><1<br><1             | 16<br>14                      |
| L18N 4+50W<br>L18N 4+00W<br>L18N 3+50W<br>L18N 3+50W<br>L18N 2+50W               | ĺ                      | 1 3<br>1 5<br>1 4<br>1 6     |                                                                       | 8 7<br>3 12<br>0 10<br>1 16  | 9 <_'                                           | 1 1<br>1 1<br>1 2<br>2 2  | 3 18<br>1 14<br>3 10 | 3 725<br>6 64<br>9 96           | ) 3.91<br>5 4.46<br>1 3.73<br>1 4.44<br>3 3.66 | 5 4<br>5 4<br>4 10                                                                           | <5<br><5<br>) <5       |                                                                                 |                       | 24<br>2 29<br>5 45                | .3<br>.7<br>1.1                | 5 7<br>8<br>  <2         | <2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 62<br>2 58<br>2 58       | .29<br>.42<br>.94 | 5 .074<br>7 .099<br>2 .061<br>4 .044<br>5 .055 | ) 13<br>  14<br>  26       | 22<br>25<br>26             | .90<br>.75                       | 117<br>97<br>195                | .06<br>.06<br>.07               |                | 2 1.82<br>2 2.44<br>2 2.14<br>2 2.14<br>2 2.8<br>2 2.8   | 4 .01<br>4 .01<br>8 .01 | 0.<br>0.                        |                            |                               |
| STANDARD C/AU-S                                                                  |                        | -                            | -                                                                     | -                            |                                                 | •                         |                      | 3 104                           | 2 3.9                                          | <u>6 4</u>                                                                                   | 1 18                   |                                                                                 | 7 37                  | 7 52                              | 18.6                           | 5 15                     | 5 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 60                       | ) .5              | 1.094                                          | 40                         | 62                         | .92                              | 182                             | .08                             | 3 3            | 3 1.8                                                    | 8 .07                   | 7.1                             | 5 1!                       | 5 48                          |

**#** 

Tom Lisle PROJECT R-1 FILE # 94-4193



| ACHE ANALYTICAL                                                       |                                 |                            |                      |                                        |                         |                            |                |                                    |                      |                         |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                            |                              |                                                                                 |                                      |                            |                   |                                      |                            |                            |                                   |                                 |                                 |                     |                                      |                                  |                                      | CINE ANAL                            | TICAL                   |
|-----------------------------------------------------------------------|---------------------------------|----------------------------|----------------------|----------------------------------------|-------------------------|----------------------------|----------------|------------------------------------|----------------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|------------------------------|---------------------------------------------------------------------------------|--------------------------------------|----------------------------|-------------------|--------------------------------------|----------------------------|----------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-------------------------|
| SAMPLE#                                                               | Mo<br>ppm                       | Cu<br>ppm                  | Pb<br>ppm            | 2n<br>ppm                              | Ag<br>ppm               | Ni<br>ppm                  | Co<br>ppnt     | Mn<br>ppn                          |                      | As<br>ppm               | U<br>PPM                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | Sr<br>ppm                  | Cd<br>ppm                    | Sb<br>ppm                                                                       | Bi<br>ppm                            | V<br>ppm                   | Ca<br>X           | P<br>X                               | La<br>ppm                  | Cr<br>ppm                  | Mg<br>%                           | Ba<br>ppm                       | Ti<br>X                         | B<br>ppm            | Al<br>X                              | Na<br>X                          | к<br>Х                               | W<br>ppm                             | Au*<br>ppb              |
| L18N 2+00W<br>L18N 1+50W<br>L18N 1+00W<br>L18N 0+50W<br>L18N 0+50W    | 1<br>1<br>1<br>2<br>1           | 79 v<br>59 -<br>103 -      | 16<br>20             | 99 -<br>517<br>245 *<br>134 -<br>123 - | <.1<br><.1<br><.1       | 12<br>15<br>15<br>15<br>13 | 14<br>23<br>35 | 917<br>881<br>1615<br>1142<br>1107 | 4.34<br>4.33<br>4.97 | 5 ~ ~ ~ ~ ~ ~ ~         | ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও<br>ও | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>3<br>3<br>4<br>3  | 50<br>32<br>25<br>26<br>30 | 1.4<br>3.5<br>.8<br>.5<br>.8 | <2<br><2<br><2<br><2<br><2<br><2<br><2                                          | <2<br><2<br><2<br>5<br><2<br>5<br><2 | 66<br>64<br>66<br>70<br>77 | .27<br>.30        | .087<br>.051<br>.114<br>.085<br>.067 | 20<br>21<br>14<br>15<br>13 | 26<br>21                   | 1.12<br>.93<br>.99<br>1.19<br>.84 | 114<br>120<br>154<br>137<br>154 | .05<br>.08<br>.06<br>.05<br>.06 | <2<br>2<br><2<br><2 | 3.31<br>3.26<br>3.62<br>3.62<br>3.81 | .01<br>.01                       | .09<br>.12<br>.10<br>.11<br>.09      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>4<br>30<br>4<br>2  |
| L16N 10+00W<br>L16N 9+50W<br>L16N 9+00W<br>L16N 8+50W<br>L16N 8+50W   | 1<br>1<br>1<br>1<br>2           | 47<br>35 -                 | 14<br>8<br>15        |                                        | 2<br><.1                | 9<br>10<br>11<br>17<br>9   | 9<br>14<br>20  | 1010<br>936<br>798<br>499<br>714   | 3.84<br>4.02<br>5.44 | 8<br><2<br>8<br>3<br><2 |                                                | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <2<br>3<br>2<br>5      | 27<br>44<br>32<br>45<br>52 | .8<br>.7<br>.4<br>.4<br>1.0  | 3<br>5<br>3<br>2<br>2                                                           | 5<br>3<br>2<br>9<br>2                | 56<br>61<br>58<br>60<br>59 | .25               |                                      | 10<br>28<br>14<br>13<br>17 | 23<br>22<br>19             | .70<br>.74<br>1.03<br>.92<br>.64  | 116<br>147<br>62<br>157<br>215  | .06<br>.07<br>.06<br>.06<br>.09 | 5<br><2<br>3        | 2.25<br>2.47<br>2.02<br>2.33<br>2.13 | .02<br>.01                       | .07<br>.09<br>.09<br>.09<br>.09      | <1<br><1<br><1<br><1                 | 1<br>4<br>25<br>16<br>4 |
| L16N 7+50W<br>L16N 7+00W<br>L16N 6+50W<br>L16N 6+00W<br>L16N 5+50W    | 1<br>3<br>3<br>7<br>2           | 42<br>45<br>44<br>66<br>81 | 9<br>10              | 94<br>113<br>104<br>51<br>141          | .1<br>.1<br>- <b>.1</b> | 17<br>16<br>21<br>8<br>19  | 18<br>23<br>20 | 635<br>574<br>575<br>623<br>940    | 5.65<br>6.15<br>7.26 | 4<br>3<br>2<br>5<br>2   | <5<br><5<br><5<br><5<br><5                     | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>8<br>6<br>11<br>4 | 38<br>22<br>27<br>36<br>38 | .7<br>.3<br>.2<br>.3         | <2<br><2<br><2<br><2<br><2<br><2                                                | 2<br>3<br>2<br>2<br>2<br>2<br>2<br>2 | 63<br>64<br>68<br>69<br>60 | .20<br>.27<br>.39 | .087<br>.137<br>.157<br>.166<br>.083 | 16<br>19<br>16<br>67<br>53 | 18<br>22                   | 1.10<br>.69<br>.97<br>1.17<br>.78 | 98<br>99<br>106<br>72<br>174    | .08<br>.11<br>.06<br>.05<br>.07 | <2<br><2<br>2       | 2.26<br>2.93<br>2.80<br>2.11<br>3.32 | .01<br>.01<br>.01<br>.01<br>.02  | .07<br>.07<br>.07<br>.08<br>.09      | <1<br><1<br><1<br><1<br><1           | 2<br>5 -<br>8<br>3      |
| L16N 5+00W<br>L16N 4+50W<br>L16N 4+00W<br>L16N 3+50W<br>CL16N 3+00W   | 1<br>1<br>1<br>1<br>1<br>1      | 50<br>45<br>43<br>27<br>58 | 15<br>10             | 169 -<br>126 -<br>118<br>128<br>136 -  | 1<br>1<br>1             | 16<br>20<br>17<br>14<br>11 | 20<br>15<br>13 | 747<br>690<br>713<br>702<br>696    | 4.60<br>4.00<br>3.47 | 7<br>6<br>5<br>6<br><2  | ৎ<br>১<br>৩<br>৩<br>৩                          | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>2<br>2<br>2<br>3  | 32<br>36<br>33<br>28<br>36 | .7<br>.9<br>.5<br>.5         | <2<br><2<br>3<br>5<br>2                                                         | <2<br>3<br><2<br>5<br>2              | 66<br>68<br>62<br>59<br>65 | .38<br>.37<br>.33 | .121<br>.121<br>.120<br>.081<br>.055 | 14<br>14<br>11<br>10<br>13 | 21<br>22<br>22<br>22<br>23 | -86<br>-93                        | 130<br>123<br>102<br>116<br>126 | .08<br>.07                      | <2<br><2<br>3       | 2.62<br>2.57<br>2.24<br>2.47<br>2.50 | .02<br>.01<br>.01<br>.01<br><.01 | .07<br>.09<br>.10<br>.10<br>.09      | <1<br><1<br>2<br><1<br>1             | 3<br>1<br>6<br><1<br>9  |
| RE LIGN 3+00W<br>LIGN 2+50W<br>LIGN 2+00W<br>LIGN 1+50W<br>LIGN 1+00W | . 1<br><1<br>1<br>1             | 51<br>53                   | - 14<br>- 10<br>+ 16 | 138<br>135<br>126<br>166<br>170        | - <.1<br>1<br>1         | 13<br>12<br>15<br>19<br>16 | 14<br>16<br>15 | 711<br>694<br>656<br>998<br>996    | 3.90<br>4.02<br>4.27 | 4<br>2<br>7<br>7<br>2   | ৩<br>৩<br>৩<br>৩<br>৩<br>৩                     | <<br>< < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <2<br><2               | 36<br>33<br>36<br>30<br>27 | <.2<br>.5<br>.6<br>.4<br>.3  | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br>< | <2<br><2<br>3<br><2<br>3<br><2<br>3  | 68<br>64<br>64<br>66       | .41<br>.43<br>.36 | .056<br>.064<br>.044<br>.087<br>.079 | 14<br>13<br>13<br>17<br>15 |                            | .98<br>.97                        | 115<br>88<br>122                | .08<br>.07<br>.06               | <2<br><2<br><2      | 2.53<br>2.58<br>2.05<br>2.74<br>2.73 | .01<br>.01<br>.01                | .08<br>.09<br>.07<br>.12<br>.10      | 1<br><1<br><1<br><1                  | 8<br>10<br>10<br>2<br>1 |
| L16N 0+50W<br>L16N 0+00W<br>L14N 10+00W<br>L14N 9+50W<br>L14N 9+00W   | <1<br><1<br>1<br>1<br><1        | 29                         | / 11<br>/ 10<br>/ 7  |                                        | - <.1                   | 16<br>14<br>15<br>12<br>11 | 12<br>13<br>16 | 806<br>775<br>570<br>561<br>578    | 3.61<br>3.59<br>4.67 | 10<br>6<br>8<br>5<br>3  | <5<br><5<br><5<br><5                           | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><> </td <td>&lt;2<br/>3<br/>4</td> <td>29<br/>24<br/>24</td> <td>.2<br/>.3<br/>.4<br/>&lt;.2<br/>&lt;.2</td> <td>&lt;2<br/>5<br/>&lt;2</td> <td>&lt;2<br/>&lt;2<br/>&lt;2<br/>7<br/>&lt;2</td> <td>63<br/>61<br/>55<br/>60<br/>63</td> <td>.37<br/>.25<br/>.24</td> <td>.067<br/>.076<br/>.056<br/>.071<br/>.033</td> <td>14<br/>11<br/>9<br/>17<br/>10</td> <td>24<br/>18<br/>22</td> <td>.88</td> <td>108<br/>119</td> <td>.07<br/>.08<br/>.10</td> <td>2<br/>&lt;2<br/>&lt;2</td> <td></td> <td></td> <td>.08<br/>.08<br/>.07<br/>.09<br/>.10</td> <td>&lt;1<br/>&lt;1<br/>&lt;1<br/>&lt;1</td> <td>4<br/>10<br/>3<br/>6<br/>2</td> | <2<br>3<br>4           | 29<br>24<br>24             | .2<br>.3<br>.4<br><.2<br><.2 | <2<br>5<br><2                                                                   | <2<br><2<br><2<br>7<br><2            | 63<br>61<br>55<br>60<br>63 | .37<br>.25<br>.24 | .067<br>.076<br>.056<br>.071<br>.033 | 14<br>11<br>9<br>17<br>10  | 24<br>18<br>22             | .88                               | 108<br>119                      | .07<br>.08<br>.10               | 2<br><2<br><2       |                                      |                                  | .08<br>.08<br>.07<br>.09<br>.10      | <1<br><1<br><1<br><1                 | 4<br>10<br>3<br>6<br>2  |
| L14N 8+50W<br>L14N 8+00W<br>L14N 7+50W<br>L14N 7+00W<br>L14N 6+50W    | <1<br><1<br><1<br><1<br><1<br>1 | 39<br>`24<br>55            | 13                   |                                        | 3                       | 16<br>14<br>13             | 15<br>12<br>12 | 965<br>648<br>647<br>778<br>953    | 3.79<br>3.32<br>3.99 |                         | 5<br><5                                        | <2<br><2<br><2<br><2<br><2<br><2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>2<br>3            | 34<br>29                   | .7<br><.2<br><.2             | 9<br>4<br><2                                                                    | 10<br>3<br>9<br>7<br><2              | 72<br>60<br>55<br>60<br>64 | .34<br>.32<br>.59 | .091<br>.087<br>.124<br>.095<br>.091 | 19<br>13<br>9<br>17<br>20  | 23<br>19<br>26             | .60<br>1.20                       | 170                             | .09<br>.07                      | 2<br>2<br>4         | 2.90<br>2.71<br>2.36<br>2.00<br>2.13 | .02                              | . 13<br>. 14<br>. 10<br>. 15<br>. 13 | ব<br>ব<br>ব<br>ব                     | 5<br>3<br>2<br>5<br>8   |
| STANDARD C/AU-S                                                       | 19                              | 59                         | 39                   | 123                                    | 6.8                     | 72                         | 32             | 1037                               | 3.96                 | 39                      | 22                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37                     | 52                         | 18.4                         | 14                                                                              | 22                                   | 60                         | .51               | . 095                                | 40                         | 62                         | .91                               | 183                             | .08                             | 33                  | 1.88                                 | .07                              | . 16                                 | 14                                   | 50                      |

. .

.

.

Tom Lisle PROJECT R-1 FILE # 94-4193

| ACHE AMALTTICAL                                                                        |                                                    |                          |                                             | _                 |                                          |                          |                           |                                 |                                                |                                        |                                           |                                                                                             |                                       |                            |                       |                                              |                                          |                            |                   |                                                |                            |                            |                                  |                               |                                 |                      |                                                      |                                 | v                               |                            | Au*                                                                                                    |
|----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|---------------------------------------------|-------------------|------------------------------------------|--------------------------|---------------------------|---------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-----------------------|----------------------------------------------|------------------------------------------|----------------------------|-------------------|------------------------------------------------|----------------------------|----------------------------|----------------------------------|-------------------------------|---------------------------------|----------------------|------------------------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------|
| SAMPLE#                                                                                | Mo                                                 | Cu<br>ppm                |                                             |                   | in Ag<br>xa ppan                         |                          |                           |                                 |                                                | As<br>ppm                              | ป<br>ppm                                  | Au<br>ppm                                                                                   | ĩh<br>ppm                             | Sr<br>ppn                  | Cd<br>ppm             | Sb<br>ppm                                    | Bi<br>ppm                                | V<br>ppm                   | Ca<br>X           | P<br>X                                         | La<br>ppm                  | Сг<br>ррт                  | Mg<br>X                          | Ba<br>ppm                     | Ti<br>X                         | ppm                  | Al<br>%                                              | Na<br>X                         |                                 | ppa                        | ppb                                                                                                    |
| L14N 6+00W<br>L14N 5+50W<br>L14N 5+00W<br>L14N 5+00W<br>L14N 4+50W<br>L34N 4+00W       | 1<br>1<br>1<br>2<br>1                              |                          | 57                                          | 1<br>1<br>1       | 151<br>101<br>182<br>33 - <.1            | 12<br>14<br>18           | 12<br>12<br>19            | 586<br>691<br>569<br>830<br>814 | 3.36<br>3.52<br>4.83                           | 3<br>5<br>5<br>4<br>2                  | ৎ<br>১<br>১<br>১<br>১<br>১<br>১<br>১<br>১ | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                      | 4<br>3<br>2<br>4<br><2                | 33<br>28<br>33<br>31<br>34 | .3<br><.2<br>.3<br>.2 | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2 | <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 < | 55<br>57<br>65             | .35<br>.35<br>.31 | .043<br>.116<br>.050<br>.114<br>.079           | 15<br>10<br>13<br>13<br>16 | 22<br>23<br>24<br>23<br>21 | 1.01<br>.76<br>.85<br>.86<br>.83 | 67<br>124<br>89<br>147<br>163 | .07<br>.08<br>.09<br>.10<br>.08 | 4<br><2<br><2        | 1.66<br>2.08<br>1.89<br>2.97<br>2.61                 | .01<br>.03<br>.01<br>.02<br>.01 | .10<br>.10<br>.14<br>.10<br>.10 | 1<br><1<br><1<br><1        | 4 /<br>3 -<br>4 -<br>21 -<br>7 -                                                                       |
| L14N 3+50W<br>L14N 3+00W<br>L14N 2+50W<br>L14N 2+00W A<br>L14N 2+00W B                 | 1<br>1<br>1<br><1<br><1                            | 41<br>55<br>39           | - 13<br>- 6<br>- 10                         | 5 1<br>5 2<br>) 1 | 454<br>23 .3<br>194<br>13 .4<br>864      | 13<br>14<br>11           | 12<br>13<br>12            | 604<br>662<br>908<br>606<br>781 | 3.58<br>3.90                                   | <2<br>5<br>4<br><2<br>5                |                                           | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br>< | <2<br>2<br>3<br>4<br>2                | 32<br>31<br>27<br>28<br>27 | .2<br>.2<br>.5<br>.4  | <2<br><2<br><2<br>2<br><2                    | <2                                       | 57<br>60<br>61<br>56<br>55 | .33<br>.28<br>.32 | .041<br>.044<br>.113<br>.084<br>.139           | 16<br>11<br>13<br>11<br>12 | 21<br>22<br>23<br>22<br>20 | .71<br>.89<br>.81<br>.81<br>.69  | 109<br>89<br>169<br>92<br>115 | .08<br>.08<br>.07<br>.07<br>.07 | <2<br><2<br>3        | 1.95<br>1.86<br>3.11<br>1.76<br>2.17                 | .02<br>.01<br>.02<br>.01<br>.01 | .08<br>.10<br>.14<br>.08<br>.10 | <1<br><1<br><1<br><1<br><1 | 4-<br>7.<br>3.<br>14.<br>5.                                                                            |
| L14N 1+50W<br>L14N 1+00W<br>L14N 0+50W<br>L14N 0+00W<br>L14N 0+00W                     | 1 1 1 1 1 1 1 1 1 1 1                              | 52<br>39<br>48           | ) - 11<br>2 - 9<br>2 - 4<br>3 - 9<br>2 - 10 | 71<br>41<br>7     | 183<br>27 .2<br>25 .3<br>923<br>80 - <.1 | 2 15<br>5 14<br>5 14     | i 15<br>11<br>11          | 850<br>813<br>545               | 3.72<br>4.30<br>4.12<br>3.77<br>3.55           | 5<br>9<br>7<br>6<br>2                  | <5<br><5<br><5                            | <2<br><2<br><2<br><2<br><2<br><2                                                            | 2<br>2<br>2<br>2<br>2<br>2<br>2       | 30<br>24<br>32             |                       | <2<br><2<br><2                               | 8<br><2<br><2                            | 65<br>63                   | .37<br>.28<br>.39 | .074<br>.129<br>.154<br>.052<br>.047           | 11<br>12<br>17<br>12<br>11 | 22<br>21<br>19<br>26<br>21 | .90<br>.83<br>.66<br>1.03<br>.93 | 92<br>159<br>121<br>44<br>54  | .07<br>.09<br>.05<br>.07        | 2<br><2<br><2        | 1.91<br>2.19<br>2.09<br>1.74<br>1.70                 | .01<br>.01<br>.01<br>.01<br>.01 | .08<br>.10<br>.10<br>.12<br>.11 | <1<br><1<br><1<br><1       | 2 -<br>10-<br>8 -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| - RE L12N 10+00W<br>L12N 9+50W<br>L12N 9+00W<br>L12N 9+00W<br>L12N 8+50W<br>L12N 8+00W | <pre>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1</pre> | 3                        | 3 / 1:<br>7 / <}<br>0 / _ /<br>7 / <        | 2<br>4            | 74<br>74<br>70 ~ <.<br>04 .<br>74 - <.   | 1 16<br>1 12<br>2 13     | 5 13<br>2 13<br>3 11      | 609<br>540<br>540               | 3.55<br>3.65<br>3.55<br>3.23<br>2.88           | 5<br><2<br><2                          | <5<br><5<br><5                            | <2<br><2<br><2<br><2<br><2<br><2                                                            | <2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 35<br>34<br>29             | <b>×.2</b><br>2.      | <2<br>3<br><2                                | <2<br><2<br><2                           | 61<br>64<br>55             | .39<br>.39<br>.33 | .047<br>.058<br>.044<br>.046<br>.078           | 10<br>11<br>9<br>9<br>9    | 20<br>26<br>26<br>24<br>23 | 1.01<br>.98<br>.94               | 58<br>74<br>57<br>88<br>101   | .06<br>.08<br>.10<br>.07<br>.07 | <2<br><2<br><2       | 1.69<br>1.87<br>1.77<br>1.92<br>1.77                 | .01<br>.01<br>.01               | . 13<br>. 10<br>. 13            | ং1<br>ং1<br>ং1<br>ং1       | 4<br>1<br>2<br>4<br>3                                                                                  |
| L12N 7+50W<br>L12N 7+00W<br>L12N 6+50W<br>L12N 6+00W<br>L12N 5+50W                     | 1 2                                                | 4<br>4<br>3              | 5<br>1 1<br>4 1                             | 7<br>2            | 109<br>70<br>117<br>76                   | 1 1:<br>2 1:<br>1 1      | 2 13<br>0 1<br>1 10       | 5 857<br>641<br>547             | 3.89<br>4.11<br>3.40<br>3.37<br>5.3.87         | 6<br>3<br><2                           | <5<br><5<br><5                            | <2<br><2<br><2                                                                              | 2<br>3<br>2<br><2<br><2               | 39<br>35<br>37             | <.2<br><.2            | <2<br>5<br><2                                | <2<br><2<br><2                           | 63<br>51<br>54             | .57<br>.41<br>.38 | .091<br>.087<br>.077<br>.058<br>.060           | 18<br>17<br>14<br>13<br>12 | 25<br>22<br>24             | .83                              | 94<br>74<br>84<br>40<br>134   | .07<br>.07<br>.08               | <2<br><2<br><2       | 1.86<br>1.73<br>1.61<br>1.56<br>2.30                 | .02<br>.01<br>.01               | .10<br>.13                      | <1<br><1<br><1             | 5<br>23<br>3                                                                                           |
| L12N 5+00W<br>L12N 5+50W<br>L12N 4+50W<br>L12N 4+00W<br>L12N 3+50W<br>L12N 3+50W       | 1                                                  | 64                       | 8 /<br>7 / 1<br>0 / 1<br>3 /                | 7<br>1<br>1<br>2  | 192<br>201<br>121<br>101                 | 5 1<br>3 1<br>2 1<br>2 1 | 7 14<br>4 1<br>6 1<br>7 1 | 5 <b>88</b> 0<br>1 760<br>6 653 | 1 4.26<br>0 3.68<br>9 4.09<br>3 4.19<br>1 3.76 | 3 6<br>2 13<br>2 6                     | <5<br><5<br><5                            | <b>&lt;2</b><br><2<br><2                                                                    |                                       | 27<br>49<br>34             | .5<br>.2<br>.7        | 4<br>2<br>5                                  | <2<br>4<br><2                            | 58<br>74<br>71             | .3(<br>.51        | 090.<br>084<br>068<br>0.058<br>0.058<br>0.112  | 11<br>16<br>13             | 22<br>26<br>35             | .71                              | 151<br>127<br>103             | .08<br>11<br>201                | 3 <2<br>1 <2<br>9 <2 | 2.66<br>2.2.28<br>2.2.41<br>2.41<br>2.1.97<br>2.1.88 | .02<br>.02<br>.01               | . 10<br>. 12<br>. 12            | <1<br><1<br><1             | 12<br>6<br>10                                                                                          |
| L12N 2+50W<br>L12N 2+50W<br>L12N 2+00W<br>L12N 1+50W<br>L12N 1+50W<br>L12N 0+50W       | <                                                  | 1 5<br>1 3<br>1 6<br>1 7 | 2 / 1<br>6 /<br>61 / 1                      | 12<br>9<br><2     | 199<br>118                               | 2 1<br>3<br>.2 1<br>.3 1 | 9 1<br>8 1<br>5 1         | 3 79<br>3 101<br>3 62<br>9 70   | 1 3.90<br>6 4.07<br>4 3.79<br>5 3.00<br>0 3.80 | 5 10<br>7 6<br>9 1 <sup>4</sup><br>6 1 | 5 <5<br>1 <5<br>5 <5                      | <2<br><2<br><2                                                                              |                                       | 5 42<br>2 36<br>4 16       | 2 .4<br>5 <.2<br>5 .3 |                                              | s 2<br>s ≺2                              | 57<br>63<br>51             | 4                 | 7 .220<br>0 .136<br>2 .133<br>4 .089<br>6 .164 | 14<br>11                   | 19<br>21<br>20             | .71<br>.88                       |                               | 00. (<br>00. (<br>0. (          | 6 <<br>6 <<br>7 <    | 2 2.41<br>2 2.14<br>2 1.94<br>2 3.04<br>2 2.85       | .03<br>.01<br>.02               | i .10<br>.10<br>2 .07           | ) <1<br>) <1<br>7 <1       | i 5<br>1 48<br>1 26                                                                                    |
| STANDARD C/AU-                                                                         | s <u>1</u>                                         |                          |                                             |                   | 136 7                                    |                          | 74 3                      | 3 104                           | 3 3.9                                          | 6 4                                    | 1 15                                      | 56                                                                                          | 37                                    | 7 57                       | 2 18.9                | 2 14                                         | 4 21                                     | 60                         | ).4               | 9 .094                                         | 40                         | 62                         | .92                              | 188                           | 3.0                             | 8 3                  | 5 1,88                                               | 3 .07                           | .16                             | 5 13                       | 3 53                                                                                                   |

ACHE ANALYTICAL

Tom Lisle PROJECT R-1 FILE # 94-4193

|                                                                                    |                          |                                   |                         |                           |                                                   |                                          |                      |                                           |                              |                       |                                 |                                                                                 |                                |                            |                                 |                           |                         |                            |                   |                                                |                            |                            |                                     |                              |                                 |                          |                                      | -                               | AC                                   | HE ANALY                   | ЛІСА                           |
|------------------------------------------------------------------------------------|--------------------------|-----------------------------------|-------------------------|---------------------------|---------------------------------------------------|------------------------------------------|----------------------|-------------------------------------------|------------------------------|-----------------------|---------------------------------|---------------------------------------------------------------------------------|--------------------------------|----------------------------|---------------------------------|---------------------------|-------------------------|----------------------------|-------------------|------------------------------------------------|----------------------------|----------------------------|-------------------------------------|------------------------------|---------------------------------|--------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------|
| ACHE ANALYTICAL<br>SAMPLE#                                                         | Mo                       | Cu<br>ppm                         | Pb<br>ppm               | Zn<br>ppm                 | -                                                 | Ni                                       | Co<br>ppm            | Mn<br>ppm                                 | Fe<br>%                      | As<br>ppm             | U<br>ppm                        |                                                                                 | Th<br>ppm                      | Sr<br>ppm                  | Cd<br>ppm                       | Sb<br>ppm                 | Bi<br>ppm               | V<br>ppm                   | Ca<br>X           | P<br>X                                         | La<br>ppm                  | Cr<br>ppm                  | Mg<br>X                             | 8a<br>ppm                    | Ti<br>X                         | 8<br>ppm                 | A1<br>%                              | Na<br>X                         | K<br>X                               |                            | Au*<br>ppb                     |
| L12N 0+00W<br>L10N 10+00W<br>L10N 9+50W<br>L10N 9+00W<br>L10N 8+50W                | 1<br>1<br>1<br><1<br><1  | 152<br>33<br>36<br>28<br>30       | * 8<br>* 4<br>* 5       | 167<br>76<br>103          | * < 1<br>* < 1<br>* < 1<br>* < 1<br>* < 1         | 8<br>8<br>10<br>10<br>5                  | 11<br>10<br>10       | 644<br>695<br>640<br>586<br>496           | 3.67<br>3.31<br>3.71<br>3.47 | 5<br>4<br>2<br>4<br>6 | <5<br><5<br><5<br><5<br>6       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          | 4<br>3<br>3<br>2               | 27<br>28<br>44<br>37<br>30 | <.2<br>.3<br><.2<br><.2<br><.2  | 7<br>3<br>2<br>2<br>2     | 9<br>2<br>8<br>4<br>3   | 69<br>54<br>68<br>60<br>61 | .35<br>.64<br>.48 | .079<br>.124<br>.091<br>.057<br>.040           | 13<br>11<br>12<br>10<br>8  | 21<br>20<br>35<br>25<br>24 | .93<br>.63<br>1.08<br>.92<br>.90    | 185<br>140<br>73<br>74<br>68 | .06<br>.09<br>.10<br>.10<br>.08 | 2 7<br>4<br><b>&lt;2</b> | 2.26<br>1.86                         | .02<br>.02<br>.01               | .10<br>.09<br>.13<br>.11<br>.07      | <1<br>2<br><1<br><1<br><1  | 5<br>1,<br>3,<br>1,<br>5       |
| LION 8+00W<br>RE LION 8+00W<br>LION 7+50W<br>LION 7+00W<br>LION 6+50W              | <1<br>_1<br><1<br>1<br>1 | 26<br>37<br>33                    | / <2<br>9<br>3          | - 51<br>105<br>107        | <.1<br><1<br>1<br>- <1<br>- <1                    | 10<br>10<br>14<br>18<br>9                | 13<br>13<br>8        | 547<br>550<br>738<br>457<br>589           | 3.52<br>4.11<br>3.30         | 5<br>5<br>2<br>2<br>5 | 5<br>5<br>6<br>5<br>5<br>5<br>5 | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2                                    | 5<br>5<br>3<br>2<br>2          | 66<br>66<br>44<br>36<br>41 | <.2<br><.2<br><.2<br><.2<br><.2 | 4<br><2<br><2<br><2<br><2 | 7<br><2<br>4<br><2<br>5 | 69<br>70<br>73<br>55<br>58 | .61<br>.49<br>.37 | .053<br>.051<br>.059<br>.053<br>.045           | 11<br>11<br>13<br>12<br>10 | 16<br>34<br>29             | 1.07<br>1.07<br>1.25<br>.85<br>1.08 | 74<br>72<br>86<br>87<br>53   | .14<br>.14<br>.09<br>.10<br>.10 | 2<br>3<br><2             | 2.31                                 | .01<br>.01<br>.01<br>.01<br>.01 | .10<br>.10<br>.14<br>.12<br>.12      | <1<br><1<br><1<br><1<br><1 | <1<br><1<br>2<br>88            |
| LION 6+00W<br>LION 5+50W<br>LION 5+00W<br>LION 5+00W<br>LION 4+50W<br>LION 4+00W A | 1<br><1<br><1<br><1      | 42                                | 8<br>8<br>5             | 122<br>135<br>129         |                                                   |                                          | 11<br>11<br>12       | 569<br>650<br>603<br>612<br>776           | 4.08<br>4.01<br>3.74         | 4<br>3<br>5<br>4      | <5<br><5                        | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br>< | <b>3</b><br>3<br>4<br><2<br><2 | 45<br>37<br>35<br>32<br>32 | <.2                             | 3<br><2<br>5<br>4<br>2    | <2<br><2<br>5<br>3      | 71<br>68<br>64<br>61<br>61 | .46<br>.37<br>.38 | .056<br>.088<br>.051<br>.101<br>.086           | 20<br>13<br>15<br>11<br>12 | 29                         | 1.26<br>1.08<br>.97<br>.91<br>.92   | 49<br>93<br>92<br>103<br>119 | .07<br>.09<br>.08<br>.07<br>.08 | 4<br><2<br>4             | 1.99<br>2.07<br>2.02<br>1.96<br>2.10 | .01<br>.01<br>.01               | .09<br>.11<br>.09<br>.10<br>.10      | <1<br><1<br><1<br><1       | 1 <b>3</b><br>7<br>5<br>9<br>4 |
| L10N 4+00W B<br>L10N 3+50W<br>L10N 3+00W<br>L10N 2+50W<br>L10N 2+00W               | <1<br>1<br>1<br>1        | 36<br>42<br>66                    | . 8                     | 122<br>15<br>12           | 5 / .3<br>21<br>11<br>51<br>2 - <.1               | 12<br>15<br>15                           | 11<br>15<br>14       | 1368<br>606<br>740<br>847<br>1494         | 3.67<br>4.04<br>4.11         | 5<br>6<br>5<br>6<br>3 | <5<br>5                         | <2<br><2<br><2<br><2<br><2                                                      | 3<br>3<br>4<br><2              | 26                         | <.2<br><.2<br><.2               | 3<br>3<br>7<br>3<br>5     | 3<br><2<br>2<br>7       | 56<br>61<br>66<br>65<br>60 | .35<br>.38<br>.31 | . 148<br>. 063<br>. 091<br>. 054<br>. 192      | 10<br>10<br>12<br>15<br>12 | 21<br>24<br>28<br>25<br>22 | .85<br>.86                          | 118<br>113                   | .07<br>.08<br>.08<br>.08<br>.08 | 4<br>5<br><2             | 2.26<br>1.75<br>2.00<br>1.89<br>2.22 | .02<br>.02<br>.01<br>.02<br>.02 | . 11<br>. 09<br>. 08<br>. 08<br>. 14 | <1<br><1<br><1<br><1<br><1 | 1<br>2<br>4<br>1               |
| L10N 1+50W<br>L10N 1+00W<br>L10N 0+50W<br>L10N 0+50W<br>L10N 0+00W                 |                          | 32                                | · 3                     | 8<br>7 11<br>5 11         | 7 ~ <.1<br>9 / .1<br>4 ^ <.1<br>2 ^ .2<br>7 - <.1 | 14<br>19<br>14                           | 14<br>18<br>13       | 590<br>637<br>1393<br>705<br>615          | 4.05                         | 7<br>2                | 5<br><5                         | <2<br><2<br><2<br><2<br><2<br><2                                                | 3                              | 34<br>47<br>33             | <.2<br><.2<br><.2               | 2<br>3                    | <2<br>3                 | 93<br>66<br>81<br>68<br>71 | .41<br>.80<br>.44 | .100<br>.066<br>.118<br>.076<br>.066           |                            | 30                         | .91<br>1.36<br>.84                  | 106                          | .07<br>.07<br>.09               | 2<br>9<br>4              | 1.73<br>1.62<br>2.36<br>1.76<br>2.46 | .02<br>.01<br>.03<br>.02<br>.01 | .12<br>.15<br>.17<br>.19<br>.11      | <1<br>1<br><1<br><1        | 290<br>4<br>4<br><u>3</u><br>1 |
| L8N 9+50W<br>L8N 9+00W<br>L8N 8+50W<br>L8N 8+00W<br>L8N 7+50W                      | <                        | 1 37<br>1 62<br>1 45              |                         | 2 34<br>7 6<br>5 6        | 71<br>52<br>71<br>2 .1<br>92                      | 2 14<br>  24<br>  9                      | 16<br>31<br>13       | 694<br>887<br>1108<br>511<br>385          | 3.85<br>5.46<br>3.60         | 8<br>5<br><2          | 6<br><5<br>7                    | <2<br><2                                                                        | 3<br>6<br>3                    | 42<br>52<br>48             | <.2<br><.2<br><.2               | 2<br><2<br>3              | 12<br><2<br><2          | 89<br>75                   | .45<br>.60<br>.42 | .045<br>.076<br>.065<br>.042<br>.042           | 20<br>11                   | 21<br>60<br>20             |                                     | 144<br>154<br>84             | .08<br>.07<br>.11               | 3<br>3<br><2             | 2.36<br>2.45<br>2.99<br>1.88<br>1.60 | .01<br>.01<br>.01<br>.02<br>.01 | .12<br>.12<br>.16<br>.13<br>.11      | <1<br><1<br><1<br><1       | 1<br>24<br>2                   |
| L8N 7+00W<br>L8N 6+50W<br>L8N 6+00W<br>L8N 5+50W<br>L8N 5+50W                      | <                        | 1 22<br>1 30<br>1 4<br>1 4<br>1 2 | 2 / 1<br>) / 1<br>) / 1 | 6 6<br>3 7<br>9 10<br>3 5 | 2<br>8<br>6                                       | 1 5<br>2 1 <sup>-1</sup><br>2 14<br>2 15 | 1 10<br>4 17<br>2 10 | 9 412<br>9 510<br>7 759<br>9 373<br>9 473 | 3.21<br>4.40<br>3.00         | 15)<br>8)<br>8)       | 5 6<br>5 7<br>5 <5              |                                                                                 | 2 3<br>2 5<br>2 4              | 36<br>30<br>35             | 5 .2<br>) <.2<br>5 <.2          | 5<br><2                   | 8<br><2<br>4            | 59<br>63<br>48             | .3                | 5 .041<br>4 .055<br>5 .134<br>6 .058<br>9 .065 | 12<br>22<br>13             | 29<br>21<br>19             | 5 .77<br>1 .94<br>5 .64             | 72<br>157<br>61              | .08<br>.07<br>.08               | 3 2<br>7 <2<br>3 2       | 1.34<br>1.64<br>2.19<br>1.42<br>1.78 | .01<br>.01<br>.02               | .10<br>.09<br>.08                    | <1<br><1                   | 1<br>2<br>3                    |
| STANDARD C/AU-S                                                                    |                          |                                   |                         |                           | 1 6.                                              |                                          | -                    | 2 1032                                    |                              |                       | 2 16                            | 5 (                                                                             | 5 34                           | 5                          | 1 18.0                          | ) 14                      | . 19                    | 62                         | .5                | 1 .094                                         | 40                         | 6                          | .91                                 | 190                          | .08                             | 3 33                     | 5 1.88                               | .07                             | . 15                                 | 12                         | 53                             |

Tom Lisle PROJECT R-1 FILE # 94-4193



| ACHE ANALTITCA  | L          |              |           |     |                 |           |           |           |         |           |          |           |           |           |           |           |           |          |         |        |           |           |         |           |         |          |         |         |        | ALME     | ANALTI     |
|-----------------|------------|--------------|-----------|-----|-----------------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|---------|----------|---------|---------|--------|----------|------------|
| SAMPLE#         | Mio<br>ppm | Cu<br>ppm    | Pb<br>ppm |     | Ag<br>ppm       | Ni<br>ppm | Co<br>ppm | Mn<br>ppm | Fe<br>% | As<br>ppm | U<br>ppm | Au<br>ppm | Th<br>ppm | Sr<br>ppm | Cd<br>ppm | Sp<br>ppn | 8i<br>ppm | V<br>ppm | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>X | 8a<br>ppm | Ti<br>% | B<br>ppm | Al<br>% | Na<br>X | K<br>% | ₩<br>ppm | Au*<br>ppb |
| L8N 4+50W       | 1          | 47 -         | 13        | 103 | ´ <b>&lt;.1</b> | 19        | 15        | 1011      | 3.86    | 9         | <5       | <2        | 3         | 34        | .5        | <2        | 3         | 66       | .41     | .126   | 16        | 29        | .92     | 119       | .10     | 4        | 2.19    | .01     | .11    | 1        | 2          |
| L8N 4+00W       | <1         | 46           | / 8       | 99  | <.1             | 12        | 13        |           | 3.92    | 6         | <5       | <2        | 2         | 33        | .4        | <2        | 7         | 63       | .39     | .062   | 18        | 29        | .98     | 96        | .09     | 2        | 1.95    | <.01    | .13    | <1       | 3          |
| L8N 3+50W       | 2          | 26           | 6         | 56  | · <.1           | 5         | 12        | 494       | 3.02    | 4         | <5       | <2        | 5         | 43        | <.2       | 5         | <2        | 50       | .34     | .051   | 17        | 14        | .73     | 69        | .03     | 3        | 1.63    | <.01    | .10    | <1       | 57         |
| L8N 3+00W       | 1          | 33           | 10        | 98  | 1               | 13        | 13        | 703       | 3.70    | 7         | <5       | <2        | 3         | 35        | .3        | 3         | 2         | 66       | .44     | .071   | 11        | 31        | 1.07    | 96        | .09     | 2        | 1.83    | .01     | . 13   | <1       | 4          |
| L8N 2+50W       | 2          | 33           | 9         | 141 | 4               | 15        | 12        | 895       | 3.50    | 3         | <5       | <2        | 3         | 54        | .4        | 8         | 3         | 53       | .74     | .041   | 13        | 25        | .85     | 150       | .10     | 3        | 2.48    | .03     | .10    | <1       | 2          |
| RE L8N 2+50W    | 2          | <b>3</b> 3 - | - 13.     | 136 | .2              | 17        | 12        | 888       | 3.58    | 2         | <5       | <2        | <2        | 53        | .7        | 4         | <2        | 53       | .74     | .040   | 13        | 26        | .86     | 138       | . 10    | 5        | 2.52    | .02     | .10    | <1       | 7          |
| 18N 2+00W       | 1          | 29           | 13        | 75  | .1              | 12        | 12        | 564       | 3.75    | 7         | <5       | <2        | 2         | 38        | .4        | 7         | 3         | 74       | .49     | .067   | 10        | 34        | .84     | 53        | .10     | 2        | 1.68    | .02     | .10    | 2        | 3          |
| L8N 1+50W       | 3          | 63           | 17        | 96  | .3              | 14        | 13        | 881       | 4.28    | <2        | <5       | <2        | 2         | 61        | .3        | <2        | <2        | 65       | .83     | .039   | 23        | 32        | 1.00    | 184       | .08     | <2       | 2.62    | .02     | .11    | <1       | 4          |
| L8N 1+00W       | 2          | 40           | 12        | 79  | <.1             | 16        | 15        | 938       | 3.94    | 11        | <5       | <2        | <2        | 54        | .6        | 5         | 10        | 65       | .74     | .034   | 18        | 32        | .96     | 150       | .09     | 2        | 2.23    | .01     | .17    | <1       | 3          |
| L8N 0+50W       | 2          | 29           | 10        | 71  | <.1             | 15        | 14        | 636       | 3.83    | 3         | <5       | <2        | 2         | 51        | .5        | <2        | 9         | 66       | .70     | .017   | 19        | 30        | .98     | 161       | .09     | 2        | 2.21    | .02     | .13    | <1       | 6          |
| 18N 0+00W       | 1          | 27           | 10        | 102 | 1               | 16        | 15        | 672       | 3.70    | 8         | <5       | <2        | 2         | 29        | .3        | 2         | 3         | 57       | .39     | .072   | 14        | 27        | .92     | 118       | .06     | 3        | 1.81    | .01     | . 16   | <1       | 1          |
| STANDARD C/AU-S | 22         | 62           | 42        | 128 | 7.5             | 72        | 32        | 1078      | 4.09    | 41        | 24       | 7         | 41        | 53        | 19.1      | 14        | 22        | 62       | .51     | .095   | 42        | 62        | .92     | 190       | .09     | 34       | 1.94    | .07     | .17    | 14       | 49         |

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

1

44



1

Tom Lisle PROJECT R-1 FILE # 94-4193



ACRE MALITICAL

| SAMPLE#                                   | Mo<br>ppm              |                    |                          |                   |                          |                      | Co<br>Co          | Mn<br>ppm           |                                       | As<br>ppm   | ų<br>Ppm       | Au<br>ppm ( |             | Sr<br>ppm     | Cd<br>ppm       | Sb<br>ppm |                | V<br>ppm      | Ca<br>X                          |                      | La<br>ppm     |         |                     | Ba<br>ppm | ті<br>% р            | B<br>pm            | Al<br>%             | Na<br>X           | К ⊾<br>%µрп                                    |                | Pt**<br>ppb | Pd**<br>ppb |
|-------------------------------------------|------------------------|--------------------|--------------------------|-------------------|--------------------------|----------------------|-------------------|---------------------|---------------------------------------|-------------|----------------|-------------|-------------|---------------|-----------------|-----------|----------------|---------------|----------------------------------|----------------------|---------------|---------|---------------------|-----------|----------------------|--------------------|---------------------|-------------------|------------------------------------------------|----------------|-------------|-------------|
| 91618<br>91619<br>91620<br>91621<br>91622 | <1<br>1<br>4<br>1<br>1 | 157<br>8<br>4<br>7 | 16<br><2<br>2<br>5<br><2 | 6<br>9<br><1<br>5 | <.1<br><.1<br><.1<br><.1 | 7 1a<br>25<br>9<br>3 | 57<br>9<br>3<br>7 | 434<br>84<br>114    | 17.19<br>3.99<br>1.41<br>3.85<br>3.76 | 6<br>2<br>8 | <5<br><5<br><5 | <2          | 3<br>7<br>4 | 73<br>6<br>45 | .7<br><.2<br>.3 | <2<br>2   | <2<br><2<br><2 | 65<br>9<br>62 | .74<br>1.10<br>.04<br>.73<br>.72 | .154<br>.023<br>.157 | 10<br>21<br>8 | 8<br>71 | 2.96<br>.46<br>1.49 | 7<br>10<. | . 18<br>. 01<br>. 28 | <2 2<br><2<br><2 1 | 2.56<br>.57<br>1.18 | .03<br>.06<br>.05 | .01 <1<br>.03 <1<br>.10 <1<br>.10 <1<br>.09 <1 | 15<br><1<br><1 | <3<br>3     | 5           |
| RE 91622<br>Standard C/Fa-100S            | 1 1                    | -                  | <2<br>38                 | -                 | <.1<br>7.0               | 8<br>71              | 12<br>31 1        | 1 <b>12</b><br>1052 | 3.80<br>3.96                          | _           | <5<br>18       | <2<br>7     |             | 41<br>53      | .3<br>19.4      | <2<br>14  |                | 57<br>60      | .71<br>.49                       | .159<br>.096         | 7<br>40       |         | t.55<br>.93         |           | .26<br>.08           |                    |                     |                   | .10 <1<br>.16 15                               |                |             | <3<br>51    |

Sample type: ROCK. Samples beginning 'RE' are duplicate samples. AU\*\* PT\*\* & PD\*\* ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

|                |                                       | T                          | om Lisl                                | e PROJECT                      | ROCK               | File #                 | 94-41             | 93         | Page             | a 12       |              |                     |                  | 4     |
|----------------|---------------------------------------|----------------------------|----------------------------------------|--------------------------------|--------------------|------------------------|-------------------|------------|------------------|------------|--------------|---------------------|------------------|-------|
|                | · · · · · · · · · · · · · · · · · · · |                            | ······································ | 145 W. Rocklar                 | nd Road, No        | rth Vancou             | wer BC V7         | N 2V8      |                  |            |              |                     |                  |       |
|                | SAMPLE#                               | SiO2 Al 203                |                                        | CaO Na20 K20 1<br>2 X X X      | 1102 P205 1<br>% % | 4n0 Cr203<br>% %       | Ba Ni<br>ppm ppm  | Sr<br>ppm  | Zr 1<br>ppm ppm  |            | Sc LC<br>ppm | )I SUM<br>% %       |                  |       |
|                | 91623<br>RE 91623                     | 69.83 16.32<br>69.37 16.24 | 2.13 .69<br>2.11 .70                   | .42 5.79 2.01<br>.40 5.67 2.10 | .67 .16<br>.67 .15 | .02 <.002<br>.01 <.002 | 273 <10<br>271 11 | 206<br>204 | 248 19<br>251 20 | 2 10<br>11 |              | 9 100.05<br>0 99.53 |                  |       |
|                |                                       |                            | GRAM OF LI                             | BOZ AND ARE DIS                | SOLVED IN 1        | 00 MLS 5%              | HNO3. 8a          | IS SUM     | AS Baso4         | AND        | DTKER MET    | TALS ARE SU         | M AS OXIDES.     |       |
|                |                                       | SOIL P11-P12 F             |                                        | <u>ples beginning (</u><br>/   | 1                  |                        | $\cap$            | l          |                  |            |              |                     |                  |       |
| DATE RECEIVED: | NOV 18 199                            | 74 DATE R                  | EPORT MAI                              | (LED: $N_0 \sqrt{2}$           | 25/94.             | SIGNE                  | D BY              | · [~       | ·· ].D.          | TOYE,      | C.LEONG,     | J.WANG; C           | ERTIFIED 8.C. AS | SAYER |
|                |                                       |                            |                                        |                                | 1                  |                        |                   |            | J                |            |              |                     |                  |       |
|                |                                       |                            |                                        | . ·                            |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
|                |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |
| ·              |                                       |                            |                                        |                                |                    |                        |                   |            |                  |            |              |                     |                  |       |

| ACME AF                                                               | YTIC/                    | L L                                | ABOI                       | RATO                                  | RIES                        | LTI                              | ).                         |                   |                                              | Е. Н                         |                              |                                                                                             |                              |                            | - de sér                        |                            |                                                                                             |                            |                     |                                      | PI                         | IONE                       | (604                                 | 1)25                            | 3-31                            | 58 FAX                                           | (61                             | 25                              | 3-17                    | 16                     |
|-----------------------------------------------------------------------|--------------------------|------------------------------------|----------------------------|---------------------------------------|-----------------------------|----------------------------------|----------------------------|-------------------|----------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------------|------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------------------------------------------------------------------|----------------------------|---------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------------------|---------------------------------|---------------------------------|-------------------------|------------------------|
| AA                                                                    |                          |                                    |                            |                                       |                             |                                  |                            |                   | 0.588                                        | <b>EOCH</b><br>n Lj<br>145 ( | lsle                         | <u>)</u>                                                                                    | ?il€                         | e #                        | 94<br>94<br>Inth V              | -45(                       | 52                                                                                          | Pa                         | age                 |                                      |                            |                            |                                      |                                 |                                 |                                                  |                                 |                                 | Av<br>L                 |                        |
| AMPLE#                                                                | Mo<br>ppm                | Cu<br>ppm                          | РЬ<br>ppm                  | Zn<br>ppm                             | Ag<br>ppm                   | Nī<br>ppm                        | Co<br>ppm                  | Mn<br>ppm         | Fe<br>%                                      | As<br>ppm                    | U<br>ppm                     | Au<br>ppm                                                                                   | Th<br>ppm                    | Sr<br>ppm                  | Cđ<br>ppm                       | Sb<br>ppm                  | Bi<br>ppm                                                                                   | V<br>ppm                   | Св<br>%             | P<br>%                               | La<br>ppm                  | Cr<br>ppm                  | Mg<br>%                              | Ba<br>ppm                       | Ti<br>%                         | BAL<br>ppm %                                     | Na<br>%                         | K<br>%                          | ¥<br>ppm                | Au*<br>ppb             |
| 35N 10+00W<br>35N 9+50W<br>35N 9+00W<br>35N 8+50W<br>33N 10+00W       | 15<br>3<br>1<br>2<br><1  | 40<br>39<br>31<br>35<br>37         | 9<br>8<br>6<br>11<br>10    | 73<br>63<br>88<br>86<br>67            | .2<br>.2<br>.2<br>.1<br><.1 | 22<br>26<br>23<br>23<br>23<br>22 | 13                         |                   | 4.42                                         | <2<br>3<br><2<br>3<br>7      | 6<br><5<br><5<br><5          | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br>< | 3<br>2<br>2<br>2<br>2<br>2   | 23<br>46<br>64<br>25<br>18 | <.2<br>.2<br>.2<br>.2<br><.2    | 3<br><2<br>2<br>2<br>4     | <2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><2<br><             | 81<br>77<br>74<br>83<br>83 | .53<br>.72<br>.20   | .079<br>.046<br>.043<br>.037<br>.092 | 39<br>20<br>18<br>19<br>13 | 40<br>38<br>32             | 1.06<br>1.29<br>1.10<br>1.13<br>1.25 | 132<br>200<br>281<br>187<br>99  | .07<br>.08<br>.07<br>.07<br>.05 | 2 3.34<br><2 2.86<br>2 3.12<br>3 3.51<br><2 3.54 | .01<br>.02<br>.02<br>.02<br>.02 | .09<br>.08<br>.08<br>.09<br>.10 | 1<br>1<br>2<br>2<br>1   | 4<br>2<br>1<br>5<br>6  |
| 33N 9+50W<br>33N 9+00W<br>33N 8+50W<br>33N 8+00W<br>33N 1+50W         | 1<br>5<br><1<br>2<br>1   | 47<br>58<br>27<br>34<br>53         | 11<br>12<br>13<br>9<br>15  | 106<br>70<br>74<br>67<br>147          | .2<br>.4<br>.1<br><.1<br>.4 | 24<br>25<br>17<br>22<br>19       | 15<br>18<br>11<br>14<br>14 | <b>703</b><br>312 | 4.28                                         | 8<br>4<br><2<br>5            | <5<br>8<br>5<br><5<br><5     | <> < < < < < < < < < < < < < < < < < <                                                      | 2<br>3<br>3<br>3<br>2        | 25<br>45<br>19<br>20<br>30 | .2<br>.2<br><.2<br><.2          | 4<br>3<br>3<br>4<br>3      | <2<br><2<br><2<br><2<br><2<br><2                                                            | 86<br>80<br>77<br>81<br>76 | .48<br>.18<br>.17   | .059<br>.041<br>.048<br>.057<br>.073 | 20<br>56<br>28<br>10<br>19 | 38<br>37<br>30<br>28<br>30 | .86<br>1.02<br>.87<br>.86<br>.91     | 177<br>199<br>100<br>115<br>271 | .08<br>,05<br>.06<br>.10<br>.05 | <2 4.04<br>4 3.93<br>3 3.81<br>3 3.81<br>2 3.30  | .02<br>.02<br>.01<br>.02<br>.02 | .09<br>.09<br>.06<br>.11<br>.09 | 1<br>1<br>2<br>3        | 3<br>4<br>2<br>1<br>4  |
| L33N 1+00W<br>L33N 0+50W<br>L33N 0+00W<br>L31N 10+00W<br>L31N 9+50W   | <1<br><1<br>1<br>2<br>3  | 45<br>37<br>40<br>37<br>37         | 19<br>12<br>11<br>11<br>12 | 187<br>1 <b>32</b><br>116<br>92<br>82 | .2<br>.1<br>.3<br>.1        | 17<br>16<br>16<br>22<br>20       | 14<br>12<br>12<br>17<br>16 | 786<br>720<br>747 | 4.35<br>4.06<br>4.02<br>4.55<br>4.72         | 9<br>7<br><2<br>7<br>4       | <5<br><5<br><5<br><5         | <2<br><2<br><2<br><2<br><2<br><2                                                            | 2<br>2<br>3<br>2             | 24<br>32<br>35<br>29<br>37 | .3<br>.2<br>.2<br><.2<br><.2    | 3<br><2<br><2<br>3<br>3    | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                      | 75<br>69<br>72<br>83<br>80 | .41<br>.40<br>.27   | .127<br>.069<br>.048<br>.069<br>.073 | 13<br>17<br>19<br>19<br>20 | 19<br>30                   | .77<br>1.04<br>.97<br>1.07<br>1.22   | 180<br>114<br>135<br>145<br>137 | .06<br>.06<br>.06<br>.08<br>.05 | 2 3.26<br>3 2.40<br>2 2.43<br>2 3.52<br><2 3.05  | .02<br>.01<br>.02<br>.01<br>.01 | .10<br>.09<br>.08<br>.10<br>.10 | 2<br>2<br>1<br>1        | 3<br>7<br>3<br>2<br>1  |
| L31N 9+00W<br>L31N 8+50W<br>L31N 8+00W<br>L31N 1+50W<br>L31N 1+50W    | 1<br>1<br><1<br>2<br>2   | 34<br>36<br>35<br>121<br>44        | 9<br>13<br>16<br>15        | 101<br>78<br>64<br>95<br>107          | .2<br>.2<br>.1<br>.3<br>.3  | 20<br>24<br>20<br>18<br>18       |                            | 749               |                                              | <2<br>9<br>3<br>8<br>13      | <5<br><5<br><5<br><5         | <2<br><2<br><2<br><2<br><2<br><2<br><2                                                      | 2<br>2<br>3<br>2             | 30<br>38<br>35<br>28<br>32 | <.2<br><.2<br>.2<br><.2         | <2<br><2<br><2<br>3<br><2  | <2<br><2<br><2<br><2<br><2<br><2                                                            | 79<br>83<br>77<br>74<br>74 | .41<br>.40<br>.46   | .064<br>.063<br>.051<br>.046<br>.034 | 17<br>16<br>17<br>35<br>17 | 42<br>34                   | 1.05<br>1.41<br>1.01<br>1.00<br>.94  | 128<br>108<br>77<br>190<br>246  | .05<br>.07<br>.09<br>.07<br>.05 | 3 3.10<br>2 2.63<br>3 1.91<br>2 3.88<br>2 2.88   | .01<br>.01<br>.02<br>.02<br>.02 | .10<br>.11<br>.07<br>.08<br>.08 | 2<br>1<br>1<br>2        | 4<br>2<br>6<br>2<br>5  |
| L31N 0+50W<br>RE L31N 0+50W<br>L31N 0+00W<br>L29N 7+50W<br>L29N 7+00W | <1<br><1<br><1<br>2<br>4 | 50<br>48<br>38<br>42<br>19         | 8<br>9<br>11<br>11<br>10   | 106                                   | .1<br><.1<br>.2<br><.1      | 21<br>20<br>18<br>22<br>22       | 14<br>14<br>11<br>19<br>22 | 566<br>703<br>736 | 4.52<br>4.46<br>3.87<br>5.02<br>7.34         | 7<br>7<br>8<br>8             | <5<br><5<br><5<br><5         | <2<br><2<br><2<br><2<br><2<br><2                                                            | 2<br>2<br>2<br>4<br>6        | 32<br>31<br>33<br>21<br>57 | <.2<br>.2<br><.2                | 4<br><2<br>2<br><2         | <2<br><2<br><2<br><2<br><2<br><2                                                            | 72<br>71<br>73<br>75<br>88 | .44<br>.46<br>.20   | .051<br>.051<br>.054<br>.118<br>.101 | 15<br>15<br>17<br>13<br>25 | 26<br>28<br>21<br>21<br>26 | .85<br>.84<br>.83<br>1.09<br>.82     | 188<br>186<br>159<br>98<br>138  | .05<br>.05<br>.06<br>.06<br>.07 | 3 2.57<br><2 2.53<br>2 2.91<br>3 3.29<br>2 3.23  | .02<br>.02<br>.02<br>.01<br>.02 | .08<br>.08<br>.08<br>.09<br>.07 | 2<br>1<br>2<br><1<br>1  | 8<br>5<br>2<br>5<br>3  |
| L29N 6+50W<br>L29N 2+50W<br>L29N 2+00W<br>L29N 1+50W<br>L29N 1+00W    | 1<br>6<br>2<br>4<br>3    | 28<br>67<br>69<br>280<br>96        | 12<br>16<br>14<br>12<br>14 | 88                                    | .1<br>.6<br>.2<br>.7        | 19<br>18<br>14<br>24<br>19       |                            | 760<br>367<br>463 | 4.89<br>4.72<br>2.68<br>3.86<br>3.45         | 6<br>7<br>5<br><2<br>6       | 5<br><5<br><5<br>5<br>5<br>5 | <2<br><2<br><2<br><2<br><2<br><2                                                            | 5<br>2<br><2<br><2<br>2<br>2 | 15<br>54<br>53<br>62<br>55 | .4<br>.5<br>.3                  | <2<br><2<br><2<br><2<br><2 | <<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br>< |                            | .95<br>1.15<br>1.25 | .143<br>.031<br>.059<br>.056<br>.043 | 21<br>30<br>15<br>23<br>25 | 21<br>25<br>23<br>26<br>26 | .90<br>.72<br>.87<br>.69<br>.68      | 85<br>223<br>96<br>109<br>128   | .07<br>.05<br>.05<br>.07<br>.08 | 2 3.51<br>3 3.48<br><2 2.12<br>3 2.87<br>2 2.93  | .01<br>.02<br>.02<br>.02<br>.02 | .07<br>.08<br>.06<br>.05<br>.06 | 1<br>2<br>1<br>1<br>∢1  | 4<br>7<br>5<br>6<br>2  |
| L27N 3+00W<br>L27N 2+50W<br>L27N 2+00W<br>L25N 7+00W<br>L25N 6+50W    | 1<br><1<br>2<br>1<br>2   | 59<br>108<br>53<br>35<br><b>33</b> | 12<br>12<br>13<br>10<br>7  | 80<br>100                             | .3<br>.4<br>.5<br>.1<br>.1  | 33<br>21<br>19<br>16<br>18       | 24<br>16<br>13             | 677<br>796<br>652 | 4.87<br>4.77<br>4.46<br>3.67<br><b>3.</b> 93 | 5<br>5<br>12<br><2<br>4      | <5<br><5<br><5<br><5         | <2<br><2<br><2<br><2<br><2                                                                  |                              | 32<br>30<br>33             | <.2<br><.2<br><.2<br><.2<br><.2 | 3<br><2<br><2              | <2                                                                                          | 73<br>67                   | .34<br>.37<br>.36   | .110<br>.080<br>.087<br>.066<br>.093 | 16<br>12<br>18<br>21<br>19 | 25<br>20<br>23             | .84                                  | 112<br>114<br>113               | .07<br>.06<br>.06               | 2 3.52<br>3 3.29<br><2 2.73<br>2 2.52<br>4 3.05  | .02<br>.02                      | .08                             | 2<br><1<br>1<br>1<br><1 | 2<br>1<br>13<br>4<br>1 |
| STANDARD C/AU-S                                                       | 17                       | 56                                 | 38                         | 126                                   | 6.6                         | 74                               | 31                         | 1031              | 3.96                                         | 44                           | 18                           | 7                                                                                           | 35                           | 49                         | 17.2                            | 14                         | 18                                                                                          | 60                         | .50                 | .093                                 | 40                         | 61                         | .90                                  | 188                             | .08                             | 33 1.88                                          | .06                             | . 15                            | 10                      | 47                     |
|                                                                       |                          | THIS                               | LEA                        | CH IS                                 | M SAM<br>PARTI<br>SOIL      | AL FO                            | DR MN                      | FE S              | R CA P                                       | H 3ML<br>P LA C<br>Y Acid    | RMG                          | BA T                                                                                        | ( B W                        | AND                        | LIMIT                           | ED FOF                     | L NA K                                                                                      | AND                        | AL.                 |                                      |                            |                            |                                      |                                 |                                 | NATER.                                           |                                 |                                 |                         |                        |
| DATE REC                                                              | EIVE                     | D:                                 | DEC                        | 29 19                                 | 94 ]                        | DATE                             | REI                        | PORT              | MAI                                          | LED                          |                              | Jan                                                                                         | . 9/                         | 95                         | S                               | IGNE                       | D BY                                                                                        | <u>.</u> C.                | :L.                 | ·*••                                 | 0.T                        | OYE,                       | C.LEC                                | DNG, J                          | I.WANG                          | ; CERTIFIE                                       | D 8.C                           | :. ASS                          | AYERS                   |                        |

J

**Tom Lisle** FILE # 94-4562

| ACHE ANALYTICAL                                                                  |                        |                             |                           |                                        |                               |                            |                            |                                  |                      |                          |                                      |                                              |                            |                                   |                                |                                                                                                     |                          |                                    |                   |                                           |                            |                            |                                      |                                 |                                 |                   |                                      |                                 | A                                | CHE ANAL                   | TT LCAL                       |
|----------------------------------------------------------------------------------|------------------------|-----------------------------|---------------------------|----------------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------------|----------------------|--------------------------|--------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|-------------------|-------------------------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|---------------------------------|-------------------|--------------------------------------|---------------------------------|----------------------------------|----------------------------|-------------------------------|
| SAMPLE#                                                                          | Мо<br>ррпа             | Cu<br>ppm                   | Pb<br>ppm                 | Zn<br>ppm                              | Ag<br>ppm                     | Ni<br>ppm                  | Co<br>ppm                  | Min<br>ppm                       | Fe<br>%              | As<br>ppm                | U<br>ppm                             | Au<br>ppm                                    | Th<br>ppm                  | Sr<br>ppm                         | Cd<br>ppm                      | Sb<br>ppm                                                                                           | Bi<br>ppm                | V<br>ppm                           | Ca<br>%           | P<br>%                                    | La<br>ppm                  | Cr<br>ppm                  | Mg<br>%                              | Ba<br>ppm                       | Ti<br>%                         | B<br>ppm          | Al<br>%                              | Na<br>%                         | K<br>%                           | ₩<br>ppm                   | Au*<br>ppb                    |
| L25N 6+00W<br>L25N 5+50W<br>L25N 5+00W<br>L25N 4+50W<br>L25N 4+00W               | 1<br>2<br>2<br>1<br>5  | 38<br>26<br>35<br>139<br>44 | 10<br>2<br>9<br>14<br>11  | 100<br>48<br>67<br>92<br>69            | <.1<br><.1<br>.2<br>.1<br>.1  | 15<br>10<br>15<br>32<br>25 | 20<br>12                   | 1389<br>667<br>518<br>594<br>645 | 4.87<br>5.02<br>5.62 | <2<br>4<br>3<br><2<br><2 | ৎ<br>২<br>২<br>২<br>২<br>১<br>২<br>১ | ~~~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    | 2<br>6<br>5<br>4<br>4      | 30<br>40<br>49<br>25<br><b>36</b> | .4<br><.2<br><.2<br><.2<br><.2 | <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <                                                            | 2<br>7<br><2<br>3<br>6   | 76<br>65<br>93                     |                   | . 125                                     | 13<br>75<br>18<br>16<br>20 |                            | .89<br>.99<br>.90<br>.98<br>1.38     | 157<br>97<br>102<br>113<br>132  | .06<br>.01<br>.04<br>.09<br>.13 | 5 7<br>7 3<br>8 4 | 3.39<br>2.17<br>3.22<br>4.48<br>3.86 | .02<br>.01<br>.02<br>.01<br>.02 | .13<br>.10<br>.09<br>.07<br>.08  | 1<br><1<br><1<br>1<br><1   | 2<br>3<br>2<br>1<br><b>59</b> |
| E L25N 4+00W<br>23N 10+00W<br>23N 9+50W<br>23N 6+50W<br>23N 6+50W<br>23N 6+00W   | 5<br>1<br>2<br>1<br>2  | 45<br>44<br>53<br>35<br>54  | 9<br>4<br>6<br>13         | 68<br>85<br>76<br>80<br>106            | <.1<br>.1<br>.2<br>.2<br><.1  | 26<br>17<br>20<br>13<br>18 | 18<br>17<br>17             | 649<br>669<br>618<br>602<br>934  | 4.36<br>4.26<br>4.23 | 2<br>5<br><2<br>11       | <5<br><5<br><5<br><5                 | <b>~~~</b> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 3<br>3<br>3<br>4           | 36<br>30<br>32<br>33<br>29        | <.2<br><.2<br>.4<br><.2<br><.2 | <><br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><<br><><br><> | <2<br><2<br>3<br>2<br>2  | 112<br>66<br>68<br>64<br>73        | .31<br>.33<br>.35 | . 133<br>. 096<br>. 081<br>. 101<br>. 150 | 20<br>20<br>17<br>21<br>25 | 24<br>26<br>20             | 1.40<br>1.16<br>1.28<br>1.02<br>1.10 | 140<br>101<br>95<br>70<br>119   | .13<br>.06<br>.06<br>.05<br>.07 | 6<br>3<br>3       | 3.86<br>2.65<br>2.62<br>2.21<br>3.20 | .02<br>.01<br>.01<br>.01<br>.01 | .07<br>.08<br>.08<br>.08<br>.12  | 1<br><1<br><1<br><1<br><1  | 45<br>3<br>8<br>4<br>2        |
| 23N 5+50W<br>23N 5+00W<br>23N 4+50W<br>23N 4+50W<br>23N 4+00W<br>21N 4+50W       | 2<br>2<br>1<br>2<br>1  | 14<br>61<br>38<br>54<br>35  | 13<br>14<br>9<br>4<br>7   | 40<br>99<br>85<br>96<br>98             | <.1<br>.2<br><.1<br><.1<br>.2 | 8<br>25<br>18<br>17<br>16  | 21<br>18<br>23             | 354                              | 5.58<br>5.85<br>5.07 | 2<br>5<br><2<br>3<br>10  | <5<br><5<br><5<br><5<br><5           | <<br>< < < < < < < < < < < < < < < < < < <   | 9<br>4<br>2<br>3<br>4      | 60<br>30<br>49<br>28<br>35        | <.2<br><.2<br><.2<br>.2<br><.2 | <2<br><2<br><2<br><2<br><2<br><2                                                                    | <2<br>4<br><2<br>2<br>3  | 64<br>72<br>130<br>79<br>80        | .23<br>.42<br>.20 | .178<br>.182<br>.143<br>.150<br>.151      | 61<br>19<br>28<br>18<br>13 | 23<br>20<br>21             | 1.27<br>1.15<br>1.30<br>1.08<br>.91  | 108<br>148<br>129<br>138<br>129 | .01<br>.06<br>.03<br>.11<br>.08 | 6<br>5<br><2      | 2.51<br>3.48<br>3.84<br>3.22<br>3.33 | .04<br>.02<br>.02<br>.01<br>.01 | .11<br>.10<br>.09<br>.09<br>.12  | <1<br><1<br><1<br><1<br><1 | 1<br>2<br>3<br>27             |
| 21N 4+00W<br>21N 3+50W<br>19N 4+00W<br>19N 3+50W<br>19N 3+00W                    | 2<br>2<br>13<br>2<br>2 | 50<br>66<br>45<br>45<br>232 | 4<br>7<br>9<br>11<br>8    | 90<br>92<br>21<br>92<br>57             | <.1<br><.1<br>.1<br><.1       | 19<br>11<br>7<br>17<br>20  | 24<br>22<br>21<br>23<br>18 |                                  | 5.42<br>7.24<br>4.49 | 5<br>7<br><2<br>3<br>5   | <5<br><5<br><5<br><5                 | <2<br><2<br><2<br><2<br><2<br><2             | 2<br>2<br>5<br>2<br>2      | 49<br>41<br>72<br>38<br>100       | <.2<br><.2<br><.2<br>.3<br><.2 | <2<br>3<br><2<br>2<br><2<br><2                                                                      | 5<br><2<br>7<br><2<br>5  | 85<br>86<br>89<br>84<br>133        | .36<br>.37<br>.33 | . 134<br>. 135<br>. 184<br>. 129<br>. 108 | 17<br>18<br>27<br>15<br>14 | 21<br>9<br>23              | 1.17<br>1.13<br>1.07<br>.90<br>1.47  | 129<br>133<br>76<br>106<br>70   | .13<br>.10<br>.02<br>.11<br>.06 | 44                | 2.95<br>2.81<br>2.04<br>2.85<br>2.70 | .01<br>.01<br>.01<br>.02<br>.01 | .11<br>.10<br>.09<br>.09<br>.11  | <1<br><1<br><1<br><1<br><1 | 4<br>10<br>11<br>2<br>1       |
| 19N 2+50W<br>19N 2+00W<br>19N 1+50W<br>19N 1+00W<br>19N 0+50W                    | 1<br>3<br>1<br>2<br>1  | 49<br>50<br>55<br>208<br>84 | 14<br>12<br>15<br>6<br>16 | 93<br>118<br>124<br>104<br>1 <b>32</b> | .3<br><.1<br>.2<br><.1<br>.1  | 16<br>16<br>17<br>16<br>20 | 22<br>17<br>16             | 704<br>912<br>1095<br>853<br>943 | 4.57<br>4.21<br>4.41 | 4<br>10<br><2<br>9<br>5  | <5<br><5<br><5<br><5<br><5           | <2<br><2<br><2<br><2<br><2<br><2             | 2<br>2<br>2<br>2<br>2<br>2 | 34<br>44<br>30<br>34<br>32        | <.2<br><.2<br>.3               | 2<br><2<br><2<br><2<br><2<br><2                                                                     | 2<br><2<br>7<br>4        | 63<br>70<br>70<br>69<br>72         | .34<br>.39<br>.58 | .060<br>.095<br>.082<br>.041<br>.061      | 15<br>17<br>12<br>22<br>18 |                            | .98<br>.90<br>.87<br>1.08<br>1.10    | 124                             | .07<br>.08<br>.07<br>.06<br>.07 | 3<br><2<br>6      | 1.97<br>3.11<br>3.33<br>2.89<br>2.83 | .01<br>.01<br>.01<br>.02<br>.01 | .08<br>.13<br>.11<br>.09<br>.13  | <1<br><1<br><1<br><1<br><1 | 2<br>1<br>3<br>2<br>2         |
| .19N 0+00W<br>.17N 10+00W<br>.17N 9+50W<br>.17N 9+00W<br>.17N 9+00W              | 2<br>1<br>1<br>1       | 109<br>31<br>43<br>38<br>34 | 270<br>6<br>9<br>11<br>7  | 347<br>103<br>127<br>99<br>162         | .1<br>.1<br>.3<br>.1          | 24<br>17<br>13<br>11<br>15 |                            | 582                              | 3.71<br>3.90<br>4.01 | <2<br>10<br>7<br>4<br>6  | <5<br><5<br><5<br><5                 | <2<br><2<br><2<br><2<br><2<br><2             | 2<br><2<br>2<br>3<br>2     | 24<br>27<br>31<br>30<br>22        | <.2<br>.4<br><.2               | <2<br>3<br>5<br><2<br>3                                                                             | 3<br><2<br>4<br><2<br><2 | 70<br>61<br>61<br>59<br>6 <b>3</b> | .29<br>.33<br>.29 | .121<br>.058<br>.049<br>.067<br>.114      | 24<br>11<br>18<br>15<br>9  | 20                         | .66<br>.75<br>.79                    | 111                             | .05<br>.08<br>.08<br>.07<br>.07 | <2<br><2<br>3     | 4.09<br>2.44<br>2.18<br>1.92<br>2.87 | .01<br>.01<br>.02<br>.01<br>.02 | . 15<br>.06<br>.06<br>.07<br>.08 | <1<br><1<br><1<br><1       | 1<br>1<br>8<br>2<br>3         |
| L17N 8+00W<br>L17N 7+50W<br>L17N 7+00W<br>L17N 7+00W<br>L17N 4+00W<br>L17N 3+50W | 1<br>2<br>3<br>1<br>2  | 39<br>45<br>39<br>39<br>42  | 10                        | 116<br>125<br>103                      | .2<br>.2<br>.1<br><.1         | 20<br>15<br>17<br>14<br>16 | 19<br>13                   | 777                              | 5.13<br>3.73         | 11<br>12<br>6<br>10<br>4 | <5<br><5<br><5<br><5                 | <2<br><2<br><2<br><2<br><2                   | 2<br>2<br>4<br>2<br>2<br>2 | 30<br>36<br>21<br>38<br>37        | <.2<br><.2<br>.6               | 3<br>4<br>2<br>2<br>2<br>2                                                                          | 2<br>3<br><2<br>3        | 65                                 | .30<br>.18<br>.52 | .087<br>.107<br>.163<br>.045<br>.067      | 12<br>13<br>13<br>16<br>13 | 27<br>23<br>19<br>23<br>26 | .69<br>.85<br>.56<br>.83<br>.84      | 153<br>136                      | .11<br>.10<br>.12<br>.08<br>.09 | 4<br>5<br>5       | 2.97<br>2.85<br>2.87<br>2.28<br>2.38 | .02<br>.01<br>.02<br>.02<br>.02 | .08<br>.09<br>.07<br>.09<br>.09  | <1<br><1<br><1<br><1<br><1 | 1<br>18<br>240<br>2           |
| STANDARD C/AU-S                                                                  | 19                     | 62                          | 40                        | 128                                    | 7.0                           | 71                         | 31                         | 1049                             | 3.96                 | 42                       | 19                                   | 6                                            | 36                         | 51                                | 18.6                           | 15                                                                                                  | 22                       | 60                                 | .51               | .093                                      | 40                         | 59                         | .91                                  | 190                             | .08                             | 33                | 1.88                                 | .06                             | . 15                             | 11                         | 47                            |

Tom Lisle FILE # 94-4562

| Page | 3 |
|------|---|
|------|---|

|                 | ······    | ·         |           | ·         |           | _ <u>.</u> |           |                 |         |           |          |           |           |           |           |           |           |          |         | ······ |           |           |         |           |             |          |         |         |        | ·        |            |
|-----------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------------|---------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|---------|--------|-----------|-----------|---------|-----------|-------------|----------|---------|---------|--------|----------|------------|
| SAMPLE#         | Mo<br>ppm | Cu<br>ppm | РЬ<br>ppm | Zn<br>ppm | Ag<br>ppm | Ni<br>ppm  | Co<br>ppm | Mn<br>ppm       | Fe<br>% | As<br>ppm | U<br>ppm | Au<br>ppm | Th<br>ppm | Sr<br>ppm | Cd<br>ppm | sb<br>ppm | 8i<br>ppm | V<br>mqq | Ca<br>% | P<br>% | La<br>ppm | Cr<br>ppm | Mg<br>% | Ba<br>ppm | τi<br>%     | B<br>PPM | Al<br>% | Na<br>% | K<br>% | W<br>ppm | Au*<br>ppt |
| 17N 3+00W       | 1         | 95        | 10        | 115       | .5        | 22         | 14        | 1062 4          | . 19    | <2        | <5       | <2        | 2         | 49        | .5        | <2        | <2        | 67       | 1.09    | .046   | 31        | 34        | 1.02    | 163       | .05         | 18       | 3.12    | .02     | .13    | z        | 3          |
| 17N 2+50W       | 1         | 69        | 12        | 126       | .2        | 18         |           | 712 4           |         | 4         | <5       | <2        | 3         | 35        | .2        | 2         | <2        | 75       |         |        | 18        | 27        | .95     | 143       | .08         | 3        | 2.68    | .02     | .09    | 2        | 4          |
| 17N 2+00W       | 2         | 49        | 11        | 134       | .1        | 18         |           |                 |         | <2        | <5       | <2        | 2         | 39        | .2        | 4         | <2        | 78       |         | .053   | 17        |           | .91     | 141       | .08         | 2        | 3.09    | .02     | .10    | 2        | 1          |
| 17N 1+50W       | 2         | 60        | 12        | 160       | <.1       | 18         |           | 932 4           |         | <2        | <5       | <2        | 2         | 35        | .2        | 4         | <2        | 76       |         | .080   | 14        |           | 1.30    | 108       | .06         |          | 2.62    | .01     |        | 2        | 1          |
| L17N 1+00W      | 2         | 122       | 13        |           | .3        | 21         |           | 869 5           |         | 2         | <5       | <2        | 3         | 30        | < .Z      | 5         | <2        | 90       |         | .089   | 22        |           | 1.13    | 186       | .05         |          | 3.10    | .01     |        | 1        | 15         |
|                 |           | 122       | 1.5       | 122       |           | 21         | 20        | 007 -           |         | -         | ~        | ~         |           | 50        |           |           | ~~        | /0       |         |        | ÷         | 20        |         | 100       |             | •        |         |         |        | •        | •          |
| 17N 0+50W       | 1         | 63        | 13        | 118       | <.1       | 41         | 20        | 731 4           | .77     | 7         | <5       | <2        | 2         | 27        | <.2       | 2         | <2        | 90       | .27     | .089   | 10        | 74        | 1.34    | 149       | .06         | 2        | 3.45    | .01     | .11    | 1        |            |
| 17N 0+00W       | 1         | 77        | 15        | 113       | .2        | 17         | 15        | 726 4           | 1.53    | <2        | <5       | <2        | 2         | 30        | <.2       | 2         | <2        | 85       | .53     | .066   | 22        | 35        | .88     | 142       | .04         | 3        | 2.60    | .01     | .09    | 2        |            |
| L11N 10+00W     | z         | 46        | 10        | 75        | <.1       | 15         | 12        | 668 3           | 3.88    | 4         | <5       | <2        | 2         | 38        | <.2       | 3         | <2        | 67       | .48     | .043   | 21        | 30        | 1.07    | 55        | .07         | <2       | 1.84    | .01     | .10    | 1        |            |
| RE LITN 10+00W  | 3         | 45        | 12        | 69        | .1        | 15         | 12        | 637 3           | 3.69    | 7         | <5       | <2        | z         | 36        | <.2       | 3         | <2        | 63       | .46     | .042   | 20        | 28        | 1.02    | 53        | .06         | 2        | 1.73    | .01     | .10    | 1        |            |
| L11N 9+50W      | 1         | 41        | 10        | 97        | .1        | 16         |           | 719 3           |         | ż         | <5       | <2        | <2        | 32        | <.2       | 3         | <2        | 66       | .39     | .078   | 21        | 29        | .89     | 95        | .07         | <2       | 2.23    | .02     | .10    | 1        |            |
|                 |           |           |           |           |           |            |           |                 |         | _         |          | -         |           |           |           |           |           |          |         |        |           |           |         |           |             |          |         |         |        |          |            |
| L11N 9+00W      | : 1       | 26        | 8         | 83        | .1        | 13         | 10        | 580 3           | 3.41    | <2        | <5       | <2        | Z         | 37        | .2        | <2        | <2        | 69       | .48     | .070   | t 1       | 28        | .85     | 85        | .10         | 2        | 1.82    | .02     | .11    | 1        |            |
| L11N 8+50W      | 2         | 36        | 17        | 55        | <.1       | 15         | 14        | 519 4           | 4.26    | 5         | <5       | <2        | 2         | 32        | <.2       | 2         | <2        | 85       | 41      | .052   | 10        | 31        | .97     | 55        | .08         | 2        | 1.98    | .01     | .08    | <1       |            |
| L11N 8+00W      | 1         | 53        | 13        | 74        | .1        | 15         | 15        | 959 3           | 3.92    | 4         | <5       | <2        | 2         | 41        | <.2       | 2         | <2        | 70       | .53     | ,083   | 18        | 30        | 1.18    | 55        | .07         | 3        | 1.94    | .01     | .12    | 1        |            |
| L11N 7+50W      | 1         | 28        | 6         | 42        | <.1       | 11         | 13        | 461             | 5.34    | 3         | <5       | <2        | 3         | 42        | <.2       | 2         | <2        | 62       | .47     | .054   | 15        | 21        | .80     | 67        | .06         | 2        | 1.52    | .01     | .09    | <1       |            |
| L11N 7+00W      | 1         | 55        | 19        | 130       | .1        | 16         | 12        | 630 3           | 3.92    | 3         | <5       | <2        | 2         | 34        | <.2       | 3         | <2        | 64       | .37     | .079   | 18        | 27        | .83     | 107       | .07         | 3        | 2.08    | .01     | . 14   | 1        |            |
|                 |           |           |           |           | -         |            |           |                 |         |           |          |           |           |           |           |           |           |          |         |        |           |           |         |           |             |          |         |         |        |          |            |
| L11N 6+50W      | 1         | 34        | 4         | 86        | .1        | 15         | 11        | 745             | 3.54    | <2        | <5       | <2        | 4         | 36        | <.2       | 2         | <2        | 61       |         | .065   | 18        |           | 1.03    |           | .06         | _        |         |         | . 13   | 1        |            |
| L11N 6+00W      | 1         | 45        | 10        | 67        | <.1       | 16         | 11        | 527 3           | 3.67    | <2        | 5        | <2        | 2         | 36        | .2        | 2         | <2        | 70       | .40     | .043   | 14        | 31        | .89     | 52        | .09         |          | 1.58    | .01     | .12    | 1        |            |
| L11N 5+50W      | ! 1       | 38        | 10        | 85        | <.1       | 14         | 12        | 5Z0 3           | 3.65    | 2         | <5       | <2        | 2         | 30        | <.2       | 2         | <2        | 70       |         | .038   | 10        | 27        | .86     | 79        | -09         | _        | 1,75    | .01     | .08    | 1        |            |
| L11N 5+00W      | <1        | 44        | 11        | 98        | <.1       | 16         | 12        | 545 3           | 3.77    | 8         | <5       | <2        | 2         | 33        | <.2       | 2         | <2        | 71       | .33     | .047   | 13        | 27        | .90     | 83        | <b>.</b> 09 |          | 1.92    | .01     | .09    | 1        |            |
| L11N 4+50W      | 1         | 45        | 10        | 127       | .1        | 17         | 14        | 667 3           | 3.94    | <2        | <5       | <2        | <2        | 36        | .2        | 2         | <2        | 74       | .39     | .059   | 12        | 29        | 1.04    | 99        | .08         | <2       | 2.05    | .01     | .10    | 2        |            |
|                 | 1         | E.        | 10        | 111       |           | 17         | • /       | 700             |         | ,         | -5       | <2        | <2        | 36        | <.2       | 2         | <2        | 74       | 7.1     | .070   | 13        | 70        | 1.08    | 90        | .08         | -2       | 2.00    | .01     | .10    | 1        | 2          |
| L11N 4+00W      |           | 54<br>41  | 10        | 123       | <.1       | 17<br>18   | 14        | 788 4<br>608 3  |         | 4<br><2   | <5<br><5 | <2        | 2         | 33        | .3        | <u>د</u>  | <2        | 73       |         | .061   | 12        | 30        |         | 110       | .09         |          | 1.97    | .01     | .09    | ź        | ¢          |
| L11N 3+50W      |           |           |           |           | -1        |            | . –       |                 |         | ~2        |          |           |           |           |           | 3         | <2        | 80       |         | .097   | 25        |           | 1.19    | 89        | .07         |          | 2.21    |         | .12    | 1        |            |
| L11N 3+00W      | <1        | 94        | 11        | 101       | .2        | 18         |           | 1059 4<br>748 3 |         | , ×       | <5<br>.r | <2        | 2         | 43        | <.2       |           | -         | 67       |         | .097   |           | 24        | .69     | 122       | .08         |          | 1.97    |         | .11    | 2        |            |
| L11N 2+50W      | <1        | 39        | 11        | 134       | .2        | 16         |           |                 |         | 6         | <5       | <2        | 2         | 30        | .2        | <2        | <2        |          |         |        | 12        | 22        | .68     | 161       | .08         |          | 2.64    | .02     | .09    | 2        |            |
| L11N 2+00W      | ; <1      | 48        | 14        | 181       | .1        | 19         | 12        | 1138 :          | 5.55    | 4         | <5       | <2        | z         | 21        | .3        | Z         | <2        | 66       | . 25    | .216   | 12        | 22        | •00     | 101       | .09         | 2        | 2.04    | .02     | .09    | 2        |            |
| L11N 1+50W      | 1         | 69        | 9         | 64        | <.1       | 16         | 12        | 537 3           | 3.99    | 5         | <5       | <2        | Z         | 32        | <,2       | z         | <2        | 76       | .43     | .093   | 13        | 27        | .97     | 69        | .08         | <2       | 1.72    | .01     | .09    | 1        |            |
| L11N 1+00W      | 1         | 34        | 9         | 159       | <.1       | 14         |           | 1066            |         | 8         | <5       | <2        | <2        | 23        | .2        | <2        | <2        | 59       | .31     | .311   | 8         | 14        | .53     | 209       | .08         | Z        | 2.29    | .02     | .08    | 2        | 12         |
| L11N 0+50W      | <1        | 81        | 11        | 108       | 1         | 17         |           | 642             |         | 11        | <5       | <2        | 2         | 30        | <.2       | 3         | <2        | 74       |         | .063   | 18        |           | 1.04    | 102       | .07         |          | 2.24    |         | 11     | 1        |            |
| L11N 0+00W      | i         | 62        | 13        |           | < 1       | 19         |           | 808             |         | 10        | <5       | <2        | 2         | 28        | <.2       | 2         | <2        | 77       |         | .083   | 13        |           | 1.09    | 118       | .08         |          | 2.12    | -       | .11    | 1        |            |
| STANDARD C/AU-S | 17        |           |           | 128       |           | 75         |           | 1031            |         | 42        | 18       | 7         | 36        |           | 17.4      | 15        | 18        | 60       |         | .094   | 39        |           | .91     |           | .08         |          | 1.88    | .06     |        | 10       | 5          |

Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

**4£** 



# GSM-19T

# Instruction Manual



teorophus

TERRAPLUS INC., 52 West Beaver Creek Road, Unit 14, Richmond Hill, Ontario 448 119 (Canada)

Telephone: (416) 764-5505 Fax: (416) 764-9329

# **GEM Systems Inc.**

52 West Beaver Creek Rd. Unit 14 Richmond Hill, Ontario Canada L4B 1L9

Phone: (905) 764-8008 Fax: (905) 764-9329

# **1. THEORETICAL DESCRIPTION**

# 1.1 Introduction

۳.

٦

The GSM-19T is a portable standard proton magnetometer/gradiometer designed for handheld or base station use for geophysical, geotechnical, or archaeological exploration, long term magnetic field monitoring at Magnetic Observatories, volcanological and seismic research, etc. The GSM-19T is a secondary standard for measurement of the Earth's magnetic field, having O.2 nT resolution, and 1 nT absolute accuracy over its full temperature range.

The GSM-19T is a microprocessor based instrument with storing capabilities. Large memory storage is available (up to 2 Mbytes). Synchronized operation between hand held and base station units is possible, and the corrections for diurnal variations of magnetic field are done automatically. The results of measurement are made available in serial form (RS-232-C interface) for collection by data acquisition systems, terminals or computers. Both on-line and post-operation transfers are possible.

The measurement of two magnetic fields for determination of gradient is done concurrently with strict control of measuring intervals. The result is a high quality gradient reading, independent of diurnal variations of magnetic field.

Optionally the addition of a VLF sensor for combined magnetometer/gradiometer-VLF measurement is available.

# 1.2 Magnetic Field Measurement

The magnetic field measuring process consists of the following steps:

- a) **Polarization.** A strong DC current is passed through the sensor creating polarization of a proton-rich fluid in the sensor.
- b) Deflection. A short pulse deflects the proton magnetization into the plane of precession.
- c) **Pause.** The pause allows the electrical transients to die off, leaving a slowly decaying proton precession signal above the noise level.
- d) **Counting.** The proton Precession frequency is measured and converted into magnetic field units.
- e) **Storage.** The results are stored in memory together with date, time, and coordinates of measurement. In base station mode, only the time and total field are stored.

# 1.3 Earth's Magnetic Field

Appendix B shows the nominal distribution of the Earth's magnetic field, with dotted lines separating the equatorial and polar regions. In polar regions the inclination of the magnetic field vector is approximately vertical, while in equatorial regions it is horizontal. To obtain the best precession signal the sensor must be aligned with the magnetic field. In polar regions the sensor axis must be horizontal, in equatorial vertical. Horizontal orientation of the sensor can be universal if the operator keeps the sensor oriented in an East-West direction (important only in equatorial regions).

Initially, the tuning of the instrument should agree with the nominal value of the magnetic field shown for the particular region in Appendix

Magnetic field direction should ideally be perpendicular to sensor axis

B. After each reading the instrument will tune itself automatically. If large changes in magnetic field are encountered between successive readings, a warning will be given to the operator and it may be necessary to repeat the reading to obtain an accurate result.

Local ferromagnetic objects like screws, pocket knives, wristwatches, tools etc. may impair the quality of measurement or in drastic cases even destroy the proton precession signal by creating excessive gradients. For best results, **ferromagnetic objects should be kept away from the sensor.** In normal applications, the magnetometer console does not produce appreciable effects on measurements provided that the sensor is installed on the staff and kept at least at arms length from the operator and the console.

B

3

j

# 2. INSTRUMENT SPECIFICATIONS

# 2.1 Magnetometer / Gradiometer

| Zinnaghoronn         |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Sensitivity:         | +/- 0.2 nT (gamma), magnetic field and gradient.                                                                                                                                         |  |  |  |  |  |  |  |  |
| Accuracy:            | +/- 1 nT over operating range.                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Range:               | 18,000 to 120,000 nT, automatic tuning requiring initial set-up.                                                                                                                         |  |  |  |  |  |  |  |  |
| Gradient Tolerance:  | Over 7,000 nT/m                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Operating interval:  | 3 seconds minimum. Readings initiated from keyboard, external trigger, or carriage return via RS-232-C.                                                                                  |  |  |  |  |  |  |  |  |
| Input/Output:        | 6 pin weatherproof connector, RS-232C, and (optional) analog output.                                                                                                                     |  |  |  |  |  |  |  |  |
| Power Requirements:  | 12 V, 730 mA peak (during polarization), 30 mA standby, 1500mA peak in gradiometer mode.                                                                                                 |  |  |  |  |  |  |  |  |
| Power Source:        | Internal 12 V, 1.9 Ah sealed lead-acid battery standard, others op-<br>tional. An External 12V power source can also be used.                                                            |  |  |  |  |  |  |  |  |
| Battery Charger:     | Input: 110/220 VAC, 50/60 Hz and/or 12 VDC (optional).<br>Output: 12V dual level charging.                                                                                               |  |  |  |  |  |  |  |  |
| Operating Ranges:    | Temperature: -40 °C to +60 °C.<br>Battery Voltage: 10.0 V minimum to 15V maximum.<br>Humidity: up to 90% relative, non condensing.                                                       |  |  |  |  |  |  |  |  |
| Storage Temperature: | -70°C to +65°C                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Dimensions:          | Console: 223 x 69 x 240mm.<br>Sensor staff: 4 x 450mm sections.<br>Sensor: 170 x 71mm dia.<br>Weight: Console 2.1kg, Staff 0.9kg, Sensors 1.1kg each.                                    |  |  |  |  |  |  |  |  |
| 2.2 VLF              |                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Frequency Range:     | 15 - 30.0 kHz.                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| Parameters Measured: | Vertical In-phase and Out-of-phase components as percentage of<br>total field.<br>2 components of horizontal field.<br>Absolute amplitude of total field.                                |  |  |  |  |  |  |  |  |
| Resolution:          | 0.1%.                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Number of Stations:  | Up to 3 at a time.                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Storage:             | Automatic with: time, coordinates, magnetic field/gradient, slope,<br>EM field, frequency, in- and out-of-phase vertical, and both horizon-<br>tal components for each selected station. |  |  |  |  |  |  |  |  |
| Terrain Slope Range  | $\Omega^{\circ} = 9\Omega^{\circ}$ (entered manually)                                                                                                                                    |  |  |  |  |  |  |  |  |

Terrain Slope Range:0° - 90° (entered manually).Sensor Dimensions:14 x 15 x 9 cm. (5.5 x 6 x 3 inches).

1.0 kg (2.2 lb).

Sensor Dimensions: Sensor Weight:

Page 3

# **3. INSTRUMENT DESCRIPTION**

### 3.1 Physical Overview

The parts of the GSM-19T magnetometer/gradiometer are as follows.

- The sensor is a dual coil type designed to reduce noise and improve gradient tolerance. The coils are electrostatically shielded and contain a proton rich liquid in a pyrex bottle.
- The sensor cable is coaxial, typically RG-58/U, up to 100m long.
- The staff is made of strong aluminum tubing sections (plastic staff optional). This construction allows for a selection of sensor elevations above ground during surveys. For best precision the full staff length should be used. Recommended sensor separation in gradiometer mode is one staff section (56cm from sensor axis to sensor axis), although two or more sections are sometimes used for maximum sensitivity.
- The console contains all the electronic circuitry. It has a 16 key keyboard, a 4 x 20 character alphanumeric display, and sensor and power/input/output connectors. The keyboard also serves as an ON-OFF switch.
- The power/input/output connector also serves as RS232C input/output and optionally as analog output and/or contact closure triggering input.
- The keyboard, front panel, and connectors are sealed i. e. the instrument can operate under rainy conditions.
- The charger has 2 levels of charging, full and trickle, switching automatically from one to another. Input is normally 110V 50/60Hz. Optionally, 12 VDC input can be provided.
- The all-metal housing of the console guarantees excellent EMI protection.

## 3.2 Software Version 4.0

There are several major versions of software for the GSM-19. As of August 92, GEM Systems added a major software upgrade to its GSM-19 family, enhancing its capabilities. This new generation of software (version 4.0) has the following advantages.

- 1. Diurnal correction (reduction) with interpolation can be used in conjunction with other GSM-19 models with software version 4.0. This allows the base mag to run with longer cycle time. Previous software could do interpolation only with fast GSM-19 types.
- 2. Memory filing system. Now 50 files can be stored in a directory, and mode of operation can be changed without erasing memory. With the software previous to version 4.0, only 1 file could be retained in memory, and this would be lost when modes of operation were switched.
- 3. Line and station numbers have been enlarged. Lines can now be 5 digits as opposed to 4 digits in previous software. Station numbers are now 7 digits as opposed to 6 in the previous software.
- 4. Transmission time has been significantly shortened.

### Determining your instrument's software version

There are several visible indications that can be checked to determine if the GSM-19 has Version 4.0 software installed. Upon turning on the unit, if Version 4.0 software is present the third line of the display will indicate v4.0. Otherwise just the date of the software will be shown. Furthermore, from the main menu, **B-diurn.cor** is displayed in version 4.0 units. **B-reduction** is displayed in previous software version units. Finally, the header for every RS-232C transmission will have a v4.0 indicator and a file name.

### Files

A new file will be opened in the following cases:

- 1. New file programmed by user.
- 2. Survey on a new day will automatically create a new file.
- 3. A base restart will automatically create a new file.
- 4. After the erase function is performed.

Note: The walking mag or grad has further modifications. See section 4.5 under the Walking Mag Mode subheading.

### SABRE ELECTRONIC INSTRUMENTS LTD.

4245 EAST HASTINGS STREET . BURNABY, B.C. V5C 2J5

#### SABRE MODEL 27 VLF-EM RECEIVER

The Model 27 EM unit was designed originally for a large Canadian mining company to overcome the deficiencies inherent in existing units.

The instrument is so stable and selective that completely reliable measurements can be made on distant stations without interference from nearby powerful transmitters. Stability and selectivity are especially important when making field-strength measurements, which are now being emphasized as a means of locating conductors.

This EM receiver is very compact, requires no earphones or loudspeakers and is housed in a heavy scotch saddle leather case. All of these features add up to make an ideal one-man EM unit of unexcelled electrical performance and mechanical ruggedness.

#### SPECIFICATIONS

<u>Source of Primary Field</u> - VLF radio stations (12 to 24 KHz.) <u>Number of Stations</u> - 4, selected by switch; Cutler, Maine on 17.8 KHz. and Seattle, Washington on 18.6 KHz. are standard, leaving 2 other stations that can be selected by the user.

#### Types of Measurement

- 1. Dip angle in degrees, read on a meter-type inclinometer with a range of  $\frac{+}{60^{\circ}}$  and an accuracy of  $\frac{+}{15^{\circ}}$ .
- Field strength, read on a meter and a precision digital dial with an accuracy exceeding 1%.
- 3. Out of phase component, read on the field strength meter as a residual reading when measuring the dip angle.

#### Dimensions and Weight

Approximately  $9\frac{1}{2}$ " x  $2\frac{1}{2}$ " x  $8\frac{1}{2}$ "; Weighs 5 lbs.

#### Batteries

8 alkaline penlite cells. The instrument will run continuously on 1 set of batteries for over 200 hours; so that in normal on-off use, the batteries will last all season. The battery condition under load is shown by pushing a button and reading voltage on the field strength meter.

#### VLF-EM OPERATING INSTRUCTIONS

The equipment is operated in the usual way as follows:

- With the instrument held horizontal in front of you, turn around until a null appears on the field strength meter. You should now be facing the station.
- 2) With the receiver still facing the station, lift it to the vertical position and rotate it slightly in the vertical plane to your right or left until the best null appears on the field strength meter. Record the angle on the inclinometer at which the null appears. This is the DIP ANGLE (Positive or Negative).
- 3) Return the instrument to the horizontal plane and turn around until the field strength meter is at its maximum reading. Set this maximum reading at 100 on the meter and record the reading on the gain control dial. This is the Field Strength Reading.
- 4. Repeat steps 1, 2, and 3 at each station.
- 5) To test the batteries turn the power switch on and push the test button. The field strength meter should read above the red mark. Battery life is approximately 200 hours and if the instrument is turned off between readings, the batteries should last for an entire season.
- NOTE: An alternative way of measuring field strength is as follows: Proceed as in step 3, setting the meter to 100. Now push the field strength button (marked FS) and the meter will read 50. (If it doesn't, adjust the gain control slightly). Leave the Gain Control setting where it is and take comparative Field Strength readings at each station by pressing the Field Strength button and recording the meter reading, which will vary from its Base Station Reading as you pass over the conductive zones.

This is the method used in Part 2 of this book entitled: "DETAILED FIELD PROCEDURE".

#### SELECTION OF STATIONS:

The stations are selected by the switch on the control panel, with the following abbreviations being used:

| C = Cutler, Maine  | Frequency = 17.8 Khz. |
|--------------------|-----------------------|
| S = Seattle, Wash. | Frequency = 18.6 Khz. |
| A = Annapolis, Md. | Frequency = 21.4 Khz. |
| H = Hawaii         | Frequency = 23.4 Khz. |

The two most useful stations are Cutler and Seattle and these will be used almost exclusively. Note that Seattle is off the air for several hours on Thursday for maintenance (between 10 A.M. and 2 P.M. usually). Cutler is off the air for the same length of time every Friday.

If Equipment fails to operate:

- (a) Check that station is transmitting (see above). If one station appears to be dead, check another one to see if it is operating normally.
- (b) Check batteries. If they are low or the reading begins to drop after the test button is held down for a few seconds, replace them. Note also that there are 8 batteries in the instrument and they cannot be individually checked by the test button. If the batteries have been in the unit for a long time it is possible that one is dead or very weak but that the total voltage indicated by the test button is near normal. It is cheap insurance to instal new batteries before starting a big survey.
- (c) If unit still fails to operate check that battery connectors are tight, then check wiring of battery connectors for breaks or damage.

#### PART 2: DETAILED FIELD PROCEDURE

#### OPERATING INSTRUCTIONS

#### SABRE VLF-EM RECEIVER

#### INTRODUCTION:

The VLF-EM method utilizes electromagnetic fields transmitted from radio stations in the 15-25 KHz range. The signals are propagated with the magnetic component of the field being horizontal in undisturbed areas.

Conductivity contrasts in the earth create secondary fields, producing a vertical component and changes in the field strength or amplitude. These conductive areas may be located, and to a degree, evaluated by measuring the various parameters of this electromagnetic field.

The Sabre VLF-EM receiver is tuned to receive any 4 transmitter stations: usually C - Cutler, Maine; S - Seattle; H - Hawaii; and A - Annapolis.

The station used in the survey should be selected so that the direction of the signal is roughly perpendicular to the direction of the grid lines which, in turn, should be laid out perpendicular to the regional strike.

#### MEASUREMENTS :

The Sabre VLF-EM receiver can be used to measure the following characteristics of the VLF field:

(a) Tilt angle of resultant field;

(b) Field strength of (a) horizontal component of field;

(b) vertical component of field.

#### Field Procedure

The following procedure should be followed to measure the dip angle of null and the field strength of the horizontal component of the VLF field.

#### Initial Field Strength Adjustment

Adjust the gain control to provide a suitable relative field strength measurement, as follows:-

(a) hold receiver in horizontal position (meter faces horizontal) and rotate in a horizontal plane until a null is indicated on the F.S. meter; rotate  $90^{\circ}$  in this horizontal plane (F.S. meter reads maximum)

(b) adjust gain control so that the F.S. meter reads 100

(c) record gain control setting (000 to 999), and do not readjust unless a major field strength occurs.

The above procedure should be carried out at the beginning of each day's survey and checked during the day.

#### Dip Angle Measurement Procedure

1. Hold receiver in horizontal position and rotate in the horizontal plane until a null is observed. This aligns receiver in the field and the operator should be facing southerly or easterly depending on transmitter location.

2. Bring receiver up to the vertical positon (meter faces vertical) and rotate the receiver in the vertical plane perpendicular to the transmitter direction until a null or minimum reading is observed on the field strength meter.

15

3. Hold the receiver in this field strength null position and read the inclinometer in degrees. Record this dip angle of null along with sign (+ or -).

#### Horizontal Field Strength Measurement Procedure

1. Return receiver to the horizontal position.

2. Re-establish null bearing in horizontal plane.

3. Rotate receiver 90° in the horizontal plane.

4. Depress F.S. push button switch and observe field strength meter reading for sufficient time to obtain an average F.S. meter reading. (Depressed F.S. switch slows needle action and reduces meter reading

by half. The reading will normally range around 50).

5. Record F.S. reading.

#### Filtering Technique For VLF-EM Dip Angle Data

The standard profile method of presenting dip angle data may be difficult to interpret. A filtering technique, described by D.C. Fraser, 1969 (Geophysics, Vol. 34, No. 6, p. 958-967) enables the data to be presented on a plan map with conductive areas defined by contours.

The following explains the calculation:-

| <u>Line</u> | Station | <u>Nu11</u> | <u>Fil</u>          | <u>te</u> r |
|-------------|---------|-------------|---------------------|-------------|
| 8N          | 0 E     | +3          |                     |             |
|             | 1 E     | +4          | +3+4= +7            |             |
|             | 2 E     | +4          | +4+4= +8 +7-(+10)=  | -3          |
|             | 3 E     | +6          | +4+6= +10 +8-(+13)= | -5          |
|             | 4 E     | +7          | +13 +10-(+16)=      | -6          |
|             | 5 E     | +9          | +16                 | -8          |
|             | 6 E     | +12         | +21                 | -12         |
|             |         |             | +28                 | +3          |
|             | 7 E     | +16         | +18                 | +30         |
|             | 8 E     | +2          |                     |             |
|             | 9 E     | -4          | -2                  | +32         |
|             | 10 E    | -10         | -14                 | +14         |
|             | 11 E    | -6          |                     | -7          |
|             | 12 E    | -1->        | -6-1= -7            |             |

Figure 1 is an example of a field sheet showing null angle reading, filtered reading and relative field strength. Figure 2 shows the field sheet with filter card overlaid. The small window in the side of the card shows the four readings used to calculate the filtered reading, and an arrow showing that the filter reading is to be plotted between Station 8E and 9E as indicated in Figure 1. The card is moved down the field sheet, one reading at a time as a guide while carrying out the filter procedure. Throughout the survey care must be taken to ensure that the filtered data has the correct sign. The positive values only are plotted and contoured while for negative values, only the negative sign is plotted. Crone suggests in instructions for the Radem VLF-EM, the use of N-S or E-W notation instead of (+ or -) signs, however, for filtering a sign must be substituted.

The following convention may be used to ensure the correct sign of filtered data and provide a consistent cross-over pattern when studying the profiled null angle data.

1. When taking a reading, <u>always</u> face southerly, on east-west lines, and always face easterly on north-south lines.

2. Record data on field sheets (top to bottom) as follows:

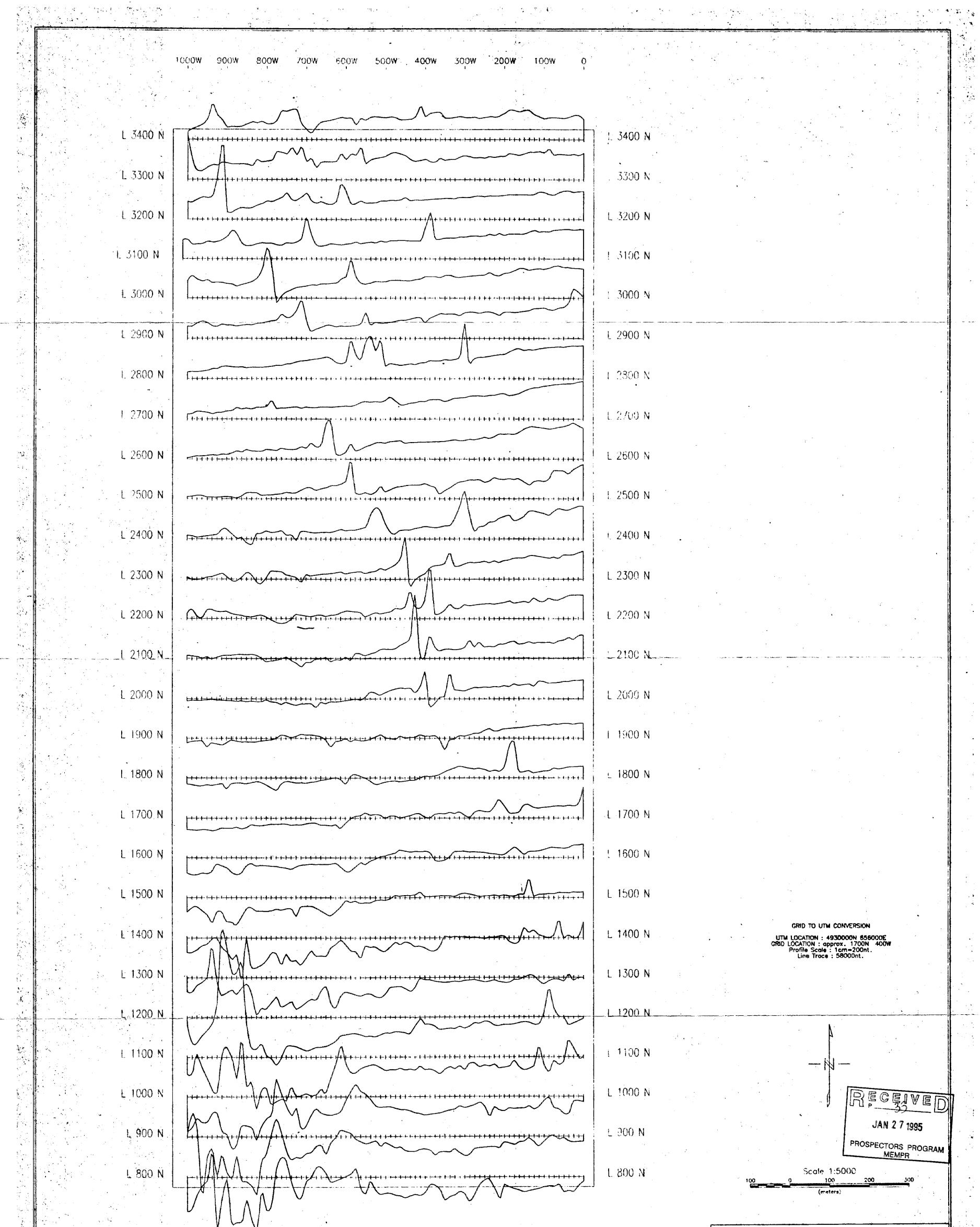
on N-S lines record from south to north

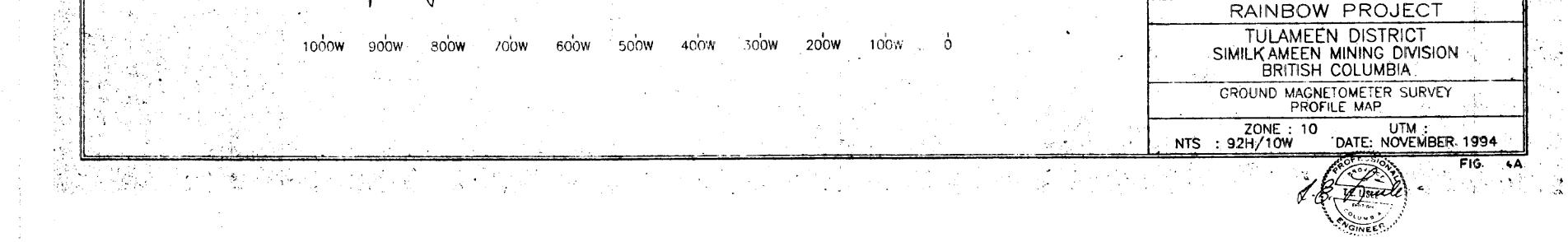
on E-W lines record from west to east.

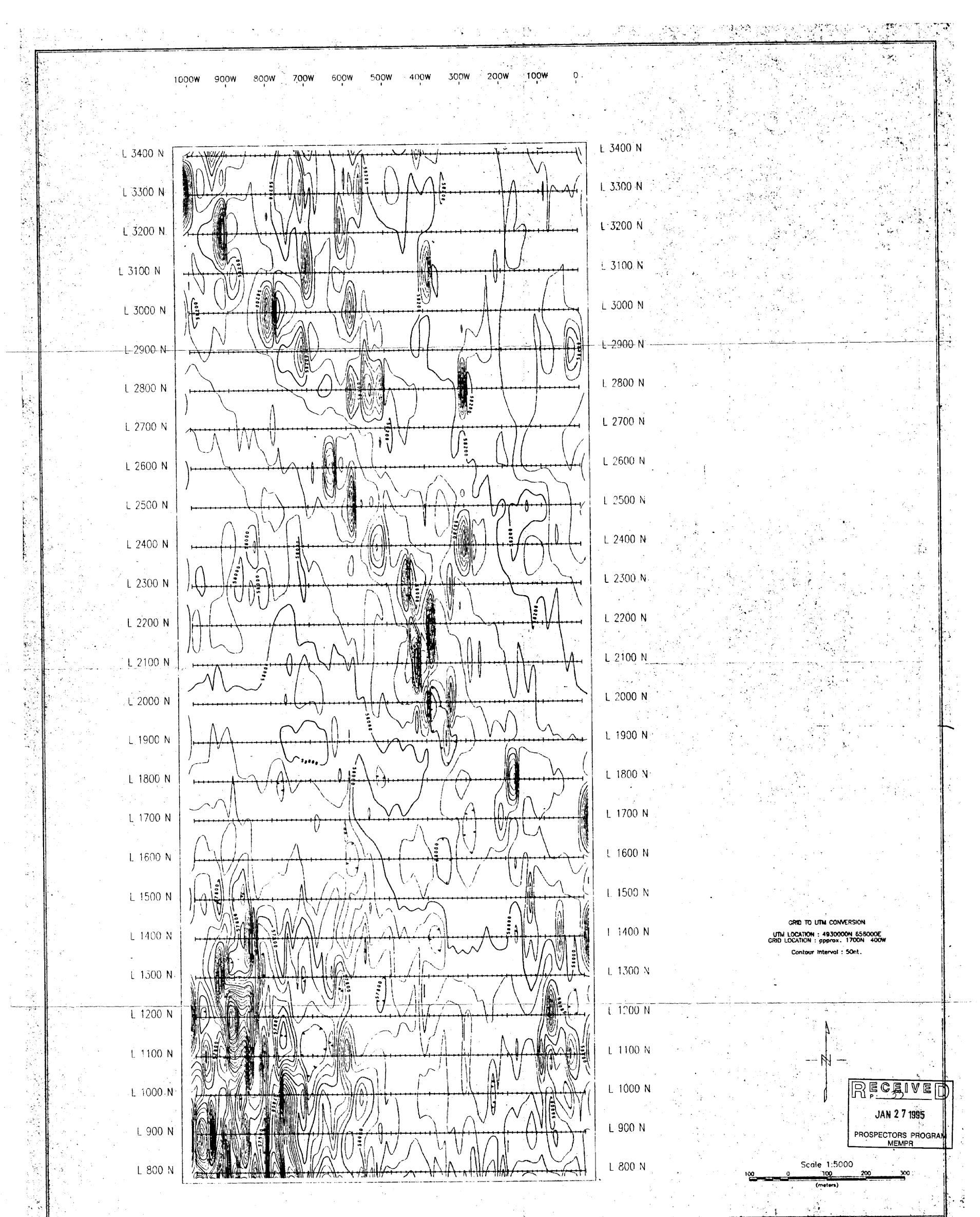
3. Plot and profile dip angle data on plan maps facing map north or map west.

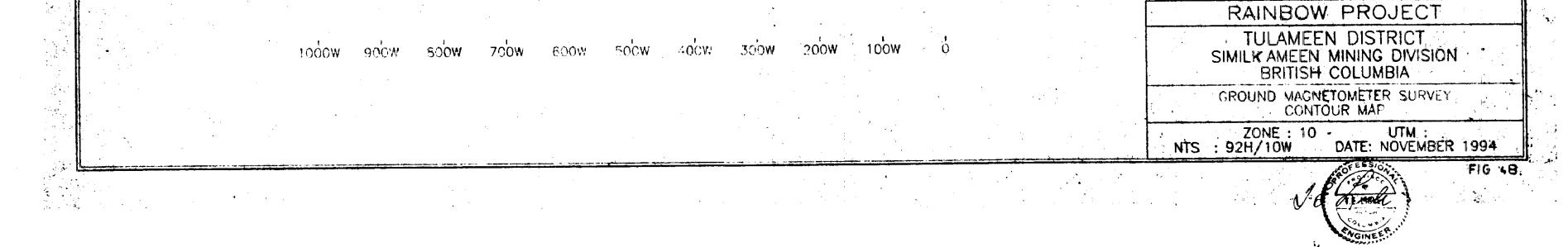
The above convention will provide correct data regardless of the property location relative to the transmitter being used.

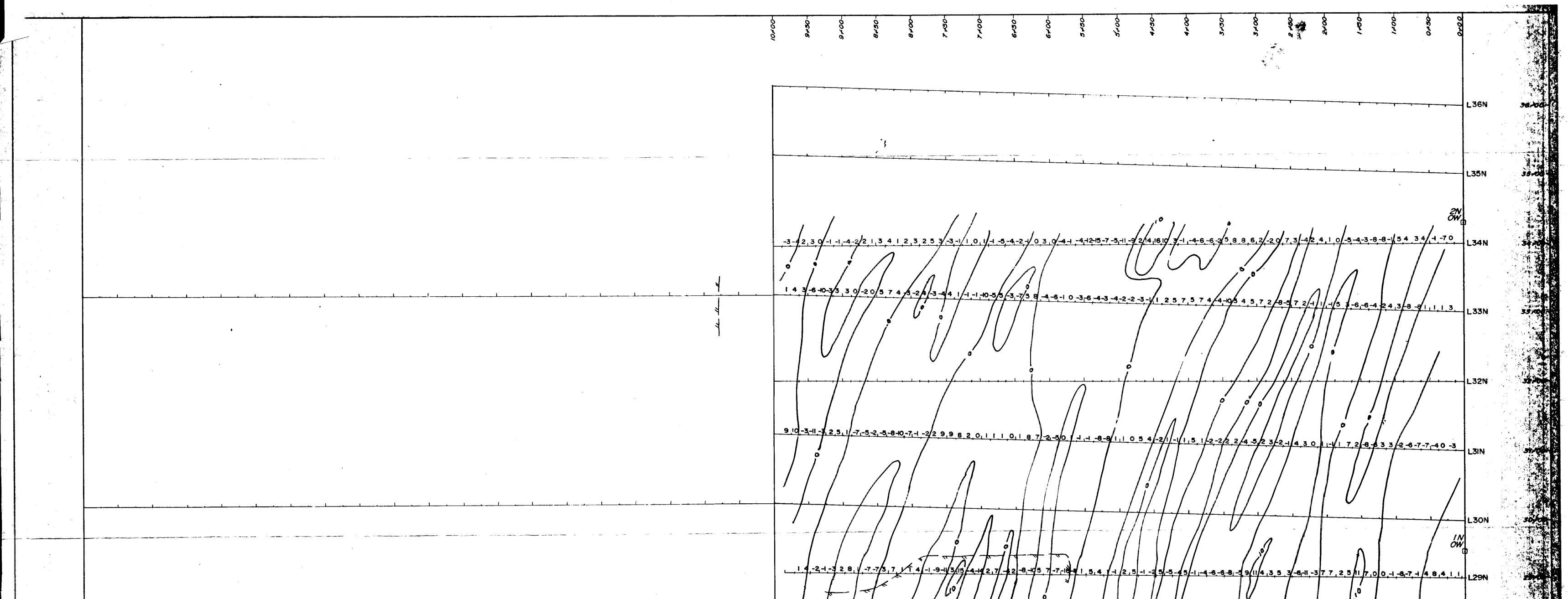
| PPOPERTY<br><b>OPER</b> ATOR |            | LF-EM S | S SEATTL    | E PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>1747 44 T74 |
|------------------------------|------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Line                         | Stn.       | Hull    | Filter      | Landard Contraction Contractio |                  |
|                              | OE         | +3      |             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | IE         | +4      |             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 2.E        | +4.     | 3           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 35         | +6      | +=5         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 4E         | +7      |             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| _(                           | 56         | +9      |             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1               |
|                              | <u>6 E</u> | +12     | +3          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | <u>7</u> € | +16     | +30-        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |
|                              | <u>8E</u>  | +2      | -+ 32-      | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xoral            |
|                              | 9E         | -4      | + 14        | 6Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 10 E       | -/0     |             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | IIE        | -6      | 18          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 12E        | -/      |             | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 136        | +2      |             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 145        | +4      |             | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 15 E       |         | .+6         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                |
|                              | 16E        | -4      | -+/0        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X OYER           |
|                              | 17E<br>18E |         | -#.j        | 55_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| $\tau $                      | 19 E       | +1      | = 2         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                              | 20E        | -1      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                |
|                              |            |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                |
| /                            |            |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| ٦                            | · ·        |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                              | —          |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                              |            |         | · • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                              |            |         | [           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |


.

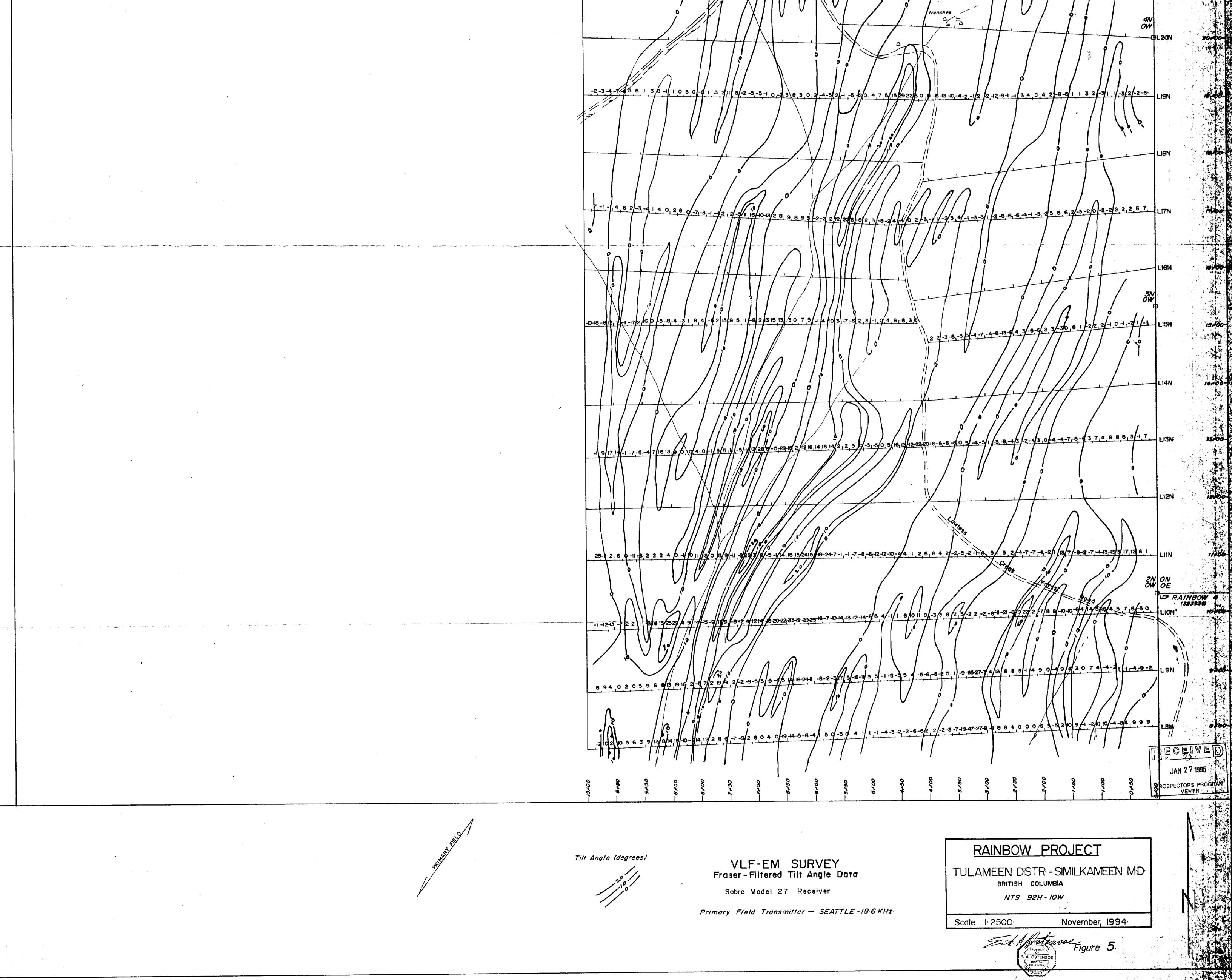

Fig. 1 Example of Field Sheet


|                                                    | Gain- 02                              | YLF-EM SUR                             | VEY              |                                 |
|----------------------------------------------------|---------------------------------------|----------------------------------------|------------------|---------------------------------|
|                                                    | PPOPERTY <u>G.1</u>                   | <u>7:5.</u> TRÁNS<br>Instr.            | Seattle<br>Sabre | PAGE 1.<br>DATE <u>MAY 4/74</u> |
| I                                                  |                                       |                                        | Filter           | F. S.                           |
| ·                                                  | ·                                     |                                        |                  | 50                              |
|                                                    |                                       |                                        | -3               | 50                              |
| E.ITER                                             | CARD                                  | ······································ | 5                | 52                              |
| <i></i>                                            |                                       |                                        | -6               | . 52                            |
|                                                    | <u> </u>                              | ··                                     |                  | 52                              |
| <u> </u>                                           | <b></b>                               |                                        |                  | 52                              |
|                                                    |                                       |                                        | -=-/2<br>+-3     | 53                              |
|                                                    |                                       | +16                                    | +30              | .60                             |
|                                                    |                                       | +2                                     | -+-32            | 65                              |
| $\frac{F_{11} + E_{RED} - R_{EAD}}{(a+b) + (C+d)}$ | G  - C                                | -4                                     | -+-14            | 62                              |
| (a + p) (c 1 a)                                    |                                       | /0                                     | 7                | 50                              |
| (+16+2) - (-4+(-                                   | ro]) =                                |                                        | 18               | 48                              |
| (+18) - (-14)                                      | = +32                                 |                                        | -14-             | 48                              |
|                                                    |                                       |                                        | 6                | 50                              |
|                                                    |                                       |                                        | _=/              | 50                              |
|                                                    | <b></b>                               |                                        | +6               | 50                              |
|                                                    |                                       | ····                                   | /0               | 55                              |
|                                                    |                                       |                                        | +                | 55                              |
|                                                    |                                       |                                        | -2               | 50                              |
| (                                                  |                                       |                                        |                  |                                 |
|                                                    |                                       |                                        |                  |                                 |
| ]i                                                 |                                       | ·                                      |                  |                                 |
|                                                    |                                       |                                        |                  |                                 |
| -··                                                |                                       |                                        |                  |                                 |
|                                                    | <u>_</u>                              |                                        |                  |                                 |
|                                                    | · · · · · · · · · · · · · · · · · · · |                                        |                  |                                 |
|                                                    |                                       |                                        |                  |                                 |
|                                                    |                                       |                                        |                  |                                 |



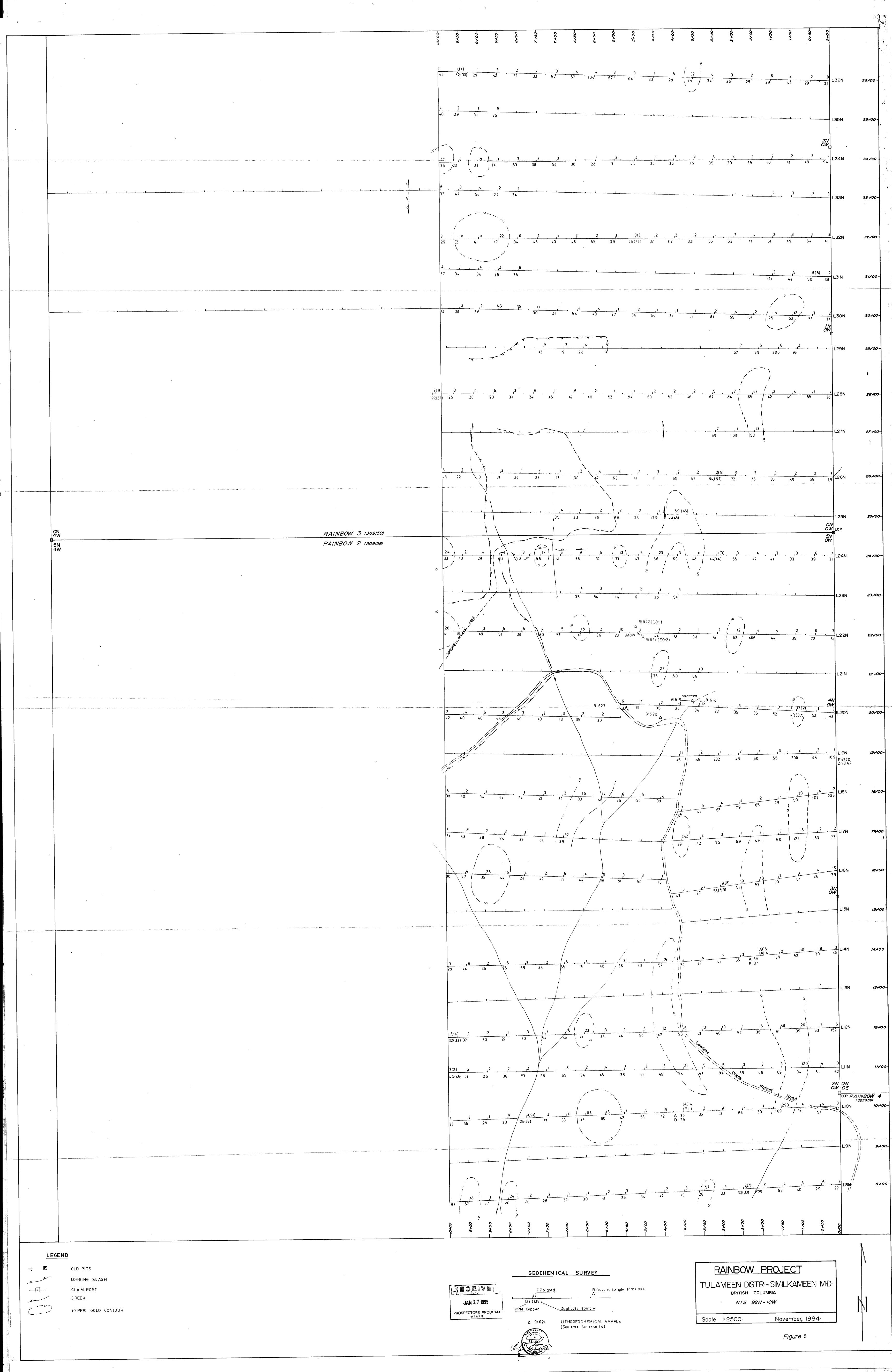


Fig. 2 Field Sheet with Filter Card Overlayed










|      |                       |                                               |                |                       | 4           | Î.                 | L'ill                     |                      |             |                  |                    |                  | 10               | / /               |                     | A                          | Ó                  | <b>W</b>    |                                       |
|------|-----------------------|-----------------------------------------------|----------------|-----------------------|-------------|--------------------|---------------------------|----------------------|-------------|------------------|--------------------|------------------|------------------|-------------------|---------------------|----------------------------|--------------------|-------------|---------------------------------------|
|      |                       | 1.42-1-                                       | 328, 4-7       | -7/3 . 7 . AT.        | 4-1-9-143   | 3/13/-4-19 2       | 2.72-                     | <u>e - 195 7 - 7</u> | -18-1 1,5,4 | -1 2,5           | <u>-1 - a 5,-5</u> | 45-11-4-6-6-     | -B               | 3 5 3 -8-11       | -377,25             |                            | 8-7 -1 4 8,4 1     | 11 2 ON     |                                       |
|      |                       |                                               |                |                       | / /6        | 0/                 | ///                       |                      | *           |                  |                    | /                | V                |                   |                     | 0,                         |                    |             |                                       |
|      |                       |                                               |                | /                     |             | 5 / /              | // /                      | ĬĬ                   |             |                  |                    |                  |                  |                   |                     |                            |                    |             |                                       |
|      |                       |                                               |                |                       | / /         |                    |                           | //                   | / /         |                  | // //              |                  | /                |                   | 1                   |                            | · ·                | 1<br>1<br>1 |                                       |
|      |                       | , <u>, , , , , , , , , , , , , , , , , , </u> |                |                       |             |                    |                           | 1                    | /           |                  |                    |                  |                  |                   |                     |                            | λ.                 |             |                                       |
| •    |                       |                                               |                |                       |             | ///                | / //                      |                      |             |                  |                    |                  | ^                |                   |                     | 1                          |                    | - L28N      |                                       |
| 1.10 |                       |                                               |                |                       | /           | ///                | , <sup>o'</sup>           |                      |             |                  |                    |                  |                  | ] /               |                     | /                          |                    |             |                                       |
|      |                       |                                               |                |                       |             | / / /              | / /                       |                      |             |                  |                    |                  |                  | ĩ (               |                     |                            |                    |             |                                       |
| •    |                       | 0-31-3116                                     | 0 1 -6 -1 (4 ) | 2-1-6-1-7             | -27 6/-6-   | 1 1 1              | 2 4 - 4 - 40 -            | <u>8,42,2,2,0</u>    | 2353-3      | -2-2-200         | 0 0 -2-3 2         | 2 -1 -9 -5 1 5 1 | 6,1/-21,4;       | 2 <b>-6-9</b> 1,7 | 7.6.4.6.            | <mark>4-1 -3-58-5</mark> ⊩ | 2-2-4-5-22.5       | - L27N      |                                       |
|      |                       |                                               |                | $ \setminus $         | U ó         |                    | $\sum$                    | /                    |             |                  |                    |                  | // /             | / /               |                     | $\Lambda$                  |                    |             |                                       |
|      |                       |                                               | × /            |                       |             | /                  | / `v                      | /                    |             |                  |                    |                  | '                |                   | 1 Jour Market       |                            |                    |             |                                       |
|      |                       | 7 4 2 -3 0 1                                  | 1 10 15 3 -3.  | -6 -8 -5 1 5          | 6320        | 5 -1 4 3 -3        | 3 -7 -5 -2                | 1 0.0 2              | -2 -/ 3 0 0 | 6 0 6 -4 -       | 5-40.0             |                  |                  |                   | 1 /                 |                            | 1. 1/              |             |                                       |
|      |                       | 7 4-2-301                                     |                |                       |             | 11                 |                           |                      | 1.1.1.      | 0                |                    | -5,-6 0 0 -6.    | -30 2 3 -3       | <u>-32,5,5,3</u>  | <u>p-2-1/2</u>      | <u>8 4(-1 -1 -2 -4</u>     | 1,3-11,6,8.2       | 1261        |                                       |
| · .  |                       |                                               |                |                       |             |                    | /                         |                      |             | /                |                    |                  |                  |                   |                     |                            |                    |             |                                       |
|      |                       |                                               | 1              | 1                     |             |                    |                           | $/ \Lambda$          | $\Gamma$ /  | Λ                |                    |                  |                  | Q                 |                     | •                          |                    |             |                                       |
|      |                       | -7,-5-3,-1,-2-                                | -5-4 2 8 6 -   | -2-6-4   8            | 10 5 -4-    | <u>+ 2 3 0 - 3</u> | 3273                      | 3-91 1 -3            | 2010, 9,-2  | 2,-2,-2,-2,1).   | -2 -2 1 1 4        | 4 2-2-4-7-6-     | 4-2 -6           | -5-30,8,8         | 1 -1 2 6 9          | 996469                     | 4-5-41 00          |             |                                       |
|      |                       |                                               |                |                       |             | Ŷ                  |                           |                      |             |                  | '                  |                  |                  |                   |                     | /                          |                    | <b>w</b>    |                                       |
|      | 4W RAINBOW 3 (309/59) |                                               | <u>\</u>       |                       |             |                    | 1/1                       | $\overline{}$        | <u></u>     |                  |                    |                  |                  |                   | <del>//</del>       |                            | - <u>*</u> 0<br>5  | W LCP       |                                       |
|      | 5N<br>4W              |                                               |                | +                     |             | IT                 |                           | •                    |             | $\sum_{i=1}^{n}$ |                    |                  |                  |                   |                     |                            |                    | W           |                                       |
|      |                       |                                               |                | F X                   |             |                    | +                         |                      | <b>l</b>    | $\nabla_{\mu}$   |                    | - <u> </u>       | ┦╢┶              |                   |                     |                            | <u></u>            |             | 24700-                                |
|      |                       |                                               |                | ľ. \  /               |             |                    | $\langle \rangle \rangle$ | $\langle \rangle$    |             |                  |                    |                  | / /.             |                   |                     |                            | j.                 |             |                                       |
|      |                       |                                               |                | $  \setminus \rangle$ |             | l n                |                           |                      |             |                  | /                  | ſ                |                  |                   |                     |                            | 110                |             |                                       |
|      |                       | 1200-2-                                       | -4-3280        | -15-15-15 1-42        | i 6 -2 -7-9 | + 1 1d 7           | 1-1-50                    | 6 4 -3 -8 3          | 6 5 2 0 4   | 8206             | 4   1 -1 -         | -2-4-9-9-22      | 1000-3           | D 7/-3-10         | 140,01              | -1 -7 -34 4 5              | 1-5-30 4 08        |             |                                       |
| •    |                       |                                               | 1/1            | <u>N</u>              | Χ\.         |                    |                           | 1.0                  |             |                  |                    | 7                | $\left[ \right]$ |                   |                     |                            |                    |             | 83,00                                 |
|      |                       | Į į.                                          | XI             |                       |             |                    | ĺľ                        |                      | ^           |                  |                    |                  |                  |                   |                     |                            |                    |             |                                       |
|      |                       | 5 <sup>69</sup>                               |                |                       | M.          |                    |                           | ر<br>مار             | $\gamma$    | Δ                |                    |                  |                  |                   |                     | / /                        |                    |             |                                       |
|      |                       | Scol Scol                                     |                |                       | ·           | ╞──┼─┼╴            | ╶╲╌┼╴╵                    |                      | <u> </u>    | hatt A           | _ <u> </u>         | ŀ                | /                | ┟╴┠└──            |                     | <u></u>                    |                    | L22N        |                                       |
|      |                       | and a                                         |                |                       |             |                    |                           |                      | //          | ۵<br>۵           | 1<br>10<br>1       |                  | ;                |                   |                     | $\Lambda \mid$             | /                  |             |                                       |
|      |                       | 199°                                          |                |                       |             | $\langle \rangle$  | $\left  \right $          | $  \neg  $           |             | /                |                    | / /              |                  | 0 0               | p ]                 | /./                        | / /                |             |                                       |
|      |                       | 3 2-3-5-5-                                    | -6-5-5-5-8     | -10-4-2-2             | 0 0 -1 -2   | 4 2 4              | q 1 = 3                   | 11 6 0 12            | a -30 0-1   | 32503            | 8 4)-1 -3 -        | -24 7 /          |                  |                   |                     |                            | 15 9 4 -6, 14-10-1 |             |                                       |
|      |                       |                                               | ,              | 1                     |             | A                  | TIT                       | TTA                  |             | /                |                    | <u> </u>         |                  |                   | <del>433,40-8</del> | <u>3,3,0,0-1,0</u>         | 6 9 4 -6 14-10-1   | L2IN "      | -                                     |
|      |                       | 1 /                                           |                | 1                     |             | 1 J                |                           |                      | N + I I     |                  |                    |                  |                  |                   |                     | 1 1                        | 1                  | 1           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |



•

i din Tan

