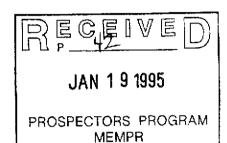
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 1994/95

REPORT #:

PAP 94-19


NAME:

RALPH KEEFE

Mr. R. Keefe Box 201 Francois Lake, B.C. V0J 1R0

Jan 8, 1995

Mr. V. A. Preto Ph. D. P. Eng. Director Prospector's Assistance Program Ministry of Energy, Mines & Petroleum Resources Victoria, B.C. V2X 5H4

Dear Sir,

Enclosed are reports pertaining to my 1994 - 1995 prospecting program.

- A) Summary of prospecting activity & cost sheet
- B) Individual technical reports & cost sheets
- C) Diary

To date, no significant discoveries have been made, however, the prospecting season proved to be most interesting.

In the Chilcotin, my partners and I have discovered a large system which may have economic gold value. We prospected and staked four separate areas. This system is close to a known porphyry-copper body.

Prospecting of the Vista and Narko projects proved disappointing as no mineralization having continuity was found.

In lieu of spending further time on the Vista & Narko, we prospected an area noted from the helicopter. This is a large zone of pyro-clastic volcanics having extensive alteration and containing numerous quartz sericite shears. The Mary mineral claims # 1 to # 4 were staked.

If you have any further questions, please contact me at 656-3033.

Respectfully submitted,

R.R. Keefe A. Sc. T.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

PROSPECTORS PROGRAM MEMPR

B. TECHNICAL REPORT	
- One technical report to be comp	
- Refer to Program Requirements/R	egulations, section 15. 16 & 17 - a copy of the applicable assessment report - may be submitted - in lieu of the
) required with this TECHNICAL REPORT.
Name Palph P Keefe	Reference Number 95/95 P42
Name <u>Raiph R Reele</u>	Reference Number 757 75 142
LOCATION/COMMODITIES	
Project Area (as liste	d in Part A) <u>BELL</u> Minfile # if applicable NIL
Location of Project Ar	ea NTS NW 1/4 of 103h7/W Lat 53 25' Long 128 58'
	1 7 - Williams
Description of Locatio	n and Access HWY 16 to Terrace, thence to Kitimat.
From "M K" marina with	19' boat down Kitimat arm, Devastation channel onto
	reach, then to a point on Gribbel Island. Due West of
the entrance to Bishop	Bay.
Main Commodities Searc	hed For Au.
riarii commodicios scaro	
Known Mineral Occurren	ces in Project area <u>NIL</u>
WORK PERFORMED	
1. Conventional Prospe	cting (area) Two logged areas on Gribbel Island. All
	skidroads traversed.
2. Geological Mapping	(hectares/scale) As per sketch map attached
3. Geochemical (type a	nd no. of samples)
	nd line km)
5. Physical Work (type	and amount)
6. Drilling (no. holes	, size, depth in m, total m)
SIGNIFICANT RESULTS (i	f anul
Commodities None to da	
Teastien (above en man)	Lat Long Elevation
Location (show on map)	Au 99.2 gram +Ag 604 gram
Best assay/sample type	Au JJ. 2 Gram 111g oor gram
Description of mineral	ization, host rocks, anomalies All areas visited were
diorite in composition	(Coast Batholist). Samples taken were of mainly pyrite
occurrences in fracture	es within th <u>e host rock. Further rock samples and assay</u>
	ssful search to date for a Au occurrence in general
locality	

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Geochemical Analysis Certificate

4S-0112-RG1

Date: JUN-20-94

Company:

Teck Expl.

Project:

Attn: Ralph Keefe

We hereby certify the following Geochemical Analysis of 24 ROCKS samples submitted MMM-DD-YY by .

Sample Number	AU FIRE PPB	
43860 43861 43862 43863 43864	GRIBBLE 1 TSLOWD 2 2	
43865 43866 43867 43868 43869	1 2 2 3 2	
43870 43871 43872 43873 43874	> TROPHY 1 3 1 1 1	R厚C厚IVED JAN 1 9 1995
43875 43876 43877 43878 43879 43880 43881 43882 43883	2 2 1 1 1 1 1 1 3	PROSPECTORS PROGRAM MEMPR
43881 43882)	

Certified by_

MIN-EN LABORATORIES

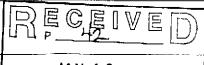
COMP: Teck Expl.

ATTN: Ralph Keefe

PROJ:

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2


TEL:(604)980-5814 FAX:(604)980-9621

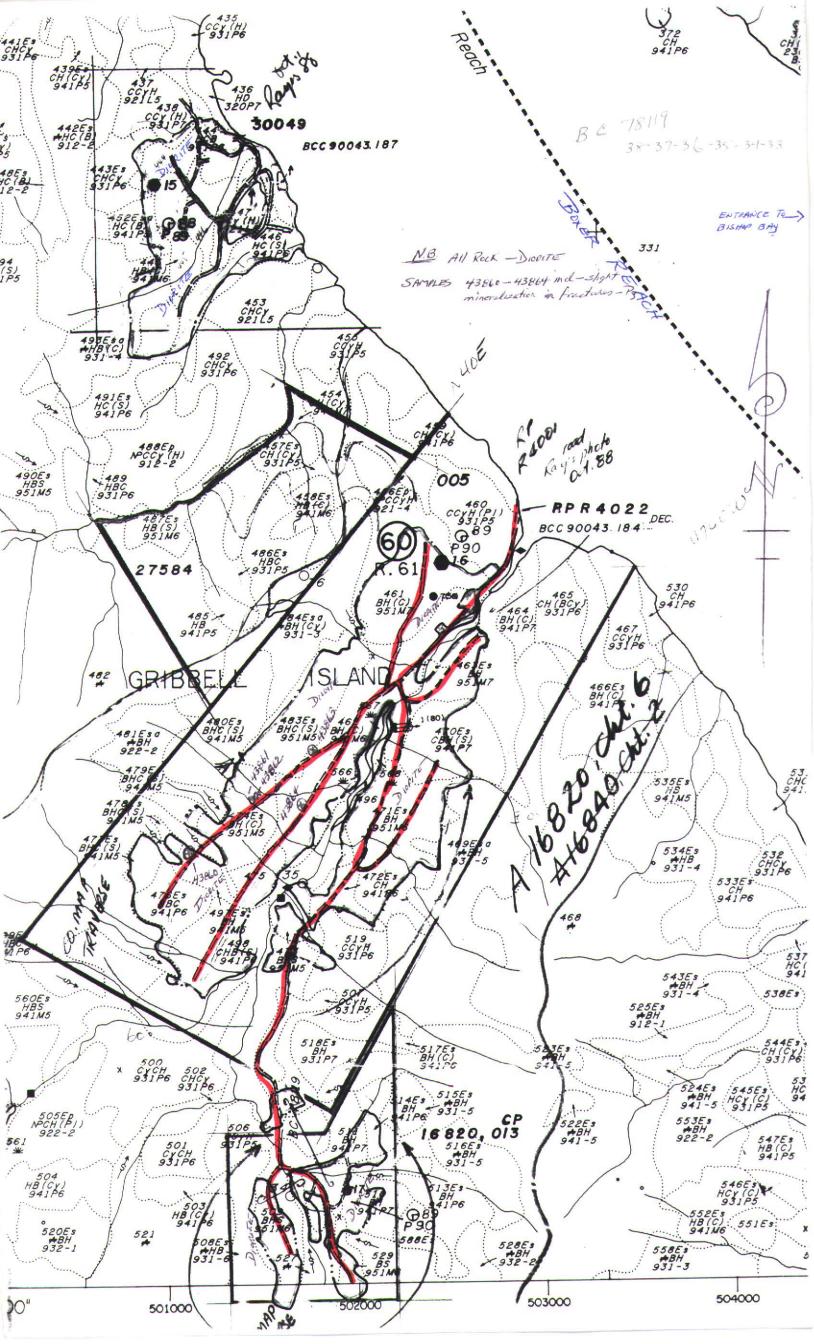
FILE NO: 45-0112-RJ1

DATE: 94/06/20

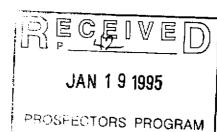
*	rock	*	(ACT:F31)
	. ~		10011011

SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU FE	K %	L1 PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH M 44	TI %	V PP M	ZN PPM	GA PPM	SN PPM	₩ PPM	CR PPM
43860 43861 61818 43862 61817 43863 751817 43864	.3 1.5 .5 2.3 2.5	.49 .74 1.11 .65 1.82	6 11 3 1 1	1 1 1 1	382 47 265 14 119	.6 .1 .1	1 13 13 19 35	1.80 .75 .33 .83 2.10	.1 .4 .1	4 15 9 18 25	9 1.82 174 3.22 97 3.44 156 4.37 587 6.92	.24 .16 .76 .05	1 5 2 1 10	.68 .88 .74 .34 1.53	353 223 600 276 621	4 4 11 4 1	.03 .09 .07 .11	56 25	930 930 680 790 8610	13 14 17 4 21	3 7 1 8	34 22 17 16 33	6 9 8 9 6	.01 .17 .20 .30 .52	43.2 62.1 152.3 63.8 176.9	49 52 403 39 85	13 8 13 1 17	1 1 1 1 3	4 6 10 8 8	57 73 120 115 42
43865 43866 43867 43868 43869	.2 .6	1.79 .36 1.74 1.81 1.79	1 9 1 126 1	1 1 1 1	38 10 104 18 59	.5 .5 .6	10 3 6 11 6	.87 .15 .67 1.06 .47	.1 .1 .1	11 1 7 20 10	32 2.77 23 .47 4 2.04 38 6.31 14 4.13	.19 .20 .56 .10	20 1 10 9 14	1.40 .05 .39 .67	628 89 104 361 1475	5 2 3 23 4	.03 .02 .11 .01	17	70 70 1500 760 960	32 20 20 29 25	18 5 17 14 17	117 7 66 133 118	14 13 7 11 9	. 14 . 01 . 06 . 15 . 06	69.8 5.3 21.6 63.3 16.3	55 3 6 25 36	24 5 8 10 16	2 1 2 1 1	8 5 5 8 6	100 95 53 81 63
43870 43871 43872 43873 43874	.4	.51 2.43 .65 .18 1.11	1 1 2 6 2	1 1 1 1	77 49 35 4 13	.4 .6 .4 .1	1 18 7 3 5	.02 .97 .35 .12 .84	.1 .1 .1	6 10 3 1 3	5 2.14 56 4.47 10 1.39 5 .56 1 1.17	.27 .08 .18 .08	1 36 4 1 6	.07 2.03 .20 .01 .49	11 891 373 112 363	5 2 1 2 2	.01 .03 .06 .05 .03		90 1440 420 60 540	7 34 17 4 16	22 5 2 12	12 119 16 3 56	3 10 11 15	.01 .25 .08 .03	4.5 117.8 14.1 2.3 27.5	2 56 41 7 24	1 26 8 2 14	1 3 1 1	3 8 7 4 7	51 58 124 87 107
43875 °\ 43876 43877 43878 N 43879 C	.4 .1 .6	1.58 .24 .48 1.19 1.36	1 8 6 1 1	1 1 1 1	28 4 58 103 91	4 3 4 5 3	9 2 1 6 6	.77 .09 .06 .26	.1 .1 .1	4 1 7 3 5	6 1.95 9 .40 2 2.58 9 1.76 15 2.29	.15 .16 .29 .63	16 1 1 7 11	1.06 .01 .03 .23	468 75 4 108 259	30 1 2 4 5	.02 .03 .01 .03 .03	4 10 7	840 30 570 810 1170	29 6 1 15 20	16 3 13 14	62 4 29 45 61	8 16 6 6 7	.12 .02 .01 .05	37.7 2.5 3.6 11.4 22.2	49 3 1 9 12	21 2 1 6 9	2 1 1 1	7 5 4 6 5	79 104 56 95 57
43880 43881 43882 43883	.5 .5 .3	.77 .67 .24 .51	4 1 5 12	1 1 1	34 24 5 8	.5 .5 .2 .6	8 8 2 3	.36 .31 .16 .11	.1 .1 .1	3 3 1 1	35 1.30 22 1.18 5 .51 11 .50	.27 .25 .13 .34	5 6 1 1	.17 .20 .01 .01	485 417 124 99	2 3 2 1	.05 .03 .05 .05		420 420 40 50	21 15 7 18	7 6 3 7	18 11 4 6	12 12 14 20	.08 .09 .03 .01	11.4 9.9 2.3 2.6	61 66 2 6	11 7 2 7	1 1 1	9 6 6 10	158 90 106 210
43864	. /	1.61	1	I	137	. 8	Ŀ	37	, 1	15	12 5.5l	£	10	.3 <u>€</u>	928	2	,03	25	13£	28	16	45	72		29:6	-25		/	-5	-5- /-

JAN 1 9 1995


PROSPECTORS PROGRAM MEMPR

BANN REMANDA


Cu Ag Au Sb AS Fe Ab 2n

-(11321) ,08 (640, 99.2) ,04 ,15 39.7 (5.63) .13

JAN 1 9 1995
PROSPECTORS PROGRAM
MEMPR

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

MEMPR

B. TECHNICAL REPORT

- One technical report to be completed for each project area
- Refer to Program Requirements/Regulations, section 15, 16 & 17
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required - with this TECHNICAL REPORT.

Name <u>Ralph R Keefe</u>	Reference Number 94/95 P42
LOCATION/COMMODITIES	
Project Area (as listed in Part A) WIN	Minfile # if applicable NIL
Location of Project Area NTS 93L/11W	Lat 54° 38' Long 127° 28'
•	
Description of Location and Access Via	Telkwa river forest service road
approx., 30 KM. from Telkwa to Winfield	
Main Commodities Searched For Au, Ag, Cu	
Known Mineral Occurrences in Project Ar	ea_Au,Aq
MARK DEREARMED	
WORK PERFORMED	
1. Conventional Prospecting (area) As pe	
lly silted plus two lines of soils bot	h west and east of Windfield
creek, to fill in gaps of previous wo	rk.
2. Geological Mapping (hectares/scale)_	
3. Geochemical (type and no. of samples)
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in	m, total m)
7. Other (specify)	
<u>SIGNIFICANT RESULTS (if any)</u>	
Commodities Au, Aq Cu. C Location (show on map) Lat L	iaim Name <u>WIN</u>
Location (show on map) Lat L	ong Elevation
Best assay/sample type No significant r	esults obtained. Approx., 6 to 8 M.,
band of rhyolite observed and sampled	with only spotted low Cu.values near
junction of small creek to west of Win	field creek.
Description of mineralization, host roc	ks, anomalies <u>Number of rhyolite</u>
boulders were observed containing band	
ted. Two lines of soils taken to fill	
work. Only one soil hole missed in swa	
Creeks further west were in turn silte	

20112

COMP: RALPH KEEFE / TECH EXPLORATIONS

PROJ: WINFIELD CREEK

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 45-0158-5J1+2

DATE: 94/07/27

* soil * (ACT:F31)

•	TIN. KALFII KELIE									,,,,,,			- , ,													-	
	SAMPLE NUMBER	AG AL PPM %		B PPM	BA PPM	BÉ PPM	BI PPM		CD CO PM PPM	CU PPM	FE %	K LI % PPM	1 %	MN PPM I		NI PPM	PPM		SB SR PPM PPM	PPM	T I %	PPM	PPM F	GA S			Au-Fire PPB
	LINE 1 0+00S LINE 1 0+50S LINE 1 1+00S LINE 1 1+50S LINE 1 2+00S	.1 2.44 .1 3.21 .1 2.64 .7 2.02 .7 3.44	1 1 1 1	1 1 1 1	218 185 153 146 143	.3 .4 .1	11 . 11 . 12 . 17 .	.33 .53	.1 14 .1 10 .1 10 .1 7 .1 14	18 3 36 5	.77 .36 .16	.13 22 .11 18 .13 20 .06 15 .09 17	.74 .79 .43	534 582 559 288 456	1 .06 2 .02 1 .02 1 .02 1 .03	29 29 32 17 36	730 470 560 230 700	29 41 34 20 28	14 222 24 67 18 73 14 68 21 110	9 8 6 9	.10 .12 .14 .23	92.5 76.0 124.1	105 102 51 63	13 14 15 11 12	3	40 33 36 27 51	18 1 4 5
	LINE 1 2+50S LINE 1 3+00S LINE 1 3+50S LINE 1 4+00S LINE 1 4+50S	.8 5.06 .1 3.82 .3 3.52 1.0 4.17 .6 4.24	1	1 1 1 1	127 228 236 172 129	.5 .3 .2 .1	12 . 14 . 21 . 15 .	.83 .68	.1 12 .1 13 .1 12 .1 19 .1 12	41 3 43 4 47 5 34 4	.69 .13 .00 .23	.13 27 .22 22 .08 15	1.48 1.39 1.88 .87	342 1017 664 656 512	2 .04 2 .06 1 .07 1 .05 2 .03	33 43 45 50 34	850 820 760 440 520	42 39 37 32 36	41 103 29 170 24 162 27 111 32 112	10 9 9	.28 .17	95.6 86.6 99.2 141.7 101.0	40 86	13 23 18 15 13	5 5 5 4	7 44 7 60 7 54 9 70 7 47	12
	LINE 1 5+00S LINE 1 5+50S LINE 1 6+00S LINE 1 6+50S LINE 1 7+00S	.7 4.69 .5 4.00 .4 2.82 .5 4.24 .1 2.82	1 1 1	1 1 1 1	172 199 144 162 216	.2 .1 .2 .4	15 . 13 . 13 .	.52 .46 .26 .40 .32	.1 14 .1 13 .1 11 .1 12	57 3 21 4	.65 .46 3.96 .02	.08 16 .08 17 .06 18 .08 16 .07 14	.76 .66 .85 .55	401 404 433 422 403	1 .03 1 .03 1 .02 2 .02 1 .02	29	600 980 620 790 540	40 34 28 40 27	34 105 25 97 18 56 31 84 18 79	7 8 9 7	.19 .16 .13 .13	105.8 111.4 102.8 87.1 89.7	47 59 88 63 87	12 11 11 12 9	3	3 58 7 50 6 43 5 39 5 33	7 6 9 5
	LINE 1 7+50S LINE 1 8+00S LINE 1 8+50S LINE 1 9+00S LINE 1 10+00S	.1 1.96 .4 3.17 .7 3.99 .1 2.86 .3 2.57	1 1	1 1 1 1	196 160 215 131 398	.1 .2 .1 .2	13 . 14 . 10 .	.54 .40 .60 .31 .88	.1 10 .1 12 .1 13 .1 16 .1 8	28 4 47 4 34 5	25 67 79 62 48	.07 19 .08 16 .11 13 .09 26	1.01 1.20	618 495 471 657 380	1 .02 1 .02 1 .03 1 .02 1 .01		430 2780 520 470 460	23 31 34 28 29	11 85 20 77 26 118 17 40 19 78	8 8	.16 .19 .11	98.0 102.8 119.0 179.4 112.9	48	11 12 12 16 18	3 4 2	38 45 3 52 7 78 5 34	6
	LINE 1 10+50S LINE 1 11+00S LINE 1 11+50S LINE 1 12+00S LINE 1 12+50S	.1 3.50 .1 3.32 .2 2.58 .1 3.71 .1 2.98	1 1 1	1 1 1 1	215 329 371 211 158	.3 .4 .2 .6	7 . 11 . 8 .	.33 .38 .96 .25 .30	.1 11 .1 10 .1 10 .1 11 .1 13	35 3 54 4	3.88 3.76 4.28	.09 20 .10 17 .14 13 .10 18	.87 .88 .97	366 374 616 436 474	1 .02 1 .01 1 .06 1 .01 1 .02	26	420 1580 470 1260 340	33 32 27 44 26	23 60 25 68 17 142 29 52 16 62	9	.05 .12 .05	129.5 98.8 98.8 108.6 135.3	67 54 41 60 82	13 17 15 19 8	=	7 36 5 28 5 38 5 28 5 39	1 4 5
	LINE 1 13+00S LINE 1 13+50S LINE 1 14+00S LINE 1 14+50S LINE 1 15+00S	.4 4.32 .6 4.31 .4 4.17 .2 4.43 .4 4.28	1 1 1	1 1 1 1	213 179 132 216 222	.2 .1 .1 .1	14 . 15 . 15 .	.61 .45 .34 .36 .37	.1 13 .1 13 .1 14 .1 14	27 5 31 5	.60 5.27 5.28	.09 11 .06 14 .06 19 .07 18	.87 .87 .90	486 425 499 504 442	1 .03 1 .02 1 .02 1 .02 1 .02		600 770 1100 1230 870	33 33 35 40 38	30 132 29 98 29 65 31 79 31 87	7 8 7	.18 .22 .20	128.8 102.2 123.6 133.7 115.1	40 61 101 82 71	11 12 13 12 12	5 4 4 4	7 51 5 44 7 48 7 43 7 40	10 2
•	LINE 2 3+00\$ LINE 2 2+50\$ LINE 2 2+00\$ LINE 2 1+50\$ LINE 2 1+00\$.2 2.91 .9 2.76 .6 2.82 .3 2.87 .1 3.12	· 1	1 1 1 1	199 172 191 181 183	.1 .1 .1 .1	15 1. 14 . 13 .	.90 .14 .90 .86 .95	.1 12 .1 11 .1 11 .1 12	27 3 29 3 31 4	3.92 3.97 3.12 4.59	.14 9 .12 10 .12 12 .11 11	93 1.08 1.08	709 523 531 652 618	1 .04 1 .07 1 .05 1 .04 1 .04	30 28 32 33 35	520 480 280 360 400	27 27 26 28 30	19 144 19 155 19 162 18 158 19 162	8 7 8	.20 .20 .19	110.5 102.4 103.8 104.9 111.3	52 45 46 50 48	14 17 13 13 12	_	35 35 35 35 35 35 42	12 3 10
	LINE 2 0+50S LINE 2 0+00S LINE 2 0+50N LINE 2 1+00N LINE 2 2+00N	.4 4.23 .1 4.39 .5 2.97 .3 5.01 .1 5.49	1 1 1	1 1 1 1	178 139 160 139 173	.2 .1 .1 .3	12 12 1. 13	. 3 4 . <u>03</u>	.1 13 .1 14 .1 11 .1 15 .1 14	34 <i>i</i> 29 3 37 <i>i</i>		.08 11 .07 16 .07 10 .07 14	.76 1.10 93	410 391 474 422 791	1 .02 1 .01 1 .06 3 .01 2 .03	36 38 31 38 36	740 1120 400 740 680	34 36 28 41 43	32 95 33 68 19 153 37 71 40 133	8 8 7 7	.15 .18 .18	109.2 98.9 98.2 108.0 115.0	63 72 37 87 63	11 10 13 12 12	5	5 41 5 44 5 41 7 45 7 43	
	LINE 2 2+50N LINE 2 3+00N LINE 2 3+50N LINE 2 4+00N LINE 2 4+50N	.4 4.78 .1 3.28 .1 2.80 .4 4.11 .3 4.18	1 1	1 1 1 1 1	200 160 187 205 185	.3 .1 .1	15 1. 12 . 15 1.	.88 .04 .64 .01 .72	.1 13 .1 13 .1 11 .1 14 .1 13	43 4 30 4 51 4	4.67 4.06 4.10 4.80 4.93	.08 12	1.07 .75 1.21	469 964 563 646 550	1 .03 1 .08 1 .03 1 .08 1 .03	40 31 29 39 36	990 430 500 310 490	40 32 28 37 38	34 123 22 149 18 107 29 175 28 116	7 7 9	.19 .17 .19	119.8 116.2 106.9 136.7 128.8	100 55 70 63 76	15 17 12 15 11	4 2 4 3	7 50 5 42 5 34 7 48 7 41	7 5
	LINE 2 5+00N	.1 3.44	1	1	188	.2	12	. 49	.1 12	34 4	4.54	.07 13	.74	786	1 .02	35	540	30	23 84	7	.17	115.2	72	14	3	5 40	7

JAN 1 9 1995

PROSPECTORS PROGRAM
MEMPR

COMP: RALPH KEEFE / TECH EXPLORATIONS PROJ: WINFIELD CREEK ATTN: RALPH KEEFE

MIN-EN LABS - ICP REPORT

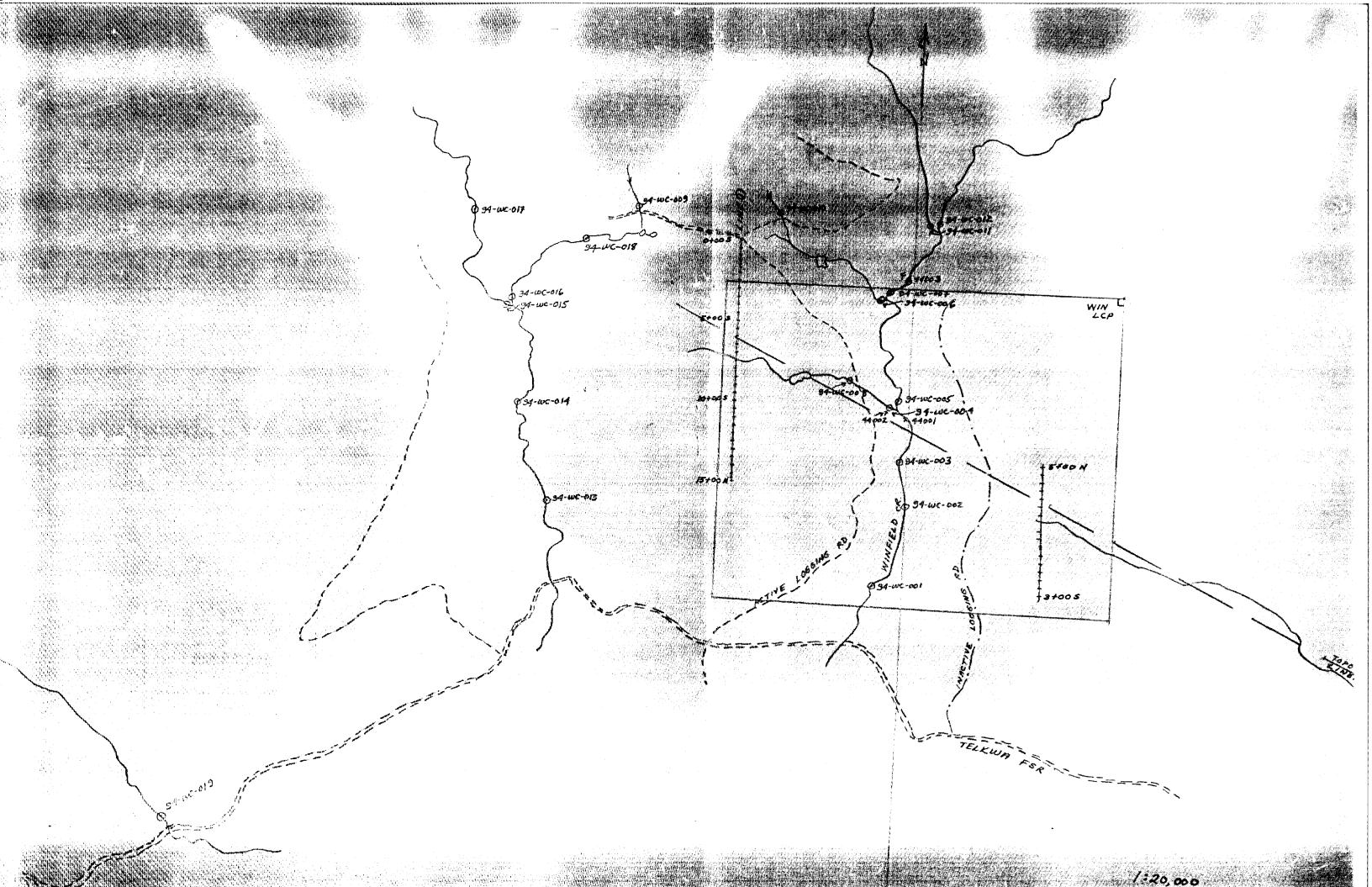
705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 45-0158-LJ1

DATE: 94/07/27

* silt * (ACT:F31)


IIN: KALPH KEEFE									17	EL:(004)	/9QU-20	314	rax; (c	104 / 900	9021											^ 51	11 "	(~	4C1:F3
SAMPLE NUMBER	AG AL PPM %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU F PPM	E 1	K LI % PPM	MG 1 %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB SR PPM PPM	TH PPM	T1 %	V PPM	ZN PPM	GA PPM I	SN PPM P	W (CR AL	ı-Fire PPB
94-WC-001 94-WC-002 94-WC-003 94-WC-004 94-WC-005	.1 1.28 .1 1.32 .1 1.58 .1 2.53 .1 1.53	1 1 1 1	1 1 1 1 1 1	166 174 193 230 195	.3 .5 .4 .3	10 1 11 1	.91 .94 1.01 1.31	.1 .1 .1	10 10 11 14 12	36 3.9 35 3.9 37 4.4 45 4.4 43 5.3	71 .0° 79 .0° 44 .0° 45 .0°	1 1 1 1 1 1	.86 .85 .93 1.03	1224 1295 1409 1551 1362	1 1 1 1	.04 .04 .05 .04	26 24 28 34 29	600 620 690 890 670	19 21 23 28 24	4 90 4 92 6 104 12 133 5 97	5 7 5	. 13	91.7 94.0 107.5 111.0	88 86 92 75	16 16 16 16 16	1 1 1 2	4 5 6	24 24 28 46 34	2 3 7 1 4
-WC-006 -WC-007 -WC-008 -WC-009 -WC-010	.1 3.24 .1 1.49 .1 2.40 .1 2.64 .1 3.06	111111111111111111111111111111111111111	1 1 1 1	243 200 382 197 211	.3 .4 .1 .4	15 1 11 10 1 12 14 1	1.54	.1 .1 .1	14 11 14 14 11	39 4.8 40 4.3 27 5.6 32 4.2 42 4.8	35 .0° 33 .0° 34 .0° 26 .0°	1 1 1 1 1 1 1 1	1.49 .89 .61	1870 1404 >10000 2752 1647	1 1	.16 .04 .02 .02 .02	39	710 640 1810 750 690	37 27 55 33 31	18 211 7 106 10 101 11 123 17 151	8 8	.16 .11 .03	129.9 103.0 115.5 102.4	66 103 106 107	27 23 68 25 24	3 1 3 3	7 5 5 6 5 6 3	52 28 47 37 60	3 3 8 9
-WC-011 -WC-012 -WC-013 -WC-014 -WC-015	.1 1.32 .1 1.51 .1 1.96 .1 2.08 .1 1.76	1 1 1 1	1 1 1 1	128 231 146 145 151	.3 .4 .1 .3	8 9 1 12 1 12 1 10 1	.77 1.01 1.32 1.33	.1	11 11 12 11 10	55 4.3 28 4.2 34 4.7 34 4.0 31 4.0	32 .0° 28 .0° 75 .0°	1 1 1 1 1 1 1 1	87 82 1.12 1.14	1644 1362 1029 999 1043	1 1 1	.03 .05 .06 .06	28 27 33 28 28	670 690 640 630 660	21 25 21 26 20	4 59 6 131 8 119 9 123 6 117	6 7 8	.10 .11	115.4 99.9 132.1 108.2	106 93 70	18 19 16 20 15	1 2 2 2	5 6	27 27 37 32 29	2
4-WC-016 4-WC-017 4-WC-018 4-WC-019	.1 1.39 .1 1.74 .1 2.75 .1 1.80	1 1 1	1 1 1 1	112 155 254 277	.2 .1 .1	10 1 10 1 14 1 10 1	1.13 1.02	.1	9 11 16 10	24 3.5 31 4.0 33 5.8 27 4.2	55 .0° 06 .0° 37 .0° 20 .0°	1 1 1 1		978 1156 9778 1083	1	.04 .05 .03 .06	21 27	690 670 1000 720	16 21 47 19	5 93 5 124 11 137 8 113	5 6	. 13	90.5	52 75	13 16 57 15	1 1 1 1	5 6	23 28 52 3 0	
									+	R	C	厦	V										<u></u>						
									+		HAL	19	1995	,	-														
									\perp	PROSE	PECT	ORŞ EMP	PRO	GRAM															
									_			LE IVII	<u> </u>		_[
		<u></u>																						<u> </u>					
	· · · · · · · · · · · · · · · · · · ·																									`			
_																	, ,							-					

COMP: RALPH KEEFE / TECH EXPLORATIONS

MIN-EN LABS — ICP REPORT

FILE NO: 48-0158-RJ1

P: RALPH KE J: WINFIELD N: RALPH KE	CREEK EFE											(604)9	980-58		FAX:((604)9	980-962	21											* ro	ock *	94/0 (ACT:
AMPLE UMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	J FE 1 %	. K	LI MPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	TI %	V PPM I	ZN PPM F	GA PM F	SN PM P	W CR	
4001 4002 4003	.2 .8 17.5	.44 .31 .24	17 21 19	1 1	26	.2 .3 .1	2 3 49	.27 1.12 1.71	.1 .5 2.8	2 3 3	31 136 >10000	.87 .76 1.77	.22 .14 .05	3 3	. 13 . 61 . 26	157 298 825	4 2 3	.02 .01 .05	6 9 9	40 40 460	9 15 19	5 4 11	14 30 13	5 . 8 . 5 .	.01 .01 .01 4	5.4 4.8 1.5	26 38 26	6 17 11	1 1 1	9 177 6 99 12 200	7
																						•						•			
																B															
												1	R	臣 ((P_	3 5	7 []	VE													·	
												+		JA	NT	9 19	95		+												
												<u></u> ↓ F	'ROS	3PEC	CTOR MEM	<u>is pi</u> IPR	ROGE	₹AM	+												
																										-					
		_ -		-	<u>-</u>				<u>-</u>	<u>-</u>			<u> </u>	<u>-</u>	<u>-</u>		_		-		-				_	•					
															<u>.</u>																
																														· - 	···································
									-																						
							_	_	August _				-																,		
				-												<u> </u>						-									
																												·			

MEMPR

ಕಣ್ಯಕ್ಷಿಣವರಿTORS PROGRAM

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

 B. TECHNICAL REPORT One technical report to be completed for each project are Refer to Program Requirements/Regulations, section 15, 10 If work was performed on claims a copy of the applicable supporting data (see section 16) required with this TEC 	6 & 17 : assessment report — may be submitted — in lieu of the CHNICAL REPORT.
Name Ralph R Keefe	Reference Number 94/95 P42
LOCATION/COMMODITIES Project Area (as listed in Part A) ATNA Location of Project Area NTS 93C 4/E Description of Location and Access Appr Charlotte Lake.	ox. 10 KM. South West of West end of
Access is approximately 31 KM. South of Main Commodities Searched For Au, Ag.	
Known Mineral Occurrences in Project Ar	rea_Cu_ADA.
WORK PERFORMED 1. Conventional Prospecting (area) Prospecting (area) Prospecting (area) Prospecting (area) Prospection (area)	pecting and silting of creeks.) m, total m)
SIGNIFICANT RESULTS (if any) Commodities Au, Aq (none significant) C Location (show on map) Lat 52°10' Location (sample type 52ppb (Au) .5 oz	laim Name <u>ATNA #1</u> ong 125°32' Elevation <u>6900 Ft.</u> Aq

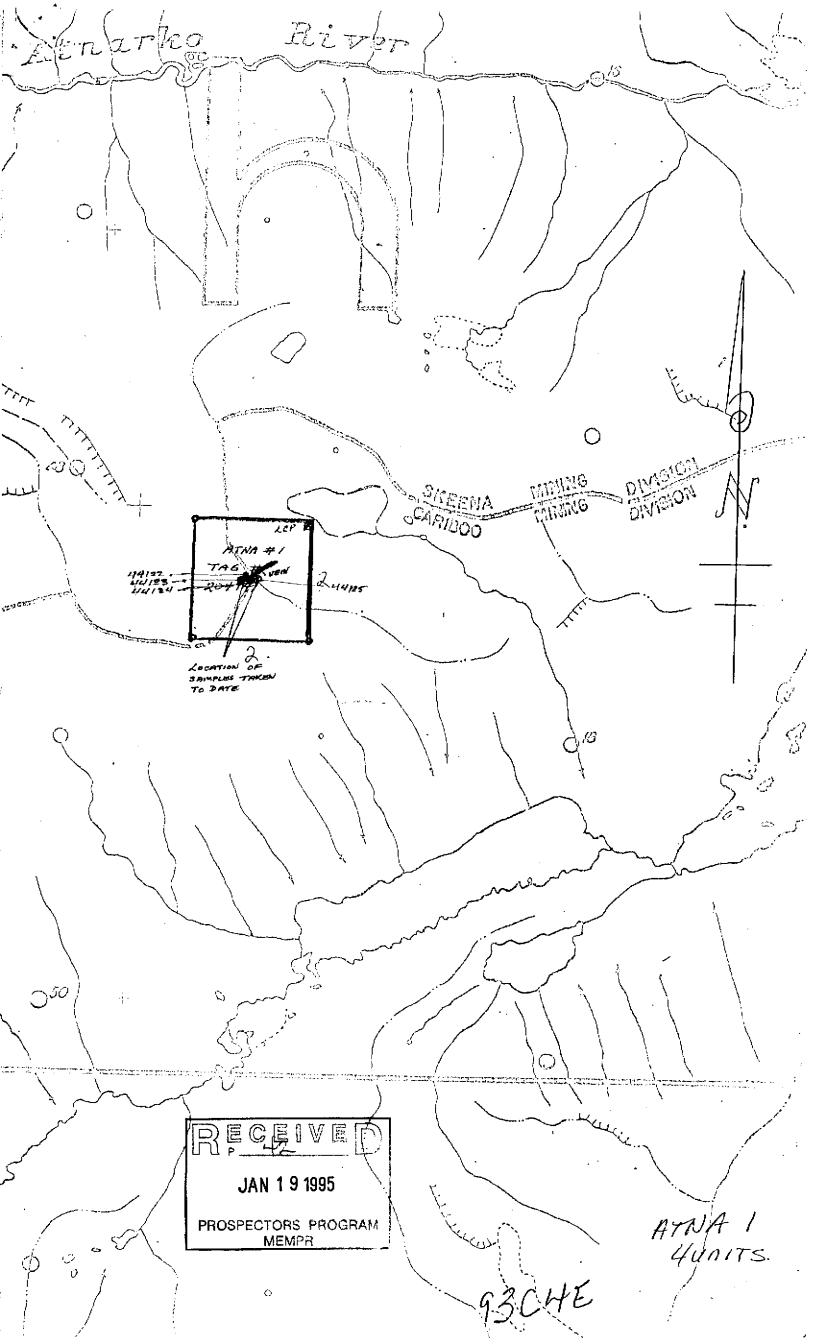
Description of mineralization, host rocks, anomalies An approximate 1-5 M. wide mineralized quartz vein was found near the contact between two different types of diorite. (coast plutons) Heavy talus and large boulders have prevented the obtaining of proper samples. Further work to be carried out in 1995. Large mineralized rocks from veins have been assayed, but most sulphides have oxidized out.

COMP: TECK CORPORATION

ATTN: Ralph R. Keefe

PROJ:

MIN-EN LABS - ICP REPORT


705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0965-RJ1+2+3 DATE: 94/09/23

* rock * (ACT:F31)

												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											IOCK	,	ACI . F3 I	,
	SAMPLE NUMBER	AG AL PPM %		B BA M PPM :	BE BI	CA %	CD CO PPM PPM	CU PPM	FE %		LI PPM	MG MN % PPM		IA NI % PPM			SB S PPM PP		TI %	V PPM	ZN C			CR A	u-Fire PPB	
لوسميرو ۱۳۶۷ ـ	44101- white	1.3 .74 .4 .51	1		1.6 15 2.0 11	.47 .12	.1 33 .1 24	559 581	7.35 6.96	.36 .51		93 293 37 294		2 45	460	39	15 24	9 1	.14	148.4	88	1 1	9	108	117	1
" "	44103 "	.6 .40	į	1 194	1.0 6	.13	1.1 18	190	2.82	.26	7 .	43 246	30 .0	05 23 04 14	120	24 20	8 4	28	.03	106.9	36 32	1 1	5	48 84	34 11	
RALPH R+D	44104 — " 44105 — "	.8 .97 .1 .19	1		1.7 15 2.2 9	.22 .20	.1 20 .1 71	552 197	6.43 12.43	.45		68 511 01 1	6 .0			38 2	21 3		.11	182.2 15.9	88 13	1 1	7 10 1	43 203	10 20	
	44106 - CUN - N 44107 - " -	3 .48 · .1 .48	1	1 206 1 54	1.2 11	.09	.1 10 .3 8	50 35	4.15 2.35	.50		69 459 83 567	15 .0			18 23	10 2 12 2	0 4 9 5	.09	31.7	34 36	1 1	7	99	24	1
	44108 - " - 44109 - " -	<i>"</i> .1 .81	į	1 61	1.6 10	.02	.1 13	155	4.75	.24	6 1.	38 753	4 .0	2 24	150	30	17 2	54	.08	24.8	45	3 1	9	69	7	
DARIL	44110- " - 6	esr 53.0 .38	<u>i</u>		.8 6 1.1 88	.06 .03	.1 4 .1 4	16 205	3.17 4.35	.25 .40	1:	08 88 19 82	15 .0 29 .0			6 40	5 3 9 4		.05 .03	12.8 20.0	11 44	1 1	6 7		>10000	1
",	44116 -	MANG 3 .40	1	1 359 1 246	.6 3 .5 4 .7 12	.14 .10	.1 3 .4 3	14 12	1.62	.36 .38		25 102 38 198	7.0		270 410	12 12	8 2 9 1		.01	10.8 16.2	20 28	3 1	6	96 106	74 60	
RMAN	44113 — " <i>Dieri</i> n	.5 .80 - 95.4 .21	1	1 274	.7 12 1.1 62	.52	.1 6	62 237	3.11 4.17	.61	3,	80 633 07 127	26 .0	8 12	900	22 32	15 14 4 3	3 1		41.4		2 1	6	63	16 >10000	
* ,,	44115 " " -	<i>■</i> 75.8 .21	i	1 399	1.1 54	.12	.1 4	173	4.81	.21	<u> 1.</u>	09 134	23 .0	14 14	210	28	5 2	0 1	.01	7.1	49	<u>i i</u>			>10000	
*	44117~ "	12.3 .37 14.0 .27	1	1 233	1.0 11 .8 15	.11 .13	.1 2 .1 3	116 141	3.65 3.70	.36 .24		11 61 07 132	9 .0			18 12	8 3 5 3 3		.01	11.5 17.3	42 51	1 1	7 '	121 52	4550 1643	
511RWN	44118- " MATT 94	200.0 .13 3.3 1.06	1 1	1 123	1.6 123 2.6 10	.36	.1 7	215 874	7.08 11.21	.13		02 328 04 78	25 .0 62 .0		210 190	27 19	3 21 10		.01	6.8 76.6		1 1	8 '		>10000 300-	L.
ri RoB	44120 — " 44121 — "	1.9 1.17	11		1.0 5 2.4 9	.07	.1 3	149 344	2.84	.22	5.	39 186	_66 .0	14	170	26	13 3	7 4	.01	25.7	32	4 1	9 '	144	280 -	
BARYL RALPH	44122 - ATMA 44123 - "	.5 .04		1 25	.3 4	.01	.1 1	36	8.21 1.13	.16	1 .	03 409 02 41	15 .0)1 5	80	42 5	30 3	1 1	.01	175.3 9.6	9	2 2	14 2	61 272	182- 52 25	"
4	44124 — "	1.3 .05 .2 .08	280	1 17 1 11	.9 4	.01 .02	.1 10	68 48	1.23 3.60	.03	1.	03 47 01 25	4 .0	11 18	160	5 7	3	5 1		9.9 19.2	11 12	7 1 1 1	18 3		22	
"	44126 - CUN- MAN	.1 .03 &x .1 .34	<u>3</u>	1 50 1 180	.2 <u>1</u>	.01	.1 6	16 111	.85 5.75	.08		01 21 43 624	15 .0			11	1 1: 5 2:		.01 .07	2.1 13.1	82	1 1 1 1	9 '	92 92	<u>8</u> 135	-
11	44127 - NACCO	25.7 .20 3.5 .19	1	1 72 1 117	.5 33 .3 19			>10000 5281	1.38	.17	1.	02 98 02 92	2 .0	19 20 13 7 15 4	220	374 · 54		3 4		59.6 8.6	55 34	i i	4	56 85	17 13	
~	44120 - CLIN 44129 - CLIN 44130 SILT-VISTA	1.1 .65 1.4 1.34	1	1 89	1.3 18 1.0 19	.38 1.02	1 17	1515 67	6.45 3.86	.21 .19 .31	8.	63 390 45 554	1 .0	4 55	470	17 37	12 4	3 3	. 15	50.9 114.3	47	i i 5 1		37	15	
?+⊅	44131 SILT- "	1.0 1.08	1	1 123	.9 15	.77	.1 9	41	2.90	.29	5 1.	25 439	5 .1	2 24	800	26	21 27	2 1	.18	82.6	52	4 1	10 1		<u>8</u>	
"	44132- MARY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	.3 .68 .1 1.90	1	1 42 2	1.2 5	.24 .71	.1 8	42 90	3.50 5.71	.50 .40	27 2.	56 172 75 794	10 .0 1. 5	1 38	1320	25 43	15 57 40 15	3 1		42.1 63.6	35 117	1 1 2 1		86 30	24 16	
	44134_ " " 44135 — " "	.9 1.26 .2 .29	1	1 123 1 45	.6 15 .7 2	1.33	.1 8 .1 6	34 22	2.81 2.14	.76 .35		22 601 09 21	5 .1 6 .0	4 17 11 19		35 13	27 23° 5 1°			81.9 12.4	60 7	4 1 1 1	10 1 2	12 34	9 18	
4	44136 - 4 " 44137 - " "	.1 .44 .1 .53	1		1.0 3 1.4 4	.07	.1 4	27 38	3.17 4.87	.41		13 28 63 128	10 .0			13 19	8 25 10 26	1	.01	18.3 20.9	12 24	1 1	6 1	10 49	17	
"	44138 — 4 " 44139 — 4 "	.1 .27 .1 .76	1	1 46	.8 2 1.7 8	.05	.1 7	25 40	2.61	.30	ĺ.	07 17 10 397	16 .0	1 20	310	13 32	5 2	2 1	.01	10.3	10	įį	7 1	25	16 14	
Busin	144140- " "	.8 .61	<u>i</u>	1 111	.8 9	2.01	.1 8	30	2.48	.35	4.	27 487	5 .0	3 21	720	19	12 139	7 1	.12	54.2 25.0	21	4 1 1 1	9 1		11 5	
•	44141 - " * 44142 - * "	1.1 1.14 1.2 2.34	1		.8 15 1.9 21	.91 1.82	.1 8 .1 16	31 32	3.09 6.72	.48 .53	12 1. 9 1.	07 496 06 627 28 631	6 .1		800 1300	32 52	24 20! 46 53			42.4 99.6		3 1 1 1	8 12 1	85 17	6 13	
4	44143 - " " 44144 - " "	.3 .60 1.4 1.12	1	1 24 1 71	.5 15	1.78 1.40	.1 4 .1 8	90 28	1.16 2.56	.27 .42		28 631 77 384	4 .0 5 .1			15	12 11! 23 224	5 1	.06	22.7 54.0	24	1 1	9 1	43	6	İ
"	44145 - " "	1.1 1.85 .8 1.56	1 1		1.2 20 1.7 21	1.69 .66	.1 13	39 60	6.04	.67 .59		39 945 11 768	7 .2		1050	47	38 29	1 1	.26	92.5	64	<u>1 1</u>	10	95	10	İ
"	44147 - " " 44148~ " "	.9 1.17 1.6 1.93	į	1 327	1.1 21	.59 1.53	1 13	61 38	4.73	.65	17 1.	76 880 56 789	3 .1	8 33	1050 1080	34 32	29 134 22 208	31.	.27	76.7 76.9	67 72	1 1	7	61 65	11	ĺ
RHD	44149 - " "	1.4 1.01	1	1 122	.9 22	.69	.5 11	58	4.62	.28	16 1.	37 783	6 .4	6 26	1060 1360		39 194 21 163	3 1		59.3		1 1 4 1		67	6 8	ł
*	44150 - * *	.1 .68	1	1 91	1.0 9 .8 7	.35	<u>.1 5</u>	21 13	3.51	.30		88 658 47 313	3.0		1360 1220	24 15	15 179 9 70			29.3 15.0	59 28	5 <u>1</u>	<u>6</u>	66 68	8	ł
• •	44152 " "	.1 .91	1	1 53	1.6 4	.21	.1 5		3.64	.18		37 402	3 .0		750		19 149			32.4		6 1	4	36	2	ł
																										l
Ì							·																			ł
+																										l
Į								,																		ł

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued) PROSPECTORS PRO

B. TECHNICAL REPORT	MEMPR
- One technical report to be completed for each proj - Refer to Program Requirements/Regulations, section	i 15, 16 & 17 dicable assessment report—may be submitted—in lieu of the chis TECHNICAL REPORT.
Name Ralph R. Keefe	Reference Number 94/95 P42
Location of Project Area NTS 93 C Description of Location and Access	MAYDOE Minfile # if applicable NIL 3/W Lat 52 03' Long 125 24' Approximately 12 Km. South of Charlotte inchy Lake) 35 Km. South of Nimpo Lake
Main Commodities Searched For Au.	Aq - Cu.
Known Mineral Occurrences in Project	ct Area <u>Cu.</u>
 Geological Mapping (hectares/scal). Geochemical (type and no. of sand). Geophysical (type and line km)	Silting of Creeks & Prospecting ale) mples) n in m, total m)
SIGNIFICANT RESULTS (if any) None and Commodities Au. Aq & Cu. Location (show on map) Lat Best assay/sample type Sample # 43 23.4 Ar. (Aq) (200 M. West & 30)	Claim Name <u>Maydoe M.C's # 1 - 12 incl.</u> Long Elevation
volcanics lying between two contresulted in the surface exposure of close enough to assume a connection	t rocks, anomalies <u>A large area of meta</u> acts of the wilderness tonalites has of two separate large gossans which are n below surface. There is good reason for as well as indications of a skarn. Druzy but most to date have not been

COMP: TECK EXPLORATION

ATTN: R. KEEFE / J. OLIVER

PROJ:

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 172

TEL:(604)980-5814 FAX:(504)980-9621

FILE NO: 4V-0567-RU1+2 DATE: 94/06/20

* * (ACT:#31)

SAMPLE NUMBER	AG PPM		AS PM :	B PPM	BA PPM	BE PPM	BI MPP	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	۲ PPM	PB PPM	SB PPM	SR PP M	TH PPM	TI %	V PPM	ZN PPM	GA PPM	SN PPM 1	W CR
43887 43888 43889 43890 43891	1.0 2. .9 1. .9 2.	13 52 20 94 49	10	1	12 39 173 64 32	.1	108 20 17 18	.07 .98 .57 .14		19 11 9 16 13	>10000 1499 159 110 72	5.27 3.46 3.76 5.37 4.18	.01 .12 .48 .65	1 9 21 18 27	.04 1.01 .91 .53 1.76	12 443 539 425 763	143 3 5 1	.01 .08 .11 .02	24 18 14 18 27	230 750 340 130 750	23 13 18 17 50	13 6 12 7 16	16 50 50 50 50 50 50 50 50 50 50 50 50 50	4 3 3 5 21	.23	8.8 94.3 107.5 107.5 110.3	118 61 55 31 70	1111119	12888	8 125 6 62 8 91 5 31 10 118
43892 43893 43894 43895 43896	1.3 2.	62 41 87 13 23	4	1	98 31 178 124 26	F3 - 4 - 5 F3 - 4	57 MO17	2.52 2.52 .36 1.25	.1	10M80N	74 11 55 64 24	3.29 .83 3.39 3.37 1.22	.30 .14 .56 .25	114 80 4	.94 .27 .71 .96 .20	492 215 532 625 394	8871-5	.16 .20 .09 .14 .13	21: 14: 16:3	330 970 320 430 370	78864M	9 21 9 20 19	34 332 430 50	0.0×617-3	.22 .07 .20 .20	33.3 23.5 91.0 100.0	9.6.609m 41.4.4m	MU170	NIMM: 101	9 122 7 96 1 7 96 1 7 31 1 7 58 7 108
43897 +3898 +3899 +3900 +3951	1.0 1.	57 39 39 33 5	•	•	4 M 9 6 9		PIDIN 64 4	1.30 .44 .54 .527		877562	111 79 24 29 13	5.15 6.78 2.58 5.30	50.1001 50.1001	22 23 36 1	1.54 1.33 1.35 1.48 1.02	744 370 413 634 537	• • • • • • • • • • • • • • • • • • • •	.11 .05 .08 .09 .01	20.000 20.000	0000 0000 0000 0000 0000 0000 0000	Ome the	owt we	WIN TO A	31 10:	3 4 NO 8 4	160.3 149.5 172.1 175.3	25 26 165	\$10 mg 17	-tatarata	3 58 3 58 0 17 0 75 0 75 0 75
43952 43953 43954 43955 43956		107 079554	• • • • • • • • • • • • • • • • • • • •	•	1556755 6356755		· jajamin			٠ ١٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	6510 110 120 134 44	.21 2.10 3.61 1.79 5.45	.01 .08 .11 .11 .06		. J1 .48 1.28 .54 2.57	36 310 678 298 792	314-42	.01 .09 .05 .05	337-7	10 530 560 300 960	1515 - 151 50615 - 15	जिस्त करान्त	30 37 28 28	٠- بالال هاد-	.01	3.3 40.3 105.1 27.2 171.4	37 51 20 186	STATE OF THE	ionatura	11 229 3 104 3 109 7 51
43957 43958 43959 43960 43961	7.414.3	33 49 92 33 16	•	•	94519-655 44519-655	•	01:0:0im	.59 .34 1.55 .30	•	18 18 20 21 2	47 53 85 50	5.64 6.42 7.49 7.43 .90	.188.133	11	2.79	764 1053 2739 2289 175	++++-(2)	.06 .06 .09 .08 .04	19 24 20 4 20 4	590 890 1190 330 240	MODWN.	511263	1-510-68 5-5-4-8	1100000	.42	93.7 270.2 259.3 280.2 22.3	72 94 164 190	0.6837	olmst am	7.9.9.0 557.40 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.00 1.0.0000 1.0.000 1.00
+3962 +3963 +3964 +3965 +3966	1.51.	315 436 36 36 36	•	*	+ 9 36 59 59		217	.33 1.21 .61 .24 1.01		1887 187 18	7 58 43 35 3	.58 6.50 3.37 2.31 4.67	.11 .05 .07 .36 .27	1964N	.14 3.52 1.22 .61 .30	139 1474 292 99 34	21-52-	. 05 . 03 . 06 . 03 . 08	48151814 N1 14	240 1150 540 540 590	PIO ROPO:	ng4mm	5000000 510000	137 On		16.3 246.2 115.0 29.5 69.1	2071-1	mololo	MWW	3 58 6 44 4 45 5 45
43967 43968 43969 43970 43971	1.1 2.	15 171 179 157		1	77 63 22 13 37	.1 .1 .2 .3	1457249	2.77 .47 .39 .52	.1	6 18 13 16 13	13 25 23 39 19	1.51 5.55 4.83 5.71 4.46	.14 .33 .13 .09 .25	15 12	.15 2.30 3.62 3.04 3.51	49 170 356 349 344	4 1 1 1	.21 .03 .04 .05 .04	3 20 19 18 16	950 320 950 1020 810	25.87.06 21.22 20.06	31 12 16 13 16	10 21 24 23 24	19 10 10 9	.22	67.4 170.3 285.3 240.6 283.2	18 41 38 51	120 140 140	เกษเกษาก	5 53 5 34 7 37 7 27 8 38
43972 43973 43974 43975 43976	.2 1.	21 16 31 18	1	1	39 56 14 5 14	.2	59 11 10 8	.06 .54 .43 .57	.1	5 10 14 14 7	5 61 13 52 26	2.76 3.68 4.17 4.34 3.73	.36 .29 .04 .02 .03	3 5	1.09 .57 2.13 1.27 .37	47 348 714 384 248	221111	.03 .07 .06 .08	15	490 750 1160 1090 1000	18 15 21 16 7	8 3 8 3	19 31 19 14 13	7 6 9 8 6	.03 .14 .17 .14 .11	42.3 66.0 130.3 74.6 91.2	5 32 81 43 16	13 6 18 13	1 1 3 1 1	3 19 6 67 5 34 5 36 4 44
43977 43978	.1 .	.30 .63	4	50	12 1	::	2	.21 .01	.1	17	23 92 :	.77 -15.00	.05 .01	2	.31 .01	156	5	.01 .01	7 71	260 5880	10	1	3 53	3	.03	14.0 361.4	24	7	1	12 236

JAN 1 9 1995

PROSPECTORS PROGRAM **MEMPR**

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

4V-0567-RA1

Company:

TECK EXPLORATION

Project:

Attn:

R. KEEFE / J. OLIVER

Date: JUN-20-94 Copy 1. Teck Exploration, Kamloops, B.C.

2. Ralph Keefe, François Lake, B.C.

We hereby certify the following Assay of 24 rock samples submitted JUN-14-94 by R. OWENS.

Sample	Au-Fire		
Number	g/tonne	e oz/ton	
43887	.50	.015	
43888	.02	.001	
43889	.01	100.	
43890	.05		
43891	.01	.001	
43892	. 0.5	.001	
43893	.02	.001	
43894	> KEAL GOLD .02	.001	
43895	01. كالانت كالم	.001	
43896	.01	.001	
43897	.02	.001	*
43898	.05	100.	
43899	.03	.001	BECLIVED
43900	.01		
43951	.01	.001	
43952_	.01	.001	JAN 1 9 1995
43953	. 02	.001	07/14 1 5 1000
43954) . 02		22222222222222
43955	.01		PROSPECTORS PROGRAM
43956	.01	. 001	MEMPR
43957	03 کے دیم یا بداری	.001	
43958	FISH LAKE 103		
43959 {	$20N^{o}$ 05	.001	
43960	. 04	100.	

Certified by

MIN-EN LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISIS - ASSAYERS - AMALYSIS - GEOCHEMISIS

VANCOUVER OFFICE:

705 WEST 15TH STREET NORTH VANCOUVER BC. CANADA V7M 112 1ELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

4V-0567-RA2

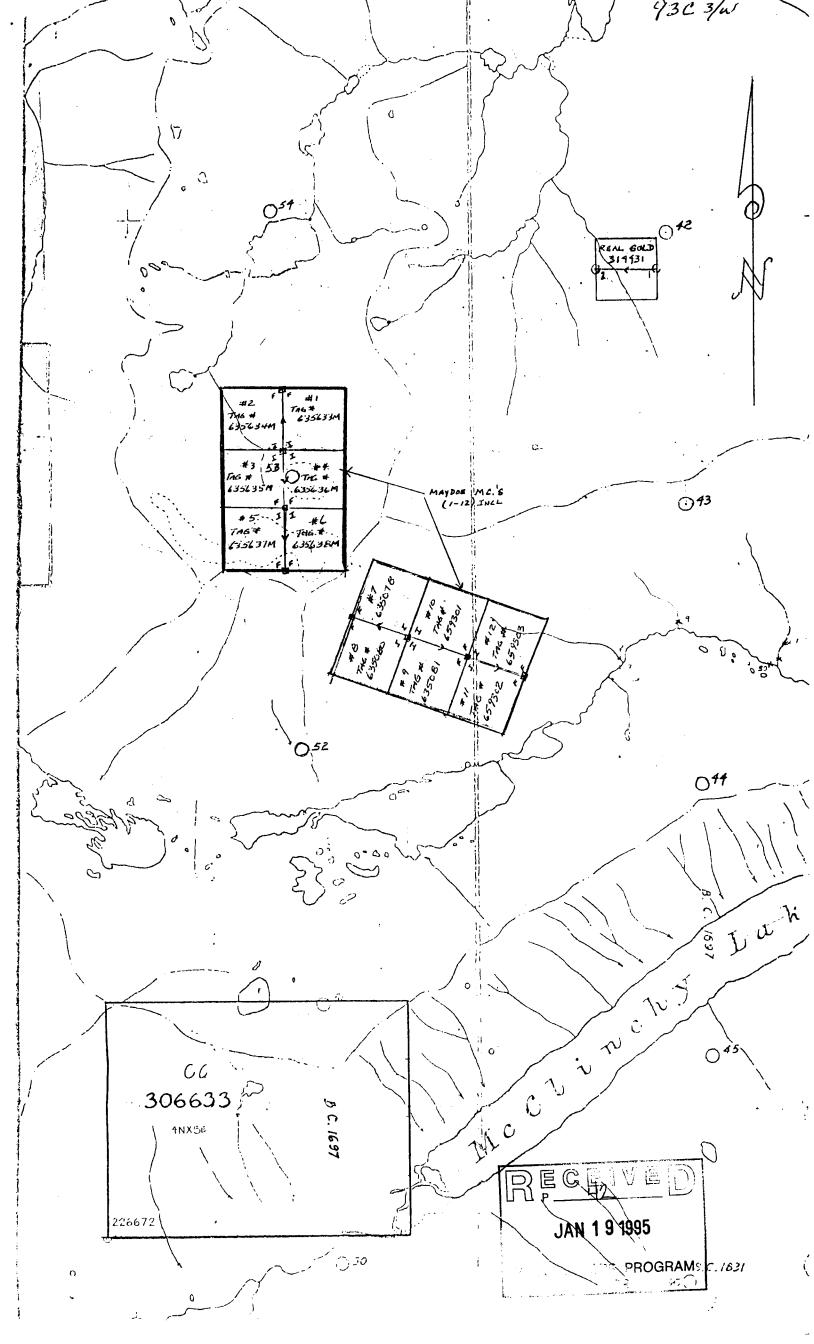
Date: JUN-20-94

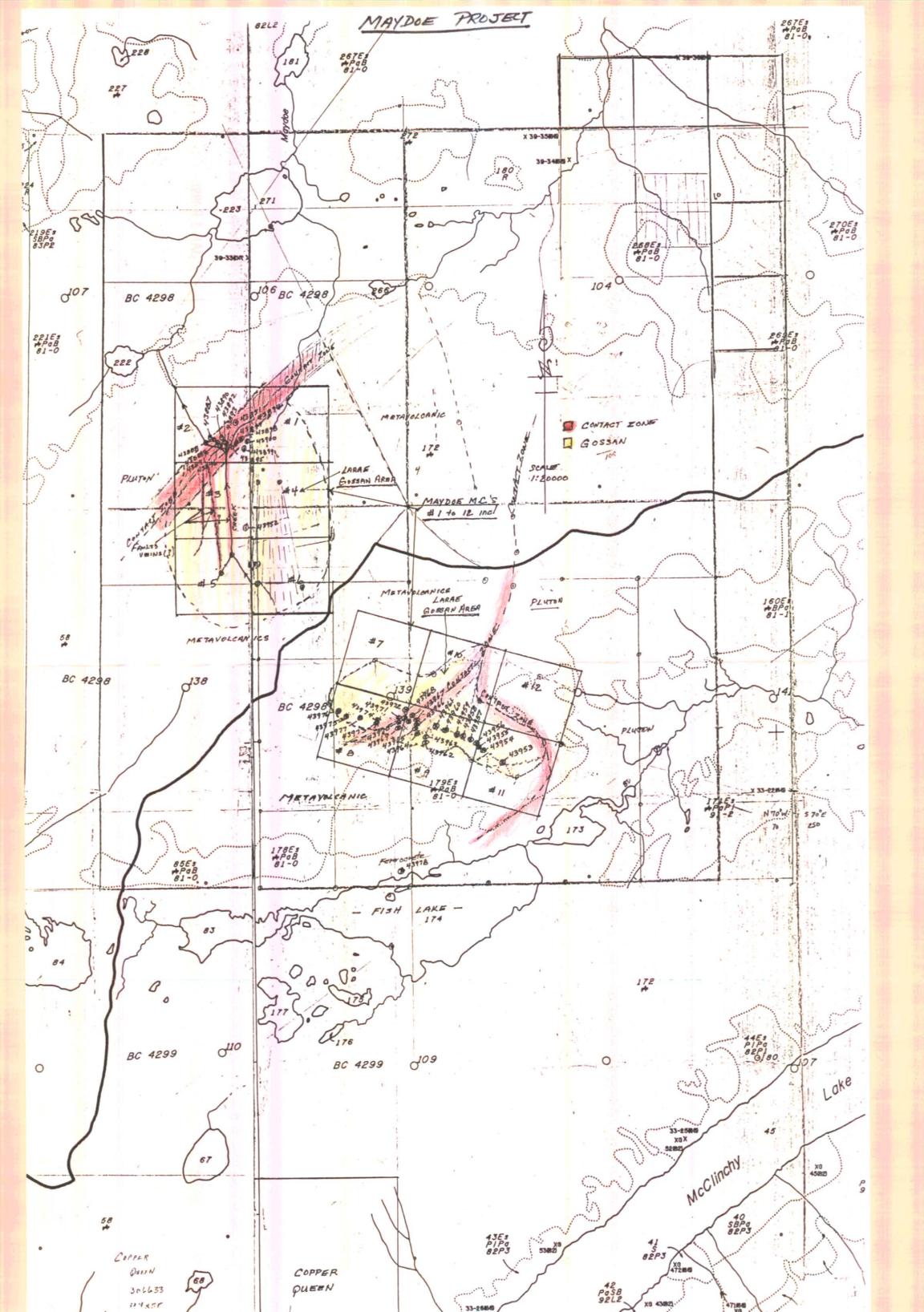
Copy 1. Teck Exploration, Kandoops, B.C.

2. Ralph Keefe, François Lake, B.C.

Company: Project:

TECK EXPLORATION


Attn: R. KEEFE / J. OLIVER

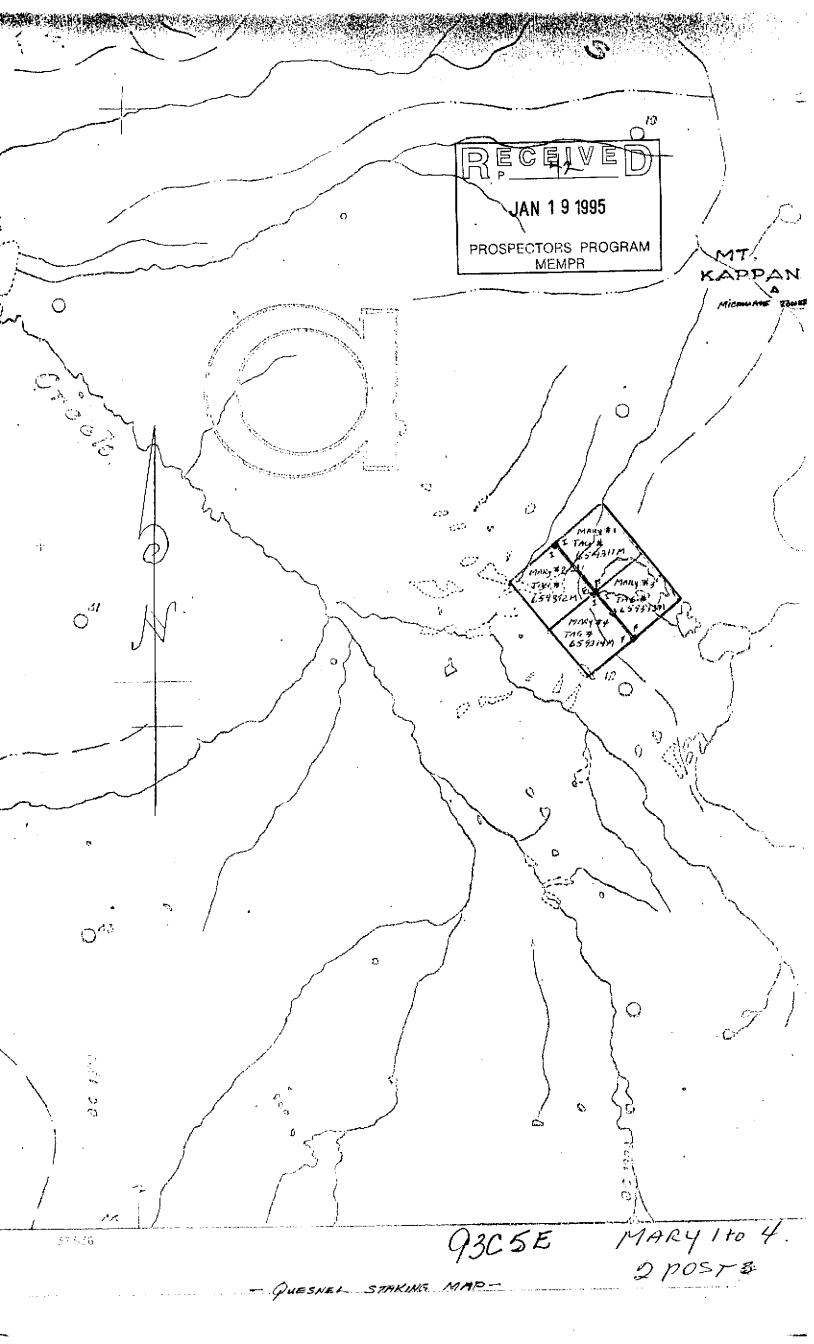

We hereby certify the following Assay of 18 ROCK samples submitted JUN-14-94 by R. OWENS.

Sample Number		-Fire tonne	Au-Fire oz/ton	
43961 43962 43963 43964 43965 43966 43967 43968 43969		.02 .04 .04 .03 .03 .01 .01 .01	.001 .001 .001 .001 .001 .001 .001	
43970 43971 43972 43973 43974 43975 43976 43977 43978	CISIT LAKE	.02 .04 .03 .02 .03 .02 .04 .02	.001 .001 .001 .001 .001 .001 .001	JAN-19-1995 OFFICE D JAN-19-1995 MEMPR

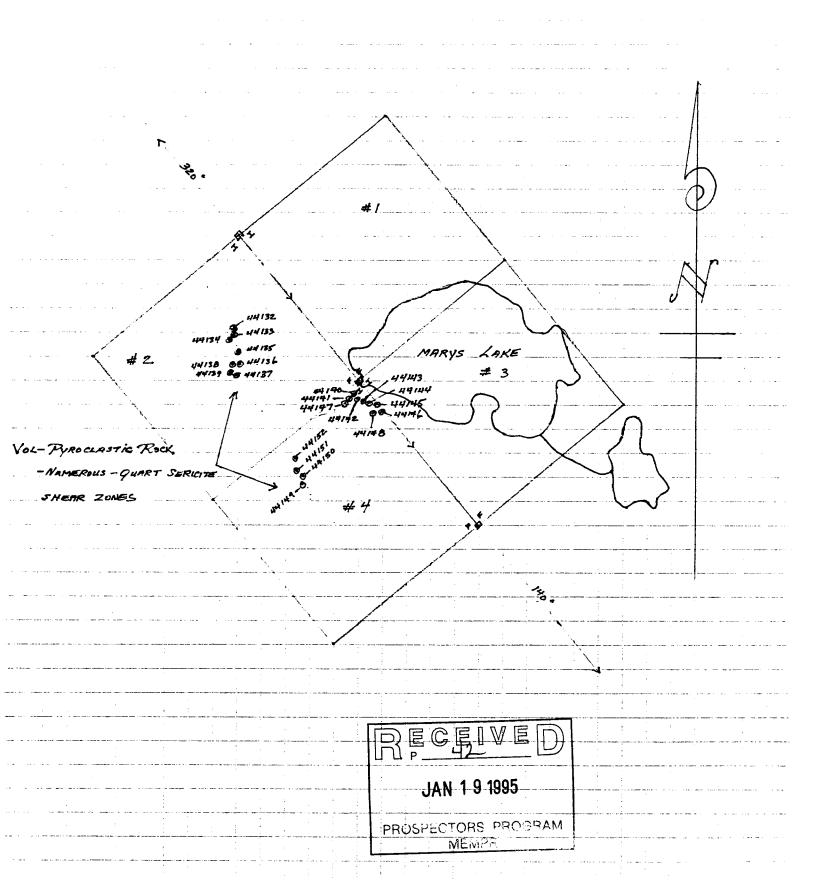
Certified by

MIN-EN LABORATORIES

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued) PROSPECTORS PROGRAM


TRAINITANT DENOUGH

JAN 19 1995


MEMPR

 D. IECHNICAL REPORT One technical report to be completed for each property of the Program Requirements/Regulations, sector of work was performed on claims a copy of the assupporting data (see section 16) required with 	ion 15, 16 & 17 pplicable assessment report—may be submitted— in lieu of the h this TECHNICAL REPORT.
Name <u>Ralph R. Keefe</u>	Reference Number 94/95 P42
LOCATION/COMMODITIES Project Area (as listed in Part A Location of Project Area NTS 93) <u>Mary #1 - #4</u> Minfile # if applicable <u>NII</u> C 5/E Lat 52 05' Long 125 30'
Description of Location and Acces Lake by helicopter.	ss_Approximately 22 KM south west of Nimpo
Main Commodities Searched For Au.	Ag.
	ect Area <u>Nil</u>
WORK PERFORMED 1. Conventional Prospecting (area) serecitic shear zones) 2. Geological Mapping (hectares/solutions) 3. Geochemical (type and no. of solutions) 4. Geophysical (type and line km) 5. Physical Work (type and amount 6. Drilling (no. holes, size, depolutions) 7. Other (specify)	Prospecting of outcrops (multiple quartz, cale) cale) amples) th in m, total m)
<u>SIGNIFICANT RESULTS (if any)</u> none Commodities	significant to dateClaim Name
Location (show on map) Lat Best assay/sample type	Claim NameElevation
Description of mineralization, hos	t rocks, anomalies Area staked, covered the

main body of a very large, highly altered zone consisting of multiple quartzserecitic shears ranging from .5 to over 20 m. in width. Numerous samples were taken on individual shears, to ascertain the presence of precious metals. No real favourable assays to date, but extremely strong system warrants further checking.

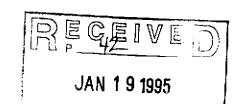
MARY M.C.'s # / to 4 TAG # 659311M to #659314M incl

COMP: TECK CORPORATION

PROJ:

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2


ATTN: Ralph R. Keefe

TEL:(604)980-5814 FAX:(604)980-9621

DATE: 94/09/2 * rock * (ACT:F31

FILE NO: 4V-0965-RJ1+2+

1																									- 100	.K "	(AU1:F31
	SAMPLE NUMBER	AG AL PPM %	AS PPM :		BA BE PM PPM	BI PPM	CA %	CD CO PPM PPM		FE %		LI PPM		AN MO PM PPN			P	PB	SB S	HT S	Ti	V	ZN	GA S	SN	W CR	Au-Fire
SHAWN	44101- WHITT	1.3 .74	1		45 1.6	15	.47	.1 33	559	7.35	.36	7	.93 29			45	460		15 24					PPM PI		M PPM	PPB
JARY-	44102 "	.4 .51	į	1 3	78 2.0	11	.12	.1 24	581	6.96	.51	ģ	.37 29			23	170	24	8 4			148.4 106.9		1		9 108 5 48	117 34
RALPH	44103 " 44104 "	.6 .40 .8 .97]		94 1.0 17 1.7			1.1 18			.26	7	.43 24		.04	14	120	20	9 3		.03	62.3	32	i	1	6 84	11
K4:D	44105 - "	.1 .19	i		20 2.2		.22	.1 20 .1 71		6.43	.45 .12	15	1.68 51 .01	1 14	.03	31 52	370 50	38 2	21 3			182.2 15.9		1	1	7 43	10
	44106 - CLIN - W		1		06 1.2	11	.09	.1 10			.50	5	.69 45		.05	16	270	18	10 2			31.7				0 203 7 99	20
	44107- "-	.1 .48	1		54 .9		. 14	.3 8	35	2.35	. 14	6	.83 56	57 6	.06	12	190	23	12 2		.02	20.2		7		9 141	24
	1,1,00	" .1 .81 " .1 .25]		61 1.6 28 .8		.02 .06	.1 13		4.75 3.17	. 24 . 25	6 '	1.38 75 .08 8		.02	24	150		17 2		.08	24.8		3	1	6 69	Ż
DARYL	44110- " - 6		i		04 1.1	-	.03	.1 4		4.35	.40	1	.19 8		.05	10 14	100 260	6 40	5 3 9 4		.05	12.8 20.0		1	_	6 104 7 124	6 >10000
*	44111- " FUHER		1	1 3	59 .6	3	.14	.1 3		1.62	.36	1	.25 10		7 .04	7	270	12	8 2		.01	10.8		3		6 96	74
// */	44112 - " " " 44113 - " DIORIT	14AM 63 .40 5 .80			46 .5		.10	-4 3		1.41	.38	1	.38 19	98 4	.03	10	410	12	9 1	3	.01	16.2		4		6 106	60 60
RALM	44114 - " Vein-	€ .5 .80 € 95.4 .21	1	1 4	74 .7 71 1.1		.52 .09	.1 6		3.11 4.17	.61 .21	3 1	.80 63 .07 12		.18	12 13	900 280	22 32	15 14: 4 3:		.15	41.4		2		6 63	16
"	44115 " " -	= 75.8 .21	1		99 1.1		.12	.1 4			.21	1	.09 13		.04	14	210	28	5 2		.01	5.3 7.1		1		7 132 7 139	>10000 >10000
"	44116 - " Wall Rec. 44117 - " "		1		76 1.0		.11	.1 2	116		.36	1	.11 6		.05	12	350	18	8 3	3 1	.01	11.5		1		7 121	4550
SHAWN	44117- " VUSTY 97	14.0 .27	1		33 .8 93 1.6		. 13 . 36	.1 3 .1 7	141 215	3.70 7.08	. 24	1	.07 13		.07	11	280	12	5 3		.05	17.3		1	1	3: 52	1643
"	44119 - WAITT	3.3 1.06			23 2.6		. 19	.1 51		11.21	.13	16	.02 32		.01	21 42	210 190	27 19	3 21 10		.01	6.8 76.6		1		8 168 5 55	>10000 300⊸i
-"-	44120 — "	1.9 .52	1		39 1.0		.07	.1 3		2.84	.22	5	.39 18		.04		170		13 3		.01	25.7		4		9 144	280 -
RoB PARYL	44121 - " 44122 - ATMA	1.9 1.17 .5 .04	1 185		61 2.4 25 .3		.01	.1 14			.16		2.03 40		.01	32	190		30 3			175.3		2		8 61	182-
RALPH	44123 — "	1.3 .05	93	1 :	25 .3 17 .3		.01	.1 1	36 68	1.13	.06	1	.02 4		.01	5 7	80 60	5 5	2 2	1 1		9.6 9.9		1		4 272 2 246	52 25
~	44124 - " 44125 - "	.2 .08			11 .9		.02	-1 10		3.60	.07	1	.01 2	25 4	.01	18	160	7	3	5 1	.01	19.2		i		8 348	25 22
## ² /,	44125 - CLIN- WAII	.1 .03	3		50 .2 30 1.4		.01	.1 1	16	.85	.08	1			.01	_6	70	_1_	1 1		.01	2.1	4	1		9 192	8
304 09 WW	44127 - WARKO	25.7 .20	1		30 1.4 72 .5			.1 6 1.0 1	111 >10000	5.75 1.38	. 14 . 17	2	43 62 02 9		.09	20 7	350 220	11 374 1	5 2 61 2		.07	13.1 59.6	82 55	1	- 2	6 92 4 56	135 17
" "	44128 — " 44129 — CUN	3.5 .19	1	1 1	17 .3		.05	-1 1		.74	.21	1	.02 9	2 4	.05	4	150	54	26 2	2 8	.01	8.6	34	1		5 85	13
	44130 SILT-VISTA	1.1 .65 1.4 1.34	1		39 1.3 40 1.0	18 19 1	.38	.1 17 .1 11	1515 67	6.45 3.86	.19 .31		.63 39 1.45 55		.04	55 32	470 990		12 43 29 29			50.9 114.3		1 5	•	5 37	15
- 22 .	44131 SILT- "	1.0 1.08	1	1 12	23 .9	15	.77	.1 9	41	2.90	.29		1.25 43		.12	24	800		21 27		.18	82.6		٠ ـ ـ		6 222 0 120	- 8
R135 ;	44132- MARY XCNS 44133- ""	.3 .68 .1 1.90	1		59 1.2 42 2.2	5 11	-24 -71	.1 8 .1 16		3.50 5.71	.50	5	.56 17	(2 10	.05		520	25	15 57	2 1	.03	42.1	35	ĩ		6 86	24
. "	44134_ " "	.9 1.26	i	1 12	23 .6		.33	.1 16 .1 8		2.81	.40 .76	7 1	2.75 79 1.22 60	/4 2)1 5	.11		1320 850		40 153 27 23		.07 .18	63.6 81.9		2		6 30 0 112	16
."	44135 — " "	.2 .29	1	1 4	15 .7		.09	.1 6		2.14	.35	1	.09 2		.01		600	13	5 1		.01	12.4	7	1		2 34	18
"	44136 - " "	.1 .44 .1 .53	1		76 1.0 57 1.4		.07 .16	.1 4	27	3.17	.41	1		28 10		16	560	13	8 2		.01	18.3	12	1	1	6 110	17
	44138 - "	.1 .53 .1 .27	i		6 .8		.05	.1 13	38 25	4.87 2.61	.42 .30	5 1	.63 12 .07 1		.02	37 20		19 13	10 26 5 27		.01	20.9		1		4 49 7 125	16 14
4	44139 - " "	.1 .76	1		1.7	8	.30	.1 11	40	6.55	.37	8 1	1.10 39	77 11	. 05	37	860	32	16 49	7 1	.04	54.2		4		6. 62	11
Redusion	<u> 44140- " " " " " " " " " " " " " " " " " " "</u>	.8 .61		1 11		9 2		.1 8	30	2.48	.35		.27 48			21	720		12 139		.12	25.0		1	1	9 150	5
•	44142 - "	1.1 1.14 1.2 2.34	1	1 13 1 18		15 21 1	.91 .82	.1 8 .1 16	31 32	3.09 6.72	.48 .53		1.07 49 1.06 62		.14		800 1300		24 205 46 532		.18	42.4 99.6	51 63	3		8 85	6
4	44143 ~ "	.3 .60	1	1 2	24 .3	5 1	.78	.1 4	90	1.16	.27	3	.28 63	31 4	.09	9	430	15	12 115	1	.06	22.7	63 24	1		2 117 9 143	13 ! 6 i
"	44144 _ " "	1.4 1.12 1.1 1.85	7 1	1 7	71 .5	15 1 20 1		.1 8	28 39	2.56 4.49	.42 .67		.77 38 1.39 94				810 1050	23 47	23 224	. 1	.18	54.0	34	-	1 1	1 151	5
"	44146 - ^ "	.8 1.56	1	1 16			.66	.1 18	60	6.04	.59		2.11 76				1050		38 291 29 134			92.5	64	1		0 95	10
u	44147 - " "	.9 1.17	į	1 32	27 1.1	21	.59	.1 13	61	4.73	.65	17 1	1.76 88	30 Ž			1080		29 134			76.7 76.9	67 72	1	-	8 61 7 65	11
R+D	44148- " "	1.6 1.93 1.4 1.01	1	1 29		23 1. 22		.1 13	38 58	4.77			.56 78	9 6	.40	31 '	1060	49	39 194	1	.30	118.3	79	1	1 1	3 138	6
K	44149 - "	.1 .68	1	1 13			.69 .35	.5 11	21	4.62 3.51	.28 .34		1.37 78 .88 65						21 163 15 175			59.3 29.3		4 5		7 67 6 66	8 4
"	44151 - " "	.1 .44	1		1 .8		.22	.1 4	13	3.20	.30		.47 31				1220	15	9 70			15.0	28	1		4 68	8
• •	44152 - " "	.1 .91	1	1 5	3 1.6	4	.21	.1 5	27	3.64	. 18		.37 40						19 149	ż		32.4	62	6		4 36	2
	}																										1
ļ																											
•																											

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

ORS PROJEMM MEMPR

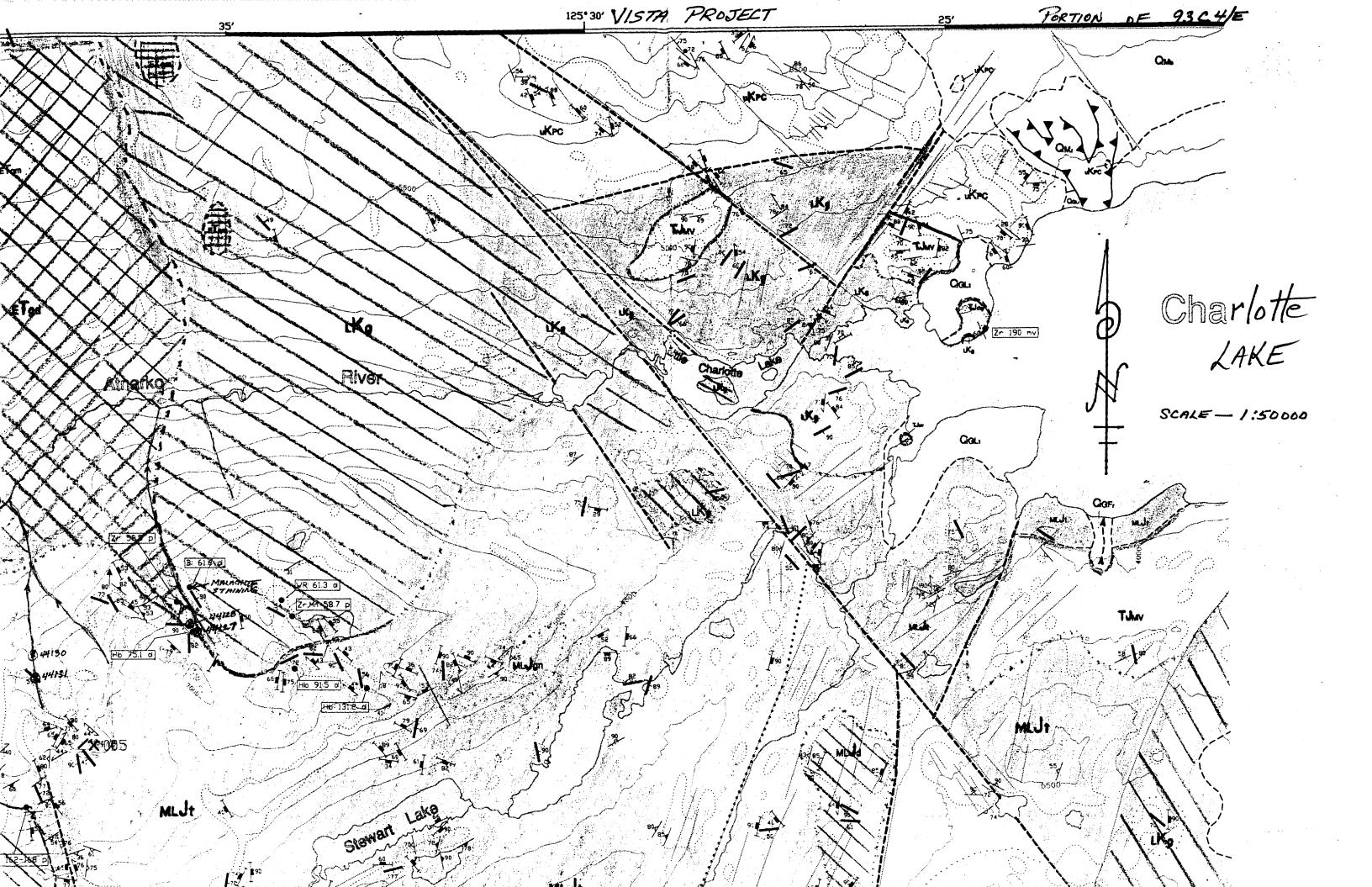
 B. TECHNICAL REPORT One technical report to be completed for 	each project area
- Refer to Program Requirements/Regulation	os, section 15, 16 & 17 of the applicable assessment report—may be submitted—in lieu of the
Name <u>Ralph R Keefe</u>	Reference Number 94/95 P 42
LOCATION/COMMODITIES Project Area (as listed in P Minfile # if applicable 005	
Location of Project Area NTS Description of Location and	93/C 4/E Lat 52 10' Long 125 37' Access Approx. 13 1/2 KM S.W. of west end of 33 1/2 KM. south of Nimpo Lake by helicopter.
Main Commodities Searched Fo	r Cu, Au, and Ag
Known Mineral Occurrences in	Project Area ADA, Cu. MINIFILE Nb. 005
WORK PERFORMED 1. Conventional Prospecting 2. Geological Mapping (hecta 3. Geochemical (type and no. 4. Geophysical (type and lin 5. Physical Work (type and a	, depth in m, total m)
SIGNIFICANT RESULTS (if any) Commodities No results at t Location (show on map) Lat_ Best assay/sample type	his time. Claim Name Elevation
was within the Coast Pluton	n, host rocks, anomalies entire area prospected is, the ADA Cu showing could not be located on azurite staining observed, two creek silts

COMP: TECK CORPORATION

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: Ralph R. Keefe


PROJ:

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 4V-0965-RJ1+2+3 DATE: 94/09/23

* rock * (ACT:F31)

· [SAMPLE NUMBER	AG PPM		AS E		BE PPM	B I Mqq	CA %	CD PPM P		CU PPM	FE %		L [MN M PM PP		NI Mqq		PB :		TH PPM	TI %			GA SI	I W CF	Au-Fire
SHAWN DARYL RALPH RAD	44101- WHITE 44102- " 44103- " 44104- " 44105- "	1.3	.74 .51 .40 .97	1 1	145 378 194 217 20	1.6 2.0 1.0 1.7 2.2	15 11 6 15 9	.47 .12 .13 .22 .20	.1 .1 1.1	33 24 18 20 71	559 581 190 552	7.35 6.96 2.82 6.43 12.43	.36 .51 .26 .45	7 9 7	.93 2 .37 2 .43 2 1.68 5	93 94 7 46 3 11	4 .12 0 .05 0 .04 6 .03 4 .02	45 23 14 31 52	460 170 120 370 50	39 24 20 38 2	15 249 8 44 9 32 21 37 1 18	1 . 1 . 8 . 1 .	14 1 08 1 03 11 1 03	48.4 106.9 62.3 182.2 15.9	88 36 32 88 13	1 1 1 1 1	9 108 5 48 6 84 7 43	117 34 11
DAKYA	44110- " - 5	" .1 " .1 " .1 IST 53.0	.48 .48 .81 .25 .38	1 1 1 1 1 1	206 1 54 1 61 1 128 1 204	1.2 9 1.6 .8 1.1	11 6 10 6 88	.09 .14 .02 .06 .03	.3	10 8 13 4 4	16 205	4.15 2.35 4.75 3.17 4.35	.50 .14 .24 .25 .40	5 6 6 1 1	.19	67 53 88 1 82 2	5 .05 6 .06 4 .02 5 .05 9 .05	16 12 24 10 14	100	23 30 6 40	10 20 12 29 17 25 5 31 9 46	5 . 4 . 1 .	02 08 05 03	31.7 20.2 24.8 12.8 20.0	34 36 45 11 44	1 7 3 1	7 99 9 14 6 69 6 104 7 124	7 7 6 >10000
11 11 11 11 11	44113 - " DIORIT 44114 - " VOID - 44115 - " " -	~~~6.3 ≤ .5 ≤ 95.4 ≤ 75.8	.35 .40 .80 .21 .21	1 1	1 359 1 246 1 274 1 471 1 399	.6 .7 1.1 1.1	3 4 12 62 54	.14 .10 .52 .09 .12	.1 .1 .1	3 6 3 4	14 12 62 237 173	1.62 1.41 3.11 4.17 4.81	.36 .38 .61 .21 .21	1 1 3 1	.25 1 .38 1 .80 6 .07 1 .09 1	98 33 27 2 34 2	7 .04 4 .03 2 .18 6 .05 3 .04	13 14	280 210	32 28	8 20 9 16 15 143 4 32 5 20	3. 1. 1.	.01 .15 .01 .01	10.8 16.2 41.4 5.3 7.1	20 28 65 77 49	3 4 2 1 1 1	6 96 6 106 6 63 7 133 7 139	60 16 2 >10000 2 >10000
. ห <u>รหล</u> ุพพ	44116— " WAIRE 44117— " " " " 44118— " WAIR GT 44119— WAIT 44120— "	14.0 2>200.0 3.3 1.9	.52	1 1	1 276 1 233 1 93 1 123 1 89	1.0 .8 1.6 2.6 1.0	11 15 123 10 5	.11 .13 .36 .19 .07	.1 .1 .1 .1	2 7 51 3	874 149	3.65 3.70 7.08 11.21 2.84	.36 .24 .13 .27 .22	1 1 16 5	.39 1	32 28 2 78 6 86 6	9 .05 4 .07 5 .01 2 .06 6 .04	12 11 21 42 14	280 210 190 170	26	8 33 5 31 3 2 21 102 13 37	1 . 1 . 1 . 4 .	.05 .01 .01 .01	11.5 17.3 6.8 76.6 25.7	42 51 63 15 32	1 1 4		1643 >10000 300-14 280-
PAB PARYL RALPH	44121 — " 44122 — ATMA 44123 — " 44124 — " 44125 ~ "	1.3 .2 .1	.04 .05 .08 .03	1 185 93 280 3	1 61 1 25 1 17 1 11 1 50	2.4 .3 .9 .2	9 4 2 4 1	.01 .01 .01 .02 .01	.1 .1 .1 .1	14 1 4 10 1	344 36 68 48 16	8.21 1.13 1.23 3.60 .85	.16 .06 .03 .07	1 1 1	.03 .01 .01	41 47 25 21 1	5 .01 5 .01 4 .01 4 .01 5 .01	6	190 80 60 160 70	5 7 1	30 38 2 21 6 5 3 6 1 15	1 . 1 . 1 .	.01 .01 .01 .01	9.6 9.9 19.2 2.1	365 9 11 12 4	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 6 14 27 1 12 24 1 18 34 1 9 19	52 25 22 8
SHAMON SHAMON S	44126 CLIN-WAII 44127 NARRO 44128 " 44129 CLIN 44130 SILT-VISTA	25.7	.34 .20 .19 .65 1.34	1 1 1 1 1	1 180 1 72 1 117 1 89 1 140	1.4 .5 .3 1.3	9 33 19 18 19	.33 .06 .05 .38 1.02	.1 1.0 .1 .1	1 17	111 10000 5281 1515 67	5.75 1.38 .74 6.45 3.86	.14 .17 .21 .19 .31	2 1 1 8 7		98 92 90	2 .09 2 .03 4 .05 1 .04 6 .13		470	574 1 54 17	5 25 61 23 26 22 12 43 29 294	8 3	.01 .01 .15	13.1 59.6 8.6 50.9 114.3	82 55 34 47 63	1 1 1 5	1 6 93 1 4 56 1 5 89 1 5 37 1 16 22	17 13 15
R-37	44131 SILT-" 44132- MARY XCNE 44133- " 44134- " 44135- "	.1	1.08 .68 1.90 1.26	1 1 1 1	1 123 1 59 1 42 1 123 1 45		15 5 11 15 2	.77 .24 .71 1.33 .09	.1 .1 .1 .1	9 8 16 8 6	41 42 90 34 22	2.90 3.50 5.71 2.81 2.14	.29 .50 .40 .76 .35	27 7	1.25 4 .56 1 2.75 7 1.22 6	72 1 '94 01	5 .12 0 .05 5 .11 5 .14 6 .01	22	520 1320 8 50	25 43	21 272 15 52 40 153 27 231 5 17	1 .	.03 .07 .18	82.6 42.1 63.6 81.9 12.4	52 35 117 60 7	4 2 4 1	1 10 120 1 6 80 1 6 30 1 10 110 1 2 34	24 16 9
n n n n	44136 ~ " " 44137 ~ " " 44138 ~ " " 44139 ~ " "	.1 .1 .1 .8	.44 .53 .27 .76 .61	1 1 1 1	76 1 57 1 46 1 71 1 111	1.4		.07 .16 .05 .30 .30	.1	13 7 11 8	27 38 25 40 30	3.17 4.87 2.61 6.55 2.48	.41 .42 .30 .37 .35	1 5 1 8 4	.13 .63 1 .07 1.10 3 .27 4	28 17 1 97 1	0 .01 5 .02 6 .01 1 .05 5 .03		310 860	13 32	8 25 10 26 5 22 16 49 12 139	1 .	.01 .01 .04	18.3 20.9 10.3 54.2 25.0	12 24 10 45 21	1 1 4	1 6 111 1 4 49 1 7 129 1 6 60 1 9 151	16 14 11
4 4 4 4	44141 - " " 44142 - " " 44143 - " " 44144 - " " " 44145 - " "	1.1 1.2 .3 1.4 1.1	2.34 .60 1.12	1 1 1 1	1 131 1 180 1 24 1 71 1 158	.3 .5	21 5 15	.91 1.82 1.78 1.40 1.69	.1	8 16 4 8 13	31 32 90 28 39	3.09 6.72 1.16 2.56 4.49	.48 .53 .27 .42 .67	3 6	1.07 4 1.06 6 .28 6 .77 3 1.39 9	27 31 84	6 .14 7 .54 4 .09 5 .17 7 .25	9 20	1300 430 810	52 15 23	24 205 46 532 12 115 23 224 38 291	1 .	.06 .18	42.4 99.6 22.7 54.0 92.5	51 63 24 34 64	3 1 1 4	1 8 8! 1 12 11 1 9 14: 1 11 15: 1 10 9!	13 6 5
# # # # # # # # # # # # # # # # # # #	44146 - " " 44147 - " " 44148 - " " 44149 - " " 44150 - " "	.8 .9 1.6 1.4		1 1 1 1	1 166 1 327 1 290 1 122 1 134	1.1 1.1 .9	21 21 23 22 9	.66 .59 1.53 .69	.1 .1 .1 .5	18 13 13 11 5	60 61 38 58 21	6.04 4.73 4.77 4.62 3.51	.59 .65 1.15 .28 .34	17 16	2.11 7 1.76 8 1.56 7 1.37 7	80 89 83	3 .14 2 .08 6 .40 5 .06 4 .08	33 31 26	1050 1080 1060 1360 1360	32 49 29	29 134 22 208 39 194 21 163 15 175	1 .	.27 .30 1 .26	76.7 76.9 118.3 59.3 29.3	67 72 79 74 59	1 1 4 5	1 8 6 1 7 6! 1 13 13! 1 7 6 1 6 6	6 8
	44151 - '\ " 44152 - " "	.1	.44 .91	1	1 91 1 53	.8 1.6	7	.22	.1 .1	4 5	13 27	3.20 3.64	.30 .18		.47 3 1.37 4		3 .05 3 .05		1220 750	15 32	9 70 19 149	1 . 2 .		15.0 32.4	28 62	1 6	1 4 64 1 4 36	

∷EMPR

PROSPECTORS PROGRAM

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

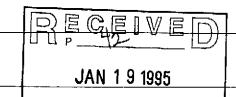
B. TECH	INICAL REPORT	
	nical report to be completed for each pro	
	Program Requirements/Regulations, section	n 15, 16 & 17 blicable assessment report—may be submitted—in lieu of the
	$\mathbf{n_g}$ data (see section 16) required \mathbf{with}	
Name	Ralph R Keefe	Reference Number 94/95 P 42
	N/COMMODITIES	
Project	Area (as listed in Part A)	<u>DOME</u> Minfile # if applicable NIL
Locatio	n of Project Area NTS <u>93L</u>	.0/E Lat 54°47' Long 126°36'
Descrin	tion of Location and Access	Approx. 2 KM. both west and north west
of the	iunction of Northwoods mai	n haul road and Habsburg residence Resources
Access	road to Dome Mountain Mine	s. (note:this is part of my on going
dovolo	opment plan).	s. thore this is part of my on doing
develo	phene plan /.	
Main Co	mmodities Searched For <u>Au</u>	•
Known	Mineral Occurrences in Pro-	ject Area Dome Mountain Mines (within 4_
	I.C. D. D. C. T. C. D. C. T. C.	
	RFORMED	
1. Conv	entional Prospecting (area)	Conventional prospecting.
2. Geol	ogical Mapping (hectares/sc	ale)
		mples)
4. Geop	hysical (type and line km)_	
5. Phys	ical Work (type and amount)	
6. Dril	ling (no. holes, size, dept	h in m, total m)
7. Othe	r (specify)	
SIGNIFI	CANT RESULTS (if any)	
Commodi	ties	Claim Name Elevation
Locatio	n (show on map) Lat	Long Elevation
Best as	say/sample type	
Doggania	tion of minoralization has	t rocks, anomalies 2 new log blocks taken
Descrip	nonth and aids of Dama Ma	en in winter of 93/94. One elevated access
out on	more from gogordeny hour	IN in winter of 93/94. One elevated assay
on bea	rock from secondary hauf ro	oad. No indication of any new veins on
tnis 1	nspection, host rock-pyroci	astic volcanic assemblage.

COMP: MR RALPH KEEFE

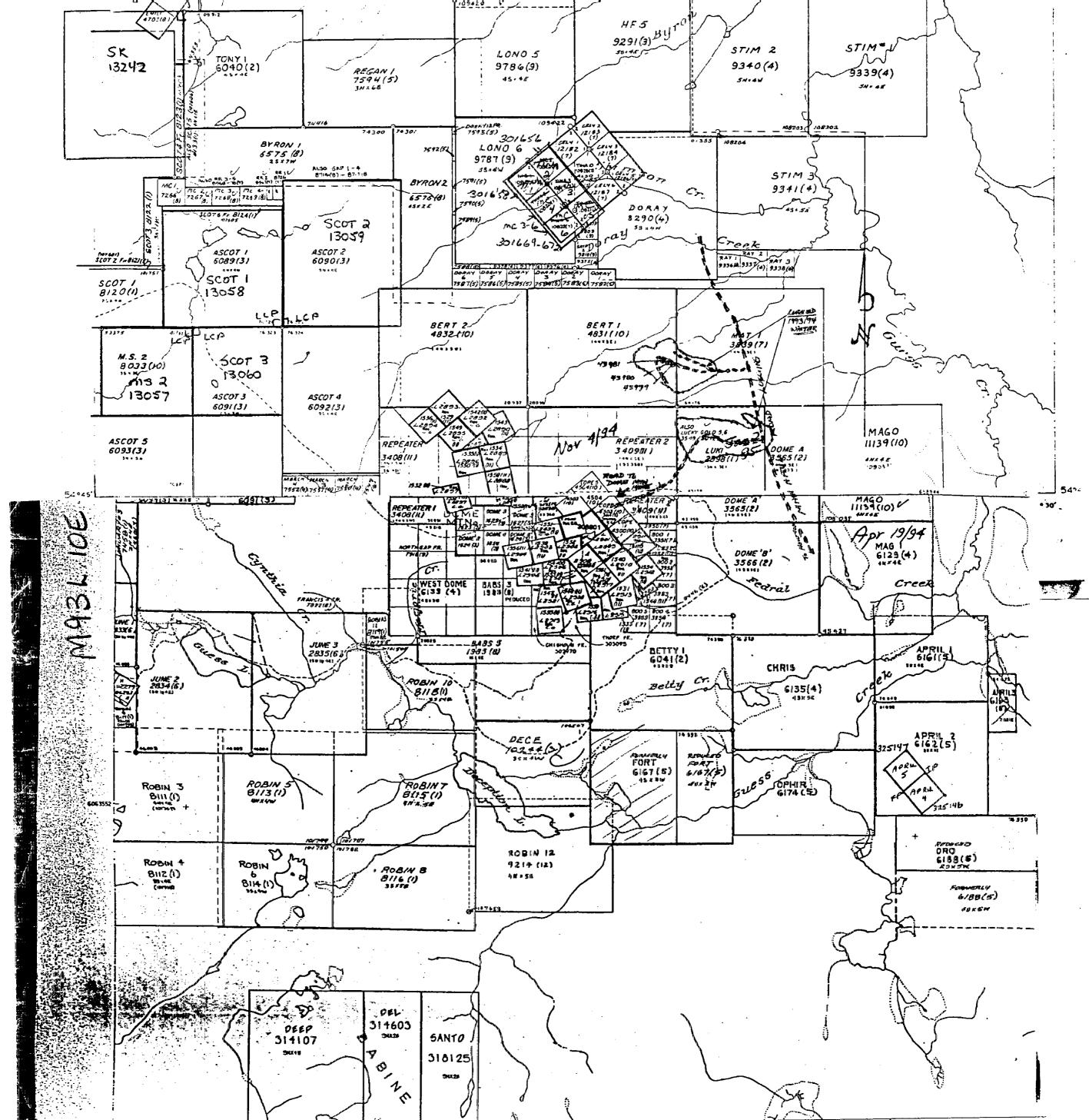
ATTN: Ralph Keekfe

PROJ:

MIN-EN LABS — ICP REPORT


705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

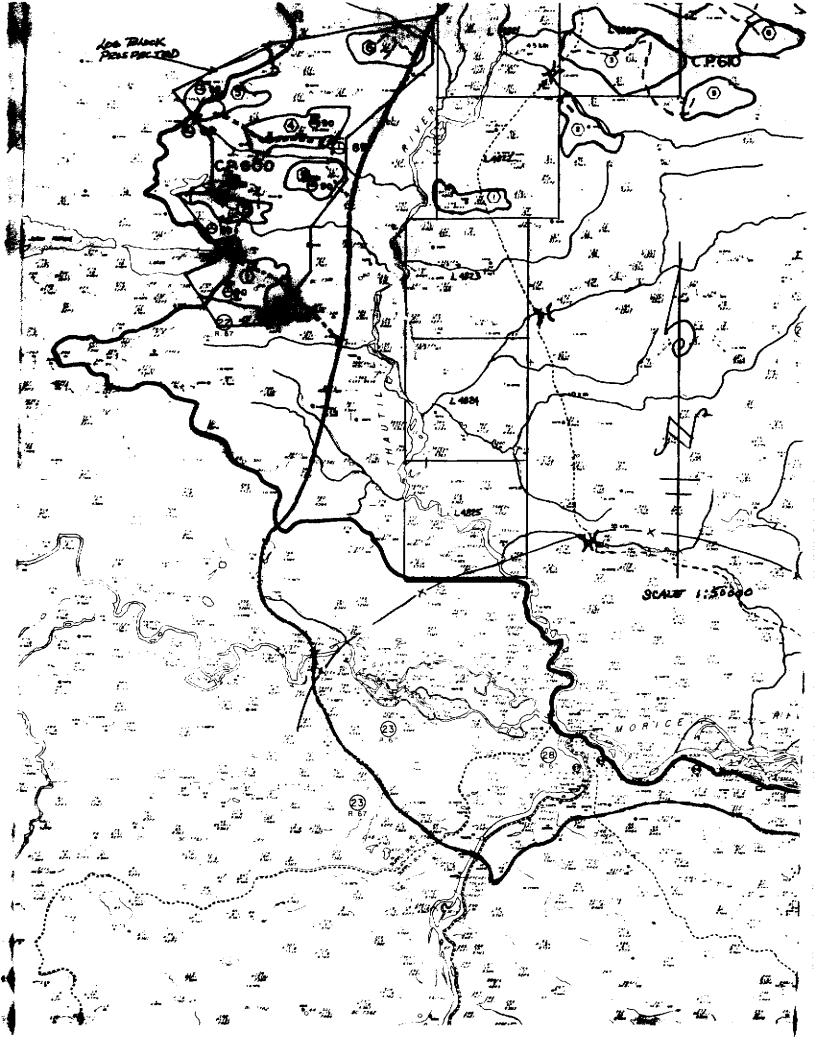
TEL:(604)980-5814 FAX:(604)980-9621


FILE NO: 48-0176-RJ1 DATE: 94/08/11

* rock * (ACT:F31)

	SAMPLE NUMBER	AG PPM	AL %	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI PPM	MG %	MN PPM	MQ PPM	NA %	N1 PPM	P PPM	PB PPM	SB S		TI %	V Z PPM PF	N G			Au-Fire PPB
J ens	43979 Dane / 43980 Dane / 43981 - Dane	414 · 1 1 .	25 06 10	1 1	1 1	258 193 382	.3 .3 .4		2.07 2.33 L.60	.1	5 8 18	38 31 103	3.60 3.17 4.43	.10 .12 .22	8 5 15	.73 .80 1.70	458 496 898	1 1	.10 .11	14 13 20	580 610 480	16 17 29	2 2 1 2 7 3	2 6 6 6 1 10	.01 .01 .01	62.4 10 48.6 8 68.5 4	5 1 5 1	1 1	3 24 4 41 4 31	5 0
Nifeld	43982 WMAKA - 43986		83 25	-1 -	-1	25 107	<u>-3</u>	32 č	. 80 . 80		3 t	59 <u>32</u>	1.53 2.75	.03	3	.28 .64	322 406	4	.09	11	200 670	- 26	22 °	1 2	.07	69.4	6 2	' '	13 195	12
, JND	43987 43988 43989 43990 43991	1.1 2. .1 .	05 88 88 17	1 1 1	1 1 1 1	48 92 85 7 132	.1 .2 .2 .1	17 1 6 5 22	.19 .36 .23 .95	.1	22 5 5 16 5	200 119 200 259 13	5.04 4.50 4.57 10.79 4.60	.12 .21 .26 .07	11 8 5 22	1.64 .36 .10	583 241 230 1104 472	2 3 169 1	.16 .06 .06 .04	16 14 29	1350 220 400 2590 1170	10 19 10 5 18 12	3 8 1 3 1 2 1 8	8 7 0 8 0 4 0 10		110.4 4 24.1 2 12.4 1 147.6 11 24.6 2	1 1/2 1/3	2 2 4 3 3 1 1 1 7 3	8 74 7 112 8 148 7 31 8 128	3 1 2 27 27
	43992 % >>> M 43993	.1 2.	76 39 14	1 1 1 1 1	1 1 1	158 222 141 198 176	.2 .4 .2 .4 .7	2 6 2 3 4	.06 .18 .06 .23 .14	.1	1 10 2 3 8	11 7 18	1.17 3.98 1.77 1.63 3.90	.35 .80 .30 .47 .62	1 5	.21 1.64 .31 .91 1.84	57 295 157 400 320	2 3 2 4 4	.05 .06 .08 .07 .03	4 18 10 10 27 40	440 510 370 400 480 320	20 4 15 24 29	2 1 6 2 1 1 6 1 8 2 5 2	2 3 4 6 2 13	.01 .05 .01 .01 .01	71.8 8 15.6 1 19.8 4	0 ! 3 10 7 6 8 1 3 1	5 1 5 2 4 1 7 2 7 2	4 67 8 108 7 124 7 106 6 65 14 226	6 16 7 5 12

PROSPECTORS PROGRAM MEMPR

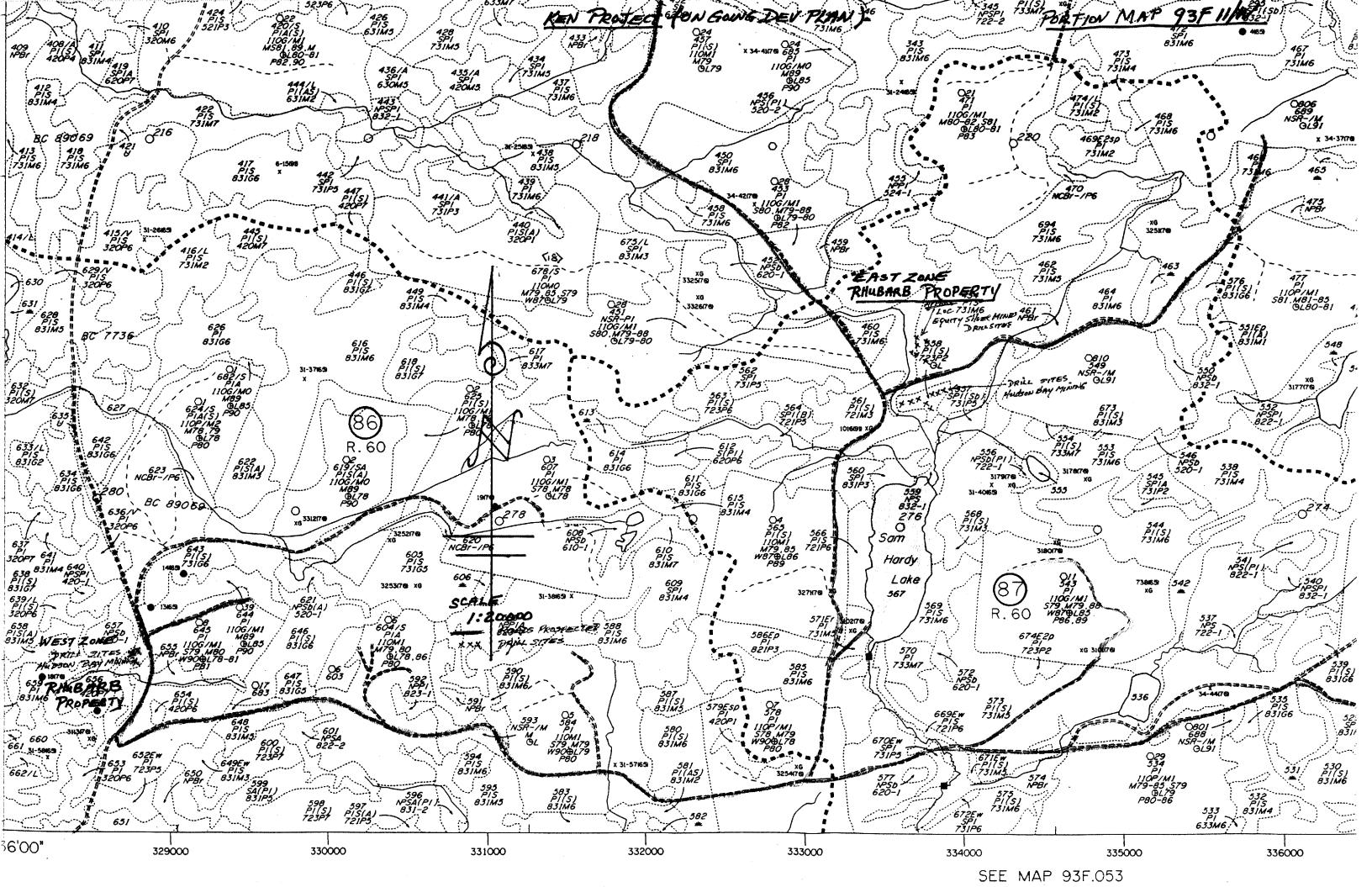

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

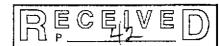
PROSPECTORS PROGRAM MEMPR

В.	TECHNICAL	REPORT

- One technical report to be completed for each project area
- Refer to Program Requirements/Regulations, section 15, 16 & 17

- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.
Name Ralph R Keefe Reference Number 94/95 P42
LOCATION/COMMODITIES Project Area (as listed in Part A) THAUTIL Minfile # if applicable NIL Location of Project Area NTS 9326/W Lat 540/6/ Long /27026/
Description of Location and Access <u>Houston Forest Products West Thautil Ro</u> KM 82, thence approx., 1 1/2 KM secondary road.
Main Commodities Searched For Cu
Known Mineral Occurrences in Project Area None aware close by.
WORK PERFORMED 1. Conventional Prospecting (area) Conventional prospecting of log block 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)
SIGNIFICANT RESULTS (if any) Commodities none found Claim Name Location (show on map) Lat Long Elevation Best assay/sample type
Description of mineralization, host rocks, anomalies All rocks were of
volcanic base. Area visited was a completed log block. Road and landing construction exposed bedrock of a grey greenish colour which was not a Cu stain. Rest of block and fireguard prospected but no further mineralization noted. A Cu showing does exist 3KL north. This will be a 1995 follow up.


RECEIVED

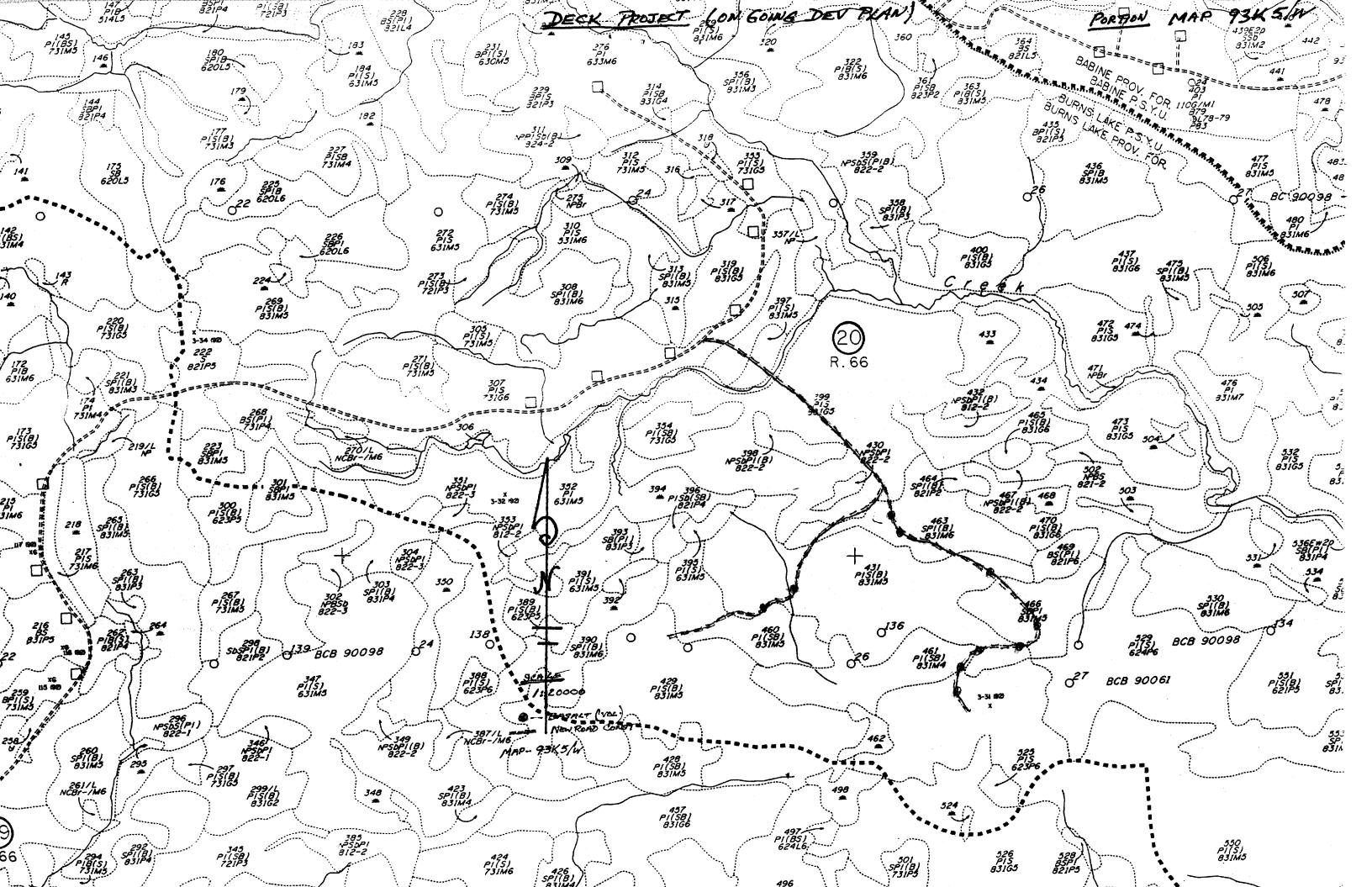

JAN 1 9 1995

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued) MEMPR

B. TECHNICAL REPORT
- One technical report to be completed for each project area
 Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of t
supporting data (see section 16) required with this TECHNICAL REPORT.
Name Ralph R. Keefe Reference Number 94-95 p42
Rolling Manuel 44-35
LOCATION/COMMODITIES KEN PROJECT (on-going Dev. Plan)
Project Area (as listed in Part A) Minfile # if applicable 554
Location of Project Area NTS 93F 11/W Lat 125 30' Long 53 38'
Description of Location and Access Logging roads in East Ootsa area. Alca
Pulp & Paper Camp, Approx. 10 Km to west. Area checked was logging acces
roads surrounding the "Rhubarb" property held by Hudson Bay Mining.
Main Commodities Searched For Au. & Ag.
Known Mineral Occurrences in Project Area Au. Ag in brecciated Rhyolites.
WORK PERFORMED
1. Conventional Prospecting (area) Prospecting of all main & secondary hau
roads.
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples)
4. Geophysical (type and line km)
5. Physical Work (type and amount)
5. Physical Work (type and amount)
7. Other (specify)

SIGNIFICANT RESULTS (if any) Nil.
CommoditiesClaim Name Location (show on map) Lat LongElevation
Best assay/sample type
Description of mineralization, host rocks, anomalies Reviewed all previou
drill sites & rocks from previous drilling on the Rhubarb project done b
Hudson Bay Mining & Equity Silver Mines. Was accompanied by (Geologist
whom worked for Hudson Bay Mining at time of the first exploration

drilling program in the 80's. All surrounding roads close by were prospected in search of any further brecciated rhyolite occurrences.



BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

PROSPECTORS PROGRAM MEMPR

B. TECHNICAL REPORT - One technical report to be completed for each project area - Refer to Program Requirements/Regulations, section 15, 16 & 17 - If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of a supporting data (see section 16) required with this TECHNICAL REPORT.
Name <u>Ralph R. Keefe</u> Reference Number <u>94-95 P42</u> Deck Project (on-going Dev. Program)
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>PECK</u> Minfile # if applicable Location of Project Area NTS 93K 5/w Lat 54 34' Long 125 52' Description of Location and Access <u>Decker Lake Forest Products development</u> of main access roads approximately 20 Km. North of sawmill.
Main Commodities Searched For Cu. Known Mineral Occurrences in Project Area Nil.
WORK PERFORMED 1. Conventional Prospecting (area) of main haul road into new log blocks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)
SIGNIFICANT RESULTS (if any) Nil. Commodities Claim Name Location (show on map) Lat Long Elevation Best assay/sample type
Description of mineralization, host rocks, anomalies <u>All bedrock exposed i</u> road construction was volcanic (mainly basalt). No sign of mineralization

