BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-22NAME:GRANT CROOKER

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

* One technical report to be completed for each project area

* Refer to Program Requirements/Regulations, section 15, 16 and 17

 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

Name	Grant	Crooker

Reference Number <u>94-95-P72</u>

192,193

LOCATION/COMMODITIES

Project Area (as listed in Part A.)	Tas claims	Minfile No. if applicable ^{92H-SE-133}							
Location of Project Area NTS	92H-028, 038	Lat <u>49 18'</u>	Long ¹ 20 28'						
Description of Location and Acce	_{ss} The propert	y is located 17	kilometres south						
of Princeton and 3 kilome	tres east of	Copper Mountain	in southern B.C						

Access is via the paved Copper Mountain Road and thence to the Wolfe

Creek Forest Access Road.

Main Commodities Searched For Copper, gold

Known Mineral Occurrences in Project Area Tas, Y, y 46. Traces of chalcopyrite occur with pyrite in bleached volcanics.

WORK PERFORMED

1. Conventional Prospecting (area) 150 hectares

2. Geological Mapping (hectares/scale) 1:5000, 150 hectares

3. Geochemical (type and no. of samples) 1330 soils collected, 480 analyzed

4. Geophysical (type and line km) ground magnetic, 21.3 line kilometers

5. Physical Work (type and amount) grid lines, 24.5 line kilometres

6. Drilling (no. holes, size, depth in m, total m)

7. Other (specify) 13 rock samples

SIGNIFICANT RESULTS (if any)

Commodities copper Claim Name Tas 1, 2

Location (show on map) Lat_____ Long_____ Elevation_____

Best assay/sample type <u>9000 ppm - grab, 1130 ppm - grab</u>

Description of mineralization, host rocks, anomalies The Tas claims are underlain by

Upper Triassic Wolfe Creek Formation of the Nicola Group and Upper

Triassic Copper Mountain and Lost Horse Intrusives. Six weak to moderate copper soil geochemical anomalies were outlined and one 30 cm by 100cm fracture zone with pyrite and traces of chalcopyrite was found.

Supporting data must be submitted with this TECHNICAL REPORT.

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

TAS 1 and 2 CLAIMS

Copper Mountain Area Similkameen Mining Division

92H-8W (49°18' N. Lat., 120°28' W. Long.)

for

GRANT F. CROOKER Box 404 Keremeos, B.C. V0X 1N0 (Owner and Operator)

by

GRANT F. CROOKER, P.Geo. Consulting Geologist

November, 1994

TABLE OF CONTENTS

.

,

.

.

.

.

.

.

.

,

.

.

•

	SUMMARY AND RECOMMENDATIONS		1
1.0	INTRODUCTION		4
	1.1 General		4
	1.2 Location and Access		4
	1.3 Physiography		4
	1.4 Property and Claim Status		4
	1.5 Area and Property History		5
2.0	EXPLORATION PROCEDURE		9
3.0	GEOLOGY AND MINERALIZATION		11
	3.1 Regional Geology		11
	3.2 Claim Geology		12
	3.3 Mineralization		14
4.0	GEOCHEMISTRY		17
	4.1 Soil Geochemistry	:	17
5.0	GEOPHYSICS		19
	5.1 Magnetometer Survey		19
6.0	CONCLUSIONS AND RECOMMENDATIONS		20
7.0	REFERENCES		22
8.0	CERTIFICATE OF QUALIFICATIONS		24

APPENDICES

Appendix I	Certificates of Analysis
Appendix II	Geophysical Equipment Specifications
Appendix III	Magnetic Data
Appendix IV	Rock Sample Descriptions
Appendix V	Cost Statement

ILLUSTRATIONS

PAGE FIGURE follows page 2 Location Map 1. follows page 4 Claim Map 2. follows page 5 Compilation Map 3. follows page 11 Area Geology 4 pocket Geology & Silt Geochemistry 5. pocket Soil Geochemistry, Cu, Au 6. pocket Soil Geochemistry, Zn, Ag 7. pocket Magnetometer Survey 8

SUMMARY AND RECOMMENDATIONS

The Tas claims are located approximately 17 kilometres south of Princeton and 3 kilometres east of Copper Mountain in southern British Columbia. The property consists of 2 modified grid claims covering 40 units in the Similkameen Mining Division and is owned by Grant Crooker of Box 404, Keremeos, B.C., VOX 1NO.

The Copper Mountain area has been the scene of copper exploration since the 1880's and has been a significant producer of copper and gold. Copper Mountain was operated as an underground mine by the Granby Consolidated Mining, Smelting and Power Company Limited during two periods of time, from 1926 to 1930, and from 1937 to 1957. During this time 34,775,101 tons of ore were processed producing 613,139,846 tons of copper, 187,294 ounces of gold and 4,384,097 ounces of silver.

The camp lay dormant until 1966 when Granby resumed exploration at Copper Mountain and Newmont Mining Corporation initiated exploration at the Ingerbelle Property on the west side of the Similkameen River. In 1967 Newmont purchased Copper Mountain from Granby and by 1969 had outlined two ore bodies at Copper Mountain as well as the Ingerbelle orebody. The mine commenced production by open pit methods in 1972 and has been in almost continuous production since that time. At present approximately 25,000 tons of ore is being milled per day at a grade of 0.44% copper with recoverable values in gold.

The most important ore deposits at Copper Mountain and Ingerbelle are spatially and, it is believed genetically associated with late phases of the Copper Mountain intrusions, the most productive of which are the Lost Horse suite. The ore deposits, whether in volcanic or intrusive rocks are associated with zones of extensive and locally intense wallrock alteration which includes development of biotite. albite, epidote, pyroxene, actinolite, potash feldspar and scapolite.

Numerous faults cut intrusive and volcanic rocks at Copper Mountain. It is believed these faults originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the ore bearing solutions moved.

A considerable amount of work has been carried out on the area covered by the Tas claims by previous operators. During the early 1970's two grids were established and geological mapping, prospecting, soil geochemical sampling and magnetometer and induced polarization surveying were carried out.

These programs outlined a number of soil geochemical anomalies, induced polarization chargeability anomalies and sulphide showings. Minor amounts of chalcopyrite were found at several locations. The geological mapping indicated a large portion of the area is underlain by diorite of the Copper Mountain intrusive complex. This intrusive complex is a favourable environment for copper mineralization. The present owner staked the Tas claims in May of 1991 and the 1991-1992 program yielded a number of positive results. A silt sampling program gave seven samples that were anomalous in copper and these samples were collected from creeks which drain the north-central portion of the Tas-1 claim. Geological mapping on four grid lines showed the area to be mainly underlain by diorite of the Copper Mountain intrusions. A magnetic survey indicated a number of magnetic highs and lows. The magnetic highs may be caused by magnetic minerals such as magnetite or pyrrhotite, and copper minerals such as chalcopyrite may occur with these magnetic minerals.

The 1994 program consisted of establishig 10 grid lines and reestablishing 4 others, soil sampling all 14 grid lines, geological mapping, prospecting and carrying out a magnetic survey over the 10 grid lines established in 1994.

The 1994 program was successful in a number of areas and the following facts can be drawn from the work program:

1) One small copper showing was found on the property although it is to small to be of economic interest. It occurs at 9000N and 10290E and consists of a 30 centimetre wide by 1 metre long rusty fracture zone containing up to 5% pyrite and traces of malachite and chalcopyrite. A grab sample taken from the zone gave 9000 ppm copper and 11.2 ppm silver. Soil geochemical sampling in the area did not yield anomalous copper values.

2) An area of weak propylitic alteration was found on lines 11000N through 11500N between 9750E and 10300E. The area is mainly underlain by an augite porphyry with lesser Wolfe Creek volcanic rocks. The augite porphyry was mapped as part of the Copper Mountain intrusives but it may belong to the Voight stock or Lost Horse intrusions. Pyrite concentrations range up to 20% with weak to moderate concentrations of epidote and magnetite and occassional narrow, pink veins of potassic alteration. No chalcopyrite was observed and sample 5 gave the highest copper assay of 1130 ppm.

3) Six small, weak to moderate copper soil geochemical anomalies were outlined by the soil geochemical survey. Anomalies Cu-1, Cu-2 and Cu-3 occur in the area of propylitic alteration on lines 11000N to 11500N and cover an area 600 metres long by 500 metres wide. Copper anomaly Cu-4 is of weak to moderate magnitude and occurs on lines 10000N to 10300N between 11000E and 11300E while copper anomalies Cu-5 and Cu-6 are also of weak to moderate magnitude and occur on lines 9000N and 9100N between 11600E and 11300E. No causes are apparent for these anomalies.

4) Copper soil geochemical anomalies Cu-4, Cu-5 and Cu-6 occur in approximately the same area as copper soil geochemical anomaly # 4 from the work programs carried out in the early 1970's. This confirms that the copper geochemical anomalies from the 1970's are valid.

5) Three weak to moderate zinc soil geochemical anomalies and two weak silver soil geochemical anomalies were outlined by the survey.

6) No gold soil geochemical anomalies were outlined by the survey.

7) The soil geochemical response may be masked in many areas due to deep overburden.

8) A number of zones of high magnetism were outlined by the magnetic survey. As high concentrations of magnetite were observed at many locations on the property, many of these zones of high magnetism are believed caused by magnetic minerals such as magnetite. All six copper soil geochemical anomalies occur at least in part over zones of higher magnetism, and this may be an indication that copper minerals such as chalcopyrite are associated with magnetite minerals such as magnetite.

Recommendations are as follows:

1) The copper and zinc soil geochemical anomalies should be investigated by prospecting to determine their causes.

2 The grid should be expanded over the property and geological mapping, prospecting, soil geochemical sampling and magnetic surveying carried out over the grid.

3) An induced polarization survey should be carried out over the copper soil geochemical anomalies to test for concentrations of sulphide minerals.

Respectfully submitted.

1.0 INTRODUCTION

1.1 GENERAL

Work was carried out on the Tas claims from August 15 to September 15, 1994 by Grant Crooker, geologist and Lee Mollison, field assistant.

This program consisted of establishing ten grid lines, reestablishing the 4 old grid lines and carrying out geological mapping, prospecting, soil geochemical sampling and magnetometer surveying.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located approximately 17 kilometres south of Princeton and 3 kilometres east of Copper Mountain in southern British Columbia. The property lies between 49° 16' 45" and 49° 18' 55' north latitude and 120° 27' 30" and 120° 29' 35" west longitude (NTS 92H-8W).

Access to the property is via the paved Copper Mountain road, turning south off Highway 3 at Princeton. From the Copper Mountain Road one turns onto the Wolfe Creek logging road which is a good gravel road. Branches of the Wolfe Creek Road give good access to all areas of the peoperty.

1.3 PHYSIOGRAPHY

The Tas claims lie within the Thompson Plateau. Elevation is quite high, varying from 1220 to 1830 metres above sea level. Topography is generally moderate to steep although it becomes gently rolling along the ridges.

Wolfe Creek flows in a northerly direction through the claims and has a good flow of water all year round. Several branches of Wolfe Creek drain the property from the east. Vegetation consists of mainly mature jack pine with some spruce and fir. Heavy deadfall is prevalent in many areas and a significant portion of the area has been clearcut.

1.4 PROPERTY AND CLAIM STATUS

The Tas claims (Figure 2) are owned by Grant Crooker of Keremeos, B.C.. The property consists of two modified grid claims covering 40 units located in the Similkameen Mining Division.

Claim	Units	Mining Division	Tenure Number	Record Date	Expiry Date		
Tas 1	20	Similkameen	250128	05/24/91	05/24/99*		
Tas 2	20	Similkameen	250129	05/24/91	05/24/99*		

*Upon acceptance of this report.

1.5 AREA AND PROPERTY HISTORY

The Tas claims are located approximately 3 kilometres southeast of Copper Mountain. Copper Mountain has had a long history of mining and has been a major producer of copper. Over 500,000 ounces of gold have also been produced.

Copper was apparently first discovered at Copper Mountain in 1884 by a trapper named Jameson. However little work was carried out in the area until Volcanic Brown located the Sunset claim in 1892. From 1892 until 1923 exploration was carried out in many areas of the Camp. During the latter stages of World War I a concentrator was built at Allenby and a railline was built from Princeton to Allenby and thence to Copper Mountain. However no copper was produced during this time.

In 1923 The Granby Consolidated Mining, Smelting and Power Company Limited acquired the property and re-organized the concentrator and mine plants. Production did not begin until early in 1926 and continued until 1930. The mine was shut down until 1937 when production resumed and continued until 1957 when the mine was again closed. To the end of 1957 the concentrator treated 34,775,101 tons of ore producing 613,139,846 pounds of copper, 187,294 ounces of gold and 4,384,097 ounces of silver. Most of this production was from underground operations.

Little work was carried out in the area from 1957 to 1965. However in 1966, extensive trenching and drilling was carried out by The Granby Mining Company Limited at Copper Mountain, Newmont Mining Corporation of Canada Limited on the Ingerbelle property west of the Similkameen River and Cumont Mines Limited on its holdings in the vicinity of Copper Mountain.

In December 1967, Newmont purchased all of the Granby holdings in the Copper Mountain area and carried out large scale exloration on both properties. By the end of 1969, one large scale zone of low grade copper mineralization was outlined on the Ingerbelle property and two zones on Copper Mountain. In June 1970 Newmont gave official notice of its intention to put the properties into production.

The property entered production by open pit methods in 1972 and has been in almost continuous production since that time. The present owner is Similco Mines Limited and production is in the order of 25,000 tons per day with a mill head grade of 0.44% copper and recoverable gold values. Efforts are currently underway to extend the mine life past the year 2000.

CHONG

A considerable amount of work was carried out in the area covered by the Tas claims during the early 1970's. This work consisted of geological mapping, prospecting, geochemical soil sampling and geophysical surveying (magnetometer and induced polarization). Bulldozer trenching by previous operators is mentioned in the assessment reports from the early 1970's but no information is available on that work.

During 1971 Coin Canyon Mines Ltd. carried out soil geochemical sampling and magnetometer and induced polarization geophysical surveying on the "Y" claims. The work was carried out over the area indicated by grid A on figure 3. Approximately 149,000 feet of grid was blazed and surveyed. The baseline runs in a north northwesterly direction with 23 crosslines at right angles to the baseline. Lines are 500 feet apart with stations marked every 100 feet along the lines.

Soil samples were collected every 250 feet along the lines and the samples were analyzed for copper. The frequency distribution indicated background to be 50 ppm copper and values 75 ppm and greater were considered anomalous. Four general copper anomalies were outlined by the survey (Figure 3, Anomalies #1 to #4).

It should be pointed out at this time that most of the property is overlain by a mantle of glacial drift. Preto examined 26 drill holes from the Copper Mountain area and found the glacial drift to have an average thickness of 14.5 feet with a maximum of 33 feet. Clay layers several feet in thickness are often intercalated with various other types of drift.

Anomaly #1 is 2500 feet long by 1000 feet wide and values range from 70 ppm to 315 ppm copper. The Phelps Dodge geochemical survey also confirms this anomaly. Follow up prospecting found the anomaly coincidental with a swampy area and no outcrop was found in the area.

Anomaly #2 is a linear shaped anomaly 2000 feet long by 800 feet wide with values ranging from 70 ppm to 190 ppm copper. The western portion of the geochemical anomaly overlaps induced polarization chargeability anomaly A. Old bulldozer trenches at the south end of the anomaly exposed outcrop of bedded andesite volcanics composed of massive fragmentals, crystal tuffs and tuffaceous argillites. A large portion of the volcanics have been silicified and chloritized. From 2% to 5% finely disseminated pyrrhotite and pyrite with trace amounts of chalcopyrite is found throughout this altered zone.

Anomaly #3 is some 2500 feet long by 1500 feet wide with values ranging from 70 ppm to 275 ppm copper. Outcrop exposed along the baseline is altered diorite related to the Copper Mountain intrusives. The intrusive is only weakly mineralized with less than 1% pyrite.

Anomaly #4 is a large anomaly 5500 feet long and up to 3000 feet wide with values ranging from 70 ppm to 850 ppm copper. The southern portion of this anomaly is also outlined by the Phelps Dodge geochemical survey. Trace amounts of chalcopyrite along with 1% to 2% pyrite were found associated with chloritic and feldspathic alteration at the southeastern corner of the anomaly and west of the anomaly. A large portion of this anomaly appears to be underlain by diorite of the Copper Mountain intrusive complex.

Magnetometer and induced polarization surveys were also carried out over portions of the grid. The magnetometer survey was carried out over 16 line miles of the grid with readings taken every 100 feet on every second line (1000 foot spacing). A number of magnetic highs and lows were outlined and further information can be obtained from the pertinent assessment report.

The induced polarization survey was carried out over 6.7 line miles of the grid with the lines spaced 1000 feet apart. The survey was only carried out over the southern portion of the grid and not over the northern portions which are underlain by the Copper Mountain intrusions. Four areas (Figure 3, A, B, C, D) showed chargeability responses greater than 15 milliseconds.

Anomaly A is a broad anomaly showing peak responses of 36 and 35 milliseconds and overlaps the western section of geochemical anomaly #2. The apparent resistivity values range from 175 to 1000 ohms metres with the largest portion lying within the 400 to 600 ohm metre range.

Anomaly B is partially outlined by the 15 millisecond contour and was not closed off to the north and east. It occurs along the southern portion of geochemical anomaly #4 and appears to be striking in a northerly direction into the geochemical anomaly. Disseminated pyrite was observed in an outcrop west of the anomaly. A low to intermediate range of apparent resistivity values correlate with the chargeability anomaly.

Anomaly C is a small three station anomaly occurring west of geochemical anomaly #1. No further information is available on this anomaly.

Anomaly D is also a small anomaly occurring along the most southerly line surveyed and open to the south. This anomaly was confirmed by the limited amount of induced polarization survey carried out by Phelps Dodge. Resistivity values are in the order of 500 to 1350 ohm metres. Bulldozer trenching has been carried out in this area by previous operators. The trenching exposed highly fractured, broken and bleached andesite. Approximately 1000 feet east of the anomaly two soil samples gave 340 and 440 ppm copper, and subsequent prospecting located an outcrop with finely disseminated chalcopyrite. An assay of this material gave 697 ppm copper.

During 1973 Phelps Dodge Canada Ltd. carried out geological mapping, prospecting, soil geochemical sampling and a limited amount of magnetometer and induced polarization surveying on the "Rb, Tas and Tat" claims. The soil smpling and geophysics was carried out over the area indicated by Grid B while the geological mapping was carried out over both Grid A and Grid B.

Approximately 19.5 miles of grid were cut and flagged on grid B. The baseline runs north-south and 16 crosslines were ran at right angles to the baseline. Lines are 400 feet apart with stations marked at 200 foot intervals.

Soil samples were collected every 200 feet along the lines and analyzed for copper. The most highly anomalous values from the soil geochemical survey came from the area of anomaly #5 with values of 340 ppm and 414 ppm copper. This anomaly is about 1500 feet long by 1500 feet wide. Copper mineralization consisting of finely disseminated chalcopyrite (697 ppm copper) was found in this area.

Only 1.3 miles of Induced Polarization survey was carried out over the grid. A small chargeability high was located at Anomaly D. This anomaly was found by both of the induced polarization surveys.

Geological mapping was carried out over both grids by Phelps Dodge. This mapping indicated an area 8000 feet long by 4500 feet wide is underlain by diorite of the Copper Mountain intrusions. A number of areas as shown on figure 3 show varying degrees of alteration and pyrite with minor amounts of chalcopyrite.

The 1991-1992 program carried out by the present owner of the Tas claims consisted of silt sampling of all drainages, establishing a small grid and carrying out geological mapping, prospecting and a magnetic surveying over the grid.

A number of anomalous silt samples were taken, mainly from the north central portion of the Tas 1 claim, and geological mapping showed the four grid lines that were established to be underlain by diorite of the Copper Mountain intrusives. The magnetometer survey indicated a number of magnetic highs which may be caused by magnetic minerals such as magnetite and pyrrhotite.

2.0 EXPLORATION PROCEDURE

The grid co-ordinate system established in 1992 was used for the 1994 program. Ten new grid lines were established and the four grid lines from 1992 were reflagged. Geological, soil geochemical and geophysical surveys were then carried out over the grid.

GRID PARAMETERS

-baseline direction N-S -survey lines perpendicular to baseline -survey line separation 100 metres -survey station spacing 25 metres, slope corrected -survey total - 24.5 - kilometres -declination 21°

GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 100 metres
-survey sample spacing 25 metres
-survey totals - 1330 soil samples
- 13 rock samples
-480 soil samples analyzed by 32 element ICP and for gold
-13 rock samples analyzed by 32 element ICP and for gold
-sample depth 10 to 20 centimetres
-samples taken from brown or orange B horizon

All samples were sent to Chemex Labs Ltd., 212 Brooksbank Ave., North Vancouver, B.C., V7J 2C1, for analysis. Laboratory technique for soil samples consists of preparing samples by drying at 95° C and sieving to minus 80 mesh. If there was not sufficient minus 80 mesh material to carry out the analysis, the sample was sieved to minus 35 mesh and then ring ground to minus 150 mesh. Rock samples were crushed, and split, with one split then ring ground to minus 150 mesh

A 32 element ICP analysis and gold analysis (rock fire assay, atomic adsorption finish, soils atomic adsorption) were then carried out on the samples.

The soil geochemical data was plotted on figures 6 (copper and gold) and 7 (zinc and silver) at a scale of 1:5000. The rock sample data was plotted on figure 5 at a scale of 1:5000.

GEOPHYSICAL SURVEY PARAMETERS

TOTAL FIELD MAGNETIC SURVEY

-survey line spacing 100 metres -survey station spacing 25 metres -survey total - 21.3 - kilometres -instrument - Scintrex MP-2 magnetometer -measured total magnetic field in nanoteslas (gammas) -instrument accuracy ± 1 nanotesla

The 1994 values were corrected to the 1992 values. Readings were taken along the baseline to obtain standard readings for all baseline stations. All loops ran off the baseline were then corrected to these standard values by the straight line method. The operator faced north for all readings.

The total field magnetic data was plotted on figure 8 at a scale of 1:5000 and the data listed in Appendix III.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Tas claims are located within the Intermontane Belt of southern British Columbia, immediately southwest of Copper Mountain (figure 4).

The oldest rocks in the area are Upper Triassic Nicola Group volcanic and sedimentary rocks. These rocks are composed mainly of basaltic andesite flows and pyroclastic rocks with greywacke and argillite.

The central portion of the area is underlain by intrusive rocks of the Copper Mountain intrusions. These intrusions consist of the Copper Mountain, Smelter Lake and Voigt stocks. The Copper Mountain stock covers approximately 6.5 square miles and is a concentrically differentiated intrusion, elliptical in plan, the long axis of which strikes north 60° west and is approximately 4 miles long. The Smelter Lake stock occupies less than 1 square mile while the Voigt stock occupies approximately 3.2 square miles.

The Lost Horse complex is also part of the Copper Mountain intrusions and consists of intrusive rocks ranging in composition from diorite to syenite and generally having a porphyritic texture. They are believed to be later phases of the Copper Mountain stock and occur as a complex of dykes, sills and irregular bodies.

The northeastern portion of the area is underlain by a body of Lower Cretaceous biotite-hornblende quartz monzonite called the Verde Creek quartz monzonite.

All of the above intrusive, volcanic and sedimentary rocks are cut and unconformably overlain by intrusive, volcanic and sedimentary rocks of the Middle Eocene Princeton Group.

A large number of faults occur in the map area, most in the Copper Mountain-Ingerbelle area. They have been divided into the east-west faults, the "Mine breaks", northwest faults, northeast faults, and Boundary fault.

The east-west faults, which dip steeply north appear to be relatively old, and to have originated in premineralization time. Later dilation in Tertiary time is indicated, as some of the faults are followed by Tertiary dykes. These faults may have acted as channelways for mineralizing solutions as they are centrally located to some of the ore bodies at Copper Mountain and Ingerbelle.

The "Mine Breaks" are a system of faults which trend slightly north of east with northerly dips of 60° and occur near the old Copper Mountain mine area. Though unmineralized themselves they have been condidered to be ore controls by mine staff and are probably related to old structures as suggested by their relation to mineralization. These faults may be related to the east-west faults, although they are of slightly different attitude.

The main Copper Mountain fault is the most important structure of the northwest trending faults. The history of the Main fault is probably long and complex. It closely parallels the long axis of the Copper Mountain stock and the trend of the major regional faults in the Princeton area. In 1951 Fahrni stated that " one half of the known orebodies in the mines are grouped along the Main fault or its branches".

The northeast trending faults consist of a number of major structures, as well as a number of smaller ones. Some of them occur in the area of the orebodies and the history of these faults is probably also long and complex. Several of these faults show appreciable post mineral movement.

The Boundary fault system consists of a major structure, the Boundary fault, and several similiar but smaller faults that are found in the western part of the map area. The Boundary fault strikes northerly and dips approximately 65° to the west. These faults are interpreted to be normal faults, and that the western block was dropped down.

3.2 CLAIM GEOLOGY

All rock units (Figure 5) which are believed to underlie the Tas claims are described below, although some of them have not been located as yet due to the limited amount of geological mapping that has been carried out. Outcrop is scarce over much of the property.

The classification of the units is taken from Preto (1972) to provide continuity with known geological information on the Copper Mountain area. The oldest rocks underlying the claims belong to the Upper Triassic Wolfe Creek Formation of the Nicola Group. They are primarily volcanic in origin and deposition and have been divided into four units. These include massive andesite (Unit 2a), volcanic breccia and agglomerate (Unit 2c), and tuff and tuff breccia (Unit 2d). Unit 2e consists of undifferentiated material.

Unit 2a is generally a massive, fine to medium grained porphyritic pyroxene-hornblende-plagioclase andesite, in part agglomeratic. The rock is in places extensively saussuritized, with replacement of plagioclase phenocrysts by epidote and sericite, and strong replacement of pyroxene by a light green amphibole. This unit was mapped along lines 9000N and 9100N from 9875E to about 10600E.

Rocks of unit 2c are coarse fragmental volcanic volcanic rocks that may be described as volcanic breccia and/or agglomerate. All rocks are dense, massive and, dark green or brownish in color. The fragments in the breccia vary from andesitic volcanic rocks to fine grained tuff and, locally limestone. Fragments generally vary in size from 1 to 10 centimetres, although occasionally blocks of 25 centimetres or more occur. In the area of the Tas claims the rocks are irregularily distributed in the volcanic succession of unit 2 as relatively small lenses associated with tuff or massive andesite. The unit was mapped along line 9000N from 10000E to 10700E, on line 11100N from 11000E to 11100E and at several other locations.

Unit 2d is mainly greenish grey and green crystal tuff and lithic crystal tuff and, locally volcanic siltstone. These rocks are generally well and thinly bedded and at several locations show graded bedding and poorly developed crossbedding. They are characterized by beds of very fine grained silt alternating with beds of slightly coarser, sand sized material consisting of mainly broken plagioclase and some pyroxene crystals. Most rocks are of andesitic composition and the amount of quartz present varies from nil to a significant constituent. The unit is prevelant on lines 11000N to 11500N.

The Upper Triassic Copper Mountain intrusions have intruded the Wolfe Creek Formation. The term Copper Mountain intrusions refer to four main bodies of intrusive rocks which are known as the Voight stock, Copper Mountain stock, Smelter Lake stock and Lost Horse intrusions. Rocks of the Copper Mountain stock and perhaps the Lost Horse intrusions and Voight stock underlie the Tas claims.

Two rock types of the Copper Mountain stock underlie the claims, diorite (Unit 6) and microdiorite and latite porphyry dykes (Unit 10).

Unit 6 is a fine to medium grained, light to dark green, massive augite diorite. This unit underlies much of the area mapped during 1992 and 1994. It outcrops from baseline 10000E to at least 11200E on lines 10000N to 10300N. An augite porphyry underlies lines 11000N to 11500N from 9700E to approximately 10660E. This augite porphyry has been mapped as unit 6, but it could belong to the Voight stock to the north or the Lost Horse intrusions. The unit is mixed with Wolfe Creek volcanic rocks and Mine dykes in this area.

Unit 10 consists of dykes that range in composition from andesite to acid basalt and range in texture from dark grey, fine grained, trachyoid, latite porphyry with phenocrysts of plagioclase and pyroxene to massive fine to medium grained pyroxene microdiorite. The dykes range in width from one metre to 100 metres, cut all Nicola volcanis rocks and trend north-northeast. This unit outcrops along line 11500N from 11300E to 11500E.

The Lost Horse intrusions have been divided into units 11 and 12. Unit 11 includes all rocks which do not form obvious dykes while unit 12 consists of well defined dykes up to 30 meters wide which cut unit 11 and rocks of the Nicola Group. Most rocks of the Lost Horse intrusions have a porphyritic texture and contain disseminated apatite crystals.

Rocks of unit 11 are fine to medium grained, almost invariably porphyritic and range in composition from diorite to monzonite or syenite. They are light grey green in color and are composed of intermediate plagioclase, clinopyroxene and varying amounts of potash feldspar. A few scattered outcrops of what is believed to be unit 11 (monzonite?) were found during the 1992 mapping along the baseline from 10350N to 10650N.

Unit 12 consists of latite and trachyte in approximately equal amounts and is invariably porphyritic. Texturally they range from latite or trachyte porphyry to porphyritic micromonzonite or microsyenite. They are mainly composed of plagioclase, pyroxene, biotite and potash feldspar. The Upper Lower Cretaceous Verde Creek quartz monzonite (Unit 13) occurs along the eastern boundary of the Tas claims. It is usually medium grained, grey to pinkish grey and porphyrite. White plagioclase phenocrysts up to 5 millimetres long occur within a matrix of plagioclase, grey quartz and interstitial potash feldspar. Brown biotite forms up to 10% of the rock while lesser dark green or black hornblende is found in phases which contain less biotite. This unit has not been found in outcrop on the property.

Two types of post Lower Cretaceous dykes (Units 14 and 15) occur within the area. The Mine dykes (Unit 14) are a swarm of northerly trending, very steep to vertically dipping, buff to cream colored dykes of felsite, quartz porphyry and feldspar porphyry. The dykes range in composition from trachyte to rhyolite and vary in width from less than one metre to more than sixty metres. These felsite dyke occur at a number of locations including along the baseline from 10500N to 10600N, and on lines 11000N to 11500N from 9900E to 11000E.

Unit 15 consists of fine grained grey andesite dykes up to a few metres wide or larger dykes of grey plagioclase, hornblende or pyroxene andesite porphyry. These dykes cut the mine dykes and their texture and composition suggest they are related to the Tertiary rocks of the Princeton Group.

The youngest rocks in the area belong to the Lower Volcanic Formation of the Middle Eocene Princeton Group (Unit 17). This unit (17d) occurs as sparse, isolated, generally small dykes of fine grained, grey, flaggy andesite. The texture, composition and field relationships of these dykes strongly suggest that they are part of the Princeton Group. Units 15 and 17 have not been found in outcrop on the property.

3.3 MINERALIZATION

The copper deposits of the Copper Mountain area can be divided into four main subdivisions of copper deposits based on mineral composition, genesis and geographic position. The subdivisions are as follows: Group A - disseminations and stockworks mostly of chalcopyrite and pyrite in altered Nicola volcanic and/or Lost Horse intrusive rocks, Group B - hematite-chalcopyrite and magnetite-chalcopyrite replacements in rocks of the Voigt stock, Group C - bornite-chalcopyrite concentrations associated with pegmatite veins in rocks of the Copper Mountain stock, and Group D - magnetite breccias and replacements in Lost Horse intrusive rocks.

The Group A deposits, which are by far the most important in the Copper Mountain area, include the Ingerbelle and Copper mountain deposits, as well as several smaller occurrences. All deposits in this group are spatially and, it is believed genetically associated with the late phases of the Copper Mountain intrusions, the most productive of which are those of the Lost Horse suite. The sulphide deposits, whether in volcanic or intrusive rocks, are associated with zones of extensive and locally intense wallrock alteration which include development of biotite, albite, epidote, pyroxene, actinolite, potash feldspar and scaploite.

A great number of faults cut intrusive and volcanic rocks. It is believed the major faults and, to a lesser extent subsidiary structures parallel to them originated before the main period of mineralization and played an important part as ore controls, probably acting as avenues along which much of the orebearing solutions moved.

Pyrite and chalcopyrite are the dominant sulphide minerals, although bornite, pyrrhotite and magnetite occur sporadically.

The Group B deposits are distinctive both in mineralogy and association with diorite of the Voigt stock. Although the mineralization is locally of higher grade than the Group A deposits, no commercial concentrations of this group have been discovered. This mineralization is confined to narrow zones of shearing and brecciation, and is generally irregularly distributed and variable.

This type of mineralization varies from coarse hematite, magnetite, pyrite, red potash feldspar, calcite and epidote in brecciated and bleached pyroxene diorite of the Voight stock at the Frisco and No. 14 claims to magnetite-epidote veinlets with some chalcopyrite in massive, dioritic looking Nicola andesite and breccia at the Azurite and Copper Glance showings.

Group C deposits are found at several locations within the Copper Mountain stock. Bornite, chalcopyrite and pyrite mineralization is always associated with or occurs in veins and dykes of red potash feldspar pegmatite. No orebodies have been developed in this type of mineralization and it is thought the potential of doing so is low.

Group D deposits are found at a number of locations in Lost Horse intrusive rocks. Magnetite breccias are usually brecciated monzonite or syenite porphyry that show a considerable degree of pink feldspar metasomatism and have been healed by interlacing veins of coarse magnetite. Copper sulphides are not found in any abundance with the magnetite breccias.

Prospecting was carried out on lines 11000N through 11500N, 9000N and 9100N (Figure 5).

The most highly mineralized area found on the property during the 1994 program is located on lines 11000N through 11500N between 9750E and 10300E. In this area an augite porphry has intruded Wolfe Creek volcanic rocks in a very irregular manner. The augite porphyry shows moderate propylitic alteration. Pyrite concentrations of up to 20% were noted, especially near two shallow shafts located near the baseline. Weak to moderate concentrations of epidote and magnetite were also noted at many locations, while pink potassic alteration was also found, but not in abundance.

Samples 4, 5, 7, 8, and 9 were taken from this area. Sample 5 gave the highest copper assay of 1130 ppm, and was taken from an outcrop which showed rusty fractures with epidote, magnetite, weak potassic alteration and up to 5% pyrite. The other four samples were taken from similiar material and gave results between 159 and 357 ppm. None of the samples gave anomalous values in gold or silver, and no chalcopyrite was observed in outcrop.

One small showing was found at 9000N and 10290E. Here, a 30 centimetre wide rusty and manganese stained fracture zone contains up to 5% pyrite, and traces of chalcopyrite and malachite. The zone appears to be less than 1 metre long and is of limited interest. Sample 12 was taken from the zone and gave 9000 ppm copper and 11.2 ppm silver. Prospecting in the area did not locate any additional showings and the soil geochemical sampling did not yield anomalous copper values.

Magnetite occurring along fractures and usually with pyrite and/or epidote was found at a number of locations on the property. However, sampling did not give any anomalous values in copper or gold.

4.0 GEOCHEMISTRY

4.1 SOIL GEOCHEMISTRY

ELEMENT	BACKGROUND	ANOMALOUS					
Gold ppb	5	20 and greater					
Copper ppm	63	90 and greater					
Zinc ppm	110	160 and greater					
Silver ppm	.25	.4 and greater					

Gold

Gold values ranged from less than 5 to 25 ppb and no anomalies were outlined by the survey. All anomalous samples occurred as single station anomalies.

Copper

Copper values ranged from 7 to 1685 ppm and six small soil geochemical anomalies were outlined by the survey.

Anomalies Cu-1, Cu-2 and Cu-3 all occur on lines 11200N to 11500N in the northwest corner of the Tas 1 claim in an area underlain by a pyrite bearing augite porphyry. Pyrite concentrations of up to 20% are found within the augite porphyry but no copper minerals were observed. The combined anomalies cover an area 600 metres long by 400 metres wide and are of weak to moderate magnitude with a maximum value of 1685 ppm. A few anomalous zinc and silver values are scattered over the area.

Anomaly Cu-4 occurs on lines 10000N to 10300N between 11000E and 11300E and is open to the north and south. It covers an area 400 metres long by 300 metres wide and is of weak to moderate magnitude with a maximum value of 557 ppm. Zinc anomaly Zn-2 and silver anomaly Ag-1 occur coincidentally with the copper anomaly. This area is believed to be underlain by diorite of the Copper Mountain intrusives.

Anomlies Cu-5 and Cu-6 occur on lines 9000N and 9100N between 11600E and 12000E and are open to the north and south. The combined anomalies cover an area 100 metres wide by 400 metres long and are of weak to moderate magnitude with a maximum values of 887 ppm. Five weak silver values occur within the area of the copper anomalies.

Zinc

Zinc values ranged from 18 to 942 ppm and three zinc soil geochemical anomalies were outlined by the survey.

Anomaly Zn-1 occurs on lines 9000N and 9100N between 10200E and 10900E and is open to the north and south. It covers an area 100 metres wide by 700 metres long and is of weak to moderate magnitude with a maximum value of 554 ppm. The western portion of the anomaly covers an area where a small copper showing was found. A small silver anomaly, Ag-2 occurs along the eastern edge of the zinc anomaly, along with several anomalous copper values. The area is underlain by Wolfe Creek Formation volcanic rocks.

Anomalies Zn-2 and Zn-3 occur on lines 10000N to 10300N between 11000E and 11600E and are open to the north and south. They cover an area approximately 300 metres wide by 400 meters long and are of weak to moderate magnitude with a maximum value of 830 ppm. Silver anomaly Ag-1 occurs coincidentally with Zn-2 along line 10300N as does copper anomaly Cu-4. The area is believed to be underlain by diorite of the Copper Mountain intrusives.

Silver

Silver values ranged from .t to 3.2 ppm and two small soil geochemical anomalies were outlined bu the survey.

Anomaly Ag-1 is a small four station anomaly which occurs on line 10300N between 11050E and 11200E. The anomaly is of weak magnitude with a maximum value of 3.2 ppm. It occurs coincidentally with zinc anomaly Zn-2 and copper anomaly Cu-4 in an area believed to be underlain by Copper Mountain intrusives.

Anomaly Ag-2 is a small five station anomaly which occurs on line 8000N between 10550E and 1075E. The anomaly is of weak magnitude with a maximum value of .8 ppm. It occurs coincidentally with a small portion of zinc anomaly Zn-1 in an area underlain by Wolfe Creek Formation volcanic rocks.

5.0 GEOPHYSICS

5.1 MAGNETOMETER SURVEY

A total field magnetic survey was carried out on lines 11000N through 11500N, 9000N and 9100N (Figure 8). The magnetic response was moderate to strong with values ranging from 56023 to 60332 nT.

A large number of zones of high magnetism were outlined by the magnetic survey. As high concentrations of magnetite were observed in many outcrops on the property, most of these magnetic highs are believed caused by magnetic minerals such as magnetite or pyrrhotite.

Magnetic highs at several locations occur coincidentally with soil geochemical anomalies. Copper anomalies Cu-1, Cu-2 and Cu-3 occur over an area which shows spotty magnetic highs. Copper anomaly Cu-4 occurs over an area which shows complex magnetism including magnetic high and low zones. Copper anomalies Cu-5 and Cu-6 occur over an area of high magnetism. This may be an indication that copper minerals such as chalcopyrite are associated with magnetic minerals such as magnetite.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The 1994 program was successful in a number of areas and the following facts can be drawn from the work program:

1) One small copper showing was found on the property although it is to small to be of economic interest. It occurs at 9000N and 10290E and consists of a 30 centimetre wide by 1 metre long rusty fracture zone containing up to 5% pyrite and traces of malachite and chalcopyrite. A grab sample taken from the zone gave 9000 ppm copper and 11.2 ppm silver. Soil geochemical sampling in the area did not yield anomalous copper values.

2) An area of weak propylitic alteration was found on lines 11000N through 11500N between 9750E and 10300E. The area is mainly underlain by an augite porphyry with lesser Wolfe Creek volcanic rocks. The augite porphyry was mapped as part of the Copper Mountain intrusives but it may belong to the Voight stock or Lost Horse intrusions. Pyrite concentrations range up to 20% with weak to moderate concentrations of epidote and magnetite and occassional narrow, pink veins of potassic alteration. No chalcopyrite was observed and sample 5 gave the highest copper assay of 1130 ppm.

3) Six small, weak to moderate copper soil geochemical anomalies were outlined by the soil geochemical survey. Anomalies Cu-1, Cu-2 and Cu-3 occur in the area of propylitic alteration on lines 11000N to 11500N and cover an area 600 metres long by 500 metres wide. Copper anomaly Cu-4 is of weak to moderate magnitude and occurs on lines 10000N to 10300N between 11000E and 11300E while copper anomalies Cu-5 and Cu-6 are also of weak to moderate magnitude and occur on lines 9000N and 9100N between 11600E and 11300E. No causes are apparent for these anomalies.

4) Copper soil geochemical anomalies Cu-4, Cu-5 and Cu-6 occur in approximately the same area as copper soil geochemical anomaly # 4 from the work programs carried out in the early 1970's. This confirms that the copper geochemical anomalies from the 1970's are valid.

5) Three weak to moderate zinc soil geochemical anomalies and two weak silver soil geochemical anomalies were outlined by the survey.

6) No gold soil geochemical anomalies were outlined by the survey.

7) The soil geochemical response may be masked in many areas due to deep overburden.

8) A number of zones of high magnetism were outlined by the magnetic survey. As high concentrations of magnetite were observed at many locations on the property, many of these zones of high magnetism are believed caused by magnetic minerals such as magnetite. All six copper soil geochemical anomalies occur at least in part over zones of higher magnetism, and this may be an indication that copper minerals such as chalcopyrite are associated with magnetite minerals such as magnetite.

Recommendations are as follows:

1) The copper and zinc soil geochemical anomalies should be investigated by prospecting to determine their causes.

2) The grid should be expanded over the property and geological mapping, prospecting, soil geochemical sampling and magnetic surveying carried out over the grid.

3) An induced polarization survey should be carried out over the copper soil geochemical anomalies to test for concentrations of sulphide minerals.

Respectfully-submitted, C CIDOKEA

Grant Crooker, P.Geo., Consulting Geologist

7.0 REFERENCES

B.C.M.M., GEM 1973 p 133.

B.C.M.M., Minfile; 92H-SE-132.

Allen, A.R. (1971): Geophysical Magnetometer Survey, Ilse Claim Group for Aurus Mines Ltd. Assessment Report # 3088.

Ashton, A.S. (1970): Geophysical Report on a Ronka 16 Survey, Ilse and Sob Claim Group for Aurus Mines Ltd. Assessment Report # 2451.

Crooker, G.F. (1992): Geological, Geochemical and Geophysical Report on the Tas 1 and 2 Claims, Copper Mountain Area, Similkameen Mining Division, for Grant Crooker. Assessment Report = 22427.

Gutrath, G.C. (1971): Report om Geochemical Survey "Y" Claim Group, Copper Mountain Area. B.C., for Coin Canyon Mines Ltd. Assessment Report # 3188.

Gutrath, G.C. and Neilson, P.P. (1973): Geophysical Report of the Induced Polarization Survey on the Tas-Tat Claim Group on behalf of Phelps Dodge Corporation of Canada Limited. Assessment Report # 4526.

MacQuarrie, D.R. and Ager, C.A. (1975): Copper Project-Phase Three, Diamond Drilling for Aquitane Company of Canada Ltd. on the Cmag Claims and Sundry Crown Grants. Assessment Report # 5768.

Meyers, R.E. (1982): Report on Geological and Geochemical Surveys on the CMAG - 82 Group for Kidd Creek Mines Ltd. Assessment Report # 10956.

Morris, A. (1973): Summary Geological, Geochemical and Geophysical Report on the Tas and Tat Group of Claims for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4380.

Morris, A. (1973): Geological Report Project 137 - Copper Mountain Area, for Phelps Dodge Corporation of Canada Limited. Assessment Report # 4806.

Neilson, P.P., (1971): Report on Induced Polarization and Ground Magnetometer Surveys, "Y" Claim Group for Coin Canyon Mines Ltd. Assessment Report # 3187.

Preto, V.A. (1972): Geology of Copper Mountain, British Columbia Department of Mines and Petroleum Resources Bulletin 59.

Read, W.S. (1968): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 1785.

Read, W.S. (1970): Geochemical - Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Mineral Claims for Sinmax Mines Ltd. Assessment Report # 2892.

Read, W.S. (1973): Geophysical Report, Azurite Group, Cas 1-32 and Adjoining Claims for Sinmax Mines Ltd. Assessment Report # 4372.

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

Tulley, D.W. (1973): Report on an Induced Polarization Survey on the Ilse Claims 1 - 12 and Sob Claims 1 - 8 for Aurus Mining Ltd. Assessment Report # 4376.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Claims Ilse #1 - #12 for Aurus Mines Ltd. Assessment Report # 1904.

Wilson, E.M. (1969): Geophysical and Geochemical Report on Sob #1 - #8 for Aurus Mines Ltd. Assessment Report # 2032.

Wilsom, E.M. (1970): Geochemical on Claims Sob #3 - #8 for Aurus Mining Ltd. Assessment Report # 2558.

Wojdak, P., Jones, M.I. (1992): Geological Report on the Wes 1-3, Wes 8-14 and WR 1-6 Claims for Westmin Resources. Assessment Report # 22534.

8.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1.0 That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2.0 That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3.0 That I am a Member of the Canadian Institute of Mining and Metallurgy.
- 4.0 That I am a Fellow of the Geological Association of Canada.
- 5.0 That I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (No. 18,961).
- 6.0 That I am the owner of the Tas 1 and 2 mineral claims.

Dated thiss the day of Nov , 1994, at Keremeos, in the Province of British Columbia.

Grant Crooker, P. Geo., Consulting Geologist

APPENDIX I

.

.

Ň

.

CERTIFICATES OF ANALYSIS

To: GEOTEC CONSULTANTS LTD.

Project : TAS Comments: CC: GRANT CROOKER

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project :

Page Number : 1-A Total Pages :4 Certificate Date: 21-SEP-94 Invoice No. : 19425790 P.O. Number : Account LOY

										CERTIFICATE OF ANALYSIS			ļ	49425						
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	Al %	As ppm	Ba ppm	5e ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L9700E+10100N L9700E+10300N L9700E+11500N L9800E+10100N L9800E+10300N	201 202 203 205 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.72 1.34 1.38 1.27 1.44	< 2 4 2 2	70 60 120 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.46 0.70 0.41 0.51 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 12 6 7 4	14 47 12 11 10	49 42 26 31 17	2.68 2.73 2.25 2.08 1.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.14 0.08 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0,27 0,67 0.20 0.22 0,15	385 600 400 485 505
L9800E+11500N L9900E+09100N L9900E+10100N L9900E+10300N L9900E+11500N	201 202 201 202 201 202 201 202 201 202 201 202	 < 5 < 5 < 5 < 5 < 5 < 5	0.4 0.2 < 0.2 < 0.2 < 0.2 0.2	1.75 2.04 1.00 1.63 2.08	4 6 4 2 6	110 70 60 100 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.63 0.28 0.33 0.30 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 6 6 6	12 10 12 12 12	88 22 18 22 130	2.22 1.93 2.18 2.20 2.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.04 0.06 0.06 0.06	< 10 < 10 < 10 < 10 < 10	0.21 0.16 0.16 0.20 0.20	620 430 330 700 450
L10000E+09100N L10000E+10100N L10000E+10300N L10000E+11100N L10000E+11300N	201 202 202 203 202 203 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.2 < 0.2 0.2 0.2 0.5	1.68 1.56 1.68 2.28 1.99	6 < 2 < 2 < 2 < 2	100 70 100 170 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.34 0.47 0.51 0.51 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 8 13 11	10 65 40 29 11	40 38 38 96 114	2.04 2.40 2.33 2.63 2.25	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.09 0.11 0.17 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.23 0.28 0.31 0.46 0.27	385 320 575 1345 340
L10000E+11500N L10100E+09100N L10100E+10100N L10100E+10300N L10100E+11100N	201 202 201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 < 5 < 5 < 5 < 5	0.2 0.2 0.2 < 0.2 < 0.2 0.2	1.99 1.75 1.54 1.56 2.37	4 4 < 2 2 2	70 110 100 130 120	< 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.59 0.40 0.38 0.27 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 7 7 19	18 12 15 13 18	99 37 28 26 126	2.57 2.20 2.80 2.55 3.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.07 0.06 0.09	< 10 < 10 < 10 < 10 < 10 10	0.32 0.26 0.22 0.20 0.32	250 650 675 230 1285
L10100E+11300N L10100E+11500N L10200E+09100N L10200E+10100N L10200E+10300N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 5 < 5 < 5	< 0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	1.70 2.22 1.74 1.20 1.35	< 2 < 2 < 2 < 2 < 2 < 2	120 80 80 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.21 0.33 0.40 0.35 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 12 7 4 4	11 13 12 10 13	48 80 53 39 20	2.07 2.64 2.37 1.72 2.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.05 0.07 0.07	< 10 < 10 < 10 < 10 < 10	0.21 0.23 0.26 0.15 0.16	545 330 370 165 350
L10200E+11100N L10200E+11300N L10200E+11500N L10300E+09100N L10300E+09100N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 15 < 5	< 0.2 0.2 1.0 < 0.2 0.8	1.72 1.98 1.39 2.09 2.01	8 6 14 6 12	70 100 50 90 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 3 < 3 < 3	0.51 0.32 0.74 0.50 0.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 10 8 6	19 15 44 12 40	81 71 75 28 30	2.89 2.45 2.80 2.48 2.38	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.14 0.10 0.13	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.22 0.69 0.27 0.34	290 400 435 715 555
L10300E+10300N L10300E+11100N L10300E+11300N L10300E+11500N L10400E+09100N	201 202 201 202 201 202 201 202 201 202 301 202	v v v v v v v v v v	0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.15 1.97 1.73 1.95 1.40	6 4 8 4 < 2	40 110 100 100 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.44 0.27 0.40 0.38 0.66	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 7 6 5	13 12 14 13 8	41 31 44 31 76	1.98 2.05 2.69 2.74 1.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.07 0.06 0.08 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.17 0.20 0.23 0.26 0.25	345 345 505 260 320
L10400E+101DON L1040DE+103DON L10400E+11100N L10400E+11300N L10400E+11300N	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.15 1.32 1.45 1.14 1.98	< 2 < 2 < 2 < 2 < 2 < 2	80 140 50 80 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.14 0.38 0.19 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 5 6	9 8 15 8 9	20 10 46 18 12	1.79 1.58 2.70 1.68 1.90	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.09 0.04 0.06	< 10 < 10 < 10 < 10 < 10	0.14 0.14 0.31 0.11 0.16	390 845 200 375 1290

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

CERTIFICATION:

. •

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER

Page Number : 1-B Total Pages : 4 Certificate Date: 21-SEP-94 invoice No. : 19425790 P.O. Number : Account LOY

٦

			·····			<u>.</u>					CE	RTIF	CATE	OF A	NAL	SIS	A9425790
SAMPLE	PRI CO	ep De	Мо ррт	Na %	Ni ppm	P ppm	Pb pp≖	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D mdđ	V mqq	DDm M	Zn ppm	
L9700E+10100N L9700E+10300N L9700E+11500N L9800E+10100N L9800E+10300N	201 203 201 201 201	202 205 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.02 0.03 0.03	9 14 8 6 8	1460 700 1440 1590 980	6 4 8 6 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 4 2 2 1	46 58 41 52 21	0.10 0.11 0.08 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	93 97 68 61 49	< 10 < 10 < 10 < 10 < 10 < 10	52 46 68 68 88	
L9800E+11500N L9900E+09100N L9900E+10100N L9900E+10300N L9900E+11500N	201 201 201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 1 < 1	0.03 0.03 0.01 0.02 0.03	16 7 6 9 15	1060 1770 820 750 2030	6 8 4 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 2 1 2	51 26 32 28 26	0.08 0.10 0.07 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 51 73 63 56	< 10 < 10 < 10 < 10 < 10 < 10	104 174 46 80 116	
L10000E+09100N L10000E+10100N L10000E+10300N L10000E+11100N L10000E+11300N	201 202 202 201 201	202 203 203 202 202	< 1 1 < 1 < 1 1	0.02 0.06 0.04 0.02 0.03	8 10 10 21 12	870 590 1020 410 760	8 4 6 12 6	< 2 < 2 < 2 < 2 < 2 < 2	2 2 3 3 2	37 47 51 58 29	0.11 0.12 0.10 0.14 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 81 74 69 65	< 10 < 10 < 10 < 10 < 10 < 10	118 50 70 184 70	
L10000E+11500N L10100E+09100N L10100E+10100N L10100E+10300N L10100E+11100N	201 201 201 201 201	202 202 202 202 202	< 1 1 < 1 < 1 1	0.03 0.02 0.02 0.03 0.03	14 B 10 10 14	990 1140 1420 1600 560	8 8 4 22	2 < 2 2 < 2 < 2 < 2 < 2	3 2 2 3	61 41 35 31 46	0.13 0.11 0.11 0.11 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 65 90 73 86	< 10 < 10 < 10 < 10 < 10 < 10	54 138 82 90 152	
L10100E+11300N L10100E+11500N L1020CE+09100N L10200E+10100N L10200E+10300N	201 201 201 201 201 201	202 202 202 202 202 202	< 1 1 < 1 < 1 < 1 < 1	0.02 0.03 0.02 0.02 0.02	9 18 8 6 6	1730 1260 1340 500 290	8 6 8 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 1 1	24 35 41 29 31	0.07 0.10 0.10 0.08 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	55 71 70 47 69	< 10 < 10 < 10 < 10 < 10 < 10	92 88 148 52 50	
L10200E+11100N L10200E+11300N L10200E+11500N L10300E+09100N L10300E+10100N	201 201 201 201 201 201	202 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.04 0.03 0.07	13 18 12 10 8	590 1150 960 730 1690	8 10 34 4 22	< 2 < 2 2 < 2 < 2 < 2 < 2 < 2	3 2 4 2 2	52 33 52 54 44	0.13 0.10 0.10 0.14 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	88 75 103 70 73	< 10 < 10 < 10 < 10 < 10 < 10	106 136 52 362 76	
L10300E+10300N L10300E+11100N L10300E+11300N L10300E+11500N L10400E+09100N	201 201 201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 3 < 1	0.02 0.04 0.03 0.03 0.02	6 14 10 13 4	230 820 1680 420 430	4 2 4 16 6	< 2 2 < 2 < 2 < 2 < 2	3 1 2 2 2	42 29 37 43 52	0.09 0.11 0.10 0.12 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 59 93 93 48	< 10 < 10 < 10 < 10 < 10 < 10	48 120 84 72 78	
L10400E+10100N L10400E+10300N L10400E+11100N L10400E+11300N L10400E+11300N	201 201 201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 1	0.02 0.02 0.02 0.02 0.02 0.03	6 6 10 10 17	970 1220 1070 770 920	8 4 6 4 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 2 1 1	25 16 35 21 31	0.07 0.07 0.09 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 39 96 48 57	< 10 < 10 < 10 < 10 < 10 < 10	48 118 56 80 222	

.

n,

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number :2-A Total Pages :4 Certificate Date: 21-SEP-94 invoice No. : 19425790 P.O. Number ; Account :LOY

.

		T								CE	RTIF	CATE	OF	ANAL	YSIS		A942	5790		
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	λ1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca X	Cđ ppm	Со ррд	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K	La ppm	Mg %	Mn ngg
L10500E+09100N L10500E+10100N L10500E+10300N L10500E+11100N L10500E+11300N L10500E+11500N	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 20 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.81 1.49 1.69 1.53 2.30 3.01	8 16 < 2 6 8 	70 90 100 80 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 2 4	0.54 0.29 0.35 0.37 0.43	1.0 < 0.5 < 0.5 < 0.5 < 0.5	7 5 4 5	7 8 7 8 12	61 20 15 16 35	2.17 1.88 2.02 1.93 2.23	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.07 0.10 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.44 0.15 0.17 0.19 0.24	495 220 680 295 550
L10600E+09100N L10600E+10100N L10600E+10300N L10600E+11100N	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.2 0.2 0.2 < 0.2 < 0.2	1.64 1.36 1.62 1.41 2.22	4 < 2 4	100 70 70 80	< 0.5 < 0.5 < 0.5 < 0.5	< 2 2 6	0.32 0.27 0.53 0.39	< 0.5 1.5 < 0.5 < 0.5 < 0.5	9 11 5 7 5	14 9 11 17 10	75 30 20 44 18	2.68 2.32 1.99 2.94 2.01	10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.06 0.04 0.12 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.38 0.30 0.15 0.39 0.20	425 1625 310 215 525
L10600E+11500N L10700E+09100N L10700E+10100N L10700E+10300N	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	< 0.2 0.2 0.2 < 0.2	2.67 2.22 1.27 2.29	6 8 6 6	130 70 30 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 4 4	0.21 0.47 0.38 0.72 0.39	< 0.5 0.5 0.5 < 0.5 < 0.5	6 7 7 6 7	11 17 7 12 13	26 44 67 47 27	2.28 2.94 2.18 2.60 2.52	10 10 10 10	< 1 < 1 < 1 < 2 < 1	0.04 0.10 0.05 0.07 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.22 0.38 0.24 0.26 0.31	620 240 375 210 545
L10700E+11300N L10700E+11300N L10800E+09100N L10800E+09100N	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 0.2	2.17 1.83 2.07 1.48 1.55	6 2 6 6 4	140 100 100 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 < 2	0.30 0.34 0.30 0.34 0.62	< 0.5 < 0.5 0.5 0.5 < 0.5	6 6 4 7 9	9 11 8 7 14	25 23 22 47 532	1.98 2.12 1.98 2.19 2.70	10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.05 0.07 0.06 0.09	< 10 < 10 < 10 < 10 < 10	0.22 0.21 0.18 0.27 0.50	865 365 1720 470
L10800E+10300N L10800E+11100N L10800E+11300N L10800E+11500N L10900E+09100N	201 202 201 202 201 202 201 202 201 202 201 202	20 < 5 < 5 < 5 < 5 < 5	< 0.2 0.2 0.2 0.2 0.2 0.2	1.31 1.42 1.88 1.85 1.98	< 2 5 6 < 2 < 2	120 60 80 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 4 6 4	0.24 0.12 0.14 0.27 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 3 6 8	7 5 6 8 12	17 10 21 45 41	1.84 1.94 1.62 2.06 2.17	< 10 10 10 10	< 1 < 1 < 1 < 1	0.06 0.02 0.05 0.04	< 10 < 10 < 10 < 10 < 10	0.17 0.09 0.13 0.17	455 305 530 395
L10900E+10100N L10900E+10300N L10900E+11100N L10900E+11300N L10900E+11500N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.26 1.23 1.35 1.71 1.67	4 8 < 2 < 2 4	60 40 80 100 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 6 2	0.31 0.77 0.35 0.15 0.30	< 0.5 < 0.5 0.5 1.0 < 0.5	4 7 4 4 6	8 15 7 6 9	17 64 29 13 22	1.87 2.68 1.76 1.71 1.98	10 < 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.11 0.06 0.03 0.06	< 10 < 10 < 10 < 10 < 10 < 10 < 10	0.15 0.45 0.20 0.11 0.18	360 180 385 650 755 1360
L11000E+10100N L11000E+10300N L11000E+10300N L11000E+11100N L11000E+11300N	201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 < 5 < 5 < 5	0.6 0.2 0.2 < 0.2 < 0.2	2.40 1.87 1.34 1.92 2.53	B 2 2 8 2	60 60 60 110 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 6 2 < 2 < 2	0.49 0.28 0.28 0.25 0.22	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	9 4 4 7 5	11 7 10 6 8	146 50 23 22 60	3.06 2.05 1.93 1.71 2.12	10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.05 0.05 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.58 0.21 0.20 0.16 0.22	570 225 445 1760 475
11100E+09100N 11100E+10100N 11100E+10100N 11100E+10300N 11100E+11100N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 5 < 5 < 5	< 0.2 0.2 0.6 0.2 0.2	1.45 1.54 2.08 3.53 2.52	< 2 2 14 6 < 2	60 4 30 4 80 4 120 4 180 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 4 6	0.28 0.66 0.31 0.53 0.38	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 10 6 8	9 10 13 18 19	22 88 387 145 24	1.87 2.32 2.93 2.98 2.64	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.07 0.04 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.43 0.24 0.37 0.49	445 420 760 420 295

CERTIFICATION:

.

f

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brookshank Ava - Narth Verseumen

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number :2-B Total Pages :4 Certificate Date:21-SEP-94 Invoice No. :19425790 P.O. Number : Account :LOY

	- -		1								CE	RTIF		OF /	ANAL	YSIS	A9425790
SAMPLE	PRE	EP DE	Mo ppm	Na %	Ni ppm	P PPm	Pb ppm	SD ppm	Sc ppm	Sr ppm	ti %	T1 ppm	D mdđ	V DDm	W ppm	Zn. ppm.	
L10500E+09100N L10500E+10100N L10500E+10300N L10500E+11300N L10500E+11300N	201 201 201 201 201	202 202 202 202 202 202	< 1 1 1 1 1 1 1	0.02 0.02 0.03 0.03 0.04	7 7 4 10 12	760 2260 860 540 270	6 6 2 4 10	< 2 2 2 2 2	3 2 2 2 3	53 31 32 37 43	0.14 0.08 0.10 0.11 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 51 53 61 61	< 10 < 10 < 10 < 10 < 10 < 10	458 82 108 152 152	
L10500E+11500N L10600E+09100N L10600E+10100N L10600E+10300N L10600E+11100N	201 201 201 201 201 201	202 202 202 202 202	1 1 1 1	0.04 0.02 0.02 0.02 0.02	15 10 6 8	1230 590 1640 660 330	8 14 4 8 4	6 4 4 4	4 3 1 4 2	47 30 25 47 38	0.13 0.12 0.08 0.12 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 68 61 98 71	< 10 < 10 < 10 < 10 < 10 < 10	136 412 58 64 138	
L10600E+11300N L10600E+11300N L10700E+09100N L10700E+10100N L10700E+10300N	201 201 201 201 201	202 202 202 202 202 202	1 2 1 1 1	0.04 0.03 0.03 0.02 0.03	11 15 7 6 10	940 1010 1450 820 790	< 2 8 2 4 8	2 2 4 4	2 4 3 4 2	20 47 41 62 39	0.14 0.14 0.12 0.11 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 101 65 105 72	< 10 < 10 < 10 < 10 < 10 < 10	108 158 358 48 110	
L10700E+11100N L10700E+11300N L10700E+11500N L10800E+199100N L10800E+10100N	201 201 201 201 201	202 202 202 202 202 202	1 1 3 < 1 1	0.04 0.03 0.03 0.02 0.02	14 11 14 9 8	820 1080 1400 1180 560	14 2 6 4 6	4 2 2 4 2	2 2 1 2 6	30 32 27 32 45	0.12 0.12 0.10 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 69 55 60 84	< 10 < 10 < 10 < 10 < 10 < 10	214 172 154 264 94	
L10800E+10300N L10800E+11100N L10800E+11300N L10800E+11500N L10900E+09100N	201 201 201 201 201 201	202 202 202 202 202 202	< 1 1 1 1	0.02 0.03 0.03 0.03 0.03	7 4 9 10 9	1360 870 1220 1560 1640	6 4 4 6	2 2 2 2 2 2	1 1 1 3 3	23 13 15 26 28	0.08 0.11 0.10 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 54 42 62 56	< 10 < 10 < 10 < 10 < 10 < 10	80 126 130 114 156	
L10900E+10100N L10900E+10300N L10900E+11100N L10900E+11300N L10900E+11500N	201 201 201 201 201 201	202 202 202 202 202 202	< 1 1 1 1 1	0.02 0.03 0.02 0.03 0.03 0.03	5 5 10 6 9	1390 1040 1050 1040 1920	4 8 12 6 4	2 4 2 2 4	1 5 2 1 2	27 54 38 16 27	0.08 0.11 0.09 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 99 54 45 60	< 10 < 10 < 10 < 10 < 10 < 10	86 62 126 314 178	
L11000E+09100N L11000E+10100N L11000E+10300N L11000E+11100N L11000E+11300N	201 2 201 2 201 2 201 2 201 2 201 2	102 102 102 102 102	1 < 1 < 1 1 1	0.03 0.03 0.02 0.03 0.03	10 6 7 11	550 1270 1590 970 1480	4 2 8 6 4	4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 2 1 1 2	41 23 23 27 24	0.13 0.09 0.08 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 58 61 45 60	< 10 < 10 < 10 < 10 < 10 < 10	114 58 114 154 150	
11000E+11500N 11100E+09100N 11100E+10100N 11100E+10300N 11100E+11100N	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02 02	< 1 1 2 1 1	0.02 0.02 0.02 0.03 0.03	8 4 9 10 12	1550 730 1030 590 1890	8 < 2 6 8	4 2 4 6 2	2 5 5 4 3	26 60 37 42 32	0.09 0.11 0.10 0.12 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	56 77 78 68 66	< 10 < 10 < 10 < 10 < 10 < 10	70 80 196 166 88	
·																	

CERTIFICATION:

۲ 3 . ٦

3

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayera

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER

Page Number :3-A Total Pages :4 Certificate Date: 21-SEP-94 Invoice No. : 19425790 P.O. Number : Account LOY

. ٠

BMDLE PRODE Au-AA Pga No A A Pga No A A A Pga No A A Pga No A									_	CERTIFICATE OF ANALYS						YSIS		A9425	5790		
$ \begin{array}{c} 11100e+1300m \\ 121100e+1300m \\ 701 \\ 1202 \\ 701 \\ 70$	SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Ве ррш	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
$\begin{array}{c} 1110005-113008 \\ 1110005-11008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 1110005-110008 \\ 11$	L11100E+11300N L11100E+11500N L11200E+109100N L11200E+10100N L11200E+10300N	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 0.2 0.4	1.88 2.21 2.43 1.35 4.08	2 4 8 < 2 4	70 80 40 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 6	0.14 1.01 0.40 0.32 0.73	< 0.5 0.5 < 0.5 < 0.5 0.5	3 20 11 3 7	4 29 17 8 21	16 196 65 63 162	1.61 4.49 2.65 1.51 3.20	10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.20 0.08 0.05 0.10	< 10 10 < 10 < 10 10	0.11 1.04 0.39 0.13 0.48	460 810 750 105 515
$\begin{array}{c} 11300 = 11008 \\ 11300 = 11008 \\ 121300 = 11008 \\ 1$	L11200E+11300N L11200E+11500N L11300E+09100N L11300E+10100N L11300E+10300N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.2 < 0.2 0.2 < 0.2 < 0.2	1.53 2.64 1.93 2.53 1.81	2 2 4 2 6 4 2 6	90 110 70 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 2 < 2 6	0.30 0.35 0.46 0.16 0.39	< 0.5 < 0.5 < 0.5 0.5 < 0.5	3 .7 5 4 4	8 13 13 7 11	19 47 61 22 41	1.89 2.37 2.51 1.90 2.17	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.06 0.07 0.03 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.25 0.27 0.10 0.21	610 255 270 820 160
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L11300E+11100N L11300E+11300N L11300E+11500N L11300E+11500N	201 202 201 202 201 202 201 202 201 202	< 5 < 5 15 < 5	< 0.2 0.2 < 0.2 0.2	3.20 1.72 1.91 1.52 1.89	< 2 8 4 2 6	90 70 100 90 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 2 2 < 2 < 2 < 2	0.89 0.49 0.44 0.27 0.24	3.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 7 6 4 6	21 14 12 7 7	557 68 78 24 22	3.04 2.43 2.21 1.79 2.03	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.11 0.07 0.08 0.04	< 10 < 10 10 < 10 < 10	0.65 0.33 0.31 0.16 0.17	510 355 310 685 375
$ \begin{array}{c} L1500x+09100N \\ L1500x+0100N \\ 201 \\ 202$	L11400E+10100N L11400E+10300N L11400E+11100N L11400E+11300N L11400E+11500N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 10 15	0.2 0.2 < 0.2 0.2 0.2	2.07 1.93 1.56 1.23 1.72	2 8 8 4 4	90 30 60 40 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 4 2 4 < 2	0.51 0.42 0.28 0.57 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 2 4 5 3	14 8 6 12 7	49 27 22 40 19	2.43 1.69 1.73 2.31 1.62	< 10 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.05 0.06 0.05 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.29 0.16 0.22 0.13	345 145 175 200 410
L11500E+11500N 201 202 15 < 0.2 2.16 < 2 100 < 0.5 4 0.61 < 0.5 6 18 42 2.37 10 < 1 0.10 < 10 0.33 560 L10600E+09100N 201 202 < 5 0.6 1.54 4 40 < 0.5 2 1.11 < 0.5 14 17 126 3.66 < 10 < 1 0.10 < 10 0.33 560 L10600E+10100N 201 202 < 5 0.6 1.54 4 40 < 0.5 4 0.29 0.5 5 10 22 1.97 < 10 < 1 0.05 < 10 0.20 160 L10600E+11300N 201 202 < 5 0.2 1.67 < 2 80< < 0.5 6 14 49 2.11 10 < 1 0.06 < 10 0.36 685 L10600E+11300N 201 202 < 5 0.2 1.67 < 2 80< < 0.5 6 0.52 < 0.5 5 11	L11500E+09100N L11500E+10100N L11500E+10300N L11500E+11100N L11500E+11300N	201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 < 0.2 0.2	1.60 2.25 1.22 1.65 1.65	< 2 2 2 8 4	70 50 40 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 4 < 2 2	0.53 0.34 0.27 0.36 0.46	0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 6 3 6 6	9 12 8 11 14	45 34 30 22 33	2.51 2.34 1.51 2.24 2.39	10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.08 0.05 0.05 0.05	< 10 < 10 < 10 < 10 < 10	0.26 0.27 0.18 0.18 0.23	670 220 145 155
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L11500E+11500N L10600E+09100N L10600E+10100N L10600E+10300N L10600E+11100N	201 202 201 202 201 202 201 202 201 202 201 202	15 < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.6 < 0.2 0.2	2.16 1.95 1.54 1.58 1.98	< 2 6 4 4	100 60 40 40 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 4 < 2 < 2	0.61 1.11 0.29 0.28 0.45	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	6 14 5 5 6	18 17 10 10 14	42 126 22 19 49	2.37 3.66 1.97 2.21 2.12	10 < 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.27 0.05 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.33 1.02 0.20 0.17 0.36	560 855 160 370 685
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110600E+11300N 110600E+11500N 11700E+09100N 11700E+10100N 11700E+10300N	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 10 5</pre>	0.2 < 0.2 0.2 0.2 < 0.2	1.67 1.80 2.87 1.83 1.65	< 2 6 2 4	80 50 80 40 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 4 4	0.52 0.26 0.61 0.62 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 6 7 6	16 11 15 9 8	31 21 156 52 26	2.31 2.25 2.51 2.60 2.07	10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.04 0.06 0.06 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.22 0.17 0.41 0.38 0.19	135 310 420 290 510
	11700E+11000N 11700E+11300N 11700E+11500N 11800E+09100N 11800E+10100N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 5 5 5 5 5 5 5 5 5	0.2 0.2 0.2 0.2 0.2	1.58 3.66 3.41 2.29 2.11	€ 8 4 ≺ 2 ≺ 2	150 150 130 80 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 6 2	0.61 0.68 0.22 0.41 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 6 7 4	18 22 13 13 8	54 68 43 46 22	2.17 3.09 2.40 2.24 2.11	< 10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.06 0.07 0.04	10 10 < 10 < 10 < 10	0.37 0.37 0.20 0.30 0.17	955 620 185 270 255

CERTIFICATION:__

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number : 3-B Total Pages :4 Certificate Date: 21-SEP-94 Invoice No. : 19425790 P.O. Number : Account :LOY

	·		·		<u> </u>				_		CE	RTIF	ICATE	OF /	NAL	/SIS	A9425790
SAMPLE	PREP		Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	т1 ррш	U mqq	V mqq	W	Zд ррт	
L11100E+11300N L11100E+11500N L11200E+09100N L11200E+10100N L11200E+10300N	201 20 201 20 201 20 201 20 201 20	02 02 02 02 02	2 1 2 1 1	0.02 0.03 0.03 0.02 0.04	6 14 13 3 12	1510 1310 1080 1450 450	4 4 6 6	2 6 2 2 4	1 12 5 1 5	14 80 44 26 49	0.09 0.14 0.13 0.09 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 160 81 42 71	< 10 < 10 < 10 < 10 < 10 < 10	74 74 190 94 444	
L11200E+11100N L11200E+11300N L11200E+11500N L11300E+09100N L11300E+10100N	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 02 02 02	1 < 1 < 1 < 1 < 1	0.03 0.04 0.03 0.03 0.03	5 9 7 2 5	1510 1510 740 3640 1120	6 4 2 6 2	< 2 4 2 < 2 4	2 3 3 2 2	28 37 42 18 35	0.09 0.12 0.12 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 65 83 49 72	< 10 < 10 < 10 < 10 < 10 < 10	70 70 40 120 52	
L11300E+10300N L11300E+11300N L11300E+11300N L11300E+11500N L11400E+09100N	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 02 02 02	3 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.03 0.02	17 7 4 6	700 950 340 1690 1600	4 8 8 8 6	6 2 2 < 2 2	5 3 4 1 2	54 44 25 23	0.12 0.11 0.11 0.08 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 82 63 46 57	< 10 < 10 < 10 < 10 < 10 < 10	942 108 74 72 122	
L11400E+10100N L11400E+10100N L11400E+11100N L11400E+11300N	201 20 201 20 201 20 201 20 201 20	12 12 12 12 12	1 < 1 < 1 < 1 < 1	0.03 0.04 0.03 0.02 0.05	8 3 5 6 6	1070 210 1330 810 1820	2 6 4 6	4 < 2 2 4 < 2	3 2 3 2	44 30 27 50 23	0.13 0.12 0.10 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 47 51 88 43	< 10 < 10 < 10 < 10 < 10 < 10	130 56 82 36 114	
L11500E+09100N L11500E+10100N L11500E+10300N L11500E+11100N L11500E+11300N	201 20 201 20 201 20 201 20 201 20 201 20	12 12 12 12 12	2 < 1 < 1 1 < 1	0.02 0.03 0.03 0.03 0.03	8 9 3 8 8	970 1360 630 2080 1200	6 6 4 2	4 4 2 < 2 4	4 3 1 2 3	50 28 23 40 41	0.11 0.11 0.10 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 68 44 67 79	< 10 < 10 < 10 < 10 < 10 < 10	106 416 112 50 46	
L11500E+11500N L10600E+09100N L10600E+10100N L10600E+10300N L10600E+11100N	201 20 201 20 201 20 201 20 201 20 201 20	2222222	< 1 1 < 1 1 < 1	0.02 0.01 0.02 0.02 0.04	9 7 4 7 7	290 900 1840 1660 540	6 8 6 8 4	6 2 < 2 2 2	4 9 2 3	56 99 25 24 45	0.19 0.18 0.10 0.11 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	86 132 57 70 63	< 10 < 10 < 10 < 10 < 10 < 10	60 86 314 92 74	
L10600E+11300N L10600E+11500N L11700E+09100N L11700E+10100N L11700E+10300N	201 20 201 20 201 20 201 20 201 20 201 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 1 1 < 1 1 1	0.03 0.04 0.05 0.02 0.02	8 7 9 6 4	820 1240 250 1030 1650	4 4 8 4 4	4 2 < 2 2 < 2	3 2 3 3 2	49 24 50 57 23	0.14 0.11 0.16 0.13 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 72 74 98 62	< 10 < 10 < 10 < 10 < 10 < 10	42 54 90 78 108	
L11700E+11000N L11700E+11300N L11700E+11500N L11800E+09100N L11800E+10100N	201 20 201 20 201 20 201 20 201 20 201 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 1 4 < 1	0.03 0.04 0.03 0.03 0.03	8 11 10 8 4	540 410 2440 1480 1370	8 4 6 4	4 4 < 2 < 2 2	6 6 4 2 2	48 54 25 31 26	0.12 0.12 0.12 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 71 60 60 66	< 10 < 10 < 10 < 10 < 10 < 10	54 50 58 166 72	

CERTIFICATION:_

Bar Marina

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number :4-A Total Pages :4 Certificate Date:21-SEP-94 Invoice No. :19425790 P.O. Number : Account :LOY

	<u> </u>									CE	RTIFI	CATE	OF	ANAL	YSIS		A9425	5790		
SAMPLE	PREP CODE	Ац-АА ррь	Ag ppm	λ1 *	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppa	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L11800E+10300N L11800E+11100N L11800E+11300N L11800E+11500N L11900E+09100N	201 202 201 202 201 202 201 202 201 202 201 202	* 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.03 2.17 2.52 2.71 2.24	10 4 6 2 < 2	60 140 100 90 60	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.23 0.13 0.32 0.24 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 3 5 5	13 9 14 13 14	26 11 35 21 137	2.15 2.01 2.43 2.34 2.04	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.12 0.20 0.21 0.24	830 385 145 735 180
L11900E+10100N L11900E+10300N L11900E+11000N L11900E+11300N L11900E+11500N	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 < 5 </pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.98 1.60 2.00 2.48 2.58	6 2 6 6 6	20 50 80 70 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.40 0.40 0.17 0.20 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 .4 4 3 4	6 11 10 10 11	25 26 15 18 25	1.23 2.23 1.91 1.87 1.92	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.04 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.19 0.15 0.13 0.18	150 270 330 85 525
L12000E+09100N L12000E+10100N L12000E+10300N L12000E+11100N L12000E+11300N	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.68 1.44 1.60 2.24 1.70	6 4 2 6	40 30 60 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.33 0.33 0.31 0.24 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 4 4	11 9 10 10 11	27 31 63 10 11	2.09 2.17 2.06 2.09 1.88	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.24 0.35 0.25 0.14 0.15	195 180 300 205 160
L12000E+11500N L12100E+09100N L12100E+10100N L12100E+10300N L12100E+11100N	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2	2.54 3.05 1.52 2.18 2.11	6 4 2 2 2	80 100 40 70 60	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.25 0.65 0.88 0.32 0.28	< 0.5 1.5 < 0.5 < 0.5 < 0.5	4 8 6 4	11 18 14 11 10	17 319 45 35 11	2.06 2.96 2.62 2.16 2.01	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 1	0.05 0.07 0.12 0.05 0.04	< 10 10 < 10 < 10 < 10 < 10	0.18 0.43 0.41 0.16 0.17	560 1015 420 350 490
L12100E+11300N L12100E+11500N	201 202 201 202	< 5 < 5	< 0.2 < 0.2	2.84 1.99	8	110 70	0.5	< 2 < 2	0.17 0.17	< 0.5 < 0.5	64	12 10	21 7	2.28 2.06	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.21 0.14	320 590

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER

Page Number : 4-B Total Pages : 4 Certificate Date: 21-SEP-94 Invoice No. : 19425790 P.O. Number : Account LOY

	<u>r</u>		1		_ _						CE	RTIF	CATE	OF A	NAL	'SIS	A9425790
SAMPLE	PR CO	EP DE	Мо ррш	Na %	Ni ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U PPm	V Ppm	W ppm	Zn ppm	
L11800E+10300N L12800E+11100N L11800E+11300N L11800E+11500N L11900E+09100N	201 201 201 201 201	202 202 202 202 202	1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.02 0.03 0.04	8 6 10 9 9	1380 1190 1630 1480 1440	6 4 4 6	2 2 2 4 < 2	1 1 3 2 2	23 14 31 22 30	0.12 0.11 0.11 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 55 74 67 56	< 10 < 10 < 10 < 10 < 10 < 10	74 54 28 76 124	
L11900E+10100N L11900E+1000N L11900E+11000N L11900E+11300N L11900E+11500N	201 201 201 201 201	202 202 202 202 202	< 1 < 1 1 < 1 1	0.03 0.02 0.03 0.03 0.03	3 6 8 6 7	230 1010 990 900 1160	4 4 6 6	< 2 2 2 2 2 2	2 2 1 1 2	27 37 18 20 23	0.13 0.11 0.11 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 75 55 49 52	< 10 < 10 < 10 < 10 < 10 < 10	58 52 128 28 64	
L12000E+09100N L12000E+10100N L12000E+10300N L12000E+11100N L12000E+11300N	201 201 201 201 201	202 202 202 202 202	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.02 0.02 0.03	5 4 7 6 6	1270 1310 920 890 920	6 6 4 4	2 2 2 4 < 2	2 2 1 1	29 26 32 19 25	0.10 0.09 0.10 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 68 65 61 57	< 10 < 10 < 10 < 10 < 10 < 10	76 66 62 64 40	
L12000E+11500N L12100E+09100N L12100E+10100N L12100E+10300N L12100E+11100N	201 201 201 201 201	202 202 202 202 202 202	< 1 1 < 1 < 1	0.04 0.03 0.02 0.03 0.03	7 10 4 7 4	1170 1410 1080 1580 680	4 12 4 4 6	4 2 2 < 2 2	2 6 4 2 2	24 57 67 32 24	0.12 0.14 0.11 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 97 100 64 58	< 10 < 10 < 10 < 10 < 10 < 10	68 288 46 72 70	
12100E+11300N 12100E+11500N	201	202	< 1 < 1	0.03	8	1170 830	8 4	< 2 < 2	1	26 16	0.10	< 10 < 10	< 10 < 10	55 56	< 10 < 10	74	

CERTIFICATION:__

Harristan

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Page Number :1-A Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. :19426716 P.O. Number : Account :LOY

Project : TAS Comments: CC: GRANT CROOKER

CERTIFICATE OF ANALYSIS A9426716 PREP Au-AA λg **A**1 λs Ba Be Вİ Ca Cđ Со Cr Cu Fe Ga Ηg ĸ Mg La Мn SAMPLE CODE opb ppm * ppm DOM ррш % DDW ppm ppm ppm ppm ٩, ppn ррш % * ррщ בסס 8200N 10050E 202 203 < 5 0.4 2.60 < 2 70 < 0.5 < 2 0.92 < 0.5 10 54 51 3.26 < 10 2 0.09 < 10 0.83 515 8200N 10150g 202 203 < 5 0.2 2.41 6 80 < 0.5 < 2 1.00 < 0.5 12 64 49 3.43 < 10 < 1 0.11 < 10 0.67 985 8200N 10250E 202 203 < 5 0.2 < 80.0 < 2 < 10 < 0.5 < 2 1.20 < 0.5 < 1 41 9 0.12 < 10 < 1 0.11 < 10 95 0.09 8200N 10350E 202 203 < 5 0.4 2.46 12 80 < 0.5 < 2 0.73 < 0.5 11 61 38 3.04 < 10 1 0.11 < 10 0.65 880 8200N 10450E 201 202 < 5 0.2 2.46 4 70 < 0.5 < 2 0.43 < 0.5 19 9 52 2.33 < 10 2 0.04 < 10 0.32 365 8200N 10550E 202 203 < 5 1.6 2.47 < 2 70 < 0.5 < 2 0.90 < 0.5 8 37 95 2.57 0.07 < 10 < 1 < 10 0.44 565 8200N 10650E 201 202 < 5 0.2 2.05 < 2 70 < 0.5 0.48 < 2 < 0.5 8 15 50 2.19 < 10 < 1 0.04 < 10 0.29 350 8200N 10750E 202 203 < 5 0.4 2.25 2 70 < 0.5 < 2 0.75 < 0.5 9 54 41 0.09 2.54 < 10 < 1 < 10 0.41 530 8200N 10850E 201 202 < 5 0.2 1.85 8 60 < 0.5 < 2 0.64 < 0.5 10 14 57 2.69 < 10 0.07 < 1 < 10 8200N 10950E 0.36 495 202 203 < 5 < 0.2 1.76 4 70 < 0.5 < 2 0.63 < 0.5 7 40 33 2.32 < 10 < 1 0.14 < 10 0.39 505 8200N 11050E 202 203 5 0.2 2.05 9 80 < 0.5 < 2 0.76 < 0.5 10 41 41 2.76 < 10 < 1 0.14 < 10 0.49 750 8200N 11150E 202 203 5 0.2 2.11 < 2 90 < 0.5 < 2 0.96 < 0.5 10 32 42 2.97 < 10 < 1 0.19 < 10 0.61 1115 9200N 11300E 202 203 < 5 0.2 2.12 10 70 < 0.5 < 2 0.48 < 0.5 8 41 29 2.17 < 10 1 0.11 < 10 0.30 1095 8200N 11400E 202 203 < 5 0.2 2.39 < 2 70 < 0.5 < 2 0.54 < 0.5 7 31 32 2.44 < 10 < 1 0.08 < 10 0.39 680 8200N 11500E 202 203 < 5 0.2 1.73 < 2 60 < 0.5 < 2 0.73 < 0.5 Q 50 45 2.01 < 10 < 1 0.13 < 10 0.52 540 8200N 11600E 202 203 < 5 0.4 2.28 < 2 90 < 0.5 < 2 1.17 < 0.5 7 22 203 2.25 < 10 з 0.10 10 0.52 625 8200N 11700E 201 202 10 0.2 1.71 < 2 30 < 0.5 < 2 0.29 < 0.5 10 19 6 2.00 < 10 0.03 1 < 10 8200N 11800E 0.23 130 201 202 10 0.2 1.79 < 2 < 0.5 30 < 2 0.40 < 0.5 10 4 31 1.80 < 10 < 1 0.03 8200N 11900E < 10 0.22 160 201 202 < 5 0.4 2.04 < 2 60 < 0.5 < 2 0.48 < 0.5 8 14 43 2.18 < 10 8200N 12000E < 1 0.07 < 10 0.40 360 201 202 5 1.4 1.85 < 2 60 < 0.5 1.51 < 0.5 < 2 Ĥ 12 73 1.92 < 10 1 0.05 < 10 0.44 700 8200N 12100E 201 202 < 5 0.2 2.12 < 2 < 0.5 80 < 2 0.70 < 0.5 9 18 56 2.83 < 10 1 0.08 < 10 0.74 360 8300N 10000g 201 202 < 5 0.8 2.35 < 2 80 < 0.5 < 2 0.36 < 0.5 6 11 26 1.89 < 10 < 1 0.03 < 10 0.17 820 8300N 10100E 201 202 5 0.4 < 2 1.99 70 < 0.5 < 2 0.65 < 0.5 q 13 63 2.41 < 10 < 1 0.06 < 10 8300N 10200E 2021 203 0.33 930 < \$ 0.8 2.10 4 50 < 0.5 < 2 1.45 < 0.5 9 36 93 2.59 < 10 1 0.06 8300N 10300E < 10 0.60 595 201 202 < 5 0.2 1.92 < 2 90 < 0.5 0.49 < 2 < 0.5 7 12 36 2.00 < 10 < 1 0.04 < 10 0.26 725 8300N 10400E 201 202 < 5 0.6 2.98 < 2 90 < 0.5 0.69 < 2 < 0.5 10 22 113 3.11 < 10 < 1 0.05 795 8300N 10500E 10 0.45 201 202 < 5 0.6 2.83 < 2 70 < 0.5 < 2 0.31 < 0.5 7 12 2.16 63 < 10 < 1 0.04 8300N 10600E < 10 0.24 310 202 203 < 5 0.2 1.98 12 40 < 0.5 < 2 1.49 < 0.5 14 35 116 3.16 < 10 8300N 10700E < 1 0.13 < 10 0.79 765 202 203 < 5 0.2 2.13 6 70 < 0.5 < 2 < 0.5 1.22 12 45 61 3.13 < 10 8300N 10800m < 1 0,13 < 10 0.75 790 202 203 < 5 0.2 1.69 20 40 < 0.5 < 2 1.08 < 0.5 9 37 66 3.05 < 10 1 0.56 0.17 < 10 515 8300N 10900E 201 202 5 < 0.2 1.55 < 2 120 < 0.5 < 2 0.44 < 0.5 7 9 21 1.88 < 10 8300N 11000E < 1 0.08 < 10 0.22 1060 201 202 < 5 < 0.2 1.70 2 80 < 0.5 < 2 0.41 < 0.5 6 10 21 1.99 < 10 < 1 0.06 < 10 270 8300N 11100E 0.18 2011 202 < 5 0.2 2.36 < 2 140 < 0.5 < 2 0.62 < 0.5 10 11 45 2.98 < 10 < 1 0.10 < 10 0.39 1570 8300N 11200E 201 202 < \$ 0.6 2.69 2 100 < 0.5 < 2 0.34 < 0.5 11 10 56 2.49 < 10 < 1 0.04 8300N 11300E < 10 0.37 2140 201 202 < 5 0.2 2.20 < 2 60 < 0.5 < 2 0.43 < 0.5 12 13 57 2.74 < 10 < 1 0.08 < 10 0.49 350 8300N 11400E 201 202 < 5 0.2 1.82 < 2 50 < 0.5 < 2 0.43 < 0.5 7 10 38 2.05 < 10 < 1 0.04 < 10 225 8300N 11500E 0.26 201 202 < 5 0.2 1.71 2 20 < 0.5 < 2 0.19 < 0.5 5 8 31 1.71 < 10 8300N 11600E < 1 0.02 < 10 0.22 100 201 202 < 5 0.2 2.45 < 2 70 < 0.5 < 2 0.32 < 0.5 8 10 75 2.20 < 10 8300N 11700E < 1 0.04 < 10 0.32 295 201 202 10 0.2 1.74 < 2 50 < 0.5 < 2 0.19 < 0.5 4 8 15 1.73 < 10 8300N 11800E < 1 0.02 < 10 0.16 295 201 202 < \$ 0.2 2.14 < 2 50 < 0.5 < 2 0.60 < 0.5 7 12 37 2.16 < 10 < 1 0.05 < 10 0.40 250

CERTIFICATION: tato Suchlas

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

.

¢

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST, VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Project :

Page Number : 1-B Total Pages :6 Certificate Date; 04-OCT-94 Invoice No. : 19426716 P.O. Number : Account LOY

[· [_		<u> </u>		···					RTIF	CATE	OF A	NAL	/SIS	A9426716
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	Tİ %	Tl PPm	D Dom	A Dom	W ppm	Zn ppm	
8200N 10050E 8200N 10150E 8200N 10250E 8200N 10350E 8200N 10450E	202 203 202 203 202 203 202 203 202 203 201 202	< 1 < 1 < 1 < 1 < 1	0.07 0.07 0.01 0.06 0.02	15 9 1 13 11	1470 2190 820 1710 1230	4 8 10 14 10	4 < 2 2 6	6 7 < 1 4 3	74 92 53 65 44	0.17 0.13 0.01 0.15 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	110 115 2 97 70	< 10 < 10 < 10 < 10 < 10 < 10	114 102 34 120 70	
8200N 10550E 8200N 10650E 8200N 10750E 8200N 10850E 8200N 10850E	202 203 201 202 202 203 201 202 202 203 202 203	1 < 1 < 1 1 1	0.08 0.03 0.08 0.02 0.04	13 11 8 10 8	490 1570 1930 1320 1380	8 6 4 5	4 2 < 2 < 2 4	3 3 4 4 3	65 45 74 67 58	0.15 0.10 0.11 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 62 81 80 71	< 10 < 10 < 10 < 10 < 10 < 10	152 150 132 98 68	
8200N 11050E 8200N 11150E 8200N 11300E 8200N 11400E 8200N 11500E	202 203 202 203 202 203 202 203 202 203 202 203	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.05 0.07 0.09	10 7 6 7 7	1730 1400 2330 1440 580	4 2 4 2 6	2 4 6 2 2	5 5 3 3	71 96 48 62 69	0.11 0.13 0.09 0.12 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 108 60 71 69	< 10 < 10 < 10 < 10 < 10 < 10	108 70 78 58 28	
8200N 11600E 8200N 11700E 8200N 11800E 8200N 11900E 8200N 12000E	202 203 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 1 2	0.06 0.02 0.03 0.03 0.05	10 5 6 8 8	600 1520 810 1560 480	4 2 2 6 4	< 2 < 2 4 < 2 < 2 < 2	3 2 1 2 2	82 36 34 44 85	0.10 0.12 0.11 0.10 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 58 48 59 56	< 10 < 10 < 10 < 10 < 10 < 10	40 32 46 42 72	
8200N 12100E 8300N 10000E 8300N 10100E 8300N 10200E 8300N 10300E	201 202 201 202 201 202 202 203 201 202 202 203 201 202	< 1 1 < 1 < 1 1	0.02 0.04 0.02 0.05 0.02	9 11 11 12 9	1130 1580 950 910 1360	6 6 16 10 12	2 6 4 < 2 6	3 2 3 4 2	62 36 53 79 44	0.15 0.10 0.12 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	90 49 68 80 60	< 10 < 10 < 10 < 10 < 10 < 10	64 92 124 108 140	
8300N 10400E 8300N 10500E 8300N 10600E 8300N 10700E 8300N 10800E	201 202 201 202 202 203 202 203 202 203 202 203	1 < 1 2 < 1 1	0.03 0.03 0.04 0.05 0.04	14 10 9 9 5	540 1360 1220 910 1050	18 6 8 8 4	4 4 8 < 2 4	7 2 7 6 6	53 31 114 114 101	0.12 0.11 0.15 0.15 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	74 57 113 118 103	< 10 < 10 < 10 < 10 < 10 < 10	156 162 120 118 66	
8300N 10900E 8300N 11000E 8300N 11100E 8300N 11200E 8300N 11200E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 1	0.03 0.03 0.02 0.02 0.02	9 8 9 9 8	1150 1230 1630 2270 2050	4 6 2 2	< 2 6 4 < 2	2 2 4 3 3	48 46 64 37 48	0.10 0.09 0.11 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	56 58 79 68 77	< 10 < 10 < 10 < 10 < 10 < 10	168 64 124 104 78	
B300N 11400E B300N 11500E B300N 11600E B300N 11600E B300N 11800E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.02 0.02 0.03 0.03	6 5 9 4 6	1910 910 2510 1790 460	4 4 2 2 4	6 < 2 < 2 6 < 2	2 1 2 1 3	43 22 32 18 56	0.09 0.10 0.10 0.10 0.10 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 48 50 45 68	< 10 < 10 < 10 < 10 < 10 < 10	70 36 58 68 60	

CERTIFICATION: Stanto Suchle

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 2-A Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. : 19426716 P.O. Number LOY Account

A9426716

Project : TAS Comments: CC: GRANT CROOKER

CERTIFICATE OF ANALYSIS

													-			-				
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Сл Сл	re %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Мл ррш
8300N 11900E 8300N 12000E 8300N 12100E 9000N 09950E 9000N 10050E	201 202 201 202 201 202 201 202 201 202 201 202	5 10 5 5 5	0.2 < 0.2 0.2 0.2 0.6	1.88 1.82 2.73 2.71 1.89	4 6 < 2 8 14	60 50 80 70 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.45 0.23 0.28 0.22 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 6 8	13 12 10 10 10	40 25 22 24 24	2.17 2.09 2.14 2.10 2.46	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2 < 1	0.04 0.04 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10	0.34 0.24 0.21 0.18 0.24	245 615 680 405 2500
9000N 10150E 9000N 10250E 9000N 10350E 9000N 10450E 9000N 10550E	201 202 201 202 201 202 202 203 202 203	<pre></pre>	0.4 0.2 0.6 0.2 0.8	2.41 1.51 1.51 2.17 2.26	< 2 < 2 < 8 < 2	110 100 50 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.74 0.38 0.39 1.07 0.87	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 . 6 . 7 . 12 . 11	13 10 10 38 22	68 22 46 75 87	2.84 1.98 2.04 2.89 2.99	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 2	0.15 0.07 0.04 0.14 0.13	< 10 < 10 < 10 < 10 < 10 < 10	0.63 0.21 0.25 0.65 0.66	635 680 305 600 880
9000N 10650E 9000N 10750E 9000N 10850E 9000N 10950E 9000N 11050E	202 203 202 203 202 203 202 203 202 203 201 202	<pre>< 5 < 5 < 5 < 5 </pre>	0.4 0.4 0.2 0.4	2.21 2.11 2.31 1.87 1.86	14 10 < 2 4 8	120 80 80 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.32 0.67 0.47 0.33 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 11 8 8 8	36 23 37 26 10	38 43 26 35 62	2.46 2.78 2.37 2.37 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 1 < 1	0.08 0.10 0.07 0.07 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.45 0.29 0.26 0.23	1185 1160 1250 505 295
9000N 11150E 9000N 11250E 9000N 11350E 9000N 11450E 9000N 11550E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 5 < 5 5 5	0.2 < 0.2 0.4 0.2 0.2	1.62 2.08 1.65 2.24 2.34	< 2 4 < 2 6 2	60 60 70 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.35 0.36 0.52 0.51 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 7 9 8	9 11 12 14 13	36 53 38 71 63	2.07 2.26 2.29 2.64 2.54	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.07 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.19 0.25 0.30 0.38 0.45	245 465 460 580 690
9000N 11650E 9000N 11750E 9000N 11850E 9000N 11950E 9000N 12950E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.2 0.2 0.4 0.4 0.2	2.35 2.03 1.86 2.41 1.91	< 2 < 2 < 2 < 2 < 2 < 2 < 2	70 60 50 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.44 0.22 0.21 0.26 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 6 4 8 6	17 12 11 16 13	117 28 65 885 59	2.55 2.10 1.81 2.50 2.18	< 10 < 10 < 10 < 10 < 10	1 < 1 1 < 1	0.06 0.04 0.05 0.08 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.51 0.24 0.21 0.52 0.31	660 520 260 270 180
10000N 09750E 10000N 09850E 10000N 09950E 10000N 10050E 10000N 10150E	202 203 202 203 202 203 202 203 202 203 202 203	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.43 1.19 1.64 2.34 1.90	< 2 2 < 2 6 2	60 70 40 90 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.96 0.70 0.63 1.08 0.76	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 6 7 8 6	50 41 35 34 35	87 41 27 257 50	3.27 1.79 2.36 2.83 2.65	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.14 0.09 0.10 0.14 0.13	10 < 10 < 10 20 < 10	0.58 0.35 0.38 0.51 0.43	400 370 420 530 230
10000N 10250E 10000N 10350E 10000N 10450E 10000N 10550E 10000N 10650E	202 203 202 203 202 203 202 203 202 203 202 203	< 5 < 5 < 5 < 5 < 5	0.2 0.2 < 0.2 0.6 < 0.2	2.79 1.78 1.49 1.95 1.51	14 < 2 2 < 2 < 2 < 2	90 130 60 80 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.93 0.73 0.87 0.47 0.77	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 11 9 5 6	23 25 29 24 29	116 32 59 60 39	2.99 2.64 2.37 1.90 2.48	< 10 < 10 < 10 < 10 < 10 < 10	2 1 < 1 1 < 1	0.17 0.16 0.15 0.13 0.12	< 10 < 10 10 10 < 10	0.57 0.33 0.41 0.21 0.43	1030 1610 370 665 265
L0000N 10750E 10000N 10850E 10000N 10950E 10000N 11050E 10000N 11150E	202 203 201 202 202 203 202 203 202 203 202 203	< 5 < 5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 0.2 0.2	1.16 2.05 1.36 2.51 1.82	< 2 2 < 2 < 2 < 2	120 20 70 60 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.67 0.91 0.42 0.51 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 10 4 6 7	31 8 33 25 34	12 251 34 509 170	1.73 2.91 1.74 2.42 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 2 < 1 < 1 1 1	0.12 0.12 0.09 0.11 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.28 0.75 0.31 0.31 0.34	570 420 285 480 505

. • ٢

•

mon and star

÷

.

• -

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER

Page Number :2-B Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. :19426716 Invoice No. P.O. Number Account LOY

-

٦

	· · · · ·									CE	RTIF	ICATE	OFA	NAL	(SIS	A9426716
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	р mqq	ppm D	3p DDW	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
8300N 11900E 8300N 12000E 8300N 12100E 9000N 09950E 9000N 10050E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 1	0.03 0.03 0.03 0.04 0.03	7 7 6 9 7	1080 1970 2060 1570 1060	4 4 6 4	2 4 < 2 < 2 4	2 1 1 2 3	43 24 26 24 23	0.12 0.10 0.11 0.12 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 54 53 55 67	< 10 < 10 < 10 < 10 < 10 < 10	72 92 68 104 164	• • • • • • • • • • • • • • • • • • •
9000N 10150E 9000N 10250E 9000N 10350E 9000N 10450E 9000N 10550E	201 202 201 202 201 202 202 203 202 203	< 1 < 1 < 1 1 < 1	0.03 0.03 0.03 0.07 0.05	10 7 5 10 8	1080 1420 1760 1370 1510	6 16 6 8 66	< 2 2 < 2 < 2 4	3 2 4 4	74 41 41 111 85	0.14 0.10 0.09 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 54 52 96 93	< 10 < 10 < 10 < 10 < 10 < 10	98 346 248 158 242	
9000N 10650E 9000N 10750E 9000N 10850E 9000N 10950E 9000N 10950E	202 203 202 203 202 203 202 203 202 203 201 202	1 < 1 < 1 1	0.07 0.05 0.08 0.09 0.03	7 6 8 8 8	1000 1730 1990 1470 1400	4 6 6 4	2 < 2 < 2 2 2 2	2 3 3 2 3	38 66 47 34 40	0.09 0.12 0.11 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 79 66 59 62	< 10 < 10 < 10 < 10 < 10 < 10	278 300 174 138 84	
9000N 11150E 9000N 11250E 9000N 11350E 9000N 11450E 9000N 11550E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.02 0.02	8 9 7 11 10	1360 1470 1630 780 1180	6 4 8 8	4 6 2 6 2	2 2 2 3 3	41 42 53 53 63	0.11 0.11 0.10 0.12 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 64 69 76 80	10 < 10 < 10 < 10 < 10 < 10	106 86 66 110 72	
9000N 11650E 9000N 11750E 9000N 11850E 9000N 11950E 9000N 12050E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.03 0.03 0.03	11 7 6 11 8	850 1710 1550 760 950	8 4 6 4 10	8 4 < 2 < 2 < 2 < 2	3 1 1 3 3	41 22 20 26 47	0.15 0.10 0.10 0.12 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 53 50 78 71	< 10 < 10 < 10 < 10 < 10 < 10	80 64 62 130 60	
10000N 09750E 10000N 09850E 10000N 09950E 10000N 10050E 10000N 10150E	202 203 202 203 202 203 202 203 202 203 202 203	< 1 1 < 1 < 1 < 1	0.07 0.04 0.07 0.04 0.04 0.06	9 6 6 12 9	1060 780 1280 660 690	6 4 8 8 6	4 < 2 8 2 2	6 2 3 7 3	89 60 68 86 68	0.10 0.08 0.11 0.11 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	134 61 77 82 105	< 10 < 10 < 10 < 10 < 10 < 10	24 24 76 94 36	
10000N 10250E 10000N 10350E 10000N 10450E 10000N 10550E 10000N 10650E	202 203 202 203 202 203 202 203 202 203 202 203	< 1 < 1 1 1 < 1	0.07 0.07 0.06 0.07 0.06	13 9 6 7 8	3130 1840 650 1220 1110	8 12 4 6 4	4 < 2 < 2 2	5 3 4 2 3	105 71 84 49 64	0.10 0.10 0.12 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 74 87 51 95	< 10 < 10 < 10 < 10 < 10 < 10	132 216 44 106 42	
10000N 10750Z 10000N 10850E 10000N 10950E 10000N 11050E 10000N 11150E	202 203 201 202 202 203 202 203 202 203 202 203	1 3 1 1 < 1	0.07 0.01 0.06 0.07 0.06	6 4 5 9 7	1070 740 1590 800 800	4 6 6 4 6	< 2 4 4 8 10	2 7 2 2 2	50 82 42 46 52	0.11 0.05 0.08 0.12 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 89 49 69 72	< 10 < 10 < 10 < 10 < 10 < 10	58 62 56 184 68	
L						·								· · ·		Hart Parchler

CERTIFICATION:

•

٠

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number : 3-A Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. : [9426716 P.O. Number : Account : LOY

						<u></u>				CE	RTIFI	CATE	OF A	NAL	YSIS	/	49426	716	<u></u>	
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
10000N 11250E 10000N 11350E 10000N 11450E 10000N 11450E 10000N 11550E	201 202 202 203 202 203 202 203 202 203 202 203	< 5 < 5 5 < 5 < 5 < 5	0.4 0.2 0.2 0.2 0.2	2.01 2.09 2.09 1.83 2.04	< 2 < 2 < 2 4 < 2	80 80 70 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.49 1.04 0.53 0.62 0.65	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 7 8 7	13 38 43 39 23	90 4B 84 3B 46	2.40 2.71 2.17 2.41 3.16	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.12 0.09 0.12 0.10	< 10 < 10 10 < 10 < 10 < 10	0.34 0.59 0.40 0.47 0.72	730 1460 815 495 1315
10000N 11750E 10000N 11850E 10000N 11950E 10000N 12050E 10200E 09750E	202 203 202 203 202 203 202 203 202 203 202 203	\$ \$ \$ \$ \$ 5 5 5 5 5 5	< 0.2 0.2 0.2 1.2 0.2	1.54 1.36 1.67 3.63 2.21	< 1 3 < 2 < 2 < 2 < 2	40 30 40 180 90	< 0.5 < 0.5 < 0.5 1.0 < 0.5	< 2 < 2 < 2 2 2 < 2	0.54 0.44 0.55 1.64 0.77	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 .4 9 9	34 34 37 19 38	14 20 31 83 62	1.78 1.14 1.74 2.72 2.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.06 0.08 0.08 0.18	< 10 < 10 < 10 30 < 10	0.25 0.25 0.37 0.38 0.53	150 120 330 1475 435
10200E 09850E 10200E 09950E 10200E 10050E 10200E 10150E 10200E 10250E	202 203 202 203 202 203 202 203 202 203 202 203	* * * * * * * * * *	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.83 1.59 1.77 1.53 1.32	< 2 < 2 < 2 < 2 < 2	130 250 110 120 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.83 0.61 0.62 0.65 0.56	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 7 7 6	35 38 45 42 44	40 18 33 38 20	2.53 2.03 2.50 2.22 1.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.19 0.16 0.14 0.16 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.56 0.28 0.37 0.41 0.26	860 1740 685 560 1035
102002 10350E 10200E 104502 10200E 104502 10200E 105502 102002 10650E 102002 10750E	202 203 202 203 202 203 202 203 202 203 202 203	5 5 5 5 5 7 7 7 7 5 5 7 7 7 7	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.63 1.53 1.82 1.66 1.84	< 2 < 2 < 2 4 2	130 80 100 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.59 0.75 0.83 1.27 0.64	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 7 10 7	39 38 50 36 39	20 26 23 77 36	1.99 2.27 2.76 2.96 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.17 0.19 0.16 0.17	< 10 < 10 < 10 10 < 10	0.27 0.39 0.46 0.58 0.42	400 585 345 480 400
10200E 10850E 10200E 10950E 10200E 11050E 10200E 11150E 10200E 11250E	202 203 202 203 202 203 202 203 202 203 202 203	< < < < < < < < < < < < < < < < < < <	< 0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	1.79 1.95 1.70 1.52 2.04	6 < 2 < 2 < 2 < 2	100 70 70 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.49 0.53 0.64 0.22 0.74	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 3 9	38 33 32 8 39	16 38 34 31 322	2.29 2.25 2.21 1.49 2.73	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.12 0.12 0.12 0.03 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.44 0.42 0.13 0.80	750 320 550 135 560
10200E 11350E 10200E 11450E 10200E 11550E 10200E 11550E 10200E 11650E	202 203 202 203 202 203 202 203 202 203 202 203	5 10 < 5 < 5 < 5	< 0.2 < 0.2 0.8 0.2 0.4	1.28 1.05 0.86 2.12 2.37	< 2 < 2 < 2 < 2 2	50 30 40 50 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.21 0.47 1.79 0.31 0.39	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	3 2 1 5 7	9 40 11 27 12	13 13 69 16 38	1.77 1.41 0.65 1.89 2.21	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.09 0.02 0.07 0.04	< 10 < 10 10 < 10 < 10 < 10	0.13 0.22 0.31 0.27 0.28	100 130 85 435 990
102002 11850E 102002 11950E 102002 12050E 11000N 09700E 11000N 09750E	202 203 202 203 202 203 202 203 202 203 202 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	0.2 0.2 0.4 0.2 0.2	2.11 1.80 1.74 1.54 1.74	2 4 < 2 2 < 2	100 70 60 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.61 0.46 0.51 0.58 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 5 6 7	41 33 36 14 14	32 27 34 36 32	2.53 2.00 2.26 2.38 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.13 0.08 0.09 0.10 0.11	10 < 10 < 10 < 10 < 10	0.47 0.30 0.34 0.29 0.33	490 960 235 280 265
11000N 09800E 11000N 09850E 11000N 09900E 11000N 09950E 11000N 10000E	202 203 202 203 202 203 202 203 202 203 202 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 < 0.2 < 0.2 0.2 0.2	1,67 2.23 1,65 2.07 1.98	< 2 8 < 2 < 2 6	90 70 130 140 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.47 0.60 0.27 0.49 0.49	< 0.5 0.5 < 0.5 < 0.5 < 0.5	8 8 5 8 9	16 31 21 22 28	37 53 24 48 79	2.03 2.82 1.89 2.16 2.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.15 0.08 0.09 0.10	< 10	0.28 0.44 0.21 0.27 0.45	455 260 315 755 175

CERTIFICATION:_

tartitorchien

.

.

.

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number : 3-B Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. : [9426716 P.O. Number : Account : LOY

······································								-			CE	RTIFI	CATE	OF A	NALY	SIS	A9426716
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	Sp BD	Sc ppm	Sr ppm	Ti %	T1 ppm	D Dbw	V ppm	W ppm	Zn ppm	· · · · ·
10000N 11250E 10000N 11350E 10000N 11450E 10000N 11550E 10000N 11550E	201 2 202 2 202 2 202 2 202 2 202 2	02 03 03 03 03	1 < 1 < 1 < 1 1	0.03 0.08 0.08 0.07 0.07	9 6 8 9 6	1300 1170 1280 1110 1090	4 6 8 2 14	6 2 2 2 2 2 2	2 4 3 4	50 96 46 55 63	0.11 0.16 0.13 0.13 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 90 73 83 104	< 10 < 10 10 < 10 < 10 < 10	126 202 552 196 120	
10000N 11750E 10000N 11850E 10000N 11950E 10000N 12050E 10200E 09750E	202 2 202 2 202 2 202 2 202 2 202 2	03 03 03 03 03	< 1 < 1 < 1 2 < 1	0.12 0.10 0.09 0.03 0.09	4 3 4 8 12	1130 270 420 880 1540	4 4 12 6	< 2 < 2 < 2 < 2 < 2	2 2 2 6 4	45 42 43 97 80	0.13 0.13 0.13 0.07 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 42 62 58 91	< 10 < 10 < 10 < 10 < 10 < 10	36 62 54 80 100	
10200E 09850E 10200E 09950E 10200E 10050E 10200E 10150E 10200E 10250E	202 2 202 2 202 2 202 2 202 2 202 2	03 03 03 03 03	< 1 < 1 < 1 < 1 1	0.07 0.08 0.07 0.07 0.07	10 7 9 9 7	1020 630 740 1090 790	4 2 6 8	6 4 2 4	4 3 3 2	66 60 59 59 49	0.12 0.12 0.12 0.10 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 62 91 77 62	< 10 < 10 < 10 < 10 < 10	58 72 42 46 46	
10200E 10350E 10200E 10450E 10200E 10550E 10200E 10650E 10200E 10750E	202 2 202 2 202 2 202 2 202 2 202 2	03 03 03 03 03 03	< 1	0.08 0.09 0.12 0.08 0.07	8 9 8 9	1250 900 1920 960 1210	4 4 6 2	6 < 2 2 4 < 2	3 3 5 3	53 59 73 105 54	0.12 0.13 0.11 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	66 88 110 129 89	< 10 < 10 < 10 < 10 < 10 < 10	44 28 28 48 48	
10200E 10950E 10200E 10950E 10200E 11050E 10200E 11150E 10200E 11250E	202 2 202 2 202 2 202 2 202 2 202 2	03 03 03 03 03 03	1 < 1 < 1 < 1	0.08 0.07 0.06 0.02 0.08	7 8 7 4 8	1370 1110 1170 1420 970	6 2 6 4 6	4 2 4 4	2 2 2 1 3	38 40 54 21 66	0.11 0.11 0.11 0.07 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	77 81 80 45 95	< 10 < 10 < 10 < 10 < 10	60 62 50 44 80	
10200E 11350E 10200E 11450E 10200E 11550E 10200E 11550E 10200E 11750E	202 20 202 20 202 20 202 20 202 20 202 20	03 03 03 03 03	< 1 < 1 < 1 1 < 1	0.02 0.08 0.03 0.07 0.03	4 6 6 8	1640 420 440 1570 1820	2 4 < 2 4 8	< 2 < 2 < 2 < 2 < 2 < 2	1 1 1 2	21 43 66 26 44	0.07 0.11 0.02 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 53 16 58 68	< 10 < 10 < 10 < 10 < 10 < 10	78 76 212 96 90	
10200E 11850E 10200E 11950E 10200E 12050E 11000N 09750E 11000N 09750E	202 20 202 20 202 20 202 20 202 20	03 03 03 03 03	1 < 1 < 1 < 1 < 1	0.07 0.06 0.07 0.02 0.03	7 8 7 9 12	1240 1520 1760 480 540	6 6 4 6 6	2 < 2 4 < 2 < 2 < 2	3 2 3 3 2	51 34 49 61 41	0.12 0.10 0.10 0.14 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 65 75 87 71	< 10 < 10 < 10 < 10 < 10 < 10	94 84 64 50 106	
11000N 09800E 11000N 09850E 11000N 09900E 11000N 09950E 11000N 10000E	202 20 202 20 202 20 202 20 202 20 202 20	03 03 03 03 03	< 1 < 1 < 1 < 1 1	0.03 0.03 0.03 0.03 0.03	17 14 11 19 14	420 300 820 590 870	22 14 4 10 12	8 < 2 < 2 < 2 4	2 3 2 3	43 58 30 52 55	0.12 0.15 0.09 0.10 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 88 50 54 84	< 10 < 10 < 10 < 10 < 10 < 10	76 106 92 112 62	

CERTIFICATION:_

tout the here

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Page Number : 4-A Total Pages : 6 Certificate Date: 04-0CT-94 Invoice No. : [9426716 P.O. Number : Account : LOY

Project : TAS Comments: CC: GRANT CROOKER

	, 								•	CE	RTIFI	CATE	OF A	NAL	YSIS		49426	716		
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	Хя Дрт	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	78 %	Ga. ppm	Eg ppm	Х %	La ppm	Mg %	Mn ppm
11000N 10050E 11000N 10100E 11000N 10150E 11000N 10200E 11000N 10250E	202 203 201 202 202 203 201 202 201 202 201 202		0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.21 1.96 1.96 2.07 1.83	< 2 < 2 < 2 < 2 < 2	150 130 110 120 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 < 2	0.74 0.46 0.54 0.55 0.41	0.5 < 0.5 < 0.5 0.5 < 0.5	10 8 9 6 6	29 12 34 35 33	86 53 63 28 22	2.88 2.27 2.66 2.08 1.75	10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.13 0.08 0.14 0.15 0.16	< 10 < 10 < 10 < 10 < 10 10	0.34 0.24 0.28 0.29 0.14	790 580 715 1195 775
11000N 10350E 11000N 10450E 11000N 10550E 11000N 10550E 11000N 10750E	201 202 201 202 201 202 201 202 201 202 201 202	<pre> < 5 < 4 < 5 < 4 < 5 < 4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.16 1.69 1.46 1.70 1.37	4 4 < 2 < 2 < 2	100 70 130 90 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 2 2	0.51 0.67 0.65 0.41 0.30	1.5 < 0.5 < 0.5 < 0.5 < 0.5	9 6 5 3	18 34 46 11 8	85 31 27 22 16	3.23 2.27 2.04 1.93 1.53	10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.09 0.12 0.15 0.07 0.04	10 < 10 < 10 < 10 < 10	0.27 0.38 0.36 0.18 0.12	435 340 925 320 515
11000N 10850E 11000N 10950E 11000N 11050E 11000N 11150E 11000N 11250E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.62 2.05 2.49 2.10 1.95	< 2 < 2 < 2 < 2 < 2 < 2	130 70 130 80 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 2 < 2 < 2 < 2	0.35 0.46 0.23 0.19 0.54	0.5 0.5 0.5 < 0.5 < 0.5	7 6 5 4 6	12 10 7 6 14	43 32 14 17 98	2.17 2.09 1.94 1.69 2.63	10 < 10 10 < 10 < 10	1 < 1 < 1 1 1	0.07 0.07 0.04 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.28 0.17 0.14 0.44	240 245 1075 400 210
11000N 11350E 11000N 11450E 11000N 11550E 11000N 11550E 11000N 11750E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3,45 1.86 3.41 3.22 1.45	< 2 < 2 < 2 < 2 < 2 < 2	150 100 110 110 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 2	0.24 0.28 0.24 0.42 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 4 6 2	13 12 13 15 8	61 36 60 53 29	2.57 1.74 2.45 2.40 1.48	10 < 10 10 10 < 10	< 1 < 1 1 1 < 1	0.07 0.04 0.06 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.24 0.22 0.34 0.23	225 110 420 235 120
11000N 11850E 11000N 11950E 11000N 12050E 11100N 09700E 11100N 09750E	201 202 202 203 202 203 201 202 202 203	10 < 5 < 5 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.26 2.44 1.96 2.06 1.80	< 2 < 2 < 2 < 2 < 2 < 2	90 80 70 80 240	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 5 2	0.22 0.20 0.21 0.82 0.59	1.0 0.5 < 0.5 0.5 1.0	5 4 12 11	7 9 7 32 44	26 26 14 111 75	1.78 1.97 1.66 3.19 2.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.06 0.04 0.03 0.15 0.23	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.19 0.16 0.51 0.45	990 900 830 490 1465
11100N 09800E 11100N 09850E 11100N 09900E 11100N 09950E 11100N 10050E	202 203 202 203 202 203 202 203 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.22 2.13 1.84 2.37 1.58	< 2 < 2 < 2 < 2 < 2 < 2	110 180 170 200 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.30 0.73 0.49 0.77 0.36	1.0 2.5 < 0.5 1.0 0.5	6 18 14 13 6	16 80 52 74 31	26 74 58 52 11	1.60 3.07 2.40 2.97 1.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.34 0.18 0.17 0.09	< 10 < 10 < 10 < 10 < 10	0.22 0.96 0.42 0.65 0.13	1010 1005 885 1495 2120
11100N 10150E 11100N 10250E 11200N 09700E 11200N 09750E 11200N 09800E	201 202 201 202 201 202 202 203 202 203	< 5 < 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.05 1.77 1.53 1.71 1.87	2 < 2 2 2 2	140 170 100 130 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 < 2 < 2	0.39 0.40 0.46 0.62 0.78	< 0.5 1.5 < 0.5 1.0 2.5	10 8 7 9 24	31 14 16 33 24	47 30 49 41 49	2.30 1.96 2.05 2.16 2.69	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.07 0.10 0.15 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.25 0.20 0.26 0.33 0.36	1210 1575 430 1230 1710
11200N 09850E 11200N 09900E 11200N 09950E 11200N 10000E 11200N 10050E	202 203 202 203 202 203 202 203 202 203 202 203	5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.11 2.10 1.71 2.70 1.56	2 < 2 8 < 2 2	170 210 60 140 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 < 2 2	0.72 0.68 0.82 0.41 0.33	0.5 2.0 < 0.5 0.5 < 0.5	14 25 18 15 9	53 35 44 29 13	67 92 142 59 50	2.90 2.64 3.23 2.54 2.07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.22 0.16 0.13 0.07	< 10 < 10 10 < 10 < 10	0.44 0.34 0.52 0.52 0.23	895 1905 470 530 925

CERTIFICATION: StartBuchler

٩

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number :4-B Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. :19426716 P.O. Number : Account :LOY

			· · · · · · · · · · · · · · · · · · ·								CE	RTIF	CATE	OF A	NALY	'SIS	A9426716
SAMPLE	PREI CODE	PE	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D mdđ	V mqq	W ppm	Zn ppm	
11000N 10050E 11000N 10100E 11000N 10150E 11000N 10250E 11000N 10250E	202 201 202 201 201 201	203 202 203 203 202 202	< 1 < 1 1 1	0.06 0.02 0.07 0.08 0.08	10 8 8 12 5	1050 640 850 1990 310	82 12 6 8	< 2 < 2 < 2 < 2 < 2 < 2	5 3 4 3 2	77 63 57 47 33	0.13 0.11 0.10 0.11 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	79 66 83 62 41	< 10 < 10 < 10 < 10 < 10 < 10	130 92 78 190 86	
11000N 10350E 11000N 10450E 11000N 10550E 11000N 10650E 11000N 10750E	201 2 201 2 201 2 201 2 201 2	202 202 202 202 202 202	2 1 1 1 1	0.02 0.07 0.07 0.03 0.03	12 11 12 12 6	790 1630 1080 890 1010	14 8 4 8 6	2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 4 2 1	51 69 62 45 31	0.11 0.10 0.11 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	96 84 75 60 45	< 10 < 10 < 10 < 10 < 10	264 72 68 90 96	
11000N 10850E 11000N 10950E 11000N 11050E 11000N 11150E 11000N 11150E	201 2 201 2 201 2 201 2 201 2	202 202 202 202 202 202	< 1 < 1 1 1	0.03 0.02 0.03 0.03 0.03	12 9 7 8 7	1460 1200 1520 1500 350	18 10 10 8 6	< 2 2 < 2 2 < 2 < 2	3 3 1 6	40 46 22 21 53	0.13 0.12 0.12 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	62 69 48 43 85	< 10 < 10 < 10 < 10 < 10 < 10	158 116 116 78 88	
11000N 11350E 11000N 11450E 11000N 11550E 11000N 11650E 11000N 11750E	201 201 201 201 201 201	202 202 202 202 202 202	1 < 1 < 1 < 1 < 1	0.03 0.04 0.04 0.06 0.04	11 6 10 7 4	2400 390 2190 260 180	8 4 5 12 4	< 2 < 2 2 2 < 2	5 3 4 4 2	27 29 28 46 34	0.11 0.09 0.11 0.11 0.11	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 42 60 52 48	< 10 < 10 < 10 < 10 < 10 < 10	78 44 58 44 38	
11000N 11850E 11000N 11950E 11000N 12050E 11100N 09700E 11100N 09750E	201 202 202 201 201 201	202 203 203 202 202	1 1 1 1 2	0.04 0.03 0.03 0.06 0.05	7 7 5 10 10	1280 1340 1020 980 750	6 8 4 14 16	< 2 < 2 < 2 4 2	2 2 2 8 5	29 20 20 92 55	0.11 0.11 0.11 0.14 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 56 45 106 85	< 10 < 10 < 10 < 10 < 10	140 146 82 126 138	
11100N 09800E 11100N 09850E 11100N 09900E 11100N 09950E 11100N 10050E	202 2 202 2 202 2 202 2 202 2 201 2	203 203 203 203 203 202	1 1 1 1 1 1	0.02 0.06 0.07 0.07 0.10	10 25 15 17 6	850 660 1390 730 2100	6 42 10 36 12	2 < 2 2 < 2 < 2 < 2 < 2	1 6 5 7 1	27 68 48 73 46	0.08 0.16 0.11 0.14 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 92 72 91 38	< 10 < 10 < 10 < 10 < 10 < 10	172 148 76 128 166	
11100N 10150E 11100N 10250E 11200N 09700E 11200N 09750E 11200N 09800E	201 2 201 2 201 2 202 2 202 2	202 202 203 203	1 1 1 1	0.07 0.02 0.02 0.09 0.09	11 10 11 9 9	1270 1210 920 1640 1230	8 4 12 10 12	2 < 2 < 2 < 2 < 2 < 2	3 2 3 3 4	42 44 45 69 91	0.10 0.11 0.11 0.11 0.12	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 60 61 61 73	< 10 < 10 < 10 < 10 < 10 < 10	144 196 96 158 254	************
11200N 09850E 11200N 09900E 11200N 09950E 11200N 10000E 11200N 10050E	202 202 202 202 202 202 202 202 202	203 203 203 203 203	1 2 1 < 1 1	0.08 0.07 0.06 0.03 0.02	16 32 12 21 9	1390 2120 870 300 980	12 14 12 10 4	< 2 4 < 2 2 2	6 5 8 3 2	77 66 80 45 36	0.12 0.11 0.15 0.15 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 65 118 73 62	< 10 < 10 < 10 < 10 < 10 < 10	142 342 44 90 100	

.

CERTIFICATION:_

Hartforder

To: GEOTEC CONSULTANTS LTD.

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : ;5-A Total Pages :6 Certificate Date:04-OCT-94 Invoice No. :19426716 P.O. Number : Account :LOY

Project : TAS Comments: CC: GRANT CROOKER

	<u></u>				·					CE	RTIFI	CATE	OF A	NAL	YSIS		49426	716		- -
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
11200N 10100E 11200N 10150E 11200N 10200E 11200N 10250E 11200N 10350E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.18 2.34 2.92 1.99 1.59	<pre>< 2 < 2</pre>	170 100 160 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.33 0.30 0.32 0.41 0.79	2.0 0.5 < 0.5 0.5 < 0.5	10 6 9 8 9	13 12 14 19 17	110 165 58 95 121	2.25 2.08 2.36 2.45 2.90	< 10 10 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.05 0.08 0.06 0.08 0.07	< 10 10 10 < 10 10	0.15 0.25 0.26 0.24 0.36	3320 475 340 340 330
11200N 10550E 11200N 10650E 11200N 10650E 11200N 10750E 11200N 10850E	201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.19 1.58 2.04 1.77 2.02	< 2 < 2 < 2 4 4	120 100 110 80 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2	0.57 0.25 0.19 0.43 0.37	0.5 < 0.5 0.5 0.5 0.5	7 4 3 6 6	17 10 6 12 11	43 18 23 35 33	2.57 1.58 1.51 2.05 1.92	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.06 0.06 0.07 0.05	< 10 < 10 < 10 < 10 < 10	0.34 0.16 0.15 0.23 0.23	765 380 435 695 235
11200N 11050E 11200N 11050E 11200N 11150E 11200N 11250E	201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5 < 5	0.4 < 0.2 < 0.2 0.2 < 0.2	2.88 2.98 1.89 2.28 1.30	2 6 4 < 2	90 90 80 70 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	0.24 0.22 0.36 0.29 0.66	0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 5 4 5	8 13 11 10 15	35 31 31 50 42	1.83 2.06 2.17 2.17 2.32	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.04 0.05 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.16 0.24 0.23 0.18 0.36	1015 435 165 200 225
11200N 11450E 11200N 11550E 11200N 11650E 11200N 11750E 11200N 11850E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.52 1.61 1.58 1.70 2.36	4 < 2 6 2 2	100 60 90 40 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.50 0.30 0.43 0.36 0.13	< 0,5 < 0,5 < 0.5 < 0.5 < 0.5 < 0.5	6 3 4 4 3	17 9 12 11 6	71 17 20 24 27	2.52 1.53 2.02 2.06 1.51	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.06 0.03 0.06 0.05 0.03	10 < 10 < 10 < 10 < 10 < 10	0.43 0.16 0.19 0.17 0.11	370 90 160 140 160
11200N 11950E 11200N 12050E 11300N 09700E 11300N 09750E 11300N 09800E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.74 2.41 1.37 2.10 1.97	< 2 2 2 2 2 2 2 2 2	80 70 80 70 280	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 2 2	0.35 0.22 0.53 0.50 0.57	< 0.5 < 0.5 < 0.5 0.5 0.5	5 5 13 10	11 9 17 26 23	22 20 63 263 409	2.19 1.84 2.51 2.54 2.65	10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.04 0.09 0.14 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.14 0.25 0.47 0.31	235 625 235 275 1135
11300N 09850E 11300N 09900E 11300N 09950E 11300N 10050E 11300N 10150E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.09 2.13 1.75 1.66 2.19	4 4 2 2	40 100 50 100 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.49 0.44 0.72 0.38 0.60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 B 9 10 7	22 25 23 10 22	894 179 231 49 256	3.06 2.96 3.54 2.18 3.05	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.10 0.09 0.05 0.07	< 10 < 10 10 < 10 < 10 10	0.34 0.32 0.47 0.20 0.43	240 315 225 910 195
11300N 10250E 11400N 09700E 11400N 09750E 11400N 09800E 11400N 09850E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 15 5 < 5 < 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.00 1.71 2.11 2.47 2.03	4 B 4 6 < 2	50 60 120 110 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.58 0.79 0.47 0.39 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 11 8 12 9	18 27 19 17 11	275 117 71 81 84	2.56 3.72 2.44 2.71 2.83	10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.14 0.10 0.07 0.08	20 10 < 10 < 10 < 10 < 10	0.29 0.60 0.29 0.29 0.23	480 435 485 520 760
1400N 09900E 1400N 09950E 1400N 10000E 1400N 10050E 1400N 10100E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.07 1.44 2.16 2.12 1.53	8 2 14 < 2	110 90 100 60 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.33 0.25 0.38 0.79 0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 4 10 22 4	15 6 11 18 9	89 47 83 334 24	2.24 1.69 2.62 3.94 1.81	10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.07 0.07 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.22 0.11 0.31 0.66 0.17	585 305 465 700 805

CERTIFICATION:

tant Buchla

n

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC	CONSUL	TANTS	LTD
------------	--------	-------	-----

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER Page Number :5-B Total Pages :6 Certificate Date: 04-OCT-94 Invoice No. :19426716 P.O. Number : Account :LOY

.

	<u>,</u>	· · · ·							CERTIFICATE OF ANALYS							A9426716
SAMPLE	PREP CODE	Мо ррт	Na %	Ni ppm	9 mqq	PD PDm	SD ppm	Sc ppm	Sr ppm	Ti %	т1 ррш	U ppm	V ppm	м ррш	Zn ppm	
11200N 10100E 11200N 10150E 11200N 10200E 11200N 10250E 11200N 10350E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1 1	0.03 0.03 0.03 0.03 0.03	11 14 12 17 11	1790 860 850 730 520	12 4 10 4 6	< 2 2 2 2 3 < 2	2 3 4 6	37 34 37 45 60	0.10 0.12 0.13 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 58 64 68 100	< 10 < 10 < 10 < 10 < 10 < 10	380 164 110 214 44	
11200N 10450E 11200N 10550E 11200N 10650E 11200N 10650E 11200N 10750E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 < 1	0.02 0.05 0.04 0.02 0.03	11 11 9 9 9	370 1490 1550 840 460	14 6 6 8 8	2 < 2 < 2 < 2 < 2 < 2	4 2 3 3	57 30 20 41 38	0.17 0.09 0.09 0.11 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	95 38 37 74 63	< 10 < 10 < 10 < 10 < 10 < 10	82 142 162 128 194	
11200N 10950E 11200N 11050E 11200N 11150E 11200N 11250E 11200N 11250E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 < 1 1	0.04 0.03 0.03 0.03 0.03	8 9 7 5	1610 1330 1060 2080 370	12 12 6 6 4	< 2 < 2 < 2 < 2 < 2 < 2	2 2 3 4	27 24 35 30 62	0.11 0.13 0.12 0.10 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 60 73 64 98	< 10 < 10 < 10 < 10 < 10 < 10	100 82 58 60 36	
11200N 11450E 11200N 11550E 11200N 11650E 11200N 11750E 11200N 11750E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1	0.05 0.04 0.02 0.02 0.04	11 3 7 7 4	280 160 1930 990 1190	6 2 4 4 6	< 2 < 2 2 2 < 2 < 2	6 1 2 2	48 27 43 35 14	0.13 0.11 0.10 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 39 65 71 39	< 10 < 10 < 10 < 10 < 10 < 10	54 24 32 34 42	
11200N 11950E 11200N 12050E 11300N 09700E 11300N 09750E 11300N 09800E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 1	0.04 0.04 0.02 0.04 0.04	8 7 9 23 17	1840 1300 740 540 1270	4 6 16 20	< 2 < 2 < 2 < 2 < 2 < 2	2 2 4 3 3	37 22 54 54 74	0.12 0.11 0.11 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 52 86 70 69	< 10 < 10 < 10 < 10 < 10 < 10	58 88 32 190 142	
11300N 09850E 11300N 09900E 11300N 09950E 11300N 10950E 11300N 10150E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 4 1 1 1	0.03 0.03 0.02 0.03 0.03	11 12 9 10 13	1220 710 950 770 350	6 6 16 6 8	< 2 < 2 2 2 < 2	3 4 7 2 6	52 60 85 41 61	0.14 0.11 0.15 0.12 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	96 77 127 68 103	< 10 < 10 < 10 < 10 < 10 < 10	62 90 46 96 96	
11300N 10250E 11400N 09700E 11400N 09750E 11400N 09800E 11400N 09850E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1	0.03 0.03 0.04 0.03 0.04	13 11 15 18 14	390 1010 1440 1130 1910	6 6 4 4	< 2 < 2 < 2 2 2 < 2	7 7 4 4	54 72 51 44 55	0.11 0.13 0.11 0.15 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	78 143 73 82 77	< 10 < 10 < 10 < 10 < 10 < 10	148 54 92 122 102	
11400N 09900E 11400N 09950E 11400N 10000E 11400N 10050E 11400N 10100E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 1 4 < 1	0.03 0.03 0.03 0.02 0.03	15 7 10 13 9	1780 1160 1120 1170 1510	4 4 6 4	< 2 < 2 < 2 < 2 < 2 < 2	3 1 2 8 1	35 26 40 91 39	0.12 0.10 0.13 0.09 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 46 76 107 50	< 10 < 10 < 10 < 10 < 10 < 10	78 56 62 72 120	

CERTIFICATION:

C

F 1 2

Chemex Labs Ltd.

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Page Number : 6-A Total Pages : 6 Certificate Date: 04-OCT-94 Invoice No. : 19426716 P.O. Number : Account : LOY

. .

Project : TAS Comments: CC: GRANT CROOKER

[··	· · · · · · · ·				<u> </u>			-			CE	RTIFI	CATE	OF A	ANAL	YSIS		49426	716		
SAMPLE	PREE		Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Сц	Pe %	Ga. ppm	Eg ppm	 K %	La Dom	Mg %	Mn
11400N 10150E 11400N 10200E 11400N 10250E 11400N 10350E 11400N 10450E	201 2 201 2 201 2 201 2 201 2 201 2	102 102 102 102	- 5 5 5 5 5	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.95 1.37 1.12 1.39 2.02	< 2 4 < 2 < 2 2	90 30 140 120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 < 2 < 2 < 2	0.37 0.73 0.21 0.45 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 8 6 3	13 25 9 13 9	239 132 13 16 11	2.67 3.94 1.50 2.22 1.95	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.11 0.05 0.07 0.10	< 10 10 < 10 < 10 < 10 < 10	0.25 0.36 0.12 0.22 0.20	250 280 775 670 785
11400N 10550E 11400N 10650E 11400N 10750E 11400N 10850E 11400N 10950E	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02 02 02	< \$ < 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 0.2	2.16 1.81 3.55 2.56 1.46	4 4 < 2 < 2	140 120 100 170 90	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.30 0.19 0.48 0.18 0.29	0.5 < 0.5 < 0.5 0.5 < 0.5	6 4 10 5 5	12 10 17 11 9	19 15 88 20 18	2.17 1.68 2.98 2.03 1.80	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.04 0.05 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.14 0.33 0.15 0.16	1185 1265 745 1130 730
11400N 11050E 11400N 11150E 11400N 11250E 11400N 11350E 11400N 11350E	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02 02 02 02	< \$ < \$ < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.2 < 0.2	1.04 1.48 1.05 2.05 1.29	2 < 2 < 2 < 2 < 2	40 90 40 120 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.56 0.18 0.81 0.25 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 7 4 4	14 9 15 11 11	56 14 58 41 12	2.42 1.68 2.55 2.04 1.81	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.07 0.03 0.10 0.04 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.36 0.14 0.36 0.14 0.18	210 680 480 355 770
11400N 11550E 11400N 11650E 11400N 11750E 11400N 11850E 11400N 11950E	201 2 201 2 202 2 201 2 201 2 201 2	02 02 02 02 02 02	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.2 0.2 < 0.2	1.46 1.58 1.97 1.58 2.68	2 < 2 < 2 < 2 < 2	100 70 100 30 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.42 0.26 0.30 0.17 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 3 6	12 11 13 10 26	14 16 20 9 21	1.87 1.98 2.19 1.81 2.17	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.06 0.04 0.04 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.18 0.15 0.19 0.12 0.27	660 155 275 190 105
11400N 12050E 11500N 09750E 11500N 09850E 11500N 09950E 11500N 10050E	201 20 201 20 201 20 201 20 201 20	02 02 02 02 02	< 5 < 5 < 5 < 5 < 5	0.4 0.2 0.2 0.2 0.2	2.52 1.88 1.94 1.81 1.79	2 6 2 < 2 4	70 270 120 80 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 1.10 0.16 0.52 0.38	< 0.5 0.5 < 0.5 < 0.5 < 0.5	4 8 4 7 11	13 15 10 16 12	20 51 15 39 42	2.30 2.43 1.83 2.29 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.10 0.04 0.08 0.06	< 10 < 10 < 10 < 10 < 10	0.22 0.30 0.11 0.28 0.19	190 805 640 355
LISOON 10150E LISOON 10250E	201 20 201 20	02	< 5 < 5	0.2 0.2	1.59 2.21	< 2 2	60 120	< 0.5 < 0.5	< 2 < 2	0.28	< 0.5 < 0.5	5 6	10 12	40 32	1.88 1.96	< 10 < 10	< 1 < 1	0.04 0.07	< 10 < 10	0.15	235 420

CERTIFICATION:___

JartBed

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Project : TAS Comments: CC: GRANT CROOKER

Page Number :6-8 Total Pages :6 Certificate Date: 04-0CT-94 Invoice No. P.O. Number :19426716 Account :LOY

										CE			OF	ANAL	YSIS	A9426716
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	ррш	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	v ppm	W DDm	Zn	
11400N 10150E 11400N 10200E 11400N 10250E 11400N 10350E 11400N 10450E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 < 1	0.04 0.02 0.04 0.03 0.04	14 9 8 11 10	1220 750 1650 770 370	8 6 8 8	< 2 2 < 2 2 < 2	3 8 1 2 2	40 70 22 44 42	0.13 0.11 0.08 0.13 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 141 42 81 52	< 10 < 10 < 10 < 10 < 10 < 10	92 56 88 60 122	
11400N 10650E 11400N 10750E 11400N 10750E 11400N 10850E 11400N 10950E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1 1 1	0.04 0.03 0.04 0.02	9 11 19 13 10	1620 1510 350 1720 1550	8 6 14 6 6	< 2 < 2 < 2 < 2 < 2 2	1 1 3 2 1	31 21 48 19 30	0.12 0.10 0.15 0.12 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 43 97 51 54	< 10 < 10 < 10 < 10 < 10 < 10	116 148 156 280 106	
11400N 11150E 11400N 11250E 11400N 11250E 11400N 11350E	201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.04 0.04	7 7 9 8	770 2120 1200 1760 1140	12 6 12 6 10	2 < 2 2 2 < 2 < 2	3 1 4 2 1	46 17 58 27 45	0.09 0.07 0.09 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	87 46 103 51 57	< 10 < 10 < 10 < 10 < 10 < 10	42 46 34 34 56	
1400N 11650E 1400N 11650E 1400N 11750E 1400N 11850E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 1	0.02 0.03 0.03 0.03 0.03	9 7 8 6 10	1170 1440 1550 1250 570	10 8 6 12 4	2 < 2 < 2 2 < 2	1 1 2 1 2	35 26 30 14 31	0.10 0.10 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 61 71 55 57	< 10 < 10 < 10 < 10 < 10 < 10	48 32 66 56 48	
1400N 12050E 1500N 09750E 1500N 09850E 1500N 09950E 1500N 10050E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.04	8 11 8 11 15	1120 4540 3790 760 1640	8 6 2 12 10	2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 1 2 2	28 127 17 55 46	0.12 0.09 0.09 0.13 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 68 49 74 59	< 10 < 10 < 10 < 10 < 10	66 158 140 54	
1500N 10150E 1500N 10250E	201 202 201 202	< 1 < 1	0.03 0.06	12 14	310 1460	6	2 < 2	2	30 32	0.11 0.10	< 10 < 10	< 10 < 10	54 57	< 10 < 10 < 10	34 106	

CERTIFICATION:

11

How Row Law

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

*

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-9221 Page Number : 1-A Total Pages : 3 Certificate Date: 14-OCT-94 Invoice No. : 19428307 P.O. Number : Account : LOY

Project : TAS Comments: CC: GRANT CROOKER

										CE	RTIF	CATE	OF /	ANAL	YSIS		A9428	3307		
SAMPLE	PREP CODE	Au-AA ppb	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca. %	Cd Eqq	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg	Mn ppm
8300N 10050E 8300N 10150E 8300N 10250E 8300N 10350E 8300N 10350E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 0.4 0.2 < 0.2 < 0.2	1.88 1.98 1.47 2.06 1.49	4 ⊀ 2 8 4	100 80 30 70 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.29 0.43 0.92 0.35 0.85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 9 8 10 8	14 13 18 21 19	51 44 52 36 68	2.07 2.44 2.50 2.51 2.77	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.08 0.07 0.04 0.04	10 10 10 10 10	0.22 0.26 0.50 0.29 0.40	685 385 335 525 250
8300N 10550E 8300N 10650E 8300N 10750E 8300N 10850E 9000N 10800E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	< 0.2 0.2 0.2 0.2 0.2	1.44 2.96 1.75 1.91 1.90	2 6 2 8 4	40 80 60 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.63 0.35 0.52 0.63 0.23	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	9 10 8 9 10	. 18 19 15 11 10	74 67 72 77 39	2.84 3.05 2.43 3.10 2.64	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1	0.07 0.05 0.06 0.11 0.07	10 10 10 10 < 10	0.42 0.46 0.33 0.38 0.42	315 325 320 220 470
9000N 10200E 9000N 10200E 9000N 10300E 9000N 10400E 9000N 10500E	201 202 201 202 201 202 201 202 201 202 201 202	25 5 5 3 10	0.4 < 0.2 0.2 0.2 0.2	2.31 1.23 1.59 2.09 2.43	16 < 2 8 2 2	80 80 110 50 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.15 0.36 0.19 0.30 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 6 7 8 9	9 9 7 10 14	36 41 35 26 59	2.29 1.88 2.22 2.06 2.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.04 0.08 0.03 0.05 0.07	< 10 < 10 < 10 < 10 < 10 10	0.20 0.22 0.18 0.21 0.39	735 355 720 240 415
9000N 10600E 9000N 10700E 9000N 10800E 9000N 10900E 9000N 11000E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 < 5	0.4 0.6 < 0.2 0.2 0.4	2.02 2.48 1.79 1.68 1.59	4 8 16 4 8	80 50 40 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.19 0.36 0.80 1.23 0.64	< 0.5 0.5 < 0.5 0.5 < 0.5	7 12 10 10 9	7 14 11 14 14	42 97 112 90 77	1.88 2.73 3.16 3.29 2.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.07 0.08 0.07	< 10 10 10 20 10	0.16 0.38 0.55 0.58 0.36	830 450 345 555 550
9000N 11100E 9000N 11200E 9000N 11300E 9000N 11400E 9000N 11500E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 25	0.2 0.4 0.2 0.2 0.2	1.75 2.14 1.81 1.90 2.08	2 6 < 2 < 2 4	70 50 50 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.45 0.32 0.25 0.28 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 9 8 8 9	11 11 13 11 11	37 95 40 44 68	2.33 2.48 2.02 2.06 2.38	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.05 0.03 0.04 0.04 0.09	10 10 < 10 < 10 10	0.23 0.26 0.19 0.21 0.34	630 325 300 290 550
9000N 11600E 9000N 11700E 9000N 11800E 9000N 11900E 9000N 12000E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5	0.2 < 0.2 0.2 < 0.2 < 0.2	2.66 2.63 1.79 1.88 1.85	< 2 4 2 4 < 2	110 60 40 30 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.33 0.18 0.36 0.18 0.18	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 6 8 6	20 12 9 10 9	90 310 29 50 39	2.62 2.08 1.80 2.09 1.87	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.03 0.04 0.04 0.03	10 < 10 10 < 10 < 10 < 10	0.55 0.26 0.21 0.22 0.22	475 655 145 285 280
9000N 12100E 9100N 10050E 9100N 10150E 9100N 10250E 9100N 10350E	201 202 201 202 201 202 201 202 201 202 201 202	10 < 5 < 5 10 < 5	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	1.97 2.25 1.57 1.45 1.39	< 2 < 2 < 2 < 4 < 2	30 120 80 70 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.15 0.40 0.39 0.40 0.28	< 0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	6 9 8 7 7	8 13 14 10 9	15 65 28 39 28	1.83 2.24 2.07 1.90 1.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.06 0.06 0.07 0.04	< 10 10 10 10 < 10	0.11 0.26 0.23 0.21 0.15	140 530 460 240 570
9100N 10450E 9100N 10550E 9100N 10650E 9100N 10750E 9100N 10850E	201 202 201 202 201 202 201 202 201 202 201 202	10 10 5 < 5 < 5	< 0.2 0.2 0.2 < 0.2 < 0.2	1.80 1.44 2.62 1.72 2.99	6 2 6 8 20	40 60 30 20	< 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.33 0.34 0.24 0.54 0.42	0.5 0.5 < 0.5 < 0.5 < 0.5	8 7 11 9 12	9 10 10 12 17	59 48 66 83 247	2.07 1.92 2.70 2.93 3.19	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.04 0.03 0.06 0.08	< 10 10 10 10 30	0.20 0.19 0.35 0.49 0.58	200 505 950 230 540

CERTIFICATION Jant Sichler

To: GEOTEC CONSULTANTS LTD,

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number :1-B Total Pages :3 Certificate Date: 14-OCT-94 Invoice No. :19428307 P.O. Number : Account LOY

.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

٦.

Ć.

.

Project : TAS Comments: CC: GRANT CROOKER

	· · · · · ·									CE	RTIF	ICATE	OF A	NAL	/SIS	A9428307
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	Р ррт	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
8300N 10050E 8300N 10150E 8300N 10250E 8300N 10350E 8300N 10450E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 2 < 1 1	0.03 0.03 0.01 0.03 0.01	9 10 7 11 6	2330 2130 850 1540 660	6 6 4 2 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	23635	26 40 86 38 96	0.10 0.11 0.13 0.14 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	52 63 94 67 96	< 10 < 10 < 10 < 10 < 10 < 10	146 124 64 118 102	
8300N 10550E 8300N 10650E 8300N 10750E 8300N 10850E 9000N 10000E	201 202 201 202 201 202 201 202 201 202 201 202	1 1 1 1	0.01 0.03 0.02 0.02 0.03	7 11 7 8 8	1080 1870 1530 1000 700	< 2 2 2 4 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 4 5 2	65 35 51 78 25	0.12 0.12 0.10 0.14 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	82 67 66 83 64	< 10 < 10 < 10 < 10 < 10 < 10	134 206 138 84 228	
9000N 10100E 9000N 10200E 9000N 10300E 9000N 10400E 9000N 10500E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.03 0.02	8 6 8 10	1900 710 2990 1630 470	4 2 6 4 8	< 2 < 2 < 2 < 2 < 2 < 2	2 2 1 2 2	18 42 19 30 48	0.13 0.12 0.10 0.12 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 53 51 55 70	< 10 < 10 < 10 < 10 < 10 < 10	154 112 246 294 190	
9000N 10600E 5000N 10700E 9000N 10800E 9000N 10900E 9000N 11000E	201 202 201 202 201 202 201 202 201 202 201 202	< 1	0.03 0.02 0.01 0.01 0.02	9 14 8 7 10	1590 990 880 890 800	8 6 2 8 6	2 < 2 < 2 < 2 2 2	2 3 6 8 4	20 37 88 127 57	0.10 0.14 0.16 0.18 0.12	< 10 < 10 < 10 10 10	< 10 < 10 < 10 < 10 < 10 < 10	46 70 106 127 72	< 10 < 10 < 10 < 10 < 10 < 10	230 286 144 132 114	
9000N 11100E 9000N 11200E 9000N 11300E 9000N 11400E 9000N 11500E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 1	0.02 0.02 0.02 0.02 0.02	7 11 9 7 10	1860 1460 1380 1740 970	4 4 4 6 6	< 2 < 2 < 2 < 2 < 2	3 3 2 2 2	47 37 28 29 34	0.10 0.11 0.10 0.10 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 63 55 56 66	< 10 < 10 < 10 < 10 < 10 < 10	108 138 90 72 100	
9000N 11600E 9000N 11700E 9000N 11800E 9000N 11900E 9000N 12000E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 1 1 1	0.02 0.03 0.03 0.03 0.03	15 8 6 8 3	1070 1730 1110 1310 1340	4 4 6 8 10	< 2 < 2 < 2 < 2 < 2 < 2	2 2 2 2 1	34 18 33 17 14	0.16 0.13 0.11 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 55 47 56 51	< 10 < 10 < 10 < 10 < 10 < 10	102 76 48 80 52	
9000N 12100E 9100N 10050E 9100N 10150E 9100N 10250E 9100N 10350E	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 < 1 < 1 1	0.03 0.03 0.03 0.02 0.02	6 10 7 8 7	1370 1290 1280 710 1440	4 10 8 6 6	2 2 < 2 < 2 2	1 2 2 2 2	17 41 41 49 32	0.11 0.13 0.11 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 57 58 54 51	< 10 < 10 < 10 < 10 < 10 < 10	54 129 348 74 114	
9100N 10450E 9100N 10550E 9100N 10650E 9100N 10650E 9100N 10850E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.02 0.01 0.03	7 5 10 5 # 11	1050 730 740 800 360	12 10 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	2 2 2 4 10	34 35 26 56 39	0.11 0.12 0.14 0.13 0.10	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	56 53 69 90 71	< 10 < 10 < 10 < 10 < 10 < 10	294 212 554 166 162	
	•								<u>.</u>				c	ERTIFIC	ATION:	

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANT:	TS LTD.
------------------------	---------

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 2-A Total Pages : 3 Certificate Date: 14-OCT-94 Invoice No. P.O. Number :19428307 :LOY Account

Project : TAS Comments: CC: GRANT CROOKER

						•				CE	RTIFI	CATE	OF A	NAL	YSIS		19428	307		
SAMPLE	PREP CODE	Аи-АА ррb	Ag ppm	λ1 %	As ppm	8a ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
9100N 10950E 9100N 11050E 9100N 11150E 9100N 11250E 9100N 11350E	201 202 201 202 201 202 201 202 201 202 201 202	15 10 < 5 < 5 5	< 0.2 0.2 0.4 0.2 < 0.2	1.35 1.54 2.14 1.72 1.42	4 < 2 < 2 < 2 < 2	40 60 70 40 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2	0.66 0.53 0.47 0.24 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 7 9 6 7	13 13 15 9 12	49 82 121 33 45	2.02 2.15 2.59 1.82 2.17	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.05 0.05 0.06 0.04 0.07	< 10 < 10 < 10 < 10 < 10	0.35 0.35 0.41 0.15 0.38	185 395 590 420 290
9100N 11450E 9100N 11550E 9100N 11550E 9100N 11650E 9100N 11750E 9100N 11850E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.2 0.8 0.4 < 0.2 0.2	1.53 1.96 2.94 2.33 2.07	4 < 2 < 2 2 < 2 < 2	50 70 60 80 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.35 0.23 0.45 0.49 0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 6 9 7 5	10 9 20 19 14	30 39 359 82 153	1.84 1.89 2.53 2.19 1.93	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.03 0.04 0.06 0.07 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.19 0.54 0.41 0.34	180 300 495 285 340
9100N 11950E 9100N 12050E 10000N 10700E 10000N 10800E 10000N 10800E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 5 5 5 < 5 < 5 < 5	0.4 0.2 < 0.2 < 0.2 < 0.2 0.2	2.46 2.20 1.17 2.04 1.43	2 < 2 < 2 < 2 < 2 < 2 < 2	80 50 60 80 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	0.69 0.43 0.49 0.32 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 6 5 7 4	16 14 13 10 9	120 57 29 56 66	2.39 2.09 2.38 2.24 1.72	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.05 0.04 0.07 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.41 0.34 0.23 0.36 0.27	410 240 140 455 140
10000N 11000E 10000N 11100E 10000N 11200E 10000N 11300E 10000N 11400E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 5 < 5 < 5 < 5	0.2 0.2 0.2 0.2 < 0.2	1.46 1.76 1.30 2.15 1.81	< 2 < 2 < 2 < 2 < 2	50 60 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.30 0.15 0.32 0.49 0.49	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 2 4 7 6	10 10 8 14 18	115 380 46 92 83	1.58 1.76 1.61 2.42 2.57	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 1	0.04 0.05 0.05 0.06 0.06	< 10 < 10 < 10 < 10 < 10	0.22 0.15 0.16 0.43 0.38	345 110 555 465 485
10000N 11500E 10100N 10750E 10100N 10750E 10100N 10850E 10100N 10950E 10100N 11050E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 20 < 5 < 5	0.4 0.2 < 0.2 < 0.2	2.15 1.18 1.24 2.01 1.77	< 2 < 2 < 2 < 2 < 2 < 2	60 130 50 90 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2	0.22 0.40 0.48 0.30 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 4 5 4	10 12 13 12 11	23 25 30 150 117	1.90 1.87 2.12 2.01 1.89	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.06 0.07 0.05 0.07	< 10 < 10 < 10 10 < 10	0.16 0.15 0.22 0.21 0.24	570 625 155 270 215
10100N 11150E 10100N 11250E 10100N 11250E 10100N 11350E 10100N 11450E 10200N 10700E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5 < 5	0.4 0.2 0.2 0.2 < 0.2 < 0.2	1.59 1.44 1.66 1.53 1.78	< 2 < 2 < 2 < 2 < 2 < 4	30 70 70 50 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 < 2 < 2	0.31 0.22 0.19 0.19 0.43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 4 3 6	9 9 12 8 13	165 26 33 14 35	1.58 1.74 1.87 1.70 2.24	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.04 0.04 0.04 0.03 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.20 0.16 0.19 0.12 0.24	195 385 160 275 140
10200N 10800E 10200N 10900E 10200N 11000E 10200N 11100E 10200N 11100E	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5	0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	1.62 1.75 1.60 1.66 1.81	< 2 < 2 < 2 2 < 2 < 2	80 70 60 50 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 < 4	0.29 0.37 0.41 0.41 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 6 5	9 12 13 13 12	32 22 111 116 246	1.78 2.06 2.11 2.01 2.08	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	D.06 0.07 0.07 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.21 0.25 0.28 0.23	215 535 165 455 205
10200N 11300E 10200N 11400E 10200N 11425E 10200N 11425E 10200N 11525E 10300N 9675E	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5 5	< 0.2 0.4 0.2 < 0.2 0.2	1.49 1.41 1.02 1.30 1.64	< 2 < 2 < 2 < 2 < 2 4	60 50 40 30 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 < 2	0.63 0.51 0.31 0.30 0.83	< 0.5 0.5 < 0.5 < 0.5 < 0.5	4 3 2 1 10	18 14 10 8 24	49 44 14 16 123	2.66 1.72 1.44 1.34 3.17	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.08 0.06 0.03 0.02 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.36 0.20 0.17 0.22 0.59	210 145 110 115 385

CERTIFICATION:__

bart Brinker

To: GEOTEC CONSULTANTS LTD.

٦

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9 Project : TAS Comments: CC: GRANT CROOKER

CERTIFICATE OF ANALYSIS

A9428307

		1	····													
	PREP	Mo	Na	Ni	P	РЬ	Sp	Şc	Sr	Tİ	Tl	σ	v	W	Zn	
SAMPLE	CODE	ppm	*	ррт	ppm	ppm	ppm	ррщ	ррш	*	ppm	ppm	ppm	ppm	ppm	
9100N 10950E 9100N 11050E 9100N 11150E 9100N 11250E 9100N 11250E 9100N 11350E	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 1 < 1 < 1 < 1 1 < 1 < 1</pre>	0.02 0.02 0.03 0.02 0.02	5 6 11 5 6	570 640 630 1760 690	6 8 6 4	< 2 2 2 4 2 4 2	4 4 2 2	64 52 51 24 47	0.14 0.11 0.11 0.10 0.14	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 66 68 51 75	< 10 < 10 < 10 < 10 < 10 < 10	70 74 126 88 110	
9100N 11450E 9100N 11550B 9100N 11650E 9100N 11750E 9100N 11850E	201 202 201 202 201 202 201 202 201 202 201 202	< 1	0.02 0.03 0.03 0.03 0.03 0.02	6 6 15 11 7	1490 2000 360 320 300	4 6 16 6 8	2 < 2 4 < 2 < 2 < 2	2 2 4 3 2	39 21 35 37 34	0.09 0.09 0.13 0.13 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	\$7 47 71 58 58	< 10 < 10 < 10 < 10 < 10 < 10	72 92 90 94 128	
9100N 11950E 9100N 12050E 10000N 10700E 10000N 10800E 10000N 10900E	201 202 201 202 201 202 201 202 201 202 201 202	2 1 2 1 2 < 1 2 < 1 2 < 2	0.03 0.02 0.02 0.03 0.03	11 7 7 8 4	330 790 1260 890 650	10 8 4 2 < 2	2 2 4 2 < 2	4 2 2 2	51 38 51 30 23	0.13 0.13 0.09 0.13 0.10	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	68 63 88 65 46	< 10 < 10 < 10 < 10 < 10 < 10	140 112 46 94 64	
10000N 11000E 10000N 11100E 10000N 11200E 10000N 11200E 10000N 11300E 10000N 11400E	201 202 201 202 201 202 201 202 201 202 201 202	2 1 2 1 2 1 2 1 2 1 2 1 2 < 1	0.03 0.02 0.02 0.03 0.03	6 5 9 8	280 780 1590 790 1300	4 10 8 5 10	< 2 2 < 2 2 2	2 1 2 3 3	27 14 31 48 47	0.10 0.11 0.09 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	46 46 47 75 92	< 10 < 10 < 10 < 10 < 10 < 10	92 102 110 222 114	
10000N 11500E 10100N 10750E 10100N 10850E 10100N 10950E 10100N 10950E	201 202 201 202 201 202 201 202 201 202 201 202	2 1 2 1 2 < 1 2 < 1 2 < 1 2 < 1	0.03 0.02 0.02 0.03 0.03	5 6 9 8	1210 1690 880 770 340	4 6 2 6 4	< 2 < 2 2 < 2 2 < 2 2 2	2 2 3 2 2	20 40 45 27 27	0.11 0.09 0.11 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 57 75 55 50	< 10 < 10 < 10 < 10 < 10 < 10	190 80 48 64 60	
10100N 11150E 10100N 11250E 10100N 11350E 10100N 11350E 10100N 11450E 10200N 10700E	201 201 201 201 201 201 201 201 201 201 201 201	2 < 1 2 1 2 < 1 2 < 1 2 1 2 1	0.02 0.02 0.02 0.02 0.02 0.02	7 6 7 4 8	410 630 1280 1220 700	6 4 2 2 6	< 2 < 2 2 4	1 1 1 1 2	22 21 19 22 42	0.09 0.11 0.10 0.10 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	36 53 51 50 80	< 10 < 10 < 10 < 10 < 10 < 10	130 122 286 74 42	
10200N 10800E 10200N 10900E 10200N 11000E 10200N 11000E 10200N 11100E 10200N 11200E	201 20 201 20 201 20 201 20 201 20 201 20	2 < 1 2 1 2 < 1 2 < 1 2 1 2 1	0.03 0.03 0.02 0.02 0.02	7 8 7 7 7	1120 1040 780 1130 710	6 B 4 6 6	2 < 2 2 2 < 2 < 2	2 2 2 2 2	31 28 37 37 28	0.09 0.11 0.11 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 63 64 65 67	< 10 < 10 < 10 < 10 < 10 < 10	46 84 72 82 186	
10200N 11300E 10200N 11400E 10200N 11425E 10200N 11425E 10200N 11525E 10300N 9675E	201 20 201 20 201 20 201 20 201 20 201 20	2 1 2 1 2 < 1 2 < 1 2 < 1 2 < 2	0.02 0.02 0.02 0.03 0.03	7 B 4 3 ¥ 11	710 930 690 230 1100	6 6 4 6 4	< 2 < 2 2 2 4	3 2 2 1 6	53 36 26 23 71	0.13 0.12 0.11 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	104 53 49 40 112	< 10 < 10 < 10 < 10 < 10	50 318 232 238 72	
L																

CERTIFICATION:

ч 3 Page Number :2-B Total Pages :3 Certificate Date: 14-OCT-94 Invoice No. :19428307 P.O. Number : Account :LOY

,

*

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 3-A Total Pages :3 Certificate Date: 14-OCT-94 Invoice No. : 19428307 P.O. Number : Account LOY

F

Project : TAS Comments: CC: GRANT CROOKER

							•					C	ERTIF	ICAT	EOF	ANAL	YSIS	<u></u>	A942	8307		
SAMPLE	PR CO	EP DE	Au-AA pph	•	Ag ppm	A1 %	As mqq	Ba ppm	Be ppm	Bi ppm	Ca. %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	fe %	Ga ppm	Hg ppm	K	La ppm	Mg %	Mn ppm
10300N 10750E 10300N 10850E 10300N 10950E 10300N 11050E 10300N 11150E	201 201 201 201 201	202 202 202 202 202 202	< 5 < 5 < 5 < 5 < 5	* * * *	0.2 0.2 0.2 0.2 3.2	1.79 1.35 1.38 2.19 2.37	2 2 2 2 4	70 60 40 70 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.58 0.29 0.81 0.45 0.52	0.5 < 0.5 0.5 < 0.5 < 0.5	8 4 7 6 6	16 10 20 15 16	40 17 61 73 43	2.96 1.91 2.69 2.20 2.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.04 0.10 0.06 0.06	< 10 < 10 10 < 10 < 10	0.35 0.16 0.56 0.28 0.31	270 105 355 240 305
10300N 11250E 10300N 11350E 10300N 11450E 11300N 9725E 11300N 9775E	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 5 < 5</pre>	* * * * *	0.6 0.2 0.2 0.2 0.2	3.73 1.69 0.97 2.15 1.11	< 2 2 < 2 8 4	100 70 30 80 130	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.90 0.30 0.33 0.54 0.34	1.5 < 0.5 < 0.5 1.0 1.5	8 4 2 16 8	23 12 6 39 15	554 26 25 479 114	3.43 1.88 0.86 3.61 1.77	10 < 10 < 10 < 10 < 10 < 10	< 1 1 1 < 1 < 1	0.11 0.04 0.03 0.19 0.10	10 < 10 < 10 < 10 < 10 < 10	0.62 0.25 0.17 0.65 0.21	770 135 85 420 615
11300N 9825E 11300N 9850E 11300N 9875E 11300N 9925E 11300N 9975E	201 201 201 201	202 202 202 202	<pre>< 5 miss. < 5 < 5 < 5 < 5 < 5 </pre>	mis < <	0.8 9. 0.2 0.2 0.2	3.07 miss. 1.51 2.58 2.19	6 miss. < 2 < 2 4	120 miss. 80 150 100	0.5 miss. < 0.5 0.5 < 0.5	< 2 miss. < 2 < 2 < 2	0.48 miss. 0.32 0.48 0.44	0.5 miss. < 0.5 0.5 0.5	19 miss. 6 16 7	40 miss. 21 15 17	1685 miss. 60 197 141	3.91 miss. 1.85 3.35 3.29	< 10 miss. < 10 < 10 < 10	< 1 miss. 1 < 1 < 1	0.08 miss. 0.09 0.10	< 10 miss. < 10 < 10 10	0.57 miss. 0.20 0.26 0.34	655 miss. 460 960 150
11300N 10025E 11300N 10075E 11300N 10125E 11300N 10175E 11300N 10125E	201 201 201 201 201	202 202 202 202 202 202	10 < 5 < 5 < 5 < 5	* * * * *	0.2 0.2 0.2 0.2 0.2 0.2	2.90 1.87 2.39 3.07 2.36	4 < 2 < 2 6 < 2	100 70 110 100 110	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.42 0.45 0.29 0.32 0.46	0.5 0.5 < 0.5 0.5 0.5	13 7 8 10 17	16 17 14 20 20	160 106 135 180 120	2.86 2.74 2.35 3.01 3.29	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 2	0.10 0.07 0.06 0.07 0.11	< 10 10 < 10 < 10 < 10	0.37 0.35 0.27 0.42 0.37	400 215 425 265 535
11300N 10275E 11400N 9725E 11400N 9775E 11400N 9775E 11400N 9825E 11400N 9875E	201 201 201 201 201	 202 202 202 202	miss. < 5 < 5 < 5 < 5	mis < <	0.2 0.2 0.2 0.2 0.2	miss. 0.54 2.89 1.83 2.55	miss. 2 < 2 4 < 2	miss. 20 80 140 80	miss. < 0.5 0.5 < 0.5 < 0.5	miss. < 2 < 2 < 2 < 2	miss. 0.19 0.60 0.53 0.52	miss. < 0.5 0.5 0.5 0.5	miss. 3 15 10 7	miss. 6 29 25 22	miss. 27 157 53 37	miss. 0.97 4.31 2.66 2.30	miss. < 10 < 10 < 10 < 10	mise. < 1 < 1 1 1 < 1	miss. 0.03 0.10 0.13 0.11	miss. < 10 < 10 < 10 < 10 < 10	miss. 0.13 0.44 0.36 0.28	miss. 145 280 390 440
11400N 9925E 11400N 9975E 11400N 10025E 11400N 10075E 11400N 10125E	201 201 201 202 202	202 202 202 203 203		; < ; < ; <	0.2 0.4 0.2 0.6 0.2	2.30 1.49 2.12 2.09 2.29	2 < 2 < 2 < 2 4	90 70 90 130 130	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.55 0.35 0.31 0.51 0.69	0.\$ < 0.5 < 0.5 0.5 0.5	11 9 10 8 12	15 11 12 64 57	230 78 50 48 147	3.94 1.88 2.30 2.12 2.55	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.08 0.08 0.06 0.09 0.11	10 < 10 < 10 < 10 < 10 < 10	0.36 0.18 0.23 0.25 0.31	265 305 515 1100 755
11400N 10175E 11400N 10225E 11400N 10275E	201 201 201	202	< 9 < 9 < 9	< < <	0.2	2.09 1.58 1.48	< 2 < 2 < 2	100 80 90	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0,32 0,41 0,55	0.5 0.5 < 0.5	8 9 8	14 16 15	46 54 27	2.76 3.15 2.49	< 10 < 10 < 10) < 1) < 1) < 1	0.06 0.09 0.10	< 10 < 10 < 10	0.24 0.24 0.26	715 505 415
						۲																
L		1	1						·							CERTIF		4. 12	sut	734	chla	

To: GEOTEC CONSULTANTS LTD.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

6976 LABURNUM ST. VANCOUVER, BC	
V6P 5M9	

Project : TAS Comments: CC: GRANT CROOKER

Page Number : 3-B Total Pages :3 Certificate Date: 14-OCT-94 Invoice No. : 19428307 P.O. Number : LOY Account

											CE	RTIF	ICATE	OF A	NAL	YSIS	A9428307
SAMPLE	PRE	EP De	Mo ppm	Na %	Ni ppm	P ppm	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
10300N 10750E 10300N 10850E 10300N 10950E 10300N 11050E 10300N 11150E	201 201 201 201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 1	0.01 0.02 0.03 0.04	8 6 7 8 8	800 1080 1260 750 290	12 8 6 6 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 5 2 3	52 29 57 40 43	0.13 0.09 0.11 0.12 0.14	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	107 61 104 67 81	< 10 < 10 < 10 < 10 < 10	62 32 62 94 164	
10300N 11250E 10300N 11350E 10300N 11350E 10300N 11450E 11300N 9725E 11300N 9775E	201 201 201 201 201	202 202 202 202 202 202	3 < 1 < 1 1 1	0.03 0.03 0.04 0.02 0.03	19 6 3 26 14	560 460 170 1000 920	12 4 8 22 12	2 2 2 4 2	5 2 1 5 1	57 29 21 60 41	0.14 0.13 0.08 0.14 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 64 22 102 49	< 10 < 10 < 10 < 10 < 10 < 10	830 122 46 170 196	
11300N 9825E 11300N 9850E 11300N 9850E 11300N 9875E 11300N 9925E 11300N 9975E	201 201 201 201	202 202 202 202	1 miss. < 1 1 3	0.02 miss. 0.02 0.03 0.03	31 miss. 13 15 10	780 miss. 840 1130 590	16 miss. B 18 10	4 miss. 2 < 2 2	4 miss. 1 2 3	57 niss. 1 37 50 58	0.16 miss. 0.10 0.14 0.12	< 10 miss. < 10 < 10 < 10	< 10 miss. < 10 < 10 < 10	106 miss. 49 81 90	< 10 miss. < 10 < 10 < 10	102 miss. 92 102 52	
11300N 10025E 11300N 10075E 11300N 10125E 11300N 10125E 11300N 10175E 11300N 10225E	201 201 201 201 201 201	202 202 202 202 202 202	1 < 1 < 1 1 < 1	0.02 0.02 0.03 0.02 0.02	14 11 14 13 19	680 560 830 1180 1040	8 6 14 4	< 2 2 < 2 2 2 2	2 3 3 4 4	41 49 31 36 50	0.15 0.12 0.12 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	89 91 66 92 97	< 10 < 10 < 10 < 10 < 10 < 10	88 80 130 90 146	
11300N 10275E 11400N 9725E 11400N 9775E 11400N 9825E 11400N 9875E	 201 201 201 201	 202 202 202 202	miss. < 1 1 1 < 1	miss, 0.01 0.02 0.03 0.03	miss. 3 21 25 12	miss. 350 1000 840 740	miss. 2 18 4 6	miss. 2 < 2 2 2	miss. 1 6 3 4	miss. 17 80 58 46	miss. 0.04 0.16 0.13 0.13	miss. < 10 < 10 < 10 < 10 < 10	miss. < 10 < 10 < 10 < 10 < 10	miss. 35 127 83 61	miss. < 10 < 10 < 10 < 10 < 10	miss. 18 98 88 74	
11400N 9925E 11400N 9975E 11400N 10025E 11400N 10075E 11400N 10125E	201 201 201 202 202	202 202 202 203 203	2 < 1 1 < 1 2	0.02 0.02 0.03 0.16 0.14	12 11 17 13 13	940 700 1810 1410 950	22 6 18 14	< 2 < 2 2 2 < 2	5 1 2 2 2	93 39 32 59 70	0.10 0.11 0.10 0.13 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	116 53 66 55 72	< 10 < 10 < 10 < 10 < 10 < 10	70 42 86 166 76	
11400N 10175E 11400N 10225E 11400N 10275E	201 201 201	202 202 202	1 < 1 < 1	0.02 0.02 0.02	13 11 9	1320 1190 1000	12 8 6	2 < 2 < 2	3 3 3	33 39 57	0.11 0.09 0.12	< 10 < 10 < 10	< 10 < 10 < 10	79 109 88	< 10 < 10 < 10	106 102 40	
					Ŧ												

CERTIFICATION:

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number :1-A Total Pages :1 Certificate Date: 29-SEP-94 Invoice No. : 19426717 P.O. Number ٠ LOY Account

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

Project : TAS Comments: CC: GRANT CROOKER

<u>.</u>										CĘ	RTIFI	CATE	OF A	NAL	(SIS		19426	717		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
000N 10050E 000N 10290E 2 000N 10300E 3 1070N 10025E 9 1170N 9995E 8	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>	0.4 11.2 < 0.2 0.4 < 0.2	2.71 1.82 2.38 1.46 2.65	5 < 2 < 2 2 2	40 30 60 40 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.59 2.85 2.23 1.32 2.33	< 0.5 3.0 < 0.5 < 0.5 < 0.5	15 17 16 22 17	36 20 19 24 21	289 9000 92 159 237	5.14 3.10 3.71 4.41 3.96	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.24 0.09 0.47 0.21 0.24	< 10 < 10 < 10 < 10 < 10 < 10	1.38 1.15 1.41 0.62 0.77	940 905 980 205 335
1208N 10000E 7 1250N 10150E 5 1310N 10560E 6 1365N 10925E 3 1470N 10440E 7	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5 < 5 < 5 < 5	0.6 2.0 < 0.2 0.4 < 0.2	2.33 2.04 2.15 1.71 1.58	26 2 2 8 < 2	70 40 70 90 60	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	2.29 1.66 1.63 1.06 0.76	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 9 20 11 10	76 39 16 14 17	357 1130 142 227 106	4.54 3.19 3.44 6.39 3.39	< 10 < 10 < 10 < 10 < 10 < 10	2 2 1 1 < 1	0.39 0.12 0.38 0.09 0.14	10 < 10 < 10 < 10 < 10 < 10	1.40 0.78 1.20 0.83 0.71	360 350 560 320 185
1395N 10190E 4 1455N 10450E 2 0945N 11075E /C	205 226 205 226 205 226	< 5<< 5	< 0.2 0.2 0.4	1.37 1.67 4.13	4 4 4	30 70 270	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.14 1.04 4.03	< 0.5 < 0.5 1.5	15 9 8	17 47 38	242 81 34	3.53 2.55 3.80	< 10 < 10 10	< 1 < 1 < 1	0.11 0.09 0.10	< 10 < 10 < 10	0.74 0.55 0.12	205 315 490

Bart Sichler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221

To: GEOTEC CONSULTANTS LTD.

6976 LABURNUM ST. VANCOUVER, BC V6P 5M9

Page Number : 1-B Total Pages :1 Certificate Date: 29-SEP-94 Invoice No. : 19426717 P.O. Number : Account LOY

Project : TAS Comments: CC: GRANT CROOKER

										CE	RTIF	CATE	OF A	NALY	SIS	A9426717
SAMPLE	PREP CODE	Mo ppm	Na.	Ni ppm	ppm	Pb ppm	SP Spm	Sc ppm	Sr ppm	Ti %	T1 ppm	ndd D	V ppm	W ppm	Zn ppm	
9000N 10050E 11 9000N 10290E 12 9000N 10300E 13 11070N 10025E 5 11170N 9995E 8	205 226 205 226 205 226 205 226 205 226 205 226	5 < 1 5 < 1 5 < 1 5 < 1	0.06 0.06 0.15 0.37	9 5 4 7 3	1530 1800 1300 1160 1270	10 18 8 14 8	< 2 4 4 < 2 2	12 9 7 3 5	144 190 199 75 169	0.16 0.14 0.15 0.17 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	192 137 149 96 100	< 10 < 10 < 10 < 10 < 10 < 10	84 514 250 36 38	
11208N 10000E 7 11250N 10150E 5 11310N 10560E 6 11365N 10925E 3 11470N 10440E /	205 226 205 226 205 226 205 226 205 226	5 3 5 < 1 5 14 5 2	0.21 0.28 0.09 0.07 0.12	24 13 4 13 8	1360 1370 1120 1370 1250	26 14 18 20 4	2 < 2 < 2 < 2 < 2 4	10 6 4 6 4	154 125 139 70 58	0.19 0.17 0.14 0.18 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	121 124 107 147 99	< 10 < 10 < 10 < 10 < 10 < 10	66 82 70 118 28	
11395N 10190E 4 11455N 10450E 2 10945N 11075E /0	205 226 205 226 205 226	5 1 5 13 5 < 1	0.09 0.18 0.21	9 20 9	1450 910 1190	18 4 14	< 2 2 2	3 4 3	69 105 372	0.17 0.12 0.12	< 10 < 10 < 10	< 10 < 10 < 10	107 82 145	< 10 < 10 < 10	46 40 174	
																Haut Buchler

CERTIFICATION:_

APPENDIX II

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

,

÷

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution:	1 gamma
Total Field Accuracy:	± gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automat- ic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells ≈25,000 readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to +60° C.
Size:	Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm;
Weights:	Console, 1.8 kg; Sensor, 1.3 kg; Staff, 0.6 kg;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

. •

APPENDIX III

MAGNETIC DATA

÷

Grant Crooker Data Listing Line & Station Area: Tas Claims	+ =northing/easting - =southing/westing
Grid: Tas Grid File Name: Ta9410gr	.XVZ
Date: Ocober 1994 Magnetometer Survey	- V
Instrument Type: Details:	
Scintrex MP-2 Corrected total field n	nagnetic values nT
Data Types: #1 Corrected total fiel	ld magnetic values nT

N/S	\mathbf{E}/\mathbf{W}	
Line #	Station	#1
line 11500		
11500	9675	56721
11500	9700	56601
11500	9725	57250
11500	9750	56189
11500	9775	56690
11500	9800	<u>57083</u>
11500	9825	56837
11500	9850	57050
11500	9873	57401
11500	9900	56807
11500	9950	56912
11500	9975	56858
11500	10000	56890
11500	10025	57172
11500	10050	56947
11500	10075	56939
11500	10100	56982
11500	10125	56956
11500	10150	56994
11500	10175	57145
11500	10200	56889
11500	10223	26637
11200	10220	20817
11500	102/2	56275
11500	10300	56708
11500	10350	56823
11500	10375	56804
11500	10400	56878
11500	10425	56793
11500	10450	56746
11500	10475	56805
11500	10500	56983
11500	10525	56724
11500	10550	56821
11500	10575	56924
11500	10600	56836
11500	10625	56807
11500	10650	36744
11500	105/5	30810
11500	10700	567902
11500	10723	56807
11500	10775	56747
11500	10800	56751
11500	10825	56654
11500	10350	56784
11500	10875	56981
11500	10900	56651
11500	10925	56665
11500	10950	56799
11500	10975	56753
11500	11000	56775

.

.

11500	11025	56964
11500	11050	57117
11500	11075	57173
11500	11100	57284
11500	11125	57443
11500	11150	56974
11500	11175	56934
11500	11200	57135
11500	11225	56936
11500	11250	56823
11500	11275	56669
11500	11300	56447
11500	11325	56475
11500	11350	56882
11500	11375	57743
11500	11400	57484
11500	11425	57577
11500	11450	57553
11500	11475	56738
11500	11500	58066
11500	11525	57702
11500	11550	58115
11500	11575	57462
11500	11600	56962
11500	11625	57055
11500	11650	57388
11500	11675	57222
11500	11700	57277
11500	11725	57188
11500	11750	56767
11500	11775	57651
11300 -	11800	56790
11500	11825	57156
11500	11850	57893
11500	11875	57743
11500	11900	56844
11500	11925	56903
11500	11950	57177
11500	11975	57384
11500	12000	57232
11500	12025	57218
11500	12050	56943
11500	12075	57204
11500	12100	56812
line 11400		
11400	9675	56802
11400	9 700	56809
11400	9725	56746
11400	9750	56722
11400	9775	56686
11400	9800	56759
11400	9825	56839
11400	9850	56882
11400	9875	57187
11400	9900	57187
11400	9925	56973
11400	9950	57113
11400	9975	56722
11400	10000	57253
11400	10025	56553
11400	10050	570.54
11400	10075	56961
11400	10100	56606
11400	10125	56656
11400	10150 5	6721
11400	10175	56849
11400	10200	56651
11400	10225	56569
11400	10250	56667
11400	10275	56619

、

•

ı.

.

.

.

.

•

.

•

•

•

11400	10300	56864	
11400	10325	56775	
11400	10350	56709	
11400	10375	56684	
11400	10400	56868	
11400	10425	56867	
11400	10450	56849	
11400	10475	56850	
11400	10500	56825	
11100	10525	56869	
11100	10550	56851	
11400	10575	56848	
11400	10600	56774	
11400	10625	56726	
11400	10650	56736	
11400	10675	56829	
11400	10700	56816	
11400	10725	56782	
11400	10750	56826	
11400	10775	56778	
11400	10800	\$6643	
11400	10875	56641	
11400	10825	\$6584	
11400	10850	56601	
11400	10075	56593	
11400	10900	56506	
11400	10925	\$6729	
11400	10950	\$6663	
11400	10975	56588	
11400	11075	56688	
11400	11050	57340	
11100	11075	56976	
11400	11100	\$6970	
11400	11125	57578	
11400	11150	56689	
11400	11175	\$6779	
11400	11200	56878	
11400	11200	17095	
11400	11250	57674	
11400	11275	\$7061	
11400	112/3	57350	
11400	11275	\$7512	
11400	11250	57816	
11400	11275	\$7934	
11400	11400	57734	
11400	11425	\$7726	
11400	11425	57801	
11400	11450	\$7777	
11400	11500	57161	
11400	11500	\$7168	
11400	11525	\$7.155	
11400	11575	57796	
11400	11575	57187	
11100	11675	56257	
11400	11650	56781	
11400	11030	5612	
11400	110/3	5 0015	
11400	11.00	57175	
11400	11 23	56050	
11400	11.20	57266	
11400	11/2	56991	
11400	11000	\$6749	
11400	11042	86724	
11400	11020	30734 86701	
11400	118/3	JU/71 46797	
11400	11900	JU/04 87020	
11400	11923	5/057	
11400	11078	50103	
11400	E19/J	5070J \$6967	
11400	12000	2000/	
11400	12025	20033	

•

.

.

•

.

.

.

.

.

,

		• • • • •
11400	12050	26880
11400	12075	57090
11400	12100	57552
line 11300		
11300	9675	56765
11200	0700	\$4599
11300	9,00	20300
11300	9725	56489
11300	9750	56518
11300	9775	56589
11200	0200	57961
11300	3000	5 304
11300	9825	57203
11300	9850	57041
11300	9875	57009
11300	9900	57060
11300	9974	56962
11200	0050	\$6979
11100	37.0	30030
11300	9975	36804
11300	10000	57032
11300	10025	57190
11300	10050	57701
11200	10075	\$7034
11300	10100	57024
11300	10100	56823
11300	10125	57676
11300	10150	57039
11300	10175	57162
11200	10200	\$7197
11300	10200	5/18/
11300	10225	3674Z
11300	10250	56603
11300	10275	56789
11300	10300	56882
11300	10325	56681
11200	10250	50001
11300	10320	269,9
11300	10375	57067
11300	10400	56957
11300	10425	56859
11300	10150	57050
11200	10478	87200
11300	10472	3:299
11300	16200	57120
11300	10525	57188
11300	10550	57143
11300	10575	57108
11200	10600	\$7241
11300	10000	57541
11300	10625	5/136
11300	10650	57122
11300	10675	57161
11300	10700	56972
11300	10725	56913
11200	10780	57110
11300	10750	57119
11300	10775	568/3
11300	10800	56752
11300	10825	56694
11300	10850	\$6617
11200	10975	56670
11300	10070	50070
11500	10900	36/42
11300	10925	57088
11300	10950	57063
11300	10975	56998
11300	11000	\$7370
11300	11025	57199
11300	1102.5	. 100
11300	11020	28620
11300	11075	57542
11300	11100	57348
11300	11125	58251
11200	11160	57537
11300	11130	J/J34
11300	11175	57681
11300	11200	57223
11300	11225	57059
11300	11250	57150
11300	11774	6 6001
11300	112/J	1 1660 5
11300	11300	37555

.

,

,

.

.

.

•

.

,

.

11300	11325	57375
11300	11350	57626
11300	11375	57787
11200	11400	\$7688
11300	11400	27483
11300	11425	5/433
11300	11450	57443
11300	11475	57448
11300	11500	57562
11300	11525	57121
11200	11550	57140
11300	11676	\$4009
11300	11373	20900
11300	11600	5 039
11300	11625	\$6838
11300	11650	56676
11300	11675	56736
11300	11700	57382
11300	11725	57298
11200	11750	57117
11300	11730	56007
11300	1175	50997
11300	11800	5/321
11300	11825	57025
11300	11850	57169
11300	11875	56801
11300	11900	57107
11200	11035	\$ 70 20
11300	11923	5/033
11300	11950	16605
11300	11975	57165
11300	12000	56902
11300	12025	56884
11300	12050	57536
11300	12075	58328
11200	12100	59221
11300	12100	20224
line 11200		
11200	9675	56562
11200	9700	56859
11200	9725	56724
11200	9750	57041
11200	9775	56575
11200	0900	57077
11200	9000	87333
11200	9825	2 (333
11200	9850	57176
11200	9875	56976
11200	9900	56618
11200	9925	57328
11200	9950	57309
11200	9975	\$7204
11200	10000	57012
11200	10000	57915
11200	10025	37812
11200	10050	57920
11200	10075	57101
11200	10100	57225
11200	10125	56975
11200	10150	57775
11200	10175	\$7720
11200	101.5	57750
11200	10200	27264
11200	10225	26928
11200	10250	56773
11200	10275	56737
11200	10300	56738
11200	10325	56861
11200	10350	\$6761
11200	10275	82000
11200	103/2	20780
11200	10400	57268
11200	10425	5 5956
11200	10450	569 56
11200	10475	57062
11200	10500	57119
11700	10525	\$7127
11200	10560	\$7421
11200	10330	J /431
11200	10575	37390

,

11200	10600	57217	
11200	10625	57366	
11200	10640	57149	
11200	10675	57211	
11200	10700	57105	
11200	10725	57390	
11200	10750	56951	
11200	10735	57959	
11200	10800	57057	
11200	10825	56923	
11200	10850	57030	
11200	10875	56971	
11200	10900	\$7507	
11200	10925	57414	
11200	10950	57333	
11200	10975	57358	
11200	11000	57621	
11200	11025	57618	
11200	11050	58400	
11200	11075	58101	
11200	11100	57484	
11200	11125	58862	
11200	11150	58038	
11200	11175	57869	
11200	11200	58835	
11200	11225	57287	
11200	11250	56331	
11200	112/5	36817	
11200	11300	30093	
11200	11250	57081	
11200	11375	57018	
11200	11400	57023	
11200	11425	56820	
11200	11450	56838	
11200	11475	56957	
11200,	11500	56855	
11200	11525	56856	
11200	11550	55932	
11200	11575	57020	
11200	11600	56915	
11200	11625	56828	
11200	11650	56839	
11200	11675	3 7182	
11200	11700	57174	
11200	11725	20728	
11200	11/50	5/32/	
11200	11775	57139	
11200	11800	\$7277	
11200	11850	\$6911	
11200	11875	56834	
11200	11900	56741	
11200	11925	57232	
11200	11950	57268	
11200	11975	56880	
11200	12000	56962	
11200	12025	57607	
11200	12050	58125	
11200	12075	58722	
11200	12100	58853	
line 11100	0775	8 700 F	
11100	9673	37093	
11100	9/00 0724	30002 57560	
11100	3723 0750	56051	
11100	0775	\$7272	
11100	9800	57501	
11100	9825	56898	
11100	9850	56992	
		· 	

•

.

,

.

.

•
11100	9875	56906
11100	9900	60322
11100	9925	57557
11100	9950	57204
11100	9975	57103
11100	10000	57029
11100	10025	58355
11100	10050	57144
11100	10075	56965
11100	10100	57617
11100	10125	57179
11100	10150	56989
11100	10175	56955
11100	10200	57028
11100	10225	57309
11100	10250	56988
11100	10275	56906
11100	10300	56900
11100	10325	56845
11100	10350	56701
11100	10375	57494
11100	10400	57046
11100	10425	57679
11100	10450	57051
11100	10475	57593
11100	10500	58648
11100	10525	59914
11100	10550	58328
11100	10575 ·	56636
11100	10600	58824
11100	10625	57194
11100	10650	57280
11100	10675	57207
11100	10700	56924
11100	10725	57648
11100	10750	56961
11100	10775	56609
11100	10800	56613
11100	10825	56607
11100	10850	56659
11100	10875	56852
11100	10900	56844
11100	10925	56856
11100	10950	5 6879
11100	10975	6888
11100	11000	56992
11100	11025	57017
11100	11050	57347
11100	11075	57896
11100	11100	57493
11100	11125	57681
11100	11150	57780
11100	11175	57716
11100	11200	57285
11100	11225	58219
11100	11250	56780
11100	11275	\$7022
11100	11300	5 7280
11100	11325	56624
11100	11350	26675
11100	11375	55641
11100	11400	5/219
11100	11425	56595
11100	11450	56718
11100	11475	56768
11100	11500	56970
11100	11525	56759
11100	11550	5 6762
11100	11575	56675
11100	11600	56594

•

.

.

.

-

•

11100	11675	57186
11100	11023	57100
11100	11630	57072
11100	11675	57031
11100	11700	57374
11100	11725	57128
11100	11750	57218
11100	11775	57197
11100	11900	57367
11100	11000	57507
11100	11623	5.115
11100	11830	26,23
11100	11875	56930
11100	11900	56982
11100	11925	56755
11100	11950	56949
11100	11975	57069
11100	12000	57007
11100	12025	58187
11100	12022	\$7295
11100	12030	37303
11100	12075	57532
11100	12100	58432
line 11000		
11000	9675	56989
11000	9700	56774
11000	9725	56921
11000	9750	\$7117
11000	0775	\$7709
11000	9773	57270
11000	9800	30872
11000	9825	56828
11000	9850	- 56798
11000	9875	57369
11000	9900	56634
11000	9925	58417
11000	9950	57694
11000	0075	47277
11000	10000	87499
11000	10000	2 400
11000	10025	2.381
11000	10050	26986
11000	10075	57031
11000	10100	57153
11000	10125	56933
11000	10150	57002
11000	10175	57608
11000	10200	56861
11000	10235	56876
11000	10223	57016
11000	10250	57016
11000	10275	36926
11000	10300	56813
11000	10325	56775
11000	10350	56791
11000	10375	56852
11000	10400	56808
11000	10125	56831
11000	10150	56854
11000	10430	(-001
11000	104.5	5.001
11000	10500	269,9
11000	10525	56831
11000	10550	57080
11000	10575	57074
11000	10600	\$7003
11000	10625	56718
11000	10650	56797
11000	10675	56079
11000	10700	86760
11000	10/00	30/07
11000	10725	26689
11000	10750	56576
11000	10775	56534
11000	10800	56503
11000	10825	56574
11000	10850	56712
11000	10875	56787
11000		

•

.

.

•

.

.

11000	10900	56767
11000	10925	56878
11000	10950	5 6923
11000	10975	56941
11000	11000	57104
11000	11025	57133
11000	11050	58283
11000	11075	57915
11000	11100	57355
11000	11125	58885
11000	11150	27468
11000	111 '5	5 101
11000	11200	\$7050
11000	11222	\$6958
11000	11275	57195
11000	11300	16698
11000	11325	57090
11000	11350	\$6597
11000	11375	56541
11000	11400	56647
11000	11425	56752
11000	11450	56721
11000	11475	56912
11000	11500	57061
11000	11525	56772
11000	11550	56750
11000	11575	56874
11000	11600	. 56862
11000	11625	56801
11000	11650	56778
11000	11675	5 6913
11000	11700	3,301
11000	11/22	20241
11000	11 20	50804
11000	11222	56653
11000	11975	56773
11000	11850	56752
11000	11875	\$7176
11000	11900	57252
11000	11925	56998
11000	11950	56904
11000	11975	57179
11000	12000	57106
11000	12025	57901
11000	12050	57179
11000	12075	58068
11000	12100	57673
line 9100		
9100	9875	57183
9100	9900	37233
9100	9925	57290
9100	9920	5-104
9100	10000	5-550
9100	10025	57466
9100	10050	57369
9100	10075	\$7370
9100	10100	57471
9100	10125	\$7340
9100	10150	57413
9100	10175	57429
9100	10200	57375
9100	10225	57476
9100	10250	58894
9100	10275	57052
9100	10300	57248
9100	10325	57184
9100	10350	57254

٠

.

,

.

.

.

•

4

.

•

		10372	67310
-	9100	103 / 5	57219
	9100	10400	57216
	9100	10425	57337
•	0100	10.150	57232
	9100	10450	\$7071
-	9100	10473	57071
•	9100	10500	57107
	9100	10525	57178
`	9100	10550	57097
	0100	10575	57067
	9100	105.5	57005
•	9100	10600	2,005
	9100	10625	57072
	9100	10650	57145
•	9100	10675	57054
	0100	10700	57083
	9100	10705	\$7076
	91úú	10/25	3,0,0
	9100	10750	57201
`	9100	10775	57073
	9100	10800	57061
	9100	10000	\$7125
	9100	10823	5-135
	9100	10850	57141
	9100	10875	57165
	9100	10900	57197
	0100	10975	57288
	9100	10923	87208
	9100	10950	57295
	9100	10975	57305
	9100	11000	57283
	9100	11025	57387
-	0100	11060	\$7204
	9100	11030	57504
	9100	11075 .	57470
•	9100	11100	57416
	9100	11125	57485
	9100	11150	57329
•	9100	11175	\$7252
	9100	11173	27323
	9100	11200	2/344
c	9100	11225	57669
	9100	11250	57895
	9100	11275	57874
	\$100 0100	11200	\$7008
	9100	11300	21900
•	9100	11325	2/324
	9100	11350	57241
	9100	11375	56836
	9100	11400	5 6918
	9100	11400	87192
	9100	11425	3/103
	9100	11450	36873
	9100	11475	57332
,	9100	11500	57319
	0100	11525	57477
	9100	11223	87102
	9100	11550	57105
	9100	11575	57390
	9100	11600	57261
	9100	11625	57475
	9100	11650	57818
	9100	11050	86033
	9100	11675	30022
	9100	11700	57211
,	9100	11725	57951
	9100	11750	57615
	0100	11778	5-109
	9100	11 2	80386
	9100	11800	28230
1	9100	11825	58593
	9100	11850	58644
	9100	11875	58316
	0100	11000	58400
	A100	11900	20420
	9100	11925	58525
	9100	11950	58262
	9100	11975	57743
	9100	12000	58003
	5100	12000	\$7473
	9100	12023	J (4 13
•	9100	12050	57723
	9100	12075	57684
•	9100	12100	57447

.

line 9000)	\$7101
9000	9875	57711
9000	9900	57186
9000	9923	\$7278
9000	9930	57253
9000	10000	57328
9000	10000	57267
9000	10025	57342
9000	10075	57290
9000	10100	57340
9000	10125	57464
9000	10150	57305
9000	10175	57306
9000	10200	57097
9000	10225	57142
9000	10250	57266
9000	10275	57613
9000	10300	57077
9000	10325	57121
9000	10350	57078
9000	10375	56978
9000	10400	57186
9000	10425	57094
9000	10450	57084
9000	10475	5/134
9000	10500	57154
9000	10525	57034
9000	10575	57028
9000	10575	57051
9000	10625	57016
9000	10650	56993
9000	10675	57018
9000	10700	57058
9000	10725	57029
9000	10750	57013
9000	10775	57026
9000	10800	57063
9000	10825	57028
9000	10850	5 7044
9000	10875	57036
9000	10900	57033
9000	10925	57088
9000	10950	57101
9000	10975	57208
9000	11000	5/1/1
9000	11025	57165
9000	11050	\$7178
9000	11100	57117
9000	11125	57175
9000	11150	57194
9000	11175	5 7169
9000	11200	57115
9000	11225	57178
9000	11250	57147
9000	11275	57146
9000	11300	57156
9000	11325	56771
9000	11350	56678
9000	11375	57020
9000	11400	57149
9000	11425	56980
9000	11450	5 /109
9000	11475	3/8/4
9000	11500	3/45U
9000	11525	5/201
9000	11330	\$7228
9000	115/5	21222

.

,

÷

۴

•

ł

9000	11600	57356
9000	11625	57274
9000	11650	58049
9000	11675	57858
9000	11700	58158
9000	11725	58392
9000	11750	58111
9000	11775	57782
9000	11800	57803
9000	11825	57544
9000	11850	57295
9000	11875	57154
9000	11900	56731
9000	11925	58265
9000	11950	57580
9000	11975	57495
9000	12000	57236
9000	12025	57638
9000	12050	57684
9000	12075	57655
9000	12100	56829
E/W	N/S	
line	station	
baseline 10000		
10000	11500	56890
10000	11475	56848
10000	11450	56899
10000	11425	56783
10000	11400	57253
10000	11375	57315
10000	11350	57191
10000	11325	5,000
10000.	11300	57032
10000	11275	2/49/
10000	11250	20243
10000	11222	2/809
10000	11200	2/913
10000	111/5	20121
10000	11150	5 7 23
10000	11125	50914
10000	11100	57029
10000	11075	57503
10000	11030	57502
10000	11025	57499
10000	10000	\$6760
10000	0075	56448
10000	9975	\$6073
10000	9930	56326
10000	9925	57162
10000	9900	56720
10000	9850	56883
10000	9825	56925
10000	9800	56464
10000	9775	\$6977
10000	9750	\$7096
10000	9725	57129
10000	9700	57318
10000	9675	57431
10000	9650	57814
10000	9625	57185
10000	9600	57471
10000	9575	57849
10000	9550	57142
10000	9525	57539
10000	9500	57454
10000	9475	58773
10000	9450	58863
10000	9425	58471
10000	9400	58131

•

•

•

.

.

.

•

.

` ,

.

.

•

•

.

-

•

10000	9375	58199
10000	9350	58004
10000	9325	58020
10000	9300	58397
10000	9275	58045
10000	9250	57764
10000	9225	57659
10000	9200	57452
10000	9175	57432
10000	9150	57691
10000	9125	57443
10000	9100	57257
10000	9075	57332
10000	9050	55724
10000	9025	57660
10000	9000	57328
10000	8975	57254
10000	8950	57308
10000	8925	57250
10000	8900	57203
10000	8875	57119
10000	8850	57185
10000	8825	57138
10000	8800	57146
10000	8775	57103
10000	8750	57106
10000	8725	57004
10000	8700	57000
10000	8675	57000
10000	8650	56990
10000	8625	56943
10000	8600	56859
10000	8575	56408
10000.	8550	56909
10000	8525	57736
10000	8500	58951
10000	8475	58013
10000	8450	57435
10000	8425	57348
10000	8400	57304
10000	8375	57421
10000	8350	57513
10000	8325	57393
10000	8300	57484
10000	8275	57548
10000	8250	57448
10000	8225	57416
10000	8200	57503

:

-

. . . .

.

.

,

.

.

•

.

,

•

.

.

.

•

.

•

.

.

,

.

.

APPENDIX IV

.

.

,

.

.

.

.

ROCK SAMPLE DESCRIPTIONS

ROCK SAMPLE DESCRIPTIONS

Sample No.	Grid Coord	Description
1	11470N 10440E	grab, augite porphyry, bleaching, 1-2 mm fractures with K-spar alteration, 2-4% py
2	11455N 10450E	grab, bleached grey-white volcanic breccia, rusty along fractures and around breccia fragments
3	11365N 10925E	grab, fractured, andesitic tuff, 2% disseminated py, py and mag along fractures
4	11395N 10190E	grab, rusty fractured andesitic tuff, 5% disseminated pyrite
5	11250N 10150E	grab, augite porpyry, rusty, fractures with mag and ep, 2-4% py
6	11310N 10560E	grab, augite porphyry, fractures with K-spar alteration. epidote and mag
7	11208N 10000E	grab from 1 metre square shaft, augite porphyry, 5-10% pyrite along fractures and disseminated, epidote
8	11170N 9995E	grab, augite porphyry, 1-4% disseminated py
9	11070N 10025E	grab, 2 metre square shaft, 10% disseminated pyrite, grey-white alteration
10	10945N 11075E	grab, andesitic tuff, stockwork of magnetite, trace to 1% pyrite
11	9000N 10050E	float, andesite, bleached, minor ep and py on fractures, weak K-spar alteration?
12	9000N 10290E	high grade grab, andesite, showing, 30 cm wide fracture zone, limited strike length, 5% py, traces cpy, mal,
13	9000N 10300E	grab, andesite, rusty fractures, 1% py

