BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1994/95

REPORT #:

PAP 94-48

NAME:

LLOYD ADDIE

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

JAN 27 1995

PROSPECTORS PROGRAM

MEMPR

R	TEC	'HN	ICAL	REP	ORT

One technical report to be completed for each project area
Refer to Program Requirements/Regulations, section 15, 16 and 17
If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

COCATION/COMMODITIES Project Area (as listed in Part A.) OXIDE	Name LLOYD ADDIE	Reference Number 89FSW 033
Project Area (as listed in Part A.) CXIDE Minfile No. if applicable Location of Project Area NTS 83F6E Lat 49°16′ Long 117°07′ Description of Location and Access VIA OXARCREEK BOAN BY 484 APPROX. 35K4 SOUTH OF NELSON BC. Main Commodities Searched For GOLD ZIVC, LEAD Known Mineral Occurrences in Project Area OXIDE FAULT WITH ZN, fb WORK PERFORMED 1. Conventional Prospecting (area) 1KM² 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5 Rox K SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Claim Name Location (show on map) Lat Long Elevation	Traine ELOTO 100-	
Cocation of Project Area NTS 82,F6E Lat 4716 Long 11767 Description of Location and Access VIA OSCARCREEK ROAD BY 4X4 APPROX. 35KA SOUTH OF NELSON BC. Main Commodities Searched For GOLD, ZINC, LEAD Known Mineral Occurrences in Project Area OXIDE FAULT WITH ZN, Pb WORK PERFORMED 1. Conventional Prospecting (area) 1KA 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5 ROCK SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Claim Name Location (show on map) Lat Long Elevation	LOCATION/COMMODITIES	
Description of Location and Access VIA OSCARCREEK REAL BY 4K4 . APPROX. 35KA SOUTH OF NELSON BC. Main Commodities Searched For GOLD, ZINC, LEAD Known Mineral Occurrences in Project Area OXIDE FAULT WITH ZN, Pb WORK PERFORMED 1. Conventional Prospecting (area) 1KM 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5 Roc K SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Claim Name Location (show on map) Lat Long Elevation	Project Area (as listed in Part A.) OXIDE	Minfile No. if applicable
Main Commodities Searched For GOLD, ZINC, LEAD Known Mineral Occurrences in Project Area OXIDE FAULT WITH ZN, fb WORK PERFORMED 1. Conventional Prospecting (area) KM^2 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5	Location of Project Area NTS 82F6E	Lat <u>79.16</u> Long <u>117.07</u>
Main Commodities Searched For GOLD, ZINC, LEAD Known Mineral Occurrences in Project Area OXIDE FAULT WITH ZN, fb WORK PERFORMED 1. Conventional Prospecting (area)/KM^2 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) Fox K SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (If any) Commodities Claim Name Location (show on map) Lat Long Elevation		
WORK PERFORMED 1. Conventional Prospecting (area)/KM^2 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)	SOUTH OF NELSON BC.	
WORK PERFORMED 1. Conventional Prospecting (area)/KM^2 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)		
WORK PERFORMED 1. Conventional Prospecting (area)/KM^2 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)		
WORK PERFORMED 1. Conventional Prospecting (area)	Main Commodities Searched For Gold, E	LVC, LEAU
WORK PERFORMED 1. Conventional Prospecting (area) /		TAC TAUT WITH 71: OL
1. Conventional Prospecting (area)/KM \\ 2. Geological Mapping (hectares/scale)	Known Mineral Occurrences in Project Area	(LUE FAUL) WITH ZN, 10
1. Conventional Prospecting (area)/KM \\ 2. Geological Mapping (hectares/scale)		
1. Conventional Prospecting (area)/KM \\ 2. Geological Mapping (hectares/scale)		
1. Conventional Prospecting (area)/KM \\ 2. Geological Mapping (hectares/scale)	WORK PERFORMED	
2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5 Rock SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Claim Name Location (show on map) Lat Long Elevation	1. Conventional Prospecting (area) 1KM	
3. Geochemical (type and no. of samples) S ROCK SAMPLES 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Cocation (show on map) Lat Long Elevation	2. Geological Manning (hectares/scale)	
4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Control (show on map) Lat Long Elevation	3. Geochemical (type and no. of samples) 5	ROCK SAMPLES
5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Coation (show on map) Lat Long Elevation	4. Geophysical (type and line km)	
6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) Commodities Coation (show on map) Lat Long Elevation		
7. Other (specify)	- · · · · ·	
Commodities Claim Name Claim Name Elevation	<u> </u>	
Location (show on map) Lat Long Elevation	SIGNIFICANT RESULTS (if any)	
Location (show on map) Lat Long Elevation	Commodities	Claim Name
Best assay/sample type		
	Best assay/sample type	
Description of mineralization, host rocks, anomalies	Description of mineralization, host rocks, anoma	alies

PROSPECTORS ASSISTANCE PROGRAMP FOR THE PROSPECTING REPORT FOR THE PROSPECT PROSPECTING REPORT FORM (continued)

JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17
If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

PROSELUTORS PROGRAM MEMPR

Name LLOYD AINTE	Reference Number 83F 50 053
OCATION/COMMODITIES	
Project Area (as listed in Part A.) <u>OVERLO</u>	Minfile No. if applicable
ocation of Project Area NTS <u>82F3E</u>	Lat 4908 Long 11707
Description of Location and Access VIA S NELSON BS	SHEEPCR, ROAD APPROX 45 KM SOUTH OF
Main Commodities Searched For Gold	
Known Mineral Occurrences in Project Area_	GOLD IN QUARTZ VEZNÓ
	1 ² 11RXX 452175 1250225
6. Drilling (no. holes, size, depth in m, total	
7. Other (specify)	
SIGNIFICANT RESULTS (if any)	
JOHN HOUSE TO THE TOTAL TO THE TOTAL	Claim Name OVERLOOK
ocation (show on map) Lat <u>49°0 75</u>	Long //7 085 Elevation 5300
Best assay/sample type5ZL7_163oP	PB DUMPGRAB 90 PPM AU SUMMETAND
Description of mineralization, host rocks, and	omalies HIGH GOLD IN SILTS IN BILLINGSCR

DECE BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM 12 P

PROSPECTING REPORT FORM (continued) JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

PROSPECTORS PROGRAM MEMPR

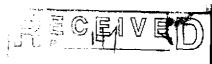
Name LLOYD ADDIE Reference Number LOCATION/COMMODITIES Project Area (as listed in Part A.) IERSFYGOLDTHE Minfile No. if applicable 82F 54/ Location of Project Area NTS 82F6/3 Lat _____Long ____ Description of Location and Access FROM 40 TO 60 KM SOUTH OF NELSON BC. Main Commodities Searched For GOLD, LEAD, ZZVC Known Mineral Occurrences in Project Area DOZENS, QUARTZ VEZNS, SKARNS, REPLACEMENT POZN WORK PERFORMED 1. Conventional Prospecting (area) 100 Km² 2. Geological Mapping (hectares/scale)_____ 3. Geochemical (type and no. of samples) 14 BOCK 265111 4. Geophysical (type and line km)______ 5. Physical Work (type and amount)_____ 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)___ SIGNIFICANT RESULTS (if anv) Commodities W Ph ZN _ Claim Name_ Location (show on map) Lat 49°015′ Long 117'23′ Elevation 2500′ Best assay/sample type_____ Description of mineralization, host rocks, anomalies HIGH W VALUES AT THE REEKS MINE NUMBER IN LIMESTONE WITH PS. GA. SP.

PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

JAN 27 1995

B. TECHNICAL REPORT

One technical report to be completed for each project area


Refer to Program Requirements/Regulations, section 15, 16 and 17

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

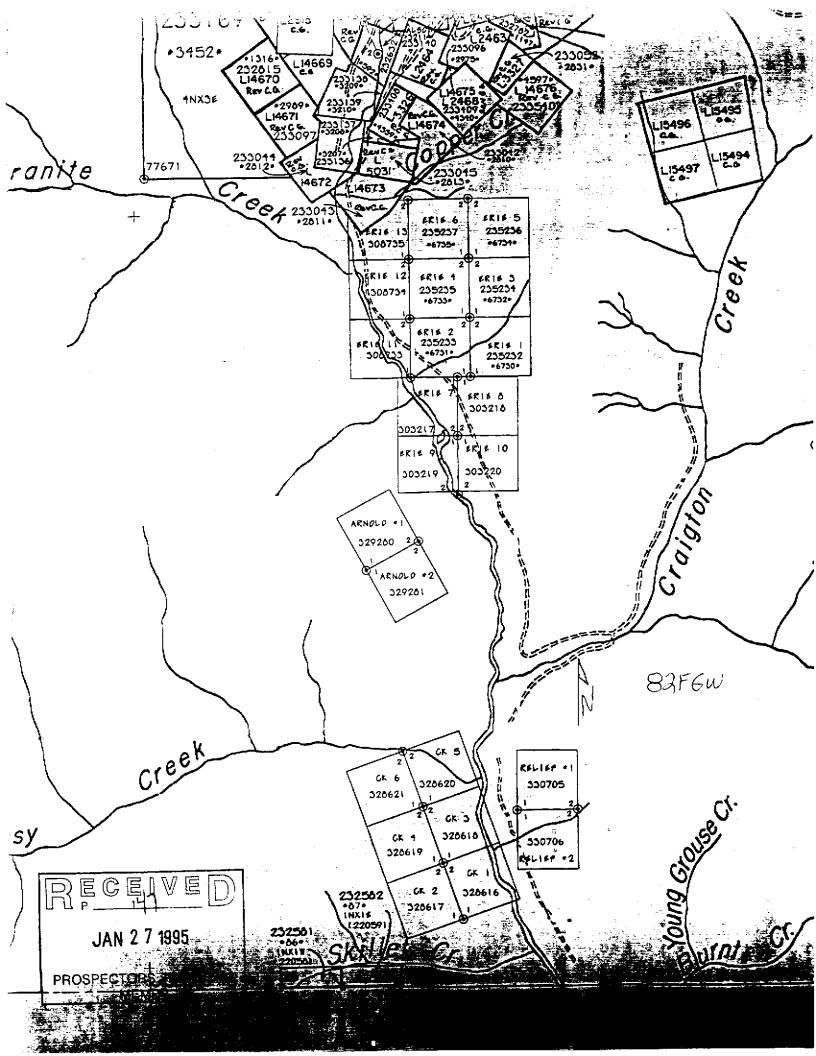
PROSPECTORS PROGRAM MEMPR

Name LLOYD ADDIE	Reference Number
	·
LOCATION/COMMODITIES	2 - 0 New Marie Marie and Sakh W.O. 7
Project Area (as listed in Part A.) SIEVEN	Minfile No. if applicable 83KNW067
Location of Project Area NTS SAKE	Lat 50°46' Long 11712'
Description of Location and Access V47 W	MLAN RIVER ROAD ATAPPROX86KM.
TONIC TO MAKE	V ()// e (/ // e (/ / / / / / / / / / / /
Main Commodities Searched For GOLD	
Known Mineral Occurrences in Project Area	MO, BI INQUARTZ VEZUS
WORK PERFORMED	.3
1. Conventional Prospecting (area)	<u>4</u>
2. Geological Mapping (hectares/scale)	7RXX 351115
3. Geochemical (type and no. of samples)	1KOCK 357475
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total	m)
7. Other (specify)	· · · · · · · · · · · · · · · · · · ·
SIGNIFICANT RESULTS (if any)	
Commodities	Claim Name
Location (show on map) Lat	Long Elevation
Best assay/sample type	
Description of mineralization, host rocks, and	omalies

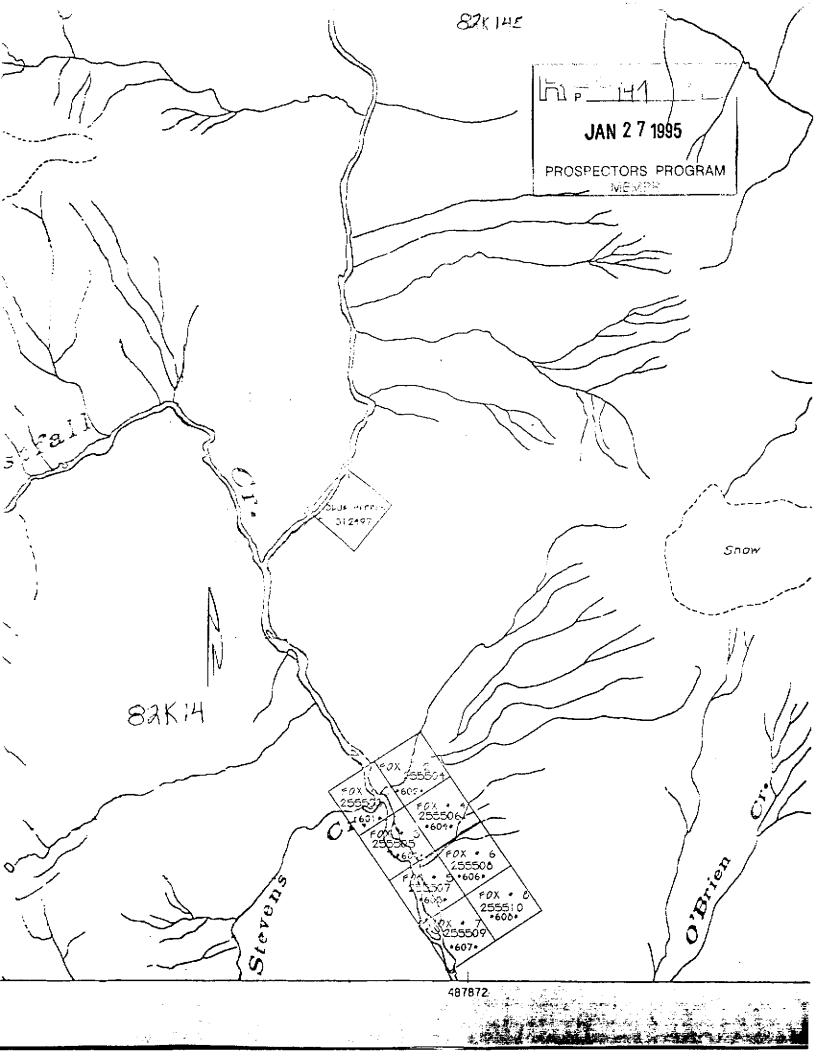
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

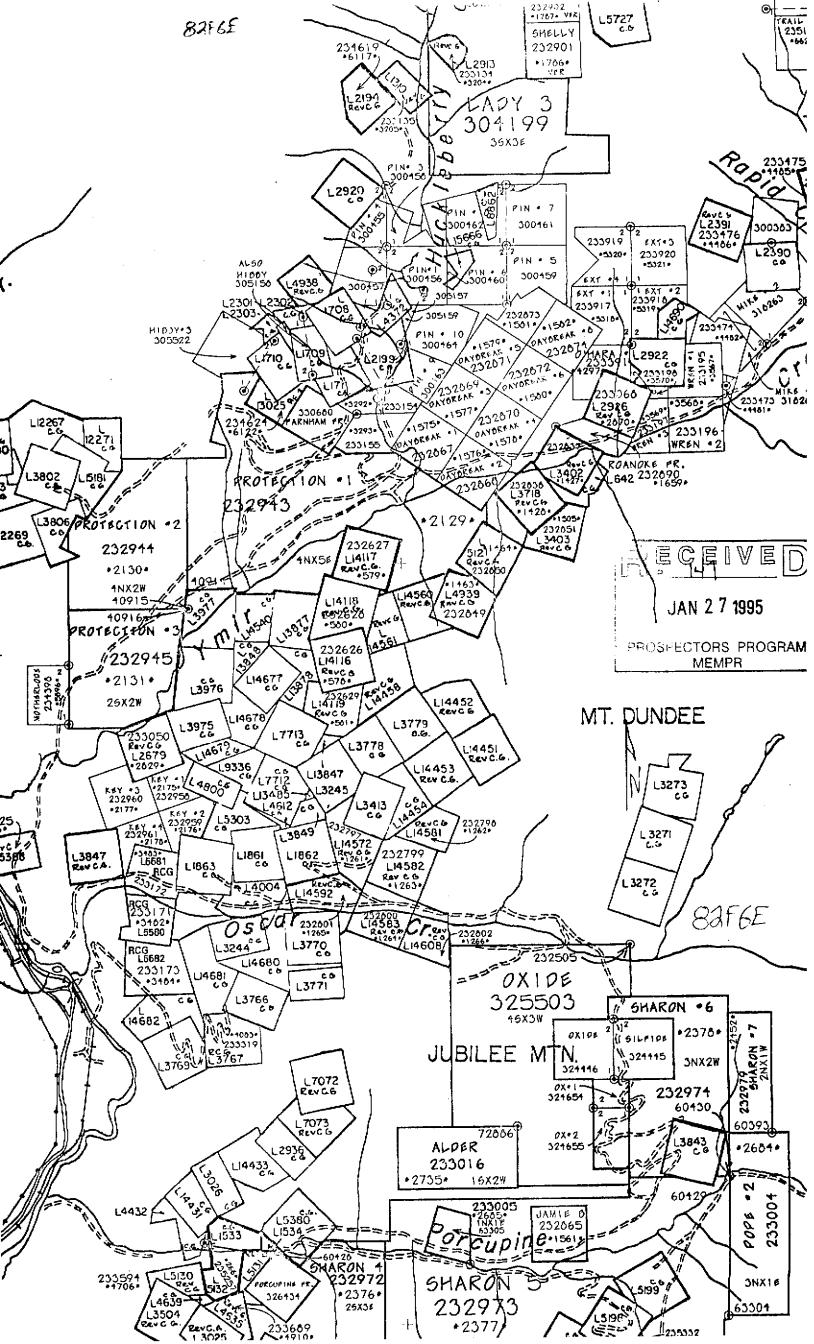
JAN 27 1995

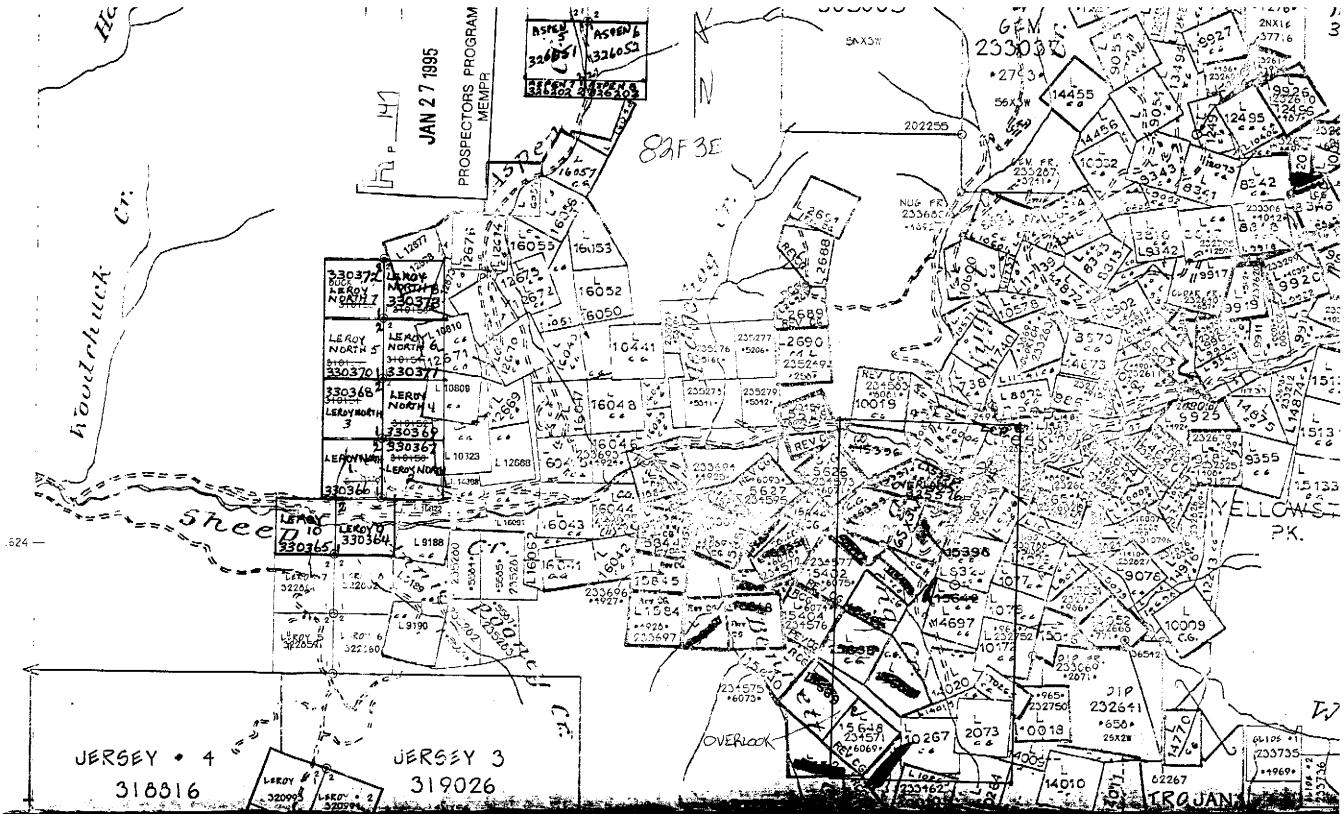
PROSHECTORS PROGRAM


B. TECHNICAL REPORT

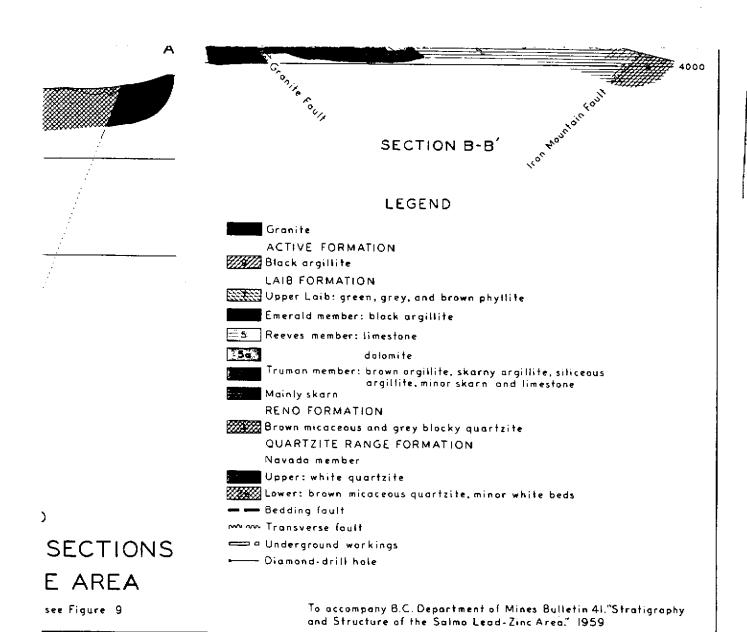
One technical report to be completed for each project area

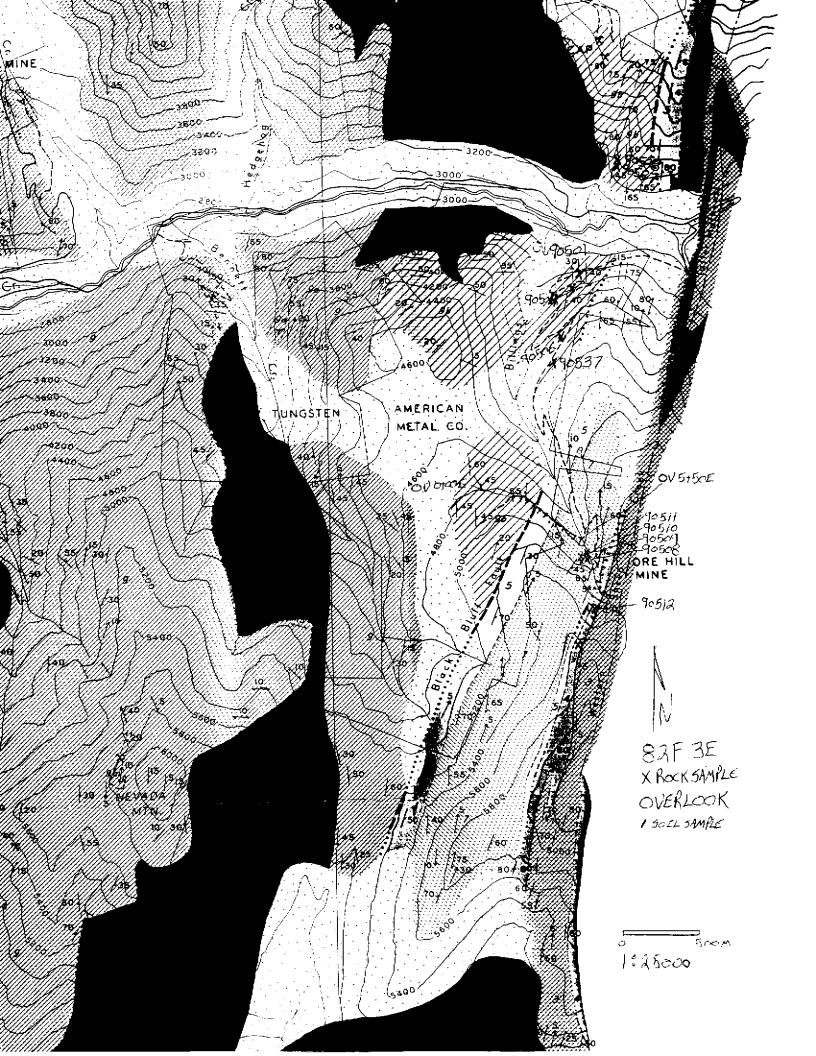

Refer to Program Requirements/Regulations, section 15, 16 and 17

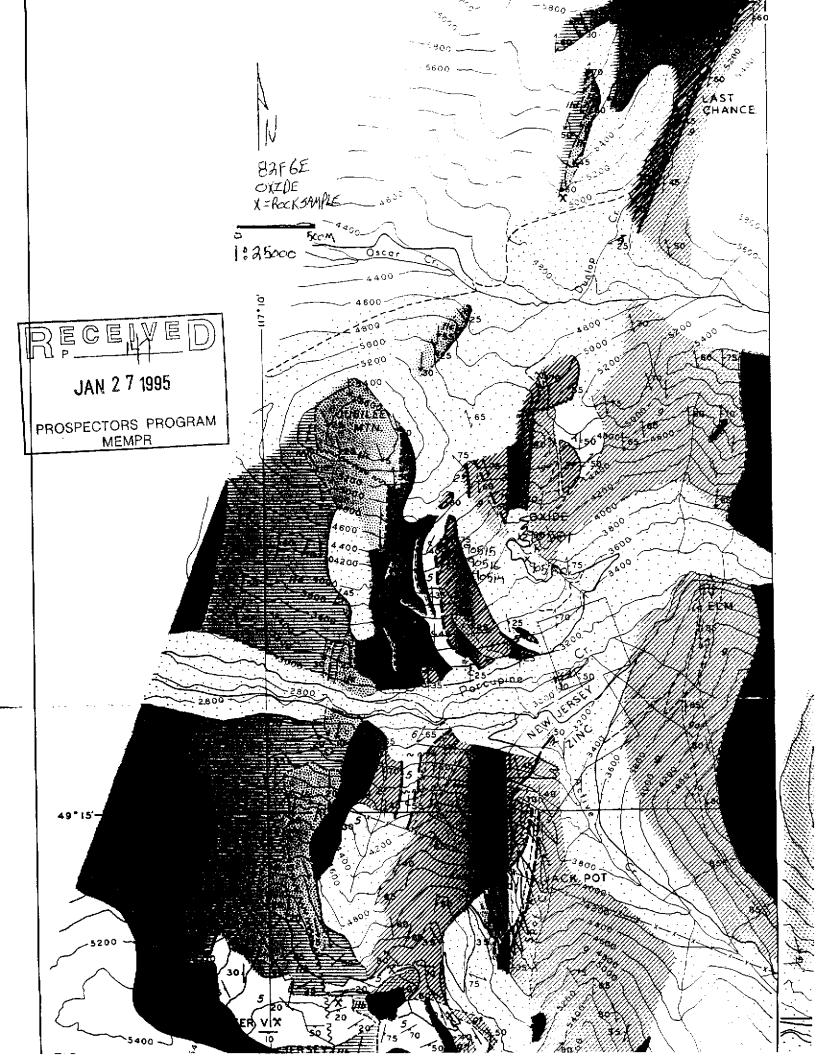

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

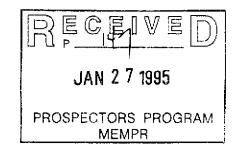

Name LLOYD ADDIE Reference Number
LOCATION/COMMODITIES
Project Area (as listed in Part A.) <u>FRIECR</u> , Minfile No. if applicable <u>82F5w</u> 436
Location of Project Area NTS 83F6W Lat 49°16 Long 117°33'
Description of Location and Access VIA ERIECA, ROAD APPROX 55KM SOUTHOF
NELSON BC.
Main Commodities Searched For GOLD, COMER
Known Mineral Occurrences in Project Area SHEAR HOSTED CORPER + MOLLY PORPHYRY
WORK PERFORMED
1. Conventional Prospecting (area) 10KM2
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) 12 ROCK 8511/5
4. Geophysical (type and line km)
4. Geophysical (type and line km) 5. Physical Work (type and amount) 3 DAYS CLAUM STAKEING
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS (if any)
Commodities COPPER Claim Name RELIEF# 1,2
Location (show on map) Lat 83 F6W 49 16 Long 11733 Elevation 4000
Best assay/sample type SOILS + 500 PPMC4 OVER 250M
Description of mineralization, host rocks, anomalies MINOR CHALCO PYRITE ALONG FRACTURES CROSSING ALL ROCK TYPES BUT BEST IN AUGITE PORPHYRY OF THE ROSSIAND FORMITZO

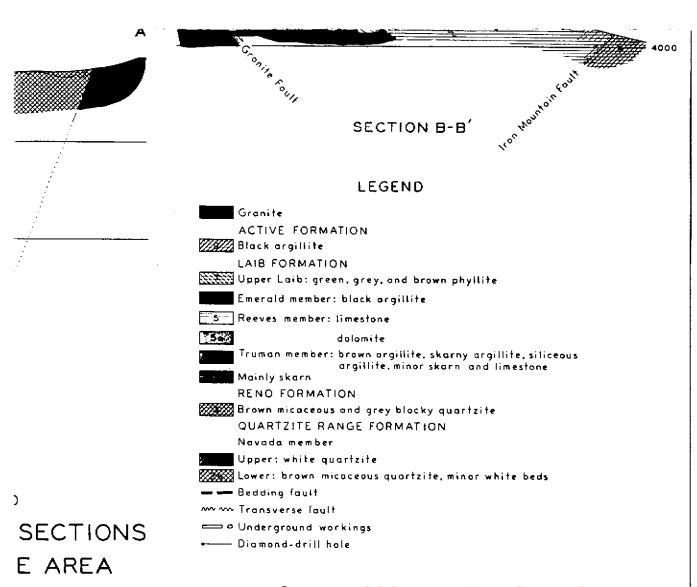
	CU 2448PM	RStook		
	CU 460PPM	- R4+50W		
<u> </u>	C4 841PPM	- R4+00W		厚 I ▽ E □ □ 2 7 1995
	CU 596 FFM	- R3+50W		ORS PROGRAM EMPR
REL	C4 530PM	- R 3+00W		RE
RELIEF#2	C41023PFM	- R3+50W		SELTEF# 1
	CU 1035 PPM	- Ratoow	m — 91	8.00
	C4 873PPM	- Ritsow	ERTECR.	82F6W SOIL SAMPLE LOCATION MAP
en ju en eksiksis suns	EU 18788 4 EU 1947 PPM	RHOOW	3	LCKATION
• *	C4 17588M	- Rotsow		MAP
	CU 192 PP.M	ROTOOW THE		








JAN 27 1995


PROSPECTORS PROGRAM MEMPR

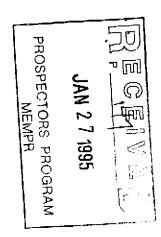
see Figure 9

To accompany B.C. Department of Mines Bulletin 41. "Stratigraphy and Structure of the Salmo Lead-Zinc Area." 1959

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-0171 604 - 3rd St., Nelson BC V1L 2P9 船

SAMPLE#	Mo	Cu	Pb	Zn	Αg	Ni	Cq	Mn	Fę	As	Ü	Au	Th	Sr	Çd	Sþ	Βi	٧	Ca	P	La	Cr H	19	Ba T	i I	В	ΑL	Na	K	₩ Au	*
	bbu	ppm	ppm	ppm	ppm	bbu	ppm	ppm	%	ppm	ppm	ppm	bbw b	bw b	ppoti	bbw	ppm	ppm	×	*	ppm	ppm	% p	ppm	% ppr	M	%	7,	% рр	w bk	жь
в 51860	1	92	9	79	,	25	37	831	6.25	۰	ج.	دء	2 1	58	٥	2	ري	124	6.47	กลก	7.	22 3.1	10.	21 (7 '	2 2	.52 .	nz.	05	 2	7
B 51861-	-	114		52					6.51				<2 3				-		9.90		3	22 4.4			_		.75 .			2	3 7
E 38601				19683		-		931		11868	-	_				_	_		18.03		Ã	5 2.9		44<.0	-		. 10<.			1 135	, 0
RE E 38601	. –			19066			₹1	913	_	_			<2 1		_				17.85		6	5 2.9	-	41<.0		_					-
E 38602		3			.5	2	<1	194	.28				<2 1					-	33.27		2	1 4				_	.02<.				-
E 38603	3	24	33	100	.5	38	14	440	3.10	13	<5	<2	10 1	27 1	1_5	2	<2	23	3.33	.231	26	19 1.3	36 1	183<.0	11 :	3 1.	.46 .	01	. 14	1	2
E 73251	14	10	24	44	.6	9	1	47	.78	18	<5	-	_	14	.5	8	<2			.023	9			502<.0			.18 .			2	2
E 73252	23	161	16120	11161	87.5	3	<1	792	16.53	7681	6	2	<2.1	56 98	3.0	392	<2	12	11.92		9	1 2.3	39	21<.0	1		.02<.			- 1 319	, O
£ 73253	≺1	3	68	29	.1	6	<1	49	.06	18	<5	< 2	<2 S	19	.5	3	<2	<2	41.16	.003	<2	1 .4	46 2	214<.0	1	2 .	.03<.	01			7
£ 73254	3	315	13	82	.4	23	33	616	2.94	10	<5	<2	2 1	22	.3	2	<2	39	.91	.119	5	16 1.2	28	78 .2		-	.54 .			1 4	2
E 73255	4	471	16	103	.6	37	55	869	4.22	. 16	<5	<2	2 1	51	.4	3	<2	46	1.65	.177	6	9 1.7	79	66 .2	3 (61.	.94 .	03	.47	1 4	.5
STANDARD C/AU-R	18	60	37	126	6.8	65	30				-	_	36	56 17		_	_				38	52 .9					.88		,	0 49	_


ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: JAN 17 1994 DATE REPORT MAILED:

: Jan 19/94

ACME ANALYTICAL LABORATORIES LID.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

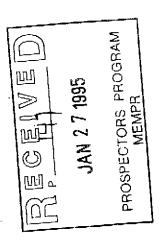
PRONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-1023 604 - 3rd St., Nelson BC V1L 2P9 Page 1

SAMPLE#	Mo ppm	Cu	Pb ppm	Žn ppm	Ag	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	\$r ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	<u>pom</u>	Cr ppm	Mg %	₿a ppm	Ti %	bbw 8	Al %	Na %	К %	bbw	Au* ppb
	1														,	.5			^4	024	10	12	-01	30	<.01	7	17	.01	.10	7	47
OXIDE #1	2	17	1.5	58	. ح	9	1	86 2		26	< 5	<2	2	2	-4	<2	<2	< <u>2</u>		.026	18	12				2	47		- 10	2	
RE OXIDE #1	2	18	15	59	.3	8	1	77 2	.60	27	<5	<2	5	3	.7	<2	<2	<2	.01	.026	18	12	.01		<.01	2	-17	. 01	- 11	د -	40
OXIDE #2	2	11	61	11	.2	6	1	41 1	-16	12	<5	<2	4	6	<.2	<2	- 2	2	.04	.033	22	10	.01	30	<.01	3	. 16	<.01	.12	3	19
OXIDE #3	1 5	20	14	61	1	11	.	96 3	74	17	5	₹2	17	5	7	<2	2	13	-01	.076	47	15	.30	38	.01	3	.99	_01	.26	1	9
	1 5	£0	80	13	- '	13	2		.65	45	<5	₹2	7.	ī	<.2	<2	-c2	2	-01	.009	11	Q	.01	31	<.01	3	. 15	<.01	.14	3	140
OXIDE #4	2	,	au	13	.0	13	0	30 3		4,5	~>	~2	,	-		~L	~_	_		.00,		•	•			_				_	
OXIDE #5	5	30	Q	125	.5	23	3	132	.78	11	<5	<2	2	20	1.1	2	<2	31	.26	.099	5	13	.02	27	<.01	3	.14	<.01	.08	4	21
LG #1	4	118	10	160	- 5	33	Z	112 1	.67	5	<5	<2	ς	77	4	<2	<2	149	1.94	_533	7	43	99	461	.05	<2	2.31	. 12	.39	2	5
	~			100			7			ź		-	- 7	87	• •				3.32			38	.73	3123	. 05	<2	2.25	.04	.42	1	35
LG #2	3	117		73		29	-4		1.09	د -	<5	<2	D			<2	<2													17	480
STANDARD C/AU-R	19	63	38	130	6.9	66	30	1117 4	. 16	42	19	7	39	56	18.5	15	17	55	53	.097	37	57	. 95	197	.08	34	1.97	_07	. 14	13	400

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

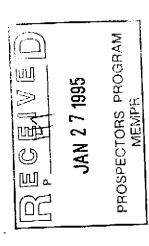

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL-

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 ROCK P2 SILT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Samples beginning 'RE' are duplicate samples.

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY. DATE RECEIVED: APR 12 1994 DATE REPORT MAILED:


Lloyd Addie FILE # 94-1023

Page 2

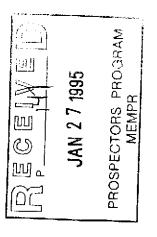
ACRE MINILTING																																
SAMPLE#	Mo ppm	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	bbu n	Au ppm	Th ppm	Sr ppm		Sb	Bi ppm	V ppm	Ce %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tí %	ppm ppm	Al %	Na %	K %	bbw ñ	Au* ppb	_
38610 38611 38612 RE 38612	2 2 6 6	35 56 73 76	72 91 80 80	1594 589 875 899	.7 1.2 .9	68 44 198 204	9 17	675 2254 657 679	2.50 3.25	38 12 31 30	5 8 17 17	<2 <2 <2 <2 <2	6 <2 4 4	56 83 85	13.9 10.8 8.3 8.7	2 <2 4 <2		29 40	1.93 . 2.26 . 1.52 . 1.56 .	.234 .281	26 11 27 26	26 22 51 50	.91		.03 .03 .05	2 7 4 4	.79 .96 .98 .99	.01 .01 .01 .01	. 13 . 13 . 17 . 17	2 7 2 1	29 14 14 12	

Sample type: SILT. Samples beginning 'RE' are duplicate samples.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie PROJECT JUNO File # 94-1660 604 - 3rd St., Nelson BC V1L 2P9


SAMPLE#	Au* ppb
L0+75W 0+50N	11
L0+75W 0+40N	4
L0+75W 0+30N	5
L0+75W 0+20N	4
L0+75W 0+10N	2
L0+75W BL RE L0+75W BL L0+75W 0+10S L0+75W 0+20S L0+75W 0+30S	2 1995 10 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
L0+75W 0+40S L0+75W 0+50S L0+00W BL L0+00W 0+10S L0+00W 0+20S	140 77 780 86 37 12 15 PROSPECTORS MEMP
L0+00W 0+30S	12
L0+00W 0+40S	15
L0+00W 0+50S	220
V 0+00NE	5
V 0+10NE	5
V 0+20NE	9
V 0+30NE	26
V 0+40NE	11
V 0+50NE	8
V 0+60NE	4
V 0+70NE	2
V 0+80NE	2
V 0+90NE	2
STANDARD AU-S	46

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: SOIL

DATE RECEIVED: JUN 13 1994 DATE REPORT MAILED: // 17/44

SAMPLE#	Au* ppb
LADY 0+00S LADY 0+25S LADY 0+50S LADY 0+75S LADY 1+00S LADY 1+25S	130 29 48 26 19
LADY 1+50S LADY 1+75S LADY 2+00S LADY 2+25S	44 28 8 11 19
LADY 2+50S RE LADY 2+50S LADY 2+75S LADY 3+00S STANDARD AU-S	29 16 21 50

- SAMPLE TYPE: SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.

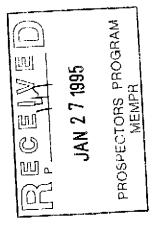
ACME ANALYTICAL LABORATORIES LTD

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-2336 604 - 3rd St., Nelson BC V1L 2P9 Page 1

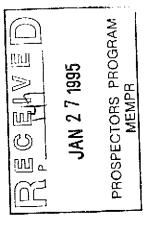

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Ço	Mn ppm	fe %	As ppm	U ppm	bbu Vri		\$r ppm	Cd ppm	Sb ppm	Bi ppm	V mcqc	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	K %	ppm W	ppm ppm	ppm Hg	Au* ppb	
0 90501 0 90504 0 90506 0 90508 0 90509	2 <1 2 <1 1	29 60 57 419 3277	119 36 35 13 12596		.5 .1 .2 1.2 99.3	57 16 17 22 8	15 10 14 69 4	243 170 468 326 482	4.12 5.11 4.15 43.04 9.96	<2 11 <2	<5 <5 <5 <6	<2 <2 <2 11 90	5 2 3 3 2	101 60 29 5 15	<.2 .5 .4 <.2 148.5	<2 <2 <2 23 14	<2 <2 <2 <2 <2 183	49 56 83 2 <2	2.10 .96 .19	.037 .140 .155 .002 .004	16 7	88 38 22 6 7	1.00	45 53 10<	.21 .19 .31 :.01			.05 .11 .01	.69 .70 .02	<1	<5 <5 <5 <5	<1 <1 <1	7 16 7 3160 99999	
D 90510 D 90511 D 90512 D 90513 D 90514	<1 2 <1 5	409 141 65 85 19		160	27.1 .4 3.9 1.1	4 13 4 25 4	2 15 2 2 12	5113 712 345 72 510	9.23 14.25 .67 3.38 4.92	6 20 29	<5 <5 <5 <5	15 <2 4 <2 <2	<2 3 <2 2 <2	90 31 137 26 69	270.4 .8 7.9 .5	33 <2 6 <2 2	<2 <2	<2 47 2 175 70	.61 25.44	115 039 174	7 2 2	30 3 57		39 21 171	.01 .08 .01 .08 .19	3 7 <2 <2 <2	.36< 1.86	.04 .01 .03	.65 .08 .88	12 39 5	<5 <5	<1 <1 <1	14200 1230 2830 680 35	
D 90515 RE D 90515 D 90516	3 3 4	8 8 11	3855 3973 49643	777	43.7 42.8 294.9	5 6 12	1 1 2	47 48 62	1.64 1.58 2.76	36	_	<2 <2 2	<2 2 2	10 10 4	7.7 7.8 37.9	5 5 27	78 78 584	<2 <2 <2	1.24	.008 .008 .009	5	8 7 18	.24 .24 .01	31	<.01 <.01 <.01	2 3 3	. 12		-	. 6		<1	180 160 220	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 SILT

Samples beginning 'RE' are duplicate samples.

DATE REPORT MAILED: High 9/94 DATE RECEIVED: AUG 2 1994

.... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS SIGNED BY


Lloyd Addie FILE # 94-2336

Page 2

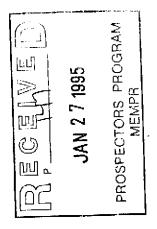
 															_																			
SAMPLE#		Cu		Zn			Co	Mn poor	Fe %	As ppm	U ppm	Au pom	Th pom			Sb ppn:	Bi ppm	pprii: V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti ‰	pipm B	Al %	Na %	K %	ppm :	T1. ppm		Au* ppb	
D 90502 D 90503 D 90505 D 90507 RE D 90507	1 1	34 14 33 55	613	1331 112 1342 1793	9 .1 1.0 1.6	28 25 31 33	9 6 10 13	796 192 831 1299	3.07 1.15 3.22 3.92	8 3 9 11	<5 <5 <5	\$ \$ \$ \$ \$ \$ \$ \$	9 6 10 8	89 71 91 68	3.1 .4 3.2 5.1	<2 2 <2 4	3 <2 3 <2	28 20 33 31	5.87 19.33 5.88 2.29 2.25	.032 .075 .084	7 20 26	10 2 23 2 30	2.05 2.63 1.24	41 76 94	.04 .08 .10	3 2 2	1.18 1.89 2.38	.01 .04 .05	.11 .28 .31	3 12 13	<5 <5 <5	<1 <1 :	9 2360	

Sample type: SILT. Samples beginning 'RE' are duplicate samples.

PHONE (604) 253-3158 FAI (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-2458 604 - 3rd St., Nelson:BC V1L 2P9 Page 1

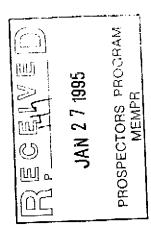

	•	Cu	Pb	Zn	Ag		Co	Mn	₽e	As	U			Sr		Sb		٧	Ca ~	P ¥	La ppm i	Cr	Mg %	Ba '	Ti ኤፑ	B SOM	Al %	Na %	K Y	ppon ⊌	Tl DOM	Hg	Au* ppb
bow	П	pon	bbw	bbu	ppm	ppm	ppii	ppm		bbw i	J.J.JIII	ppiii j	JAN 11	upin .	ppm	him	Post	P-I			PPIII (~ ,	- in				P P - '			
D 90517	1	989	12366	5190	48.2	158	52	1148	28.77	28	29	<2	12	11	41.1	<2	109	19	.25	.078	14	19	.70	11 .0)2	10 1.	27<	.01	.04	<1	<5	<1	2
D 90518 6	6	82	645	108	3.3	6	1	156	6.54	9	<5	<2	6	12	.2	3	10	9	.03	-041	7	7	.05	83 .1	02	3.	40	.01	. 23	1	<5	<1	1
	- 3 2		15773		89.0	18	43	1027	11.58	110	9	<2	4	6	179.6	<2	181	53	.12	.027	<2	9	.28	26 .	D1	4 1.	34	.01	.09	<1	<5	<1	4
D 90520 10		469	1759	328	17.1	34	69	157	13.76	138	<5	<2	4	3	3.3	<2	37	4	.01	.006	<2	8	.09	5<.	01	4 .	.22<	.01	.03	2	<5	<1	16
RE D 90520 10		461	1739	323	16.9	34	68	153	13.68	141	<5	<2	4	3	3.4	<2	37	4	.01	.006	<2	7	.08	6<.	D1	4,	21<	-01	.04	2	<5	<1	16
1																					_	_				_	45.		AF	-		46	200
D 90521 14	4 6	830	16970	17939	210.5	12	34	375	10.42	1629	<5	<2	4	3	148.1	14	652		.02			_==	. 10			_		.01		2	<5	- :	200
D 90522 6	6	143	553	120	7.1	9,	3	1177	4.84	29 3	<5	<2	2	14	-4	<2	14	34	. 13	.081	17		.66			<2 1.				3	<5	-	74
p 90523 18	8 3	8887	5644	4975	71.8	16	37	614	14.25	255	<5	<2	7	5	43.7	<2	243		.08		3	7	. 16			_		.01		4	<5	- :	15
D 90524 8	В	170	5970	1841	19.6	13	4	873	3.72	30	<5	<2	2	6	13.2	2	52	16	.08,	.047	7	23	.31	59 .	01	_		_01		6	<5		7
D 90525 10	D	341	40	52	5.2	24	12	314	3.36	18	<5	22	<2	11	-4	3	47	28	-41	.023	<2	28	.30	21<.	01	3	.53<	.01	.06	13	<5	<1	14300
p 90526 2	2	23	43	45		14		1528	.84	0	< 5	<2	<2	27	.6	5	<2	6	-69	.060	2	9	.03	55<.	01	38	. 17<	.01	.05	3	<5	<1	110
D 90526	E L	64	50		•••	12	16		2.06	4	6	-2	<2	٦,	<.2	ź	50	_		.008	<2	_	.14				.26	- 1	_07	3	<5	<1	34
STANDARD C/AU-R 19	⊶	58	30 37	124	6.8					42	19	7.E	34	51	18.0	14	16				42					_				14	6	2	480

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 SILT P3 SOIL

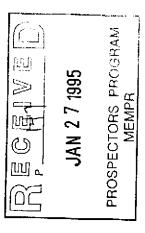
Samples beginning 'RE' are duplicate samples.

DATE REPORT MAILED: DATE RECEIVED: AUG 9 1994

SIGNED BY ...


Lloyd Addie FILE # 94-2458

ACHE MALTTICAL																									-						-			
SAMPLE#	Mo pom			Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe %		D Indici	Au ppm	Th ppm	Sr ppm	Diou Cq	Sb ppm	Bi ppn	V	Ca %	P %	La pom	Cr ppm	Hg %	Ba ppm	Ti %	ppm B	Al %	Na %	K X	ppm Li	T l ppm	Hg ppm	4	
					-		r		4 65			-0			4/ 0	-7	٠	20	1 20	104	19	29	.47	40	.04	6	.75	01	1/	<1	<5	<1	10	
51875	ไ	22	20	482	.5	29	5		1.82	0	2	<2	2		14.8	<2	<2		1.28				•		_					_				
51876	2	26	36	559	.6	29	8	606	2.44	11	5	<2	2	72	17.9	<2	<2	46	1.25	. 169	19	26	.66	90	.07	-	1.56			<1	<5	<1		
51877	2	52	102	1666	1.3	42	8	850	2.50	20	7	<2	2	75	30.5	<2	<2	41	1.43	.098	21	34	.86	69	.09	4	1.97	.02	. 19	< 1	₹5	<1	14	
51878	1	30	42	288	.8	47	7	811	2.33	14	15	<2	<2	124	7.3	2	<2	29	2.09	.106	23	37	.67	139	.05	5	1.55	.01	.17	< 1	<5	<1	12	
51879	,	35		172		66	11		2.82		< 5	_				<2	≺2		1.75			80	1.19	144	-09	3	1.58	. 02	.26	2	<5	<1	6	
31079	_	رر	20	112				710	2.02	30	~,	~_	_	,,,			7	٠,			• • •	•	,			_				_				
51880	1	7.2	215	560	1 7	37	6	RSR	1.83	19	13	<2	< 2	123	6.0	<2	<2	31	2.34	. 131	17	96	.82	136	.05	12	1.12	_02	. 15	<1	<5	1	6	
	ì								2.62			<2				_	_	-		.093		43		138		_	1.71		.17		<5	<1	88	
51881	<u> </u>	22		310		54	7					_	_			_	_									-		<.01			_	<1	130	
51882	3	49	49	704	.8	114	_, 12		2.89		<5	<2	3	50	7.1	<2			1.49			30		126							-			
51883	2	24	80	1014	.5	54	10	585	3.34	31	<5	<2	3	33	8.6				1.42			20	.87			_		<.01			-5		75	
51884	<1	10	5	85	_1	5	6	494	2.89	2	8	<2	9	69	<.2	<2	<2	45	.9 5	.195	42	19	.90	115	. 18	- 2	1.50	.02	.73	<1	<5	3	<1	
																				,														
51885	<1	7	7	74	1	3	6	521	2.60	<2	7	<2	8	55	<.2	<2	<2	40	.78	.123	38	12	.73	76	. 16	<2	1.47	.02	.50	<1	<5	<1	1	
RE 51885*	<1	ė	· 7	73	<.1	5			2.57		7	<2		53		_			74	.116	36	11	.73	75	. 15	3	1.46	02	.50	<1	≺5	<1	2	
			່ວຕ໌	60	~								· -	89	`` `	<2	<2		1.24			12	.64			-	1.50	לח	.30	<1	< 5	<1	4	
51886	<1		25	92	• 1	- >	2		2.28	4	40	<2	_ ≤	=:	{	-	-																41	
51886A	1	19	63	666	3	22	5		2.51	<2	<5	<2		36	3.9	<2	<2		2.57				2.20		. 10	_	1.01		. 18		<5	-		
STANDARD C/AU-S	18	57	37	127	6.8	67	29	1045	3.96	38	18	7	34	49	16.7	13	17	60	.51	.090	40	55	.90	185	.08	33	1.88	.05	. 15	9	<5	2	47	


Sample type: SILT. Samples beginning 'RE' are duplicate samples.

ACHE ANALYTICAL	
SAMPLE#	Au* ppb
JUNO BL 0+25E	1320
JUNO BL 0+50E	20
JUNO BL 0+75E	6
JUNO BL 1+00E	14
JUNO 0+25E 0+40S	6
JUNO 0+25E 0+50S	4
JUNO 0+25E 0+60S	2
JUNO 1E 0+10S	13
JUNO 1E 0+20S	32
JUNO 1E 0+30S	19
JUNO 1E 0+40S	12
JUNO 1E 0+50S	11
RE JUNO 1E 0+50S	53
JUNO 1E 0+60S	7
JUNO 1E 0+70S	18
JUNO 1E 0+80S	12
JUNO 1E 0+90S	1
JUNO 1E 1+00S	9
STANDARD AU-S	53

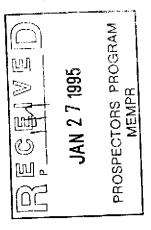
Sample type: SOIL. Samples beginning 'RE' are duplicate samples.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE (604) 253-3158 FAI (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-2458R

١	7	ī	V	
ľ		I	.33	
Ŀ		8	ä	


SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	bbu	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	y ppm	Ca %	р %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	ppm U
JUNO BL 0+25E	1	101	21	530	.6	38	17	970	5 02	4	<5	<2	2	15	1.9	4	2	174	.26	001	4	21	1.88	152	.27	÷ .	3.38	01	24	
JUNO BL 0+50E	1	43	14	115	.4	21	12	500		13	₹5	<2	2	19	.4	Ž	٠ <u>2</u>	82		.080	6	48	.80	56	.17		2.68	.01 .01	.26 .07	J.
JUNO BL 0+75E	1	54	12	72	.4	20	10	420		4	<5	₹2	5	17	.3	ξ.	8	75		.093	7.	44	.66	50	. 18		3.26	.01	.06	<1
JUNO BL 1+00E	1	56	5	87	.3	18	14	731		6	<5	<2	<2	19	.2	ź	5	103		.098	Z	46	.99	95	.22		3.08	.01	.10	
JUNO 0+25E 0+40s	1	18	24	118		15	7	866		5	< 5	<2	<2	8	.7	4	2	52		.112	4	30	.31	66	.17		2.97	.01	.04	1
RE JUNO 0+25E	1	18	24	118	1.9	10	8	873	2.79	5	<5	< 2	2	¢	.3	6	3	53	-08	.115	۷	30	.30	62	. 17	<2 '	3.02	.01	.04	1
JUNO 0+25E 0+50S	1	18	3	60	1.0	12		344		3	< 5	<2	2	6	.2	ō	5	58		.168	- 2	39	.24	41	. 16		4.48		.03	, i
JUNO 0+25E 0+60s	1	23	13	76	.9	17	. 8			4	<5	<2	5	Ģ	- 3	Ĺ	8	46		.106	Ž	29	.30	57	. 15		4.47			<1
JUNO 1E 0+10S	<1	108	5	92	.3	30	19	620		3	< 5	₹2	<2	17	<.2	2	11	176		.148	₹		2.29	119	.23		3.27	.01	.35	3
JUNO 1E 0+20S	<1	115	5	100	.3	27	19	886		<2	< 5	< 2	2	18	<.2	<2	7	163		.105	3		2.03	175	.27		3.58			_
JUNO 1E 0+30s	1	45	15	81	.4	2 2	11	377	3.30	9	<5	<2	2	15	-4	5	<2	77	18	.097	5	48	.78	80	. 17	٠ ري	3.03	.01	.07	1
JUNO 1E 0+40S	1	65	10	86	.2	27	12		4.19	7	< 5	√2	- 2	24	.3	<2	- 4	114		.053	5		1.32		. 19		2.28	.01	.08	. !
JUNO 1E 0+50s	1	88	16	104	1.6	21	10	729		<2	<5	<2	Z	23	1.8	7	10	88		.047	13	52	.86	84	.22		3.85	.02		2
JUNO 1E 0+60S	<1	30	15		.6	16	7		3.83	7	<5	<2		17	<.2	2	3	88		.101	5	46	.65	75	. 19		2.20		.07	₹1
JUNO 1E 0+70S	1	70	10	107	.6	29	11	434		4	<5	<2	3	19	.5	5	<2	141		.141	6		1.42		.21		2.64			<1
JUNO 1E 0+80s	<1	79	4	84	-4	30	7	416	5.59	4	≺ 5	<2	3	9	<.2	6	52	179	12	.065	6	43	1.87	118	.22	-2	3.31	.01	.28	•
JUNO 1E 0+90S	1 1	29	9	68	1.1	12	8		2.45	10	< 5	<2	3	7	.5	5	7	49		.150	7	22	.31	83	.15		3.99	.01	.05	;
JUNO 1E 1+00S	<1	76	12	112	.7	38	12	484		8	<5	<2	<2	17	₹.2	ź	ģ	109		.107	6		1.39	81	.17		2.50		.10	ا م
STANDARD C	19	58	39	–	6.6	68		1044		43	19	6	37		17.9	14	23	60		.090	39	57	.91	185	.08		1.88	.05		<1 12

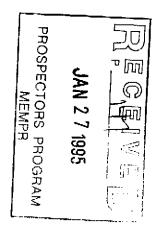
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: AUG 26 1994 DATE REPORT MAILED: HWG 31/94

.D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY. ::

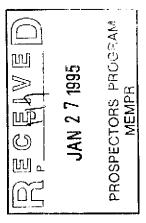
GEOCHEMICAL ANALYSIS CERTIFICATE


Lloyd Addie File # 94-2826 604 - 3rd St., Nelson BC V1L 2P9

SAMPLE#	Mip PPM				Ag ppm	Ni ppm	DDIII Co	Mn	Fe %		U Ppm	Au		Sr ppm	Cd ppm	Sb ppa	Bi ppm	V ppm	Ca %		La ppm		Mg %	Ba ppm	Ti % ;	ppm B	Al %	Na %	K X	pibili l		Hg /		
51887 90528 90529 90530 90531	<1 1 <1 <1 1	5 22 11 8 34	39 29	670	.2	11 47 10 7 27		1533 611	2.42	3 8 7 3 2	5 \$ \$ \$	\$\$ \$\$ \$\$ \$\$	5 5 <2 <2 <2 2	55 55 119 63 45	.4 2.1 .7 .3 <.2	=	<2 <2 <2 2 2		.90 .46	.097	7 17 45 18 13	12 33 16 16 60	3.06		.04 .05	3	.41 1.44 1.90 1.17	.02 .01 .01	.07	<1 <1	<5 <5	<1 <1	1 7 3 16 43	
90532 90533 90534 RE 90534 90535	20	33 93 570 564 107	231 17 20	461	.4 .2	16 9 33 33 57	19 19	1161 423 419	3.91 2.35 4.46 4.46 4.35		<5 <5 <5	<2 <2 <2	<2 8	131 123 102 101 86	.4 5.4 .2 <.2 .7	2 3 <2 <2 <2	3 <2 7 6 5	99 40 78 77 58		.117 .109 .163 .162 .125	46 35		.24 .99 .99	297	.04 .16 .16	2 2 3	1.93 1.80 2.77 2.74 3.66	.01 .03 .03	.12	<1 78 80	<5 <5 <5	<1 <1 <1 1	6 2 41 18 130	
90536 Standard C/AU-S	19	51 58			<.1 6.6	33 74	15 31		3.76 3.96	27 40	<5 14	<2 7	2 36	63 51	.5 17.4	<2 14	2 17	86 60	.73 .51	.089	14 39	51 58	1.04		. 14	_	2.27 1.88		.27 .15	<1 10	<5 <\$	-	47 53	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

- SAMPLE TYPE: SILT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples.


DATE RECEIVED: AUG 24 1994 DATE REPORT MAILED: D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY ...

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUV ASSAY CERTIFI Lloyd Addie File # 94	1CATE A-2950 Page 1 AA
SAMPLE#	Au** O2/t
D 90539 D 90540 D 90541 D 90542 RE D 90542	<.001 .002 .010 .033 .042
STANDARD AU-	1 -097

AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

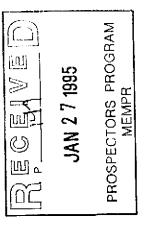
- SAMPLE TYPE: P1 ROCK P2 SOIL Samples beginning 'RE' are duplicate samples.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE


Lloyd Addie File # 94-2950 604 - 3rd St., Nelson BC V1L 2P9 Page 2

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	pp m	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	ppm	Sb ppm	Bi ppm	Ppm V	Ca %	P %	ppm ppm	Er Ppm	Mg %	Ba ppm	1 i	ppm B	Al %	Na %	К %	bbu ñ	Au*
OV 0+00E	2	24	32	157	.2	49	11	414 3	.34	9	< 5	< 2	6	13	.3	4	Ź	100	.30	.110	16	34	2.12	127	.16	4 4	.37	.02	.11	<1	1
OV 0+50E	5	28	41	116	.2	48	12		.17	9	<5	<2	11	15	<.2	<2	4	95	.36	.063	16	31	5.11	154	. 16	5 5	-42	.01	.10	<1	1
OV 1+00E	4	29	92	480	. 1	58	15	1013 4	.03	5	<5	<2	8	15	.4	6	<2	174	.27	. 190	8	31	4.02	100	.17	3 4	49	.01	.11	<1	1
OV 1+50E	<1	26	25	87	<.1	65	18	560 4	.28	5	<5	<2	7	20	<.2	5	<2	98	.40	.061	8	51	4.91	109	.20	4 5	.90	.02	.12	<1	1
DV 2+00E	<1	35	15	82	<,1	87	24	552 4	.52	3	<5	<2	11	22	<.2	5	5	89	.41	.070	22	61	3.02	98	.21	4 6	3.66	_01	.29	<1	1
OV 2+50E	1	22	19	87	<.1	46	15	372 3	.89	5	< 5	<2	7	25	<.2	<2	<2	6 6	.33	.041	14	63	3.42	86	.23	2 6	5.69	.01	.12	<1	1
OV 3+00E	<1	37	17	107	<.1	55	20	448 4	.52	2	<5	<2	9	31	< .2	<2	6	93	.49	.098	17	63	2.75	104	.24	2 5	99	.02	.36	<1	<1
OV 3+50E	<1	18	21	66	<.1	53	15	721 3	.10	<2	<5	<2	9	198	<.2	<2	2	40	1.76	.144	21	51	1.71	76	. 14		5.49	. 14	.12	<1	<1
OV 4+00E	2	44	26	153	<.1	68	17	642 3	.66	3	<5	<2	12	47	<.2	<2	6	130	1.01	.160	25	47	4.14	257	-17	4 5	5.27	.03	.31	<1	2
OV 4+50E	<1	23	17	146	.3	27	12	723 2	.94	2	<5	<2	4	17	.2	2	3	47	´.21	. 153	15	24	.40	158	. 18	3 :	5.59	.02	.09	<1	1
RE OV 4+50E	<1	22	14	141	.1	26	11	700 2	2.85	4	<5	<2	4	16	<.2	<2	4	47	.20	.148	14	23	.39	153	. 17	2 !	5.42	.02	.10	<1	1
DV 5+00E	<1	21	25	203	. 1	35	13	1077 3	.36	7	<5	<2	5	33	.3	<2	3	68	.83	.097	14	31	.87	87	. 17	_	4.09	.02	.11	<1	1
OV 5+50E	1	22	32	155	.3	24	10	606 2	.89	4	<5	<2	2	13	<.2	<2	<2	68	.22	.127	16	23	.59	93	.13	2	2.72	.01	.11	<1	1
STANDARD C/AU-S	19	56	41	126	6.9	73	31	1042 3	396	42	15	7	38	53	19.0	15	21	62	.49	.092	40	59	.93	183	.08	34	1.88	.06	. 15	10	52

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 SOIL

Samples beginning 'RE' are duplicate samples.

SIGNED BYD. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-3061 604 - 3rd St., Nelson BC V1L 2P9

	SAMPLE#	ŀ	Cu ppm			Ag ppn	Ni ppm	Co ppm	Mn pp m	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr pom	Cd ppm	Sib ppm	Bi pom	V ppm	Ca %	P %	Le ppm (Cr opm	Mg %	Ba ppm	Ti % (bb w B	Al %	Na %	К %	ppm W	T l ppm	Hg ppm		
	- TD/54		400		440		.,	77	401	4.13		< 5	< 2	<2	44	7	<2	< 2	88	0 7	. 134	2	50.2	- 68	247	. 18	<2	2.71	.05	.36	<1	<5	<1	7	
	E 38651	1 .	109	_	118	- 1	44	23			٥		×2	<2		.8	<2	√ 2	89		. 133	_		_				2.70		.36		<5	<1	6	
	RE E 38651		110	٠	120	- 1	444	23 75		4.13	۲,	<5 -≥	_	_	45 42	.5	-	<2			.119	_	84			.21	_			.85	<1	<5	<1	1	
	E 38652	<1	33	4	54	• 1	44	35		3.81	•	<5 	<2	<2			-2				.116	_	87 2			.25					151	< 5	<1	4	
	E 38653	2	143	33	67	د.	48	26		4.38		<5	<2	<2	39	.3	<2	<2	_	.06	.002	<2	13	.03		.01	7.			.01	7	<5	<1	<1	
	в 51 88 8	3	5	2	10	-2	10	7	54	.33	<2	< 5	<2	<2	3	<.2	5	<2	3	.00	.002	```	1.3	.03	21	.01	-	.05			-			- •	
	e 777na		27	47	50	4	33	47	829	3.61		Ð	<2	10	440	.2	-2	<2	4	13.83	.034	21	13	1.21	15<	.01	<2	1.08	.02	.09	1	<5	<1	1	
	£ 73301		27	74	50 7/	•	22	13			3	- 5	√2		79		7	<2	8	1.26	.019	17		.06		.01	<2	.34	.05	. 11	<1	<5	<1	2	
	E 73302		23	54	14		y		465		4	<5 	_				2	_	100	2.18		15	₹ :	2.34	33	11	_			. 12	<1	<5	<1	<1	
	E 73303	2	8	4	102		4	- 17	945	7.41	ڊ	<5	<2	<2		.3	<2		100			7		3.36		.01	10	.26		. 12	3	<5	<1	6	
	D 90537	2	14	16	18	- 1	18	4	184	1.16		<5	<2	<2	13	.2		<2	13	2.47	.008							•			-1	<5	1	1	
	D 9053 8	24	76	17	556	-4	73	12	432	4.99	5	<5	<2	2	55	4.0	9	< 2	144	1.60	.177	15	52	.35	41	-07	۷	1.11	.05	.04	<1	• >	1	'	
•	b 005/7	<1		7	18	2	ı.	7	446	1.71	٥	<5	<2	2	14	.3	₹	<2	4	.21	.055	10	4	.03	57-	<.01	<2	.39	.04	. 19	<1	<5	<1	19	
	D 90543	-,		'	10		7	40						7			ž		7	1.10		11	į.	72	42	04	3	.53	. 05	. 25	<1	-5	<1	44	
	D 9054 4	2	4	5	14	- 1		18		=	•	< 5	<2		60	<.2	2	₹2				' '	35	1.24	- :-		<2			19	1	<5	<1	4	
	D 90545	2	37	13	23	1	35	25	146		<2	<5	<2	<2	51	.2		_	112						16		_					-5	<1	2	
	D 90 546	1	100	11	45	- 1	33	20	418	6.50	3	<5	-2	- 2	34	.2	<2		163		. 114	2	- ::	2.01				1.89		.29		_		500	
	STANDARD C/AU-R	19	57	40	129	7.4	74	32	1097	4.16	42	18	8	37	51	19.1	15	18	62	.50	.095	41	61	.91	187	.09	59	1.97	.07	. 16		<5		500	

1CP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: ROCK

PROSPECTORS PROGRAM MEMPR 1995 ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-3177 604 - 3rd St., Nelson BC V1L 2P9

SAMPLE#	Mo ppm	Cu	Pb ppm	2n ppm	Ag	N f	Co ppm	Mn. ppm	fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Çd pçm	Sb ppm	8 i ppm	Ppm V	Ça %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tī X	ppm B	Al %	Na %	K X	bbw	Au*
			•••											~ ~ .	•			04		10/	10	37	1.13	496	. 18	· <2 3.	az.	.02	.35	1	11
R 0+00W	2	192	64	139	.1	41				15	<>>	<2	4	94	2.2	≺2	< <u>2</u>	91		. 194	19					2 3.		.02	.21	÷	
R 0+50W	2	175	23	82	.2	. 41	31	1103	4.86	10	<5	<2	5	88	1.0	2	3	81		. 154	19	30	.90	337	.18						-
RE R O+50W	2	187	24	86	<.1	44	33	1177 !	5.17	9	<5	<2	4	92	.9	<2	3	85	.48	. 166	20	32	.97	356	. 19	<2 3.		.02	.23	<1	2
R 1+00₩	3	1947	22	65	2.3	25	10	312	7.17	10	<5	<2	6	73	1.2	<2	2	107	.26	. 155	15	46	1.27	224	.25	<2 4.		.03	.42	51	88
R 1+50W	4	873	22	89	.7	23	9	602		6	<5	<2	12	76	.8	<2	7	105	.38	. 153	30	55	1.33	342	.23	<2 3.	.00	.02	.30	72	9
	_		20	~~		74	17	007	5.84	12	<5	<2	6	63	1 0	2	6	83	.29	. 121	20	73	1.08	275	.21	2 2	.71	.02	.24	57	10
R 2+00W	_	1035	20	99	1.6	26	13						-	74	1.1	-3	3	77	.32	180	20	34	.80	255	.17	<2 3.	44	.02	.23	79	8
R 2+50W	5	1023	29	87	٠.		17		5.52	8	<5	12	3		2.2	``		70	.39	. 134	25	30	.81	240	15	<2 2.		.02	.22	65	4
R 3+00W	4	530	84	111	.4	24	31	819		11	<5	<2	3	97	2.4		- 2	70				•-		272	17	3 3		.02	.39	91	ż
R 3+50W	9	596	24	74	.5	41	26		5.13	11	<5	<2	٥	109	1.0	- !	<2	- 11		.197	24	46			- 11	2 3.		.02	.57	108	10
R 4+00W	10	841	41	96	.4	35	15	565	5.49	14	<5	<2	5	104	1.5	4	<2	82	.36	. 149	28	70	1.38	239	. 18	2 3.	. 37	,uz		100	10
R 4+50W	ς.	460	24	89	4	30	18	665	4.34	8	<5	<2	10	89	.8	<2	<2	64	.48	.103	26	29	.68	233	.20	4 3		.02	. 19	41	2
	1 %	244	30	94	ĭ	47	15			14	<5	<2	6	43	.8	<2	<2	79	.26	.113	20	51	.87	244	. 23	3 3.	.06	.02	. 15	32	3
R 5+00W Standard C/AU-S	18		38	127	6.9	74		1032			17	6	37		17.5	13	18	60	.50	.090	41	56	.89	188	.08	33 1	.88	.06	. 15	10	49

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

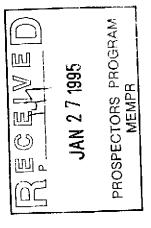
AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are duplicate samples. - SAMPLE TYPE: SOIL

PROSPECTORS PROGRAM
MEMPR <u>س</u>ا د 1995

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

<u>Lloyd Addie</u> File # 94-3338 Page 1 604 - 3rd St., Nelson BC VIL 2P9

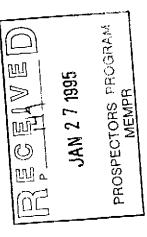

SAMPLE#	Mo ppn	Cu ppm	Pb ppm	2n ppin	gA mag	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au pom	Th ppm	\$r ppm	Cd ppm	Sb	Bí ppm	ppm_ V	Ca X	P %	t.a ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na X	к %	biou N	ppb
			• • • • • • • • • • • • • • • • • • • •		,,			740		-	-E	< 2		9 6		< 2	5	159	.78	.114	5	16	2.36	28	. 14	2 2	2.88	.22	. 13	2	3
D 90548	2	420	18	28	1.1	15	28	318			<5		-2	47	د.	2	√ 2	116		120	5		1.31	148	.23	<2 1	.63	.14	1.17	2	10
D 9054 9	2	398	5	25	-5	9	8		5.51	2	<5 	<2	-2	78		7	7.	109		133	í		1.00	39	-17	<2 '	.74	.23	.66	2	44
D 90550	2	968	4	18	-6	20	26		5.05	2	<5	<2	<2	35	<.2	<2 <2	<Ž	19		.042	18	41		44	09	2 2	2.19	.06	.08	9	1
D 905 54	1	48	5	87	. 1	53	15	805			< 5	<2	0	33	• • •	~~	1538	17		.010	5	- 5	.01		< 01	2	.11	.01	.10	17	<1
D 90555	50	13	76	43	.2	6	<1	43	1.52	<2	<5	<2	4	4		>	(330	2	.02	.010	•			٠.							
						_	_			_	_		_	,	- 5		26	•	-01	.009	₹	7	.02	30	<.01	3	.21	.02	.17	143	1
D 90556	1607	8	141	18	1.9	7	<1	38	.89	2	<5	<2	.5	- 6	<.2	<2	20	17		064	17	28	.52	123	13	2	.91	.04	.58	60	1
D 90557	24	23	10	155	<.1	21	7		2.46	<2	<5	<2	13	21	1.7	-	74/5		.38		12	17	.53	28	.08	3	_81	.03	.52	48	5
D 90558	891	1 9 5	89 7	625	1.5	21	12	435		<2	<5	<2		19	8.1		2145	19		1075	12	17	.54	26	.08	2	79	.02	.51	49	5
RE D 90558	893	187	920	635	1.4	21	12		5.84	2	< 5	<2		18	8.5	_	2127	19	_		21	37	.73	96	.16	- -	1.38		1.07	2	1
D 90559	39	19	12	105	< . 1	43	16	454	3.58	<2	<5	<2	14	22	-4	2	6	19	:69	.041	41	31	.13	70	. 10		1.50			_	•
											_	_	_		_	_	.n	-	15.36	0/7	12	=	3.41	69	<.01	<2	.31	.03	.10	1	1
D 90560	5	22	7	60	- 1	34	9		2.31	7	<5	<2	5	328	<.2	-2	<2	-		.041	12	7	.35		< .01	<2	.28	.01	.06	126	78
D 90562	16093	68	<2	77	.2	20			1.71	<2	6	<2	2	17	-7	<2	50	21					.67	12	.01	<2	.13	.01	.02	. 4	25
D 90563	2574	81	<2	83	.1	23		1772		<2	21	<2	_2	20	3	- 2			5.19		76	- 6	.93	189	.08	34	1.88	.05	. 15	12	
STANDARD C/AU-R	19	58	36	128	6.8	73	33	1057	3.96	43	14	7	3 5	49	18.5	15	18	61	.49	.093	40	60	-73	107	.00				• • • •		

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 SILT

Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: SEP 26 1994 DATE REPORT MAILED: Ot5/94 SIGNED BY....

.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS


Lloyd Addie FILE # 94-3338

Page 2

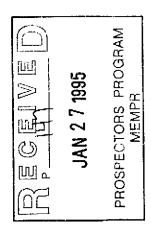
SAMPLE#	ррт р			2n pom	Ag		Co	Mn ppm	Fe %	As	U maga	Au ppm	Th ppm	Sr ppin	Cd	SID SID	Bi ppm	V	Ca %	P %	La ppm	Cr Ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	ppm	ppb	ppb ppb	
D 90551 D 90552 D 90553 RE D 90553 D 90561	1 <1 2	19 23 44 45 25	19 21 20 16 20	70 72 125 126 303		20 21 51 48 29	-	1179 664 449 434	2.38 2.43	<2 <2	<5	<2 <2 <2 <2 <2 <2	4 6 11 11 7	86 23 89 89 40	.4 .8 .6 .9	<2 3 <2 2 2	2 <2 <2	10 20 20	1.37 .43 4.30 4.40 5.05	.106	16	36	.42 .41 1 .23 1 .24 3 .93	58 55	.03 .04 .04	_	.93 .83 1.10 1.08 .95	.01 201 201	.08 .04 .04	<1	3 4 6 9 8	<3 <3 4 <3 7	5 4 5 5 <3
D 90564 D 90565 D 90566 D 90567 D 90568	1 4	18 61	61 276	315 1268	.2 .6	23	5 9 7	399 334	2.51 1.87 3.29 2.95 2.43	4 5 11	<5 6	<2 <2 <2 <2 <2	5 10 5 11 7	26 27 43 34 36	4.2 3.8 16.9 4.4 1.4	3 <2 <2 <3 4	<2 <2 <2 11	62 143	3.55 5.93 1.06 1.14 .87	. 150 . 139 . 152	12 16 28	13 23 27		26 208 201	.03 .13 .08		.91 .58 1.76 1.19 .63	.01 .02 .03	.07 .36 .15	2 <1 <1	1496 377 12 12 22	4 <3 4 6 <3	7
STANDARD C/FA-100S	20	63	42	136	7.4	71	31	1076	4.09	43	21	7	41	52	18.8	15	21	60	.51	.093	41	61	.97	188	.09	40	1.94	-07	_17	13	53	49	46

Sample type: SILT. Samples beginning 'RE' are duplicate samples.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716


GROCHEMICAL ANALYSIS CERTIFICATE

Lloyd Addie File # 94-3790 Page 1 1102 Gordon Road A-801, Melson BC V1L 3M4

SAMPLE#	Mo	Çu	Pb ppm	2n ppm	Ag ppm	Ni	Co	Mn maga	Fe %	As ppm	U	Au DOM	Th DOM	Sr ppm	Cd ppm	•	Bi ppm	V ppm	Ca %		La xom p	Cr Opn	Mg %	Ba ppm	Ti %	ppm B	Al 7	Na %	K %		Au* ppb
D 90547 D 90572 D 90575 D 90576 RE D 90576	1 3 7 4	3323 13	4 8 11532 1681	44 7 86069	4.2 .2 10.7 34.3	9 9 46 27	10 1 2 9	321 52 151 161	4.58 .94 6.53 1.78	<2 4 46 38	<5 <5 <5 18	<2 <2 <2 <2 <2 <2	2 2 <2 <2 <2 <2	70 6 89 152	.9 <.2 976.8 1909.8 1913.0	2	5 <2 <2	220 <2 22 26	.81 .10 .01 .0 5.66 .0 15.51 .0	111	5 2 3	10 <1 <1	2.67 .01 3.31 11.48 11.57	3< 10-	.28 c.01 c.01 c.01		.05 .02•	.01 .01 .01		2	16
D 90577 D 90578 D 90580 D 90581 STANDARD C/AU-R	19 4 3 5 21	94 134 50 48 63	8388 114 1511	12284 1280 1185	1.2 22.0 2.5 .5 7.4	64 29 16	12 2 4		19.94 2.55 .86 2.75 3.70	11 22 6	<5 <5 <5 15	<2 <2 <2 <2 <8	<2 2 3 10 38	10 1651 128 16 53	209.6 233.8 19.6 11.1 19.4	23 5 3 5 15	₩ ₩₩₩	175 18	14.42 .0 2.20 .9 .43 .0	016 204 035	<2 77 17 16 41		17.55 .16	31 121 59	.04 <.01 <.01	30 4 2	1.07 .39	.02	<.01 .08 .26 .27	<1 <1 <1	23 3

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILLITED TO 18 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. - SAMPLE TYPE: P1 ROCK P2 SILT Samples beginning 'RE' are duplicate samples.

SIGNED BY

Lloyd Addie FILE # 94-3790

Page 2

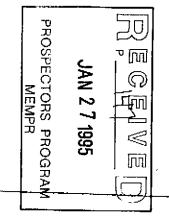
ACHE ANALYTICAL																															
SAMPLE#	Mo	Cu ppm	Pib ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	mdd uM	Fe %	As ppm	Dibur N	Au ppm	Th ppm	Sr ppn	DDU Cq	Sb	Bi ppm	V ppm	Ca %	P %	La ppm	ppm Cr	Mg %	Ba ppm	Ti %	ppm	Al %	N8 %	К %		Au* ppb
D 90569 RE D 90569 D 90570 D 90571 D 90573	1 1 2 1	21 21 13 16 17	31 28 11 25 16	376 378 97 86 261	.2 .2 <.1 <.1	19 19 27 27 27	3 3 5 11 4		1.23 1.30 1.52 2.93	<2 2 3 4 4	9 11 <5 <5 16	<2 <2 <2 <2 <2 <2	7 9 12 8 3	13 14 43 33 35	7.6 7.8 1.3 .7 4.8	2 3 2 3 8	<2 <2 <2 <2 3 <2	77 81 62 30 34	.79 .67	.103 .109 .097 .085 .163	21 23 22 27 9	14 15 23 32 8	.21 .22 .34 .58 12.42	93 96 55 107 24	.04 .04 .06 .11		.61 .64 1.14 1.43	.01 .01 .04 .02	.08 .08 .18 .43	<1 <1 <1 1	<1 1 1 15 5
D 90574 D 90579 STANDARD C/AU-S	1 1 21	17 19 63	27 290 5 42	80 1523 126	<.1 <.1 7.4	24 27 7 3	11 8 32		2.56 4.45 3.70	<2 31 43	<5 <5 15	<2 <2 8	7 2 38	32 42 53	.6 1.7 19.4	3 6 15	<2 <2 23	24 44 60	6.61	.084 .103 .095	26 11 41	28 25 62	.63 5.63 .91	94 84 182	.09 .05 .08	3	1.31 .71 1.78	.02 .02 .07	.41 .09 .16	<1 <1 14	3 2 52

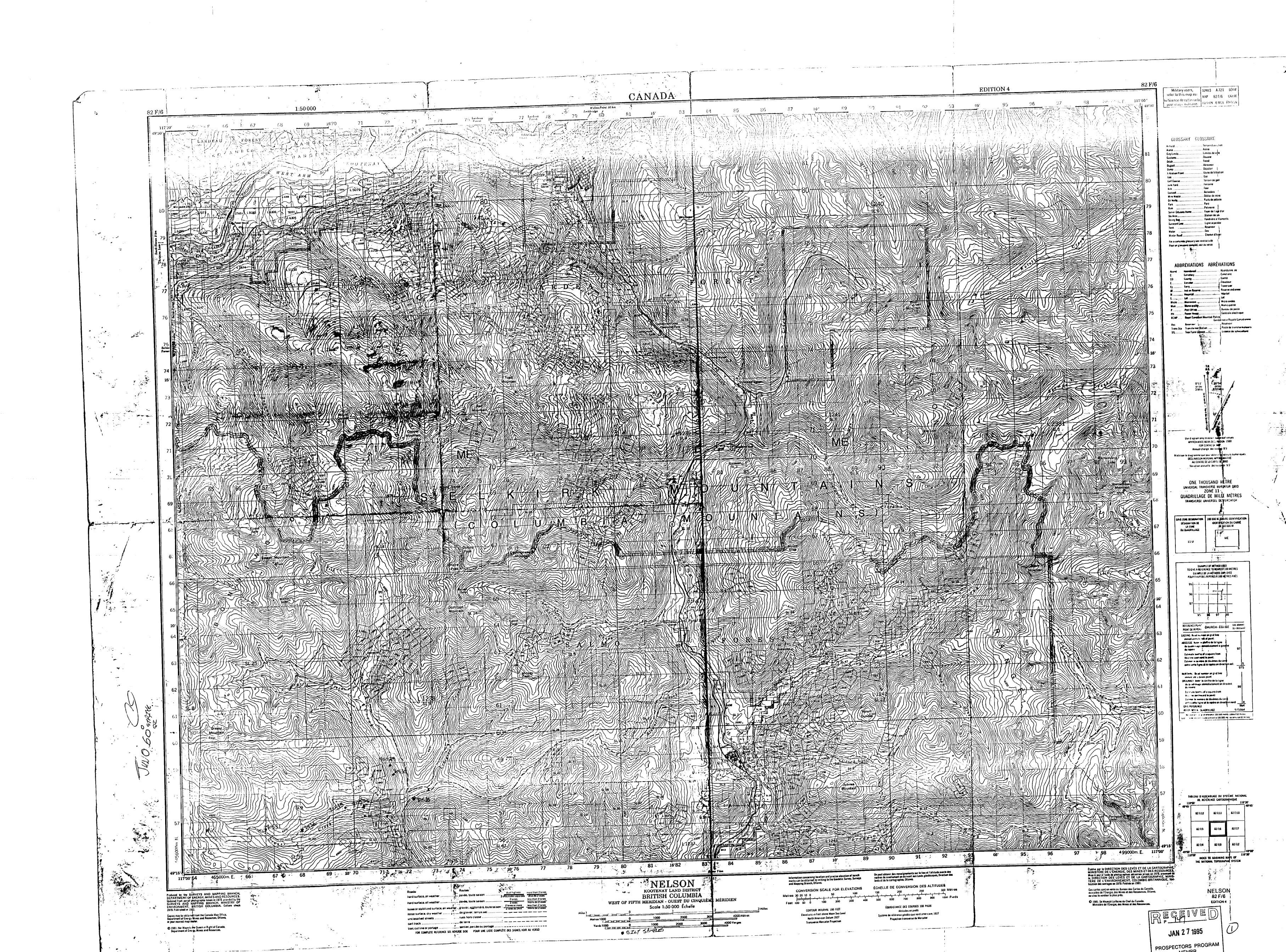
Sample type: SILT. Samples beginning 'RE' are duplicate samples.

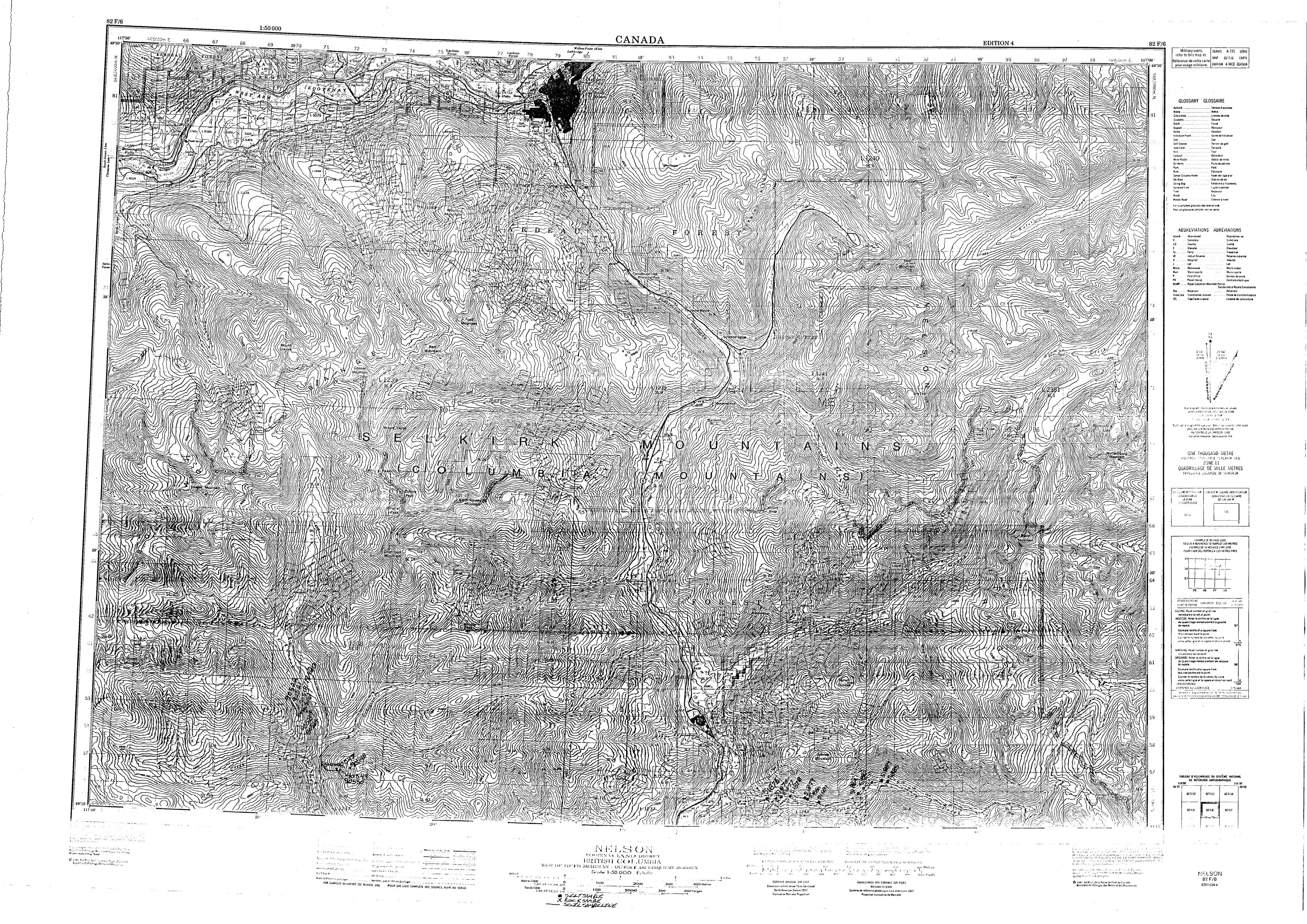
0 0 4

Geochemical analysis certificate

R.J. Bourdon File # 94-3941 Page 1

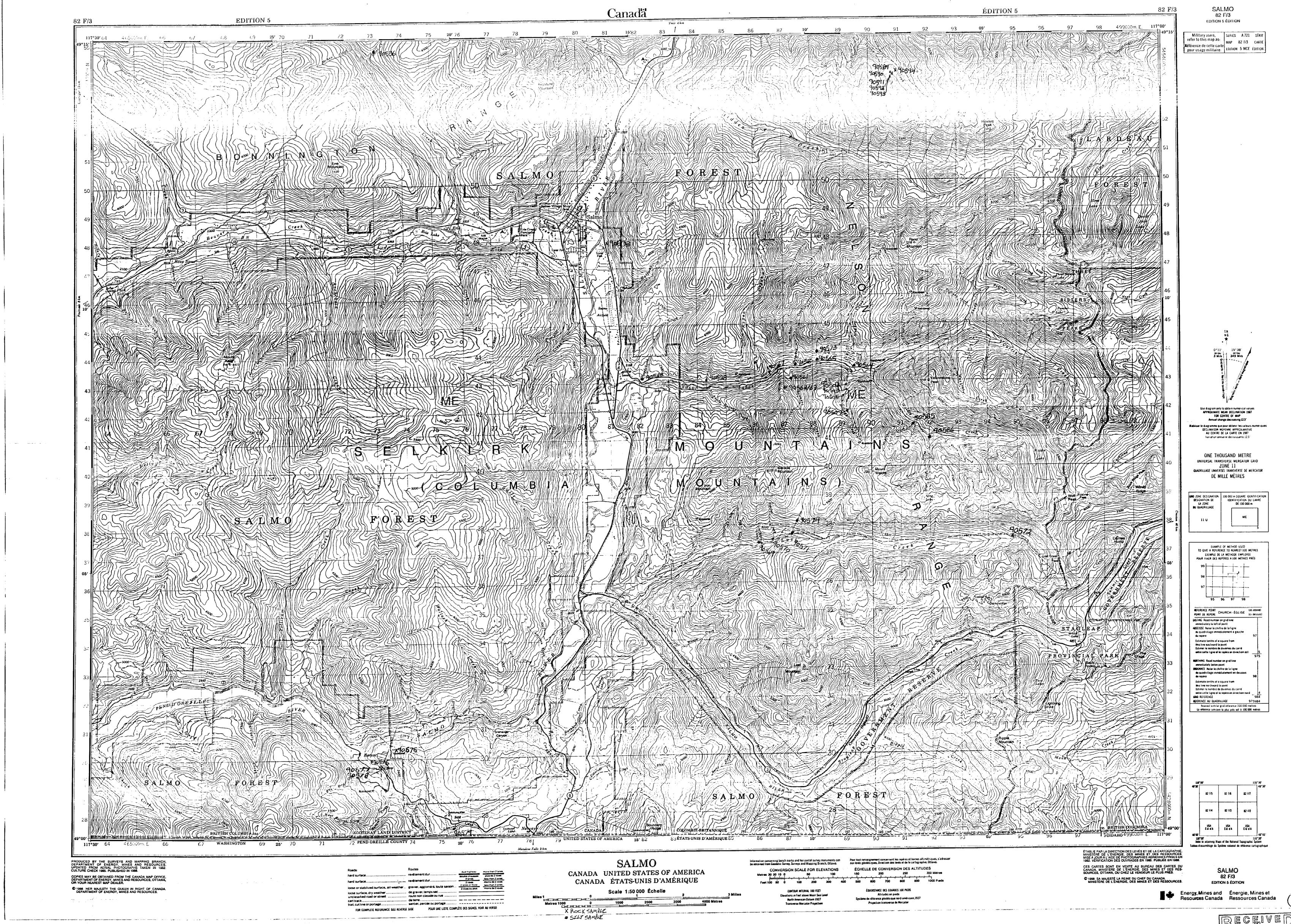

SAMPLE#	to Mo	ppm	PID PIDM	Żn pp m	Ag (PIDIN	Ní ppm	Co	Mn ppm		As ppm		Au ppn	Th ppm	Sr ppm			Bí ppm	V ppm	Ce Y	P		Cr	Mg	Ba	Τi		AL	Ne		√ Au*
38579	9	62	8	58	.9	26	1	60	.91	<2											Phil	ppm	<u> </u>	bbu	* p	(M	*	*	X pp	n pipib
38581 38582	11	14	16	75	3.4	16	1	18	.82	14	<5 <5	<2 <2	_	113	.7	_	<5	316	2.56	-664	8	53 1	1.28	328	.06	0 1	0/			
38583	12	10	13	76	1.2	14	2	34	.75	19	<5	<2	6		.4		<2	149	-25	. 132	16	13	10	990		B .	.86 .49 .1			2
51891	11	12	6	30	2.1	16	2	43	.76	19	3	<5	4		.8	10	<2	3 B	.08	.074	12	9						01 .2		11
171071	9	215	23239	962 83	61.6	31	13	4259	6.39	<5	7		3		.5	10	_	21	.04	.058	4	_		1214<				01 .1		14
51892	١.							•	,	-	'	~£	ıD	193	669.5	67	5	13	7.73	.067	9	12 1	.80			د کا	.11<.(.55 .(/ .Մ)7 2	
51893	!	37	314	878	.B	43	12	694	2.51	2	<5	<2	16	229			_										۶. در	49 . 1	15 <1	51
51894		209	5214	97044		20	7	247	4.02	۲Ž		<2			4.7		5	25	10.16	.072	15	29	.66	78	.08	2 3	.14 .1	12 -	10 - r	
51895	د ا	95	121	2207	. 3	9	1	127	.34	<2		₹2	<2	62	1409.6		2		16.21	.010	6	<1.7		104<		٠Ž .	15<.0	13 .c	!O <1	
90582	-	20 EA	3149		2.3	34	40	173	22.37	10	ø	<2	4	69	16.8	2	<2		3.89	.012	₹2	-8	.38	265			16 (71 .U 14 m	19 <1 19 <1	
,	'	58	152	1772	1.2	49	16	106	3.87	3	7	٠2	11	45	360.8 13.3	_	<2		9.03	.007	5	63		46		Ž.	13 e 1	/ .u	7 <	
90583		2	44							-	•	_		7.	13.3	<5	<2	27	2.31	.036	4	37 1	.30	334		2 1	78	17 (3 <1	2
90584	ایا	2 1 3 1	29	209	.1	11	1	59	.91	5	В	<2	<\$	143	1.1	7	-0	4											3 1	٤
90587	17	73	139	1319	1.2	34	6	56	2.31	5	7	<2	5	54	7.9	-3 <2	42 42		40.50	. 097	<2	2 1	.42	98<	.01	8 .	16<_0	11 1	1 ≺ t	•
90588	ľģ.	95	36 14	143	.8	78	7	73	1.43	<2	15	<2	11	98	1.0	2	<2		2.27	.505	4		.69	601	.06	3 1	70 .0	G 4	กั้	7
90589	17		10	76	1.3	43	6		2,40	2	13	<2	12	73	-7	<5 €	<2	270	7.11 1	.302	25	49 4	. 11	103 .	.08	8 3.	47 .1	3 0	4 2	ı.
	' ''	74	10	1667	1.4	84	8	59	1.87	6	<5	<2	11	23	16.5	<2	د 2 1	59 1295	7.10 1		29		00،	77 .	.07	6 2.	22 .0	2.5	Ř ~1	7
90590	6	99		1400			_								10.0	·L	~ 1	CA3	.57	-042	<2	65 1	.47	290	. 12	4 1.	98 .0	6 9	5 1	1
D 90590		101	7	1692 1674		37	7		1.45	<2	9	<2	3	48	18.2	<2	6	43	4 15		_					_		•	•	'
90591	4		1898 2		.6	38	7		1.47	<2	8	<2	2	49	18.1	<5	5	_	1.45	.231			.20	71.		5 1.	14 .00	3 .T/	2 6	43
90592		291	219			28	3	671 2	6.03	<2	31	<2	4	16	69.9	_	52		1.44	.230	9		.20	75.	05	6 1,	14 .03	3 .1.	2 7	3B
90593		16		1299		44					<5	<2	3	6	₹,2	₹.	3 2	4		.094	<2	6 1.	.36	8<.	01 <	2 ,(09<.0	1 .07	2 2	96
				1677	-6	6	1	154	. 93	2	<5	<2	2	175	1.6	2	3			. 052 . 077	<2	2 <.		3∢.		2.6	96<.0°	1 .01	1 1	9
90594	2	17	74	140	.5	n		160		_						_	~		.a. 13	. 0 (/	<2	<1 .	.07	8≺.	Ó1	5 .0	07<.0°	1 .01	i <i< td=""><td>ź</td></i<>	ź
ANDARD C/AU-R	20	63	39			9 68	.! 74 4	180	1.58	3	<5	<2	2	43	.4	<2	<2	24	.55	.042	•	7	00							-
						90	<u> </u>	U3 Z	3.96	41	19	7	37	53	19.0	14	17	62			9 40		20 89	81 . 183 .		4 .5	i7 .10 18 .07	0 .20	J 2	3

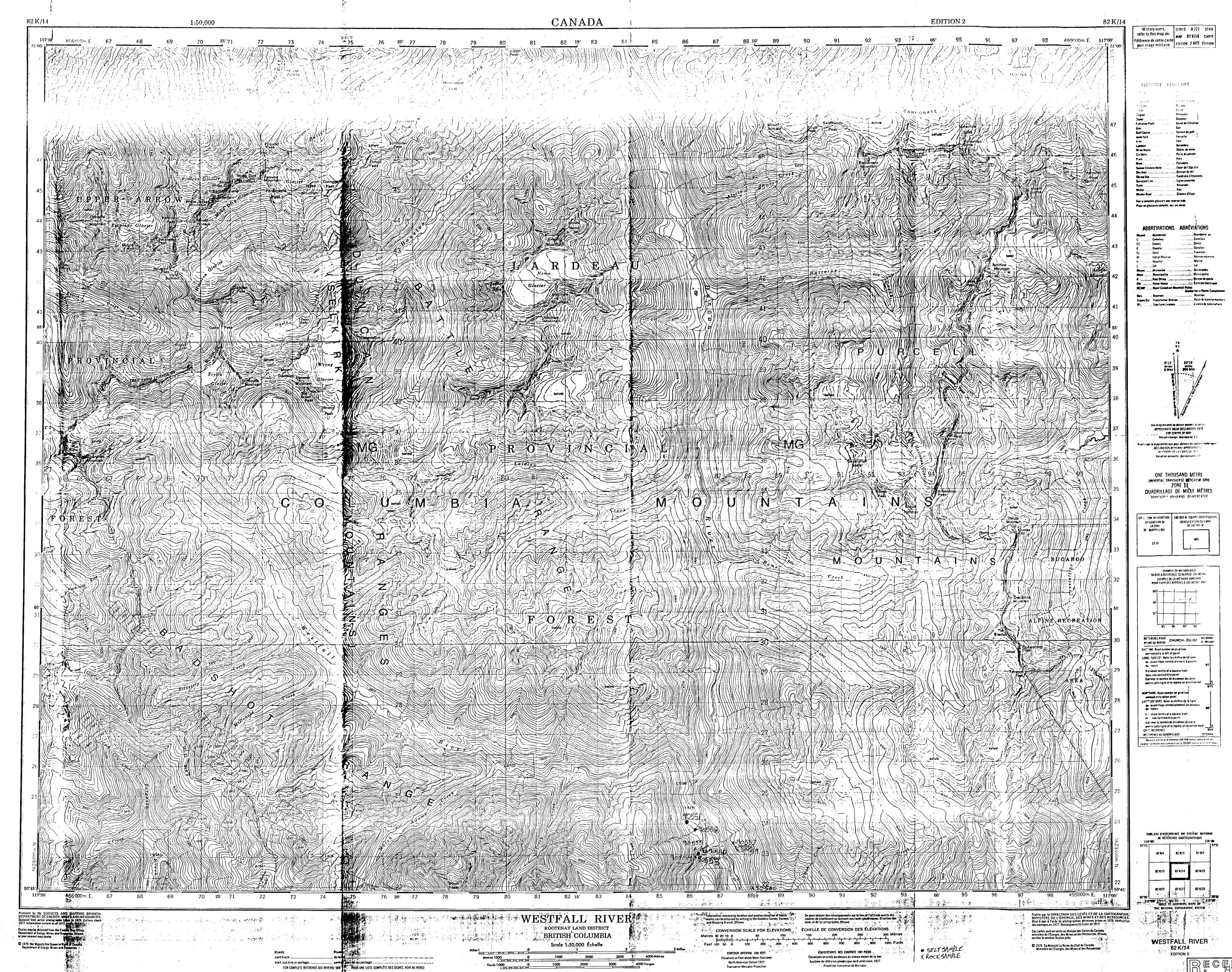

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-MND3-H2D AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SILT P3 SOIL


AU* ANALYSIS BY ACID LEACH/AA FROM 10 GK SAMPLE. Samples beginning 'RE' are duplicate samples.

DATE RECEIVED: DATE REPORT MAILED:

SIGNED BY ... 7 -D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS




JAN 2 7 1995

PROSPECTORS PROGRAM
MEMPR

JAN 2 7 1995

PROSPECTORS PROGRAM
MEMPR

JAN 2 7 1995

PROSPECTORS PROGRAM
MEMPR