BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1994/95REPORT #:PAP 94-47NAME:LINDA DANDY

MCLEOD RIVER NORTH PROSPECTING PROGRAM

,

FINAL SUBMITTAL

CONTENTS

Covering Letter	1
Contents	2
Form - A. Summary of Prospecting Activity	3
Form - A. Daily Reports	4
Form - B. Technical Report	5
Description of Figures	6
Figure 1 - Location Map	7
Figure 2 - Claim Map	8
Figure 3 - 1989 Grid Location Map	9
Figure 4 - Sample Location Map, North Grid	10
Figure 5 - Sample Location Map, South Grid	11
Figure 6 - Beaverhouse Lake Sample Location Map	12
Figure 7 - Marl Sample Location Map	13
Table - Marl Sample Descriptions	14
Table - Rock Sample Locations and Descriptions	15
Project Summary (to back up Technical Report)	20
Analysis Certificate - Marl Samples	23
Analysis Certificates - Rock Samples	24
Analysis Certificates - Soil Samples	29

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM **PROSPECTING REPORT FORM (continued)**

B. TECHNICAL REPORT

- One technical report to be completed for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17 If work was performed on claims a copy of the applicable assessment report may be PROSEECTORS PROGRAM submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

DANDY INDA Name

Reference Number <u>94-95</u> P145

LOCATION/COMMODITIES

Project Area (as listed in Part A.) MACLEOP RIVER NORTH Minfile No. if applicable
Location of Project Area NTS 0935/14W Lat 54°57 Long 123° 12
Description of Location and Access The property is located appear 20 km south of
Mackenzie, B.C. and access is currently via helicopter. New logging roads
come within 2 km of the newly acquired claims, and bisect the best of
mineralized rocks, however, these roads do not yet have bridges so are unpassable.
Main Commodities Searched For MARL, PT + PD

Medas previousl Known Mineral Occurrences in Project Area____ none P+ gave occurrences previously nowever essment $\alpha \propto$ Ó O١ anc 1V) varres ∞

WORK PERFORMED		approx	
1. Conventional Prospecting (area)	letailed prospecti	ng -area "4 km x 7 km	
2. Geological Mapping (hectares/scale) done while prosp	recting-scale 1:10,000	
3. Geochemical (type and no. of sampl	es) <u># rock = #19.50</u>	soil=#63 marl=12	
4. Geophysical (type and line km)	· · · · · · · · · · · · · · · · · · ·	N/A	
5. Physical Work (type and amount)	HAND PITS + TR	ENCHES/15 PITS # 3 TREN	<u>_H£</u>
6. Drilling (no. holes, size, depth in m,	total m)	N/A	
7. Other (specify)		N/A	
SIGNIFICANT RESULTS (if any)			
Commodities	Claim Name_		
Location (show on map) Lat	Long	Elevation	
Best assay/sample type			
Description of minorplication bost rock	c anomalias		. <u> </u>
Description of mineralization, nost rock	s, anomanes		
	· ·, · · · · ·		
· · · · · · · · · · · · · · · · · · ·			
Commentation and the second second			

Supporting data must be submitted with this TECHNICAL REPORT.

MEMPR

JAN 3 0 1995

3

<u>FIGURE 1</u> - Location Map - shows project location in central B.C. between Prince George and Mackenzie.

<u>FIGURE 2</u> - Claim Map - shows the eight 2-post claims staked during the course of the project. This map delineates roughly the prospecting area covered in this program, from McLeod River in the south to Des Creek in the north. The unfinished new logging access road is also drawn on this map. Samples numbered MAC RD were collected from road cuts and samples numbered RD DES were collected where the road crosses Des Creek.

<u>FIGURE 3</u> - 1989 Grid Location Map - the grid old grid lines could be located in most places and were used as a basis for soil sampling and prospecting, where prior Pt and Pd soil anomalies were located.

FIGURES 4 and 5 - Sample Location Map, North and South Grids - the X's mark soil sample sites along the 1989 grid lines. Where sampled these stations were reflagged. Rock samples were also collected wherever possible from previously anomalous soil sample locations. The rock sample sites can be identified by looking on the Rock Sample Table, where location is recorded by grid coordinates. Where rock samples were collected from soil holes, soil samples were also taken. For soil and rock sample analyses see the attached Min En Labs Anaylses Certificates.

<u>FIGURE 6</u> - Beaverhouse Lake Sample Location Map - shows sample locations around the border of Beaverhouse Lake, which appears to be the focal point for both marl and Pt/Pd mineralization. The samples collected include both rock and soil, and also recorded are locations where marl was located by probe, but was too wet to allow for sampling.

FIGURE 7 - Marl Sample Location Map - is a blow up of the marshy region immediately south of Beaverhouse Lake. The fly camp was located at the edge of this marsh. Marl sample sites are located, and of available CaO and neutralizing potential can be found in the Min En Labs Analyses Certificates. Only 12 samples were sent for analysis as the procedure is very expensive and the samples appeared to be fairly uniform. Site marked on the map by an X, indicated marl was located at a depth of less than 3 metres, and sites marked by an 0 indicate that marl was not located at less than 3 metres. Moving from the edge of the marsh toward the centre, the peat/humus overlying the marl bed becomes thicker, but it can be assumed that the marl unit underlays the entire marshy area. As well, the marl unit appears to thicken as it gets farther away from the marsh margins. We were unable to dig or probe to depths greater than 3 metres without the aid of machinery. At this time I feel the marl potential in this area is not economical. but is geologically very interesting.

H

MARL SAMPLE DESCRIPTIONS

JAN 3 0 1995

PROSPECTORS PROGRAM

M 1 - marl located from 20 to 30 cm depth, very light grey, fine mud with occasional shells and 10% roots.

M 2 - marl located from 25 to 40 cm depth, light grey-brown, 20% shells (bivalves) and 10% roots. This sample is not as light coloured or as fine grained as the previous one.

M 3 - marl located from 25 to 40 cm depth, light grey with minor grey-brown patches, <10% shells (bivalves) and 15% roots (up to 25% in browner areas). Marl is very white on surface, but darker where not oxidized (?).

M 4 - marl located from 15 to 25 cm depth, very light grey or light grey-brown where rooty, <10% shells and <10% roots. Blue clay underlies at 30 cm depth.

M 5 - marl located from 10 to 20 cm depth, then blue clay below. Marl is light grey with minor light brown patches, 5% roots and 10% ^{*} shells (large - up to 2 cm - snails make up 80% of shells, while tiny bivalves make up the remaining 20%).

M 6 - marl located from 15 to 25 cm depth, light grey with minor light brown patches, 5% tiny shells (bivalves predominantly) and 15% roots. Blue clay comes to surface about 30 cm away from sample, site.

M 7 - marl located from 20 to 35 cm depth, light grey with browner patches in rooty areas, 10% roots, 5% shells (bivalves predominantly).

M 8 - marl located from 30 to 40 cm depth and is overlain by black humus. Marl is light grey with 5-10% roots and 5% shells (bivalves predominantly).

M 9 - marl located from 50 to 60 cm, light grey, with 40 cm of black humus on top.

M 10 - marl located from 65 to 75 cm overlain by 60 cm of black humus. Sample is light grey with 10% shells (both bivalves and snails). Marl is immediately overlain by 5 cm of brown soily, shelly material containing a higher percentage of shells than the marl layer.

M 12 - marl located from 110 to 150 cm depth, light grey with beige patches, 10% roots and 5% shells (white and yellow bivalves and snails). Marl horizon is overlain by 1 metre of black humus and brown peat and is underlain by blue clay.

M 14 - marl located from 100 to 140 cm depth, similar in appearance to sample M 12, with peat/humus overlying and blue clay below.

ROCK SAMPLE LOCATIONS AND DESCRIPTIONS

SAMPI NAME	.E ;	LOCATION	DESCRIPTION	SIGNIFICANT RESULTS
ROCK	1	L47+50NW 29+50NE	rusty angular rock frags from soil hole, green-red peridotite with sericite on surfaces	
ROCK	2	L47+00NW 29+00NE	from soil hole, black fine grained volcanic or sediment brecciated with rusty stockwork	
ROCK	3	L47+00NW 29+40NE	from outcrop under tree root 10 m from high soil anomaly med green, fine grained, gran andesite with fine pyrite and rusty fractures and surfaces	ular
ROCK	4	L47+00NW 29+50NE	angular fragments from soil here rusty brecciated chert(?)	ole
ROCK	5	Outcrop at north end of Beaverhouse Lake	strongly magnetic, dark green coarse grained gabbro to hornblendite with large alter mica flakes, up to 2% fine silvery sulphides	ed
ROCK	6	Outcrop at north end of Beaverhouse Lake	fine grained black to bleached tan cherty argillite (hornfels?) next to ultramafic rusty surfaces, minor rhodoni	8ppb Pt c, te
ROCK	7	Along ck, 300 m below Beaverhouse Lake	It grey-green, altered volcanic tuff, rusty weatherin bluish spots, py, minor cpy and malachite as blebs and stringers	7ppb Pd g 8ppb Pt 1348ppm As 498ppm Cu
ROCK	8	Same as ROCK 7	<pre>black and white, medium grain diorite to gabbro dyke(?), moderately magnetic, 2% silve py or aspy</pre>	ed ry
ROCK	9	Same as ROCK 7	black to beige cherty argilli (hornfels?) rusty with fine grained silvery sulphides	te Keçeive
				JAN 30 1995

15

PROSPECTORS PROGRAM MEMPR

SAMPLE NAME	LOCATION	DESCRIPTION	SIGNIFICANT RESULTS
ROCK 10	Same as ROCK 7	dark grey-green, fine grained andesite tuff with feldspar crystals and lithic fragments and black biotite and magnetic rusty surfaces and minor pyrit	ce, ce
ROCK 11	L39+00NW 28+50NE	from soil hole, angular rusty ultramafic	
ROCK 12	L39+00NW 28+75NE	from soil hole, rusty and dark angular rock fragments	
ROCK 13	L39+00NW 29+00NE	from soil hole, subangular green rock fragments	
ROCK 14	L39+00NW 29+25NE	from soil hole, angular to subangular dark rock fragments	-
ROCK 15	L39+50NW 29+50 to 29+75NE	from soil holes, subrounded white to pink quartz	468ppm As
ROCK 16	L39+50NW 29+50NE	from outcrop, fine grained rusty volcanic or sediment	8ppb Pt
ROCK 17	L40+00NW 27+50NE	from soil hole, angular argillite chips	
ROCK 18	L40+00NW 28+25NE	from soil hole, angular dark rock fragments	
ROCK 19	L40+00NW 29+00NE	from outcrop, rusty orange, fine grained siliceous volcanic	
ROCK 20A	L40+00NW 29+50NE	from soil hole, abundant rusty angular argillite	
ROCK 20B	L40+00NW 29+50NE	from soil hole, abundant rusty angular ultramafic	
ROCK 21	L40+00NW 29+75NE	from soil hole, angular rock fragments	
ROCK 22	L40+00NW 30+00NE	from soil hole, near outcrop angular dark argillite and light fine grained volcanic or sediment	SECEN

•

.

16

SAMPLE NAME	}	LOCATION	DESCRIPTION	SIGNIFICANT RESULTS
ROCK 2	3	L40+00NW 30+25NE	dark argillite fragments in soil hole, lighter fragments from outcrop under tree	
ROCK 2	4	From south end of Beaverhouse Lake	float sample, rusty ultramafic with pyrite	4.4ppm Ag 373ppm Cu
ROCK 2	5	L48+00NW 30+00NE	from soil hole, subangular rusty ultramafic fragments	
ROCK 2	6	L48+00NW 30+00NE	from soil hole, subangular rusty siliceous green andesite with pyrite	
ROCK 2	7	L48+00NW 30+50NE	from soil hole, angular ultramafic fragments	864ppm As
ROCK 2	8	L48+00NW 30+50NE	from soil hole, angular rusty siliceous green andesite(?) with pyrite	
ROCK 2	9	49+48NW 32+25NE	from outcrop, rusty, medium grained ultramafic	
ROCK 3	0	L49+50NW 32+25NE	from soil hole, angular rusty ultramafic fragments	
ROCK 3	1	L49+50NW 32+25NE	from soil hole, angular rusty argillite fragments	
ROCK 3	2	L49+50N₩ 32+50NE	from soil hole, subrounded rock fragments	
ROCK 3	3	L49+50NW 32+75NE	from soil hole, angular near outcrop ultramafic fragments	
ROCK 3	4	L49+50NW 32+80NE	from outcrop, dk green, medium grained ultramafic	3027ppm Sr
ROCK 3	5	49+55NW 32+25NE	from soil hole, near outcrop angular ultramafic and argillite fragments	
ROCK 3	6	49+60NW 33+00NE	from outcrop, fine grained, dark green ultramafic or sediment	4.3ppm Ag
				CEIVED
				JAN 3 0 1995

.

.

PROSPECTORS PROGRAM MEMPR

18

.

SAMPLE NAME	LOCATION	DESCRIPTION	SIGNIFICANT RESULTS
ROCK 37	L50+00NW 32+25NE	from soil hole, dark green angular rock fragments	
BC1	From marl area south end of	blue clay below marl horizon	<u>R</u> <u>e</u> <u></u> <u></u>
	Beaverhouse Lake		JAN 30 1995
BC2	Same as BC1	blue clay beside marl horizon	PROSPECTORS PROGRAM MEMPR
RD DES 1	Des Ck near new logging access road	rusty, pyritic quartz vein	
RD DES 2	Same as RD DES 1	rusty ultramafic	427ppm As 346ppm Cu 7ppb Pd
RD DES 3	Same as RD DES 1	bleached grey fragmental rock with pyrite	
RD DES 4	Same as RD DES 1	siliceous rock with cpy with 2cm orange weathered rind	878ppm As
RD DES 5	Same as RD DES 1	dark, foliated sediments(?) with black and green indistinguishable minerals	511ppm As
MAC RD 1	On logging road, 1.9km west of Des Creek	dark green, medium grained ultramafic with pyrite and minor chalcopyrite	7ppb Pd 8ppb Pt 348ppm Cu
MAC RD 2	On logging road, 2.6km west of Des Creek	rusty, black, fine grained argillite with calcite stockwork	
MAC RD 3	On logging road, 1.5km west of Des Creek	rusty, medium grained, green ultramafic with bleached patches and minor pyrite	8ppb Pd 8ppb Pt 408ppm Cu
MAC RD 4	On logging road, 1.4km west of Des Creek	rusty, medium to coarse grained dark green ultramafic with sulphides (pyrite and cpy)	16ppb Pd 465ppm As 429ppm Cu

*

SAMPLE NAME	LOCATION	DESCRIPTION	SIGNIFICANT RESULTS
MAC RD 5	On logging road, 1.2km west of Des Creek	quartz carbonate stockwork in rusty bleached rock (ultramafic?)	977ppm As

,

.

.

JAN 3 0 1995 PROSPECTORS PROGRAM

MCLEOD RIVER NORTH PROJECT

SUMMARY

The McLeod River North (Figure 1) marl and Pt/Pd (ultramafics) prospecting and sample program was conducted in September and October 1994. A helicopter access base camp was used for the first phase of the program, with traverses along new logging access roads to the south being done after leaving the fly camp. Figure 2 shows Beaverhouse Lake where the fly camp was located and the new logging access roads to the south. This figure roughly delineates the prospecting program area, and new clams staked during the course of the program.

MARL PROSPECTING PROGRAM

The base camp was located on the edge of a marshy lake (Beaverhouse Lake) which exhibited marl horizons along its southern The marl was tested by manually digging numerous pits margin. (which were later backfilled), and by probing into the marshy ground with a 3 metre long rod. Where sampled the marl was light grey to white fine mud with up to 20% tiny bivalve and snail shells and 20% rooty material. The marl layer tended to be generally about 15 to 20 cm thick, overlain by black humus and brown peat, and often underlain by blue clay. Sampling was limited to areas where marl was located under less than 3 metres of humus, peat or I feel that although the marl zone likely is quite water. extensive, it would not be economical due to its limited thickness. The marl appeared fairly uniform in samples, therefore only 12 samples were analyzed. Figure 6 outlines the marl area and Figure 7 gives sample locations, and the attached Marl Description Table describes each sample in some detail. Analyses of CaO content and neutralizing potential can be found on the Min En Labs Analyses Certificate.

Marl was also located using a probe on the northeast and eastern shore of Beaverhouse Lake (see Figure 6), however the ground was too wet to allow sampling. Two other marshy areas, one about 200 metres south of Beaverhouse Lake and the other about one kilometre northwest of Beaverhouse Lake were tested for marl, but none was located.

PT AND PD PROSPECTING PROGRAM

A 1989 grid located northwest and southeast of Beaverhouse Lake was established by Ezekiel Explorations who held claims over the region at that time (see Figure 3). Soil samples collected from the grid in 1989 returned values of over 900 ppb platinum and 200 ppb palladium. During the course of this program, resampling of the sites with the most anomalous platinum and palladium values (see Figures 4 and 5) returned only one analyses above the JAN 3 0 1995 detection limit (8 ppb). I have recently consulted with a geochemist who advised that different labs use different platinum PROGRAM and palladium extraction methods and suggested I send some of PROGRAM rejects to Chemex Labs in Vancouver (where the original 1989 samples were analyzed).

While soil sampling, rock chips were collected from soil holes and sent to the lab for analyses, with the highest returned values being 8 ppb platinum and 16 ppb palladium (see the Rock Description and Location Table for more detailed information). Again, reanalyses should be done on the rejects at Chemex Labs. Soil collected was generally good "B" horizon samples, with many angular rock fragments located in most holes indicating a near bedrock source. Hand trenching was done to expose bedrock for sampling over the highest previous platinum and palladium samples. Hand trenches were back filled after samples were collected.

Rock and soil samples were also collected from an outcrop located along the north shore of Beaverhouse Lake (Figure 6). This outcrop is very crumbly, and consists of coarse grained ultramafic adjacent to a finely bedded siltstone or argillite (hornfels?). Both rock types contain minor pyrite, occasional chalcopyrite and are very rusty.

Other rock samples were collected from outcrops along the drainage running out of Beaverhouse Lake. These two locations appear to be the only exposed outcrop (except for the new logging road cuts) located in the prospecting area, however, soil sampling and hand trenching indicate depth to bedrock is shallow.

Two samples of the blue clay which underlies the marl were analyzed as rock samples, I believe the clay to be fault material somehow related to the ultramafic body. Nothing of significance was found in these samples.

Numerous rock samples were collected during the second part of the program along the new logging access road (this road was not yet driveable), from Des Creek for about 4 kilometres. Large outcrops where the road crosses Des Creek exhibited many rock types and several stages of veining (five samples RD DES 1 to 5 were collected here). Sulphide mineralization (pyrite and minor chalcopyrite) were present in minor amounts throughout. The road cut (from 1.2 to 3.5 kms west of Des Creek) showed rare outcrops consisting of broken argillite zones, as well as many areas which appear to be rusty soil, but upon further examination were found to be altered ultramafic bedrock. The highest platinum and palladium values (8 and 16 ppb respectively) from this program were obtained from these samples.

Eight two post claims were staked during the course of the prospecting program. These claims contain most of the 1989 grid, and were staked in anticipation of high platinum and palladium values from my sampling program (Figures 2 and 3). If the reanalyses from Chemex Labs Ltd. does not return any significant Pt/Pd values, these claims will likely not have work recorded on them and will be allowed to lapse.

My original prospecting proposal indicated that a magnetometer survey was to be run along the trend of the ultramafic body. However, the ease of locating rock chips from soil holes made this method of prospecting seem more efficient at this stage, so the magnetometer was not used.

SPECIALISTS IN MINERAL ENVIRONMENTS OFEMISTS + ASSAYERS + ANALYSTS + GUTH UNDU

Geochemical Analysis Certificate

Company:P & L GEOLOGICAL SERVICESProject:MACAttn:Linda Dandy

Date: OCT-06-94 copy 1. P & L Geological Services Telkwa 2. Fax To P & L Geological Services

We hereby certify the following Geochemical Analysis of 12 Marl / Lime samples submitted SEP-29-94 by Linda Dandy.

Sample Number	Availabl CaO %	* NP		
M 1	<.5	746.10		
M 2	<.5	532.70		
M 3	<.5	736.08		
M 4	<.5	713.68		*
M 5	<.5	634.69		
M 6	<.5	769.68		
M 7	<.5	772.63		
M 8	<.5	767.91		
М 9	<.5	741.39		
M 10	<.5	754.94		·.
M 12	<.5	750.82	******************	
M 14	<.5	783.24		

* NP - Neutralization Potential In Kg CaCo3 Equivalent Per Tonne

Certified by _____

MIN-EN LABORATORIES

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0293-RG1

ŝ,

1.00

SPECIALISTS IN MINERAL ENVIRONMENT CHEMISTS + ASSAYERS + ANALYSTS + GLOUP

Maria (Maria) - Maria Maria Maria (Maria) General Maria (Maria) - Maria (M

Geochemical Analysis Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .: SING TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

A star 174 property

4S-0291-RG1

P & L GEOLOGICAL SERVICES Company: Project: MAC Attn: Linda Dandy

Date: OCT-13-94 copy 1. P & L Geological Services, Telkwa, B.C.

We hereby certify the following Geochemical Analysis of 24 rock samples submitted SEP-29-94 by Linda Dandy.

Sample Number	Pd DPR	Pt	
	Frb	rrb	· · · · · · · · · · · · · · · · · · ·
ROCK 1	<5	<5	
ROCK 2	<	<5	
ROCK 3	<5	<5	
ROCK 4	<	<5	•
ROCK 5	<5	<5	
ROCK 6	6	8	······································
ROCK 7	7	8	
ROCK 8	<5	<5	
ROCK 9	ا ح	<5	
ROCK 10	<5	<5	×
ROCK 11	<5	<5	······································
ROCK 12	<5	<5	
ROCK 13	<5	<5	
ROCK 14	<5	<5	
ROCK 15	<5	5	
ROCK 16	<	8	
ROCK 17	<5	5	
ROCK 18	<5	<5	
ROCK 19	<5	<5	
ROCK 20 A	<5	5	
ROCK 20 B	<5	6	······
ROCK 21	<5	<5	
ROCK 22	<5	5	
ROCK 23	<5	5	

/// Certified by

MIN-EN LABORATORIES

ERAL IRONMENTS ABORATORIES (DIVISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL, ENVRYMENT CHEMISTS + ASSAYLISS + A STREET A CONTRACT AND A STREET ASSAYLISS + A STREET ASSAYLIS + A STREET ASSAYLISS + A STREET ASSAYLISS + A STREET ASSA

Geochemical Analysis Certificate

P & L GEOLOGICAL SERVICES Company:

Project: MAC Attn: Linda Dandy

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0291-RG2

Date: OCT-13-94 copy 1. P & L Geological Services, Telkwa, B.C.

We hereby certify the following Geochemical Analysis of 3 rock samples submitted SEP-29-94 by Linda Dandy.

Sample	Pd	Pt	
Number	PPB	PPB	
ROCK 24	<	6	
BC 1	<5	< <u>5</u>	
BC 2	<5	<5	
			•

RECEIVED	
JAN 3 0 1995	
PROSPECTORS PROGRAM MEMPR	

Certified by

MIN-EN LABORATORIES

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL-(604)980-5814 FAX:(604)980-9621

ł

् हैं। स्थित

FILE NO: 45-0291-RJ1+2 DATE: 94/10/13

•

* rock * (ACT:F31)

.

ATTN: Linda Dandy

PROJ: MAC

COMP: P & L GEOLOGICAL SERVICES

AFIN: LINDA Dandy										11	EL:(0	04,770	0-201	4 (AA+1)	J04 / 70	0 702	,		_										
SAMPLE	AG PPM	AL 2	AS	B	BA	8E PPM	BI	CA %	CD PPM	CO PPM	CU PPM	FE %	K %	LI MG PPM %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM P	SR TH PM PPN	1 TI 1 %	V PPM	ZN PPM	GA PPM I	SN PPm i	W CR PPM PPM	Au-Fire PPB
ROCK 1 ROCK 2 ROCK 3 ROCK 4 ROCK 5	1.0 .1 2.3 .2 3.4	1.03 .15 1.76 .66	1	1 1 1 1	83 95 676 272 137	.7 .2 1.4 .7	14 2 26 6 31	.80 .10 1.59 .24 1.71	.1 .1 .1 .1 .1	7 1 17 4 19	53 39 132 19 184	3.09 .79 6.17 1.70 5.39	.29 .09 .25 .27 .19	16 2.90 2 .04 24 2.74 9 .80 7 1.88	512 117 923 447 408	4 2 3 5 2	.06 .01 .02 .03 .17	43 12 37 22 56	980 380 1620 590 1290	20 6 36 27 18	17 3 33 15 15 1	78 1 13 89 61 3 73	. 18 01 . 31 5 . 04 . 39	73.7 26.8 246.4 52.9 276.0	60 47 67 43 43	1 1 7 1	1 1 1 1	15 237 11 209 11 61 16 270 14 137	27533
ROCK 6 ROCK 7 ROCK 8 ROCK 9 ROCK 9 ROCK 10	1.6 1.1 1.8 2.7 2.0	.34 .38 .66 .41	1 1348 1 234 1	1 1 1 1	107 118 150 125 177	2.0 .6 .8 .4	9 9 15 6 21	.52 3.38 1.38 2.30 1.27	.1 .1 .1 .1 .1	4 51 6 5 12	127 498 83 113 117	1.67 6.04 2.25 1.56 3.17	.08 .04 .11 .06 .14	4 .39 2 3.38 4 .40 4 1.21 6 .89	75 1316 316 36 1 286	8 1 2 6 2	.02 .01 .05 .01 .03	34 195 13 34 44	770 260 930 710 1450	16 23 16 19 17	5 82 124 82 81	37 2 59 2 26 3 37 64	09 01 18 06 27	59.8 300.3 47.0 43.8 105.6	25 77 27 39 38	5 1 10 3	1 1 1 1	12 215 20 315 7 81 10 150 7 77	3 1 2 5 3
ROCK 11 ROCK 12 ROCK 13 ROCK 14 ROCK 15	2.4 .1 2.0 2.1 .1	.77 1.53 91 1.04 .09	1 1 1 468	1 1 1 3	124 126 119 211 20	.5 1.0 .4 .8 .1	21 6 24 15 2	1.53 .23 1.12 1.62 .08	.1 .1 .1	14 8 13 9 1	134 46 41 63 8	2.95 2.88 3.97 3.10 .63	.10 .27 .20 .20 .02	12 1.14 22 1.60 9 1.58 8 .81 2 .19	249 1089 508 446 110	6 5 2 5 4	.07 .01 .09 .04 .01	78 29 39 47 9	1290 950 900 1090 140	22 42 23 27 9	12 2 32 15 19 2 2	01 59 92 99 12	1 .26 2 .01 1 .31 1 .17 1 .01	92.1 96.0 135.0 113.8 6.7	52 60 54 143 18	652 54	1 1 1	13 184 11 124 12 133 11 136 17 324	2 1 3 8 5
ROCK 16 ROCK 17 ROCK 18 ROCK 19 ROCK 20 A	2.1 .9 1.7 1.8 1.6	.66 .39 7 .73 8 .56 5 .59	1 1 1 1 1 1 1 1	1	209 178 289 45 382	.4 .6 7 .4 .7	14 3 14 10 10	.68 .12 .72 1.41 1.32	1 1 1 1	5 3 7 5 10	50 27 53 101 114	1.99 1.82 2.54 1.66 2.24	.41 .20 .26 .06 .08	19 .98 5 .08 8 .92 1 .15 8 .58	265 147 395 109 <u>647</u>	6 7 5 16 6	.04 .01 .07 .01 .02	20 26 35 38 113	900 730 1320 1140 1020	25 14 24 13 20	12 1 10 14 1 10 1 16 2	37 54 58 26 08	2 .18 2 .01 1 .15 1 .10 1 .09	105.9 60.8 86.5 85.4 64.0	55 53 51 45 114	5 1 6 1 5	1 1 1 1	13 18: 13 23 11 15: 16 27: 20 34:	$10 \\ 12 \\ 3 \\ 15 \\ 15 \\ 18 \\ 18 \\ 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $
ROCK 20 B ROCK 21 ROCK 22 ROCK 23 ROCK 24	2.7 .1 .2 .1	85 1.26 267 167			158 406 227 554 87	1.8 7 1.0 3	29 6 7 8 32	1.23 .18 .23 .74 1.59	.1 .1 .1 .1	12 4 6 16	22 16 19 50 373	3.94 2.63 1.70 2.27 4.38	.23 .68 .43 .24 .13	9 1.76 19 1.45 12 1.03 8 .64 3 1.80	562 905 350 1866 331	26443	.06 .01 .02 .01 .18	35 22 18 54 25	700 700 660 310	20 42 23 32 16	12 27 12 20 9	95 68 43 80 92	1 40 5 02 5 04 1 41	158.3 47.2 59.2 48.6 291.7	73 72 49 91 24	5 8 6 2 1	1	13 154 10 128 10 138 12 197 11 70	
BC 1 BC 2	1.0) .82) .73	2 1		190 142	.8 .7	9 10	1.27 1.56	.1	87	50 46	2.57 2.27	.20 .16	16 .91 12 1.07	360 440	4	.05	31	870	24	14 1	25	1.10	74.6	47	5	1	10 14	4 1õ
										PR]															
										OSPECT	JAN																		
									MEMPR	ORS PH	3 U 19		- - - 																
			-							IOGRAM	35																		
	-								L]															
														,)			_									

Geochemical Analysis Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-58 14 OFI (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0329-RG1

Company:P & L GEOLOGICAL SERVICESProject:MACAttn:PERRY GRUNENBERG

Date: NOV-14-94 Copy 1. P & L Geological Ser., Telkwa, B.C.

11 - 14 - 14 11 - 14 - 14

We hereby certify the following Geochemical Analysis of 23 rock samples submitted OCT-24-94 by P. grunenbert.

Sample Number	Pd ppr	Pt PPR	
ROCK 25	4	<5	
ROCK 26	<5	<5	
ROCK 27	<5	<5	
ROCK 28	<5	<5	4
ROCK 29	<	<5	
ROCK 30	<5	5	
ROCK 31	<5	<5	
ROCK 32	<5	<5	
ROCK 33	\triangleleft	<5	
ROCK 34	5	<5	· · · · · · · · · · · · · · · · · · ·
ROCK 35	<5	5	
ROCK 36	<5	<5	
ROCK 37	<5	<5	
MAC RD 1	7	8	
MAC RD 2	5	4	
MAC RD 3	8	8	
MAC RD 4	16	<5	
MAC RD 5	5	5	
RD DES 1	<5	<5	
RD DES 2	7	<5	
RD DES 3	<5	<5	
RD DES 4	5	<5	
RD DES 5	<5	5	

Certified by

MIN-EN, LABORATORIES

COMP: P & L GEOLOGICAL SERVICES

MIN-EN LABS --- ICP REPORT 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

.

PROJ: MAC

ATTN: PERRY GRUNENBERG

TEL:(604)980-5814 FAX:(604)980-9621

FILE NO: 45-0329-RJ1

.

DATE: 94/11/07

* rock * (ACT:F31)

	AG	AL.	AS	B	BA	BE	BI PPM	CA %	CD PPM	CO PPM	CU FE PPM %	K %	LI MG PPM %	MN PPM	MO	NA %	NÎ PPM	P PPM F	PB S PPM PP	iB M F	SR TH PM PPN	I T1 I %	V PPM	ZN PPM	GA PPM I	SN PPM	W PPN F	CR AL	I-Fire PPB
ROCK 25 ROCK 26 ROCK 27 ROCK 28 ROCK 28	1.7 1.8 .7 2.3	.90 1.03 .36 .86 57	67 1 864 1	1 1 1 1	193 239 42 346 281	1.0 1.2 1.3 9 7	15 1 18 1 6 17 1 17 1	.06 .08 .91 .12 .14	.1 .1 .1 .1	16 15 20 12 14	43 3.98 71 5.08 6 3.48 70 3.34 230 3.76	.10 .05 .05 .19 .04	37 3.13 26 2.20 5 5.05 9 1.15 11 1.20	627 812 801 373 808	1 2 1 2 1	.11 .03 .13 .02 .03	75 1 32 1 184 37 1 32 2	390 730 390 510 010	13 13 1 20 1 15	9 1 1 3 7 2	30 53 54 21 27	.25 .28 .08 .28 .27	122.0 143.7 44.6 119.1 101.6	48 65 56 49 85	1 1 3 1	1 1 1 1 1	13 2 9 1 17 3 9 7	14 00 71 94 66	4 7 1 3 5
ROCK 30 ROCK 31 ROCK 32 ROCK 33 ROCK 33	1.6 .1 .5 3.1 1.9	.21 .42 .21 1.14 .80	188 1 1 1 1	1 1 1 1	146 263 229 453 164	.3 .6 .5 1.3	11 1 2 22 2 12 2	.09 .37 .21 .62	.1 .1 .1 .1	8 5 4 13 9	28 1.88 28 1.58 59 1.17 140 6.64 5 2.47	.02 .18 .07 .25 .02	2 .88 5 .08 3 .07 8 1.96 8 1.18	640 593 364 501 581	2 4 2 1 4	.02 .01 .01 .23 .01	37 1 18 1 27 24 5 41 1	620 690 550 320 900	9 16 9 24 1 19 1	3 7 3 6 2 3	231 57 111 597 527	1 .17 2 .01 1 .01 1 .35 1 .18	58.6 53.6 43.7 325.2 65.6	5 58 60 65 49 5 84	2 1 1 8	1 1 1	6 13 7 10 7	82 54 36 57 83	2 1 9 10 1
ROCK 35 ROCK 36 ROCK 37 MAC RD 1 MAC RD 2	.1 4.3 1.2 3.0 3.6	.54 1.32 .68 .49 .27	1 1 34 47	1 1 1 1	201 410 374 156 61	1.8 1.3 1.1 .8 .7	6 34 2 10 1 14 1 15 1	.38 .88 .10 .72 .02	.1	8 20 12 22 15	123 5.43 149 8.25 84 3.21 348 3.03 122 3.86	.12 .36 .12 .09 .04	5 .12 6 2.94 7 .85 2 .70 2 .14	3166 806 1015 181 58	4 1 9 5 2	.01 .43 .03 .04 .02	48 2 29 4 45 2 55 2 49 1	470 350 490 730 670	23 1 15 1 21 1 19 8	5 9 1 3	92 27 288 273 234	1 .01 1 .53 2 .12 1 .18 1 .21	150.0 386.5 127.8 82.8 40.8	0 119 5 71 3 174 3 24 3 11	1 1 7 2	1 1 1 1	9 / 11 8 6 4	15 44 92 57 62	8 10 4 12 7
MAC RD 3 MAC RD 4 MAC RD 5 RD DES 1 RD DES 2	2.8 1.8 .1 .6 1.4	.45 .36 .23 .23 .23 .30	465 977 360 427	1 1 1 1	201 65 83 49 48	9 1.2 2.0 .8 1.1	17 1 8 4 4 3 11	.08 .38 .31 .15 .94	.1 .1 .1 .1	33 32 21 4 63	408 4.03 429 3.73 199 5.59 32 1.97 346 4.55	.10 .06 .05 .03	4 1.11 5 2.09 8 4.12 5 1.23 3 1.90	227 464 2713 962 300	2 2 8 4 1	.08 .05 .01 .01 .03	62 126 110 19 104	510 510 780 170 260	11 18 18 16 12	5 7 7 3	122 63 301 124 26	1 .27 1 .08 1 .01 1 .01 1 .01	142.4 91. 232. 49.9 102.1	30 64 7 109 9 25 2 21	3 3 1 3 2	1 1 1 1	6 11 7 8 8	48 172 90 142 106	1 2 2 1 1
RD DES 3 RD DES 4 RD DES 5	.3 .1 .9	.24 .27 .22	1 878 511	1 1 1	378 144 94	.8 3.0 1.6	1 94 64	.28 .15 .05	.1 .1 .1	3 31 19	10 1.67 224 7.98 34 5.15	.20 .04 .20	4 .04 1 2.25 1 .82	174 1938 786	4 1 1	.01 .01 .02	9 1 101 1 178 1	100 630 1150	23 28 12	10 7 5	51 2 154 314	5 .01 1 .01 6 .01	3.9 321.3 16.9	9 40 3 98 9 110	1 1 2	1 1 1	3 15 4	67 199 61	8 2 2
															#														
									PRO		辺																		
								M	SPECTO	JAN 3																		,	
								MPR	RS PRC	0 1995	N F			-															
·									GRAM																				
																		-											
																ð.													

Geochemical Analysis Certificate

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9821

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

 Construction of the second s Second seco

4S-0292-SG1

Company: **P & L GEOLOGICAL SERVICES** Project: MAC Attn: Linda Dandy Date: OCT-13-94 Copy 1. P & L Geological Services, Telkwa, B.C.

We hereby certify the following Geochemical Analysis of 24 soil samples submitted SEP-29-94 by Linda Dandy.

n - _{an a}n an ang sang ang ang

Sample	Pd	Pt	
Number	PPB	PPB	
IK 01	<	<	
LK 02	5	5	
LK 03	<5	<5	
L39NW 28+00NE	<5	<5	•
L39NW 28+25NE	<5	<5	
L39NW 28+50NE	<5	<5	
L39NW 28+75NE	<5	<5	
L39NW 29+00NE	<5	<5	
L39NW 29+25NE	<5	<5	
L39+50NW 27+50NE	<u>୍</u>	<5	ъ.
L39+50NW 27+75NE	<5	<5	
L39+50NW 28+00NE	<5	5	
L39+50NW 28+25NE	<5	<5	
L39+50NW 28+50NE	<5	<5	
L39+50NW 28+75NE	<	4	
L39+50NW 29+00NE	<	5	
L39+50NW 29+25NE	<5	<5	
L39+50NW 29+50NE	<5	<5	
L39+50NW 29+75NE	<5	<5	
L40NW 27+50NE	<5	<	
L40NW 27+75NE	4	<5	
L40NW 28+00NE	<5	<5	
L40NW 28+25NE	<5	<5	
L40NW 28+50NE	<5	<5	

Certified by

MIN-EN LABORATORIES

÷.

SPECIALISTS IN MINERAL ENVIRONMENTS CREMISTS + AUSAYERS + AVAILABED - PLANAL

1997 - Cal

Geochemical Analysis Certificate

NERAL

(DIVISION OF ASSAYERS CORP.)

Company:P & L GEOLOGICAL SERVICESProject:MACAttn:Linda Dandy

IRONMENTS

ABORATORIES

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

SMITHERS LAB.: 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

4S-0292-SG2

Date: OCT-13-94 copy 1. P & L Geological Services, Telkwa, B.C.

We hereby certify the following Geochemical Analysis of 20 soil samples submitted SEP-29-94 by Linda Dandy.

Sample	Pd	Pt	
Number	rrø	PPD	· · · · · · · · · · · · · · · · · · ·
L40NW 28+75NE	<5	<5	
L40NW 29+00NE	<u>ح</u>	<5	
L40NW 29+25NE	<5	<5	
L40NW 29+50NE	4	<5	•
L40NW 29+75NE	<5	<5	
L40NW 30+00NE	<5	<5	
L40NW 30+25NE	<5	<5	
L40NW 30+50NE	4	<5	
L40NW 30+75NE	<5	<5	
L40NW 31+00NE	<5	<5	<u>`````````````````````````````````````</u>
L40NW 31+25NE	<5	<5	
L46+50NW 29+25NE	<5	<5	
L46+50NW 29+50NE	<5	<5	
L46+50NW 29+75NE	<5	<5	
L47NW 29+00NE	<5	<5	
L47NW 29+25NE	<5	<5	
L47NW 29+50NE	<5	<5	
L47NW 29+75NE	<u>ଏ</u>	5	
L47+50NW 29+50NE	4	5	
L47+50NW 29+75NE	<5	<5	

Certified by

11

MIN-EN LABORATORIES

COMP: P & L GEOLOGICAL SERVICES

MIN-EN LABS --- ICP REPORT

FILE NO: 4S-0292-SJ1+2 DATE: 94/10/13

 $\overline{\mathcal{O}}$

PROJ: MAC

ATTN: Linda Dandy

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621

* soil * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL X	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA X	CD PPM	CO PPM	CU PPM	FE %	к Х	LI PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	PPM	PB PPM	SB PPM	SR PPM	TH PPM	×	V PPM	ZN PPM	GA	SN PPM	I H I PPM	CR PPM	Au-Fire PPB
LK 01 LK 02 LK 03 L39NW 28+00NE L39NW 28+25NE	.8 .3 2.3 .1	.46 .91 .62 .48 .47	1 1 1 1	1 1 1 1 1	130 122 223 167 368	.7	44669	1.71 .54 1.70 .39 .39	.1 .1 .1 .1	4 5 7 5 10	88 101 241 13 33	1.42 2.36 1.62 1.60 2.20	.04 .04 .06 .10	12 16 13 11 7	.65 .70 1.06 .35 .25	113 111 188 772 2703	4 7 4 3	.03 .01 .04 .01 .01	47 49 226 19 30	600 410 780 580 1010	15 28 26 21 27	5 14 6 9 9	173 81 171 72 80	1 1 1 1	.04 .05 .06 .08 .07	45.2 110.6 55.8 51.3 53.8	31 46 39 93 170	1 2 3 1 1 1	1 1 1 1	3 6 7 3	29 52 103 32 40	12 13
L39NW 28+50NE L39NW 28+75NE L39NW 29+00NE L39NW 29+25NE L39H 29+25NE L39+50NW 27+50NE	.5 .4 .4 .6	.59 .67 .62 .79 .34	1 1 1 1	1 1 1 1	129 121 136 118 114	55493	9 9 9 8 4	.39 .34 .36 .39 .35	.1 .1 .1 .1	65562	16 18 15 23 21	2.27 2.63 2.07 2.63 1.34	.11 .10 .11 .09 .08	15 13 14 15 5	.42 .35 .40 .49 .12	386 403 372 357 158	3333	.01 .01 .01 .01 .01	20 22 20 36 14	840 960 1140 2310 320	19 21 19 22 12	11 12 12 15 6	76 79 77 90 54	3 1 1 1	.09 .08 .08 .07 .05	65.7 77.5 61.2 69.0 46.8	83 93 116 209 76	223	1 1 1 1	45452	38 42 37 46 24	3 22 1 33 4
L39+50NW 27+75NE L39+50NW 28+00NE L39+50NW 28+25NE L39+50NW 28+25NE L39+50NW 28+50NE L39+50NW 28+75NE	.9 .8 .7 .4	1.25 .91 .87 .82 .68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	285 169 170 117 85	1.5 .6 .8	10 16 9 9 7	.67 .50 .35 .32 .29	.1 .1 .1 .1 .1	11 9 7 5 5	226 51 26 19 14	3.67 3.51 3.05 2.49 2.15	.10 .11 .12 .11 .07	48 20 16 16 14	.66 .99 .44 .40 .33	2473 615 528 310 431	75343	.02 .02 .01 .01	150 51 32 23 19	770 840 1670 1080 760	41 29 25 23 22	22 17 16 15 13	134 93 94 77 61	1 1 2 2	.07 .16 .08 .08 .07	80.6 108.0 77.8 67.3 57.8	5 136) 94 148 5 100 1 73	1 2 1 2 2 2 2	1	78554	54 70 40 39 33	2 3 1 2 1
L39+50NW 29+00NE L39+50NW 29+25NE L39+50NW 29+25NE L39+50NW 29+75NE L39+50NW 29+75NE L40NW 27+50NF	.7 .7 .1 .1	.59 .60 .55 .57	1 1 1 1	1 1 1 1 1 1 1	85 71 127 136 182	.5	8 7 7 7 7	.32 .36 .36 .30 .42	.1 .1 .1 .1	5 4 5 7	12 12 18 14 24	2.29 1.87 2.19 2.31 2.51	0.10 0.05 0.06 0.08	15 9 5 8 15	.36 .33 .21 .30 .38	198 388 1040 1840 1114	33	.01 .01 .01 .01	21 25 20 22 30	780 570 870 950 1340	20 17 20 21 22	11 11 8 11 12	71 70 67 64 84	3 1 1 1	.08 .07 .07 .07 .06	73.2 72.7 67.4 64.3 64.3	2 119 7 161 6 130 6 102 6 180	3 2 1 1 1	1 1 1	44344	32 34 25 29 36	3 4 6 7 6
L4ONW 27+75NE L4ONW 28+00NE L4ONW 28+25NE L4ONW 28+25NE L4ONW 28+75NE	.1 .1 .4 .3	.82 .85 .99 .91 .61	1 1 1 1	1 1 1 1	160 302 235 160 76	.8 .7 .8 .8	9 10 13 9 7	.41 .41 .40 .36 .26	.1 .1 .1 .1	7 12 9 7 5	25 34 31 3 3 16	2.75 2.83 3.18 3.02 2.16	i .11 .12 .10 .08 .06	17 12 19 26 16	.49 .45 .83 .58 .42	1093 3593 641 621 204	1	01 01 01 01	33 42 34 36 23	2070 1630 730 670 540	25 32 31 29 19	16 15 17 17 11	99 92 116 86 60	21235	.07 .08 .12 .09 .08	70.6 73.2 88.7 81.3 61.9	5 245 2 212 7 150 5 125 7 67	1 1 3 5 2 4	1	5 5 6 5	42 42 46 49 30	5 3 10 3 3
L40NW 29+00NE L40NW 29+25NE L40NW 29+50NE L40NW 29+50NE L40NW 29+75NE L40NW 30+00NE	.1 .9 .1 .2	.94 .77 .44 .62 .94	1 1 1 1	1 1 1 1 1	184 153 154 166 161	.9 .5 .3 .6	8 8 6 7	.34 .35 .39 .35 .24	.1 .1 .1 .1 .1	11 7 6 4	45 25 14 13 16	3.37 2.54 1.89 2.39	7 .10 .11 7 .10 5 .15 5 .15) 18 14 } 9 5 17 23	.48 .59 .29 .38	1349 584 1165 850 405		3 .01 5 .02 5 .01 5 .01	41 2 38 21 24 24 21	1710 1120 720 950 850	29 25 22 23 29	18 16 9 13 20	97 78 70 79 62	1 3 3 2 4	.08 .08 .07 .05 .05	83.8 64.9 51.8 59.0 50.1	3 242 9 92 3 132 9 197 1 186	2 1 2 2 1 7 2 8	1	6 6 4 5 5	47 46 32 37 33	7 3 2 1 3
L40NW 30+25NE L40NW 30+50NE L40NW 30+75NE L40NW 31+75NE L40NW 31+25NE	.1 3.6 .1 .1	.68 .63 .68 .46	1 1 1 1	1 1 1 1	355 226 180 187 124	.7 .6 .7 .5	9 8 11 6	.39 .27 .24 .26 .29	.1 .1 .1 .1	10 7 10 6	23 23 31 27 34	2.42	7 .17 2 .11 7 .11 2 .08 9 .08	7 15 1 12 1 16 3 10 3 7	.65 .37 .66 .24 .27	4297 3178 2063 2073 703			59 37 42 30 34	960 800 910 960 1180	40 29 29 19 20	17 11 13 7 11	74 66 59 62	1 1 2 1 1	.07 .07 .09 .07 .05	70.6 63.7 80.3 62.6 82.3	5 197 1 160 3 139 5 74 5 118	7 1 2 1 2 1 2 1 3 1	1 1 1 1	8 5 4 5	87 36 44 32 45	1 7 13 6 4
L46+50NW 29+25NE L46+50NW 29+50NE L46+50NW 29+75NE L47NW 29+00NE L47NW 29+00NE	1.3 .1 .9 2.9	.28 .28 .65 .26	11111	1 1 1 1	344 203 90 650 84	.5 .4 .8 .8	3 4 7 3 2	.62 .55 .29 .68 2.47	.1 .1 .1 .1	3 3 6 2	47 36 31 96 48	1.9 1.7 2.6 3.0	3 09 5 10 4 07 8 07 0 0	2 5 7 7 3 4	. 16 . 12 . 48 . 16 . 35	5 140 2 49 3 344 5 228 5 99	7 2	2 0' 5 0' 4 0 4 0	1 30 1 22 1 27 1 62 1 30	1680 980 1320 1980 1390	18 10 21 20 13	4 12 4 5	99 78 71 108 318	1 1 4 1 1	.03 .05 .07 .02 .01	56. 59.8 70.7 54.9 16.1	3 100 3 7: 2 12: 5 17: 5 2: 5 2:	1 5 7 7 7 1	1	3353	33 30 46 35 21	7 10 6 5 5
L47NW 29+50NE L47NW 29+75NE L47+50NW 29+50NE L47+50NW 29+75NE	.4 .1 1.5 .4	.51 1.56 1.16 .44	1	1 1 1	125 283 178 232	.3 1.5 1.0 .6	7 11 12 4	.34 .63 .40 .17	.1 .1 .1	4 12 8 4	17 97 3 44 14	1.8 4.3 3.8 1.8	5 .01 3 .10 8 .04 2 .11	7 9 6 36 8 23 0 9	.30 .87 .97 .24	5 39 2 296 5 53 4 23	3	3 0 9 0 5 0 3 0	1 19 1 94 1 39 1 19	600 1080 750 470	15 49 34 20	10 29 24 12	65 157 91 35	3 3 5 3	.07 .07 .10 .01	63.2 101.2 114.2 43.4	2 65 8 124 8 17 4 84	5 2 6 1 1 6 0 5		4 10 8 3	35 84 68 24	3 4 7 3
					PROSI			」 同																								
				MEN	ECTOR	JAN 30		0 M										<u></u>														
				- =	S PROG	1224	1005	الله الله الم الما ال																								
	- I				RAM	دادى .		C	则																							

ENVIRONMENTS LABORATORIES (DWISION OF ASSAYERS CORP.)

SPECIALISTS IN MINERAL ENVIRONMEDIAS CHEMISTS + ASSAYERS + ABALYSYS + OF CHILL AND

Geochemical Analysis Certificate

IFR A

eocnemical Analysis Certificate

Company: P & L GEOLOGICAL SERVICES

Project: MAC Attn: Linda Dandy Date: NOV-14-94 copy 1. P & L Geological Ser., Telkwa, B.C.

We hereby certify the following Geochemical Analysis of 19 soil samples submitted OCT-21-94 by L. Dandy.

Sample	Pd	Pt	
Number	PPB	PPB	
L 48 NW 30+00NE	<5	<5	
L 48 NW 30+25NE	<	<5	
L 48 NW 30+50NE	<5	<5	
L 49+50NW 31+50NE	<5	<5	*
L 49+50NW 31+75NE	<5	<5	
L 49+50NW 32+00NE	<5	<5	
L 49+50NW 32+25NE	<5	<5	
L 49+50NW 32+50NE	<5	<5	
L 49+50NW 32+75NE	5	<5	
L 49+50NW 33+00NE	5	<5	×
L 49+50NW 33+25NE	<5	<5	
L 49+50NW 33+50NE	<5	<5	
L 49+50NW 33+75NE	8	<5	
L 49+50NW 34+00NE	<5	<5	
L 49+50NW 34+25NE	<5	<5	
L 49+50NW 34+50NE	<5	<5	
L 49+55NW 32+25NE	<5	<5	
L 49+75NW 32+25NE	< <u>5</u>	<5	
L 50NW 32+25NE	<5	4	

arastara, papi ana ang salata Marina di kang salatang salata

Certified by

MIN-EN LABORATORIES

32

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 FAX (604) 980-9621

4S-0325-SG1

SMITHERS LAB .:

3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

VANCOUVER OFFICE:

COMP: P & 1 GEOLOGICAL SERVICES

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 TEL:(604)980-5814 FAX:(604)980-9621 FILE NO: 45-0325-SJ1

* soil * (ACT:F31)

DATE: 94/11/14

ω ω

ATTN: Linda Dandy

PROJ: MAC

W CR Au-Fire V. ZN SN SB SR TH ΤI GA FE K LI MG MN MO NA NI Ρ PB SAMPLE AS в BA BE B1 ĊA CD CO CU AL AG PPM PPM PPM PPM PPM % PPM PPM PPM PPM PPM PPM PPB PPM % PPM PPM PPM % % PPM X PPM PPM % PPM NUM8ER PPM 2 **PPM** PPM PPM PPM 20 .46 22 .57 23 .63 15 .47 5 .01 2 .01 3 .01 .06 92.3 90 420 32 700 22 16 6 60 37 3.35 .06 67 156 1.2 .31 L 48 NW 30+00NE -4 .71 7 . 1 49 1390 26 .06 103.1 153 63 53 30 20 63 1 6 .26 .24 .32 .31 1 155 10 52 4.42 .08 783 1 L 48 NW 30+25NE .1 1.8 8 .1 .81 37 1410 21 14 2 .07 657 124 29 65 94.1 119 .82 .53 .74 35 4.18 .09 537 1 -1 9 7 7 8 1 48 NW 30+50NE .4 1 115 1.6 .1 41 74 53.6 139 63 19 1.96 .09 1.01 23 1100 14 3 485 L 49+50NW 31+50NE .8 1 117 .8 .1 6 23 żż 67 1 .01 137.0 270 10.01 86 1070 11 103 5.76 .13 25 .26 1475 1 1 183 2.3 .1 L 49+50NW 31+75NE .1 -1 2 19 .56 295 11 .43 1323 4 .01 2 .01 25 19 16 3 .09 78.3 197 2 5 48 24 2.80 .08 970 68 .9 .1 9 .30 6 .71 108 .1 1. 49+50NW 32+00NE -1 1 1.1 33 1110 18 12 75 1 .08 93.3 148 57 54 73 .31 46 3.48 .09 234 9 8 7 L 49+50NW 32+25NE .57 .79 1 1.1 -1 33 1 18 .59 5 .01 43 2840 23 21 19 19 73 97 1 .07 100.7 124 48 4.26 .09 .30 409 139 9 L 49+50NW 32+50NE .6 .2 .9 1 1.6 .1 55 20 .40 975 7 .01 46 980 15 1 .08 98.8 124 6 .48 56 3.11 .09 1 ĩ 9 .1 8 L 49+50NW 32+75NE .66 1 161 1.0 58 830 14 82 1 .07 87.7 91 5 54 1 5.01 7 100 3.07 .07 18 .35 391 1 107 8 .40 L 49+50NW 33+00NE .61 1 1.1 -1 8 3 1 15 .43 8 .36 .6 .68 .3 .46 .3 .81 .1 1.19 396 5.01 36 780 18 16 66 1 .07 98.1 72 6 67 .26 7 49 3.32 .06 L 49+50NW 33+25NE 108 9 -1 1 1.4 380 5 .01 26 1220 12 10 62 1.07 92.8 -73 1 5 56 23 L 49+50NW 33+50NE 96 1.0 5 32 3.10 .09 .1 8 80 7 60 25 31 4 01 60 2520 19 123 1 .08 116.0 108 L 49+50NW 33+75NE 12 145 4.28 .11 20 .87 690 1 1 168 1.6 10 .1 27 9**3** 15 130 1.05 87.1 128 13 1.5 11 46 3.92 .07 26.51 805 6.01 47 1800 -1 .40 L 49+50NW 34+00NE 145 8 .1 3.02 86 1370 19 3 .07 77.8 86 7 71 12 156 10 .58 13 488 3.28 .10 15.80 855 49+50NW 34+25NE 1.4 .1 .8 .61 28 264 27 51 20 .86 2674 14 .30 948 9 102 10 203 3.98 .12 79 6.33 .07 125 2710 1 .03 105.6 217 12 11 .01 41 1 416 2.1 9 1.50 L 49+50NW 34+50NE 1.4 1.15 .1 7 69 6 53 74 1670 20 2 .01 132.5 237 .84 .75 .75 2.8 6.01 45 167 203 7 .16 8 L 49+55NW 32+25NE .1 1 .1 3 .07 22 25 18 77 34 3.04 .11 23.64 309 3.01 40 3060 70.3 116 8 .31 6 49+75NW 32+25NE .1 1.1 1 1 L . 18 60 6 56 3 .08 94.7 313 10 157 ō, .26 63 3.54 .09 17 61 712 6.01 54 1200 1 1 1.4 8 L 50NW 32+25NE .2 .1 1 1 σ רור ROSPECTORS \Box ្ត ហា Å \bigcirc Z m m ယ 抗 MP \circ \rightarrow 1995 $\overline{\mathbf{x}}$ τυ S ROGR Inn \mathbf{b} ۶.