BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-29NAME:SIMON SALMON

Program Completion On the Auric Claim Warn Bay, Fortune Channel Western Vancouver Island, B.C. Alberni Mining Division NTS 92F/5E S.Salmon Prospector 10/12/94

INDEX

Auric work program:	Page
Improve access:	1
Map area geology:	1
Reopen and sample workings:	2
Soil samples:	3
Moss mat samples:	4
Prospecting:	5
Auric assays:	6
Workings maps:	11
Moss mats results:	15
Conclusions:	19
Overlord work program:	20
Overlord samples:	22
Workings map Overlord claim:	24
Conclusions:	25
Diary:	26
Budget:	27
Completion forms:	28
Notices of work:	30
Assays:	33

AURIC WORK PROGRAM

Improva Access:

The proposed route to the Free Gold claim was not feasible. This new route was hiked twice at different elevations. This new route crossed three steep slides and ended in a canyon on the creek north of the workings. Another route was attempted up Free Gold Creek, but this route also proved to steep and dangerous.

So once again the old timers found the best route. The original trail is steep, but is the only way in for the time being. The old trail was brushed out and the windfalls where removed by chainsaw. This was a big improvement. The trail was also reflagged and blazed.

Two separate trails lead from the old camp to the workings. These were also brushed out and cleared, although one bridge and two lengths of rope were needed to traverse them safety.

Map Area Geology:

Mapping this area was not possible, there is very little outcrop on either side of Free Gold Creek. The north side of the creek has been thrusted up giving a 30-50m cliff. The south side of this east west creek is low, but gains elevation quickly. Free Gold Creek was traversed from the logging road at 50m elevation to the workings at 350m. And then above the workings to 500m. The creek is very steep and filled with timber and boulders and no outcrop is visible. A small slide above the workings on the south side of the creek was the only outcrop.

This outcrop was iron stained diorite which was not seen anywhere else in the area. If this pyritic diorite could be found on the north side of the creek the distance of fault slip could be measured. Unfortunately this area above the workings is very steep and dangerous and no outcrop could be found.

Reopen and Sample Workings:

There are three tunnels on this claim, With two being drifted from the creek bed. The other working is on a bluff about 10m above the creek. The upper tunnel (#3) has caved in, but was shovelled clear and was sampled at 2.5m intervals. The two tunnels (#1-#2) drifted from the creek bed were completely plugged with debris. Clearing these tunnels proved to be a back breaking job, but was accomplished. This work will only be temporary, the creek is constantly bringing down material. We cleared the workings in August and sampled them, and by our last trip to the claim in November both drifts were filled with water and debris.

<u>Tunnel #1:</u>

This tunnel was drifted 30m below the vein from the north side of Free Gold Creek. This working follows a fault (which assayed up to a gram gold per ton) as it heads to intersect the vein at depth. Where the tunnel crosses a vein it is heavily mineralised with pyrite and malachite. (the latter not visible in the other workings) In this drift a quartz healed Breccia was noted (and sampled) in a short cross cut to the east. As the tunnel follows the vein north it pinches down and disappears. To the south it seems reasonable strong but was only drifted on for 3.5m. With the assay results, Im confident this is not the same vein that is followed in tunnels #2 & #3

<u>Tunnel #2;</u>

This tunnel was drifted just below where the vein outcropped and followed the vein for its entire length. This working was **he**avily timbered and the lagging has caved, but it is still passable, but dangerous. Assay results gave an average grade of .420 opt for 20 m.

<u>Tunnel #3:</u>

This working was drifted into the vein where it outcropped. This tunnel is only in 5m long and the vein remains strong. At 2.5m the vein swells to over a meter. The portal of this tunnel had caved in , but was cleared during this program. Assay results were encouraging.

South open Cut:

These two small open cuts on the south side of Free Gold Creek explore a narrow (5cm) quartz vein. The highest assay was only 174 ppb Au. Interestingly this vein assayed and striked almost exactly as sample 1-4 taken in tunnel #1on the north side of the creek.

North Open Cut:

This working is located above tunnel #3 and follows the surface exposure of the vein for 10m. This vein was sampled every 2.5m giving an average grade of .876 opt Au and up to 20 grams silver per ton.

<u>Soil Sample:</u>

My proposal was for 100 soil samples to discover how far the Free Gold vein has been shifted by a regional fault. This program was started by laying out a soil grid. The grid was started 50m east of the upper workings and ran for 200m west with stations at 10m intervals. This was repeated for 50m (5 lines) to the south. The first soil line was completed with marginal results. The ground was full of roots and boulders and the sampling was very slow. Also the sample quality was poor due to the steep terrain. This program was stopped and a program of moss mat samples was started. Moss Mat Samples:

This program started with 3 samples being taken on a creek south of and parallel to Free Gold Creek. These first samples are as follows:

1)	94-M-1	105m	91ppb Au
2)	94-M-2	182m	24ppb Au
3)	94-M-3	350m	32ppb Au
	Als	o 2 samples	were taken above and below the
Free Gold	workings:	-	
1)	94-M-4	350m	11 ppb Au
2)	94-M-5	335m	630ppb Au

With these results a program of sampling was started and it was discovered that samples M-2 & M-3 were taken from a parallel creek.(there are two creeks south of Free Gold Creek less than 100m apart) The creek farthest south was named Trail Creek (as it crosses the trail to the showing) And the other North Trail Creek, both these creeks were sampled at 50m intervals from an elevation of 100m to about 500m (Unfortunately a big storm was raging as we completed this program, making my altimeter unreliable) These two creeks were sampled until they disappeared. A total of 14 samples were taken on Trail Creek and 13 on North Trail Creek. All sample locations were flagged. Prospecting:

The claim area was thoroughly prospected with nothing of significance being discovered.All the area creeks were also prospected, but due to lack of outcrop only one sample was taken. This sample was a piece of rusty quartz found in North Trail Creek. And assayed as follows:

1) 6-1 182m <5ppb Au Prospecting the valley another quartz vein was discovered and the first assays are as follows:

1)	N-1	N/A	2220ppb Au
2)	N-2	N/A	4120ppb Au
3)	N-3	N/A	1220ppb Au

Theses samples were taken every 2m along the vein. With there results more work was done on the vein. This included following the vein along strike and more sampling. This vein is located beside a logging road in the Bulson Creek valley. This vein only had a strike of 8m to the north where it pinched down and disappeared. To the south the vein heads under the road and into a slough. This vein was called the "New Vein".

Naw Vain Samples:

<u>Sampla#</u>	<u>Width</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u>
NV-1	10cm	4.5m	Quartz vein	169 ppb
NV-1	5cm	5m	Quartz vein south offset.	749 ppb
NV-3	8cm	6m	Quartz vein	692 ppb
NV-4	10cm	7m	Quartz vein (in gouge)	152 ppb

This vein strikes 162' and dips 74' to the east. Although this vein assays significant gold, it is narrow, and with a strike of only 8m it is not recommended for further work.

<u>Auric Assays</u>

.

<u>Tunnel #1:</u>

<u>Sample #</u>	<u>Wldth</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u> (ppb)	<u>AG</u> (ppm)	<u>CU</u> (ppm)
1-1	2cm	5m	Quartz vein,strike 190`dip 52`.	22	<0.2	25
1-2	32cm	10m	Quartz in gouge. (stoped)	786	0.6	19
1-3	30cm	15m	Quartz in gouge. (stoped)	984	0.4	82
1-4	4cm	20m	Located in a short crosscut.	7	0.3	120
1-5	30cm	25m	Quartz in gouge. (stoped)	<5	<0.2	48
1-6	30cm	30m	Quartz in gouge. (stoped)	89	<0.2	64
1-7	16cm	40m	Quartz vein, with malachite.	24	0.4	2104
1-8	16cm	40 m	Hanging wall of sample 1-7.	<5	<0.2	307
1-9	8cm	40m	Short drift to the south at 2.5m.	15	2.1 1	3742

Tunnel #1 Continued:

<u>Sample#</u>	<u>Width</u>	<u>Distanca</u>	<u>Commants</u>	<u>AU</u> (ppb)	<u>AG</u> (ppm)	<u>©⊍</u> (ppm)
1-10	5cm	40m	Short drift to the south at 3.5m	9	0.4	28
1-11	2m	45m	Quartz healed Breccia.	<5	<0.2	46
1-12	5cm	40m	Pyrite in granite.	24	<0.2	178
1-13	15cm	48m	Quartz vein. (north crosscut)	12	0.3	903
1-14	6cm	50m	Quartz vein. (north crosscut)	13	<0.2	20
1-15	6cm	60m	Quartz vein. (north crosscut)	<5	<0.2	85
1-16	N/A	N/A	Float in creek, (at #1 portal)	3823	0.9	32

Tunnel #2:

<u>Sample #</u>	<u>Width</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u> (ppb)	<u>AG</u> (ppm)	<u>CU</u>) (ppm)
2-1	6cm	2.5m	Rusty quartz vein.	9335	1.1	32
2-2	8cm	5m	Rusty quartz vein.	7787	1.2	14
2-3	8cm	7.5m	Rusty quartz vein.	.753 (opt)	8.6	25
2-4	8cm	10m	Rusty quartz vein.	6932	2.7	18
2-5	10cm	12.5m	Rusty quartz vein.	.694 (opt)	6.3	46
2-6	8cm	15m	Rusty quartz vein.	8013	1.4	24
2-7	16cm	17.5m	Rusty quartz vein.	9891	0.9	15
2-8	30cm	20m	Rusty quartz vein.	.688 (opt)	3.8	55

*Note: This vein continues in this working, but was unsafe to sample. This tunnel is in very poor condition and should not be entered until it is rehabilitated!

<u>Tunnel #3:</u>

<u>Sample#</u>	<u>Width</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u> (ppb)	<u>AG</u> (ppm)	<u>GU</u> (ppm)
3-1	11cm	Om	Banded quartz vein. (at portal)	8726	2.7	23
3-2	1m	2.5m	Banded quartz vein.	5757	1.8	19
3-3	13cm	4.5m	Banded quartz vein. (at face)	9214	1.2	14
3-4	N/A	4.5m	Grab. (at face)	4679	1.0	41
3-5	N/A	Om	Grab. (at portal)	.451 (opt)	1.6	43
<u>South Open Cut</u>	0 A					
<u>Sample#</u>	<u>Width</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u> (ppb)	<u>AG</u> (ppm)	<u>CU</u> (ppm)
5-1	5cm	N/A	Quartz vein. (upper)	19	<0.2	25
5-2	5cm	N/A	Quartz vein. (lower)	174	0.2	152

.

*Note: Sample 5-2 was taken 2m lower than 5-1.

Page 9

.

North Open Cut:

Sample#	<u>Wldth</u>	<u>Distance</u>	<u>Comments</u>	<u>AU</u> (Opt)	<u>AG</u> (ppm)	<u>CU</u> (ppm)		
4-1	25cm	Om	Banded quartz vein. (pyrite)	2.094	20.7	18		
4-2	13cm	2.5m	Bull quartz.	0.490	6.5	43		
4-3	19cm	7.5m	Banded bull quartz.	0.553	4.3	38		
4-4	12cm	10m	Banded quartz vein. (pyrite)	1.014	6.4	32		
4-5	N/A	12.5m	Float.(above open cut)	609 (ppb)	0.3	32		
*Note: There was no outcrop at 5m.								
*Note: This open cut is caved at 12.5m.								

6-1	N/A	N/A	Float from NTC	<5	<0.2	13
				(ppb)		

<u>Workings Maps Auric Claim</u>

Elevation 370m

<u>Auric Claim Moss Mats</u>

Moss Mats

<u>Sampla:</u>	<u>k au</u>	<u>AS</u>	Distance	Sample#	<u>au</u>	AS	Distance
	(ppb)	(ppm))		(ppb)	(ppm))
TCM-1	6	26	Om	NTCM-1	<5	10	Om
TCM-2	1455	19	50m	NTCM-2	<5	22	50m
TCM-3	<5	17	100m	NTCM-3	6	11	100m
TCM-4	29	10	150m	NTCM-4	12	15	150m
TCM-5	19	19	200m	NTCM-5	<5	13	200m
TCM-6	1039	16	250m	NTCM-6	<5	11	250m
TCM-7	87	<5	300m	NTCM-7	40	6	300m
TCM-8	85	5	350m	NTCM-8	<5	11	350m
TCM-9	144	7	400m	NTCM-9	<5	17	400m
TCM-10	24	7	450m	NTCM-10	6	16	450m
TCM-11	<5	7	500m	NTCM-11	<5	43	500m
TCM-12	<5	7	550m	NTCM-12	<5	48	550m
TCM-13	12	7	600m	NTCM-13	<5	71	600m
TCM-14	9	6	650m				

TCM-Trail Creek Moss NTCM-North Trail Creek Moss

<u>Othar Moss Mats</u>

<u>Sample#</u>	<u>AU</u> (ppb)	<u>AS</u> (ppb)	<u>Comments</u>
94-M-1	148	10	Sample from the creek north of Free Gold Creek.
94-M-2	398	22	Free Gold Creek at road.
94-M-3	79	45	New Vein Creek.

Page 17

FREE GOLD MOSS MAT

Conclusions On the Auric Claim

This claim shows promising assays in gold and silver, however due to its location it is not likely to get much attention until land use disputes in the area can be properly settled. The main purpose of this program was to sample the workings and find the continuation of the vein. The workings where sampled with encouraging results and prove the vein carries consistent gold. The moss mat program did indicate an area of anomalous gold in the two creeks south of the workings, and these results will be followed up on in the summer of 1995. The "New vein" discovered during this program does not warrant further work due to its low gold values and short strike length.

Thank you for excepting my application

Ain Sel-

Program Completion On the Overlord Claim Cypress Bay, Catface Range Western Vancouver Island, B.C. Alberni Mining Division NTS 92F/5W S.Salmon Prospector 10/12/94

Overlord Work Program

Good Hops Adit:

The main adit on the claim is 244m long, This tunnel was filled with water and the portal was blocked by debris. A tree had fallen across the portal and was removed by chainsaw, axe and come along. Then we shovelled the entrance clear allowing most of the water to drain. Then by compass and hip chain the tunnel was mapped. Unfortunately the work done in this working failed to find ore. Although a 30cm vein was stoped out . Sample 94R-13 (vein #6)

<u>incline:</u>

This working was reported to be 18m long and on ore. The "Incline" vein is 1m wide and was exposed for 9m. This working was filled with water. When we pumped it out ,we realized that either the incline had caved or this was not the right working. (although the dip and strike are close) The only location given for the incline was in the minister of mines report and are misleading. From the amount of tailings this would seem to be an open-cut, but the vein description seems to fit, and being that they were mining a 1m vein half of the mined material would have been taken as ore. Two days were spent looking for another working but none was found. The search was difficult because of thick brush and the fact that any blazed tree or trail has disappeared over the past hundred. Samples 94R-1 through 4.

Sheft:

This working is located on a knoll with an open cut blasted in from the north.We spent a day pumping out this shaft. It is 8m deep and was heavily timbered.This shaft was to explore a 1.2m vein exposed just west of the working.Unfortunately this working was to dangerous to enter. Sample 94R-10.

Beach Tunnel:

This working is right on tide water and was to explore a well mineralized vein 25cm wide with a strike length of 5m.Sample 94R-11 & 12.

Shear Zons:

This showing is located on the south- east slope of Catface mountain. Where a shear zone outcrops in a steep unnamed creek. Unfortunately this showing was inaccessible due to high water. Although two attempts were made.

OVERLORD SAMPLES

Sample#	Width	<u>Distance</u>	<u>Comments</u>	<u>AU</u>	AG	CU
				(ppb)	(ppm)	(ppm)
incline:						
€						
94R-1	1m	Om	Quartz vein,strike 80 dip 40 SW	15	0.4	154
94R-2	1m	2.5m	Footwall	21	1.9	3092
94R-3	1m	5m	Footwall	95	4.6	9514
94R-4	1m	9m	Face	143	3.9	5404
<u>Vein #1</u>						
94R-5	20cm	N/A	Quartz vein, strike	22	4.2	5833
<u>Outcrop(above #1</u> vein)						
94R-6	N/A	N/A	Country rock.	54	0.8	1381
<u>Voin #2</u>						
94R-7	50cm	N/A	Quartz vein, strike N dip 80`E	1010	41.2	4.47%
			(
				ļ		

Sample#	Wigth	Distance :	Comments	AU	AG	CU
				(ppb)	(ppm)	(ppm)
<u>Vein #3</u> (above in- cline)						
94R-8	25cm	N/A	Quartz vein, with pyrite, calcopyrite.	204	8.4	11021
94R-9	5cm	N/A	Shear zone, strike n dip 85`W	13	3.0	10512
<u>Vein #4 (</u> shaft)			····			
94R-10	1.2m	N/A	Quartz vein, srike 150` dip 80`S	20	4.2	3263
<u>Vein #5</u> (beach tu	unne!)					
94R-11	25cm	0m	Quartz vein, strike 140` dip 60`W	15	3.3	7792
94R-12	10cm	3m	Sample taken at the face.	473	17.1	3.57%
<u>Vein #6 (</u> main tur	nnel)					
94R-13	30cm	N/A	Quartz vein, located in main drift.	31	14.2	2.52%

Workings Map on The Overlord Claim

Drawn by S.Salmon (1994) Area on map 92F5E

Page 24

Conclusions On The Overlord Claim

The work on this claim was to accurately sample and map the known veins and workings. This was completed with discouraging results. The grade reported in the old minister of mines reports was 1/3 of an ounce gold 2 ounces silver and 6% copper, these assays could not be duplicated. With my highest assay being 1010 ppb gold 41.2 grams silver and 4.47% copper. The copper grades are high but the gold is to low to be commercial. I think this claim warrants further work, but is in a difficult location and disputed area. The shear zone was not sampled due to high water in the creek where it outcrops. This area will be explored this summer and has some interesting possibilities, being on the contact of the catface intrusion and less than 500m from the 220 million ton Catface deposit.

Thank you for excepting my application

1. Dal

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM **PROSPECTING REPORT FORM (continued)**

B. TECHNICAL REPORT

_			
*	One technical rej	port to be completed	for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

Name Simon Salmon

Reference Number <u>94-95-P60</u>

LOCATION/COMMODITIES

Project Area (as listed in Part A.)	Minfile No. if applicable205-154
Location of Project Area NTS	LatLong
Description of Location and Access The	Auric claim is located east of Bulson
creek in Warn Bay. Access	is by boat or barge from Tofino.

The Overlord claim is in Cypress Bay on the east flank of

Access is by boat or plane only. Catface mountain.

Au Ag Cu Main Commodities Searched For

Known Mineral Occurrences in Project Area Au Ag Cu

WORK PERFORMED

1. Conventional Prospecting (area)_____

2. Geological Mapping (hectares/scale)

3. Geochemical (type and no. of samples)

4. Geophysical (type and line km)_____

5. Physical Work (type and amount)_____

6. Drilling (no. holes, size, depth in m, total m)_____

7. Other (specify)_____

SIGNIFICANT RESULTS (if any)

Commodities Au Ag Cu	_ Claim Name	Auric/Overlord
Location (show on man) Lat	Long —	Elevation

Dotation (show on mup)	·	.	
Best assay/sample type_	Auric 2.091	Oz/Ton Au 20	.7 grams/Ton Ag

Overlord 1 gram/Ton Au 41 grams/Ton Ag 4.47% Cu

Description of mineralization, host rocks, anomalies_

.-

ACME A	NALYI	ICAL	LA	BORA!	FORI	ESI	LTD .		85	2 E,	HAS	TING	S S	r. V	ANC	OUVE	R B.	с.	V6A	1R(PI	IONE	(604)25:	3-31	58	FAX	604) 25:	-1716
										GEC	CHI	EMIC	:al	AN/	ALY!	818	CEF	RTIF	'ICZ	\TE											
										<u>s:</u>	Lmoi 2	<u>a 82</u> • 1157	L lmc McCl)n lure :	Fi. st., 1	le ‡ Victor	92 18 80	l-27 : v8v	791 363												
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ní	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	<u>~~~</u> ₽ ₽	La	Cr	Mg Y	Ba	Ti	B	Al Y	Na *	K Y	¥	Au*
N-1	2	pp m 70	ppa 5	 64	ppin 1	9001 46	23	700	<u>4</u> 5 11	0504		 <2	-22	<u>ppn</u> 55	< 2	ppii 8	2 2	אבי די	1.23	.022	بېرې د>	 31	1_83	24		אקא <u>ו</u> 7	1.53	^. <_01		<u>بېمې</u> <1	2220
N-2 N-3	3	42 20	75	35 55	.1	24 12	11	315 318	3.66	10396	<5 <5		<2 <2	72	<.2 <.2	12 7	<2 <2	31 57	1.16	.010	<2 <2	16 10	.59 1.13	17 10	<.01 <.01	4	.61 1.20	.01 <.01	.05 .03	<1 <1	4120 1220
RE N-3	1	18	5	56	.1	13	8	310	3.07	3227	<5	2	<2	4	<.2	7	<2	57	.06	.006	<2	9	1.14	10	<.01	5	1.20	<.01	.03	<1	1180
	ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TJ B W AND LIMITED FOR NA K AND AL.																														
	THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. <u>Samples beginning 'RE' are duplicate samples.</u>																														
	- SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.																														
DATE	E RECI	EIVEI):	AUG 23	3 1994	4 D)	ATE	REPO	ORT	MAIL	ED :	Hn	f 31	199	L.	SIG	NED	BY.	:::	<u> </u>	·	D.TO	re, c.	LEON	3, J.W	IANG;	CERTI	FIED	B.C.	ASSAY	ERS
												l	/ /	/)										

ACME ANALY	CICA)	(;), A	BORJ	\TOR	IES	LTD	•	8	52 E G)	. Ha Eoci	sti) IEM]	ngs [CA]	st. L ai	VAN NAL	COUN YSII	'er 1 5 Ci	8.C. SRT	V IFI	5a 1 Cati	r6 E	I	PHON	E(60	04)2	53-2	158	F A	X(60	4) 2!	;3-1 A	716 1
										<u>3imo</u> 2	on 1 - 11	3al 1 57 M	<u>non</u> :Clure	F st.	ile Vic	# S Soria	94- BC VI	346 8v 3g	B 5											L	
SAMPLE#	No	Cu	Pb	Żn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Çd	Sb	Bi	٧	Ca	Р	La	Ċr	Mg	Ba	Ti	В	AL	Na	ĸ	٧	Au#
	ppm	ppm	ррп	ppm	ppm	ppm	ppm	ppm	7.	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7.	7.	ppm	ppm	*	ppm		ppm	2	X	X	ppm	ppb
94-N-1	1	38	9	52	.1	16	16	1149	1.83	25	8	<2	<2	50	.2	<2	<2	48	1.80	.068	6	33	.31	39	.05	10 2	2.66	.01	.04	<1	91
94-M-2	1	25	8	60	<.1	15	15	904	3.06	10	<5	<2	<2	29	<.2	<2	<2	109	.81	.037	5	43	.25	24	.08	5 2	2.32	.01	.04	<1	24
94-M-3	3	27	13	58	<.1	12	12	914	3.69	<2	<5	<2	<2	23	<.2	<2	8	118	.64	.041	5	49	.29	32	.10	<2 3	3.02 ·	<.01	.04	<1	32
94-M-4	<1	72	<2	71	.1	20	17	1096	3.20	8	<5	<2	<2	35	<.2	<2	<2	71	1.19	.069	7	33	.86	37	.08	7 2	2.63	.02	.08	<1	11
94-M-5	<1	97	11	75	.2	29	20	1119	4.05	17	5	<2	<2	37	1.1	<2	3	99	1.05	.054	6	42	.95	34	.12	3 2	2.59	.01	.04	<1	630
RE 94-M-5	<1	93	15	71	.3	26	18	1073	3.84	15	5	<2	<2	35	1.2	<2	<2	94	1.01	.052	5	40	.89	31	.11	5 2	2.46	.01	- 04	<1	1090
STANDARD C/AU-S	18	56	39	128	6.6	71	32	1054	3.96	43	22	6	35	50	17.6	14	18	60	.49	.090	39	58	.93	182	.08	35 1	-88	.06	. 15	11	47

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: MOSS MAT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples/Seginning 'RE' are duplicate samples.

DATE RECEIVED: OCT 3 1994 DATE REPORT MAILED: Oti2/94

SIGNED BY

CLIENT: BEAU PRE EXPLORATIONS LID. REPORT: V94-01366.6 (COMPLETE)

SAPLE	EDENT	Au	Cu
NUMBER	UNTIS	OPT	PCT
R2 2-3		0.753	
R2 2-5		0.694	
R2 2-8		0.688	
R2 3-5		0.451	
R2 4-1		2.094	
R2 4-2		0.490	
R2 4-3		0.553	
R2 4-4		1.014	
R2 94-R	7		4.47
R2 94-R	12		3.57
R2 94-R	13		2.52

PROJECT: NONE GIVEN DATE PRINTED: 30-DEC-94 PAGE 1

FROJECT: NINE GIVEN

CLIENT: BEAU PRE EXPLORATIONS LID.

REPORT: V94	L-01366.0 { CC	PLETE)						DAJ	e rinih): 15-DEC	-94	PAGE 1A	
SAMPLE NUMBER	HEMENT UNITS	Aulû PHB	AuRev1 PPB	Ag PPM	Cu PH1	Pb PPM	Zn PRM	Mo PPM	Ni PPM	Co PRM	Cd PPM	Bi PPM	As PPM
R2 NV-1 R2 NV-2 R2 NV-3 R2 NV-4		169 749 592 152		0.2 <0.2 0.2 0.3	115 51 152 94	0004	88 49 118 96	5 9 6 4	38 14 39 42	24 8 26 23	₹.0 ₹.0 ₹.0	0000	110 418 199 176
R2 1-1		22		<0.2	25	2	31	7	5	6	⊴.0	ও	15
R2 1-2 R2 1-3 R2 1-4 R2 1-5 R2 1-5 R2 1-6		786 984 7 ≪5 89	989	0.6 0.4 0.3 <0.2 <0.2	19 82 120 48 64	6 8 7 4 10	59 80 125 88 118	6 2 4 3 2	35 45 6 17 22	24 23 22 23 22	マ.0 マ.0 マ.0 マ.0 マ.0	<u> </u>	159 163 25 12 53
R2 1-7 R2 1-8 R2 1-9 R2 1-10 R2 1-11		24 ♦ 15 9 ♦		0.4 <0.2 2.1 0.4 <0.2	2104 307 13742 28 45	♥ 2 8 6 3	75 57 29 20 79	5 3 4 √ 4	34 4 12 ⊲ 75	25 17 11 1 24	く.0 く.0 く.0 く.0	ବବବବ	24 13 10 ⊲ 13
R2 1-12 R2 1-13 R2 1-14 R2 1-15 R2 1-15 R2 1-16		24 12 13 ⊲5 3823		<0.2 0.3 <0.2 <0.2 0.9	178 903 20 85 32	4 3 20 7	45 38 14 105 24	3 5 7 3 8	9 5 3 4	9 19 3 20 3	 ♥.0 ♥.0 ♥.0 ♥.0 1.3 	<u> </u>	23 9 5 17 47
R2 2-1 R2 2-2 R2 2-3 R2 2-4 R2 2-5		9335 7787 >10000 6932 >10000		1.1 1.2 8.6 2.7 6.3	32 14 25 18 46	12 5 561 30 240	36 20 332 19 227	11 4 7 9 5	4 5 4 2 7	4 3 3 3 3	1.0 5.7 37.3 3.0 49.7	ବବବ୍ଦ୍	67 40 94 65 96
R2 2-6 R2 2-7 R2 2-8 R2 3-1 R2 3-2		8013 9891 >10000 8726 5757	5474	1.4 0.9 3.8 2.7 1.8	24 15 55 23 19	98 22 41 121 25	74 22 55 20 35	8 8 3 8 4	3 4 9 3 10	3 4 9 2 7	19.0 2.3 5.8 3.8 2.2	ବବବବ	31 60 87 44 77
R2 3-3 R2 3-4 R2 3-5 R2 4-1 R2 4-2	:	9214 4679 >10000 >10000 >10000		1.2 1.0 1.5 20.7 6.5	14 41 43 18 43	40 5 28 50 103	24 33 39 28 36	7 7 6 8 10	12 8 14 8 8	7 6 12 8 7	3.2 3.9 1.3 4.8 4.9	ବ ବ ବ ବ ବ	80 71 94 101 74
R2 4-3 R2 4-4 R2 4-5 R2 5-1 R2 5-2	;	>10000 >10000 609 19 174		4.3 6.4 0.3 <0.2 0.2	38 32 32 25 152	88 119 17 3 5	49 25 17 21 113	4 8 12 6 5	18 10 5 10 7	17 10 3 4 24	11.5 2.1 ⊄.0 ⊄.0 ⊄.0		148 98 11 <5 32

.

CLIENT: BEAU REPORT: V94-(PRE EXPLORATI 01366.0 (COM	ions lie Pleie)	D.					PRC DAI	uect: Nor E primer	ve given): 15-dec	-94	PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITIS	Sb PRM	Hg PRM	Fe RT	Mn PRM	Te PPM	Ba PRM	Cr PRM	V PRM	Sn PPM	W PPM	La PRM	Al FCT
R2 NV-1 R2 NV-2 R2 NV-3 R2 NV-4 R2 1-1		ବବବବ	<pre><0.010 0.019 0.028 0.025 0.124</pre>	5.38 1.59 5.65 6.39 1.68	369 148 552 576 652	$\begin{array}{c} \bigtriangledown 0 \\ \bigtriangledown 0 \end{array}$	17 16 16 34 37	118 155 90 64 103	105 35 132 146 12	ବି ବି ବି ବି ବି ବି ବି	00 00 00 00 00 00	19 5 21 26 17	2.80 0.81 3.32 4.34 0.92
R2 1-2 R2 1-3 R2 1-4 R2 1-5 R2 1-6		ବ ବ ଦ ବ ଦ ବ ଦ ବ ଦ ବ ଦ ବ ଦ ବ	0.176 0.047 0.449 0.086 0.122	3.59 4.13 4.58 4.33 4.13	1264 1136 1667 1271 2200	√ 0 √0 √0 √0	33 20 35 20 19	60 49 33 66 25	38 44 98 95 67	ବି ବି ବି ବି ବି ବି ବି	Q0 Q0 Q0 Q0 Q0 Q0	16 21 25 25 25	1.83 2.46 2.89 3.10 2.51
R2 1-7 R2 1-8 R2 1-9 R2 1-10 R2 1-11		ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ ବ	0.042 0.036 0.218 0.061 0.209	3.08 2.74 2.39 0.57 3.33	624 514 285 2103 607	40 40 40 40 40	4 13 7 4 21	102 43 110 30 105	49 30 14 6 52	ବି ବି ବି ବି ବି ବି ବି	00 00 00 00 00 00	10 13 8 8 14	2.11 1.92 0.81 0.26 2.47
R2 1-12 R2 1-13 R2 1-14 R2 1-15 R2 1-16			0.113 <0.010 0.026 0.028 0.021	1.31 2.67 0.80 4.52 0.47	302 359 311 1385 118	$\begin{array}{c} \triangleleft 0 \\ \triangleleft 0 \end{array}$	16 4 8 8 2	86 93 128 34 188	24 35 11 73 2	$\langle 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	00 00 00 00 00	7 9 4 22 2	1.76 1.15 0.39 2.50 0.08
R2 2-1 R2 2-2 R2 2-3 R2 2-4 R2 2-5		<i>ও</i>	0.016 <0.010 0.621 0.030 2.823	0.70 0.82 1.16 1.10 1.26	336 308 428 719 598	$\begin{array}{c} \bigtriangledown 0\\ \bigtriangledown 0\\ \bigtriangledown 0\\ \bigtriangledown 0\\ \bigtriangledown 0\\ \bigtriangledown 0\\ \cr 0\\ \cr 0\\$	10 8 6 13 10	196 136 153 161 175	4 4 8 4 10	00 00 00 00 00 00	00000000000000000000000000000000000000	3 4 7 7	0.22 0.23 0.28 0.27 0.18
P2 2-6 P2 2-7 P2 2-8 P2 3-1 P2 3-2		<i>ও ও ও ও ও</i>	0.081 <0.010 0.076 0.126 0.047	0.99 1.21 2.58 0.64 1.74	391 395 1096 142 649		9 9 19 3 13	180 140 89 176 120	7 7 21 7 16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ବି ବି ବି ବି ବି ବି ବି ବି	4 5 12 2 7	0.26 0.41 1.09 0.07 1.09
R2 3-3 R2 3-4 R2 3-5 R2 4-1 R2 4-2		ବବବବଦ	0.023 0.020 0.042 0.246 0.119	1.50 1.41 2.40 1.75 1.50	513 763 440 401 295	$\begin{array}{c} \bigtriangledown \\ \bigtriangledown \\ \bigtriangledown \\ \bigtriangledown \\ \lor \\ \bigcirc \\ \bigcirc$	9 8 5 4	165 132 173 164 186	14 12 26 22 18	 ♥0 ♥0 ♥0 ♥0 ♥0 	ବୁ ବୁ ବୁ ବୁ ବୁ ବୁ ବୁ ବୁ	5 6 5 4	0.52 0.52 0.89 0.68 0.57
R2 4-3 R2 4-4 R2 4-5 R2 5-1 R2 5-2		ବବବବ	0.211 0.096 0.022 0.037 0.076	2.50 1.79 0.66 1.29 6.13	1116 417 311 654 1755	$\begin{array}{c} \bigtriangledown 0 \\ \bigtriangledown 0 \end{array}$	22 8 4 25 39	120 167 218 225 65	30 20 9 67	00 00 00 00 00 00	00 00 00 00 00 00 00 00 00	9 6 2 4 31	1.10 0.60 0.21 0.51 2.97

CLIENT: BEAU PRE EXPLORATIONS LED. REFORT: V94-01366.0 (COMPLETE)

PROJECT: NONE GIVEN DATE PRINTED: 15-DEC-94 PAGE 1C

SAMPLE NIMBER	ELEMENT UNTIS	Mg PCT	Ca PCT	Na PCT	K PCT	Sr PPM	Y PPM
R2 NV-1		2.51	0.10	<0.01	0.09	3	3
R2 IN-2		0.78	0.10	<0.01	0.04	6	1
R2 N-3		2.84	0.17	0.01	0.07	5	3
HZ IN 4		3.02	0.16	0.01	U.18	2	3
RZ 1-1		0.59	0.15	0.01	0.12	5	1
R2 1-2		1.33	3.12	<0.01	0.14	34	6
R2 1-3		1.61	J. 12	<0.01	0.10	20	8
RZ 1-4		1.21	8.27	<0.01	0.07	53 10	12
R2 1-5		2.3/	4./0	0.02	0.00	49	E E
R2 1-6		1.0/	>10.00	<0.01	0.10	120	9
R2 1-7		2.37	0.67	<0.01	<0.01	46	2
RZ 1-8		1.80	1.23	<0.01	0.07	59	8
R2 1_9		0.90	0.83	<0.01	0.02	44 5 - 5	2
R2 1-10		0.16	>10.00	<0.01	0.01	745	10
RZ 1-11		2.26	1,13	0-13	0.05	40	Ь
R2 1-12		0.61	1.93	0.05	0.03	20	6
R2 1-13		1.14	0.80	<0.01	0.01	67	3
R2 1-14		0.22	2.82	<0.01	0.04	40	2
F2 1-15		1.58	4.20	0.01	0.03	134	7
R2 1-16		0.03	0.05	<0.01	<0.01	2	Þ
R2 2-1		0.07	0.07	<0.01	0.04	2	2
R2 2-2		0.06	0.14	< 0.01	0.03	5	2
R2 2-3		0.09	0.05	< 0.01	0.03	2	2
R2 2-4		0.07	0.75	<0.01	0.05	8	4
R2 2-5		0.03	0.05	<0.01	0.04	2	3
R2 2-6		0.10	0.05	<0.01	0.04	2	2
R2 2-7		0.39	0.30	<0.01	0.03	4	2
R2 2-8		1.14	2.28	< 0.01	0.05	16	7
R2 3-1		0.02	0.02	<0.01	0.02	4	4
R2 3-2		0.95	0.48	<0.01	0.05	6	5
R2 3_3		0.50	0.41	<0.01	0.03	4	3
R2 3-4		0.45	1.53	< 0.01	0.02	14	4
R2 3-5		1.06	0.03	<0.01	0.02	1	2
R2 4-1		0.80	0.03	<0.01	0.02	1	\triangleleft
R2 4-2		0.60	0.03	<0.01	<0.01	1	1
R2 4-3		1.05	0.04	<0.01	0.07	2	4
R2 4-4		0.62	0.03	<0.01	0.02	2	2
R2 4-5		0.14	<0.01	<0.01	<0.01	\triangleleft	1
F2 5-1		0.22	0.06	<0.01	0.03	2	2
R2 5-2		1.74	0.61	<0.01	0.02	18	15

.

CLIENT: BEAU REPORT: V94-	PRE EXPLORAT 01366.0 (COM	nons Li Pleie)	D.					PRO DAT	JECT: NO E PRINTEI	ue given D: 15-dec	-94	Pace 2A	
SAMPLE NUMBER	ELEMENT UNTIS	Aul0 PPB	AuRevl PPB	Ag PRM	Cu PPM	Pb PRM	Zn PRM	Mo PAM	Ni PRM	Co PPM	63 PRM	Bi PPM	As PPM
R2 5-3		59		0.3	691	2	81	8	3	25	٥.٥	ব	22
R2 6-1		\$		<0.2	13	2	14	6	9	4	⊲.0	4	8
R2 94-R 1		15		0.4	154	2	7	10	4	2	⊴.0	4	4
R2 94-R 2		21		1.9	3092	2	41	12	4	7	⊲.0	4	ও
R2 94-R 3		95		4.6	9514	5	190	6	18	37	4.5	· <	ও
R2 94-R 4		143		3.9	5404	3	601	13	51	139	18.0	\$	ব
R2 94-R 5		22		4.2	5833	5	242	15	59	119	5.5	0	0
R2 94-R 6		54		0.8	1381	4	82	2	9	18	<1.0	0	×
RZ 94_R /		1010		41.2	>20000	12	212	5	11	28	18.1	1/	0
R2 94-R 8		204		8.4	11021	/	239	3	14	16	7.5	0	0
R2 94_R 9		13		3.0	10512	10	172	3	19	36	4.9	4	6
R2 94-R 10		20		4.2	3263	2	121	12	9	15	1.2	ব	4
R2 94-R 11		15		3.3	7792	5	287	7	32	52	2.7	4	10
R2 94_R 12		473		17.1	>20000	13	955	9	81	207	22.1	ব	4
R2 94-R 13		31		14.2	>20000	12	317	12	47	109	8.0	4	4
VI NICM I		\$		<0.2	43	6	51	4	12	13	⊲.0	4	10
V1 NICM 2		4		<0.2	34	11	62	3	11	14	⊲.0	4	22
VI NICH 3		6		<0.2	30	8	47	2	14	19	⊲.0	4	11
VI NICH 4		12		<0.2	27	8	59	2	12	14	$\triangleleft.0$	4	15
VI NEM 5		4		<0.2	22	12	45	2	10	13	⊲.0	\$	13
VI NICH 6		\$		<0.2	27	12	55	2	12	19	⊲.0	\$	11
VINICM 7		40		<0.2	18	16	39	1	6	10	⊴.0	0	6
VINIOM 8		<		⊲0.2	28	13	63	3	12	15	0.0	0	11
VI NICM 9		4		⊲0.2	31	14	79	2	11	14	⊴.0	4	17
VI NICH 10		6		<0.2	31	22	66	2	11	15	⊴.0	4	16
VI NICH 11		ব		<0.2	41	22	97	3	15	24	⊲.0	\$	43
V1 NICM 12		4		<0.2	49	19	111	2	18	28	⊲.0	4	48
VI NICH 13		4		0.2	57	13	80	3	12	37	⊴.0	\$	71
VI TOM-1		6		<0.2	34	8	49	2	10	14	⊴.0	\$	25
V1 TCM-2		1455		<0.2	39	8	53	2	13	19	⊲.0	4	19
VI TOM-3		\$		<0.2	26	8	55	2	12	21	⊲.0	ব	17
VI 1014		29		⊲0.2	28	6	46	1	8	13	⊴.0	4	10
VI 1014-5		19		<0.2	35	9	56	2	12	19	⊴.0	4	19
V1 TC1-6		1039		<0.2	35	12	61	2	12	25	⊴.0	4	16
V1 TCM-7		87		<0.2	33	10	52	2	10	40	۵.۵	ক	\$
V1 TCY-8		85		<0.2	33	11	50	1	9	22	⊲.0	ব	5
V1 TCM-9		144		<0.2	33	9	52	5	10	32	⊴.0	ও	7
VI TIM-10		24		<0.2	33	13	58	2	10	29	⊲.0	<u>୍</u>	7
V1 104-11		4		<0.2	37	14	55	2	12	26	⊲.0	ও	7
VI TO1-12		ব		<0.2	29	7	53	2	12	18	⊲.0	4	7

VI TO1-8

VI ION-9

V1 T04-10

VI JOM-11

V1 TOM-12

ব

\$

\$

3

4

0.242

0.250

0.270

0.378

0.142

1.05

1.46

1.64

2.42

2.14

1905

2048

2886

1710

1052

 $\triangleleft 0$

 $\triangleleft 0$

 $\triangleleft 0$

 $\triangleleft 0$

<10

37

35

27

22

24

10

15

17

28

26

27

39

42

76

66

< 0

 \mathbf{Q}

< 0

<0

 \mathbf{Q}

Q0

Q0

Q0

<20

20

7

8

9

11

10

1.21

1.58

1.52

1.62

1.60

CLIENT: BEAU FRE EXPLORATIONS LID. PROJECT: NONE GIVEN REFORT: V94-01366.0 (COMPLETE) 2B DATE PRIMIED: 15-DEC-94 PAGE SAMPLE Al HEMNY Sb Нq Fe Mh Te Ba α V Sn W Ia NUMBER UNITS $\mathbf{P}\mathbf{P}\mathbf{M}$ PPM RT PPM ΡM PH PPM PPM PHM PPM PFM RT R2 5-3 6 0.014 5.78 994 **1**0 20 $\mathbf{Q}0$ 2.54 9 51 4031 R2 6-1 4 <0.010 177 7 **Q**() 0.83 $\triangleleft 0$ 190 12 \mathbf{Q} 2 0.44 R2 94-R 1 ৎ 0.068 0.56 59 $\triangleleft 0$ 2 213 $\bigcirc 0$ $\mathbf{Q}0$ 2 0.07 4 4 38 20 R2 94-R 2 0.258 1.26 <10 2 193 20 3 0.09 8 4 5 < 0R2 94-R 3 0.788 5.42 319 $\triangleleft 0$ 86 \bigcirc 21 1.83 161 \$ 185 2 20 20 R2 94-R 4 1.615 5.81 <10 79 19 1.04 116 < 79 R2 94-R 5 0.450 3.90 <10 2 239 20 20 11 0.30 18 4 20 R2 94-R 6 0.075 2.48 278 < 1020 40 81 -20 9 1.08 R2 94-R 7 4 2.813 7.41 161 7 <020 25 0.68 18 55 53 R2 94-R 8 ବ 0.783 123 <20 3.11 $\triangleleft 0$ 18 127 57 $\langle 0 \rangle$ 8 0.60 R2 94-R 9 4 198 20 20 2.27 0.978 1.92 $\triangleleft 0$ 43 7 4 92 ব্য 72 R2 94-R 10 0.277 1.98 $\triangleleft 0$ 2 216 19 \mathbf{Q} $\triangleleft 0$ 5 0.33 \$ R2 94-R 11 0.454 5.48 455 $\triangleleft 0$ 2 147 <0 20 21 2.19 69 4 7.30 2 R2 94-R 12 3.420 101 17 92 37 $<\!\!20$ QÛ 27 0.62 <5 R2 94-R 13 1.033 5.88 135 ⊲0 2 98 <20 **Q**0 20 0.57 34 VI NICH 1 ব্য 0.123 2.94 604 $\triangleleft 0$ 22 42 $\mathbf{Q}0$ <20 1041.47 11 VI NICM 2 9 831 **Q**0 0.175 1.63 $\triangleleft 0$ 33 26 Q02.20 53 10 4 1028 VI NICH 3 0.125 3.06 $\triangleleft 0$ 16 36 83 <20 20 11 1.53 VI NICH 4 <5 0.138 2.39 730 $\triangleleft 0$ 25 33 -20 **Q**0 2.10 81 11 4 VI NICH 5 0.193 2.17 846 ٩٥ 24 28 $\langle 20 \rangle$ **Q**0 1.66 74 9 4 0.205 2.86 1237 26 37 $\mathbf{Q}0$ VI NICH 6 ٥Þ 98 -20 12 2.07 VI NICH 7 \$ 25 0.496 1.14 1064 ⊲0 15 35 $<\!\!20$ $\mathbf{Q}0$ 5 0.94 VI NICH 8 5 0.133 2.68 835 ≤ 0 29 35 89 $<\!\!0$ $\mathbf{Q}0$ 13 2.30 3 0.258 ⊲0 20 VI NTOM 9 1.91 1348 26 $<\!\!0$ 2.35 34 61 11 4 34 V1 NICH 10 0.342 1.63 1591 $\triangleleft 0$ 24 52 $<\!\!20$ ~ 0 12 2.52 ব্য 36 25 VI NICH 11 0.278 1.22 2131 $\triangleleft 0$ -20 204.26 34 13 V1 NICM 12 \$ 0.282 0.96 1873 ⊲0 40-20 20 28 27 15 4.66 \$ VI NICH 13 0.261 0.88 1436 ٥Þ 32 22 26 $<\!\!0$ 20 17 6.86 V1 TCM-1 ح 0.222 1.42 1169 31 20 $\triangleleft 0$ 21 39 20 8 1.85 VI TOM-2 4 0.131 2.35 29 20 2811 $\triangleleft 0$ 31 70 ~ 0 11 1.62 VI ION-3 ব 0.158 2.34 1046 27 20 $\triangleleft 0$ 32 84 \mathbf{Q} 12 2.11 V1 101 4 \$ 0.183 1.23 932 $\triangleleft 0$ 21 17 34 20<20 7 1.23 V1 104-5 \$ 0.206 2.00 25 29 1.63 1305 $\triangleleft 0$ 62 20 \mathbf{Q} 10 VI 1004-6 \$ 0.175 1.91 1623 $\triangleleft 0$ 28 27 < 0< 056 10 1.86 V1 TOM-7 < 0.238 1.79 2188 17 **Q**0 $\triangleleft 0$ 31 56 <0 9 1.50

Page 886

.

CLIENT: BEAU PRE EXPLORATIONS LID. REFORT: V94-01366.0 (COMPLETE)

SAMPLE NUMBER	<u>element</u> UNTIS	Mg PCT	Ca PCT	Na FCT	K FCT	Sr PFM	y PRM
R2 5-3 R2 6-1 R2 94-R 1 R2 94-R 2 R2 94-R 3		1.98 0.25 0.02 0.02 1.42	1.28 0.01 0.02 0.03 0.33	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.04 <0.01 <0.01 0.02	70 ♥ ♥ ₽ 2 3	20 0 0 0 0 3
R2 94-R 4 R2 94-R 5 R2 94-R 6 R2 94-R 7 R2 94-R 8		0.94 0.16 0.86 0.25 0.49	0.46 0.20 1.49 0.56 0.27	0.01 <0.01 0.06 0.02 0.03	0.03 <0.01 0.04 0.01 0.02	4 1 17 13 7	3 Q 6 2 Q 6 2 0
R2 94-R 9 R2 94-R 10 R2 94-R 11 R2 94-R 12 R2 94-R 13		0.16 0.12 2.05 0.59 0.42	3.67 0.18 0.89 0.40 0.60	0.01 < 0.01 < 0.01 0.01 0.02 0.01	0.01 <0.01 0.05 0.07 0.03	6 3 11 9 3	3 1 5 3 1
VI NICM 1 VI NICM 2 VI NICM 3 VI NICM 4 VI NICM 5		0.35 0.21 0.64 0.28 0.25	0.57 1.19 0.45 0.71 0.55	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	0.03 0.04 0.07 0.05 0.08	24 43 20 28 23	3 6 3 5 4
VI NICM 6 VI NICM 7 VI NICM 8 VI NICM 9 VI NICM 10		0.21 0.13 0.26 0.20 0.15	0.53 0.88 0.70 0.97 0.91	0.01 0.01 0.02 0.02	0.06 0.12 0.04 0.08 0.13	23 31 27 34 33	6 3 6 7 8
VI MICM 11 VI MICM 12 VI MICM 13 VI TCM-1 VI TCM-2		0.13 0.11 0.05 0.33 0.69	0.85 1.14 0.66 1.43 0.87	0.01 0.01 0.02 0.02	0.07 0.11 0.12 0.09 0.10	35 42 29 48 32	11 13 15 4 3
VI TOM-3 VI TOM-4 VI TOM-5 VI TOM-6 VI TOM-7		0.24 0.29 0.50 0.43 0.33	0.62 0.80 0.78 0.72 0.67	0.02 0.02 0.02 0.02 0.02 0.02	0.07 0.18 0.13 0.10 0.16	31 31 35 32 33	5 3 3 4 3
VI TOM-8 VI TOM-9 VI TOM-10 VI TOM-11 VI TOM-12		0.26 0.33 0.43 0.59 0.62	0.80 0.73 0.69 0.55 0.62	0.02 0.03 0.04 0.02 0.02	0.12 0.16 0.32 0.13 0.08	37 34 29 25 26	4 4 3 3 3

FROJECT: NINE GIVEN DATE PRINTED: 15-DEC-94 PAGE 2C

CLIENT: BEAU FRE EXPLORATIONS LED. REPORT: V34-01366.0 (COMPLETE)									FROJECT: NONE GIVEN DATE FRIMTED: 15-DEC-94 FRGE 3A						
SAMPLE NIMBER	ELEMENT UNITS	Aul0 PPB	AuRevi PPB	Ag PRM	Cu PPM	Pb FRM	Zn PBM	Mo PPM	Ni PFM	Co PFM	Cd PRM	Bi PAM	As PPM		
V1 TCM-13		12		<0.2	32	10	53	1	10	23	⊲.0	4	7		
V1 TCM-14		9		<0.2	35	13	46	2	8	23	⊲.0	5	6		
V1 94-1		148		< 0.2	38	7	52	1	6	12	⊴.0	4	10		
V1 94-2		398		0.2	66	6	66	1	15	19	1. 0	5	22		
V1 94_3		79		<0.2	55	6	96	\triangleleft	15	16	⊲.0	· <	45		

.

•

.....

CLIENT: BEAU PRE EXPLORATIONS LID. REPORT: V94-01366.0 (COMPLETE)									PROJECT: NONE GIVEN DATE PRINTED: 15-DEC-94 PAGE 3B						
SAMPLE NUMBER	FIEMENT UNITS	Sb PPM	Hg PRM	Fe RT	Mn PFM	Te PPM	Ba PRM	Cr PPM	V PFM	Sn PPM	W PRM	la PPM	Al PCT		
V1 TOM-13		ও	0.264	1.93	1713	⊲0	29	21	56	<20	∕20	10	1.69		
V1 TCM-14		4	0.453	1.83	1728	$\triangleleft 0$	28	16	45	∕20	$\triangleleft 0$	10	1.67		
V1 94-1		4	0.151	2.23	1311	$\triangleleft 0$	46	7	49	$<\!\!20$	<20	12	1.52		
V1 94_2		ব	0.187	3.21	887	⊲0	26	35	84	<20	<20	15	2.21		
V1 94_3		\$	0.147	2.43	1377	$\triangleleft 0$	37	28	65	<20	$\triangleleft 0$	· 12	2.08		

CLIENT: BEAU PRE EXPLORATIONS LED. REFORT: V94-01366.0 (COMPLETE)

PRUJECT: NONE GIVEN DATE PRINTED: 15-DEC-94 PAGE 3C

SAMPLE	<u>ELEMENT</u>	Mg	Ca	Na	K	Sr	y
NUMBER	UNITS	RT	RT	PCT	FCT	PPM	PPM
V1 TCM-13 V1 TCM-14 V1 94-1 V1 94-2 V1 94-3		0.39 0.27 0.67 0.88 0.87	0.72 0.66 0.43 0.96 1.39	0.02 0.02 0.02 0.02 0.02 0.02	0.15 0.13 0.15 0.08 0.20	30 25 27 35 42	4 4 5 5 4