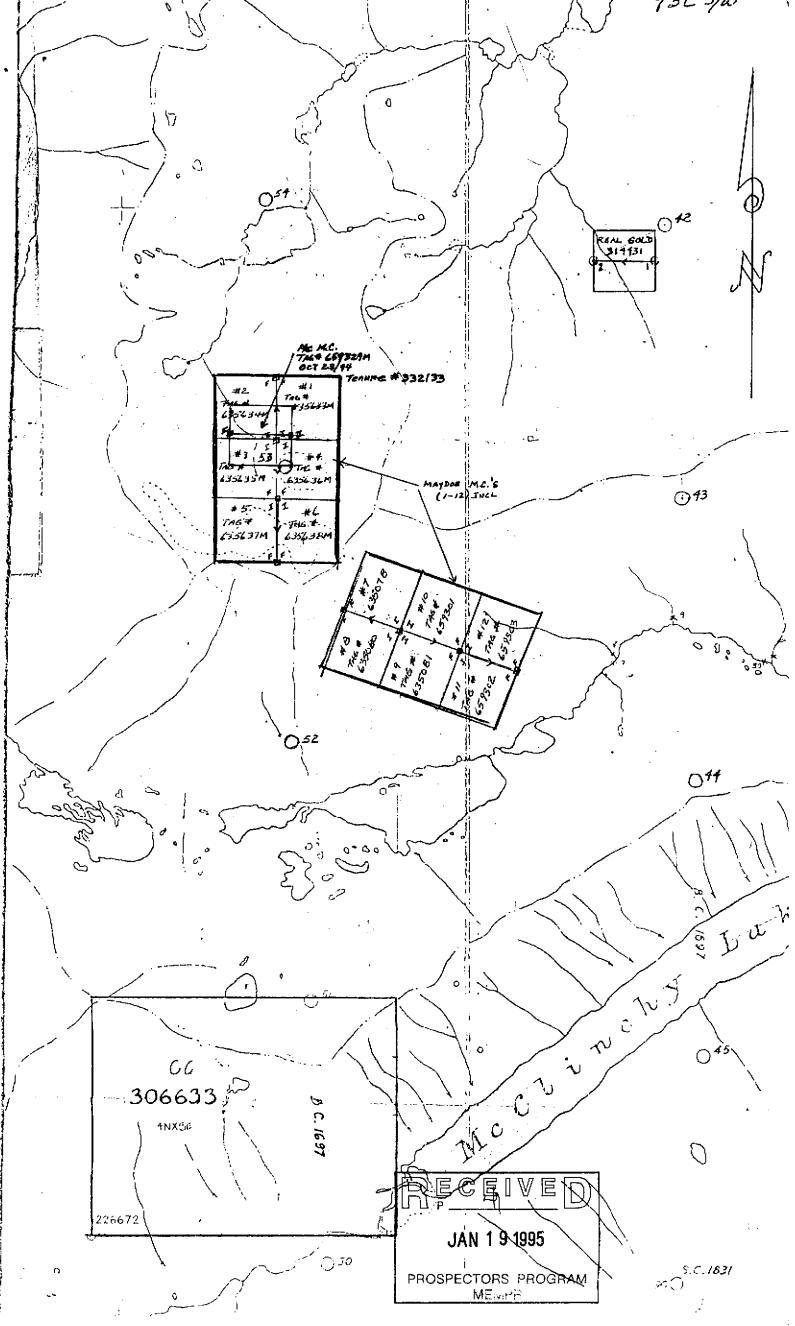
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-18NAME:SHAWN TURFORD

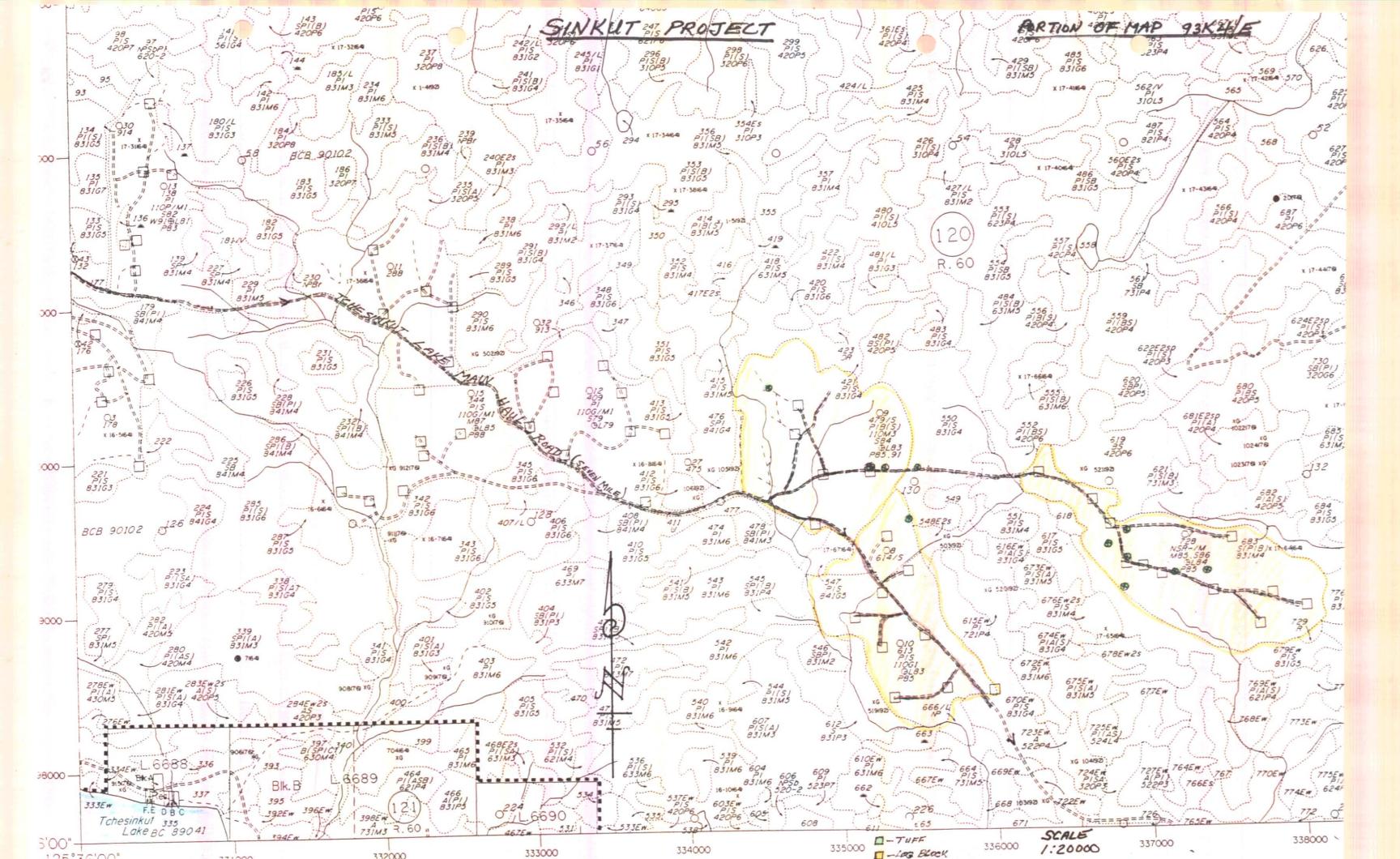

JAN 1 9 1995
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTORS PROGRAM PROSPECTING REPORT FORM (continued)MEMPR
 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.
Name <u>Shawn A. Turford</u> Reference Number <u>94/95 P41</u>
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>MC #1</u> Minfile # if applicable <u>Nil</u> Location of Project Area NTS <u>93C 3/W</u> Lat <u>52 03'</u> Long <u>125 24'</u> Description of Location and Access <u>by helicopter 35 Km. south of Nimpo Lake</u>
Main Commodities Searched For <u>Au. Ag. Cu.</u>
Known Mineral Occurrences in Project Area <u>None</u>
<pre>WORK PERFORMED 1. Conventional Prospecting (area) Conventional prosp. & silting of creeks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)</pre>
<u>SIGNIFICANT RESULTS (if any)</u> Commodities <u>None to date</u> Claim Name <u>MC #1</u>
Location (show on map) Lat Long Elevation Best assay/sample type
Description of mineralization, host rocks, anomalies <u>Re staking of "Real</u> Gold" claim Record # 314431.

÷ *

ţ

•

!



ز___

BRITISH C	•	
PROSPECTORS ASSI PROSPECTING REPORT		JAN 191995
B. TECHNICAL REPORT - One technical report to be completed for each project and		PROSPECTORS PROGRAM
 Refer to Program Reguirements/Regulations, section 15, 1 If work was performed on claims a copy of the applicable supporting data (see section 16) required with this TE 	5 & 17 e assessment report may be s CHNICAL REPORT,	ubmitted in lieu of the
Name <u>Shawn A Turford</u>	Reference Number <u>9</u>	4/95 P41
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>SIN</u> Location of Project Area NTS <u>93/K 4/E</u>	<u>KIT</u> Minfile # if Lat <u>54 07'</u>	applicable <u>NIL</u> Long <u>125_30'</u>
Description of Location and Access <u>Sev</u> approx., 4 1/2 KM., north of lake.		
Main Commodities Searched For <u>Cu</u> .		
Known Mineral Occurrences in Project A	rea <u>Endako Mines, o</u>	due east
WORK PERFORMED 1. Conventional Prospecting (area) <u>Pros</u> 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in 7. Other (specify)	m, total m}	
	·	~~ _
SIGNIFICANT RESULTS (if any) Commodities none found	laim Name	
Commodities none found C Location (show on map) Lat I Best assay/sample type	ongEle	evation
Description of mineralization, host roc was volcanic tuff. No evidence of any		

٦

Ŧ,

	REGEIVED
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)	JAN 1 9 1995 PROSPECTORS PROGRAM
 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations. section 15. 16 & 17 If work was performed on claims a copy of the applicable assessment report may be supporting data (see section 16) required with this TECHNICAL REPORT. 	MEMPR
Name <u>Shawn A Turford</u> Reference Number 9	4/95 P41
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>CUB</u> Minfile # i Location of Project Area NTS <u>93/E11 EAST</u> Lat <u>53 37'</u>	f applicable <u>NIL</u> Long <u>127 09'</u>
Description of Location and Access <u>Cub Lake area south.</u> <u>Access by floatplane, 90 KM., west of Francios Lake, non</u> terminal.	rth side ferry
Main Commodities Searched For <u>Au,Aq,Cu</u> .	
Known Mineral Occurrences in Project Area "Barb" showing	#109.minfile
	······································
<pre>WORK PERFORMED 1. Conventional Prospecting (area) <u>Conventional prospecting creeks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) </u></pre>	
<u>SIGNIFICANT RESULTS (if any)</u> Commodities <u>None to date</u> Location (show on map) Lat Claim Name Best assay/sample type	levation
Description of mineralization, host rocks, anomalies <u>Prede</u> assemblage. Mainly altered rhyolite and pyrite tuff.	
Supporting data must be submitted with this TECHNICAL REPO	ORT.

2

2

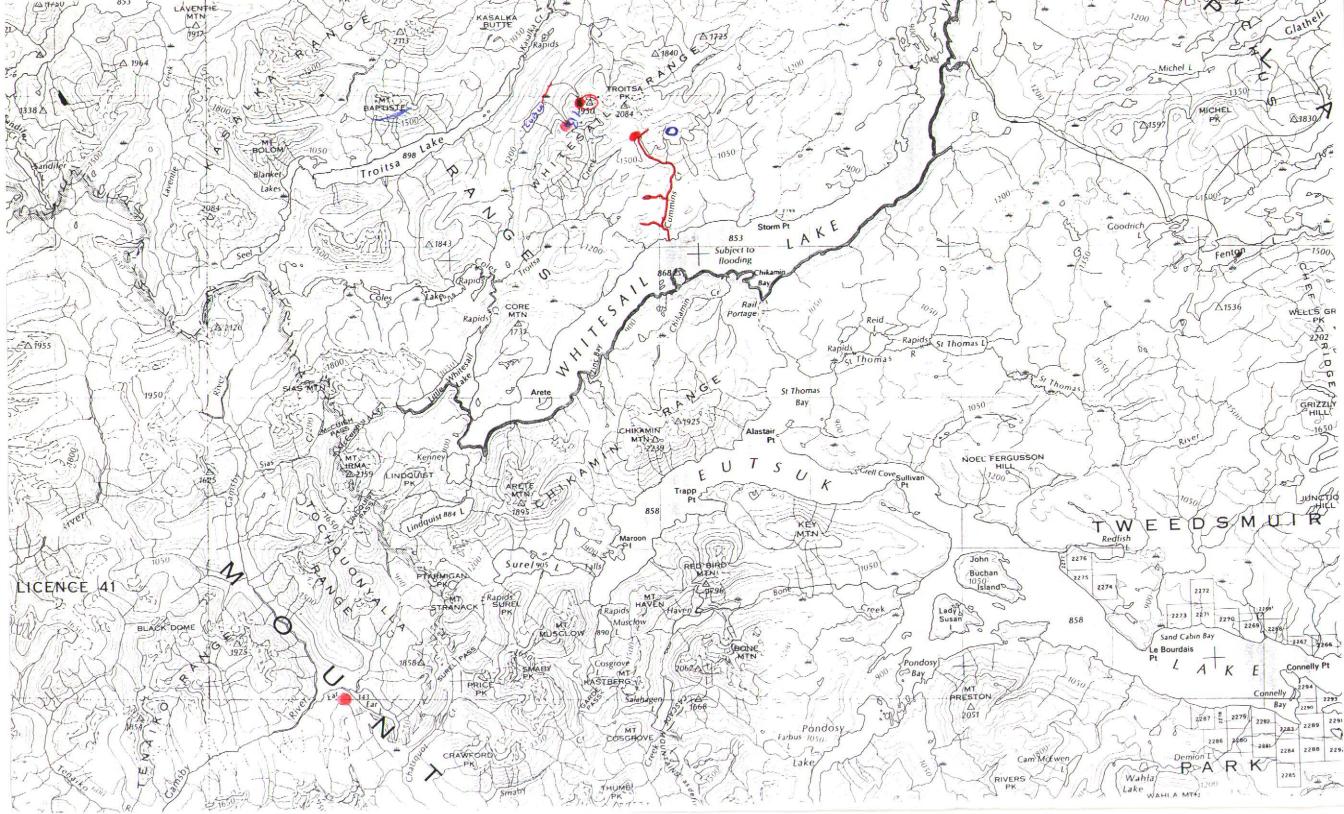
PROJ:

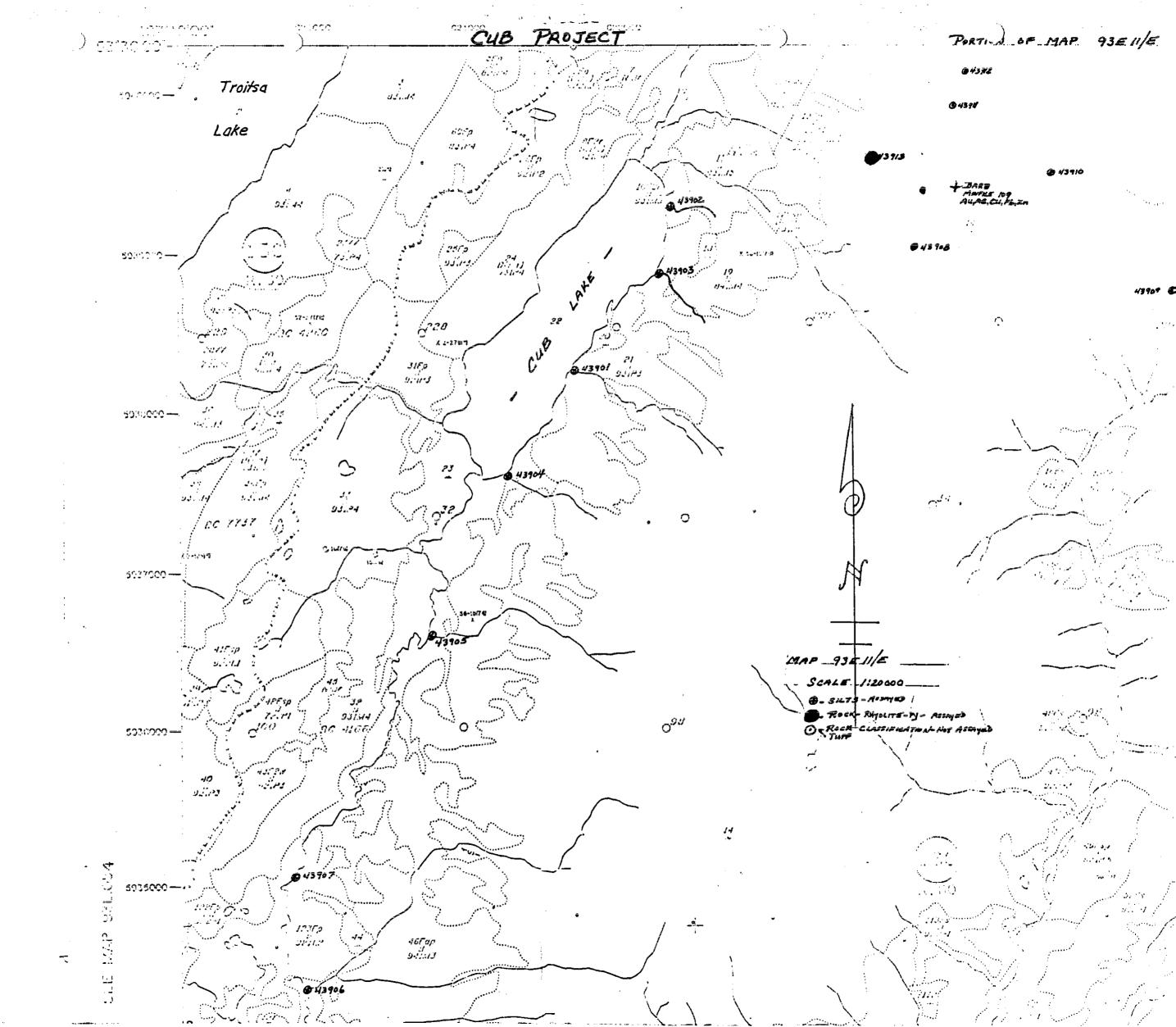
and the second sec

MIN-EN LABS - ICP REPORT

*	silt	*	(ACT: F31)

SAMPLE	AG	AL	AS	В				CA		CO	TEL:(604			FAX:((604)9 MN	80-96; MO	21 NA	NJ	P	PB	50 4						* si	Lt *	: 94/09/ (ACT:F3
RK-1	1.3	<u>*</u> .99	PPN 1	PPN 1	PPM 66		PPH 8	2.04	PPH	PPN 14	PPM 123 2.2	O IIA	PPN	.37	613	PPN 7	.03	PPN		PPH	PPM PP		N <u>%</u>		I PPM	PPH F	SN PPH PI	PN PPN	_
RK-2 RK-3 RK-4 RK-5		.59 .86 1.04 1.35 2.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	69 139 100 106	1.0 1.2 1.4	10 12 11	1.26 1.09 1.04 1.61	5.0 7.5 2.7 5.0	6 6 8 10	66 2.4 71 2.4 43 2.7 63 3.2	8 .12 9 .25 9 .20 1 .20	14 25 21 24	.51 1.03 .90 .87	549 537 513 817	4559	.04 .04 .07 .08	32 41 34 31	1050 940 1040 1490	48 28 45 41 44	40 25 20 20 26 13 28 16 36 21	4 (6 .04 6 .05 7 .09 6 .08 5 .08	37.6 56.0 57.4 65.3 77.6	96 138 112	5 5 7 8 6	1 1 1 1	4 25 4 28 6 58 6 39 6 36	5 15 5
RK-6 RK-7 RK-8 RK-9 RK-10	.9 1.0 .8 .9	1.27 1.23 1.20 .78	1	1 1 1 1	214 167 143 146 104	1.4 1.5 1.3 .9		.92 .85 .84 .83 .66	1.2 5.7 8.1 4.1	20 10 10 10 7	111 7.4 51 3.6 52 3.5 56 3.3 35 2.6	3 29 1 24 0 23 3 .16	23 28 28	1.90 1.45 1.19 1.16 .74	671	21 6 6 4	.23 .06 .06 .06 .06	110 45 38 43 30	1260 1140 1150	60 49 53 48 30	52 40 34 13 33 16 32 16 22 12	9 7 9 8 3 7	7.12	162.7 90.3 77.7 70.5 60.2	98 171 216	299777	1 1	9 53 10 87 7 46 6 42 5 30	17
(-11 	1.4	1.12 1.18 .33 .15	1 1 95	1	167 99 106 78 62	1.3 1.0 .5	16 12 11 4 3	1.00 .85 1.06 2.51 2.51	5.2 6.4 2.1 1.2	15 10 8 2 1	88 5.1 60 3.6 61 3.0 31 .5 16 .2	0.22 7.23 4.05 1.02	24 24 3 1	1.07 .99 .20 .12	780 571 647 409 142	14 11 7 4 12	.07 .07 .09 .02 .02		060	39	42 22 30 16 33 18 17 24 18 22	5 63 75 55	5 -13 7 -10 -08	115.5 80.3 73.6 14.8 31.1	234 145 134 49	5 8 7 11 17		9 63 7 57 6 43 2 21 2 20	13 4 3 1 3
RK-16 RK-17 RK-18 RK-19 RK-20	1.3 1.1 1.0 2.0	.61 .51 .36	1	1 1 1	225 115 83 89 97	2.1 1.5 .8 .5 1.6	18 12 10 10 5	-85 -84 .70 .57 Z.34	9.2 1.2 .7	19 11 4 3	107 7.5 58 3.5 18 2.7 8 1.7 249 .8	6.18 0.18 6.15	25	1.63 1.17 .42 .32 .25	1092 603 316 320 673	1	.21 .06 .04 .05 .02		170	53 28 19	51 38 34 22 16 9 13 7 13 40	0 7 3 8 5 12 3 13	.12 .07	159.0 81.7 57.9 33.6 16.4	351 276 53 49	1 9 6 6 7	2 1 1 1	9 49 7 38 4 25 4 14 2 21	11 10 1 1 1 5
RK-21 RK-22 RK-23 RK-24 RK-25	.3 .9 1.0 .3 .1	.67 .59 .55 .60 .49		1 1 1 1	255 95 63 120 95	1.4 .8 .9 1.1 1.3	8 8 8 6 4	.43 .64 .64 .60 .87		85 865	75 3.10 73 1.60 214 1.4 44 2.30 73 1.74	2 .11 7 .08 2 .16 .12	19 17 16 14	79 48 39 54 48	874 339 235 658 725	6 29	.02 .04 .03 .02 .02	17 22 17	980 730 440 910 850	70 28 31 41	18 12 14 13 14 11 17 13 12 20	5 15 1 7 5 5 7 13	.02 .06 .06 .02	39.5 34.6 33.6 37.6 30.2	87 61 47	8 7 6 7	1 1 1	4 24 23 19 4 26 25	17 5 8 7
RK-26 RK-27 RK-28 RK-29 RK-30	.6 .1 .1 .1 .1	.76 .75 .56 .62 .71	1 1 1 1	1 1 1 1	211 343 114 829 642	1.3 1.7 .9 1.5 1.5	4 63 6 6	.80 .48 .79 .60 .81	-9	4947 8	30 1.6 96 3.6 41 1.8 24 2.7 32 2.6	22 .14 .25 .27	21 19 16 14 17	.83 .48 .72 .91	437 1052 526 784 874	8 21 17 7	-02 -02 -02 -02 -01	14 27 1 13 23	840 120 800	50 82 36	16 199 16 152 11 169 15 169 19 200) 7 2 20 5 8 7 16	.04 .03 .03 .02	34.6 44.0 30.6 41.9 36.6	101 96 54 96	43146	1 1 1 1	4 28 4 26 5 21 4 21 4 24	<u> </u>
RK-31 RK-32 RK-33 RK-34 	.1 .1 1.4 .1 .2	.87 .67 .20 .81 .67	1 74 1 1	1	286 789 93 769 713	1.6 1.5 .3 1.7 1.7	65565	.68 .55 15.00 .58 1.08	.7 2.1 1.8 1.5 1.5	9 8 3 9 8	40 2.60 31 2.60 14 .87 40 3.00 36 2.79	.25	22 16 5 20 17	.33	691 852 203 1944 818	8 3 10	.02 .01 .01 .01 .01	25 9 29	870 930 460 910 910	63 23 81	23 187 16 168 8 539 19 179 19 203	15 13 13 14	.03 .02 .01 .02	39.1 37.1 11.3 39.2 37.9	80 94 32	62875	1	4 23 4 19 2 11 2 22 4 23 4 23 2 19 2 11 2 22 4 22 2 22	10 12 7 24
-36 43701 43902 43903	.3 .1 .1 .1 .1	.54 .55 .54 .57	1 1 1 1	1 1 1 1	72 129 459 214 229	3. 9 1.2 8. 1.5	5 6 5 8	.47 .58 .61 .35 .35	.3 -1 1.8 -1 .1	4 7 8 6 8	13 1.45 30 2.41 26 4.25 13 3.64 19 7.36	.17 .08 .07	13 16 15 18 15	.43 / .31 /	254 398 2863 1986 1593	433	.03 .02 .01 .01 .01	45 25 19	620 920 910 890 050	20 47 35	12 78 12 125 11 61 12 61 12 66	7 9 1	.06 .07 .03 .03	35.7 55.4 69.7	34 52 249 200			2 19 7 96 5 15 2 7	22 3 4 7 7 7
43906 43905 43906 43907	.1 .1 .1 .1	.74 .48 .16 .63	1 1 1	1 1 1	125 271 92 80	.8 1.5 .5 1.0	5 7 2 6	.57 .31 .54 .37	.7 .1 .1 .1	7 13 2 5	35 3.10 74 5.44 12 2.30 7 3.2	-11 -03	11 7 1 12	.44	783 2405 339 896	1	.01 .01 .01	28	980 750 230 540	33 39 9	15 80 9 47 2 48 12 53	1	.04 .04 1 .01	96.5 150.1 21.6 51.3	157	1 1 1 1		13 9 2	12 8 11 10
		_																		Ē (),E		v [⊇						
																			l LL F	ـــــ ` JA	<u>141</u> .N 1	9 19	995	_ 122		-			


COMP: KR RALPH KEEFE


MIN-EN LABS - ICP REPORT

FILE NO: 45-0266-R.1+-

F	ROJ:		70	D5 WEST 15TH ST	I., NORTH VANCOUVER, B.C	W7N 112		FILE NO: 45-0	266-RJ 1+;
4	TTW: RALF	PH KEEFE / JIM OLIVER		TEL: (604)98	30-5814 FAX:(604)980-9			DATE:	94/09/2' 🚻
્ભ	SAMPLE Number	AG AL AS 8 BA BE PPM % PPM PPM PPM PPM	BI CA CO CO PPM X PPN PPM		LI KG MM MD NA PPM X PPM PPM X	NI P PB SB SR	TH TI Y ZN	GA SN M CR	Au-Fire
0 <u>8</u> A	43913 43998 43999 44000 44051	.1 .57 1 1 23 1.1 165.4 .41 177 1 38 .8 1.2 .28 7359 1 32 .6 15.1 .07 1 1 21 3.2 3.8 .30 1 1 15 .4	4 .46 .2 9 2 .14 10.1 2 2 .10 63.9 2 44 2.21 >100.0 14 2 .10 2.8 2	24 3.81 .04 10 1.51 .17 10 1.72 .22 218 13.17 .02 8 1.73 .08	9 .92 1135 3 .05 18 .11 65 46 .01 2 .06 63 9 .01 1 .39 7821 48 .01	РРМ РРМ <td>1.01 67.6 39 10.01 3.5 60 7.01 3.2 38 1.01 3.9 >10000</td> <td>PPM PPM PPM 1 1 5 52 1 1 5 98 1 1 9 177 1 1 1 81</td> <td>PPB 1994 360 4 9 1</td>	1.01 67.6 39 10.01 3.5 60 7.01 3.2 38 1.01 3.9 >10000	PPM PPM PPM 1 1 5 52 1 1 5 98 1 1 9 177 1 1 1 81	PPB 1994 360 4 9 1
	44052 44053 44054 44055 44056 44057	2.5 .09 115 1 20 .3 5.4 1.73 1 1 39 .9 .8 .78 1 1 51 .5 1.1 1.04 1 1 47 .7 .2 .24 1 1 59 1.4	9 .76 .4 5 9 1.17 1.0 5 6 .70 .1 9	10 .39 .14 36 1.99 .08 30 1.59 .11 48 1.72 .12 62 6.01 .27	1 .01 50 20 .01 9 .24 282 11 .43 11 .50 208 5 .18 6 .30 173 11 .23 1 .03 6 100 .01	1 60 58 3 6 42 1880 1332 40 555 14 780 40 16 178 14 800 87 23 264 24 1320 107 4 142	<u>6.01 6.0 178</u> 2.01 1.6 152 1.15 116.2 1590 5.09 24.0 120 3.08 27.8 82 2.01 3.4 9	2 1 7 144 1 1 8 167 1 1 10 118 4 1 6 77 2 1 6 68 1 1 4 72	34 32 16 1
1	44057 4058 4059 44060 44061 44062	5.9 1.44 1 1 91 .9 5.3 1.36 1 1 68 .7 .2 .49 1 1 65 .3 .1 1.69 1 1 82 2.4 .5 .42 1 1 249 .8 .3 .08 1 1 21 .5	7 3.00 .1 3 7 .90 .1 13 6 .20 .1 3	337 3.72 .11 348 3.90 .13 46 1.26 .15 57 4.07 .25 18 2.13 .38	30 .98 467 100 .08 2 .28 836 10 .06 51 3.81 899 6 .03 4 .32 69 4 .01	88 1310 83 35 337 111 1360 75 33 357 13 520 20 11 95 54 1910 48 36 121 9 1060 40 10 51	1 .12 57.1 121 1 .16 67.0 99 1 .05 20.8 20 4 .01 106.4 96 6 .01 9.8 11	1 1 4 72 6 1 15 212 3 1 18 279 1 1 9 163 1 1 9 114 3 1 5 80	63 38 54 1 2
	44063 44064 44065 44065 44066	_1 _15 1 1 12 _6 .1 _25 1 1 37 1.9 _4 _39 1 1 447 1.5 >200.0 _07 5089 1 200 _5	1 .09 .1 1 2 .13 .1 1 5 1.83 .4 7 35 2.26 >100.0 3 7;	9 .78 .12 7 .65 .17 16 .98 .20 32 2.87 .42 219 1.24 .11 628 .81 .05	2 .01 121 2 .04 1 .03 328 2 .03 1 .63 581 3 .03 1 .84 1078 31 .01	<u>13 310 6619 1071 72</u>	9.02 4.5 28 10.01 1.0 28 13.01 3.1 59 2.01 34.4 37 3.01 7.6 5279	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 1 1 175 3520
of French Girade Sect	44068 44070 44071 44072 44073	>200.0 .07 1444 1 195 .3 6.3 .16 680 1 220 .6 .8 .31 1 1 130 1.2 .5 .16 1 1 75 .2	24 2.20 >100.0 2 30 4 1.81 12.1 4 6 2.85 14.2 12 3 3.16 6.6 2	638 1.01 .11 125 1.25 .14 286 3.17 .34 23 1.10 .24		11 110 4931 371 27 8 110 >10000 57 116 19 260 444 10 41 40 670 103 14 55 7 320 120 8 343	1 .01 7.0 4691 1 .01 4.2 3232 3 .01 16.2 296 3 .01 36.4 603	4 1 55 184 1 1 34 121 > 6 1 10 145 1 1 42 75 1 1 24 52	3900 Z 10000 Z 305 D 86 D 32 0
	44074 44075 44076 44077 44078	.3 .01 132 1 6 .1 >200.0 .07 993 1 30 .4 153.8 .07 919 1 17 .2 39.6 .04 255 1 1330 .3 5.0 .12 432 1 13 1.3	72 .96 14.1 2 66 .48 2.6 154 >100			1 320 120 8 543 4 10 12 1 1 12 120 3596 2537 10 11 110 3898 1049 6 9 40 1610 13 187 952 180 37 3 1 46 5860 27 47	1 .01 1.7 17 2 .01 8.5 >10080 1 .01 6.9 5056 2 .01 6.0 460 1 .01 24.6 79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 07 1 637 1835 65 142
3-6 -	44079 44080 44081 44153	1.3 .14 373 1 7 .6 1.4 .11 4540 4 8 2.0 .1 .09 131 32 9 2.6 3.0 .58 1 1 60 1.0 .2 .02 218 1 12 .1	<u> </u>	925 1.57 .01 156 >15.00 .01 508 >15.00 .01 421 4.53 .16 39 .79 .01	1 .97 236 2 .03 1 .40 42 1 .01 2 1 .36 1 1 .01 3 13 1.37 1294 14 .04 1 .02 27 46 .01	550 190 9 1 4 091 890 1 1 7	1.01 41.4 26 1.01 19.1 86 1.01 15.3 25 1.79 189.2 143 1.01 3.0 7	7 1 3 24 1 3 1 2 1 5 1 1 1 1 17 66	142 10 162 32 36
								1 1 15 302	
			• — •			RECEN	/ E D		604 9
						JAN 1919	95		9809621
						PROSPECTORS P MEMPR	ROGRAM		P.Ø2
-		,							

P.02

	REGEIVED
BRITISH COLUMBIA	
PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)	JAN 1 9 1995
B. TECHNICAL REPORT	PROSPECTORS PROGRAM
 One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may supporting data (see section 16) required with this TECHNICAL REPORT. 	MEMPR be submitted in lieu of the
Name <u>Shawn A Turford</u> Reference Number	94\95 P41
LOCATION/COMMODITIES	
Project Area (as listed in Part A) Trophy Minfile #	if applicable <u>Nil</u>
Location of Project Area NTS 93F/3W Lat 53°02*	Long 125° 194
Description of Location and Access Trophy lake, 6 KM, s	
of Moose Lake. (this project was originally known as Access by fixed wing aircraft from Francois Lake to T	the Fawn)
- RUCESS BY TIXED WING ATTOTATE LOUI FIGHCOIS LAKE TO 1	LODINA PAKE.
Main Commodities Searched For <u>Au Ag</u> .	
Known Mineral Occurrences in Project Area <u>None.</u>	······································
<pre>WORK PERFORMED 1. Conventional Prospecting (area) Sampling of bedrock 2. Geological Mapping (hectares/scale)</pre>	
SIGNIFICANT RESULTS (if any)	
Commodities <u>None significant</u> Location (show on map) Lat Long	Claim Name
	Elevation
Best assay/sample type	
Description of mineralization, host rocks, anomalies All	host rocks examined
are within the volcanic suite. Unable to locate the se	ource of a small
Brecciated Rhyolite rock (81bs) found on trail south	of Trophy Lake.Low
topog area south of Trophy Lake revealed a Rhyolite f.	low, however no
Breccia could be found. Balance of rocks to West-North	west were Andesitic.

1 .

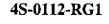
SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAVERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5614 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate


Company: Teck Expl. Project: Attn: Ralph Keefe

We hereby certify the following Geochemical Analysis of 24 ROCKS samples submitted MMM-DD-YY by .

Sample Number		AU FIRE PPB			
				·	
43860	1	1			
43861	0012010	2			
43862	GRIBBLO ISLAND	l			
43863	1 LSCH	2			
43864	<∤	2			
43865	γ	1			
43866	1	2			
43867	1	2			
43868		3			
43869		2			
43870		1			
43871	TROPHY.	1			
43872	The state	3			
43873	(LAVE	1			
43874	(1			1
43875	1	2		RECEIVED	
43876		2			
43877		1			
43878		1		JAN 1 9 1995	
43879		1			
43880	••••	1	***************	PROSPECTORS PROGRAM	
43881		1		MEMPR	
43882		1			ł
43883		3			
43884		ĩ			
<u>, , , , , , , , , , , , , , , , , , , </u>					

Certified by

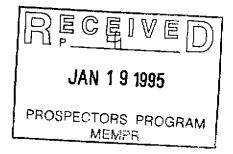
MIN-EN LABORATORIES

Date: JUN-20-94

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

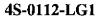
ANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621


SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

Company: Teck Expl. Project: Attn: Ralph Keefe

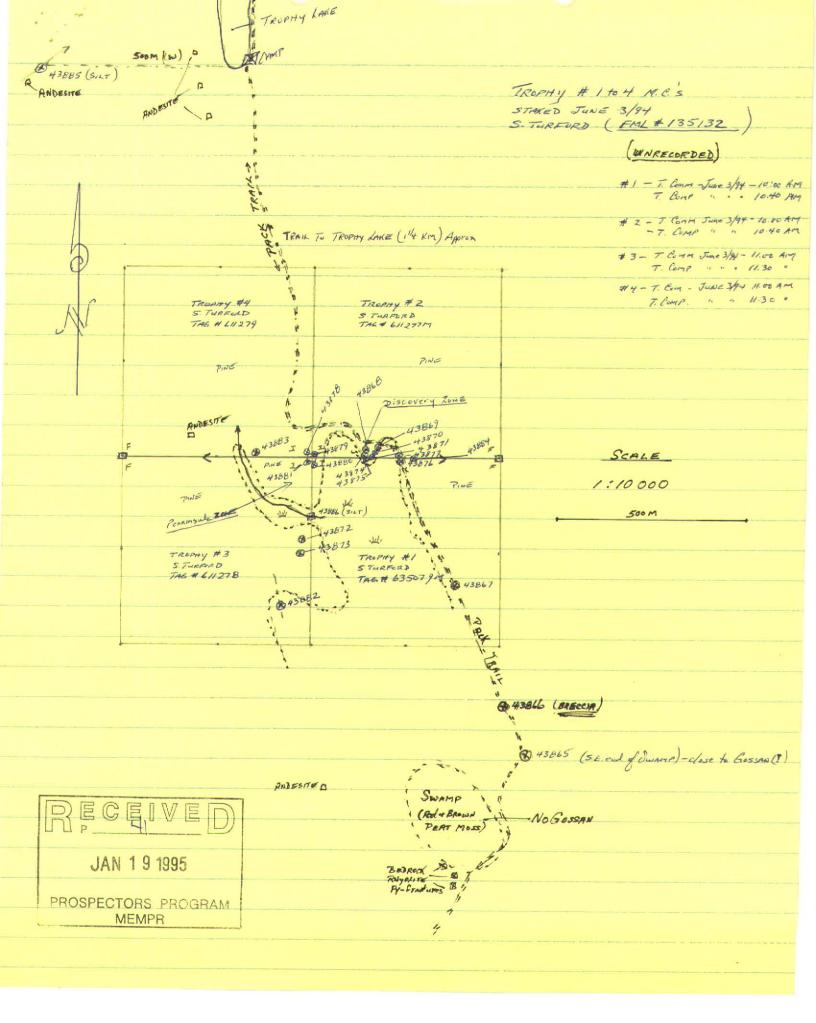

We hereby certify the following Geochemical Analysis of 2 silt samples submitted MMM-DD-YY by .

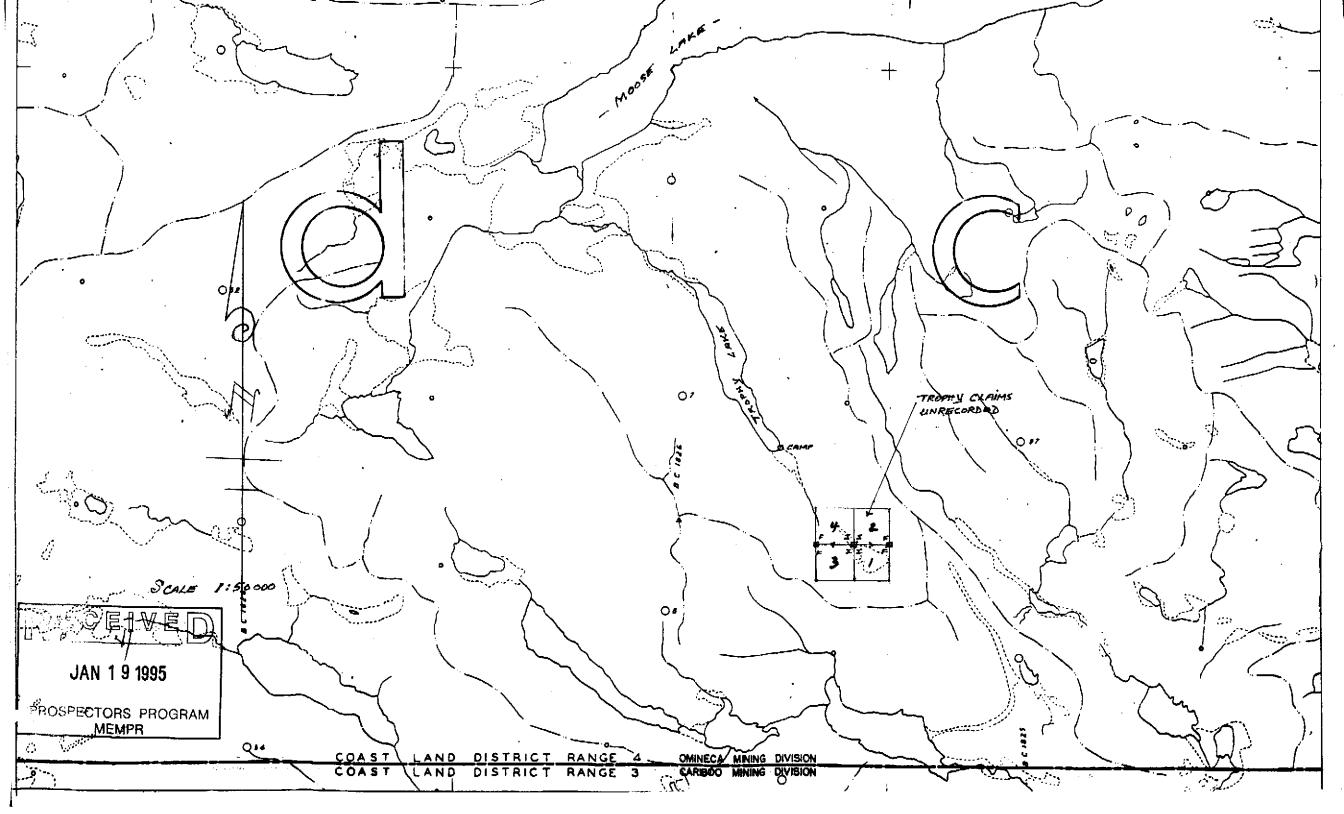
Sample Number	AU FIRE PPB	
43885 > TROPHY. 43886 > TROPHY. LAKE.	2 5	

Certified by

MIN-EN LABORATORIES

Date: JUN-20-94




DMP: Teck Expl. ROJ: ITN: Ralph Keefe								MIN-EN WEST 15TH TEL:(604)	ST., I	NORTH VA		ER, B.C	C. V7M										FILE * roc		E: 94/	
SAMPLE AG NUMBER PPM 43860 .3 43861 .15 43862 .5 43863 .23 43864 .23 43865 .24 43865 .5 43865 .5 43865 .6 43865 .6 43867 .6 43867 .6 43867 .6 43871 .4 43872 .4 43873 .4 43874 .3 43875 .5 43876 .4 43877 .1 43875 .5 43875 .5 43876 .5 43887 .6 43875 .5 43887 .5 43887 .5 43887 .5 43887 .5 43883 .5 43883 .5	% PPM .49 6 .74 11 1.11 3 .65 1 1.82 1 1.79 1 .36 9 1.74 1 1.81 126 1.79 1 .65 2 .18 6 1.11 2 1.58 1 .243 1 .48 6 1.19 1 .77 1 .77 1 .77 1 .77 1 .77 1 .74 5	I PPM I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PPM PI 382 47 265 14 119 38 10 104 18 59 777 49 35 4 13 28 48 58 103 91 34 24 5 8	<u>PPM</u> F .6 .2 .1	BI CA PPM 2 1 1.80 13 .75 13 .35 19 .83 35 2.10 10 .87 3 .15 6 .67 11 1.02 18 .97 7 .35 3 .12 5 .84 9 .77 2 .09 6 .26 6 .49 8 .36 8 .36 3 .11 6 .31 6 .31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PPM 4 15 9 18 25 11 1 7 20 10 6 10 3 1 20 10 10 3 1 3 5 5 5 3 3 1 1	CU FE PPM % 9 1.82 174 3.22 97 3.44 156 4.37 587 6.92 32 2.77 23 .47 4 2.04 38 6.31 14 4.13 5 2.14 56 4.47 10 1.39 9 .56 1 1.17 6 1.95 9 .40 2 2.58 9 1.76 15 2.29 35 1.30 22 1.18 5 .51 11 .50	K % 24 .16 .76 .05 .37 .19 .20 .56 .10 .39 .27 .08 .18 .09 .15 .16 .29 .15 .16 .29 .57 .27 .25 .13 .34	LI M PPM 1 .6 5 .8 2 .7 1 0 1.5 20 1.4 1 .0 10 .3 9 .0 14 .7 1 .0 36 2.0 4 .2 5 .1 6 .4 5 .1 6 .2 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0	MG MN % PPM 68 353 88 223 74 600 34 276 53 621 40 628 05 89 39 104 67 361 71 1475 07 11 03 891 04 363 01 112 49 363 01 75 03 44 23 108 44 259 17 485 20 417 91 124 91 99	MO PPM 3 4 4 9 5 4 6 1 1 1 1 23 3 5 1 23 3 5 1 22 3 30 1 23 3 30 5 2 3 30 5 2 3 30 5 2 6 3 7 3 4 3	NA % .03 .09 .07 .11 .03 .02 .11 .03 .02 .01 .03 .05 .03 .03 .03 .05 .05 .05 .05 .05 .05 .05	6 56 25 42 22 8 17 22 9 28 7 3 6 8 4 10 7 7 6 3 1 5	PPM 1130 930 680 790 3610 1150 700 1500 760 960 900 1440 420 60 540 840 300 570 810 1170 420 420 420 420 40 50	13 14 17 21 32 20 20 29 25 7 34 17 4 16 29 6 1 15 20 21 15 7 18	3 3 7 1 8 18 5 17 14 17 3 22 5 2 12 16 3 3 13 14 7 6 3 7	34 22 17 16 33 117 7 66 133 118 12 119 16 3 56 62 4 29 45 61 18 11 4 6	6 9 8 9 6 14 13 7 19 3 10 11 15 5 8 16 6 6 7 12 12 12 12 20	17 20 52 14 01 06 15 06 01 25 06 03 05 03 05 05 02 05 05 05 05 05 05 05 05 05 05 05 05 05	43.2 62.1 152.3 63.8 176.9 69.8 5.3 21.6 63.3 16.3 16.3 16.3 16.3 14.5 117.8 14.1 2.3 27.5 37.7 2.5 37.7 2.5 3.6 11.4 9.9 2.3 2.6 2.6	ZN PPM 492 403 399 85 55 36 25 36 25 36 25 36 25 36 25 36 21 49 31 9 12 61 66 26 25 30 25 36 26 41 77 24 9 31 26 26 26 36 26 26 26 26 36 26 26 26 26 26 26 26 26 26 2	GA PPM 13 8 13 1 17 24 5 8 10 16 1 26 8 2 14 21 2 14 9 11 7 2 7 7 5	SN	W 46088855866388747754665966	CR PPM 57 73 120 115 42 100 95 53 81 63 51 53 81 63 51 54 87 107 79 104 57 158 905 57 120 115 42 100 95 53 81 63 51 54 24 100 95 53 81 63 57 120 115 42 100 95 53 81 63 124 107 79 106 95 57 124 107 107 107 107 107 107 107 107
			· · · · · · · · · · · · · · · · · · ·											<u>۹</u> JA	CLE AN 1 MEN	9 19 RS PI	PROG))							

 ${\mathfrak F}^{\ast}$

P: Teck Expl. 1J: 1N: Ralph Keefe										705 W	EST 1	5 т ห ร	э т. , N	ORTH	VANCO	UVER,	REPC B.C. 280-96	V7M	112									* si	NO: 4 DATE lt *	: 94 (AC	70 :T:
	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	К %	L I PPM	MG %	MN PPM	MD PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	TI %	V PPM	ZN PPM	GA PPM			P
3885 3886	.5 .2	3.54 1.50	1 1	1 1	133 107	1.3 .1	14 17	.92 .64	.1 .1	10 10	47 45	3.83 4.23	.12 .09	21 11	.54 .46	662 938	2	.03 .05	24 24	1550 1390	40 18	36	111 70	5	.18 .27	66.2 46.2	85 93	12 9	4 3	5 4	
					<u></u>													<u> </u>													
			t=) 匡 1 p	C.	2	₩ [Ē	7						
																							1995		2						
																			PR		ECTO	DRS	PRC		M						
																					M	EMP	<u>R</u>								
	-																														
							<u>-</u>																								
																						-								<u></u>	

		RECEIVED
BRITISH CO PROSPECTORS ASSIS PROSPECTING REPORT	STANCE PROGRAM	JAN 1 9 1995
B. TECHNICAL REPORT		PROSPECTORS PROGRAM MEMPR
 One technical report to be completed for each project and Refer to Program Requirements/Regulations, section 15, 11 If work was performed on claims a copy of the applicable supporting data (see section 16) required with this TEC 	8 & 17 assessment report may	be submitted in lieu of the
Name <u>Shawn A Turford</u>	Reference Nu	mber <u>94/95 P41</u>
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>WHIT</u> Location of Project Area NTS <u>92N 14/W</u>	Lat <u>5159'</u> 1	ong <u>125_18'</u>
Description of Location and Access <u>4 KM</u> <u>43.5 KM., south of Nimpo Lake, by heli</u>		
Main Commodities Searched For <u>Au, Aq,C</u> Known Mineral Occurrences in Project Ar		
<pre>WORK PERFORMED 1. Conventional Prospecting (area) Conv creeks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in 1 7. Other (specify)</pre>) n, total m)	
<u>SIGNIFICANT RESULTS (if any)</u> Commodities <u>Au</u> C Location (show on map) Lat <u>51 59'</u> L Best assay/sample type <u>Samples #44119-3</u>	ong <u>125_18'</u> 00_ppb-Au,+44120-	Elevation <u>6800 ft.</u> -280 ppb-Au.
Description of mineralization, host roc east of the "Clin" was investigated an was staked later in the fall. Further j rock appears to be pyroclastic in natu	<u>d found to be an</u> prospecting in 19	omalous in Au. Area 95 is planned. Host

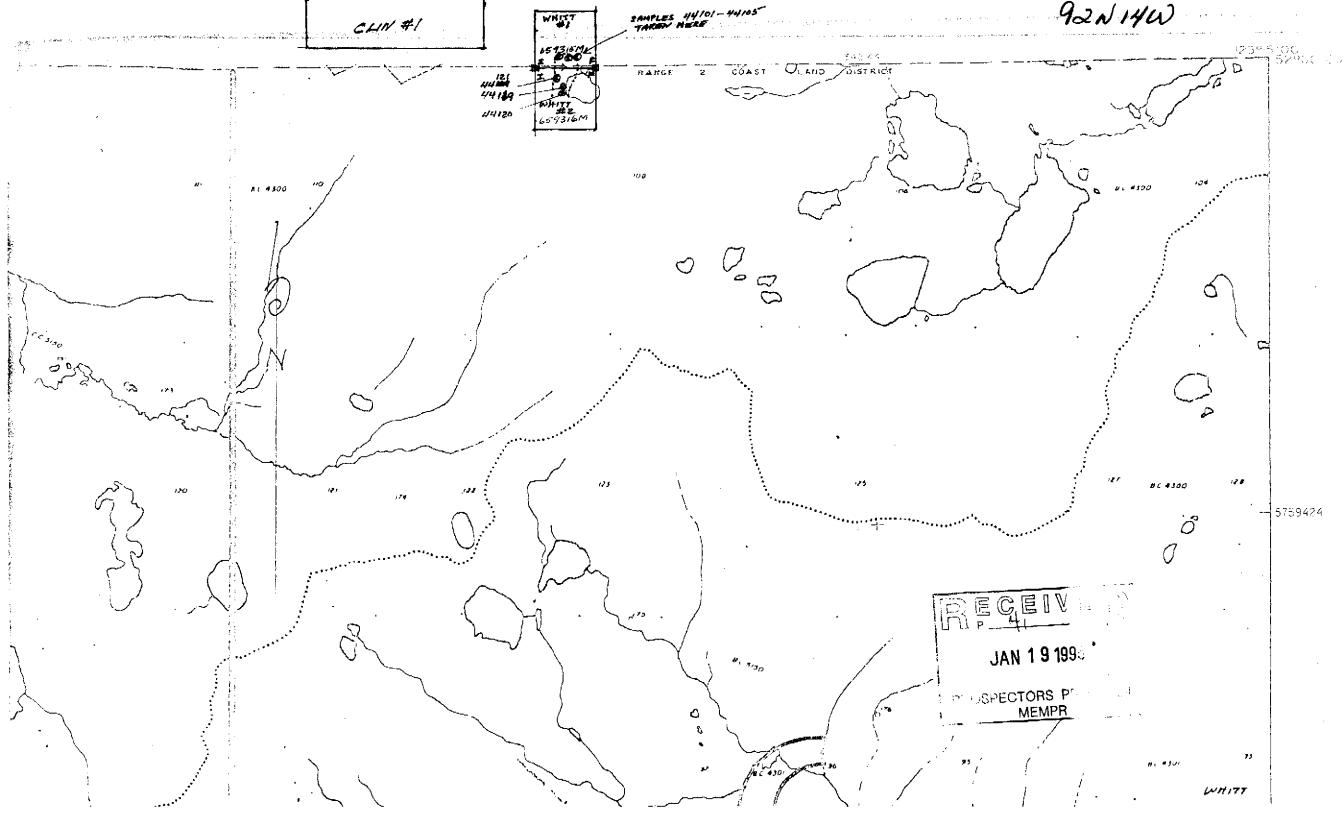
• •

COMP: TECK CORPORATION

PROJ:

ATTN: Ralph R. Keefe

MIN-EN LABS --- ICP REPORT


705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0965-RJ1+2+3

DATE: 94/09/23

* rock * (ACT:F31)

. r						······································										(004)		OL I												т го	CK	(ACT:F3	1)
	SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	CA %	CD PPM		CU PPM	FE %		LI PPM		MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM I	SR PPM P	TH T PM	11 %	V PPM		GA PPM P	SN PM P	W CR PM PPM	Au-Fire	
JARY L	44101- waitr 44102 "	1.3	.74 .51	1	1	378	1.6 2.0	15 11	.47 .12	.1	33 24	559 581	7.35	.36		.93 .37	293 294	4 70		45 23	460 170	39 24	15 2		1.	14 1	48.4	88 36	1	1	9 108	<u>ррв</u> 1 <u>1</u> 7	
RALPH RALPH	44103 // 44104 // 44105 //	.6 .8	.40 .97	1	1	194 217	1.0	15	.13	1.1 .1	20		6.43	.26	7 15	.43 1.68	246 511	30	.04	14 31	120 370	20 38	ў 21	32 37	8.0	33	62.3	32 88	1	1 1	5 48 6 84 7 43	34 11 10	
	44106 - CHN - N		<u>.19</u> .48	1	1		2.2	<u>9</u> 11	.20	<u>.1</u> . <u>1</u>	10	50	12.43	. 12 .50	5				.02	52 16	50 270	2 18	10	18 20	1.0)3	15.9 31.7	1 <u>3</u> 34	1		10 203	20	
. 1	44107 - " - 44108 - " - 44109 - " -	.1	.48 .81 .25	1	1	54 61 128	.9 1.6 .8	10 6	.14	.3 .1	8 13 4	35 155	2.35	.14 .24	6	1.38		4	.02	12 24	190 150	23 30	12 17	29 25	5.0	22	20.2	36 45	73	i 1	9 141	24 1 7	
DANYA	44110 - " - E		.38	<u>i</u>	1	204	1.1	88	.06	<u>:</u>]	4	16 205	3.17 4.35	.25	1		82	29	.05	10 14	100 260	40 40		31 46	1.0		12.8 20.0	11 44	1 1	1 1	6 104 7 124	6	
	44112 - " " " 44113 - " DieRif	INAM 6. Z	-35 -40 -80	1	1	359 246 274	.6 .5 .7	3 4 12	. 14 . 10 . 52	.1	3	14 12	1.62	.36 .38	1	.38	102 198		.04 .03	10	270 410	12 12	8 9	20 16	2.0	21	10.8 16.2	20 28	3 4	1	6 96 6 106	74 60	
2112194 4	44114 ~ <i>"****</i> ~ 44115 — <i>"</i> ****	≠ 95.4 ■ 75.8	.21	i	1	471 399	1.1	62 54	.09		6 3 4	62 237 173	3.11 4.17 4.81	.61 .21 .21	3 1 1	.07	633 127 134	26	.18	12 13 14	900 280 210	22 32		32	1.1)1	41.4	65 77	2	1	6 63 7 132		
11 4	44116 - " Wall Rai	³ 12.3	.37 .27	1	1	- • •	1.0	11 15	.11	.1	23	116 141	3.65	.36	1	- 11	61	9	.05	12	350	28 18	8	20 33	$\frac{1.0}{1.0}$	01	7.1	49	1	1 1	7 139	<u>>10000</u> 4550	_
5HAWN 11	44118 - " " " " 4417 57	² >200.0 3.3	. 13	i	1	93		123 10	.36	.1	7 51	215	7.08	.13	1	.02	132 328 78	4 25 62	.07 .01 .06	11 21 42	280 210 190	12 27 19	5 3 21 1	31 2	1.0	91	17.3	51 63	1	1	3: 52 8 168		
Rot	<u>44120 – "</u> 44121 – "	1.9	.52	1	<u>1</u> 1		1.0	- 5	.07	.1	<u>3</u> 14	<u>149</u> 344	2.84	. 16	5		186	66	.04		170	26	13	37	1.0)1	76.6	15 32	4	2	5 55 9 144	300 280	- '
RALPH RALPH	44122 - ATNA 44123 - " 44124 - "	.5 1.3	.04	185 93	1 1	25 17	-3 -3	4 2	.01 .01	1	14	36 68	1 13	.06	1	.02	- 41	5	.01 .01	57	80 60	42 5 5		38 21 5	3.0	11	9.6	365 9 11	2		8 61 14 272	182 52 25	- '
	44125 - "	.2	.08 .03	280 3	1	11 50	.9 .2	4 1	.02 .01	-1	10 1	48 16	3.60 .85	.07	1	.01	25		.01	18 6	160 70	7	3 1	6 15	1.0	1		12	1		12 246 18 348 9 192	22 22 8	ſ
11 394900 m	44126 - CLIN- WAII 44127 - NARKO	25.7		1		180 72 117	1.4 .5	9 33	.33 .06	.1 1.0	6 1 :	111 >10000	5.75 1.38	. 14 . 17	2 1	.02	624 98	2	.09 .03	20 7	350 220	11 374	5 161	25 23	1.0	7	13.1 59.6	82 55	1	1	6 92 4 56	135 17	1
	44128 " 44129 CLAN 44130 SILT+VISTA	3.5 1.1 1.4	.19 .65	1	1	117 89 140	.3 1.3 1.0	19 18 19	.05 .38 1.02	.1		5281 1515	.74	.21 .19	1	.63		4	.05 .04	55	150 470	54 17	26 12	22 43	8.0	1 5 :	8.6 50.9	34 47	i 1	i 1	5 85 5 37	13 15	
R·P	44131 SILT- " 44132- MARY #CNO	1.0	1.08	1		123	.9	15	.77	<u>.1</u> .1	9	<u>67</u> 41	3.86 2.90	.31	5	1.45	439	5	.12	24	800	37 26 25	29 2	72	1.1	8	14.3	63 52	<u>5</u> 4		16 222 10 120	8	
	44133- " "	_1	.68 1.90 1.26	1	1		1.2 2.2 .6	11	.71	.1 .1 .1	8 16 8	42 90 34	3.50	.50	27 27	2.75	794		.11			25 43	15 40 1	52 53	1.0	13 17	42.1 63.6	35 117	12	1 1	6 86 6 30	24 16	
	44135 " "	.2	.29	1	<u>i</u>	45	<u>.7</u> 1.0	2	.09	.1	6	22	2.81	.76	1		21	6		19	600	13	27 2	17	1 .1 1 .0	1	81.9 12.4	60 7	4	1 1	10 112 2 34	9 18	
- A 1/	44137 — " 44138 — "		.53 .27	1	1		1.4	3 4 2	.07 .16 .05	.1 .1 .1	13	27 38 25	3.17 4.87 2.61	.41 .42 .30	1 5 1	.13 .63 .07	128		.0Ż	16 37	560 740	13 19	8 10	25 26 22	1.0	1 1	18.3 20.9	12 24	1	1 1	6 110 4 49	17 16]
S BLISH	44139-4 4	1.1	.76 61	1	i		1.7	8	.30	.1	11 8	40 30	6.55 2.48	.30 .37 .35		1.10	397	16 11 5	.05	20 37 21	310 860 720		5 16 12 1	49	1.0	4	10.3	10 45	1		7 125	14 1 <u>1</u>	}
· *	44141 - " 1	1.1 1.2	1.14	1		131 180	.8		.91	.1		31	3.09	.48	12	1.07	496	6	- 14	23	800	32	24 2	05	$\frac{1.1}{1.1}$	8	<u>25.0</u> 42.4	21 51	3	1	9 150 8 85	5	-
n 4	44143 _ ~ "		.60	1 1	1	24 71	.3		.78	.1	4 8		1.16	.27	3	.28	631	4	.09		430		46 5 12 1 23 2	15	1.2	6	99.6 22.7 54.0	63 24 34	1	1	9 143	13 6	
, 4	<u>44145 - </u>	1.1	1.85 1.56	1			<u>1.2</u> 1.7	20 1		.1	1 <u>3</u> 18	<u>39</u> 60	4.49	.67	13	1.39 2.11	945	7	. 25	<u>37</u> 1 501	050	47	38 2	<u>91</u>	1.2	<u>6</u> 9	92.5	64	-	1 1	1 151 0 95	5 10	
, H H	44147 - " "		1.17	1	1 1	327	1.1		.59	.1	13 13	61	4 73	. 65	17	1.76	880	2	.08	33 1 31 1	1080		29 1 22 2 39 1		1.2	77	76.9	67 72 79	1	1	8 61	11 6	İ
. R+D 	44149 " " 44150 " "	1.4	1.01	1 1		122 134	.9 1.0	22 9	.69 .35	.5	11	58 21	4.62 3.51	.28 .34	16 11	1.37	783	5	.06	26 1 15 1	360	29	21 1 15 1	63	1.2	65	59.3	79 74 59	4	1	3 138 7 67 6 66	6 8 4	
9 t	44151 - 4 " 44152 - 4 "	.1	.44 .91	1	1	91 53	.8 1.6	7	.22	.1	4	13 27	3.20 3.64	.30 .18	6 21	.47 1.37	313	3	.05	13 1	220	15		70	1.0	5 1	15.0	28	1	1	4 68	8	1
,										·			- ·					2		- 1			17 1	77	2.0	• -	32.4	62	6	1	4 36	2	
							-																									-n	
.																																	
• [1

	RECEIVED
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)	JAN 1 9 1995
 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may be supporting data (see section 16) required with this TECHNICAL REPORT. 	e submitted in lieu of the
Name <u>Shawn A Turford</u> Reference Number 94	4/95 P 41
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>NARKO</u> Minfile # i Location of Project Area NTS <u>93/C 4/E</u> Lat <u>52[®] 11[#]</u> Description of Location and Access <u>Approx</u> . 11 KM.,SW.,of <u>Charlotte Lake</u> . <u>Access is 31 KM. south of Nimpo Lake by helicopter</u> .	Long_ <u>125_35</u> west_end_of
Main Commodities Searched For <u>Au, Ag, and Cu.</u>	
WORK PERFORMED 1. Conventional Prospecting (area) Silting of creeks and 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)	
<u>SIGNIFICANT RESULTS (if any)</u> Commodities <u>No significant findings.</u> Claim Name Location (show on map) Lat Long E Best assay/sample type	Elevation <u>6700 Ft.</u>
Description of mineralization, host rocks, anomalies <u>Con</u> <u>two coast plutons. No continuity in small vein under s</u> <u>area to be further prospected in 1995. Malachite stain</u> <u>approx., i 1/2 KL., further north on cliff on east side</u> <u>to the Atnarko River. This appears to be a similar type</u> <u>the Narko.</u>	now pack. General noticed in outcrop of creek draining
Supporting data must be submitted with this TECHNICAL REF	PORT.

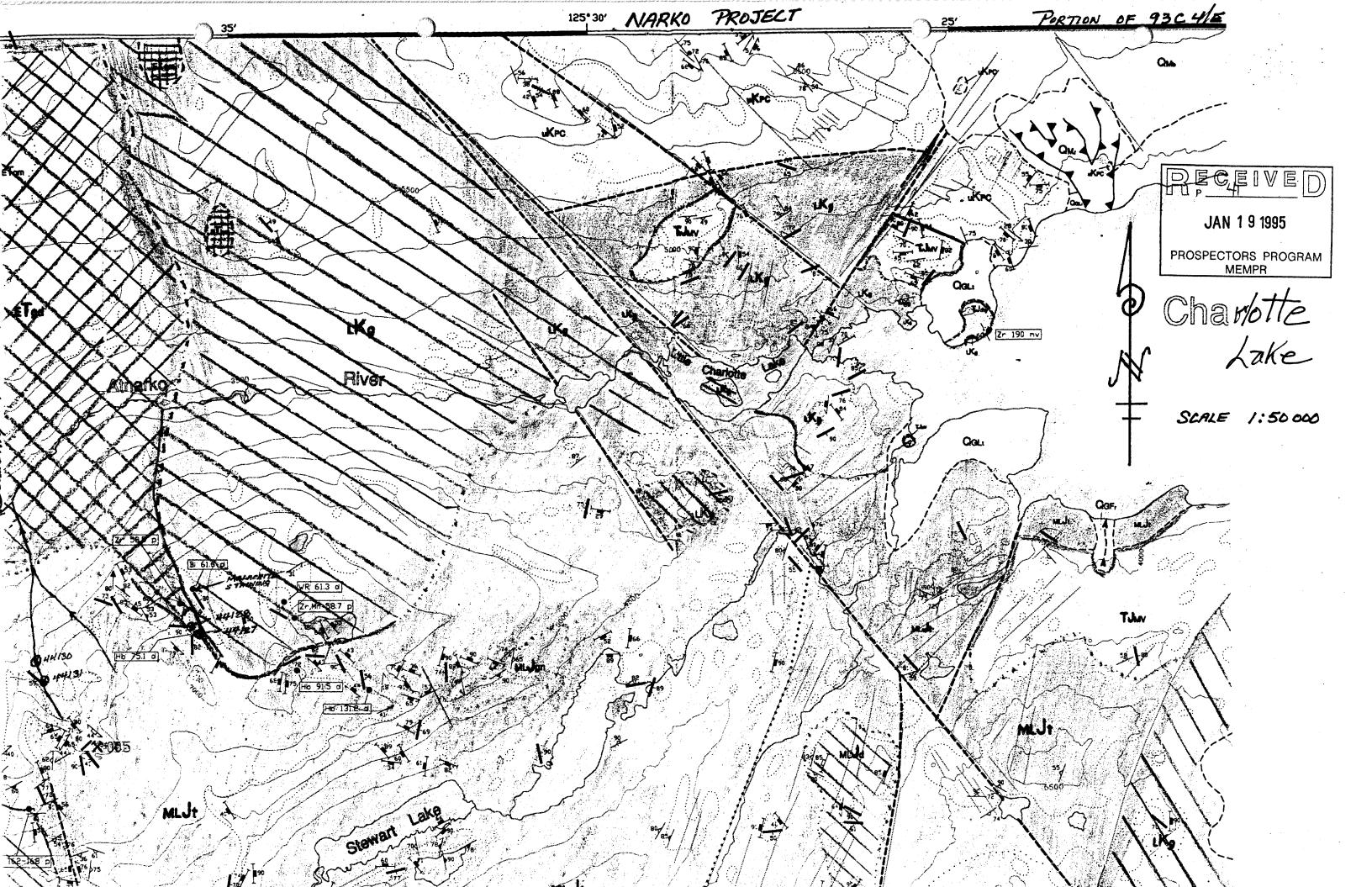
NARKO

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0965-RJ1+2+3

DATE: 94/09/23 * rock * (ACT:F31)


ATTN: Ralph R. Keefe

PROJ:

÷

COMP: TECK CORPORATION

. ^	тім: катря к. кее	i e									122	:(004)9	00 10	-	77.1	0047	960-9													~ 1′0	CK .	(ACI:F31)
	SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PP M	BA PPM	BE PP m	B1 PPM	CA %	CD PPN	CO PPM	CU PPM	FE %		LI PPM		MN PPM				P PPM	PB PPM				TI X		ZN PPM F			W CR PM PPM	Au-Fire PPB
SHAWAN JARYI- "I RALPH RALPH	44101- WHITT 44102- " 44103- " 44104- " 44105- "	1.3 .4 .6 .8 .1	.74 .51 .40 .97 .19	1 1 1 1	1 1 1 1	145 378 194 217 20	1.6 2.0 1.0 1.7 2.2	15 11 6 15 9	.47 .12 .13 .22 .20	.1 .1 1.1 .1 .1	33 24 18 20 71	581 190 552	7.35 6.96 2.82 6.43 12.43	.36 .51 .26 .45 .12	15	.37 .43	293 294 246 511 1	70 30 6	.12 .05 .04 .03 .02	45 23 14 31 52	460 170 120 370 50	39 24 20 38 2	15 8 9 21 1	44 32 37 18	1 8 1	.08 .03	148.4 106.9 62.3 182.2 15.9	88 36 32 88 13	1 1 1 1	1 1 1 2	9 108 5 48 6 84 7 43 10 203	34 11 10
Darys	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	".1 ".1 ".1 ".1	.48 .48 .81 .25 .38	1 1 1 1	1 1 1 1	206 54 61 128 204	1.2 .9 1.6 .8 1.1	11 6 10 6 88	.09 .14 .02 .06 .03	.1 .3 .1 .1 .1	10 8 13 4 4	35 155 16 205	4.15 2.35 4.75 3.17 4.35	.50 .14 .24 .25 .40	6 6 1	.83 1.38 .08 .19	459 567 753 88 82	6 4 15 29	.05 .06 .02 .05 .05	16 12 24 10 14		18 23 30 6 40	10 12 17 5 9	20 29 25 31 46	4 1 1	.09 .02 .08 .05 .03	31.7 20.2 24.8 12.8 20.0	34 36 45 11 44	1 7 3 1	1 1 1 1	7 99 9 141 6 69 6 104 7 124	1 7 6
RALPH "	44113 - " Diak" 44114 - " **** 44115 - " -	^>nm~6.3 ≈ .5 ≈ 95.4 ≈ 75.8	.35 .40 .80 .21 .21	1 1 1 1	1 1 1 1	359 246 274 471 399	.6 .5 .7 1.1 1.1	3 4 12 62 54	.14 .10 .52 .09 .12	.1 .4 .1 .1	33634	62 237	1.62 1.41 3.11 4.17 4.81	.36 .38 .61 .21 .21	3 1 1	.38 .80 .07	102 198 633 127 134	2 26 23	.04 .03 .18 .05 .04	7 10 12 13 14	270 410 900 280 210	12 12 22 32 28	8 9 15 4 5	32 20	1	.01 .01 .15 .01 .01	10.8 16.2 41.4 5.3 7.1	20 28 65 77 49	3 4 2 1	1 1 1 1	6 96 6 106 6 63 7 132 7 132	60 16 >10000
11 511AWN 11 11	44116 - * W ²⁴ /Ref 44117 - ** ** 44118 - ** ****************** 44119 - ******** 44120 - **	l″ 14.0		1 1 1 1	1 1 1 1	276 233 93 123 89	1.0 .8 1.6 2.6 1.0	11 15 123 10 5	.11 .13 .36 .19 .07	.1 .1 .1 .1	2 37 51 3	874	3.65 3.70 7.08 11.21 2.84	.36 .24 .13 .27 .22	1 16 5	.02	61 132 328 78 186	25 62	.05 .07 .01 .06 .04	12 11 21 42 14	350 280 210 190 170	27 19		33 31 2 102 37	1	.01 .05 .01 .01 .01	11.5 17.3 6.8 76.6 25.7	42 51 63 15 32	1 1 1 4	1 1 2 1	7 121 3: 52 8 168 5 55 9 144	1643 >10000 300
Rob DARYL RALPH	44121	1.3 .2 .1	1.17 .04 .05 .08 .03	1 185 93 280 3	1 1 1 1	61 25 17 11 50	2.4 .3 .9 .2	9 4 2 4 1	.01 .01 .01 .02 .01	.1 .1 .1 .1	14 1 4 10 1	344 36 68 48 16	8.21 1.13 1.23 3.60 .85	.16 .06 .03 .07 .08	1 1 1	. 02 . 03 . 01	47	5 4 4		32 5 7 18 6	190 80 60 160 70	42 5 7 1	30 2 6 3 1	38 21 5 6 15	1 1 1	.01 .01 .01 .01 .01	175.3 9.6 9.9 19.2 2.1	365 9 11 12 4	211111	2 1 1 1	8 61 14 272 12 246 18 348 9 192	52 25 22
। इन्द्रमिल्लाग म	44126 - CLIN-Wall 44127 - NARKO 44128 - " 44129 - CLIN 44129 - SILT-VISTA	25.7 3.5 1.1	.34 .20 .19 .65 1.34	11111	11111	180 72 117 89 140	1.4 .5 1.3 1.0	9 33 19 18 19	.33 .06 .05 .38 1.02	.1 1.0 .1 .1	6 1 17 11	111 >10000 5281 1515 67	1.38	.14 .17 .21 .19 .31	1 1 8	.02 .02 .63	624 98 92 390 554	1			350 220 150 470 990	374 54 17	5 161 26 12 29	25 23 22 43 294	8	.07 .01 .01 .15 .22	13.1 59.6 8.6 50.9 114.3	82 55 34 47 63	1 1 1 5	77111	6 92 4 56 5 85 5 37 16 222	17 13 15
R+ P .	44131 SILT-" 44132-MARY #2015 44133-"" 44134-"" 44135-""	.1	1.08 .68 1.90 1.26 .29	1 1 1 1	1111	123 59 42 123 45	.9 1.2 2.2 .6 .7	15 5 11 15 2	.77 .24 .71 1.33 .09	.1 .1 .1	9 8 16 8 6	41 42 90 34 22	2.90 3.50 5.71 2.81 2.14		5 27	.56 2.75 1.22	439 172 794 601 21	10 5 5	.12 .05 .11 .14 .01	24 22 38 17 19	800 520 1320 850 600	25 43	15 40 27	272 52 153 231 17	1	.18 .03 .07 .18 .01	82.6 42.1 63.6 81.9 12.4		4 1 2 4 1	1 1	10 120 6 86 6 30 10 112 2 34	24 16 9 18
. Ale sur	44136 - 4 4 44137 - 4 1 44138 - 4 4 44138 - 4 4 44139 - 4 4	.1 .1 .1 .1 .8	.44 .53 .27 .76 .61	1 1 1 1	1 1 1 1	76 57 46 71 111	1.0 1.4 .8 1.7 .8	342 89	.07 .16 .05 .30 2.01	.1 .1 .1 .1	4 13 7 11 8	27 38 25 40 30	4.87 2.61 6.55	.41 .42 .30 .37 .35	5 1 8	.63 .07 1.10	28 128 17 397 487	5 16 11	.01 .02 .01 .05 .03	16 37 20 37 21	560 740 310 860 720	19 13	5 16	25 26 22 49 139	1	.01 .01 .01 .04 .12	18.3 20.9 10.3 54.2 25.0	12 24 10 45 21	1 1 1 4	1 1 1 1	6 110 4 49 7 125 6 62 9 150	16 14 11
4 4 4 11	44141~~~~ 44142—"" 44143~~ " 44144—"" 44144—""	1.1 1.2 .3 1.4 1.1	2.34 .60 1.12	11111	1 1 1 1	131 180 24 71 158	-8 1.9 .3 .5 1.2	21 5 15	.91 1.82 1.78 1.40 1.69	.1 .1 .1 .1 .1	8 16 4 13	31 32 90 28 39	6.72	.27	9 3 6	1.06	496 627 631 384 945	7 4 5	.14 .54 .09 .17 .25	9 20	800 1300 430 810 1050	52 15	12	532 115 224		- 18 - 26 - 06 - 18 - 26	42.4 99.6 22.7 54.0 92.5	51 63 24 34 64	3 1 1 4 1	1	8 85 12 117 9 143 11 151 10 95	13 6 5
и и н R+D и	44146 ~ ^ ~ " 44147 — * * 44148 ~ * " 44149 — * * 44150 — * *		1.01	1 1 1	1 1 1 1	166 327 290 122 134	1.7 1.1 1.1 .9 1.0	21 21 23 22 9	.66 .59 1.53 .69 .35	.1 .1 .5 .1	18 13 13 11 5	61 38 58 21		.65 1.15 .28 .34	17 16 16 11	1 70 1 50 1 3 80	768 880 789 783 658	2 6 5 4	.14 .08 .40 .06 .08	33 31 26 15	1050 1080 1060 1360 1360	32 49 29 24	22 39 21 15	134 208 194 163 175	1 2	.26 .07	76.7 76.9 118.3 59.3 29.3	67 72 79 74 59	1 1 4 5	1 1 1 1	8 61 7 65 13 138 7 67 6 66	6 6 8 4
49 11	44151 ~ '' " 44152 - " "	.1	.44 .91	1	1	91 53	.8 1.6	7 4	.22 .21	.1 .1	4 5		3.20 3.64				7 313 7 402		.05 .05		1220 750	15 32		70 149		.05 .01	15.0 32.4	28 62	1 6	1	4 68 4 36	
•																															_	

' ,	RECEIVED
	JAN 1 9 1995
BRITISH COLUMBIA PROSPECTORS ASSISTANCE H PROSPECTING REPORT FORM (C	
 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment supporting data (see section 16) required with this TECHNICAL REP. 	
Name <u>Shawn A. Turford</u> Referen	ce Number <u>94/95 P41</u>
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>Ciin</u> Min Location of Project Area NTS <u>93C_3/w</u> Lat Description of Location and Access <u>1 1/2 KM.</u> KM South of Nimpo Lake by helicopter.	<u>52 01'</u> Long <u>125 21'</u>
Main Commodities Searched For <u>Au.Cu.</u> Known Mineral Occurrences in Project Area <u>Cu.</u>	
<pre>WORK PERFORMED 1. Conventional Prospecting (area) Prospecting 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, tota 7. Other (specify)</pre>	1 m)
SIGNIFICANT RESULTS (if any) Commodities Au. Claim Nar Location (show on map) Lat 52 01' Long 123 Best assay/sample type Vein-samples 44114 - 1 44118 - 1	me <u>Clin #1</u> 5 21' Elevation <u>6300'</u>
Description of mineralization, host rocks, anom <u>x 30m.</u>) on surface is surrounded by host di <u>thought to be a volcanic vent of some kind.</u> A <u>altered and oxidized. East side of the gossar</u> (talus) Approximately 40m. further east the go strong. Quartz veining in this area was ano to be carried out in 1995.	orite rock. Gossan area is Areas on the surface are very n is covered by large bolders Assan appears again but not as
Supporting data must be submitted with this TEC	CHNICAL REPORT.

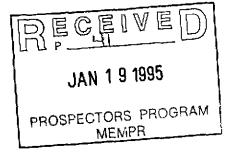
ŧ

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

ICOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOLIVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005


Assay Certificate

Company: **TECK CORPORATION** Project: Autn: Ralph R. Keefe

Date: SEP-23-94 copy 1. Teck Corporation, Kamloops, B.C.

We hereby certify the following Assay of rock samples submitted SEP-19-94 by R. Keefe.

	Sample Number	AU-FIRE g/tonne	AU-FIRE oz/ton	AU-FIRE PPB
DARY4	44110 E. S.de . A BassAN	20.91	.610	
RALPH	44114 a a construction of theme	39.07	1.140	
н	44115	31.74	.926	
#	44116 • " "***	⁴ &≮5.36	.156	
4	44117	~ 1.65	. 048	
Stytem sont	44118 Vuyyy food HIGH QUARTZ	‴≠ 55.46 27.95	1.618 .815	>10000

Certified by

MIN-EN LABORATORIES

4V-0965-PA1

COMP: TECK CORPORATION

MIN-EN LABS - ICP REPORT

FILE NO: 4V-0965-RJ1+2+3

DATE: 94/09/23

ATTN: Ralph R. Keefe

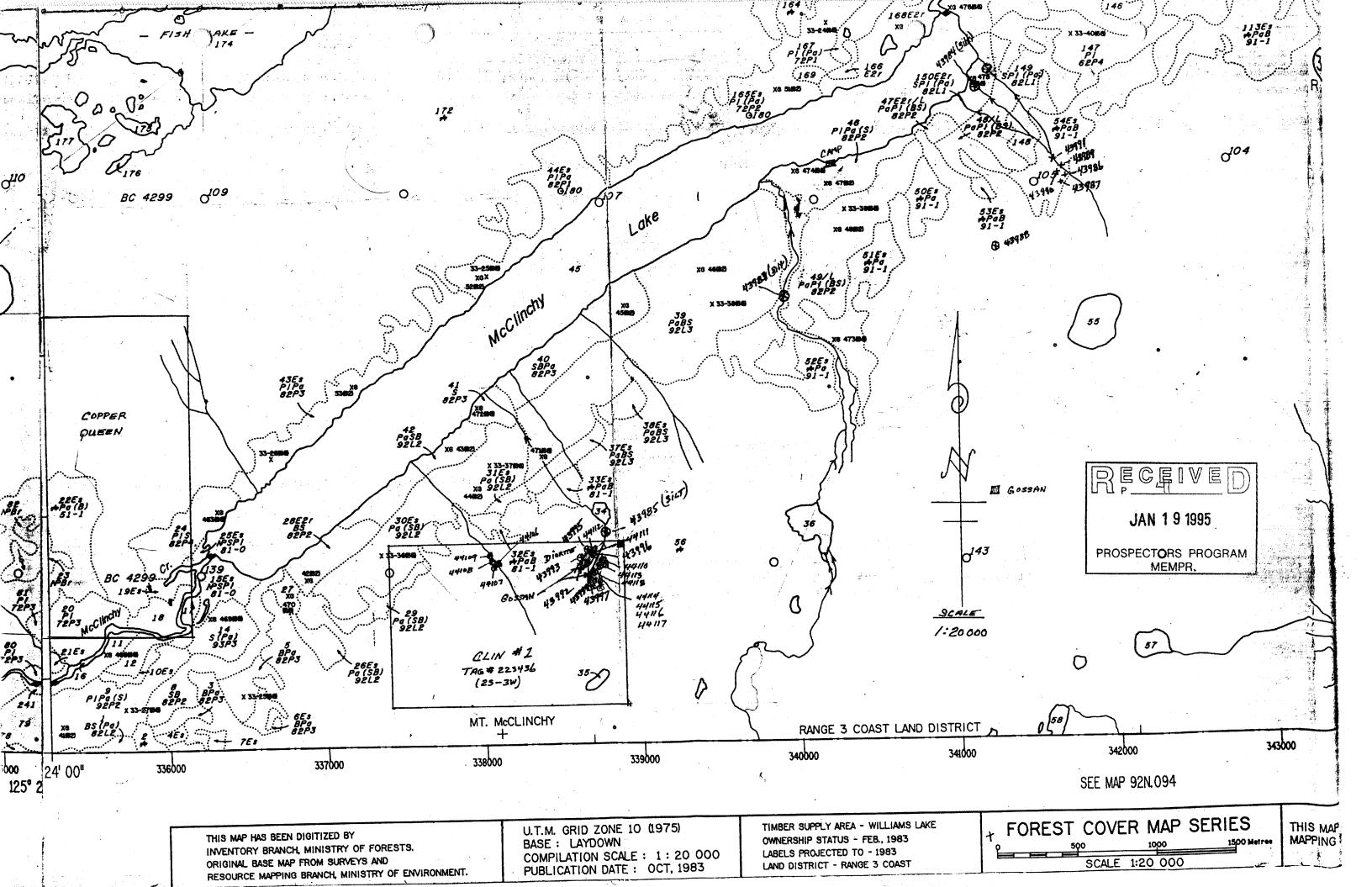
PROJ:

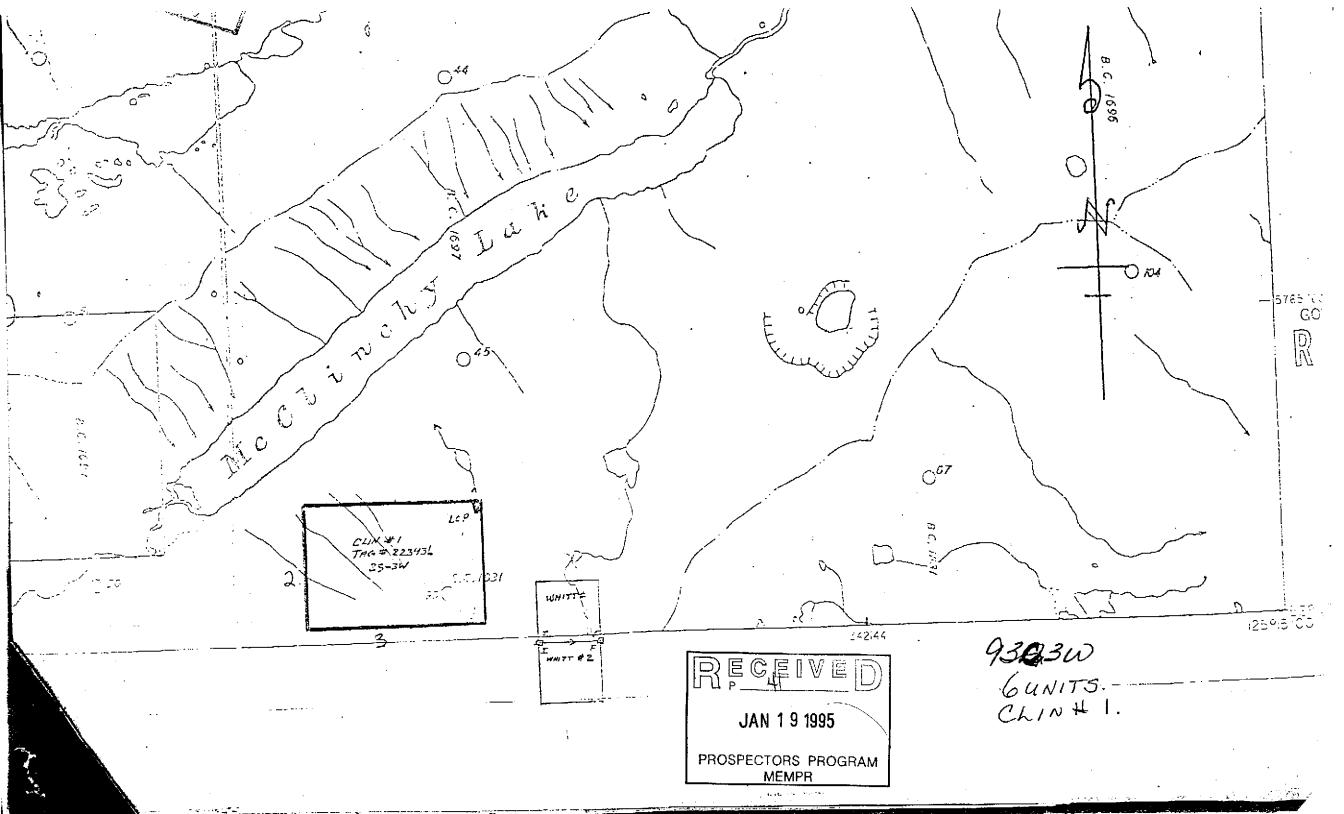
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

* rock * (ACT:F31)

				161	.:(004)980-9814 F	FAX:(004)980-9621		<pre>* rock * (ACT:F31)</pre>
	SAMPLE NUMBER	AG AL AS PPM % PPM	B BA BE PPM PPM PPM					ZN GA SN W CR AU-Fire PPM PPM PPM PPM PPB
لىسىمىمىرى سەيەھىر	44101- www.rr 44102 "	1.3 .74 1 .4 .51 1	1 145 1.6 1 378 2.0		559 7.35 .36 581 6.96 .51		39 15 249 1 .14 148.4	88 1 1 9 108 117
4	44103 "	.6 .40 1	1 194 1 0	6 .13 1.1 18	190 2.82 .26		24 8 44 1 .08 106.9 20 9 32 8 .03 62.3	36 1 1 5 48 34 34 32 1 1 6 84 11 1
201914 24-D	44104" 44105"	.8 .97 1 .1 .19 1	1 217 1.7		552 6.43 .45 197 12.43 .12		38 21 37 1 .11 182.2	88 1 1 7 43 10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44106 - CAN - H		1 206 1.2		50 4.15 .50		<u>2 1 18 1 .03 15,9</u> 18 10 20 4 .09 31.7	<u>13 1 2 10 203 20</u> 34 1 1 7 99 24
	44107 "	. 1 .48 1	1 54 9	6 14 3 8	35 2.35 .14	6 .83 567 6 .06 12 190 2	23 12 29 5 .02 20.2	36 7 1 9 141 1
	44.00	".1.81 1 ".1.25 1	1 61 1.6 1 128 .8	10.02.11.15	155 4.75 .24 16 3.17 .25	6 1.38 753 4 .02 24 150 3 1 .08 88 15 .05 10 100	30 17 25 4 08 24 8 6 5 31 1 05 12.8	45 3 1 6 69 7 11 1 1 6 104 6
Dreey4	44110 — " — e	est 53.0 .38 1	1 204 1.1		205 4.35 .40			11 1 1 6 104 6 44 1 1 7 124 >10000
- I //	44111~ " miller 44112 - " "	MAR 2 10 4	1 359 .6		14 1.62 .36 12 1.41 .38	1 .25 102 7 .04 7 270 1	12 8 20 2 .01 10.8	20 3 1 6 96 74
*		e 5 80 1	1 246 .5	4 .10 .4 3	12 1.41 .38 62 3.11 .61	1 .38 198 4 .03 10 410 1 3 .80 633 2 .18 12 900 2		28         4         1         6         106         60           65         2         1         6         63         16
RALAN	44114 - "	<b># 95.4</b> .21 1 <b># 75.8</b> .21 1	1 471 1.1	62 .09 .1 3	237 4.17 .21	1 .07 127 26 .05 13 280 3	32 4 32 1 .01 5.3	77 1 1 7 132 >10000
	IIAAI A MAILER	9	1 276 1.0		<u>173 4.81 .21</u> 116 3.65 .36			49 1 1 7 139 >10000
*	44117 ** **	14 0 27 1	1 233 .8	15 13 1 3	141 3.70 .24	1 .07 132 4 .07 11 280 1	12 5 31 1 05 17.3	42 1 1 7 121 4550   51 1 1 3 52 1643
5-11-19 W AF	44118 - " Vary 92 44119 - WAIT	•>200.0 .13 1 3.3 1.06 1	1 93 1.6		215 7.08 13 874 11.21 .27	1 .02 328 25 .01 21 210 2	27 3 2 1.01 6.8	63 1 1 8 168 >10000
_4	44120 "	1.9 .52 1	1 89 1.0		149 2.84 .22		19 21 102 1 .01 76.6 26 13 37 4 .01 25.7	15 1 2 5 55 300-WHITT 32 4 1 9 144 280 - «
R.B Paryl	44121 - " 44122 - ATNA	1.9 1.17 1	1 61 2.4		344 8.21 .16		2 30 38 3 .01 175.3 3	65 2 2 8 61 182- "
RAIM	44123 —	.5 .04 185 1.3 .05 93	1 25 .3 1 17 .3	4 .01 .1 1 2 .01 .1 4	36 1.13 .06 68 1.23 .03		5 2 21 1 .01 9.6 5 6 5 1 .01 9.9	9 1 1 14 272 52 11 1 1 12 246 25
-	44124 " 44125 "	.2 .08 280	1 11 .9	4 .02 .1 10	48 3.60 .07	1 .01 25 4 .01 18 160	7 3 6 1 01 19.2	12 1 1 18 348 22
	44126 - CANA MAH	<u>.1 .03 3</u>	<u>1 50 .2</u> 1 180 1.4		<u>16 .85 .08</u> 111 5.75 .14		<u>1 1 15 1 .01 2.1</u> 1 5 25 1 .07 13 1	4 1 1 9 192 8
~~~~	66127 - NACKO	25.7 .20 1	1 72 .5	33 .06 1.0 1	>10000 1.38 .17			82 1 1 6 92 135 55 1 1 4 56 17
	44128 - cur 44129 - cur	3.5 .19 1 1.1 .65 1	1 117 .3		5281 .74 .21 1515 6.45 .19	1 .02 92 4 .05 4 150 5	i4 26 22 8 .01 8.6	34 1 1 5 85 13
	44130 SILT-VISTA	1.4 1.34 1	1 140 1.0		67 3.86 .31		7 12 43 3 .15 50.9 7 29 294 1 .22 114.3	47 1 1 5 37 15 63 5 1 16 222 8
	44131 SILT- "	1.0 1.08 1	1 123 .9		41 2.90 .29	5 1.25 439 5 .12 24 800 2		52 4 1 10 120 9
4	44132- MARY 2000	.3.68 1 .1.1.90 1	1 59 1.2		42 3.50 .50 90 5.71 .40		5 15 52 1 .03 42.1 3 40 153 1 .07 63.6 1	35 1 1 6 86 24 17 2 1 6 30 16
Ч 4	44134_ " "	.9 1.26 1 .2 .29 1	1 123 .6	15 1.33 .1 8	34 2.81 .76	7 1.22 601 5 .14 17 850 3	5 27 231 1 .18 81.9	60 4 1 10 112 9
	44136 - 4 *	.1 .44 1	<u> 1 45 .7</u> 1 76 1.0		<u>22 2.14 .35</u> 27 3.17 .41		3 5 17 1 .01 12.4	7 1 1 2 34 18
6	44137 - "		1 57 1.4	4 16 1 13	38 4.87 .42	5 .63 128 5 .02 37 740 1		12 1 1 6 110 17 24 1 1 4 49 16
4	44138 – • · · · · · · · · · · · · · · · · · ·	.1 .27 1	1 46 .8	2 .05 .1 7 8 .30 .1 11	25 2.61 .30 40 6.55 .37		3 5 22 1 .01 10.3	
- Alasia	v 44140 + -	.8 .61 1	<u>i 111 .8</u>	9 2.01 .1 8	30 2.48 .35			45 4 1 6 62 11 21 1 1 9 150 5
А Т	44141 - " - 44142 4		1 131 .8		31 3.09 .48			51 3 1 8 85 6
4 11	44143	1.2 2.34 1	1 111 111	21 1.82 .1 16 5 1.78 .1 4	32 6.72 .53 90 1.16 .27			63 1 1 12 117 13 24 1 1 9 143 6
51	44144 " "	1.4 1.12 1 1.1 1.85 1	1 24 .3 1 71 .5 1 158 1.2	15 1 40 1 8	28 2.56 .42	6 .77 384 5 .17 20 810 2	3 23 224 1 18 54.0	34 4 1 11 151 5
4	44146	.8 1.56 1	1 166 1.7		<u> </u>			64 1 1 10 95 10
4	44147 - N 4	.91.17 1	1 327 1.1	21 .59 .1 13	61 4.73 .65			67 1 1 8 61 11 72 1 1 7 65 6
R+D	44148	1.6 1.93 1 1.4 1.01 1	1 290 1.1 1 122 .9		38 4.77 1.15 58 4.62 .28		9 39 194 1 .30 118.3	79 1 1 13 138 6
~	44150	.1 .68 1	1 134 1.0	9.35 .1 5	21 3,51 .34	· · · · · · · · · · · · · · · · · · ·		74 4 1 7 67 8 59 5 1 6 66 4
	44151 - 4	-1 -44 1	1 91 .8	7.22.1 4	13 3.20 .30			28 1 1 4 68 8
	44152 — 4 4	.1 .91 1	1 53 1.6	4.21.15	27 3.64 .18	21 1.37 402 3 .05 21 750 3	2 19 149 2 .01 32.4	62 6 1 4 36 2
				· · · · · · · · · · · · · · · · · · ·				

÷.,


~e																													
	COMP: MR RALPH	I KEEFE									EN																		0176-RJ1
	PROJ: ATTN: Raiph Ke	≥ekfe							705		15TH (604)			FAX:			521										* roci	<* (94/08/11 ACT:F31)
	SAMPLE NUMBER	AG PPM	AL AS % PPN	S B PPM			BI CA PPM %	PPM		CU PPM	FE %			MG %	MN PPM	MO					PPM F	P M P		PPN	1 PPM	PPM P	PM PP		u-Fire PPB 5
]eng	17001 - D.MC	tt .1 1. ttm .1 1.	25 1 06 1 10 1	1 1 1 1 1 1	258 19 3 382	.3 .3 4	2 2.07 3 2.33 5 1.60	.1 .1	5 8 18	31 103	3.60 3.17 4.43	.10 .12 .22	8 5 15	.80 1.70	458 496 898		.10 .11 .05	14 13 20	580 610 480	16 17 29	2 1 7	22 26 31	6 .01 6 .01 <u>10 .01</u>	48.6	<u>5 41</u>	11 12 20	1 4	4 41 4 31	1 3 4
NHE	43982- 000404	.8 1.	25 3		25 107	.3	32 6.89 11 .80	.1	8		1.53	.03	<u>3</u> 7	.64	406	1	.09 .12 .16	11	200 670	- <u>-26</u> 	1	69 88	2 07		5 28	29 12 14	2 (5 195 6 80 8 74	12
لى. لىن.	*43987 43988 43989 43990 43991	1.1 2. .1 . .1 . .7 3. .1 1.	88 88 17 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48 92 85 7 132	.1 .2 .1 .3	17 1.19 6 .36 5 .23 22 .95 9 .50		5	119 200 259 13	5.04 4.50 4.57 10.79 4.60	.12 .21 .26 .07 .29	5	10 2.39 .93		2 3 169 1	.06 .06 .04 .10	29 15	1350 220 400 2590 1170	19 10 5 18 12	1	80 37	8 .06 4 .06 10 .34 7 .11	24. 12.4 147.0 24.0	1 22 4 13 6 114 6 20	3 1 7 9	1 1 3 1	7 112 B 148 7 31 B 128	1 27 27 2
- \	43992 43993 43994 43995 43995 43996	.1 . .1 2. .1 . .1 1. .1 1. .1 2.	07 76 39	1 1 1 1 1 1 1 1 1 1	158 222 141 198 176	242.47	2 .06 6 .18 2 .06 3 .23 4 .14	.1 .1 .1	1 10 2 3 8		1.17 3.98 1.77 1.63 3.90	.35 .80 .30 .47 .62	5	.21 1.64 .31 .91 1.84	57 295 157 400 320	23244	.05 .06 .08 .07 .03	4 18 10 10 27	440 510 370 400 480	4 20 4 15 24	6 1 6	12 14	3 .01 10 .05 3 .01 6 .01 13 .01	71.8 15.0 19.8 27.3	8 83 6 17 8 48 2 83	5 16 4 17 17	2 1 2	4 67 8 108 7 124 7 106 6 65	6 16 7 5 12
ų	43997	49.5 1.		1 1	176	.2	51w .68	.1	9.4		4.53	.43			626	3	.09	40	320	29	5	24	8.08	53.1	2 201	10	1 1,	4 226	≚6500
				<u>-</u> _	·																								
•																													
																	B	同	C	Ē	\mathbb{V}	E	$\overline{\mathbf{n}}$						
																			h	·		L							
																			AN										
																-	PRC	DSPE	CTO ME	RS MPF	PRO	GRA	M				<u> </u>		
																					·								
												_ .																	
							<u>, </u>																						
												.122		<u></u>				<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>								


•

, ·

v							-								m													_
MP: MR RALPH	KEEFE							MIN-1 Vest 1								!									FILE		s-0176 : 94/0	
TN: RALPH KEE								TEL:(604)98	80-581	4 FA	X:(604)980-9	9621												t *	(ACT:	: F
SAMPLE NUMBER	AG AL / PPM % PI	AS B PM PPM	BA PPM P	BE B PP M PPI	I CA M %	CD PPM	CD PPM	PPM	%	K L % PP	IMG M %	MN PPM	MD PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	PPM	TI %	PPM	PPM	PPM P	PM PF	M PPM		īΓ PPI
43983 43984 43985	.6 1.26 .2 1.35 .2 2.43	1 1 1 1 1 1	104	.1 1 .1 1 .3 1	1 .91 6 1.06 4 .93	.1 .1 .1	8 6 12	54 3. 32 2. 108 4.	09 .1 02 .0 00 .2	4)8 23 1	6 .75 6 .62 1 1.27	375 369 872	1 1 2	.05 .03 .05	17 13 22	1030 1260 1000	10 9 20	1 3 6	70 71 59	5 2 7	.17 .10 .20	88.3 53.9 96.5	30 27 77	10 8 14	1 2 3	4 31 3 20 5 29)	2(2(
												,																
	<u></u>								· •								···											
		<u> </u>																										
														F														
															D)	Ē ()			/ [])][
																		• • •										
																JAI	N 1	9 19	95			.						
														1	PROS	SPEC	TOP	IS P	RÒG	RAN	1							
																<u> </u>	MEN	<u>APR</u>										
																						-						
																		<u>-</u>										
						<u> </u>								-											•			,
and the second s												-									<u> </u>		<u> </u>					_

+

