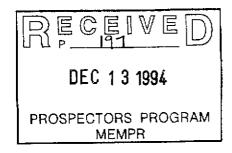
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH


PROGRAM YEAR:1994/95REPORT #:PAP 94-58NAME:LYNN GREXTON

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continue	
 B. TECHNICAL REPORT * One technical report to be completed for each project area * Refer to Program Requirements/Regulations, section 15, 16 and 17 * If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL 1 	PROSPECTORS PROGRAM MEMPR
Name <u><i>Pi</i> hyww Grekr7:</u> Reference Number <u>94-9</u>	
LOCATION/COMMODITIES Project Area (as listed in Part A.) <u>DAVINCI - CACHE Cretek</u> Minfile No. if apple Location of Project Area NTS <u>927/3E</u> Lat <u>50°49</u> Description of Location and Access <u>via Hwy 99N 40 minutes</u> <u>Cache (reck to small dirt road heading N from</u> <u>Junction</u>	Long 121 37 west from
Main Commodities Searched For <u>An lu Pb Zn</u> Known Mineral Occurrences in Project Area <u>Limestone</u>	
Description of mineralization, host rocks, anomalies	14 units
· · · · · · · · · · · · · · · · · · ·	

Supporting data must be submitted with this TECHNICAL REPORT.

। स

e de la

DAVINCI PROPERTY

(DaVinci 1 to 12)

GROUND MAGNETICS, ELECTROMAGNETICS, GEOLOGY AND GEOCHEMISTRY

Latitude: 50°49'

Longitude: 121°37′ W

N.T.S. 921/13E

KAMLOOPS MINING DIVISION British Cclumbia

> Vancouver, B.C. November 1994

P.L. Grexton

SUMMARY

The DaVinci Property is located in the Marble Range, 36 km west of Cache Creek, B.C. on N.T.S. map sheet 92I/13E. Claims cover a forested area of low, rounded ridges and gently slopes. Road access to the claims is available from Highway 99N via a narrow dirt road.

DaVinci is within the Cache Creek Terrane and is primarily underlain by limestone with local, narrow interbedded chert. Poorly exposed outcrops of intermediate volcanics and greenstone were found at several locals. Regionally, this assemblage forms a broad, northwest trending belt bounded by strong, north-northwest faults. Claims protect a 3 x 5 km, subcircular regional aeromagnetic anomaly of 4400 gammas above background which is postulated to indicate an intrusive body at depth. There is no record of previous exploration of this target. Historical records report gold assays in excess of one ounce per ton in quartz and jasper veins found at the base of the Marble Range, west of Clinton. In this area, a large portion of the Cache Creek Terrane has been removed from mineral exploration by a recent land use decision. Despite the very high mineral potential of this belt, additional areas are under consideration for alienation, including the DaVinci Property.

Comprising 61 contiguous units, the claims protect an area deemed to have excellent potential for hosting base and precious metal mineralization related to epithermal, mesothermal and/or contact metasonatic mineralizing processes.

Between June 11 and October 2, 19994, the writer spent 32.5 days on the property. Work consisted of 25.1 line km of grid construction, the completion of 24.4 and 15.4 line km of magnetic and electromagnetic surveying respectively and the collection of 55 rock samples and 4 silt samples. Samples were analysed for Au by atomic absorption and 32 other elements by I.C.P. Geochemical analyses were completed on 27 rock samples for Hg and on 29 rock samples for Te. An additional 14 claim units were staked to protect areas of potential mineralization and to secure road access which could be lost in the pending land use decision.

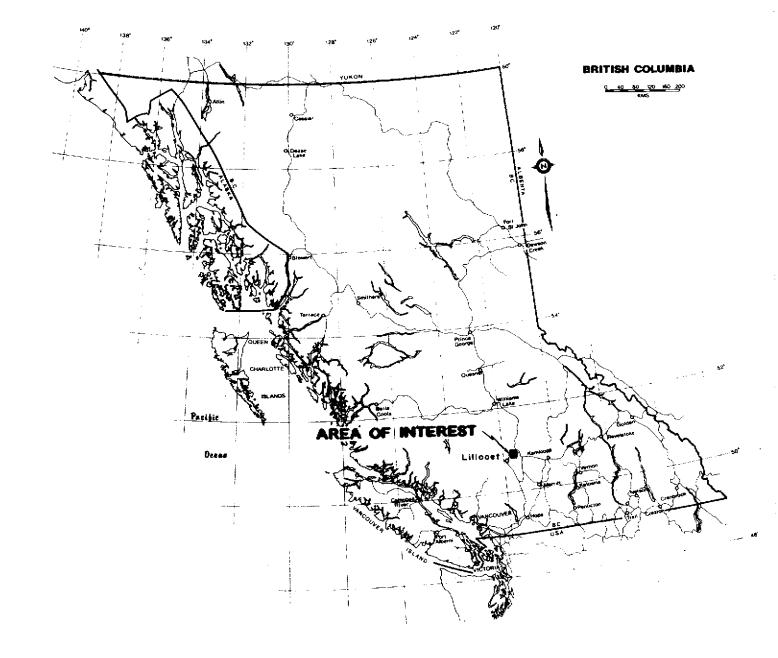
Evidence of silicification is present in all rock types as minor quartz stringers, fracture fillings and boxworks. Intense, pervasive silicification and fine brecciation was found in several samples. An outcrop of jasperoid was located on the newly acquired claims on the eastern portion of the property. Pervasive, weak sericitization/saussuratization occurs within andesite feldspar porphyry. Minor amounts of pyrite and hematite occur locally.

Magnetic surveying has outlined an anomaly indicative of a magnetic body roughly 2 km in diameter and at a depth in excess of one km. On the western half of the property a number of volcanic (?) bodies, 25 to 100m wide and +600m long have been identified. The noisy electromagnetic response for the survey area is more typical of shales than carbonate rocks, Majority of weaker conductors may represent small shears/faults. Causes of deeper and stronger electromagnetic anomalies remain unknown.

Despite the absence of Au, lithogeochemical response over the claim area is highly favourable of an epithermal mineralizing system. Most of the 27 samples tested for Hg, returned weakly to moderately anomalous values. Three samples have greater that 1100 ppb Hg with a maximum of 2400 ppb. Other maximum values encountered include 201 ppm Zn, 80 ppm Cu, 87 ppm As, 18 ppm Sb, 16 ppm Bi and 13 ppm W.

i

CONCLUSIONS


 Magnetic surveying has confirmed the presence of a sizable magnetic body beneath the claim area. A number of volcanic bodies of 25 to 100m width are indicated to be present on the west half of the property.

11

- Electromagnetic surveying has detected numerous shallow, fault/shear structures. Source of stronger and/or deeper anomalies remain unknown. Directional trends of the anomalies cannot be determined due to insufficient survey coverage.
- 3. The occurrence of jasperoid and widespread silicification are positive indication of hydrothermal activity.
- 4. Lithogeochemistry indicates strongly anomalous Hg to be present in a variety of rock types. Significant As, Bi, Sb and W values were detected. Anomalous Cu, Pb and Zn occurrences are less widespread.
- 5. Gold was not detected in any samples collected during the 1994 work.
- Results of this follow-up investigation further substantiate the excellent potential for the presence of base and precious metal mineralization related to epithermal, mesothermal and/or contact metasomatic processes.

RECOMMENDATIONS

- Detailed infill magnetic and electromagnetic surveying should be completed on EW lines at a maximum line spacing of 100m.
- 2. Prospecting and mapping should be completed on infill grid lines.
- 3. Multidirectional electrical survey methods should be used to aid in identifying areas of more intense silicification.
- No work should be considered until the issue of land use and tenure has been resolved.

DAVINCI PROPERTY LOCATION MAP

FIGURE 1

TABLE OF CONTENTS

-

pag Summary	
Conclusions	L
Recommendations	Ļ
Location and Access	
Topography, Vegetation and Glaciation	
Claim Data 2	
1994 Program II	•
Regional Geology	
Property Geology	,
Mineralization and Alteration	,
Geochemistry	•
Geophysics Magnetic Survey	I
VLF Survey	ļ
Bibliography 11	

LIST OF APPENDICIES

Appendix	I	Claim Affidavits
Appendix 3	II	Certificates of Analysis, Methods and Detection Limits
Appendix 1	III	Rock Sample Descriptions
Appendix	IV	Magnetic Survey Data, Methods and Instrumentation
Appendix ¹	V	VLF Survey Data, Methods and Instrumentation
Appendix '	VI	Statement of Expenditures
Appendix	VII	Statement of Qualifications

LIST OF FIGURES

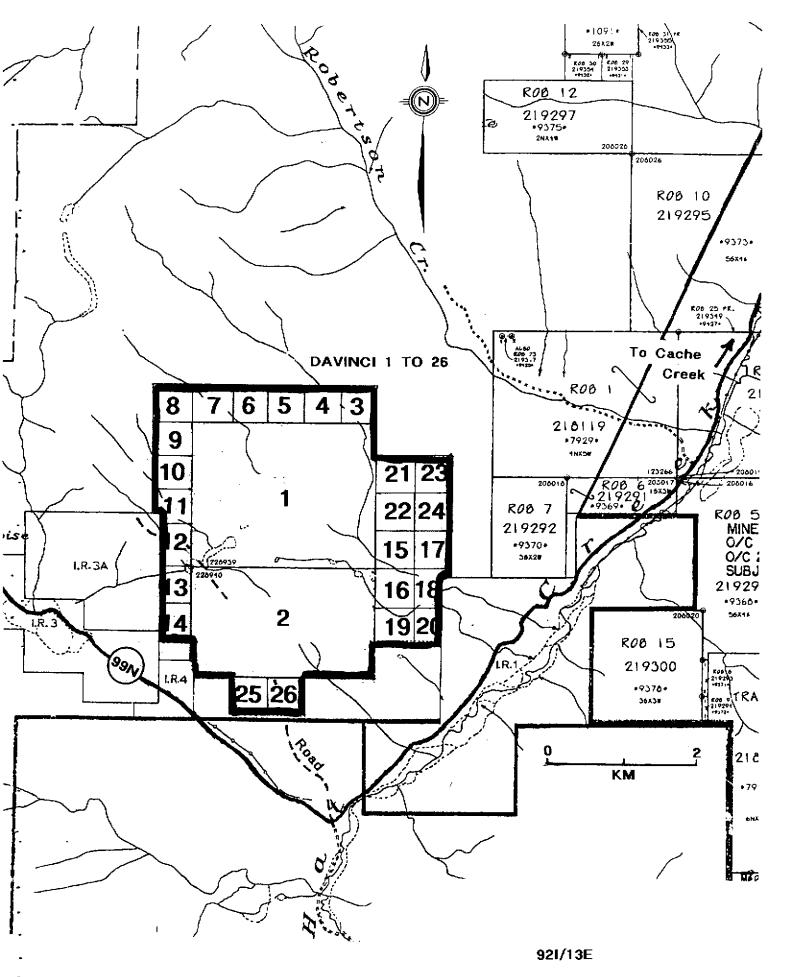
		following	page
Figure 1	Location Map		ii
Figure 2	Claim Map		2
Figure 3	Traverse Lines		3
Figure 4	Sample Locations		3
Figure 5	Regional Geology		4
Figure 6	Aeromagnetic Map		4
Figure 7	Property Geology		6
Figure 8a	Geochemistry Cu (ppm), Zn (ppm), Au (ppb)		8
Figure 8b	Geochemistry Hg (ppb)		8
Figure 8c	Geochemistry As (ppm)		8
Figure 8d	Geochemistry Sb (ppm)		8
Figure 8e	Geochemistry Bi (ppm)		8
Figure 8f	Geochemistry W (ppm)		8
Figure 8g	Geochemistry Mn (ppm)		8
Figure 9a	EW Magnetic Profile Summary		9
Figure 9b	NS Magnetic Profile Summary		9
Figure 9c	Magnetic Survey Contour Plot		9
Figures 9d-1	Magnetic Survey Line 36N 39N 40N 41N 44N 48N 52N 56N 60N (Profiles)	-Appendix	IV
Figures 9m,n	Magnetic Survey Line 790W 800W (Profiles)	-Appendix	IV
Figure 9o	Magnetic Survey-uncontoured plan	-Appendix	IV
Figure 10a	NS VLF-EM Profile Summary		10
Figure 10b	EW VLF-EM Survey Profile Summary		10
Figure 10c	Fraser Filter Contour Plot		10
Figure 10d-e	VLF EW Profiles Line 36N 40N 44N 48N 52N	-Appendix	V ·
Figure 10f	VLF NS Profiles Line 790W 800W	-Appendix	V
Figure 10g	VLF Fraser Filter Data Plot	-Appendix	¥

LOCATION AND ACCESS

Centred on latitude 50°49'N and longitude 120°37'W, the DaVinci property is located immediately east of the Pavilion Lime Plant, 36 km west of Cache Creek, B.C. It is in the Kamloops Mining Division on N.T.S. map sheet 921/13E.

Access to the western portion of the claims is possible via a 4 km dirt road which heads north from Highway 99N near the Hat Creek Road junction. A similar road could allow easy access to the eastern portion of the property provided permission for such access can be obtained from local land owners. Under dry conditions the roads are passable with two wheel drive. See Figures 1 and 2 for location. Travel time from Cache Creek is about 40 minutes.

TOPOGRAPHY, VEGETATION AND GLACIATION

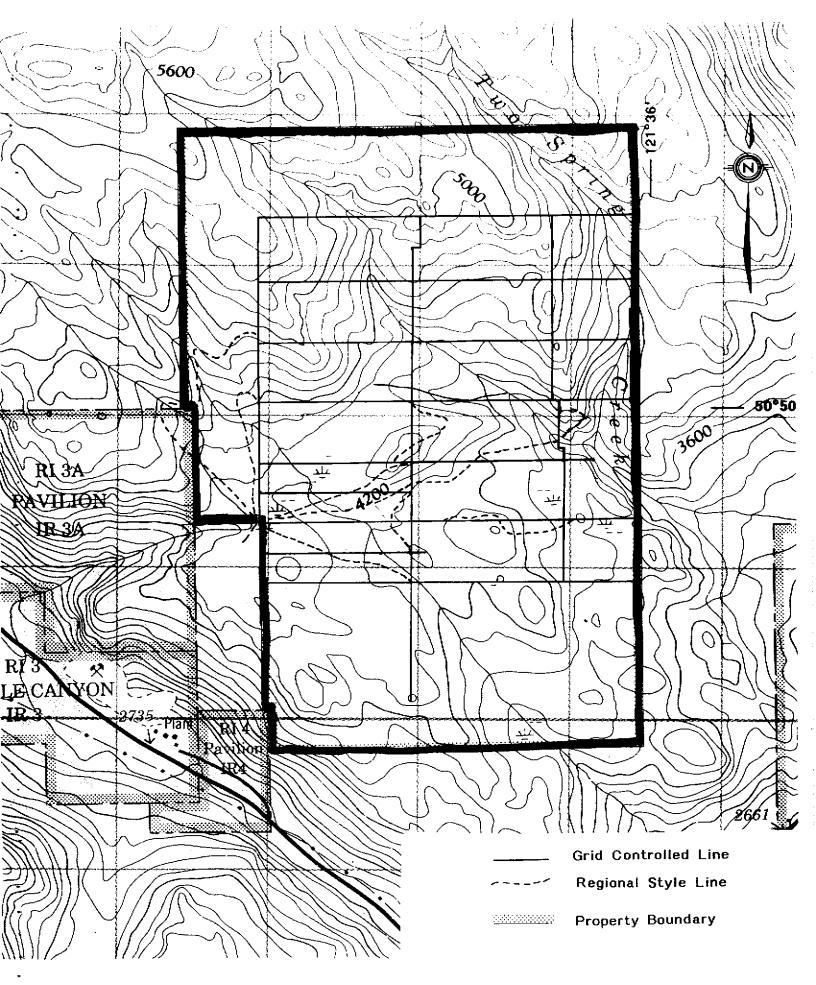

Claims cover an area of low, rounded hills and fairly gentle slopes. Steeper hillsides and small cliffs occur locally. A mixed forest of pine, spruce and poplar predominate. Vegetation density varies from open grassy areas with widely spaced pine to a very dense tangle of willow or fir. Charred remains of stumps and logs indicate that a portion of the property burned more than 50 years ago. In the southeast portion of the claim area is evidence of a more recent fire. Property elevations range from 1097 to 1615 m asl (3600 to 5300 feet asl). Two Spring Creek traverses the eastern portion of DaVinci 1. Several other drainages on the property appear to flow intermittently depending on the season. The area is typically very dry.

Government maps indicate ice movement through the area was from northwest to southeast. About:75% of the property is covered by glacial debris.

CLAIM DATA

The property comprises 2 four post and 12 two post claims totalling 47 contiguous units. An additional 14 two post claims were staked in September and October in order to secure ground with good mineral potential and to guarantee availability of access which may be lost due to an impending land use decision. Claim statistics are presented below. Locations are shown on Figures 1 and 2. Claim affidavits are in Appendix I.

Name	Tenure #	Dimension	Units	Staked	Expeires	Owner
DaVinci 1	318812	4N x 5E	20	18 06 93	18 06 97	Grexton
DaVinci 2	318813	3S x 5E	15	18 06 93	18 06 97	Grexton
DaVinci 3	330418	-	1	14 09 94	14 08 96	Grexton
DaVinci 4	330419	-	1	14 08 94	14 08 96	Grexton
DaVinci 5	330420	-	1	14 08 94	14 08 96	Grexton
DaVinci 6	330421	-	1	15 08 94	15 08 96	Grexton
DaVinci 7	330422	-	1	15 08 94	15 08 96	Grexton
DaVinci 8	330423	-	1	15 08 94	15 08 96	Grexton
DaVinci 9	330424	-	1	15 08 94	15 08 96	Grexton
DaVinci 10	330425	-	1	15 08 94	15 08 96	Grexton
DaVinci 11	330426	-	1	15 08 94	15 08 96	Grexton
DaVinci 12	330427	-	1	16 08 94	16 08 96 th	Grexton
DaVinci 13	331206	-	1	24 09 9 4	24 09 95	Grexton
DaVinci 14	331207	-	1	24 09 94	24 09 95	Grexton
DaVinci 15	331208	_	1	01 10 94	01 10 95	Grexton
DaVinci 16	331209	-	1	01 10 94	01 10 95	Grexton
DaVinci 17	331210	-	1	01 10 94	01 10 95	Grexton
DaVinci 18	331211	-	1	01 10 94	01 10 95	Grexton
DaVinci 19	331212	<u> </u>	1	01 10 94	01 10 95	Grexton
DaVinci 20	331213	-	1	01 10 94	01 10 95	Grexton
DaVinci 21	331214	-	1	02 10 94	02 10 95	Grexton
DaVinci 22	331215	-	1	021094	02 10 95	Grexton
DaVinci 23	331216	-	1	02 10 94	02 10 95	Grexton
DaVinci 24	331217	-	1	02 10 94	02 10 95	Grexton
DaVinci 25	331218	-	1	02 10 94	02 10 95	Grexton
DaVinci 26	331219	-	1	02 10 94	02 10 95	Grexton

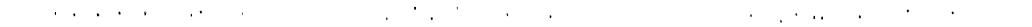

DAVINCI PROPERTY CLAIM MAP

1994 PROGRAM II

Purpose of the program was to continue looking for evidence of intrusive activity and alteration related to hydrothermal processes, to verify the presence of a magnetic body beneath the claim area and to identify structural features which may have tapped mineralizing fluids at depth. This program was a continuation of the preliminary evaluation completed in June 1994.

Between August 1 and September 24, the writer spent 26 days on the property. Grid coverage was increased to 25.1 km. Roughly 16 km of flagged, picketed and slope corrected lines were constructed using a compass and hipchain. Rock exposures encountered were given a cursory examination. A total of 31 rock and 4 silt samples were collected. All samples were analysed for Au by atomic absorption and 31 other elements by ICP at Rossbacher Laboratory, Burnaby, B.C. In addition, geochemical analyses were completed on 27 samples to determine Hg content and on 29 samples for Te. Certificates of Analysis, methods and detection limits are in Appendix II. Rock sample descriptions are in Appendix III. Traverse lines and sample locations are shown on Figures 3 and 4.

Following grid construction, ground magnetic and electromagnetic surveys were completed over 24 line km and 15 line km respectively. Geophysical field data, corrections and methodoloy are in Appendix IV, and V.

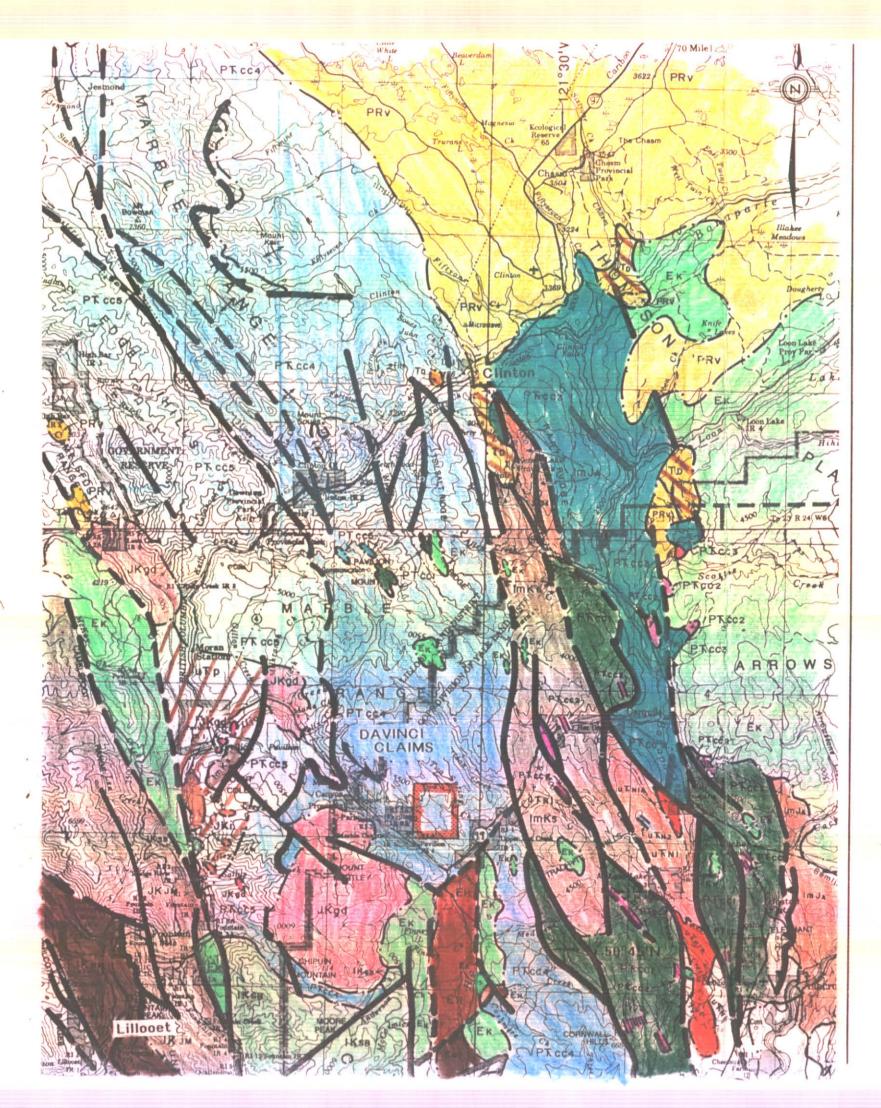

0


КМ

1

DAVINCI PROPERTY TRAVERSE MAP

FIGURE 3



REGIONAL GEOLOGY (G.S.C. O.F. 980, MAP 1278A)

According to government maps, the DaVinci property is in the Cache Creek Terrane and is underlain by Cache Creek Gp. limestone with local, thin bedded carbonate, argillite, tuff and lesser basalt and chert. North of Highway 99N, this assemblage forms a northwest trending belt that is 10 to +20 km wide and is bounded by strong north-northwest faults. West of this central limestone belt is a similar belt of Cache Creek Gp. chert, argillite and phyllite with minor greenstone and limestone. Cretaceous and Tertiary age clastic rocks and Quaternary plateau lavas occur to the east. Within the central belt of limestone are small occurrences of similar age mafic rocks and Tertiary age Kamloops Gp. volcanics. South of Highway 99N, bedrock geology becomes more complex. The central limestone belt becomes less regular and is disrupted by the Jurassic-Cretaceous age Mt. Martley Stock of granodiorite to quartz monzonite composition. Linear belts of Cretaceous-Tertiary age volcanic and sedimentary rocks and Cache Creek Gp. mafic rocks are present. West of the central limestone, Jurassic-Cretaceous age stocks of diorite to quartz monzonite composition occur.

Large scale northwest trending faults dominate the region. Smaller scale northwest and northeasterly trending faults occur locally. South of Highway 99N, two of these smaller scale faults disrupt the central limestone belt, the Mt. Martley Stock and appear to truncate occurrences of Tertiary age volcanics and sedimentary rocks. North of Clinton, anticlinal structures are evidence of regional folding within the central limestone belt. Regional geology is shown on Figure 6.

Government aeromagnetic maps indicate a large, positive, thumbprint anomaly to be present over Cache Creek limestone on the DaVinci property. The anomaly is 400 gammas over background and covers an area of 3x5 km. Aeromagnetic response over the small diorite-quartz monzonite stocks appears as moderate to strong, positive, subcircular anomalies. The Mt. Martley Stock occurring southwest of the DaVinci anomaly, has a unique signature of low magnetic response. Small bodies of Tertiary age volcanics produce moderate to strong, subcircular anomalies with fairly steep gradiants. Ultramafic bodies commonly occurring along regional scale faults, typically produce intense, positive anomalies which are elongated in a northwest direction. Regional aeromagnetic response is shown on Figure 6.

JKgd

JKI

UTAL

I TANK

U TNZ

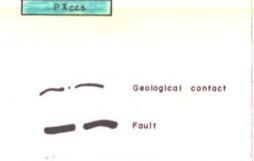
u Tp

PACCE

P T CC 2

PAces

P T-cc4


Im J.A

CRETACEOUS Conglomerate, sandstone, minor shale, coal SPENCES RIVER GP - Intermediate- acid volcanic rocks, volcaniclastics, sandstone, shale, local conglomera JACKASS MTN, GP - Sandstone, conglomerate

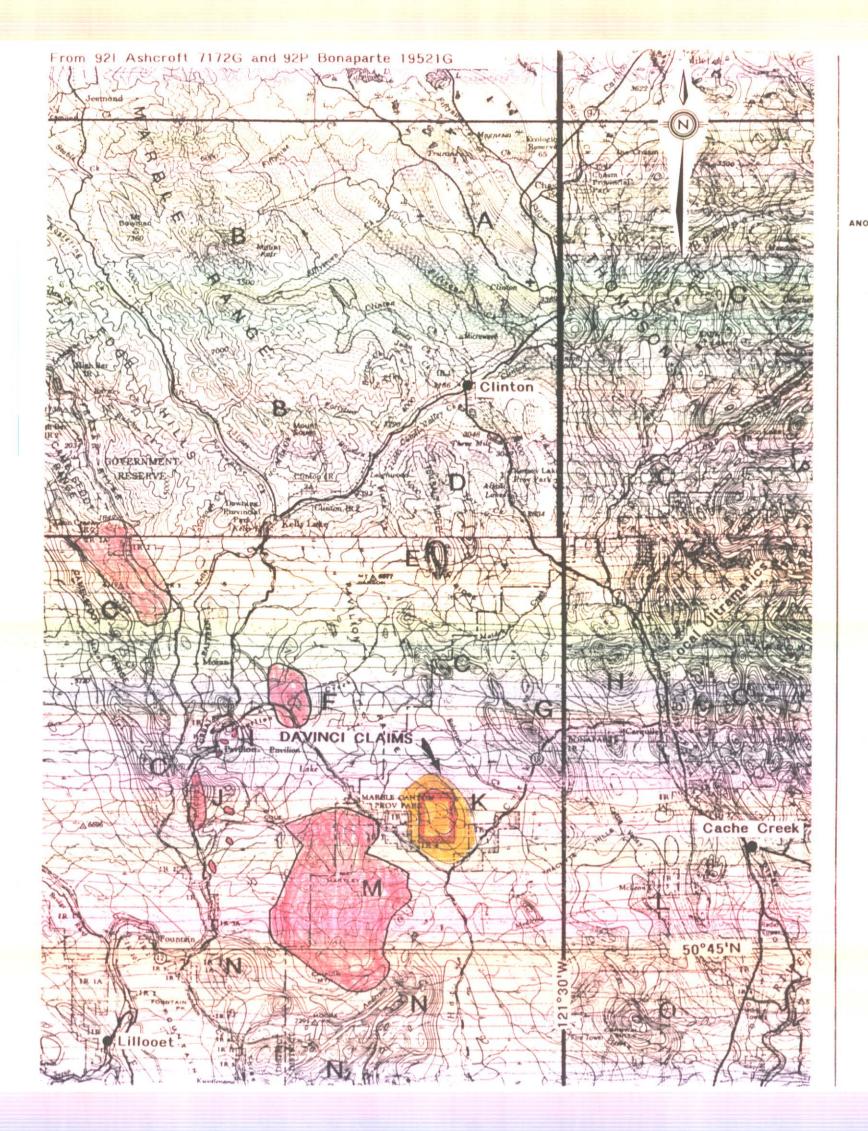
JURASSIC & CRETACEOUS RELAY MTN. GP - Argillite, siltstone, sandstone, conglomerate MT. MARTLEY STOCK and similar granific rocks-Granodiorite, quartz monzonite Diorite, quartz diorite Argillite, siltstone, sondstone, conglomerate, minor carbonate

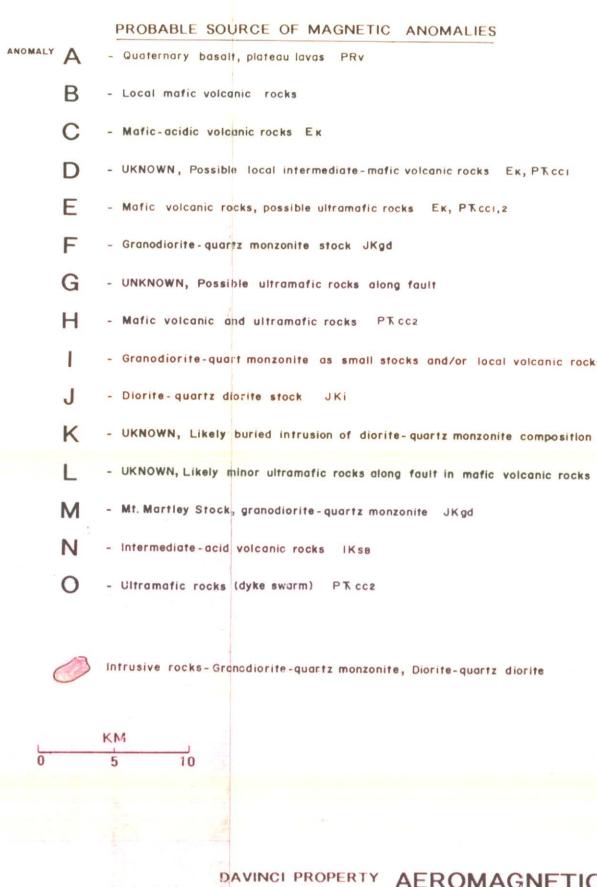
TRIASSIC & JURASSIC - Acid flows - Carbonate

PENNSYLVANIAN TO TRIASSIC CACHE CREEK COMPLEX - Basalt, diabase, gabbro

From GSC O.F. 980 & Bonaparte River Map 1278A

DAVINCI PROPERTY REGIONAL GEOLOGY FIGURE !


LEGEND


Shale, sandstone, tuff, congiomerate, breccia (DEADMAN RIVER FM.) KAMLOOPS GP. - Mafic-acid volcanic breccia, tuff; local sandstone, conglomerate, shale Sandstone, conglomerate, shale, coal (HAT CREEK BEDS)

NICOLA GP - Basic-acidic, mainly volcaniclastic rocks, intercalate argillite

Argillite, volcanic sandstone, local tuff, carbonate (PAVILION BEDS), possibly correlative to uT_{N1} .

- Ultramafic, mainly serpentinite
- Melange (chert, argillite; blocks of chert, greenstone, ultramafics, local acid v
- Limestone, local thin bedded carbonate, argillite, tuff; local basalt, chert
- Chert, argillite, phyllite, minor greenstone, limestone

- UKNOWN, Possible local intermediate-mafic volcanic rocks Ex, PT.cci

- Mafic volcanic rocks, possible ultramafic rocks EK, PKcci,2

- Granodiorite-quart monzonite as small stocks and/or local volcanic rocks JKgd, u

- UKNOWN, Likely minor ultramatic rocks along fault in matic volcanic rocks PT.cc2

DAVINCI PROPERTY AEROMAGNETIC MAR FIGURE

PROPERTY GEOLOGY

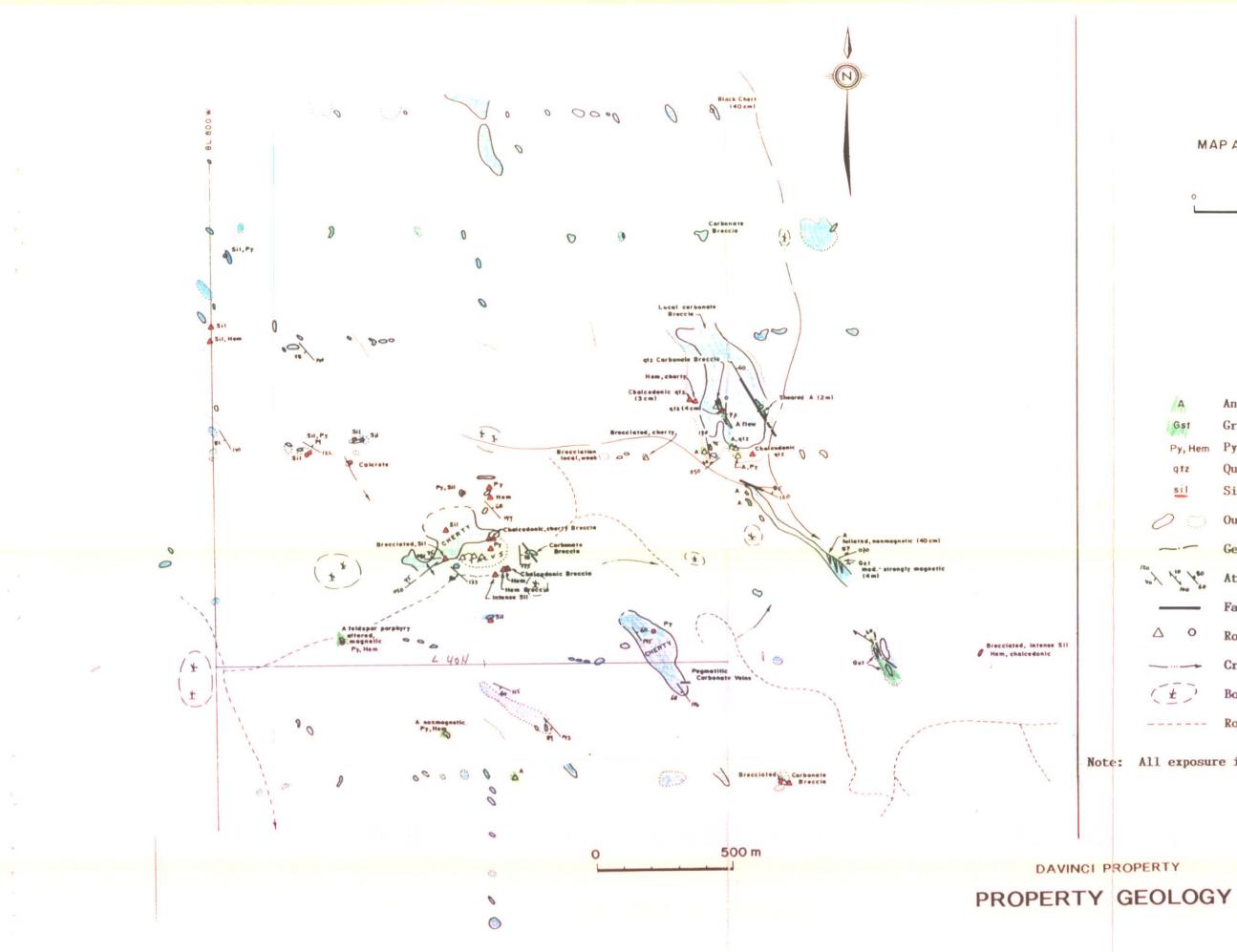
Majority of bedrock exposure comprise crypto-coarsely crystalline, dolomitic, ankeritic and/or silty limestone. The carbonate commonly occurs along broad, low lying ridges. Weathered surfaces vary from light grey to dark grey and from being strongly fractured and highly blocky to smooth and well rounded. Colour variation of fresh surfaces include buff, brown, light to very dark grey and pinkish to orangish. Black carbonaceous material is occasionally present to a maximum of 20%, as irregular masses and disseminations. Fusilinids are present in local dark grey-black outcrops east of Two Springs Creek (L48N).

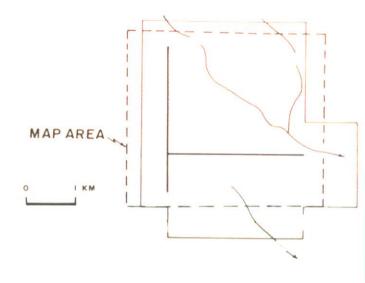
Locally the carbonate is finely laminated and interbedded with chert. Majority of these discontinuous chert beds, lenses and pods are less than 3 cm wide and were observed to a maximum of 15 cm wide. Colour of the chert is light grey to black. Carbonate breccia with chert or carbonate fragments occurs at several locals as beds of less than 5 cm to +1.5 m thick and as discontinuous lenses. Breccias vary from clast to matrix supported.

Poorly exposed outcrops of mafic to intermediate volcanics were found in areas of recessive weathering. On the east half of the property, these exposures tend to be dark green, massive, nonmagnetic andesite-basalt. Moderate and strongly magnetic varieties are more restricted in occurrence. Moderate to intense foliation is well developed in some outcrops. The stronger foliation is typically associated with faulting. Less intensely developed foliation may represent a primary flow texture. Field evidence suggests these volcanics represent narrow, discontinuous beds which are interbedded with carbonate. On the western portion of the claims, medium to dark green, massive and feldspar porphyrytic, moderately magnetic andesite is present. Exposures are commonly massive but a fine foliation is moderately well developed locally. Calcareous, dacitic tuff-subvolcanic (?) material was noted as lenses of up to 3.5 cm wide near 40+50N/784W.

Estimates of bedding thickness in the carbonate range from a few cm to +5 m thick. Strike is dominantly northwesterly. Dips are moderate to steep in either direction. Small, parasitic folds were observed at two locals. Minimum width estimates for the volcanics range from 1 to 10 m for eastern exposures and up to 20 m on the west half of the property. Field evidence indicates that the area has been subjected to strong folding and faulting under conditions of low pressure, resulting in widespread brittle fracture patterns and variable folding. Slickensides in the vicinity of 790W/40N and 780W/46N, indicate the latest movement to be in a north-south direction. Property geology is plotted on Figure 7.

MINERALIZATION AND ALTERATION


Evidence of silicification is present in all rock types as clear, grey and milky quartz in discontinuous stringers, fracture fillings and boxworks. Pervasive silica flooding is less common. A sample of local float (78992W/4323N) appears to be intensely and finely brecciated by silica flooding. It is almost entirely replaced by quartz and has a minimum width of 40 cm. During the staking of DaVinci 18 and 19, a small (2 m²) outcrop of intensely brecciated, silicified, hematitic limestone (jasperoid) was found near 40N/720W. Matrix supported, light to dark grey chert breccia with fragments of chert and/or limestone was found in talus and subcrop. Minor occurrences of hematitic chert breccia having a characteristic brick red colour occur in talus. Within volcanic rocks, evidence of silicification is limited to the eastern half of the property.


Sparse carbonate stringers and fracture fillings are ubiquitous. Pegmatitic calcite veining is common in portions of the large carbonate outcrop along L4ON near 784W. One 25 cm wide pegmatitic vein with chert fragments is exposed for several metres and strikes east-west with a steep southerly (?) dip.

Within marblized limestone talus at 48N/781W, possible calcsilicate development may be indicated by the presence of pale green fibrous masses of rudimentary actinolite (?). An odd apple green, scaly mineral (chlorite ?) was also noted in marble talus at this local.

Pervasive, weak sericitization/saussuratization occurs within andesite feldspar porphyry.

Within chert and silicified carbonate, trace amounts of pyrite occur locally as fine, anhedral, strongly oxidized masses and disseminations. Hematite was found in minor amounts in several samples. Both pyrite and hematite often show an association with fine fractures. In most exposures of volcanics, disseminations of fine grained pyrite was found. Within the porphrytic andesite, the pyrite generally appears to be fracture related. Aphanitic, massive hematite is present in the matrix of the porphyry in varying amounts up to 8%.

LEGEND

A	Andesite
Gst	Greenstone
Py, Hem	Pyrite, Hematite
qtz	Quartz
sil	Silicification
00	Outcrop, Subcrop (includes small outcrops
	Geologic Contact
10 10 10 100 100 100 100	Attitude-bedding, foliation, joint
	Fault/Shear
Δο	Rock Sample-local float, outcrop/subcrop
	Creek
(\pm)	Bog
	Road

Note: All exposure is limestone unless indicated otherwise

FIGURE 7

GEOCHEMISTRY

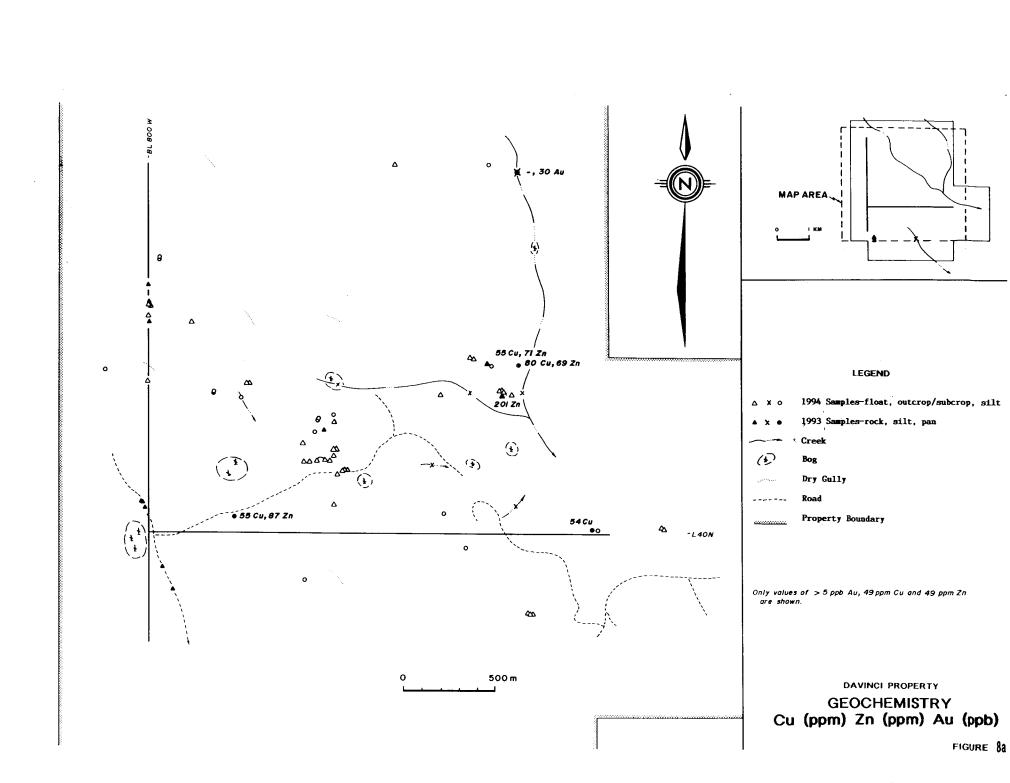
A total of 72 rock, 8 silt and 3 pan concentrate samples have been collected from the property since the area was first examined in 1993. Geochemical response for Cu, Zn, Au, As, Sb, Bi, Hg, Mn and W are plotted on Figures 8a to 8g.

A weak enhancement of basenetals is present in five samples of volcanic rocks. Values range from 60 to 201 ppm Zn with or without 54 to 84 ppm Cu. Basemetal content of three (cherty)carbonate samples are slightly above crustal averages with 28 ppm Zn accompanied by 21 ppm Cu and 17 and 21 ppm Cu present. Lead is geochemically interesting in nine carbonate samples with values ranging from 11 to 20 ppm. Samples of jasperoid ran 49 and 42 ppm Cu. The higher Cu value was accompanied by 12 ppm Mo and 29 ppm Zn. Crustal averages for limestone are 25 ppm Zn, 15 ppm Cu, 8 ppm Pb and 1 ppm Mo. Mobilities of Cu and Zn are low in alkaline environments while Pb is characteristically immobile. Molybdenum exhibits high mobility under alkaline conditions.

Most of the 2.7 samples selected for Hg analysis returned weakly to moderately anomalous values. Majority of samples submitted contained pyrite and/or evidence of silicification. The highest values detected were from volcanic rocks. Values range from 260 to 2400 ppb Hg and four of the five samples have greater than 699 ppb Hg. Samples of cherty linestone typically ran 50 to 120 ppb. Two samples of chert and chert breccia yielded 40 and 80 ppb Hg respectively. Several samples of silicified linestone returned values of 80, 140 and 820 ppb. A sample of cherty linestone with strong to intense hematite-limonitemanganese fracture filings ran 440 ppb Hg. Jasperoid samples ran weakly anomalous Hg of 50 and 60 ppb.

Moderately to strongly anomalous As is present in seven (±cherty) carbonate samples. Values range from 25 to 70 ppm As. Three samples of chalcedonic quartz talus returned 45 to 87 ppm As. The highest value of 96 ppm was in a 1993 sample of brick red hematite breccia occurring as angular float in talus. This sample is of uncertain origin. Enhanced As is present in two samples of pyritic volcanics with a maximum of 37 ppm As.

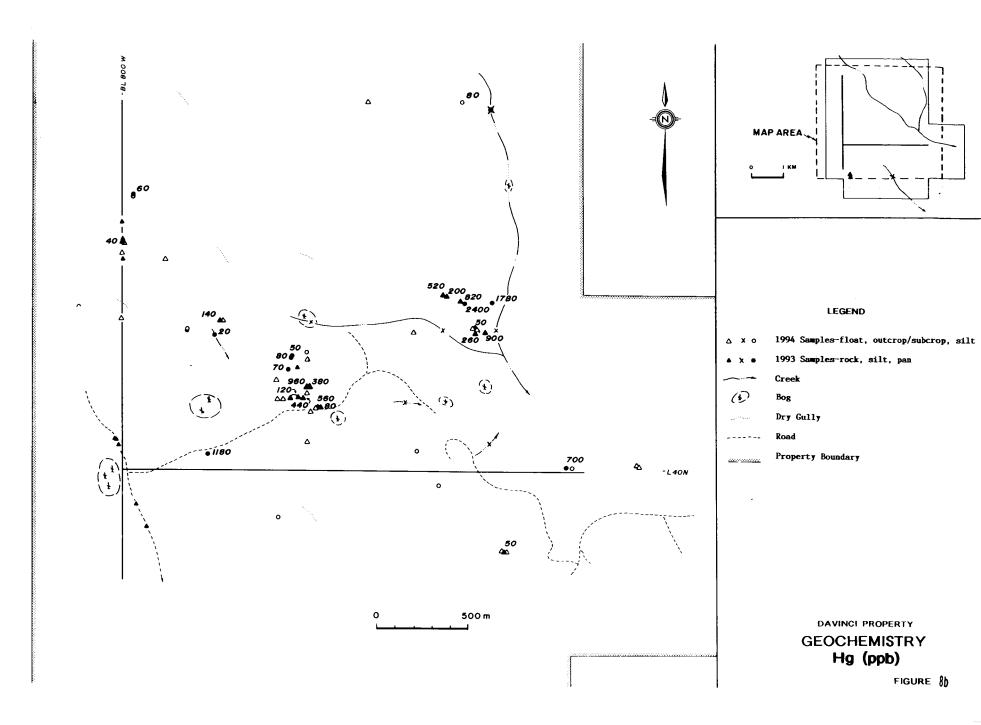
Eight samples of cherty linestone returned significant values of Sb ranging from 6 to 12 ppm. Brecciated and/or silicified linestone lacking chert ran 5 to 18 ppm Sb in five samples. Pyritic and/or silicified volcanics returned 5 to 12 ppm Sb in three samples.

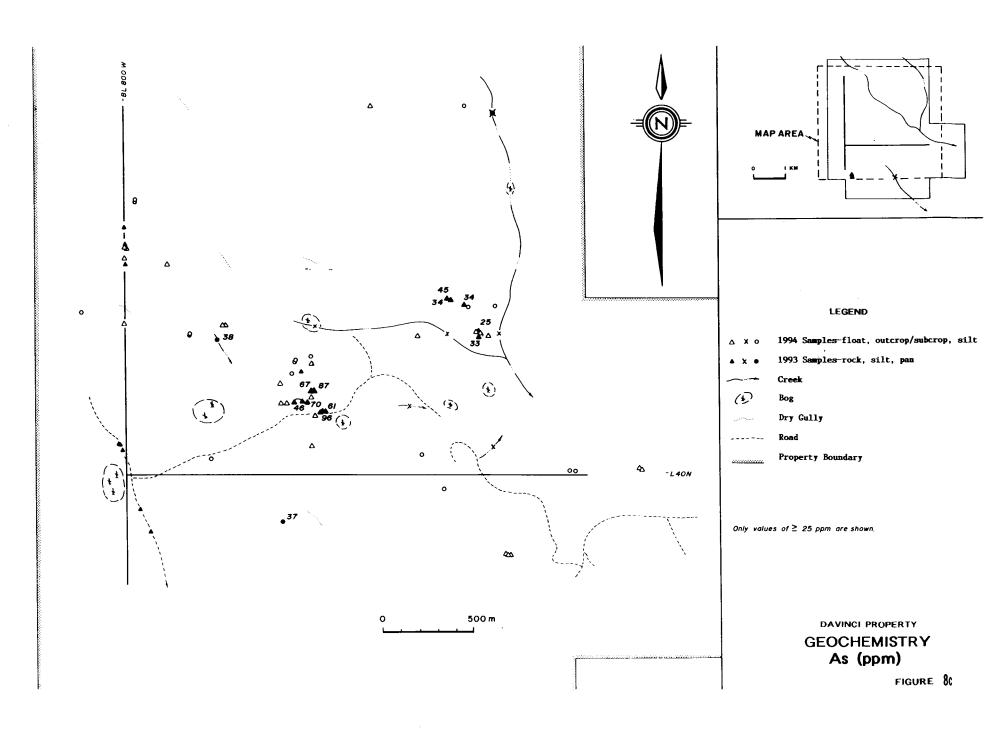

Twenty five samples yielded geochemically interesting Bi with values ranging from 5 to 16 ppm. Nine samples have greater than 10 ppm Bi and 5 ran greater than 14 ppm. Higher Bi values are associated with cherty limestone including brecciated and unbrecciated varieties. Silicified and/or chalcedonic material exhibit a weaker erratic Bi enhancement. Significant Bi was not detected in jasperoid samples.

Brecciated (±cherty) limestone returned anomalous values of W in ten samples of 6 to 18 ppm. Three samples of chalcedonic quartz talus ran 5, 10 and 11 ppm W. Two samples of altered volcanics yielded 8 and 13 ppm W.

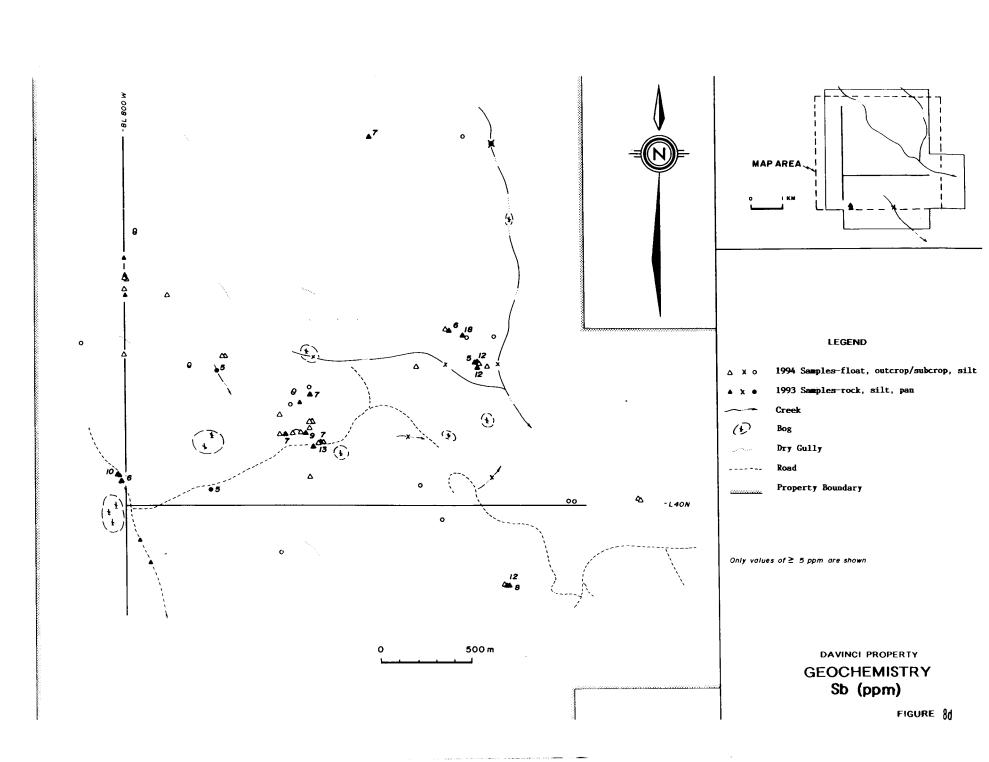
Geochemical response of Ag is consistently low with a maximum of 0.8 ppm in four samples of (cherty) carbonate.

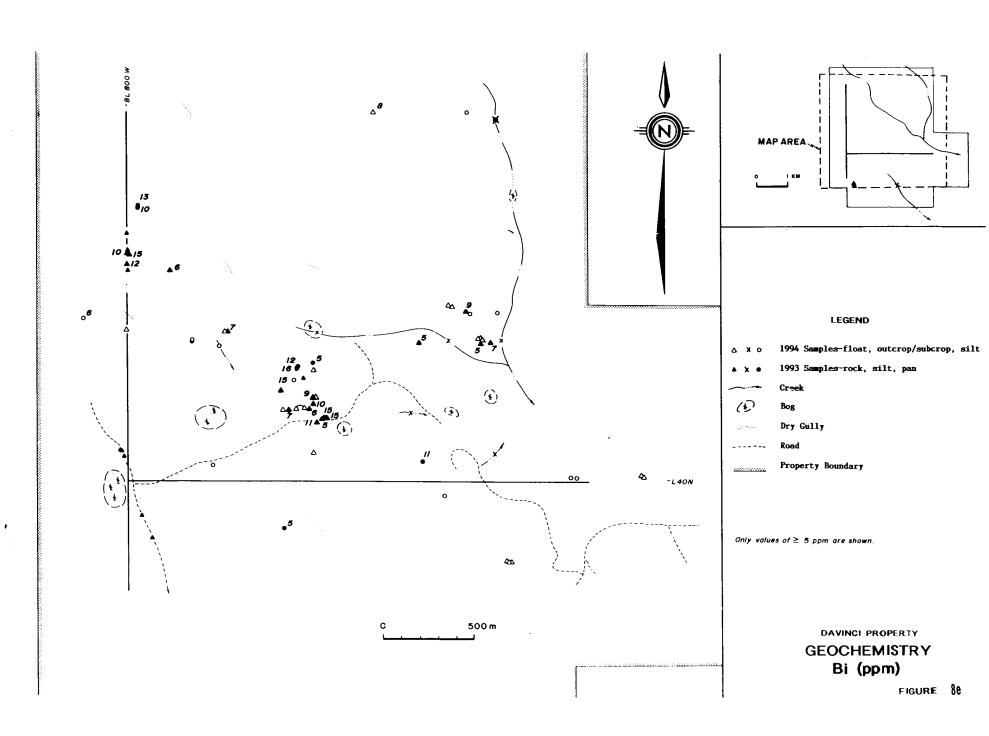
Government records indicate 70 ppm Te was detected in material described as siliceous stringers in limestone float collected from the Kay property, north of the DaVinci claims. Since the geological setting is similar to the DaVinci property, twentynine silicified and cherty limestone samples were analysed for Te. Nothing of interest was detected. All but four samples were at or near the detection limit of 0.1 ppm Te. Four samples had 0.2 ppm Te accompanied by 5 to 16 ppm Bi.

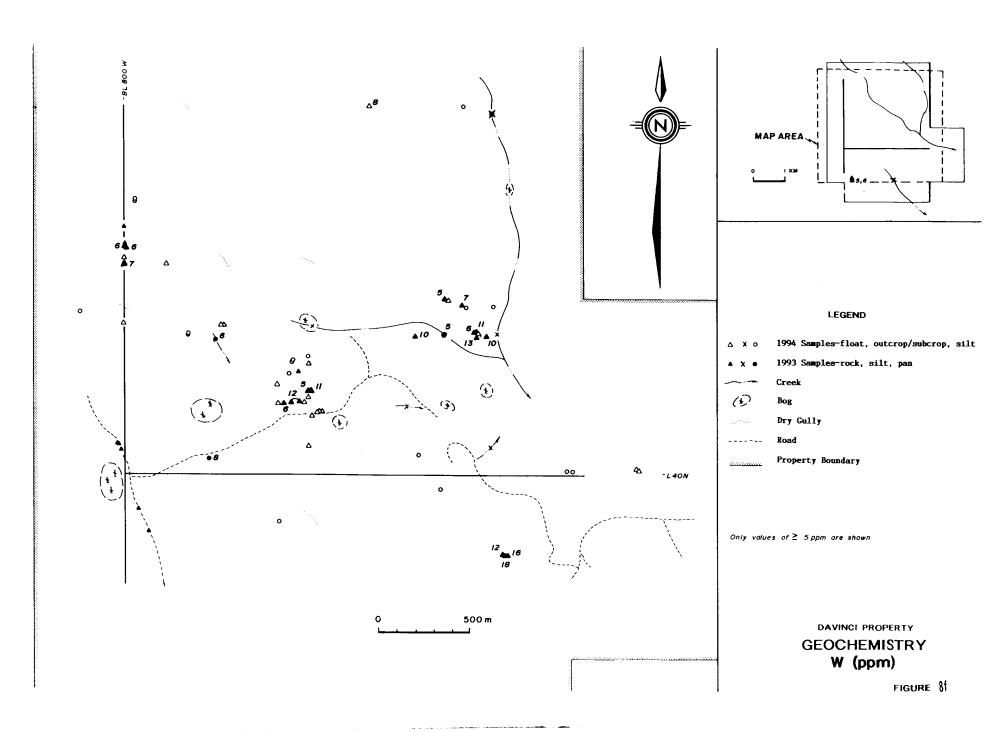

Two silt samples from the small creek draining the central portion of DaVinci 1 returned significant Mn of 570 and 1116 ppm. Samples of volcanics returned 502 to 1276 ppm Mn in four samples. Two samples of cherty limestone and chert breccia ran 1040 ppm and 985 ppm Mn respectively. Jasperoid returned values of 733 and 795 ppm Mn. Geochemical enhancement due to scavenging by Mn and/or Fe oxides does not appear to be significant.



and the second second


1. 8



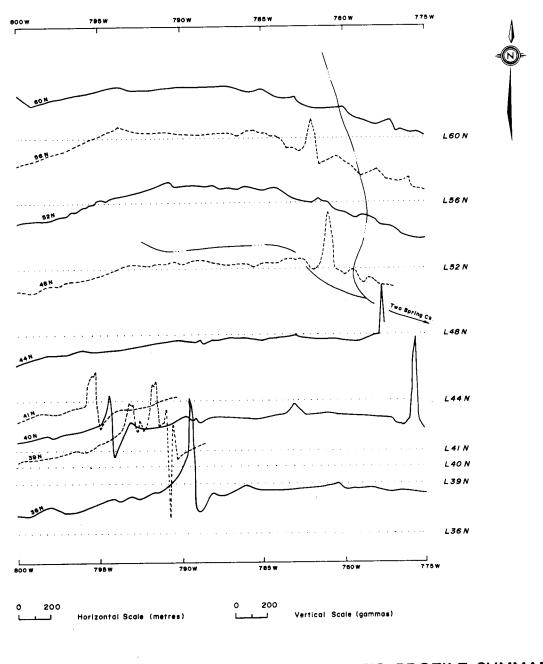


en en la seconda de la construcción de la construcción de la construcción de la construcción de la construcción

and the second second

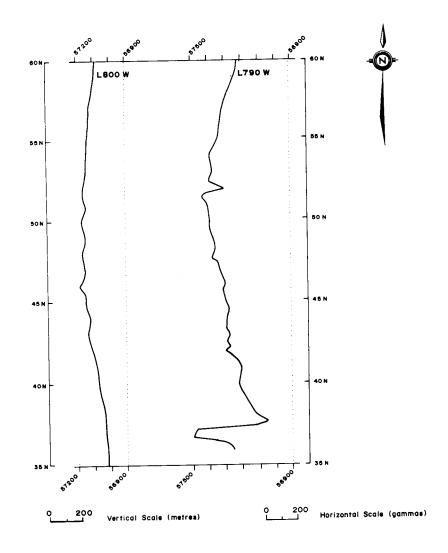
1.

GEOPHYSICS

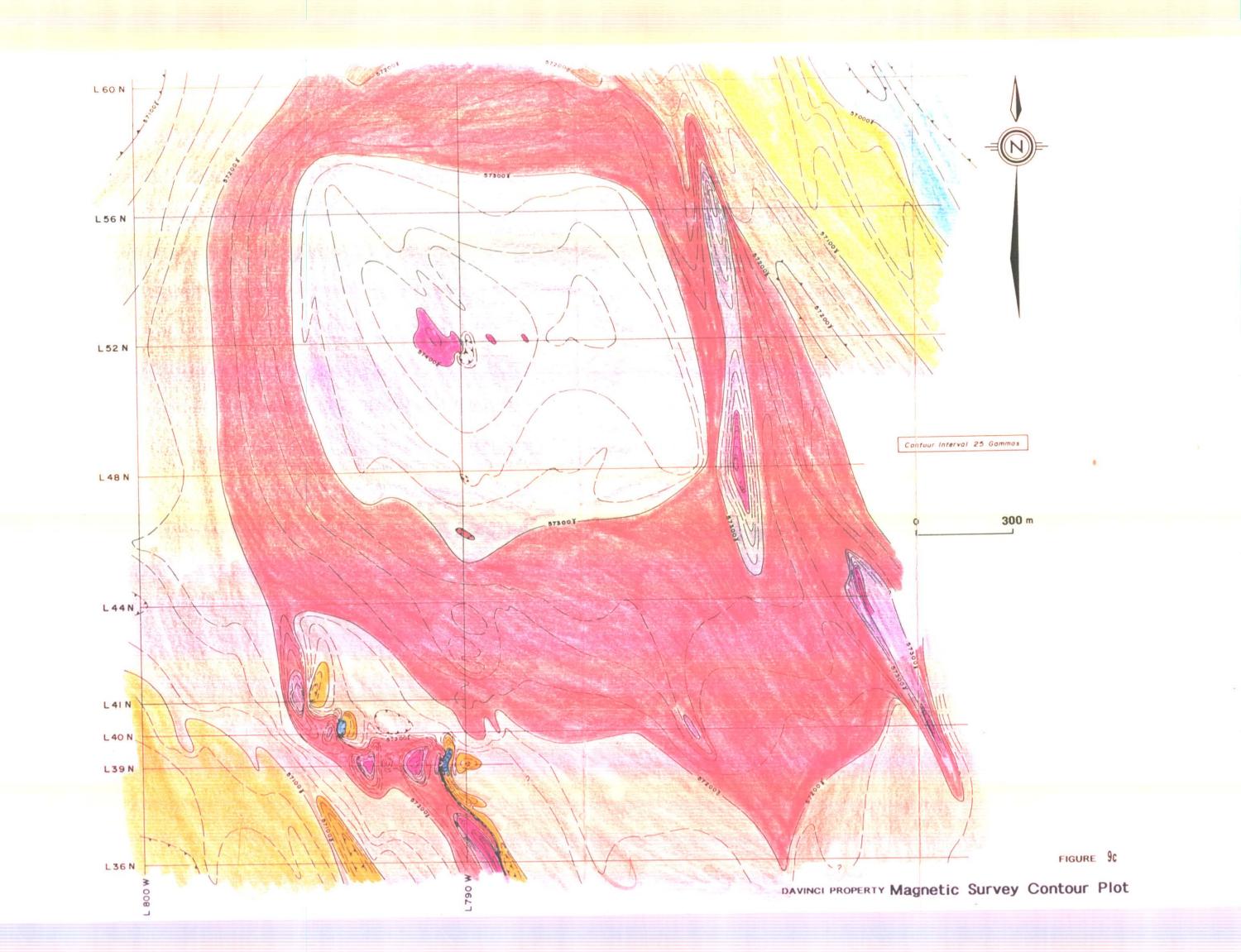

Magnetic Surveying

A total of 24.4 line km of ground magnetic orientation surveying was completed along nine EW lines spaced 400 m apart and two NS lines spaced 1000m apart. Purpose of the survey was to better define the causative source of the large thumbprint aeromagnetic anomaly appearing on government maps.

The instrument used was a Scintrex MP-2 Proton Procession Magnetometer with a total field accuracy of ± 1 gamma. It was set at a base level of 55000 gammas to give the best operating: range for the area. The sensor was mounted on a 1.5 m aluminum staff. Readings were taken at 50 to 100 m intervals with interstation readings down to 12.5 m as dictated by strong magnetic variation of greater than 50 gammas. Variations in topography were measured along the survey lines. Accuracy of the altimeter was ± 1.5 m. A "base station" reading was taken at 40N/799+50W each day prior to starting magnetize surveying and upon completion of the days traverse. Raw survey results and details concerning instrumentation are in Appendix IV.


Diurnal variation was found to be negligible. Sunspot activity was reportedly in a period of quiescence. Given this lack of solar magnetic interference, survey data was normalized by using a linear correction factor for variation over the entire survey period and adjusted in a similar manner for "base station" variation occurring over each day. Corrected survey readings and methods along with individual line profiles are in Appendix IV.

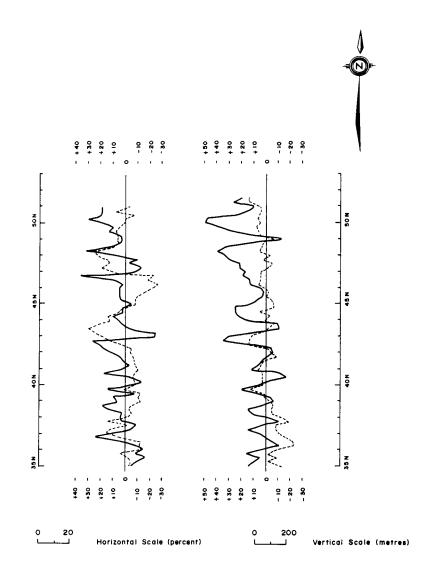
Summary results of the survey are plotted as profiles on Figures 9a and b. Figure 9c is a contoured plan view. Magnetic surveying has confirmed the presence of a magnetic source at depth. Response for L52N to L60N indicates the causative source is in the order of two km in diameter and at a depth in excess of one km. Known occurrences of volcanic rocks appear as sharp spikes in the magnetic signature on the eastern portion of the property. The multiple, sharply spiked profiles of L36N to L41N is interpreted to represent a number of narrow volcanic bodiec which strike northwest to southeast for +600m. These volcanics are 25 to 100m wide and dip moderately to steeply southwest. Additional surveying as infill lines and more closely spaced readings are required to provide better definition of current anomalies and the small blips appearing along most of the profiles.



DAVINCI PROPERTY EW MAGNETIC PROFILE SUMMARY

FIGURE 9a

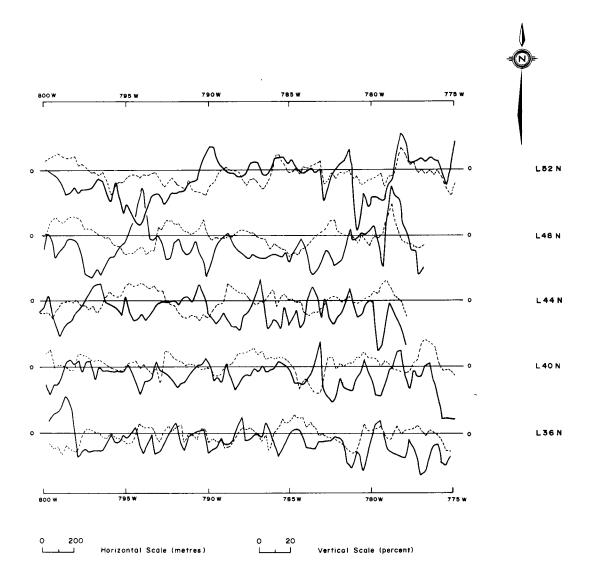
DAVINCI PROPERTY NS MAGNETIC PROFILE SUMMARY FIGURE \$



VLF Survey:

A total of 15.4 line km of electromagnetic orientation surveying was completed along five EW lines spaced 400m apart and two NS lines spaced 1000m apart. Readings were taken at 25m intervals. Purpose of the survey was to detect fault structures which may have tapped ore bearing fluids at depth. The instrument used was a Geonics EM-16 with an in-phase sensitivity of $\pm 150\%$ and a quad-phase sensitivity of ± 405 . Accuracy of the instrument is $\pm 1\%$. Two VLF transmitters were used- Cutler Maine, operating at 24.0 kHz for the NS lines and Jim Creek, Washington operating at 24.8 kHz, for EW lines. Survey data and details concerning instrumentation are in Appendix V.

Results are plotted as summary profiles on Figures 10a and 10b. Figure 10c is a contoured Fraser Filtered data plot. Signal strength for the Cutler, Maine transmitter was weak and field data was inconsistent. Consequently NS lines are not included in the Fraser Filter plot.


The noisy electromagnetic response for the survey area is more typical of surveys over shales rather than carbonate rocks. Majority of the weaker conductors may represent small shear/fault structures. Causes of deeper and stronger anomalies are not known. Fraser Filtered data appear to indicate a number of northerly trending, narrow weak and strong conductors transecting the survey area. This data set was contoured with a northwestern bias which represents the dominant structural trend of the region. Insufficient data is available to indicate real trends. Infill surveying is required to better define the anomalies and trends.

DAVINCI PROPERTY

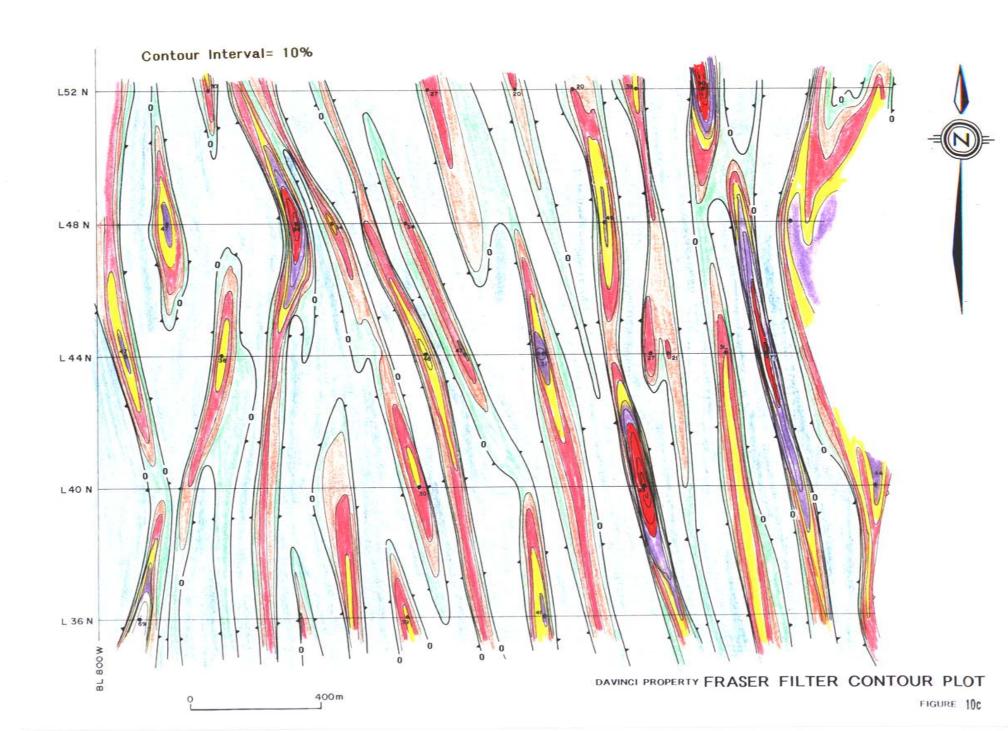

NS VLF-EM PROFILE SUMMARY

FIGURE 10a

DAVINCI PROPERTY EW VLF-EM PROFILE SUMMARY

FIGURE 100

eggenerates a source en estador e tra

BIBLIOGRAPHY

B.C. Energy, Mines & Petroleum Resources: AR 19313 Kay M.C., Discovery Consultants, Oct. 1989

AR ? DaVinci M.C., P.L. Grexton, July 1994

Geological Survey of Canada: Aeromagnetic Map 7172G, 92I Ashcroft (1:250,000)

: Open File 980

: Map 1278A 92P Bonaparte River (1:250,000)

Minister of Mines Annual Report: 1898, page 1099

LILLOOET DISTRICT.

Report by F. Soues, Gold Commissioner.

The total ascertained yield of gold from the District is \$35,512, a decrease of \$4,328 as compared with the previous year. Mr. A. W. Smith, of Lillooet, was the largest buyer, and reports to me^{*}"that he has bought, during the year \$18,200. Year by year the amount is less, the quartz mining being the cause of a portion of this falling off. Had the miners paid as much attention to placer mining during the season as some have done during the past two months, the returns would have been very different, as those who were forced to resort to placer mining late in the season, to get something to winter on, made an excellent showing for the time they worked on the South Fork of Bridge River and Cadwallader Creek, showing that the large decrease in the yield, is not that there is no more gold, but is caused by miners not devoting their attention to placer mining the same as they did formerly."

This class of mining throughout the District has been greatly neglected, Placer Mining. and, as Mr. Smith points out, this is due to so much attention being paid to quartz prospecting.

Fraser River last spring, and again this Fall, was very low, giving ample opportunity to the itinerant Indian and Chinese, and I have no doubt that the greater portion of Mr. Smith's purchases were from these sources.

A large number of mineral claims (455) have been located during the Quartz Mining. year, and it is safe to say that only a small percentage of them will ever see

any attempt at development. The greater portion of these have been located on Bridge River and its tributaries. Some 32 locations have been made on the base of the Marble Mountains, about 8 or 10 miles north-west from Clinton. With one exception, there has been no development work done on any of them. Assays, I am informed, have been had from surface croppings as high as \$30 per ton. Samples from different ledges, which I have seen, may be described as jasper quartz, dark gray quartz with hematite and quartz with associated pyrolusite and manganite.

Nearly 200 locations have been made on Bridge River and tributaries during the season. Considerable development has been made on some of them, but repeated applications to the managers have failed to furnish me with details. I understand that machinery is spoken of for some of them, but to what extent I do not know.

MCGILLIVRAY CREEK.

A discovery of gold-bearing quartz has been made on McGillivray Creek, which falls into Anderson Lake from the north. Mr. F. Brett, one of the locators, reports on it as follows:— "The ledge is well situated for economic working at an elevation of about 3,000 feet above sea level. The vein does not outcrop, being covered by vegetation and detritus. The mountain side on which it is situated is very steep, at an angle of 30°, and admits of tunnelling directly on the vein on all the claims. The vein is a true fissure, averaging about 16 feet in width, vertical, with walls of schistose matter. The vein structure is laminated, and showing 'ribbon rock,' but the chief value appears to be in a hard vitreous quartz. A tunnel is now in 150 feet, showing a continuous ore-body. Assays give good gold values. Facilities for placing machinery on the ground are excellent. The claims are situated about $2\frac{1}{2}$ miles from the mouth of the creek, and at an elevation of about 2,200 feet above Anderson Lake."

SUMMARY OF GEOCHEMICAL CHARCTERISTICS

4 1			50	ALIAI		3 1											
			ABUN	DANC	E	(PPM)	}		MOBI	LITY		PH	AD	SORPT	ION	DRT	
	ELEMENT					Shale	9		virc			tis	Oxides	Oxides		HANICAL TRANSPORT	OTHER
	ELEI	Mafic	Intermed	Felsic	Shale	Black St	Limestone	Acid	Alkaline	Gley	Sulfide Reducing	Hydrolysis	Ğ Fe Č	o M V O	On Clay	MECHANICAL TRANSP(
	Cu	100	30	10	50	70-150	15	High	Low		Low	5.5	x	x	×		Also adsorption on organicu.
-	Pb	5	15	20	20	20-70	в	Low	Low- Immob	Low	រកាភាទ២	6.0				×	
	Zn	100	60	40	100	300- 1000	25	High	Low	High In reducin gley	g im mob	7.0	x	x	×		Low mobility in carbonate terranes. Adsoption on organics.
	Мо	1	,	Ż	3	10	ı	Low	High		Low						Mobility restricted by Pb, Fe and carbonate.
	As	2	2	1.5	15	-	2.5	Fair	Fair	Feir			x		×		
	Sb	0.2	0.2	0.2	1	-	0.2	Low	Low	Low	Low		x	x			Adsorption of spring orfice
	Ag	0.1	0.07	0.04	0.05	<1-5	1	Slight	Immob	Slight	inanob		x	×			
	W/		2	2	2	-	0,5	immob	Silght	immöb	Immob			x	-	×	
R'allon and a second	Ni	150	20	0.5	70	50 - 200	12	Good	Immob	Good in reducing	gimmolo	6.7	×	×			Also adsorption on organics
	Co	50	10	1	20	10-20		Good	Low			5.B	X	X Strong	x		
	Hg	0.05	0,08	0.08	0.5	-	0.05	Low	Low	Low	Law					×	Also adsorption on organics.
	U	0.6	3	4,6	4	3-1350	2	High	High				x		x		Also adsorption on organics. Surface waters ave. 0.4ppb .
14 14		400	500	735	740	-	330	High	High	High	High						Ca barrier, precipitates as fivorite. Surface waters ave. 100 .
	Mn	850- 1300	330- 750	500- 3100 Cayenite	150 - 600	-	500	High	Low	?	?						
	Ba	250	500	600	700	300- 700	100	Low	Low	Low	Law				×		
9 9	Bi	0.15		0.1	-	-	-	Very Low	Very Low	Very Low	Very Low		x				Readily precipitated as basic carbonate.
- -	Те	0.001	0.001	0.001	0.01	-	-	Very Low	Very Low	Very Low	Very Low					×	
	Nb	20	20	20	20	-	0.3	Low	Low	Low	Low					X Only	
	Ce	35	40	46	50	-	10	Low	Low	Low	Low	2,7	x		x	x	Associated with fluorine.
	La	6.1	31	55	16~66	-	9-23	Low	lenmob	dommi	tamab					×	Soluble only under coidic conditions.
: :	Sn	1	2	3	4	<1	4	Very Low- Immob	V⊪ry Low- Immob	Very Low- Immob	Very Low- Immob					x	
·		10	25	30	60	-	20	Good	Poorer	Good	G004			x	x		
	Er	'm "	Intro	ducet -			المسمل		onet					1		f 0	بمعاسماتها الانجامية مسمطه

From "Introduction To Exploration Geochemistry", Levinson; "Handbook Of Geochemistry", Wedepu

APPENDIX II

-

.

.

•

Certificates of Analysis, Methods and Detection Limits

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To :	LYNN GREXTON
	920 EAST 28 th AVE.
	VANCOUVER, B.C.
Project:	Davinchi

Project:DavinchiType of Analysis:ICP

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

.

Certificate:	94144
Invoice:	50211
Date Entered:	94-07-08
File Name:	GRE94144
Page No.:	1

•

Al D94C-18 1 10 2 6 0.3 3 2 60 0.09 8 NO NO 108 1 10 313,73 0.01 14 0.00 0.07 0.01 0.08 0.01 1 1 AL D94C-18 1 5 5 0.1 2 35 35 36 0.0.5 1 30 0.0 1.	PPB AU AA	РРМ РРМ W ВЕ	% S I	% К	X NA	% AL	X TI	PPM BA	% MG	PPM CR	PPM LA	Х Р	и X / СА	PM F Bl	PPM SB	PPH CD	PPM SR	PPM HG	PPM AU	PPM AS	% FE	PPM MN	PPM CO	PPM N I	PPM AG	PPM ZN	РРМ РВ	PPM CU	PPM MO	PLE NAME	SA	PRE FIX
D94G-8R 2 12 6 4 0.4 2 1 135 0.21 5 ND ND 110 1 15 4 7.55 0.02 19 107 0.04 21 0.01 0.02 0.01 0.02 0.01 1 1 D94G-9R 1 15 1 1 0.4 2 1 95 0.11 8 ND ND 133 1 1 6 18.35 0.01 1 18 0.04 0.01 0.02 0.01 0.01 0.01 1 18 0.01 0.01 0.01 1 18 0.01 11 0.0	5 5 5 5 8 5	1 1	0.01 0.01 0.01 0.01 0.01	0.05 0.04 0.03 0.02 0.03	0.01 0.01 0.01 0.01 0.01	0.07 0.04 0.04 0.01 0.05	0.01 0.01 0.01 0.01 0.01	1 19 120 348	1.07),04),03),02),05	48 (123 (87 (155 (69 (7 7 3 12	0.01 0.03 0.04 0.04 0.06	3 13.93 5 6.53 8 5.54 7 0.32 5 13.47	10 15 15 5 12	1 1 7 13	1 1 1 1	188 83 63 19 72	ND ND ND ND ND	ND ND ND ND ND	10 12 61 96 9	0.11 0.73 1.78 1.90 0.21	77 985 132 237 140	1 2 3 1	2 8 16 11 5	0.4 0.3 0.2 0.3 0.4	6 12 20 8 11	5 7 5 3 3	9 15 13 10 12	1 2 3 4 1	D94G-2R D94G-3R D94G-4R D94G-5R D94G-6R		
RF789-92W 43-23N 2 9 14 3 0.5 4 1 147 0.20 16 ND ND 41 1 11 6 6.33 0.02 1 79 3.58 21 0.01 0.05 0.01 0.02 0.01 1	5 5 5 5 5 5 5	1 1	0.01 0.01 0.01 0.01 0.01	0.02 0.02 0.01 0.01 0.05	0.01 0.01 0.01 0.01 0.01	0.02 0.04 0.04 0.08 0.14	0.01 0.01 0.01 0.01 0.01	21 1 15 11 1	0.04 0.08 7.46 5.71 0.36	107 (28 (18 7 14 (7 (19 5 1 1	0.02 0.01 0.01 0.01 0.01	4 7.55 1 18.35 5 15.44 7 13.02 4 29.79	15 6 1 7 1	1 1	1	110 139 93 81 274	ND ND ND ND	ND ND ND ND	5 8 4 8 7	0.21 0.11 0.14 0.16 0.08	135 95 95 55 230	1 1 2 1 2	2 2 5 5 4	0.4 0.4 0.4 0.3 0.3	4 1 3 21 13	6 1 1 5 12	12 15 22 15 12	2 1 2 3 1	D94G-8R D94G-9R D94G-10R D94G-11R D94G-12R		
I R0 4897N 796+66W 1 13 2 10 0.3 4 3 51 0.10 13 ND ND 598 1 1 1 5 28.06 0.01 1 8 0.19 1 0.01 0.12 0.01 0.46 0.01 1 1 1 R5 790W 4640N 1 11 3 7 0.4 3 2 31 0.05 5 ND ND 445 1 1 1 27.62 0.01 12 9 0.14 1 0.01 <td>5 5 5 5 5 5 5 5</td> <td>1 1 1 1 1 1 1 1 1 1 1 1</td> <td>0.01 0.01 0.01 0.01 0.01</td> <td>0.02 0.02 0.01 0.03 0.06</td> <td>0.01 0.01 0.01 0.01 0.01</td> <td>0.07 0.05 0.08 0.07 0.06</td> <td>0.01 0.01 0.01 0.01 0.01</td> <td>13 21 1 16 18</td> <td>5.78 3.58 5.80 5.23 0.17</td> <td>35 1 79 1 4 1 55 1 70 0</td> <td>1 1 1 1 13</td> <td>0.03 0.02 0.01 0.02 0.01</td> <td>5 11.15 6 6.33 3 21.93 7 9.94 4 8.35</td> <td>6 11 1 5 12</td> <td>1 1</td> <td>1 1 1 1 1</td> <td>65 41 165 60 169</td> <td>ND ND ND ND ND</td> <td>ND ND ND ND ND</td> <td>10 16 4 9 7</td> <td>0,12 0,20 0.06 0.21 0.24</td> <td>84 147 38 95 159</td> <td>1 1 2 3 1</td> <td>7 4 3 6 4</td> <td>0.6 D.5 0.4 0.5 0.4</td> <td>1 3 2 20 8</td> <td>2 14 6 4 1</td> <td>13 9 14 14 7</td> <td>1 2 1 1 2</td> <td>797.56W 2W 43+23N W 41+58N 0W 4605N W 51+96N</td> <td>RF789 RF79 RF7 RF7</td> <td>) </td>	5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1	0.01 0.01 0.01 0.01 0.01	0.02 0.02 0.01 0.03 0.06	0.01 0.01 0.01 0.01 0.01	0.07 0.05 0.08 0.07 0.06	0.01 0.01 0.01 0.01 0.01	13 21 1 16 18	5.78 3.58 5.80 5.23 0.17	35 1 79 1 4 1 55 1 70 0	1 1 1 1 13	0.03 0.02 0.01 0.02 0.01	5 11.15 6 6.33 3 21.93 7 9.94 4 8.35	6 11 1 5 12	1 1	1 1 1 1 1	65 41 165 60 169	ND ND ND ND ND	ND ND ND ND ND	10 16 4 9 7	0,12 0,20 0.06 0.21 0.24	84 147 38 95 159	1 1 2 3 1	7 4 3 6 4	0.6 D.5 0.4 0.5 0.4	1 3 2 20 8	2 14 6 4 1	13 9 14 14 7	1 2 1 1 2	797.56W 2W 43+23N W 41+58N 0W 4605N W 51+96N	RF789 RF79 RF7 RF7)
	5 5 5 5 5	1 1 1 1	0.01 0.01 0.01	0.06 0.01 0.05	0.01 0.01 0.01	0.12 0.08 0.10	0.01 0.01 0.01	1 1 1	0,19 0,14 0,16	8 (9 (21 (1 12 4	0.01 0.01 0.01	5 28.06 1 27.62 5 25.03	1 1 1	1 1 1	1 1 1 1	598 445 296	ND ND ND	ND ND ND	13 6 8	0,10 0.05 0.10	51 31 60	3 2 3	4 3 3	0.3 0.4 0.4	10 7 4	2 3 2	13 11 11	1 1 2	N 796+66W OW 4640N 796+66W	RO 489 RS 7 RT 48	

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To :	LYNN GREXTON
	920 EAST 28 th AVE.
	VANCOUVER, B.C.
Project:	Da Vinci

Type of Analysis: ICP

i.

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	94209
Invoice:	50280
Date Entered:	94-09-09
File Name:	GRE94209.I
Page No.:	1

PRE		РРМ	PPM	×	PPM	PPM	PPM	PPM	PPM	РРМ	PPM	PPM	PPN	4 %	*	PPM	PPM	×	PPM	*	*	×	×	×	PPM	PPM	PP8							
FIX	SAMPLE NAME	MO	cu	PB	ZN	AG	N1	C0	MN	FE	AS	υ	AU	HG	SR	æ	SB	BI	۷	/ CA	Р	LA	CR	MG	BA	τı	AL	NA	к	51	w	BE	au aa	
A1	D94G-14R	3	14	11	11	0.2	1	1	254	0.23	37	5	ND	ND	105	1	2	5	2	2 30,14	0.01	4	3	0.25	36	0.01	0.06	0.05	0.02	0.01	1	1	5	
Al	D94G-15RT	4	19	2	2	0.1	3	1	124	0.11	20	5	ND	ND	98	1	4	2	3	3 20,29	0.01	2	2	8.23	46	0.01	0.06	0.07	0.03	0,01	12	1	5	
A1	D94G-16RT	4	19	2	2	0,3	·	3	68	0.10	20	5	ND	ND	106	1	12	1	. 4	1 19.51	0.01	2	1	8.82	56	0.01	0.04	0.07	0.02	0,01	18	1	- 5	
A1	D94G-17RT	. 4	18	3	2	0.4	3	3	93	0.07	24	5	ND	ND	116	1	8	1	4	1 19.85	0.01	3	1	8.51	69	0.01	0.01	0.07	0.03	0.01	16	1	5	
A1	D94G-18RT	2	8	4	11	0.2	3	4	111	0.20	15	5	ND	ND	82	1	1	1	3	8.72	0.12	12	79	0.35	41	0.01	0.01	0.02	0.02	0.01	1	1	5	gle skiple
A1	D94G-19RT	4	11	18	9	0.6	4	2	99	0.17	46	5	ND	ND	351	1	1	1	1	15.58	0.01	3	38	0.15	27	0.01	0.01	0.03	0.10	0.01	12	1	5	
L	D94G-20L	3	17	9	47	0.1	5	4	570	0.36	18	5	ND	ND	162	1	1	1	6	5 23.51	0.04	2	9	0.46	340	0.01	0.20	0.05	0.02	0.01	5	1	5	
A1	D94G-21R	2	21	4	24	0.2	11	12	273	1.87	12	5	ND	ND	246	1	5	2	26	5 6.62	0.02	2	82	0.92	32	0.01	1.19	0.02	0.06	0.01	6	1	5	
A1	D94G-22R	3	15	15	16	0.2	1	2	62	0.11	25	5	ND	ND	156	1	12	1	2	2 33.81	0.01	2	11	0.17	24	0.01	0.06	0.06	0.02	0.01	11	1	5	
A1	D94G-23RT	2	14	11	12	0.1	1	2	37	0.04	17	5	ND	ND	116	1	2	1	1	34.50	0.01	1	9	0.20	25	0.01	0.01	0.06	0.01	0.01	1	2	5	
A1	D946-24RT	4	9	20	34	0.1	5	1	81	1.58	22	5	ND	ND	50	1	1	7	116	i 17.39	0.02	1	45	0.05	29	0.01	0.09	0.03	0.01	0.01	10	1	5	
L	D94G-25L	2	35	11	27	0.1	12	1	111	0,30	12	5	NŬ	ND	150	. t	1	1	5	5 24,42	0.03	2	20	0.44	208	0.01	0.29	0.05	0.01	0.01	1	1	. 5	다 사람이 같은 것이 같아.
A1	D94G-26R	2	80	S	69	0.2	47	34	1276	5.94	14	5	ND	ND	101	1	1	1	109	8.19	0.10	6	120	2.48	79	0.05	3.97	0.05	0.40	0.01	1	1	5	
A1	D94G-27R	2	55	2	71	0.3	19	26	1041	4.85	23	5	ND	ND	285	i 1	1	1	120	5.73	0.13	5	55	1.34	56	0.65	2.80	0.04	0,08	0.01	1	2	5	
Å1	D94G-28R	3	10	7	24	0.3	14	3	223	0.54	34	5	ND	ND	29	1	18	9	18	3 2.99	0.05	1	80	1.29	280	0.03	0.15	0,01	0.04	0.01	7	1	5	요즘 영화물
A1	D94G-29R	3	13	20	10	0.1	1	3	155	0.45	34	5	ND	ND	72	1	6	3	e	5 17.49	0.02	1	33	0.50	39	0.02	0.14	0.03	0.01	0.01	5	1	5	
A1	D94G-30R	4	7	9	15	0.2	8	2	186	2.98	45	5	ND	ND	24	1	1	1	16	5 7.64	0.02	1	84	0.04	48	0.01	0.01	0.02	0.01	0.01	1	1	5	
A1	D94G-31R	3	54	11	58	0.2	12	24	502	5.21	23	5	ND	ND	41	1	4	1	125	5 2.71	0.20	8	19	1.26	489	0.72	2.60	0.06	0.16	0.01	4	2	5	
A1	D94G-32R	3	18	9	17	0.1	3	1	155	0.26	9	5	ND	ND	66	1	1	1	1	1 20.33	0.01	1	8	7.19	51	0.03	0.14	0.06	0.02	0.01	2	1	5	
ι	D94G-33L	3	16	9	47	0.1	33	1	118	0.09	21	5	ND	ND	176	1	1	1	1	23.20	0.08	1	27	0.71	280	0.01	0.09	0.05	0.03	0.01	4	1	5	
ι	D94G-34L	2	14	6	25	0.1	12	1	314	0.35	18	5	ND	ND	161	1	1	3	٤	8 16.38	0.06	1	32	0.38	286	0.01	0.31	0.04	0.06	0.01	4	1	5	
A1	D94C-35R	3	11	12	24	0.1	12	1	192	0.51	87	5	ND	ND	108	1	1	1	, e	9 11,95	0.02	9	50	0.09	78	0.01	0.12	0,02	0.02	0.01	11	1	5	
A1	D94G-36R	3	17	4	31	0.1	19	1	136	1.50	67	5	NĎ	NĎ	20	1	. 4	9	39	0.79	0.03	11	122	0.08	238	0.01	0.03	0.01	0.03	0.01	5	.1	5	
A1	CALCRETE	2	13	10	32	0.1	4	1	81	0.09	38	. 5	ND	ND	134	1	5	4		2 32.69	0.01	2	. 6	0.26	161	0.01	0.10	0.05	0.02	0.01	6	1	5	
A 1	R0L41N/795W	3	55	4	87	0.2	28	32	805	4,93	22	. S	NĎ	ND	61	1	5	ं ं ।	96	6 3.64	0.16	6	50	1,79	69	0.56	3.24	0.08	0.16	0.01	8	1	5	
A1	RT44N/79011W	3	13	3	23	0.1	12	4	192	0.74	70	5	ND	ND	312	1	9	6	14	4 15.43	0.01	11	45	0.16	252	0.03	0.23	0.03	0.03	0.01	3	1	5	
A1	RT44N/79155	2	4	6	13	0.2	8	2	149	0.27	22	5	ND	ND	75	1	7	7	5	5 2.24	0.01	2	125	0.02	28	0.01	0.01	0.01	0.02	0.01	6	1	5	
A1	RTL44N/79203W	1	6	1	11	0.1	6	2	136	0.20	3	5	ND	ND	193	1	1	4	3	3 6.92	0.01	4	78	0.05	44	0.01	0.01	0.01	0.01	0.01	1	1	5	
A1	RT48N/781W	5	51	18	201	0.3	20	37	935	8.01	33	5	ND	ND	38	2	12	5	123	3 1.65	0.26	24	25	2.28	92	0.31	3.38	0.08	0.08	0.02	13	2	5	
A1	RF48N/78448W	3	11	8	21	0.1	3	3	155	0.42	14	5	ND	ND	57	1	4	5	1	1 20.25	0.01	4	26	0.16	53	0.01	0.17	0.04	0.02	0.01	10	1	5	
A1	R060N/78155W	2	8	1	8	0.1	8	1	87	0.17	2	5	ND	NĎ	36	1	1	1		3 6.9	0.01	1	71	2,65	25	0.01	0.06	0.02	0.01	0.01	1	1	5	
A1	RF60N/78658W	2	7	5	16	0.3	6	ંદ	105	0.22	20	5	ND	ND	41	1	7	8		5 3.80	0.01	5	113	0.14	21	0.01	0.06	0.01	0.01	0.01	B	1	5	

CERTIFIED BY : 000

· . · · · · · ·	• •	1 1 a	•		۰ ،
ROSSBACHER LABORATORY	LTD.		2225 Springer Ave., Burnaby, British Columbia, Can, V5B 3N	11	

CERTIFICATE OF ANALYSIS

LYNN GREXTON To: 920 EAST 28 th AVE. VANCOUVER, B.C. Da Vinci Project: ICP Type of Analysis:

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	94244
Invoice:	50280
Date Entered:	94-10-1 7
File Name:	GRE94244.I
Page No.:	1

PRE F1X	SA	MPLE	NAME	PPN MC	(Р)	РМ CU	PPM PB	PPM ZN	PP A	M F .G	PPM NI	РРМ СО	PPM MN	% FE	PPM	PP H	PM F	PPM SR	PPM CD	PPM SB	PPM B1	PPM V	CA	5	% PF P l	РМ Р "А	PM CR	% MG	РРМ ВА	% ТІ	% AL	% NA	% К	s SI	К Р I	РМ. ₩	PPM BE		PPB Hg AA	PPB AU AA		
A1 A1		094C D94C	37R 38R		Sector and the	42 39	6 6	21 29	0.		11 14			0.56			iD iD	3	1	2 1	222		0.22		3	7 1 4 2	74 0. 72 0.	03 02	164 169	0.01 0.01	0.07 0.04	0.01 0.01	0.12	0,01 0,01	1	1	1		50 60			
											<u>.</u>	<u>97 - 1 </u>													c	ERI	ïfie	D B (Y :	Ĺ	T Z	1) 0/	72	k	1	e/	L			 	

ROSSBACHER LABORATORY LTD.

and the second second

CERTIFICATE OF ANALYSIS

LYNN GREXTON To: 920 EAST 28 th AVE. VANCOUVER, B.C. DAVINCI Project: Type of Analysis: ICP 2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	93076
Invoice:	40133
Date Entered:	93-06-22
File Name:	GRE93076.I
Page No.:	1

1.1

PRE	SAMPLE NAME	PPM MO	PPM CU	РРМ РВ	PPM ZN	PPM AG	PPM NI	PPM CO	PPM MN	% FE	PPM AS	PPM AU	PPM HG	PPM SR	PPM CD	PPM SB	PPM B1	PPM V	X CA	X P	PPM LA	PPM CR	% MG	PPM BA	X Ti	X AL	% NA	Х К	x SI	PPM W	PPM BE /	ppb Au aa	рн	
L PC A A A	93AC-1L 93AC-2P 93AC-3R 93AC-4R 93AC-4R 93AC-5R 93AC-6R	1 1 1 2	15 9 16 11	1 1 3 1 11 5	41 8	0.2 0.4 0.8 0.2 0.4 0.8	21 15 5 8 9 9	1 2 1 1 2 1	210 198 67 192 163 163	1.05 0.21 0.19 0.37	2 2 4 2 22 7	NG X 22 CA	ND ND ND ND ND ND ND ND ND	271 143 40 62 16 18	1 1 1 1 1 1	1 1 2 1 10 6	1 1 1 1 1 1	23 2 5 8 4	10.63 9.95 5.95 12.41 2.46 5.48	0.05 0.01 0.01 0.10 0.05	4	21 128 67 166 118	0.87	88 18 42 459 38	0.06 0.01 0.01 0.01 0.01	0.78 0.55 0.05 0.07 0.04 0.12	0.05 0.02 0.05 0.01 0.02	0.10 0.04 0.04 0.03 0.03	0.01 0.01 0.01 0.01 0.01	1 1 1 2 1	1 1 1 1 1 1	5 60 5 5 5 5 5 5	8.2	
AAAA	93AG-7R 93AG-8R 93AG-9R 93AG-10R	1	10 16 12 10	1 1 1 3	10 23 13 13	0.6 0.2 0.2 0.8	5 6 7 5	1 1 1	149 96	0.19 0.21 0.19 0.31	2 2 2 2	ND ND ND ND	ND ND ND	104 57 93 20	1 1 1	1 1 1	1 1 1 1	2 5	7.44 8.72 8.84 6.99	0.15 0.01	9 4 6 5	99 57	0.08 4.26 0.14 0.05	23 23	0.01 0.01		0.04 0.02	0.06 0.04	0.01 0.01	, 1 1	, 1 1	5 5 5		
																										27					-/			
																				CE	RTIF	IED	BY : /	\int	/	t	07	n	be	nd/	h		>	

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To: LYNN GREXTON 920 EAST 28 th AVE. VANCOUVER, B.C.

Project: Da Vinci

Type of Analysis: Geochemical

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate:	94244 a
Invoice:	50280
Date Entered:	94-10-19
File Name:	GRE94144.A
Page No.:	1

>

		PPB	PPM		
RE I X	SAMPLE NAME	нg	Те		
<u>.</u>	94G - 1R	60	0.1		
3	946 - 3R	80	0.1		
,	94G - 4R	560	0.1	1996년 2월	
	94G - 6R	50	⊲0.1		
P	94G - 7R	80	0.2		
P	94G - 8R	70	<0.1		
P	94G - 10R	140	0.1		
P	RF 800W 5232N	40	0.1		
P	94G - 16R	50	0.1		
r P	94G - 19R	120	0.1		
r P	946 - 22R	50	0.1		
r P	94G - 24R	900	0.2		ta.
P	94G - 26R	1780	<0.1		
P	94G - 27R	2400	0.2		
P	94G - 28R	820	0.1		
P	94G - 29R	200	0.2		
r P	94G - 30R	520	0.1		
P	946 - 31R	700	0.1		
P	946 - 35R	380	<0.1		
P	94G - 36R	960	0.1	and a second	
г Р	CALCRETE	20	⊲0.1		
г Р	RO 41N 795W	1180	⊲0.1		
P	RT 44N 79011W	440	0.1		
P	RT 48N 781W	260	0.1		
P	RT 60N 78658W	80	0.1		S. A
P	D 94G - 13R	-	<0.1		
Р	RF78992W-4323N	_	<0.1		
P	RF 790W 41+58N	_	<0.1		
r P	RT 44N/79155 W		0.1		
		•			
880.2					
			-		
			•		
-9-9-9-9-9-	engenn in represent soos i vere 100/000	- and the second second			
					+-
					<i>'</i>
				CERTIFIED BY :	
				10100-	

and the second ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

To :	LYNN GREX	KTON
	920 EAST 28	th AVE.
	VANCOUVE	ER, B.C.
Project:	Alch	nemy-DaVinci
Type of	Analysis:	ICP

Type of Analysis:

, " • • • • •

2225 Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph:(604)299-6910 Fax:299-6252

Certificate: 93088 invoice: 40133 Date Entered: 93-06-24 File Name: GRE93088.I Page No.: 1

PRE FIX	SAMPLE NAME	РРМ МО	PPM CU	РРМ РВ	PPM ZN	PPM AG	PPM NI	PPM CO	PPM MN	X FE	PPM AS	PPM AU	РРМ HG	PPM SR	PPM CD	PPM SB	PPM Bl	PPM V	* CA	X P	PPM LA	PPM CR	X MG	РРМ ВА	х ті	X AL	X NA	х к	* S1	PPM W	PPM BE	ppb au aa	рн	
A A A	93AC-11R 93AC-12R 93AG-13R	1 2 1	21 6 6	(9 6	28 9 13	0,4 0,4	8 5 4	1 1 1	114 64	0.16	2 10 9	ND ND ND	ND ND ND	86 73 87	1	1	1 2 3	5 3	3.91 4.87 5.16	0.01 0.02		131 121	0.06	51 (24 (),01),01	0.07 0.06 0.06 0.12	0.01 0.01	0.04 0.03	0.01 0.01	1 7 6 6	1 1 1	5 5		
A L PC	93AG-14R 93AG-15R 93AG-16L 93AG-17P	1 1 1 1	4 8 15 13	6 6 4 5	13 9 25 27	0.2 0.6 0.8	6 6 11 15	1 1 1	1116	0.16	8 5 8 2	ND ND ND ND	ND ND ND ND	21 226 157 178	1 1 1	1 1 1	2 3 1 3	3 21 1	1.45 9.30 6.30 3.51	0,01 0.05	22 8 2 7	190 96 17 20	0.06 0.51	33 (289 ().01).02	0.12 0.05 0.25 0.48	0.01 0.02	0.04 0.06	0.01 0.01	6 4 1 1	1 1 1	5 5		
R L PC	93AG-18R 93AG-18L 93AG-19P	1 1 1	16 13 12	3 1 1	21 8 5	0.2 0.4 0.2	6 4 4	1 1 1	90 79	0.16 0.10 0.09	2 2 2	ND ND ND	ND ND ND	59 84 89	1 1 1	1 1 1	1 1 1	61 32	3.57 8.15 10.07	0.04 0.03	2 1 1	3	0.34 0.24	133 (126 (0.01 0.01	0.10 0.14 0.12 0.13	0.02 0.02	0.02 0.02	0.01 0.01	1 1 1	1 1 1	5 30	8.5	
L R R R	93AG-20L 93AG-21R 93AG-22R 93AG-23R	. 1	14 8 6 17	1 6 5 1	8 7 9 13	0.2 0.2 0.2 0.2	4 5 4 4	1 1 1 1 1	134 73	0.11 0.25 0.15 0.11	2 7 5 2	ND ND ND ND	50 50 50 50 50 50	385 43 70 276	1	1 1 1	1 1 1 1	4 15	9,83 4,65 6,84 21,41	0.01 0.01	2 8 11 39	105	Q.08	17 13	0.01 3.01	0.13 0.05 0.06 0.11	0.01 0.01	0,04 0.02	0.01 0.01	1 6 5 1	1	5 5		
영화																																		
	o seuto seuto que		ata 1860-0.	, 9,880 s				83,232,243											Niko (normalia)											96.0.98887				de transmutere e surre.
																																	-1	
																			I	CER	TIFII	ED B	¥:∠					<u>~</u>	2	b) Qu	0	$\underline{\mathbb{L}}$	
																							Ó	77		\mathcal{V}	-0	1-2		-				-

· · ·

Rossbacher Laboratory Ltd.

GEOCHEMICAL ANALYSTS & ASSAYERS

2225 S. SPRINGER AVE., BURNABY, B C. CANADA TELEPHONE: 200-6010 AREA CODE: 604

METHODS OF ANALYSIS, 1990

GEOCHEMICAL:

- Gold: 10 Grams of -80 mesh soil, or -100 mesh pulverized silt or rock sample is roasted at 550 °C, and digested with Aqua Regia. The dissolved Gold is then extracted with Methyl Isobutyl Ketone, and the resulting solution analysed using Atomic Absorption spectroscopy.
- Multi Element ICP: 0.5 Grams of sample is digested with a 3-1-2 dilute Aqua Regia mixture, and analysed using Inductively Coupled Plasma Spectroscopy.

ASSAY 1

- Gold (A.A.): 30 gram -100 mesh\$) sample is roasted at 550 °C and digested with Nitric Acid, followed by a double digestion with Aqua Regia. The resulting solution is extracted using Methyl Isobutyl Ketone, and analysed using Atomic Absorption Spectroscopy.
- Gold (F.A.): 15 or 30 gram ~100 mesh sample is fused using standard Fire Assay fluxes, the resulting Au/Ag/Lead button is cupelled, and the Au/Ag bead analysed using Atomic Absorption, or a Gravimetric finish.

Various Elements:

- Silver 3.0 to 6.0 grams is digested with Aqua Regia, taken to dryness, and dissolved in 25 % HCL.
 - Copper 0.5 to 2.0 grams is digested with HND_-HCl-HClD_ mixture , taken to HClD_ fumes, and dissolved in 10 % HClD_.
- Lead 0.5 to 2.0 grams is digested with HNO3-HClOs, taken to dryness, and dissolved in 50% HNO3-
- Zinc 0.5 grams is digested with HNO₃-HClO₄-HCl mix, taken to HClO₄ fumes, dissolved in H₂O,or HNO₃. Each solution is subsequently analysed for the required element by Atomic Absorption Spectroscopy.

GEOCHEMICAL ANALYTICAL METHODS CURRENTLY IN USE AT ROSSBACHER LABORATORY LTD.

A. SAMPLE PREPARATION

- 1. Geochem. Soil and Silt: Samples are dried and sifted to minus 80 Mesh, through stainless steel or nylon screens.
- Geochem. Rock: Samples are dried, crushed to minus 1/4 inch, split, and pulverized to minus 100 mesh.

B. METHODS OF ANALYSIS

Multi element: (Ho, Cu, Ni, Co, Mn, Fe, Ag, Zn, Pb, Cd, As):
 0.50 Gram sample is digested for four hours with
 a 15:85 mixture of Nitric-Perchloric acid. The
 resulting extract is analyzed by Atomic Absorbtion
 spectroscopy, using Background Correction where
 appropriate.

2. Antimony:

0.50 Gram sample is fused with Ammonium Iodide and dissolved. The resulting solution is extracted into TOPO/MIBK and analyzed by Atomic Absorbtion spectroscopy.

3. Arsenic: (Generation Method)

0.25 Gram sample is digested with Nitric-Perchloric acid. Arsenic from the solution is converted to arsine, which in turn reacts with silver D.D.C. The resulting solution is analyzed by colorimetry.

4. Barium:

0.20 Gram sample is repeatedly digested with HCl04-HNOs and HF. The solution is analyzed by atomic absorbtion spectroscopy.

5. Biogeochemical:

Samples are dried and ashed at 550° C. The resulting ash analyzed as in *1, Multielement Analysis.

6. Bismuth:

0.50 Gram sample is digested with Nitric acid. The The solution is analysed by Atomic absorbtion spectroscopy.

Jan. 1990.

METHODS OF ANALYSIS (CONT'D)

7. Chromium:

· • •

0.25 Gram sample is fused with Sodium Peroxide. The solution is analyzed by atomic absorbtion spectroscopy.

8. Fluorine:

0.50 Gram sample is fused with Carbonate Flux, and dissolved. The solution is analysed for Fluorine by use of an Ion Selective Electrode.

9. Gold AR/AAS:

10.0 Gram sample is roasted at 550° C and dissolved in Aqua Regia. The resulting solution is subjected to a MIBK extraction, and the extract is analzed for Gold using Atomic Absorbtion spectroscopy.

9A Gold FA:

10.0 Gram sample is fused with appropriate fluxes, and the resulting lead button is cupelled to produce a gold/silver bead. The bead is dissolved in Aqua Regia and analyzed for gold by AAS.

10. Mercury:

1.00 Gram sample is digested with Nitric and Sulfuric acids. The solution if analyzed by Atomic Absorbtion spectroscopy, using a cold vapor generation technique.

11. Partial Extraction and Fe/Mn oxides:

0.50 Gram sample is extracted using one of the following: hot or cold 0.5 N. HCl, 2.5% E.D.T.A., Ammonium citrate, or other selected organic acids. The solution is analyzed by use of Atomic Absorbtion spectroscopy.

12. pH:

An aqueous suspension of soil, or silt is prepared, and its pH is measured by use of a pH meter.

13. Rapid Silicate Analysis:

0.10 Gram sample is fused with Lithium Metaborate, and dissolved in HNO3. The solution is analyzed by Atomic Absorbtion for SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, TiO2, P2O5, and MnO.

14. Tin:

0.50 Gram sample is sublimated by fusion with Ammonium Iodide, and dissolved. The resulting solution is extracted into TOPO/MIBK and analysed by atomic absorbtion spectroscopy.

15. Tungsten:

1.00 Gram sample is sintered with a carbonate flux, and dissolved. The resulting extract is analyzed colormetrically, after reduction with Stannous Chloride, by use of Potassium Thiocyanate.

16. ICP :

(I

0.5 Gram sample is digested with Aqua Regia, and analyzed using a JOBIN YVON MODEL JY 32 1987 ICP Emission Spectrophotometer for Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, La, Mg, Mo, Mn, Ni, P, Pb, Sb, Si, Sr, Ti, U, V, W, Zn.

TRACE LEVEL GEOCHEMICAL ANALYSIS

A. ATOMIC ABSORPTION MULTI ELEMENT PACKAGE, Digestion by HClO₄ / HNO₅ or Aqua Regia. First element \$2:25 Subsequent element \$0:75

.

ELEMENT

Arsenic 2	ppm 🔄 🧏 1.0%
Copper 👘 🖓 👘	ppm ⁻_:
Molybdenum	ppm 1.0%
Lead	i ppm
	ppm = 4.42***1.0%
Silver 0.15	, ppm, 20 ppm
Nickel 2	si ppm - 2 3 1 pt 1.0%
Cobalt 21	teppm
🔆 🔆 Cadmium 🚯 🏠 🖉 0,2	7 ppm 2.45 0.1.0%
Manganese 5,0	🕐 ppm
lron 5	ppm 10.0%
Chromium 👘 📜 💱	ppm
 Background correction 	applied

B. ICP MULTI ELEMENT PACKAGE

a,	Digestion by Agua Regia		Seleniu
	6 elements \$5.00		Strontic
	12 elements \$6,00		Sulfur
	All elements \$7.00		Telluriu
b.	Digestion by HCIO, / HNO ₃ / HF mixture	· · ·	Thalliu
	(Total)		Tin
	24 elements \$12.00		Tungst

24	elements	\$12.00
----	----------	---------

marked with an asterisk.

* Aluminum	0.01%	* Magnesium	0.01%
Antimony -	\$ppm	Manganese ·	1 ppm
Arsenic	3 ppm	Mercury	3 ppm
 Barium 	1 ppm	. Molybdenum	1 ppm
* Beryllium	1 ppm	Nickel	1 ppm
Bismuth	3 ppm	Phosphorus	0.001%
* Boron	1 ppm	* Silicon	0.001%
Cadmium	0.5 ppm	Sodium	0.01%
* Calcium	0.01%	Strontium	1 ppm
Chromium	1 ppm	Titanlum	0.01%
Cobalt	1 ppm	Tungsten	3 ppm
Copper	1 ppm	Uranium	10 ppm
Iron	0.01%	Silver	0.2 ppm
Gold	3 ppm	Vanadium	1 ppm 👘
Lanthanum	- 1 opm 🗥 😳 🤅	Zinc	1 ppm
Lead	2 ppm		

Elements for which the digestion is possibly incomplete are

C. NOBEL METALS GEOCHEMICAL ANALYSIS Gold Aqua Regia / AA Finish 5 ppb \$4.75 Gold Fire Assay / AA Finish 5 ppb \$7.25 Gold & Platinum & Palladium, Fire Assay / AA Finish, 2 ppb, 15 ppb, 2 ppb \$15.00

D. SPECIFIC ELEMENTS

A CARLES CONTRACTOR	经保证书记证则	A. C. S. C. S.	and serves of
ELEMENT.	DETECTION	UPPER	PRICE
	LIMIT	LIMIT	
(上午)上海 百万月 是一次	新的 建设。	试 加.交 用 。如此	
Antimony 22, 3	T OPM SEA	-0.1%	\$\$4,00,
Arsenic - Arsenic - Arsenic	anopmie a se	.1.0%	\$ \$ 4.00 a g
Gen A-Barium Shiel State	S10 ppm PA	1.0% 5	818 4.5 0 m
Servilium 24 a.m.	0.1 ppm	0.1% 2.3.1.4	15,115.00
CENT BISMUTH, TO PARA	2ppm://www.	17 (178)	4,00
Chromium 🔆 🖓			3 49 4.5 0
	ျှ10 ppm 👬 ုိ	and the second	
		1.0%	4.50 🗯
		100% ્રેટ્રેટ્રેટ્રેટ્રેટ્રેટ્રેટ્રેટ્રેટ્રેટ	, 4.00
Mercury	10 opb t	0.01%	2.75
📲 Rubidium 👾	1 ppm	_ 1.0% , જ∮∂_∂	
Selenium	🔄 bbu 🖉 😳	0.1%	5.00
Strontium	1 ppm	1.0%	4.50
	0.1%	100%	7.00
Tellurium	0.1 ppm	0.1%	6.00
, Thallium	0.5 ppm	0.1%	5.00
Tin	2 ppm	0.1%	4.25
Tungsten	2 ppm	0.1%	4.25
		ere en	

E. PH ANALYSIS

Soil; Silt and Water

F. SPECIFIC GRAVITY

DISCOUNT POLICIES

. 1 All prices are on an individual basis, discounts may be negotiated fo

\$4.50

APPENDIX III

Rock Sample Descriptions

ROCK SAMP	LE	ES	5				D	AV	IN		19)94	4											0	WEAL	* @	e) #	ODE	RAT	'E (3) s	TRO	NB	•) <i>I</i> N	TEN	SE			ind	dica		ny m	ber.						Ļ	(of_	_6	6
	Т	YPE	-	m	T		MA	N ·	M	NE	RAL	S	•/•		AL	TE.	R/	ATI	ON	I	оx		ES		TIT				_	NS	-	_		-		IC		_						Т	T			_	NA	LY	SE	S	—	-
SAMPLE DESCRIPTION	FLOAT/TALUS LOCAL	FCROP/SUB.		ENGTH	Quertz	Feidepar	(Płagioalase)			orite	Carbonete				ENERAL	IDOTE RBONATE	ICA TABLE	AV	EACHED	MONITE"	MANGANESE MALACHITE	matite.		1234357	CONTA BEDDIN FOLIAT CLEAV FAULT SHEAR FRACTI VEIN DYKE	ICT IG NGE URE	STRINGERS VEIN	K WORK	AMOUNT		(W) H I	(W) H101	<u>.</u>	horire	Chaleopyrite	Pa	Sphaierite	Areenopyrite	bdenite				TOTAL	0705										
		200	<u>s</u> s	<u>و</u> ات	ð	Ē	ě.			Chierit	Car	<u> </u>			• 3	1		233	**	-	33	He.	<u> </u> \	9. 10.	DYKE		8TAI VEIN	č Ž		-			ž,	ž	S S	ā	ų S	Ā	ŝ					Ľ		4 <i>U</i> pb :	A	-	Cu		ppm		ppm	_
12 Cherty Limestera - chert 14 - dk gy, black & brownish lenser nusses, within It cy limesterng. by firely crystallike delomitic line fractive Billings, minor line fractive Billings, minor fine milt, crysta g bractice fillings tion Fruitberg 2.5 g add geele		0	×		_												Ш	Ш	Ш	ļ	<u>ı</u>							xG	21	0	7,5 17	Ł	×											İ										
H-dkgy, black & brownish lenser				-+-	╋	+		+		-+-	+	+			+	$\left \right $	┼┼	╫	+		╫	+	+		-		$\left + \right $	-	╀	+	+	-	+		+				_				F	-										
by firely crystallike delomitic			\mathbf{H}	_	_	<u> </u>		-		-	1	1-					11	Ħ	11			1		1					╪	+	1		+											L										
ine milks engets a fracture fillings								+			+	+			+	╟╋	$\left + \right $	+	+		╢	+	+-	╀	<u> </u>		H	+	+	+-		╉		· [-		-	4	\neg	-														
ion ? fructures ? 2-5 4 add apple	H			-	+	-	_			_	1	+				П	11	41	#		++	1			••			_			_		1				_				-			L										
een scaley muster appear be fractive related, pyrite name V. Fine diss grain.					\pm										+	╟	\mathbb{H}	╢	\mathbf{H}		╂	+	+-	╉				+	+	+	+	╉	-+-	+		+	-+	-	+	-			+		-							T		
mare V. fine diss grain.	\square	+			+			-		_						П	\prod	11	П		П			T				1.	-				1	4	1								L	E										
																∐	\ddagger	\pm			╢	+-	+				$\left \right $	+	-+-		+	╉	+		+	+			-	-	_		+	┢	1									
	H	-+-			+	+	+		+ - 1	-		+	\square		 F	IT	Π	H	П	T	-	T	T	-					1		1	1	-		_	_				.			-	E		×.								
R Chert - veine & laminae in herbre ; buff-grey , shallow to NK , weakly irregular E irp macgins -ne duplicate		<u> </u>		2-	<u> </u>			+	$\downarrow \downarrow$		_	+				Ħ	#	#	\ddagger			+		t	_							\pm	\pm	1				-		-			╀╌	┢	╋	_		-		+		╉		
to NE weakly incoulor -	$\left \right $		┽╂		+	+		+-	$\left - \right $			+	┼╌┥			╢	╢	++	+		+	+	+-				μĤ	H	-		F	-	-	Ŧ		1	_	1	_			Ľ	I -	L										
arp margins					1					_		1				#	Ħ	#	\ddagger			1	1						+			1											\vdash	┢										
-ne duplicat			+	+-	-	+		-	$\left \right $	-+		+	┼┤			┼┼	╢	╢	╢	+	┼╂	+	+	+		_	$\left + \right $	+	+	_	-	-F	T	-	-	4	-							-	1									
Q Cla L stated - Providence		X		-	_	-		1	ľ.	1	-	1_			Ŧ	Ħ	##	#			#	1	1									1		\pm										\mathbf{t}										
2 Charty-chaleedonic Breccia - small blds & cobbler, frage	"	×						\pm		\pm		+-			\square	┟┼	╂╋	++	╂╋	-44	+	4	+-	╋		-			+		+	╉	+	+	+	-	-	-	-	-			F	-	T							Τ		
chard of I methods a contailed		-77	┼┨	-							1	1				Π	Π	1				-	1-					-	1	1	1	1		1						_			E											
15 % weather develope slichowide	\mathbb{H}				+		+	+	┨┤	-+	+	+	╞╌┨	-	+	╟	++	╢	+		+	+	-+	+			H		+	+	-+-	+	+	+	-	-	-	4	\neg				F	F										
assive to great & chalcolemin 15 %, weatly develope slickowide one suchuse, woat fire vys 5 carbonate leaching				-				+	11		1	1				T1	##	11	#		\parallel	t	t	上								1		\pm								-												
3 rocks over 2 m2 ores	7		11	+	╋				++	-+		+	+	\vdash	 ╟╋	┼┼	Ħ	╂┨	╢		+	╋		╉				+-	+	+	+	Ŧ	Ŧ	-	-	-		_		4	_			F	1					+		-		
3 rocks aver 2 m² area ≈ 100 m E of 790 w/43+25 w			T I	-	1			\mp	1-1		-	\square	[]			Ħ	#	##				1	1	\mathbf{T}		_			\pm			\pm					\pm						+	┢										
	+		╧╋	-			+		+	+		+	$\left\{ -\right\}$		 	\mathbb{H}	┼╂	╉	+	+	╶╂┤	+	+	+-			$\left + \right $	+	+	-	+	+	-	-	$\overline{+}$	\neg	\neg	_	1	_			-	-										
			11		-			1			1	1			Ħ	Ħ	##	##				1	1	1					1			1									_		\mathbf{L}	\vdash										
			± 1												\mathbb{H}	╟╢	+	+	+	+	+	+-	+	+			$ \cdot $	+	+	-	+	+	+	-+	-[+	-Ŧ		\neg	-				-						{				
R Chert -rough weathering	7	X	X	-			-	-	\square			-	1		Ħ	Π	11	#	1	2	\parallel	2	1-	T					1		1	1				_				\neg				L	┢	-	\vdash			-†		╉		•
R Chart - rough weathering ned to dk arey, mussive early laminated with laminations												\pm			 	H	+	+	+	H		+		+			$\left + \right $	+	+	-	+	+	+-				+		-	-			1-	F										
a LECOSALOY MUSSER OF CARDONAY	H				1						1					Ħ	Ħ	#		T		T	1	1					1	1	1	1	1										E											
y weightered out leaving fine a. Viagzylorx along 8m, max 20cm									<u></u> ††				$\left \right $	\vdash	 \mathbb{H}	H	++	╂	+	H		+	+-	╉╌				+		_					+		+	-	-	-	_		\downarrow											
n Harrelit Russelle - 2 - 4	<u>-</u>	$-\Pi$	-U	_	-				\square	-						Ħ	Ħ	##	$\downarrow \downarrow$	Ħ		1	Ŧ						1	1		1	1	-	_						_		\vdash											
appanitic hemitte & sarper?	"		Ĥ					1-			+	+-			\vdash	$^{++}$	+	++	+	┝╋┥		+		-			$\left[+ \right]$	+	+-				+-			-+						_	\vdash							T		Τ		
ix; frequents brownish-greenish		\square	$+\mathbf{I}$													11	ŢŢ	11		Ħ		1	1						1			1	-	t										\mathbf{t}										
5R. Hematite Brecciq - 30% aphanitic hematie & sasper' ix; frequents brownish greenish y chert Imm to 2cm; lecal ing of chaledon, z colleform inval textires 7.5 mm; local yellowis site, is m W of GYR; DMMENTS: G3R; dyplicate not											-				\vdash	Ħ	$\pm \pm$	+		H							[+]	+	+-			╉					-	+	-					F	-									
ibydal textures 12.5 mm; local yellowis	h []		₩		_										 П	Π	П	71	T				_					1_		1.	1	1	t.										E											

. .

.

٤.

and a second
ROCK SAMPLES DAVINCI 1994

Page 2 of 6

ROOK SAMP	له ل	. 0				D	Ά	VIR			994	ł										() WEAK (2 mo	DDE R.	ATE (3 s1	TRON	s (• "	ITENS	ε	w	Indic	a f e s	numbe	.	ng on	e "vein	~			
	Τ	YPE		m		M		N ·	MIN	ER	ALS	•/		T		ER	ATIO)N	0	XI	DES	ATTITUDE	_		INS		-						ALS			Ť		_		YSES		
SAMPLE DESCRIPTION	FLOAT / TALUS Local	OUTCROP/SUB. COMPOSITE CHIP	GRAB	WIDTH	Quartz	Feldepar (Plaajaajae)	Hornblende		Chiorite		Cerbonate			GENERAL		CARBONATE SILICA	Π	BLEACHED	"LIMONITE"		Magnetite •/•	1. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE 5. FAULT	TT	Τ	AMOUNT		╈		Π	Galena Schalerite	T	Molybdenite			OTAL			Ag	Cu	PPm	ppm	
6 R Cherty Limestone - rough working			,						_					T		×			-								<i>*</i>															Ť.
ridizing it?, bially & fine by n & act matrix dk ay to near black									-												-	····	╏┼┼				╞	1					+									
6 R Cherty Limestore - rough worther 17, Etelsic ? subvole? cutting e widizing it?, bielly & fine by n g arts mathing as lenses finds anitic, massive as lenses finds mod-strung of mass hipestore rite fract celeted & carb. calconess fruct come of the birth calconess fruct come of the birt																							╏										-									
to 2 mm and intergrang lar														1		++					+		╏┼┼				╞	-		-			+			_						+
porsible febric subvole - 30%. limentary alk gn -blackist, anhedry	┠┼┤	++							_												_					-	ł				E											
Innertan, dk. gn-blackish, anhedry and set in dk. gn-blackish, anhedry ilicens matrix, weathers med to bremish - nonnegnetic 7R Febric Subsole? - v. dk. c.y. to Febric Subsole? - v. dk. c.y. to Blackish, 2 quivalent to sample - 790 W/Hlyon, but rudimentary aitor want ditant autoration	┠┼┼																										-				-		+									
7R Febric Subrole? - v. dkgy to - bleckish, 2 guivalent to sample - 790 W/4k Value b. t. sudimentar	┟┼┼							$\left \right $													-						×															T
iliceous with interstiting carbonde				-			-														-		╏┼┼			1		-		-+	-			-								
"> "h], Ay rare, v Ane; sparse -b fracture fillings same off as bR On Cherty Limertone - pourly							+	╞┼						╡			╉╂				-		╏┼┼			+		-		-	_]						
BR Cherty Limertone - pourly 20sed, locally & bx'n at chert & cyrb itrix; possible local flow techne														1							-			-		-							+									
secent in chert; as 3.5 cm wide sex layers/reins; also primary /chemt brid with car's matrix	╏	\ddagger							-					+		-+-					+		╊┾┼	-			╞				1-		+									
sex layers veins; also primary. /chent brid with cars matrix r5 hairline froit fillings common irregular; weather dk gy Insularly rough; non magnetic				-	\square	-	-		_						\mathbb{H}								╉┼┼				+						\pm			4	_				_	+
Insularly rough; non megnetic	╏┼┤						-														_		╏┼┼					\vdash			-		+									
· · · · · · · · · · · · · · · · · · ·	┟╽┤					-																											Ŧ									
9R LIMESTONS with 3.5 cm wide silicous voin llense?	4	\$	×				+			+		-			Ħ						_		╏┼┼	+			t				-	$\left - \right $	+			-					$\left \right $	+-
rizon; mass, med dk gy for	╏┼┤			-						-																					-									ļ		
ssibly gruded chert-carbonate rizon; mass, med dk gy for 'cm then finely vygy, brownish 2-silice mix; distinct, to somewhat adaptional contact with mass It gy																								-																		
reaking to ided - Stoad; slickensides		╶┾┿╴		-				}		-																										╡						T
lower chert surfuce; cars with plegreen? mass app agg,													F																		-			-								
COMMENTS:		-11					. 						<u> -</u> -					++						<u> </u>			F	ŀ		_						_						\bot

COMMENTS

ROCK SAMPLES

DAVINCI 1994

Page 3_ 01_6_

									-		•••														~		~			_														Page	1	of	6	
		TYF	PE	Γ	m	Т	_	M	Â	N ·	Mi	NE	RAL	S	%				50			-				WEAK (ODE R.	ATE	3	STR	ONG	◙	INT	ENSE		ω	Indi	cates	numi	ber -	••	ne "v	in"				
•••••			Π	Т	Τ	Т	Τ	_	-	_			T	Ť			ť					+		DES	A	TTITUDE		VE	IN	S		ME	ETA	LIC	C 1	MIN	ER/	ALS	•/	/•		_		ANA	1 7 6	50	_	_
SAMPLE DESCRIPTION	Z	ŝ		12	= _															11	11				ł.							T				Γ	T	T	<u> </u>	ŤΠ	H			~~	T		_	-
	FLOAT/TALUS	TCROP		S.	Ē	E	16001	alocia	biend	2		.	Carbonate				NERA	DATE	CA	CLAY CLAY	B HO	"LIMONITE" MANGANESE	CHITE	Magnetite .	4.5.4	CONTACT BEDDING FOLIATION CLEAVAGE FAULT SHEAR FRACTURE VEIN DYKE	STRINGERS VEIN			Ē	LENGTH (m)		Chalcobyrita		ŧ	Areanopyrite	e le			F	GOLD							L
	5	3	5		i∣≷	ð	Ē	Ē	Her	ē		8	Gar				Ĭ		통금				MALA	90 O		FRACTURE VEIN DYKE	DN IN	3	AMOUN	WIDTH	5	늰		- Pe	Sphalerite	loue	2 de			TOTAL	00	Au						1
* 10R Felsic Subvolc ² Silicitied Gors? 5 alt?, finely brd, work sil, w "erv cars? interstitial to g & feld? 500 Carls?	F×		ļ			Γ		Γ	Γ	\square	Τ						Ħ				\dagger	Ħ	┢╋┥	2	10.	_	. > .		₹	3	-		2 5	ő	Ē	ž	â					ppb.	A Down	CL	PP	-	ppm	PI
Salt , hinely brd, weak sil w		H	Π		1	E		1					+-	$\left\{ -\right\}$	-+	-+-	-#4	-+-+	++	┼╀	╂┟	┠┼╴			┶																					T		Γ
sentially agg. as anhedral-supported	┝┼╴	\mathbb{H}	╂╊		+	⊢	╞	+-	+		_		1_					\pm							╂╌		H+	$\left - \right $			_		\square						1-	┼┨								1
ht & clear crystals?; remnant cars			Ħ		1		+-	+	+	++			+	$\left - \right $		-	┦┦	-+-+		\prod	T.							+		-+	-+	+-	╋	+-	+	\vdash			+									i
eathered surfaces: creamy-ninkill	+	$\left[+ \right]$	П					1				1		t - t		+	+	┿╋	┥┼	╂╂	++	\square	$\left \right $		_				_				+-	1-	+		-+		+	+	-						1	
t on fresh; x. finely byd & flooded		\vdash		┢─	┢─	┢	+	┢	┿	┝╶┼		-			_	1		#							+		$\left + \right $	$\left\{ - \right\}$		-+		+-	+	—										1				,
by clear & whit & pinkish crypto			11					1					+-	++	-+-		╂╂	++	++	╀╋	11	-1	П								╋	+	+-		┝┤	-+	-+	+-	<u>+</u> _'	\square				 				
iero cars: interstitue to a c féld? sentially ago, as anhedral subbedry ht & clear crystals? remnent cars where it subscripts huff on rough enthered surfaces; creamy-pinkits t on fresh, v finely bid & flooded by clear & wht & pinkiss crypto -) 2 rocks highly angular	H	\square	╢	┢─	\vdash		ļ	+-								1	±↑	++	++	++-	++	+	++		+			$\downarrow \downarrow$	\neg	1		1	\perp				-	+-	+	╞╌┨					1	Γ	T	
			tt	t	1	1.				\vdash	-+-	+	+			+-	Ħ	ŢŢ	\prod	П	Π		11		E			╞╶┤		-+		+-	+	\vdash	1		$-\top$		\Box								[
	\square		\prod	F	-	È	<u> </u>					1-	1	\vdash			╂╂	++	₩	┼┼	$\left + \right $	H	- -								T	1-		+		-+	+		+-	⊢╂								
+ 1/R Subvole? Silicitied Cart? similar to IOR but & distinct	F ?			⊢		┣		┣	\vdash			-				1	11	11	11				ــــ		+-		++			-	-		F			_		1			_			1	1		[
similar to lor but & distinct	\square		II.									-				+	╂┼	₩	\square			HI	Ħ							-+-	╈	+-	+	\vdash	-+	-+			+ - 1		_			 				_
rains indistinct with white & minu	-+-+	+	$\left + \right $							_	_				1	-	††	╀╉	╀╀			+++	++				++		-								+-	1	├ ─ 		-							_
lear masser of a (10%): strong						-					+	+-	+ -			+	F T	11	Ħ								+				+-		+-	-		1		1				- 1		1				
rains industrie loss but a distinct rains industrict; mile white s minor lear masses of q (10%); strong x'r; fine & coarse matrix; g-cuch ith was hern (GerMa); as y hope t diss greins S which as	-++		4													+	╂┼	┼┼	╂╋	$\left \right $	-+-	++		_								1-	+-	\vdash	-+			+	+			Í		1			1	
t diss grains Spinkish / red wide stuin; wouther strong but inely irrejular E irrejular bonwork; regular hairline fruct of black	++	+						-	-	-+-				-	1			11					11-	-+			+++	-+		_						_				-+-	-							
inde stuin; wouther strong but		\square								1		+-	┼─┤		+		┠┼	╀╀	 -	$\left \right $	-11	-#	ŦF									+-		┝╼┟	-+	+	+-	+-i	\vdash	-	_						_	
regular hairling fruct of black	╉╋	-++	+1			_	-+				-			-				tt		+++	-++	++	┼┼	+-			+++			-							1		i-+	+	-			ł	ļ			-
inframe, mass, app. material C.21 & discontinuous tension ashes; likely from within 500 m		Ш			- 1		-	-+	-+		+	+-		\rightarrow	-	-	H	H				11	11				+++	-+		-+-	+	+																
asher ilikoly from within Soon	++	-++	+									1			-†	+-	Fł	H-	Η-	-++	┼╂	++	₩-				\prod	_				1	t t	-+	+	-+-	+-	++	-+	-+-	-	Ì		ļ	[[
+ 12R PESMATITIC CARDONATE Vein	++	┼┼	┽╉	\rightarrow		-+	-+	-+	-+		+				-								Ħ	+			+++		+-	_	+-	<u> </u>	\square							-	-	Í				ſ		
- coarse decumente an la Trat	11	\square	11							+		+	+			+	\vdash		4-1	-+-+	+	11	H		090	Steeps		u]	1 .2	55	+-	1-	\vdash	-+	-+-	-+-	+	+ +										
- coarse decursule aggregate cakille regists; weakly sincer with minor chert fragments, hosted by himettone	++	++				\rightarrow				-		1			1					┼┼	┽╂	╉╋	╞┼╴	+			↓ ↓				1						+-	┼─┼	+		-							_
minor chert fragments, horted	11	Ħ		-	-+	+	-+	-+	-		-+				-+-					44	Ŧ						<u>†</u> ††	-+-	+-	_	+	<u> </u>	$\left - \right $		-+													
	++	┽┼				_								-+-	-+-		$\left + \right $		-++	-++	┼╂		$\left \right $	+				_							+-		+-	┼─┼		-	-							
+ 13R Quarte-Carbonate Lenser-	Xs			-+-	+	+	-+	\rightarrow		+	+	\vdash	LT		F.				11	#		\square					+++			+-	1	\vdash	1		1	-	1											
a cherty Lineston 3 cm will max ace py as strong - Intensely usty abs; milly quart; weakly coarrely asyy (carb. leaching)	Ħ	Π.	П	-	1				1		1		-+-	+	+			-++	++	++	┼┠	4	H-							\pm	×	+		-+-			+-	┟╶┥	\rightarrow	+	╋	-+				1		_
ebri milty quarte weakly coarrol	++	┼┼	┼╂	-+-	-+	\rightarrow		-+-	-+-				_	1	1				Ħ	$^{++}$	┼┠	\mathbf{H}					╞┼┼	-+-	-										-+-		-							
Aggy (carb. leaching)		Ħ	Ħ		+	- +		-+			+			+	+			-11	H	-11-	TT-	11					╞┼┼		+-		-			-+-	_		-											
	 _ _	┼┼	11	_			_		1				-		+		-++	+	-++	++	┼┠	$\left + \right $	_										-+			+					-							
£	Ηt	ŧ+	┼╊	-	-	-+-	-+-	-		+	+				1		_11	11									┝┾┼╴	+-	+	+	$ \downarrow \downarrow$					-												
	LT.	TT.	T	1			·	- [-			1-1	┝╶┤	· +	· +···	+		╶╁╌┟	-+-+	++	+	HF-	I-∏	1						1	+	t⊢	⊢┼		-+-	+-	+-			$- \square$	F				_				_
	╞┼╴	Ηł	┼┠					-	-	-Ţ	T I	E	- I -	. †	t: :		_t†	-11	tt	++-	╞╋╌	┼┼┤		∤ ∦			+	-	- L-			. t.			1	· ·			-+-		-						Γ	
	1.1		Ħ	t.	1		·	• •	-	-	ŧ	┝╺╽					-11	ŦŦ	ŢŢ.	T.	T I	t†‡	- †	1.1				· - f · -	+		╏╴┟		-		-	1.				E	1							
· · · · · · · · · · · · · · · · · · ·	 	$\left\{ + \right\}$		Ŧ	I.	, I ,	. .		.1	1	11		t				-††	++	++	++	┼╋┤	┝┝┥						- [.	1-				: t	· f· ·	- 	-	t t				1							
COMMENTS:	<u> </u>								1	<u> </u>				L				11	11	tt-		ĿΗ	<u> </u>		• •• •	· }-{					- I	. [· [.	1	t t	· †	-t	1								
en e																												- -	·	1				_1_		L			<u> </u>	L	1							_
																																									-							
																																						-										

OUTCROP/ SUB. COMPOSITE CENTP BRAS LENGTH WIDTH SAMPLE DESCRIPTION (Plaglociase) Hornblande Biofite 2. BEDDING 3. FOLIATION 4. CLEAVAGE 5. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE Pyrrhotite Chalkopyrite Galena Sphalerite Areenopyrite Malybdenire ŝ LITE TOTAL Carbonate Magnetite HemaHk 601 LENGTH (Quart z Feidepar AMOUNT WIDTH Chiorite VEIN STOCKW Pyrite GRID SAMPLES 40 RF 789+92W/43+23N XX Q Z Yen 35 set in silicour brownish-greyish matrix; feld exhibit brecciation & corb alteration; veins wht-creamy quarte of several generations; 2-5 % appanitic irregular black masses related to fine fract; local v. fine crackle appearance; event stringers vary from sharp to very gradational boundaries + varies from i all & only "crowded remnants of broken "clust and the stage of broken clust multistage of fait to u all? clust multistage of fait to u all? clust broken in all brown matrix vening locally chaledonic; I had trace y by diss mrushy pyrix # RL 7900/14400N Felsic Subvolc? - rudimentary dark crystals ar irulational mass vein? Ilent in ay mass himesture; py intensely "Usty t limenta common on Fact vetates; carb Fract fillings wht, may imm, cut by bleached there; 5% # Carb matrix, be comes (offor # cars matrix, becomes softer with more cars -1 large cobble #RT 790W4605 N Altered Consmit #RT790W/4413N Carbonate-Chert T HIN THE HITTER Corbonal Chert Breccia - with chert frags mod patchy limonic bless on trust - truce - cars fruct fillings; chert rass m-dk gy an ular to sus angular was - dk gy an ular to sus angular ough; brownish gy COMMENTS: -RT790W/4423N - possibly less all. equivalent to 9311, 94-10 & RF52N/79756W

ALTERATION OXIDES ATTITUDE

ROCK SAMPLES

m

TYPE

Page 4 of 6

ANALYSES

ppm | ppm PI

Cu

ppm

Ag Au

P

() WEAK (2) MODERATE (3) STRONG (4) INTENSE (1) Indicates number- of one "vein"

METALLIC MINERALS

•/.

VEINS

CONTACT

DAVINCI 1994

MINERALS %

MAIN

ROCK SAMPLES

and the second secon

- - -

DAVINCI 1994

() WEAK (2) MODERATE (3) STRONG (4) INTENSE

Page 5 of 6

	ĪĪ	YP	Έ	Ti	m	Г		M	AI	.	MI		ALS			-		_							() WEAK			_					<u> </u>						_		mber	- 49	• • •	"vein	-			
		Π	ŤT	+	<u> </u>	╋	Т					NER	ALS	_ <u>•⁄</u>	° •			EF		101	Ņ	-0.	XIC	ES	ATTITUD	-		VE	NS	_		ME	TAL	LIC	: N	1 I N	ER.	ALS	5	•/•	Т			A	NAL	YSE	s	
SAMPLE DESCRIPTION	T/TALUS	OUTCROP/SUB.		IGTH	H		- To	ociase)	e n de				919			CAL	1	NATE	AIUN	HED		NESE	5K146		I. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE 5. FAULT		X		1				yrite		2	yrite	- 11 e			Ĭ	2		Τ				Ť	Τ
GRID SAMPLIT	FLOA LOCA	OUTCI	CHIP	LEN	WID	Quart	Feldep	(Plagk	Hornbiende	Biotire		Chiorife	Carbonate			Z U U	CHLOR	CARBO	POTAS CLAV	BLEAC	1000	MANOA	Hemotite		4. CLEAVAGE 5. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10.	6TAINGE	BTOCK W	TYPE	AMOUNT	T NaT	Burles	Pyrchotite	Chakepyrite	Ge i en a	Sphalerite	Arsenopyrite	Molybdenis			101	0109	A	. .		Си	₽ ₽ ₩		
RF 800W/51+96N	F ?	X							Γ	Π						Т	Π	П	TT	T	T	T	t t	1		Ħ	tt	-	-	-	+	+	Ť	-	-	Ĥ		-+-	┿		+-		+		ррт	ppm		m i
" Questo - Contanala Russ.		f	Ήf		+			-		+			+		↓	╋	┣-┨	\square	11	Н.	ΗP	11	21				\prod		_																	1		
gular, rough weathering of any 2 wht; milly weakly druss, most matsive crypto; carb, finely crystalline ? nassive crypto; and a as fire fract, illings related to baset matrix & veinles		Ħ	Ħ	1-	\vdash		f		 				╂─╂-	+	++	╋	┢╋╋	┢┟	++	++	┼╋	⊢	44			11	++		_												1	1				1		
milky weakly drusy, most massive			П				Ī								<u>†</u> −†−	+	H	╀╂	++	H	╢	╉┼	\mathbb{H}			++	++		_	+	-	-	-											1	İ	1		
crypto; carb finely crystalling &	\square		#			ļ											H	Ħ	tt		Ħ	Ħ	Η	+		+	$^{++}$	+	+		╋	+	-				-+	_		+	-	1				1		
12551ve crypto, and a st five tract.		┟┼	11	-			<u> </u>				_	_				Г	П	F	П	II		11				1†	11		-1-		╋	+	+		-			-+-	-			-				1		
4 angles vers theat on surface 4 angles vers theat on surface from carb leaching froms at chert gy to blk of limestore someto 3 cm; axides trachine related 3 co bbles	\vdash	H	tt	t	┝		-			\vdash	+		+ +		┝╌┟╌	+	ᡰ᠆	┝╢	↓	╟┣	₩.	₩	++				П						-						+	+		1				ł		
from carb leaching from st chert		Ħ	Ħ	1	<u> </u>						-	-+-	┼┈─┤	+	<u> </u>	+	┢╋┙	H	┝┟	┢╢╴	┼╉	╢	╋			₽∔	++					-									T			-		<u> </u>	1	+
gy to blk & limestere a 2mm to			П.									1			++	ϯ	H	H	Ħ	╟┼╴	÷-	++-	\mathbb{H}	-		╉	╂	+	+		+-		 	-		_		_				1				Ľ	1	
Scho, oxides tructure related	\vdash	\vdash				L					_						Ш	H	Ħ							╂┼	++			+	+			$\left - \right $			-+		+		+-					1		
2 Co 35/er			Π								\rightarrow	-			I		\square	П	П.			Π					11		-†-	+	╈	+	+			-			+			1						
	H	H	┼┼				-						┝┈┝		┝┈┧	╋	HP	⊢	11		11	11	Ш								L						-+				+	-					1 I	
# RF 800W/52+30 N - Silicified ? himestone - veathers ligg to ear whit coarrely laminated, fresh truce buff - whit - gy - creamy ishtly irregular laminations t fire orest silicified and the silicity of the	$\overline{T}x$	X	İk					-			-					╋	┢┼┦	H	┢╟	┝┿	H.	┼┼	┝┼	+		₽	##			<u> </u>		-														ł		
himestone - reathers It gy to			HI.											1-			H	H	1+		H	╂╋				╂┼	┼┼		_		-	+					_		+								T	-
ear upt cogreely laminated, fresh		Ц.	11														П		TT.	H		<u>†</u> †-	H				$^{++}$	+			+-	+			-			-+-				1				i		
ichtly irregular logit the of En		\vdash	-							-+		+		+			Π		Π		П	П					Ħ	-	-	1	+-	+		\vdash		-+	\rightarrow	-+-		+-	┢	1				i		
ries; silica/carboate mix; local		\vdash				-				-		+		+	\vdash	┢	H	⊢	++	1	H	₩.					П						t					-				ſ				i		
idense of weak precilition Gry	-		Ī									+	┢─┟─	+		╉	┢╆┦	\mathbb{H}	H	\mathbb{H}	H	\mathbb{H}	\vdash			╂┼╴	++			+-	┢	-						_								l	i i	
+ over 5x10 marea			П											1		┢	HH	H	H	H	H	H	\vdash			╉┼	++	+		+-	┢	+						-+				1				<u> </u>		
	+			-				_		-+							П				IT	Π					Ħ	+		┢		1	t-		-	+	-+-				-	1				ł		
	┿	+	$\left \cdot \right $						_			_		+		-	Ш	\square	L							П	T			1-		1			-1			+	+	+						i	1	
											-+-	<u>+</u>	\vdash		·		HH	\mathbb{H}	┢┼			\square	4	-		╟	Ш.	_		_	Ι.										1-	1				i i		
								-1		- +	-+-	+-		+-			1+1	┢╋╋	\mathbb{H}	++-	╢	++-	-	+		₽						4						_								l .		
25 Bashed and a state	_	_										1					H	+	\mathbb{H}	H	++-	\mathbb{H}		+	······································	┢┼	┢┼	+			-	+			_+	_	_	-		_						i i	l l	
+ Rt BOW/52+32N Brecciated Cherty Linestone (?) -very ough surface, little matrix, finely	FX	-++	1×								_						\square				ī					th		+	-	+	╋─	+			\rightarrow	-+	-		+-		┢─		+-			<u> </u>		-+-
which surface, little matrix final.		+	$\left \right $		-			\rightarrow		-				-		+-	Ш		<u> </u>												\mathbf{T}	1-			-+	- +	- -				1-					i		
- true untran apple green caley mineral as in 94GIR	-+-1		H					+		-+		+		+			┢╋╋┥		┝┼╴			\square																	-			1	1			í		
- truce unknown apple green										-	-		┝╌┟╌	+			H	+	++-	H		H	-	-		┠┼				_		.		_		-										1		
cally mineral as in 94GIR	-1-1																-++		\mathbb{H}	-++		H	+	-		╂┼┤		-+-	-+-	+	-			-			_	_	+							Į		
+ RF 790 W/41+58N		- x			_			-			_						\square						1-					-		+	+	<u>†</u>		+				+	+	-	-							
SUICIEIDE RAISCIATUR LINE TO UT		- ř			-		-+	-		-+		+-					┢╋╋┥	/ 2								\Box	П.								-	-+		+	┢	+			+				+	-+-
hownish grayish smooth - finely ugh weathering silty limestone rajular silicous box mark gaparent weathered surface; frosth surface other with - gy - bit - creamy; delemites Continue without - bit - bits		-11					-	-+	-+	<u> </u>		-+				-	┍┿╄	+		- † +				+		\downarrow	↓↓_	_	_	_				_					-	-							4	
ugh weathering silty limestone										-		+		1-1	·		r##	-		-++		-+-		+			i -			+	ļ	4—			-			—									1	
-egular sillice our boxmork apparent												1					11					H	-					-+-							-		_											
which while any the same																	Ш							1			H	-+-		+	┢				-+	·			••+++	+			1					
		-++	_		-	-+	\rightarrow	-+	-+	-+-	-+	+		+	-+	₽	44	+	+	4	Щ	Ш	T							L						-+	-+-		· + -									
Vfine crystal ceatings intergranular"		-++			-		+			+	-+-	- 1		+			-++		H	-++	+++	+	+			┠┼┨	[]	_											+	+-		-	+	-+			<u> </u>	+-
v fine crystal coatings intergrander" satings & fracture fillings of carbonat					1									+	—†—		╂╊	+		++		\vdash		+-1		╉┼┤				·	.	ļ		f	. f	. [T									
	-+-+	- -			J			1								1						-+-	+-	┼╌╏							ŀ	$\left - \right $																
16 - premies 7 mines (-+ +	-++	┼╂	-+			+				_+ .	.		 			Ш										H+ ·		••• † •••	1-									+ -	-							i i	
cerbon; Fire irregular militing cerbon; Fire irregular missel of choorsonics Topmoor fire cooling r boryoldal carb coolings in some west COMMENTS: 2 small acgular subarge		-++	┽╏						+							ł				-1-1		11	_					_	Ī	1-	t-i	1	1	1	-	ł	•••	-	ł		ł			1	[1	1	
COMMENTS: 2 small gosular - subans	elu-	51	d.	-		_		1 .	L				·							Ц				<u> </u>			Ц.		<u> </u>	Ľ					1		1				1					ļ		
						÷																											_										<u> </u>		L		· · · ·	<u></u>

ROCK SAMPLES

DAVINCI 1994

Page 6 or 6

			_	_						1.	11.4		13	99 4	•									() WEAK	2	MOL	ERA	re (3) str	RONG	•) <i>IN</i> I	TENSE	F	(1)	Indii	cates	numb	er -	eg 01			_ F			-
	Ţ	YP	E			-		AM	N ·	N	<u>11 N E</u>	ERA	LS	•/•			ALT	ER	AT	ON		DXI	DES	ATTITU		_		NS		_						ALS				_		ANA	LYSI	ES		-
SAMPLE DESCRIPTION	FLOAT / TALUS	FCROP/\$UB. POSITE		ENGTH	DTH	21	lapar	giociase)	Hornblende Biotite		Chiorite		Carbonate			ENERAL	ORITE Dote	IBONATE Ica	A361UH	ACHED	IONITE" IGANESE	ACHITE	Magnetite */.	I. CONTACT 2. BEDDING 3. FOLIATIO 4. CLEAVAGE 5. FAULT 6. SHEAR 7. FRACTUR 8. VEIN	7 N. 7	VEIN STOCK WORK		TN (m) H	0TH (m)			Chakopyrite Balana	<u> </u>	Arsenopyrite				П	0705				T	T		
GRID SAMPLET	Ĩ	200	CHI	Ľ	ž	Quart	E.		Blot		Chio		Car			ľ	Ξ.	E CA	POTA SE CLAY	F	NAN NAN	X	Ko M	S. VEIN S. DYKE	a TRIN	VEIN STOCH	TYPE	WIDTH	LEN	1. L	f.	Chate Mater	a ha	Laen	dolyb			F		AU	Ag	CU	pp			
. RT 4BN/79666 W Limtstone W carb wht-brownish creamy huk; E local wht mars to ms tralline; lenter appear related tract E carb but some ore rupted by carb fract filling; max cmm; py rare vfs strong rusty in carb fract fill; sparsa g. ; several cobbles	-		ŀ																											У 															PPM	
RO 4897N/79666W Quarta -laminae/veinlets in Limertone		a	×																					0																						
ally a course strong rusty ago. py (2) not common; a str Keint not fillew beds; mility wht? cally greenist, max ~ 0.5 cm eeh (?) appears to be a chi curb mix?	F																							302/70 RNP-																						
RF53-N/29756W - Linestone? - Similar to "fold 'Linestone? + 1993 Sample: GII; silicous SY'd Carts of Matrix shows e discont. Pbr'a; 15% black thy denghitic?; butf to creany inthert timely rough with vuggy - boxwork = Lorralt equivalent to GIO 211 ?																																													-	
* 61. 411 ?																																														
COMMENTS:																																														_
																 	····			-							-					.	·	4 .	_	<u> </u>	— .1					¥	<u> </u>			-

ROCK SAMPLES DAVINCI 1994

Page____ of ____

	Г	TYF	F	-	m	-			A 1 A 1											_				_	() WEAK	2	ODE	RATI	e (3) s t	RONG	C) <i>i</i> N	TENS	SE.	a) in	dicate	• =	mber -			ein*				
	H	TT	ŤT	╋	<u> </u>	╋	T-	1		· ·	MIN	ERA	ALS		%		AL	TE	RA'	TIOI	N	ÓX	IDE	S	ATTITUD	E		/EII			М	ETA	ALL.	IC	МI	NEF	RAL	s	•/.	T	-		_		0.50	_	
SAMPLE DESCRIPTION	/TALUS	OP/SUB.		TH	E			(•				2				Ţ,	,tr	N			38,21	:	4	I. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE				2	Ê	П	Т			Τ.	Τ	11		Ť	┢	┢─	Τ			SES		Г
D94 G SERIES	LOCAL	OUTCR	CHIP	EN	WIDTH	Quartz	Feldepo	(Plegloc	Hornblei	Biorite	Chiorite		Carbonate	CHERZ			GENE!	CARBON	BIL ICA POTABSIUM	SERICITE BLEACHEE	LINOWIT"	MANGANE	Magnetite	HEMATITE	4. CLEAVAGE 3. FAULT 4. SHEAR 7. FRACTURE 9. VEIN 9. DYKE 10.	STRINGERS VEIN	TOCK WOR	MOUNT	IDTH (4	ENGTH	Pyrite	rrhotite	akopyri	Galena Sahalerite	Arsenopyrite	Molybdenite			TOTAL	1709	AU	A					
# 14R himy horizon in Andrite - Baralt; ay brownish and price Iminae bands & patcher; w. v. line - lim. & here as v. mission	<u> </u> .	þ	×2								X								Ħ				†	-				-		-				5 8	\$ -	Ť	+	\rightarrow	+	╀	<i>PP</i> b	PP	PP		pm	ppm	<i>P</i> 1
iminae bands & patches; w. v. fine			\pm									$\left\{ \cdot \right\}$	_		1	1							1.							-	*	+	+-	-		+	┝╌╽		+-	╂							
155 (<1%) varies more to y bigs	╏┼╴	┼┼	\mathbb{H}	-		F					_		-	1	1	1			Ħ				\mathbb{H}			╉┼┤	┢┟	+		-	\square		-	+	1-	1	1-1										
- m ote ??)		H	\prod	F	-	t.				1	-	╞╌┨	_		1								+						1-			_	+	-	+	1		-	+								
+ 15 R Breciated Limestone black (?) matrix heirline fract	7 x	5	Þ			F							×			-			++	+++		\mathbb{H}				╂┼┤	2	} 1-2				_		+													
lam 335° from L36N/779W				L		E				1			-+			\vdash		╁								╏╎╽		2 1-4	4				1	\pm			+		+-				Τ				
					-	\vdash		-				$\left\{-\right\}$			—					 		11				╏┼┤						+	-	+	-		$\left[- \right]$										
			\mathbb{H}	\vdash	-	-				-	—		-	+	-					╏╏╏		╫						+	-		┝╌╞╴	-	Ŧ					-	1								
precipited (?) limestine / vole?	7 x	5	\mathbb{P}					_		-	1		x		-				\ddagger		\pm					╂┼┼		-	-			+	+		-	Ħ		-	-				┥				_
ne grained "granular" provinish trons, atrix creamy, aphantic, locally "Sty Cankeritic" 1 43 m or 335		4	H			-	_				1				-								$\left \cdot \right $			╉┦		+-	-				+	-				-+	+								
sty Conkeritic? 1 49 m 6-335											-				1_			\parallel	\mathbf{H}	$\left\{ \cdot \right\}$	╉┼	╢	$\left - \right $	_		╏┼┼		+	1			+	+	+-	1				+-								
	7 X		ΤT										+	+-				\blacksquare	+	┝╂╂	\prod	\prod	\square	-		╏╎┤	1-	1-				+	\pm	+	-			1-		┠╶┨							
		3 						-							-		- -	\prod	H	F	Ħ			_		╞┼┼		1-					\pm	+-	-					F			+-	+-			
lear carb; crowded subgranular							_	_+			+				-		11		Ħ	╞╄╏	11	#											+-		+												
v fine have line tension gasher of lear carb; crowded subgranular 2xture v fine grained; marsive ssible equivalent to Rigow/4322N	+	+	+	1				-	_	_			-	+-			#	#	#	╞┼┼												+-	1-	-				+	1								
+ 18R _ Chert Breccia - dk a - 5/k	FL	5	-				_	-	+	+	+	-							İł.							╏┤┼						-	-	1			-	1-							Í		
chert mod byd; mutix chert, local vygz a nil matrix; y lim on fruch	11			_						+		ť	< /x								╂┼	╢	-	+			-					1	1.						\square				+	╀	-+-	+	
+ 18R Chert Breccia - dk g, -blk chert mad bid ; mutrix chert, bed vygs a nil matrix; w lim on frech w carb hairline frect fillings buff? It brownish - ankeria (2) som wot ride to a adust						_	-										\mathbb{H}		╞┼╴		\prod			-			1-				-	+	1				_		-								
						1								+-					H			#	_				1				-		-				_ -	+	+-								
+ 19R Cherty Limestone & Chert; 7 - dk gy-blk - brownish chert = - Tract; brace to w hem clor - onite along fract; lecal lenses/laminae ands at calcite; from 290+43 # 11 w on hyper of an an an and the	7	×	×	_					+			-	5	+	F		+		H	╉╋	Ļ			7								\pm				-											
m tract ; trace to we hem clor			╢		-				+	-	$\left - \right $		-			-				++	r						<u> </u>							+							-		-	+	+	+	-
and along tract, local lenses/laminae	┥┼	+	┤┨	-						-				-										_				$\left\{-\right\}$		-				1.4				+									
's rocky	-++		+	-						-																	-					-	1	╞─╽		·		-	╞═╏							Í	
+ 21R Miky Bull Quarte - in 7 anderite migur carb coursel	7		1	- 1	_	X	-										\mathbf{H}			++	+		-	-			ļ	<u></u> 					<u> </u>					-			_						
+ 21R Milky Bull Quarte - in 7 anderite minur carb, coursely ystalline, mass & spreg musses of inser of children, some evidence bin of hort, river actions	╶┧╌┠╴	##	#					ļ		·			+		$\left - \right $			╞┼┦	-FI	ŦŦ		FFI			· · · · · · · · · ·			t .				†	!	╞╞			···-	+	╞╌╏	-[Τ	-		T		1	
bx'n of host, tuber upslope from 18N/78IW; several cobbles	++		1			=‡					t l			+-		-				++		 			· ··· ···		t. '		ł							ł	- [╞╌╏								
	-+		Ì											[1	-			.[.]		╽┠┤	· + +	1	. 1						1						I		Ī								
COMMENTS: G20 = SILT															·			•	- -		<u> </u>		I	1	_		I				1									-				1			_
Total man as																																															

and the second second second second second second second second second second second second second second secon

ROCK SAMPLES DAVINCI 1994

Page 2 of 5

							-																	() WEAK	໑,						~													′ <u> </u>	
		ΓYΡ	Ε	m			M	AI	1.	MIN	IER	ALS	5	•/•	-	AI	TF	RA	TIO	NT	0		c	WEAK	-				578									mber -	• •g c	•	vein"				
		-	П		Т			Т	IT	Т	T			Ť	Τ-	Ĥ		Ê	ΤŤ	1	TT			ATTITUD	-	<u>۲</u>	EIN			ME	ETA		<u> </u>	<u>A I N</u>	ERA	LS	•/•	Г			AN	ALY	SES	3	
SAMPLE DESCRIPTION	N.	ROP/BUB.		王	-		1									Ŀ						1:		I. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE													\square	Т	T	1			_	<u> </u>	
	Èł	CAOP 08/TE		Ŷ	Ē	- 3		en d		1		n a te	2				DNAT	1810	1			1	17.6	4. CLEAVAGE 5. FAULT	2	MRO		Ĵ	5		2		2	÷	ŧ.	I	:	2		1			Î		
D94G SERIES	FLOAT/TALU Local	E DO	CHIP 6AA	Ē	ΞI.		- A	te la	Ĩ	Chiorite		Carbonate	CHER7			E S	CAR B:	FOTA I	SERICITE BERICITE BLFACHER		ALAC	Magnerite •/•	HEMA	4. CLEAVAGE 5. FAULT 6. Shear 7. Fracture 8. Vein 9. Dyke 10.	A NGE		AMOUNT	Ē	LENGTH (m)	Pyrite	Pychotite Chalconveite	Galena	Sphalerite	Arsenopyrite	-		TOTA	109					I		
720 4 141 611 1	LT	Ħ						+-		-	+-	°	-+-	+	-							1ž	μ	9. DYKE 10.	L N	≝ ≿	1	ž	Ľ	λď	À d	901	Yds.	Ars	No			Ĩ	AU PPD			CU Ipm	PPM	ppm	PI
# 22R Amphibole - Chlorite development in bit - possible remalite lectionalite; apple green ubfibrous; may be chl but too hard reen similar to that of chromium pica: I too left	₽+	H	ľř		-+		_		\square	_		x																										T	1-			+			f
remolite /achnulite; apple green					+	+	+-	+	┝╌┽	_		-i			+		4.	44		Π												+-			-+-	+	┍─╄╴	+	-						
ublibrous; muy be chi but too hard	\square	П					1-							+-	+		-+-	-++	┥┼	┼╂	┼┼┼				\mathbf{H}			ŀ				1				+			1			F			
nices; 1 small bid unslape from 43.1/781	┢┼╌	$\left + \right $		-+		_	4_	4	\rightarrow	-											<u>t </u>				++		+-	+			-+-		$\left - \right $	-+		+		_							
<u>_48/781</u>							+			+	+		-+-	+-	+	\vdash		++	╨		╉╋	-									-		t f	\rightarrow		++	-+		1						
# 2SR ALIERED LIMESTONE	Ζ		-24	-+-	_	_			_			-						++	++	╞╋	╉╋╋	+				╟─	+				+			_											
+ 23R ALTERED LIMESTONE # 23R ALTERED LIMESTONE - Fire grunular loxere; appears b be w- in elt, distinct tolightur nuy indicate rudimentar, from r magneste, [small bld; hestope from YEN/781 W			╧┼╋	-+-		+-	+-	┼┤	\vdash	+-	+		\rightarrow		\vdash	Щ	Π	\prod	T	TT.	Πļ										+-	+	$\left - \right $	-+	-+-	+ - +		-	1	1		T			
nuy indicate rudimentury from	\square		71	_		1	1			1				+-	+-	┝╌╂┤	++	┽╀	╉╋	╎┠	┼┼╀	+			┠╢		-			-	1				1			\pm	1						
from 48N/781W	++		┼╂		-		+-	┝╌┨			\square									I					╏┼┤		+				+-	+-	-	-		$+ \overline{1}$			1						
							t			+-	┼╌┤			+	+	+ +	┽┼	++	++	\mathbb{H}	$+ \Pi$	\square	_													+ - i			ł						
# G24R Chalcolonic Quarte	7	-++	M	_	- ř	-		\square			\square									H	$^{++}$	+	_		┠┼┼		+	┝─┤	-					_		\square		-							
curb; evidence of open space		-++	╆		+	+	+	\vdash		+-	┼┼			+-			\square		П		ΤĦ					-					+			\rightarrow				+	4						
tilling; locally fine intergrowthe		1	11	-										+			· +	++	┼┼		H	+				-					1					$\pm \pm$		-					- (
~48 N/780 +57 W - 3 small	┝╌╁╴┟	+	╢	+			<u> </u>							T.			11								╏┼┤	+	+				+-	+-1			-	+ -	\square		1		Í				
# GITE Contention Coverts i corange rust, minus wht-gy curb; evidence at appa space filling; lacelly fine interprovedur f a odd Circular pits Kim 4 N/780 ts7 w 3 small talus; hert appears to be list			Ш			1-				+-		-+	_{	+-		-11	╢	÷+	H-,	-	<u>∔</u>	+-1	\square			1							_	-+-	+-	┼┼	-+-								
#G2LR SHEARER ANDERITE - Strong chlorite, meak rurked mix Imonte / carishate, on follothun		न	¢۲.	60			—			X		1					+†			x	╞┼┼	┼─┤		6. 335/60	╏┼┼	+-	$\left - \right $		-	+			_		-	\square	1				_				
imonte learsinate on foliotun	-++					+			-+-		$\left \right $	-+		+		\square		41	\square		ΠI								-	+-	+-			-+-		++	\rightarrow				T	T			
		\square							1					+		-++	┼┼	++-	++		┝┼┼	\vdash	-			+.	\vdash		_	_							-+-								1
5, grey 1st to N; nonmegnetic		┽┼								-	\square			1		-	11							·····		+	+		-	-+-	+	╞╌┤				F1			'						1
- built - u -	_	11				1				+	+			+		+	++	₩	\square	-										1-	+		-+	-+-	+	╀─┼	-+-		1 '						i l
#27R Milky Bull Quarte - 1ts 4 cm wille Milky, mess discent, hasted by Anderste flow -nil Sulfider		×			×				_							╂	++	++	+++	Н	┝┼┼	╆╼┼			┝┼┽	+-	┼─┼		-	-			_	-	-	\ddagger	土				_				
discont, hosted by Anderite flow	++	++	┼╂		+	+			_+_	+-	+ +						П	H	ГП	П			_			+		-	╈	+	+-	┼─┼	-+	-+-	+-	}_ ∔									
-nil sulfilles	-1-1	П	П	1						-				+		┈┼┼	+		┝┼┤	╉╢		┥──┼					T-T									++	+-								
No, SPLIT	┽┼	┼┼		+	+	<u> </u>																			++	+	\vdash		-		+	┝┈┥	-+	-		F			I						
					1-	+				+				+	_	-++		++-			-11-					Τ				+	1	╞╶┤	-+			\vdash			(I						
# 28R Quartz Gan Bx - rusty silicities & Frags strongh date land some widd the matrix carts dominantly dt	= x	\prod	×.	-							_	_		t			2		┝┝┥	╂┤	- -	╞╴┼	-+		┝┼┼╴	+	+	+	-				1												
linkish matrix cars & dominantladt	╉╋	++	H.	+-	+					+			_	ļ			11-	T		Ħ						+		+			-	-+		_	+	├						1			-
		T								-				1	-	++	┼┼	┢╋	┝┼┽	╂┼	++							_		1						<u>├</u>			1						
inported, Frugt < 4mm; weather highly regular Surface, I rock 15 cm	++	┼┼		+						_							tt.								-++-	+	┠──╀			+				_		F			i	[
					1-	+			- +				-+			++	₩.									<u></u>			-+-		+	+				┝╍┢╴									
#G29 Hematitic Cherty Limestone 7 silica az irres stringer & masses	4	\prod	2	-	-							x				++	$^{++-}$	++	┢╋	╉┼	╂╄┥		-			+	\vdash	+	4	-	\square		-					Н							
appearing to be at L'a to primery	++	++		+		┝				+ -						11	TT.	11	11	Ľ			<u></u>	i	- <u>+</u> +	† †	<u>⊢</u> .	• ••			<u>+</u>					ł –	$-\square$	П				+	-+		-
appearing to be at to to primary silly (Sarty layers, host provides creamy date, by 6 small	11	11	1.	1								+ -	-	<u></u>	ł	· [] ·	$\left\{ \right\}$		┈┼╶┤	$\left \right $	-+				11										+-	(-+-)		<u></u> †							
rabbles	╈┝	++			+	┞…┟				11			1	[]]		Ħ	<u>††</u>	[]]	11	t			· - †-		-++	+				+				-1-											
	tt	tt		-+					·	$\left\{ \right\}$		ł		╞╴╏		-++	i -	╡┼╽	1.	Π	T.		Ĩ	1	11	1			1.	t.	t t				+	ŧ.									
COMMENTS: G25R = SIL7														<u> </u>	I		4- AI	<u> </u>		1					Ш.	1							<u> </u>	Ľ.	T I	1	<u> </u>								
																												_		•									_					-	-
																																	• •			-		• •							

ROCK SAMPLES DAVINCI 1994

() WEAK (2 MODERATE (3) STRONG (4) INTENSE (1) Indicatos sumbor- og one "voin"

Page <u>3</u> of <u>5</u>

				_																_				_		U VEAK (-			-					_			_									
	L I	TYP	ΡE		m			M	AI	N ·	MI	NEF	AL	S	•/			AL'	FE	RAT	101	١	οx	IDE	ES	ATTITUDE		VI	EIN	IS		ME	TAL		<u>c</u> 1	MIN	ER/	ALS	5 1	•/•		1		A	NAL	YSES	
SAMPLE DESCRIPTION	FLOAT/TALUS	OUTCROP/SUB.	COMPOSITE CHIP	I ENGTU			Feidebar	(Pidalociase)	Hornblende	Biotite		Chlorife	Carbonate					CHLORITE	CARBONATE	POTA BEIUM CLAY	BERICITE BLEACHED	"LINOMITE"	MANGANESE MALACHITE	Magnetite °/.	Hemahit	I. CONTACT 2. SEDDING 3. FOLIATION 4. CLEAVAGE 3. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10.	STRINGERS VEIN	STOCK WORK TYPE	AMOUNT	WIDTH (m)	LENGTH (m)	Pyrite	Chakepyrite	Galena	Sphalerite	Arsenopyrite	Melybdenite			TOTAL	0709	A.F	u A	19	Cu	ppm	ppm
		T	Т	Т	T													П		TŦ	Π				x			×	1_	3	7		Τ		Т												
# 30R Chalcedonic Veins- intersety	7	╉╋	-+4	4	+		-	+	+-	+			+	_	+	$\left \right $	-	-++	++	++			r i	+	X			L^	+	2	·		+	_	+	-				+	┢	ł					1
- rooty quarter rich veint vuggy	┢┼╴	++	+	-	+	╉	+	+-		-	\square		+	+	+		-+	-++	+	+	++		╞┼╂		<u> </u>											t			-								
a dear quarte v. fine chystelline		11		T													_	\square	П		П	П	Ш					Ц.	Τ	1_			\perp	_													
# 30R Chalcedanic Veins interety rocky granter rich reiner ungay open space filling: It gry brownick c clear quarter v. Ene chystalline massive & counter v. Ene chystalline rassive & counter v. Ene chystalline rassive & counter v. Ene chystalline contract & small rocks bibly c	╉┼╴	++	+	╋		-	+	+						+	+		-+	╂┼	╂╂	┼┼	╂╋	┼┠╴	$\left\{ + \right\}$	+	+ •				+	+	 			-	+					+	+			ĺ			
continue 3 small rocks billy 2							1										_						Ш					ŀ																_			
# 3112 SHEARED ANDEXITY - mul green with med shaared with well filed Py V. Fy diss; Mr. chlarity, carb Py V. Fy diss; Mr. chlarity, carb Py V. Fy diss; Mr. chlarity, carb Fry diss; Mr. chlarity, carb fry v. Fy diss; Mr. chlarity, carb fry v. fy diss; Mr. chlarity, carb fry		0							+				+	+	<u> </u>	\square	4	14	- [4]	++	┼┼	┼╉╴	*	+	+	3, 305/6- RHR	\mathbf{H}			-		4	+	+	+				+	+	╞	1					1
- wto med sheared wto well bladed	1+	┼┼	+	╋	+	╉	-+-	+	+-	+				+	+	┝─┤		╉	+	+	╈			-+-	+	<u> </u>			+-	╀			+	+	+				-+	+		1					
2 possible quark along hairling		_							1				1	1	1				11	T	11		Ш						1					1	1												
fractured; overall weakly alteral	┟┼	++	+			\rightarrow		+		+		-+-	+	+	+	\square	-	+	-+-+	++	++	┼╋	$\left\{ \right\}$				╂┼	\square	+-	+					+-			-+	+		-	1					
tractorenilings sparse														1-	1								İΠ		1			_	1													1					L
# 32 R. Fersionen Linkstone - mod to stonyly fractured, dry bin & yellowish while on fracture	7	0	×	x	_	-	_			-					-		_	-	+	++	++	₩.	┞╫╿		+	I			-				+			 		-+		_	_	-					
" mod to story bructured, dry bra		+		╋	+-	╉	+	+-	+	+		-+-	+		+		-†	╢		++	++	H	$\left\{ + \right\}$	+-	+-				+	+			+	+	+		+	+	+		-	-					
nimer - likely curb alteration			T			1						_								\square	11	T	Ш																	1							
plimer - likely curb alteration le Fe or organic material	++	+	+	╇	+	╉			_	+	$\left \right $		+-	+	+			+	+	╉	┼┼	╢	┼┼┨	+	_		+		+	+	-		+		+-			-+	-	_	-	-					
								+		1			\pm							-+-+																						1					
#35R Chalcedonic Quarte Vein/Br	7	\square		×	+	-12	2	_	_				×	-	-				+	+	+	1	1	+		 			+	-				+				-+		+	_	4					
in silly lot up to 2.5 cm will	╉┼┼	++	-	╋	+	╉		+	+	+		-+-	-	+	+			-++	+	-++	++-	┼╊	+++		+					+		\vdash	+-		+			-				1				:	
hest fragments 3 alt matrix															1.					T																						1				[
upported, locally a as botryoidel	╉┼			╇	+	-		+	+					-	+-			-+-	-+-	++	++	╢	$\left \right $		-		\mathbf{H}	_	+	+				+-	+-		-	+		+		Ł					
ussy cootings; coorse poddy limonite	┨┼╴	+		╉	+	-	+	+-	+	+			+	+	+			H		- -		┼╊		+					+	1					+						-						
# 37 Under Under Under Under in silly bet, up to 2.5 cm wide t, clean, it-m gy crystog; fire hest fragments & alt matrix imported, formely, g. as boty soidel usgy coatings; cobie poddy linearte. ist silly cherry bet, mgy-brownish ist silly cherry bet, mgy-brownish # in thus above 44 N/ 790 W,													_									П	Ш	<u> </u>			11				ļ			_								ľ			-		
#	╉┼	┼┼		-		-		+		+	+ -			+-		$\left - \right $		+		┽┼	┽╇	┽╂╴				 	╂┼		+	+	$\left \cdot \right $		+	-	+							1					
	╉┼				-+-	-		+	-				İ															Ħ		1												1				i	
			Т	-		_	_			-						ļ		_				11					┹		+				-	-	-					_	_						
	┢┼╴	+		+	-+-	-+				+					+	\vdash			-+	+	┽┽	┼╂╴	++		+			╂╂─	+		+	\vdash					-			+			1				
4168 Cherty Rx - s rush	7						X														Π	12	44																								-
isated, similar in appearance	\mathbf{I}				+	4	+	+			$\left \right $	-	+	+		· · · ·		-	-	╶┼╍┝	+	+			-	<u> </u>	╂┝	┝╌┝╌		+	\vdash	$ \cdot $	+	_		+		-+	-		-	-					
to GLAR but lacting vuggy coorner		+-1			-+-	+	+	+	+	+	+		+	+	+-	+				+	+				+-				+	+			+	+	+	1-1											
# 36 R Cherty Rx -s rasty (saled, similar in applesence to G23R but lacting ruggy coatings e custly recognisable tragments - same to botton						_	_						1								\square	П	Ш				11	Щ													1						
	++	-+	┝┝	-		-+		+						+	+-				4-		╉	┼╉	++	$\left + \right $			+		+-				+-	+-		+	\rightarrow	+			-						
щ	11		\mathbb{H}	+	+	+	+	+	+				1	+				T			Π		\square			1																	+	_		<u> </u>	
*								_													44	11	<u></u>	_				\square		-			-	-	-												
	╂┼	+	╟	+	+	-	+			+	+	-+				+		\vdash	\mathbb{H}	┝┼┥	╂╋	┼╋	++	Η	+	1						┢╌┼╴		+	+	╉╼╼┥	-	-+		+	╋	1					
			Ħ						-					1	1.						11	1					1	П	_	<u> </u>	· [—	1							T	1					
	┨Ҭ	+	₽		_+	-	-		+	+-				+	+			\vdash	┝╌┠╴	┝╫┦	┼┼	┼╋	++-	-	+	.	╂┼			+	+	\vdash		+	+	+		-+	-		-	1			1	1	
COMMENTS: G33 = SILT				I										- -		<u> </u>		<u> </u>					<u></u>										_ _			·					<u> </u>	_				.	
6 34 = SILT																																										-					
																																	•				-					-					

ROCK SAMPLES DAVINCI 1994 Page 1 of 5 () WEAK (3) MODERATE (3) STRONG (4) INTENSE (1) Indicates number- og one "vein" TYPE m MAIN MINERALS % ALTERATION OXIDES ATTITUDE VEINS METALLIC MINERALS •/• FLOAT/TALUE LOCAL OUTCROP/BUE OUTCROP/BUE CHIP CHIP CHIP LENGTH WIDTH ANALYSES SAMPLE DESCRIPTION 1. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE 3. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10. (Piggiociase Hornbiende Biotite : <u>Frockwoak</u> TYPE AMOUNT WIDTH (m) LENGTH (m) Fyrite Fyrite Chalcoprife Galena Magnetite " Carbonate Feldspar CHERT GOLD Quart z Arsenopyrite Chierite Molybdenite Sphalerite TOTAL Au Ag Cu RO 60N/78155 Black Chart layer in Limestone PPD 0 ppm ppm 30 cm ₽**₽** m Pi x CALCRETE - from headwaters of 0 xx * mall creak; nondescript creamy -small creak; nondescript creamy -buff-bown; highly vugge-boxwork pears to have v little Te - present timated at 100 m h glong slope rum -43 /794/100 П TT # CON/28658W Cherty himestone i dk grey, brownish red chert, str. discont sparse, milky, apheninic nassive = sharp - distinct margins nil sulfides EX 40 X × Q ~ 05 + 44N/79155W Cherty Limetfore dkgy-blk & minor hemphilic cherty ace py? hem, r grains often ong v fine irres. frach, lenses laminae at white -buff; 15 m slepe to bot/chert cliff; 2 cubbles No 50217) +** SPLIT/ + 44N/79203 W Cherty Limestone mad bx'd; cars & milky wht matrix; chert dk gy - medgy - bik; spath, minor y lim/hem mix?; I large cobble - | > -אر: 2 X card 4 48N/78443 w - Charty Lineston F 2 Carbonate 2 ? heir line frant Ilings; carb str. reddish - pinkish-irown; It an bid weathered apparent hert as pads? / lager: whitish-it gy -m well fract; I rock 15 cm X + 48 N/ 781W Pyritic Andesia S-i ruty fractive surfuces, nathy scal m-s pervisit, commonly which roughout, white hairlike struck + vits andeded diss, nen magn med-gy green on tresh П И COMMENTS:

the second second second second second second second second second second second second second second second s

-

ROCK SAMPLES

• •

DAVINCI 1994

() WEAK (2) MODERATE (3) STRONG (4) INTENSE (1) Indicatos number- og one "voin"

· · · · · · · ·

•

Page 5 of 5

					_										-		-				_				WEAK (-	_		-	_							r		~~~~	A N .	~		ندورور ر
		TY	PE		m			M	AIN		MII	NER	AL	S	•/•		A	LTI	ERA	TIC	N	0	XIC	DES	ATTITUDE	L		EIN	S		ME	TAL	LIC			ER		; •	<u>'</u>	Į		<u>, </u>	ANA	LYS	ES	
SAMPLE DESCRIPTION	FLOAT/TALUS	LOCAL OUTCROP/SUB.	COMPOSITE CHIP	LENGTH	WIDTH	Quartz	Feldepar	(Plaglociase)	Hornblende	Biotite	Mahia		Carbonate				OENERAL	CHLORITE EPIDOTE	SILICA SILICA	CLAY	BLEACHED	"LIMONITE" WANGANESE	HEMATOR	Mognetite */•	1. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVABE 5. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10.	Ş TAINGERS VEIN	TYPE	AMOUNT	WIDTH (m)	LENGTH (m)	Pyrite Bucchoolte	Chalcopyrite	Galena	Sphalerite	Arsenopyrite	Malybdenite			TOTAL	GOLD	AU	Ag	Cu	PI	pm	pp m
4IN/795W ANDESITE FELDSON		k		x			40				5 20							×		×		-						-		- 1	~							_								
revurive alteration; minor chl, curb Fructive fillings; locally & fine				-	-															╂╊												-														
There and in fractures, matic pleasing - herblende & august manetic - herblende & august manetic - huar / 7001/W Chorty Linestown	5	-		_		$\left \right $													x			**	X		-					-											_		-	-	\rightarrow	
Practice - feldspace stan w-m Invarice alterators, more chi, curb Eructice alterators, more chi, curb All brussy, py, anhedral, fine - v fs intermediad & in fractices, make phoness - herhilerde & aussite, mod respects # 44/11 / 72011W Cherty fints Torm Strung to interse herapte lankerity line alter work and to fackerity Surfaces, work we are to the form							-									_															-					-										
limanite Manue on treat surfuces werell week rust = how her lacedly varies to anterite Mimantes or bin ranges vague to strongly apparent	?																																												_	
#		+																																												
· · · · · · · · · · · · · · · · · · ·		-										•																												-						
#				_	-												+																										<u>†</u>	╀─	+	
																														1		÷				-				E						
						+							+-	+-			$\frac{1}{1}$										Ħ														—		+	┢	+	
					-												╞																	i.												
													+															+		1		+												_		
<i>4</i>				╟													-									╊┼		+		1		+							+							
																							<u></u> 					+									+									
¥				_									-				+													1										F		1				
	Ŧ				+	Ŧ												⋕				╂┼								+				Ħ												
COMMENTS:	1		<u>+</u> +		1	1		1	<u> </u>	t -					1			11			11				1	11		1		1	1	1	1						1	1		1	1	1		

Page_1_of_4 **DAVINCI 1993** () WEAK () MODERATE () STRONG () INTENSE (1) Indicates sumber- of one "voin" TYPE MAIN m MINERALS ۰/۰ ALTERATION OXIDES ATTITUDE VEINS METALLIC MINERALS •/• ANALYSES FLOAT/TALUS LOCAL OUTCROP/SUB. COMPOSITE SAMPLE DESCRIPTION CONTACT CHIP CHIP Feidsper (Piegiociase) Hornblande L. CONTACT 2. GEDDING 3. POLIATION 4. CLEANAGE 5. FAULT 8. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10. GOLD LENGTH (m) Chalcopyrite SILICA BILICA POTABBIUM CLAY BENICITE BLEACHED TABBIUM 3 Areenopyrite Carbonate "LIMONITE" MANGANESE MALACHITE Magnetite Molybdenite TOTAL STAINGERS VEIN STOCKWOAN Pyrchotite Sphalerite Quarts Chierite Biotite AMOUNT WIDTH Pyrite Galena 1993 AG SENET Ag Au Cu PPD ppm # 3R Chert/Challedonic Quarts A -m-dkgy, mars chert/chalcedonic q (v finely ir stalline calc) & Stron, calc hairline brait; alrodk gy mars limerisme z dkgy indistinct marses: may represent i sil hid on cherty brt; locally distinct-vague flow # limeriy. minur elemented marser et possible it. cn marses sora p pm ppm +++++ <u>H</u> ┝┾┽┽┥┿┿┿ ┿┿┿┿┿┿┿┿┿┿ ╋┾┿┽┿┿┿┿┿┿┿ ┝┼┼╀┫ # 4R Chart & Limestane - irreculely interlaminated/globby /st/chart; ist gy-pinkish-huff-dk reddishmass locally & chert / haleedonic fine tansion garber; chert dk-meu eddish-purplish-brownich-wht; "ypto/chaleedonic, locally & fine # drusy fract filling; I med bld. \square ╅╅╅╋ # 5R Chert & Limestone-Similar F To GYR, but 1st med -Strangly, suffered, fine - coarro boxulock heat - dkgyt bilt, with prid cut by bt-read challedanic str / vns papers as alteration zone, pervosive dang original fract; box work # remaints = silly sections - moncale, brownick's solk of FX ТП H noncale, brunnish; spotte de orange rust 5 brn rust Π ТП +++╏╽╽╽╽╎╎╻╻╷╷ - Chert & Limestone - interlam. 6R Comments in control of the second of the sec П Π ┫┼╢╫╫ 11 COMMENTS: boxwork, nonmagn, nil sullider, one small bld/ large cobble

,

ROCK SAMPLES

- 1 - E

ROCK SAMPLES

DAVINCI 1993

•

and the second second second second second second second second second second second second second second second

() WEAK (2) MODERATE (3) STRONG (4) INTENSE (1) Indicatos sumber- og one "vein"

Page 2 of 4

					_										_									-				0 1X		G				,	indi	C0188		Mar -	eg 05	e "veil			
		TYF	Έ	n	n		N	AIN	•	MINE	RAL	S	•/•		AL	LTE	RA	TIO	N	ΟX	ID	ES	ATTITUDE		V	EIN	S		M	ETA	LLI	CI	MIN	ER	ALS	•/	•			ļ	NAL	YSES	5
SAMPLE DESCRIPTION	LOAT/TALUS	JTCROP/SUB.	CHIP CHIP BRAB	ENGTH	'IDTH	lartz	laslosias 1	Hornblande	Biotite	Chior i șe	Carbonate				SENERAL HLORITE	PIDOTE	BILICA POTASBIUM	CLAY BERICITE BLEACHED	LIMONITE"	ANGANESE ALACHITE	Magnetite */*		I. CONTACT 2. BEDDING 3. POLIATION 4. CLEAVAGE 5. FAULT 6. SHEAR 7. FRACTURE 8. VEIN	RINGERS	TYPE	IOUNT	DTH (m)	LENGTH (m)	rite	Pyrrhotite Chalcobyrite	Galena	Sphalerite	Arsenopyrite	iy bdenite			TOTAL	GOLD	Au	Ag	Cu		
1993 SAMPLET	E	12	리의의	- -1	₹	3 1	: 9	f	ā	ວົ	ပီ					1		-		3 2	ž		S. VEIN S. DYKE IQ.	ĒŅ	ž Ž	AM	3	3	2	ຂີ່ ອ	5 8	8	A	ŝ			1		ppb .	ppm	ppm	p pm	<i>pp</i> ≡
# 7R Cherty Limertone - Hearts brown weethered	E)																																										
stalling day and lingster	╉┼╴	╉╋	+			-	-	+			_	+			\vdash	╂╂		┝╌┠╌┠╴	┼╂	-++	╀	+	╏─────┨	+		+		$\left \right $			+	+	-	\vdash									
mix ; reddish - near imar a on / lubb	11	++	ŤŤ		-							+			H	┼┼					+	+	<u></u> ł	+	+	+			+			+	-	\vdash									
rfue chert/chulcedonie E × Bally cystelline daminated limestaria mix reddish - nog- imar con / cy fully orange bra cherty mix; orange bra near strong × Bis freet cort;																$^{++}$			T			1		+1	+	+			-		+	+											
near strong v Bro frait & cort	╉┼	++	++				_	+			_			_	\square	\square	11		П	П					-																		
# Colove veriation except he	┢─┼	+	++-					+						_	\vdash	┿	++			-++		+	╏────┨	+		_					_	+			_						İ 👘		
"gy C wht appears fract-related		Ŧł	++-				+	+			-	+			\vdash	++	++	┝╆┾╸	H	++	+	+				+						+-	-										
		+ +													\vdash	++	++		┼╊╴	-++	+		1 1	+		+			+	+		+-			-+-								
		\square										1			L I	11	\mathbf{H}			-++	1	1		+†					+			+			-+-	-+							
		\square	\prod				_									П	П															1					· · ·						
	H.	+	++-		_		+	+		\rightarrow	_			-	\vdash	#	++	\square	11	++	_				-					-					_			_				1	
# BR Limether / Chert - dobby bt chert v. dk gy local patchy whi: indistinct fine page?, magins a bt	IFΝ	4		\vdash				+							\vdash	++	++	$\left + \right $	++			+	ŧł	++		+			\rightarrow	_	_	_			<u> </u>								
indictingt fine from 2 man ing the		+					+			-+-+		+		-	┝┼	┼┼	++		╈	┼┼	-		 	+					-	-+-		+				_							
Tre hight & fingh Trregular mor		++					+	-								++	╊	╞┼┼	┼╂╌	-++		+		╉╋	-	+			+	+	-	+-	+										
the high & finely irregular more to Carb/ limont Fred & local evidence i recryst. of 1st. fg = many flading iaces decusion, Ob 2 cm que y from many i						_										Π			Π						-	+				-	+	1				+							
21 recryst. of 1st. fg & many thating	₽-	++	++-			_										\square	\square							\square																	l.		
aces decustora. Oto 2 cm quay from margin	F 1		+	┠─┤		+	+		-+	+					\vdash	₩	┿	┝┝┼	┼╋╌	+	+		₣───╂	+		1		$ \rightarrow $			+	_										ļ	┢───
#9R _ Limestone/Chert-gy to reddish 1st mixed = wht-buff gy		4	+k		-			+		++				-	\vdash	╂╊	╂┄┠╼╴	┝╺┝╴┠╴	┼╋	++	+		ŧ───-ł	+		+			-+			_											
to reddish chert: represents sills?		11					-		-+						\vdash	Ħ	++			++	+		ł – – ł	++		+			-+-	+	+		1-1					-			1	1	
milky, vuggy, somewhat rotted looking																					1				-	1				1.	1	+				+		-					
a vn max 15 cm mide, nil sulfides		\square					_										Ļ							П																			1
to relatish chert; represents sil 15? milky vuggy, some what rotted looking over max is an wide, nil su lades Tocal faint spith, It orange rust as 'finelsmall patcher	∔∔	++	++				_	+				I			\vdash	╇		+	↓↓	\square											_												
Tine Small Parcher	F	++	++-	\rightarrow				+	-	++		-		+	\vdash	┾┾	╋╋┥	┝╋┿	┼┠╌	++		-	↓	++	-	+	} —		-			+	$\left \right $			-					 	<u> </u>	┣—-
Cobles V. answler: V fine irroc	ŕŕ	4+	+r			-				-++					┝╌┾╸	┼┼	++	┟┠┼	╈	-++-	+		l – l	+		+						+	+									1	
indistinct layering / banding of clear			\square													††	+++			++	+	+	lł	$\uparrow \uparrow$	+	+			-		+	1	<u> </u>		-	+							
unit q ; lenses E vugs some E																T	\prod			TT						1																	
# 10R CHERT - red, v. small codes, v. angular; v. fine irreg indistinct layer ins / banding of clean whit g; lenses & vugs some & remained cars; locally 45 vo cars;		\downarrow			_			+								Ш				Ш								_															
ninor fract filmer & rugse (wht) clear rypto & drugy og , 5 v. small rocks	┫╌┼╴	╉╋	++		-	_	+	+		-+-+		-		-	$ \cdot $	++	$\left\{ -\right\} $		11-					+						+		ļ				-							
# IIR _FETID ALTERED? LIMESTONE			t				+	+		-+-+		+·		+	┝╌┼╸	╈	++		\mathbf{H}	╶┼┼	+-	+		╉		+	╞─┼		+	+	+	+	┼─┤	+		+					┣──		┣──
alobbe musses Ank & fingle crystalling	ť		Τŕ			-1-		+ +	-	-+-+		1			\vdash	tt	$\left\{ + \right\}$	┞┼┼╸			+		ł	┽╂		+	╞─┤			+	+	+		\rightarrow		+							
alobby master Ank a final or ustalline mast cal; spinkish weathering=Mn 10-15% blk carbonaceour? fetid musses									. 1											11	+		1 1	+		1			+	+-	+	+			-+-	1							
10-45% blk corbonaceour? fetid musses		\downarrow			_						_					П								П												1		-					
»lensez, blothles, pods, putcher, fetid only when freshly broken; fresh surface blk, yellow, It, broken & butt	┡╌┝	+					+		-	+ $+$	_				\square	\downarrow					1			Ш										.								;	1
bill vellow it has the broken tresh surface	╉╌┼╴	++	+++	\vdash				+								┼┼		\square	┼╂	++	4			11		1		_	-	_											1		
4 17 R CANAGONATER By - Carb materix	F	++			135-		+	++		+		\vdash		+	H	++	++	┝┼┼	H	-++-	+			╢		+	┝─╿	-		+	+	+	┝──┼	-+	_		⊢	-			 	ł	┝──
frage et blk sy & red chert, blk e gy deminate; rare spaty limente, rare dk red hematic salens	Ľ		ΤŤ	Ľľ	- 11.2		1							+	H	11	$^{++}$		t i	$^{++}$	1			+†		1	\vdash	+		+	+	+		+	+	+ -		-					1
gy agminate; rare spatty limunite,		\Box															П				T	1			1	1				1	1	1-		-+		1	H				1		1
Fore as red hemotite secons	┢┼┼	++	╋╋	\vdash	-+		4	1.1	+	+	-+	\square			НĒ	₩	++-	┝┝┼┥	┼╋┦	-										-		I											1
	+	┼╍┼	┼┼┙	\vdash	-+		+-	╉╌┨	+	┉┼╸╷┼╴		\vdash			\vdash	╂╂	++	┝╊╂	┼╋┥	╶┼┼	+	+ -	┝───┥	Π	+	+				+	+	 	┝╌┥	-+		+							1
		++	++	\vdash	-†		+	╉╌╢	-+-	++		\vdash	-+-	+	\vdash	++	┢╋┥	\vdash	┼╋┤	-++	+	+	┝━───┤	-++		+	\vdash	+	+-		+	+	┝╌┤	+	-	+		_					1
COMMENTS							_			<u> </u>				-																i	<u> </u>	<u>.</u>		- 1		- -						L	·

ROCK SAMPLES

- -----

DAVINCI 1993

🕧 WEAK 🕃 MODERATE ③ STRONG ④ INTENSE 🛛 {| } Indicates sumber- og ese "vein"

Page <u>3</u> of <u>4</u>

		TY	ΡE	Т	m			M	AIN	•	MI	NE	RAI	S	•	4		Ĩ۵	Т	FR	ΔΤ	101	Ň	0	KID.)ES	ATTI	TUDE		V	EII	NS		Т	MC	TA		~		AL Z		LS			T	-						-
		Т		+	1	\mathbf{T}	T -	I		Ī		T		-	Т	<u></u>	T	łî				TT	-+-	ŤŤ				_		v	E 11	13	_	+	MC			10	M			LS	•,	/•		┶				L	ISE	5
SAMPLE DESCRIPTION	FLOAT/TALUS	AL CROP/SUB	osifi	1.1.0	WIDTH	2	Par	(Pieglocicse)	Hornblende	=								NERAL	OTE	BONATE CA	MUISE	CITE	1 4 1 1	ANESE			I. CON 2. BEDE 3. FOLI 4. CLEA 5. FAUL 6. SHEA 7. FRAC	TACT NNS ATION VASE T	90.44	WORK	TN	Ĵ	TH (m)		_	Chalenavrite			-	Arsenopyrite	denite			DTAL	GOLD							
1993 SAMPLES	2	501	COMP	JAN S	Ň	Quar	feldspar	(Pie	Horn	Biotite			440					F	EP.C	CAN.	POT	10		NYN YN		Magnetile	8. VEIN 9. DYK 10.	E	STRINGER	TYPE	AMOU		LENGTH		Pyris 1	Chalennuri			Sphalerite		Molyb			f	6		40	Ag	C		ppm	
13.9 Chenny outperson II	Ļ			J				I										П	Τ		IT	TT	П	П	IT	1				1	1			+				+	t			+	+-	╈	t		-+	-	+	-+-	-	$^{+}$
# 13R CHERTY QUARTZ - v. dk. sy "L. wht; local fine banding /laminae" minen fine angular v. dk. gy frags; me irres, mass arange ruft to readish wrt appear along fine fracts solman aloured irreg stained; 10-15% cel Stra over 200	14		Ηł	_		-						+		+		_	+	H		4	\square	11	₩.	Ц	Ц																											
Ninga fine angular y dk you former.	╉┼		╉	+	+	┢	\vdash	-		\rightarrow	+		+	+	+		+				┞╌┼╌	<u></u> ∔ ŀ	1	H						+		+			_		_	_					\bot							ŀ	-	
me irres, matt arance rutt to readith		_		+-	+							+	-†-	+	+	+	-	H			H-	╆╊╴	╈	⊢	+						+		-	-	_			+			_		÷	+	┢	∔						ł
ust appears done fine fract salmon	1	+		-	+		1				-+	+	-	+						H	++	+ +-	H	┼┼╴	┝┼╸	-				+ -		+	+-	╋	+-		+		+				+	+	-	1						
oloured irreg stained : 10-15% cal														+	+	+	1	H	+		H	Ħ	Ħ	┢┢	\vdash				++		+	+	+	╋	-	+		-		+		+	+		-	Ł			1			
Stx over 2m2				_							ŀ					1						tt		Ħ							+	+	+	╈	+-		+	-+-	+	-+-	+		+	-			- 1					
# HR <u>CHERT- dominantly m-dkgy</u> hertz lesser It gy much lesser wht	7	+	-++	_	_	_		<u> </u>			_								T			I	Π	Π	Т					\top	1	-			+	1	+	+	╈	+	+		+	+-	t	╈	-+		+	+		+
cherte lesser It ay much lesser with	╉┽	-	-++	_											_							11	LI.	Π.	·									Τ			1		-	+	+		+	-		1						1
ned tract E pregular to angular	╉		++				<u> </u>	\vdash	\vdash		-+	_		-	_		-					44	Ц.	 .			_							L									1			1						1
white c remnant carbonate, mod rod		+	++	+-	+-	-					+				+	+	+	⊢		\square	\vdash	╀╌┠━	₩.	[.]_	Lŀ.	—			+	-			_		_		_									1						
lenter & remant carbonate, modred lenter & remant carbonate, modred with bra & hemshite looking rust empund, perv. surfuce coating spots blothes Greaver 2m ²	1+	-+-+	-++	╋	+	+				-+		+			+	+	+	┠╌┨	+	\mathbb{H}	\mathbb{H}	╞┼╴	1	-		_			++			_		╇		_	_										E					
blotches Grx over 2m2			-++	+	+					\rightarrow	-+		+	+	+		-	╉┤	+-	\mathbb{H}	H	++-	┼╋	╞┼╴		+			++	+	+	-	+-	+			+-	+	-	_			+	+_		1						
4 15R BACCIATED CHEATY LIMESTONE + 15R BACCIATED CHEATY LIMESTONE baaded cherty limestone, beally bid & recemented & carbonate materix; weathers unstrong rough Tregulae, med gy; comentation after incomplete leaving angular, irreg. Vugs	\mathbf{T}	0	T	×								+	+	+	+	1		H		H	H	Ħ	┼╋╴	H	┝╋╌		+		++	╈	┿	+-	+-	╋	+		-	+	+	_		+	+	+-	Ŀ	┢╌	-+		_	-+-		╇
banded cherty limestone, locally	П														+-	1	1	11		H		H		┼┼╴	\vdash				++	+	+-	+	+	+	+-		+		+-	+-	-		+	+	I —	1			1			
ad & recemented & carbonate	\square		\square		1												Τ	П		\square		FT.		T					++	+	-	-	-+	╈	+	-	+-			┿		+	+	+								
rately, weathers w-strong rough	∔∔	+	++	1	_																	ΚĽ	Π	П					++	1				f	+-	-	+	+		+	+	+	+	+					1			F
recular, med gy; cementation after	╂┼	+-+	++	╇			·				\rightarrow			+			ļ	Ц			1								Ш					T				1			-	1	+	1		1			1			ł
Vugs Ung Ung Ungular, Irreg.	╉┼		╂	╋							\rightarrow			+		_	+	⊢	+							_	1		Ш	Ţ.,	_							_					T			1						L
# 198 CARRONATE BRECCIA - ansular bld. Strongly developed boxmort; yollowit are orange ruth: v.fs angular vugs boxes sulfides.) not v in part v first, cystalline white clear q; hasit tertoo uggest possible flooding after disstance	F	_	Ť	×					-						-			H	+					H		+	+		+	+	┢	-+	+	┢	+	+	+	+	+	╋	+-	+-	+		⊢		-+		\vdash	+		╀
strongly developed boxwork, yellowit	++		-++-	∔	+					_			_	_																			1	T	1	-	1	+-				+-	+	+		1			1			
putt clecal areas of strong bornionky	++		++	╋	+			_			-+				_		1			Ш									П		Т				T				+		- <u>-</u>		+									
are pranse rulty: v. ts angular vugs	╊┼┼	+	╺┼┼	╋	+					_	+		+	+	+		<u> </u>	H	_	Ш	Ц	11	44	\square	-				11												1	T				1						L
systalling whit & clean a part timely		++	++	╋				-	- +	+	-+-	+			+		+	H			\vdash	+	⊢ -	Ш	+	-+	- i			_	-	_	-	┢	_	_	1															
Suggests possible fleodine after dissolution	╊┼		++	+	+				-+	-+	+			+-	+			⊢∔	+	++		++-	₩-	H	+		1		╉	_	-	-		┢	4_			_		-												
# of carbonate fragments.	1+	+	++	1						-+	-+	+	+	+	+		+			H		++-	╢		+	+			++		+	+	+	┢	+-	+	+	+	-	_	+	4	+	+		-	-+			-		╄
~~					1									+	+-	1	<u>† – – – – – – – – – – – – – – – – – – –</u>	H	+			tti	Ħ								+		+	┢	+		+		+	+	-+-	+	+	+		ł						1
	\mathbf{H}	+	$\downarrow \downarrow$																				Π			+	1		++		+-	-	+	+	-		+	+		+-			+	+		1						L
	↓ ↓.	+	++-	-	_				_	_		_						\Box					Π							1-	1		+	1	+	1	+-	+-			+	+	+		• •	ł	ļ					L
	₽∔	++	++	+	+			-				_	\perp		_	<u> </u>	Ļ.,		\square																T	-	1	1	+-		-	+	+	+								L
	⊢∔	+ +	+	╀	+-				-+	_				+			 	┝─┤	-		-	+							11																	1			1			l
# 21R SHERT - butt, smooth - w rough, weakly front; fresh, mixed alauration brnishgy dominates Eichy witchy dark red; possibly dk gy chert frags, later fract, filled with patchy carb; langular cobble	F		Η.	+	+		-		-	-+	-+-	+	-	+-		+	-	┢╌┤	╺┼╌┥	+	-	┝┼┥	+		+-			-+	+	-	-	+		⊢	+	<u> </u>			-	+	4								1			L
rough weakly front; fresh, mixed	ŕ+		ŤŤ	<u>+</u>	+			-			+		-	+	+	+			+ +	-++	-+-			-+-}	+	+	1		++		+	+	-	╂	+	+		·	_	-		+	4						ł			Ĺ
elevention braishay dominates Eight				1					+		+		-	+	1	+			+		+				+	+			++	+	+	+	+	┢─	+	4	+	+	+	+-	+-	+				Į						
lutchy dark red; bestibly dk gy chert				Γ									1	+	+	1			11					-++	+	+			╈		1	+	-	t	+-	+	+	+-		+	+	+	┿━━			1	- 1					
rays, later fract, filled with patchy			Ш											1	1	1									+	-			++	1	+	+		1	+	+	+	╈	+	+	+	+ -	<u>+</u>	\vdash								F
carb jlangular cobble			П											1	L												1 -				1	+		-	1	+	+	+	+	+		+	<u>+</u>	┢─┤								
						┝─┼			_		_	+		-	\square	<u> </u>						LП										1			1		t	1	+	+		1										
# 44 PANDEN LAKAT - Dutt - It gy-duish	4			٩	+	\vdash				\rightarrow	+	+	+	+	+			\vdash	44	$\downarrow\downarrow$	+	H	H	44	1				-II											T	1	Γ		П			1					L
anies to muss & your langer I'm thick	++-		++	1	+	⊢			-+		-	+-	+	+	+	+		\vdash	+	-++		$\left \right $	╟╟	$\downarrow\downarrow$		_	_					ļ																	1			1
Mass blue av anish wellow the and		++	++	╋			-+	-	-+		+	+	+	+	+	+		\vdash	+	-+-+	-+-	H	╎╋┤	++	+		i		-+	1	1	₋		L	 	<u> </u>	Ļ.,			1	\bot								1			Ĺ
Frans, V. ak av 1 sporedic Privide				t				-	-+	+	+	╋	-+	\mathbf{t}	+	1		\vdash	╉╋	- -{	+	┝┼┤		-++	+		t		-++-	+	+	+	+	_		+	_	+	+	⊢	+]	\square						1			1
4 22 BARDEN CHEAT - butf - It an - built gy; well fruit patchy layer: + Ven thick varies to maiss z vague lamine / harding Mass, blue gy, gnish - yellowish gy; yorth Franz, y. alk gy, ? yoradic Public sating - ground water it - ak red prange orn rist along irreg Fract, I rock COMMENTS:		Ħ		T				†			+	-	+		+	†		++	+	┼╂	-+-	H	HH	++	+		1		++	+	+	+	f	1	+	+	ł—	+	+	+	+	+ - +	⊦ _'	\vdash					1			1
in rust along irrog fruct, Irock.		11	\mathbf{T}	L							1	1	t		t	1.		H	+	+	+		H	-++	-+	+	1		++-	+	+	+	<u>+</u>	┞	+	+	<u> </u>	+	+	+		<u> </u>	┣─┘						1			i.
COMMENTS:																							_		•	-	· · · · ·			· · ·	÷		<u> </u>		-	I	L			- I-	1	<u>ь</u> , ,	<u>—</u> Ч	i		L			1			<u> </u>

.

SAMPLE DESCRIPTION		YPE	1	m																		') WEAK (2	2) m oi	DERA									i ina.	100108	numb	er - e	g one	"vein'	*	
SAMPLE DESCRIPTION	TALUS	ai i		- T-		M	AIN		MIN	ERA	LS	•/•		A	LTE	RA	TIO	N	ox	IDE		D WEAK		_	INS								ALS			Т			_	YSE
	FLOAT/ LOCAL	OUTCROP/SU COMPOSITE	I ENGTU	WIDTH	Quartz	reidspar (Plaglociase)	Hornblende	Biotite	Chiorite		Carbonate			GENERAL	CHLORITE EPIDOTE Carronate	SIL ICA	CLAY SERICITE	LINONITE"	MANGANESE MALACHITE	Magnetite •/•		I. CONTACT 2. BEDDING 3. FOLIATION 4. CLEAVAGE 5. FAULT 6. SHEAR 7. FRACTURE 8. VEIN 9. DYKE 10.	STRINGERS VEIN STOCK WORK	ΓPE	AMOUNT	LENGTH (m)	Т		Chalcopyrite			Molybdenite			TOTAL	0709	4u	Ag	Cu	
3R TUFF? - buft-It bluishay	F		×								0	+		╉┤	++						╉	10.		5	2 3	: 5	Ê	2	5	5 8	Ā	ŝ		+-				ppm	ppm 	Ppm
3R TUFF? - buff-It bluishay y limestore or limey tuff? y remnant bliation? ⇒ felled ure; irregular, o kengated?masser hert & red chert → hem; dist y interver rust sports to 2mm tend fract assue., focally 2mm not abundant; I rock			_			-		_			-	1-1	_		1			╧╋╡	#	+ +					+					+-		+		_	⊢	-1				
ure irregular elongated ? mosser			Ш	\mp											++-		++	┼╋┼	++	++	-				-	-				_	-	\square								l
y intense rust spots to 2mm tend		++				+	+		+		+-	+			$+ \overline{+}$	\square													_											1
abundant: I rack		++	H	\square			\square		1				_	\blacksquare					++					-+		+			-	+		$\left \right $	-							
										\vdash		┼─┼	-+-	+	╈	┼┼┤	++	┼┠┼		+	_		+++	_		1					1									<u> </u>
	+					-								11	11												┟┤			+-		$\left \right $	+		╞╌┠					
												+	-	╂┤	++	$\left\{ \right\}$	++-	┼╂┼	++	┼╌┽	+			-		—		_		-			-	1						i i
	-++	+		+		+	+					+		$\downarrow \downarrow$	11		##							_								$\left \right $			$\left \right $	-				1
	\square				-	1_										+++	++	╞╋┼	╈	++	+		┽┼┼	-+-		-			_				- - -			1	$- \downarrow$	_		
	++	++		┿┨			+		+ +			╞┼		H	Ŧ	Ш														1-						-				1
	+																		╀┠	┼╌┼	+		┽┼╀	-+-	+-		\vdash	-	+											
						+	+	+	+-+	-+-	+	$\left - \right $		╆┼	++	$\left \right $			H	$\downarrow \downarrow$			111	. 1	1															Į
	┥┼	┽┼┦		+			\vdash					\square		\ddagger	Ħ		11								+	+				+	+					-				1
	11					1						+		╂┼	++	┝┠┟	┼┾		┼┼	╞┈┼	-		\square					_									\uparrow	\neg		
		+		┝─┨		+	┝╼┼		+-		_	H		\square			11					_						- +	+	+	┼─┤	-+								
	11					1							_	_			╉╋		┼┼╴	+	-		┼┼┼					_	-	1										i
		$\left\{ \right\}$			-+	+			+				_	Π			11		11										+	+		+		+	-+	-				
	-	\prod	_											Ħ					┼┼	┝─├─	-		┼┼┼			+			+		F	\square	1		-	1				
								_	╉╌╋		+			\mathbf{H}				1-	11										+						-+			1		
		$\left\{ + \right\}$	-						1-1											\vdash	-		$\left \right $	-		┥┨	-+			-		_	-							
			1-						+		-			╂┼	$\left \right $		+	++			-						1		-	-					+	1				
	++	$\frac{1}{1}$							11												-			-		┝╌┠		+	+	+		-			-					
									┼╌┼		+-+			╉┼	+	++	+	++-	\square				\prod	_	1												+			
	╉╂	╀╫╄	+						+		\square			11	ГЦ	11-	11	11	Ħ				111		1-	┢╋				+	\vdash			┼╴┠		-				
								1					+-	┢┼╴	┟╂┨	++-	+++	╂┼╽	$\left \right $		+			-F				-	1				1	[]		1				
		+++		+	+	$\left - \right $			<u>⊦</u> ∓						FT	11-	\prod	11					111-		1				1			+-	+-	┼┼	╉	-				
								1	11				+	\Box							+		\square	-+-	+		$-\Gamma$		-	FT	-	-	-	11	-	1_	\perp	\rightarrow		<u> </u>
	TT				+	++		+-	┝╌┼		+			H	НП	H	+	Π	H		1								1			_		+			1			
	++	Π	\square	-	1-			1_	\downarrow							##	Ħ				1		┼┼┼		+		_	+-	+	+		- [-			-	1				
						+		+-	1		┼╌┼			╏╌┼╴	┝┼┼	++	┝┼┤	╉┼┦	+				┋┋	1				\pm			_									

APPENDIX IV

.

-

-

ī

Magnetic Survey Data, Methods and Instrumentation

		RTY			DATA		<u>13E</u>	INSTRU ME	т <u>S</u> Тол <u>И</u>	Grexton cintrex 95 AM 5 36 PM 5	MP2 7077			ETIC			DATA	-	<u>′13E</u>		и 	1994 Grexton cintrex	
LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATIO	N Time	Reading	-TSCIV	Corrected Reading	Topography	LOCATION	Time	Reading	ection	Corrected	T
SL BOOW						LJGN						L40N		†	- 60-	Reading			11	Record	COLLE	Reading	Topograph
40 N		57062	<u>+9</u>	57071				57166	+5	57171	1219			57211	-2	57209	1 1244						<u>├</u> ──
39N		044	+9	053			1:06	57/78	+4	182	1158		W 3:47				1241	+	1 1				╉╼───
<u>38N</u>		024	+9		1305	78025W		206	7 7	210	1140		W3:49				1232		+				<u> </u>
37N			+9	029		78ow		188	44	192	1146		w 3:50				1244		1-1				
36 N	1:27		+ 9	015		77975W		163	1 4	167	1147		1 3:52				1245	~				<u>-</u>	<u> </u>
LJON			+9	Q 05		77950W	1:14	_167	+4	171	1147	78925					1245		- I				<u> </u>
35N	1:30	57004	+8	012	13/7		1:15	171	1 4	175	1140	78950					1245		1 1		<u> </u>		<u> </u>
		. <u> </u>			·	778w		175	1 4	179	1109		1 3:56				1245		╂───╂	•••••••			<u> </u>
-36N						777w		149	+4	153	1/03		N 4:00	178			1245	1	+	·			
800W	/32	57002		57010		776750		156	ŧЧ	_ 160	1103		4:02		-4	164		<u>+-</u>	+	·			<u> </u>
799w		910		018		776w		150	+4	154	1/00		4:04	148	-4	144		+					<u> </u>
798W			1 8	066		775W	1:32	142	+3	145	1109	792501			-4	143	1241	<u> </u>	<u> </u>				<u> </u>
797W			+8	027									1 4:08	185	-4		1244		1 1				<u> </u>
796W			+8	039		LYON						79325		137	-4	1	1250		┝┈╴╽			·····	
79550W			+8	058				57224		57224	1170	793 50					1262	+	┥──┤		<u>├</u> ──-		
795W		076	+8	084		Repeat			12			79375			-4	028		1	t				<u> </u>
794W 79350W		106	+8	114		Repeat		· 2/3						56952		56958							<u> </u>
7930W		088	<u>+8</u>	096		778w		_2//	+2	2/3				57251		57247		1	<u>†</u> ─-†	,			<u> </u>
792500		117 099	+8	125	1264	777w		205	<u>+</u> 2	207	1134			573 59		57354			<u>†</u> †				<u>├</u>
792W			+7	106	10.0 -	77675W		167	0	167				57273		57268		T					<u> </u>
79150W			+ <u>7</u> +7	129	1280	776500		166	0	166		794501	V 4:21	237		232	F	1					
791W			<u>++</u>	146		77625W		164	0	164		79475			- 5	265		1					
790500				164	1268	776W		/87	0	187	1152	795W	4:23	251	-2	246		T					
790W			<u>+7</u>	195	10.1.1	Repeat		190	0			796w	4:25	129	-2	124		<u> </u>	tt	·			
78975W			+7	251	1299	77591W		296	0	296			4:30	115		110		T	F				
78950W1		- <u>-</u>	<u>+7</u> +7	314		77582W		382	0	382		79775	N 4:35	084	-5	079		<u> </u>					
78925W/			†† +7	383		77575W		589	0	589	1164	<u>799</u>		-			<u></u>	1	<u>†</u>				
79912W 1				734		Repeat		_584_	0	— - -		800 W	1 4:38	070	-5	065	1				i		·
Repeat 1		580	$\frac{+}{+}$	613		77567		698	0	698													
789w 1			-`	ALE	1011	77550W		232	0	232							+						
788 89W/			+7	065		7752.51	-	158	0	158	112.8					1							
78850 1			+5	039		775W		125	<u> </u>	125							t						
	ost -		+5	139		780W		223	-1	222						1							
788W. 78750WI	2121		15	149	1213	781W		238	- -		112.8							T	<u> </u>				·
787W)			+5	130	12.10	78225W		229	<u>`</u> /	228									!+				
78650W	0.54 L		1 5		1319	_783w		302	-/	301													
786 W 1	2144			161	1100	78350W		231	<u>-i</u> +	230					1	1			ţ †				
785~ 1			+2		189	794W		223	-2	221						1			t t	·····			
784W 1			12		1201		3:36	203	-2	201						I		†	 				
783W 1			+2		12/9		3:38	208	-2	206						1			t †	•••••••			
Il readings in	gommas	T - 1			244	787W 3	<u>.72</u>	207	-2	205	220						····· · · · ·		<u>†</u> ····− †				
levations in	m a.s.1.	1 20	MMEN		0						Í	All reading Elevations	in gomm	108.	OMME	NTS:		·	•			I	
	*	VALUES	Avin	IGED FO	OR PLOT-	TING										peatable	1						

* VALUES AVERAGED FOR PLOTTIN

A second s

PAGE 2 OF 10

.

١

MAG	INE	TIC S	SUR	VEY	DATA				سا	Grexton cintrex	MP2
PR	POPE	RTY_	DA	VINCI		VTS_931/1	<u>13E</u>		тіол <u>8:</u> 8:	00 AM 5 20 AM 5	7079_ 7079_
										59 PM 5	7085
OCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Topography
790W						L790W					
	g:50	57250	+7	57257		52N	10:19	57290	46	57296	1286
3625N	·	264	+7	271							
2650N	8:53	305	+7	312	1240	LSIN					
3675N	-	492	+7	499	1240	790W	10:20	57393	+6	57399	
37N	9:54	483	+7	490	1240	Repeat	10:25	57394	+6		
725N	-	471	+7	478		78950W	~	393	+6	399	1286
N 0241	9:02	. 113	+7	120	1219	789W	10:35	395	±6		1286
3775N	9:04	04/	<u>+7</u>	048	12/3	78850W	-	382	+6	389	
	9:05	087	+7	094	12/9	788 W		396	+6	702	13.05
825N	<i>9:</i> o7	//3	1 7	120	1231	78750W		368	+6	374	
850N	9:0B	130	+7	137	1232	787w	10:43	374	+6	380	1298
875N	9:09	140	+7	147	1244	78650W	10:44	368	+6	374	1274
39N	9:11	158	±7	165	1244	786W	10:46	384	+6	390	1274
3950 N	9:13	184	+7	19:1	1244	795W	10:49	364	+6	370	1274
YON	9:15	214	+7	231		784W	10:52	371	+6	377	1311
41N	9:19	199	<i>†</i> 7	206	1219	78350W	10.50	335	+6	341	1317
4150~	9:21	2/3	+7	220	1231	783W	10:57	302	+6	308	1335
42N	9:23	289	+7	296	1231	78250W	11:00	288	+5	293	1359
4225N	-	265	+7	272		782W	11:02	277	+5	282	1360
4250N	9:25	280	17	287	1237	L782W	11:10	288	+5	293	
43 N	9:28	264	+7	271	1237	78150 W	11:12	3/0	15	315	
4175N	9:31	287	+7	294	1250	78/25 W		294	+5	299	1311
44N	9:32	278	+7	285	1256	781W	-	292		297	
4450N	9:39	267	+7	274	1305	78050W	11:17	240	15		1298
	9:43	287	<u> </u>	294		780W		220	+5		1274
4575N		304			1329	77925W		189	15	194	1219
46 N	-	292			11347	779w	· · ·	209	15		1195
4650N	9:49	302		309		77850W	· · · · ·	197	15		//70
47N		322	1		1305	778W		174	45		1195
LYSN	+****	331	+		1280	77775W		144	75	149	1207
47501	1	337		341	** ~~~~~	77725W			15	151	<u> </u>
47751			+7	379	1244	777W		131	15	135	1225
48 N	10:02	362		368	1244	77650	1.		+5	103	1237
4825N	-	356		362	/ - / /	776 W	T	0 88	15	093	1244
4875N		356	+6	362		775500	1	070	75	075	1240
- 49N	+	366	+ 6	· · · · · · · · · · ·	1250	775W	1		15	057	*****
- <u>1710</u> 4950N		381	+6		1262	173.00	11.24	<u> </u>	+		H 5-1
50N		381	16	T	1274	LYON	t		<u> </u>	<u> </u>	•
51N	10:13	392	+6				12:07	57100	1.0	57101	111 1
			1		1274		T	57/82	<u>+4</u>	57/86	
5150 N	10:16	426	16	1. 132	1271	77750W	112:09	189	111_	193	1164

MAG	INE	TIC S	SUR	VEY	DATA			INSTRU ME	L. wrS	<u>Grexton</u> cintrex	MP2
PR	OPE	RTY	DA	VINCI	/	v <i>ts_</i> 931/	<u>13E</u>	BASE STA	TION		
LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Тород
LYBN		I'	ļ'		ļ	LYYN	; ;				
778 (Repent)		1	+4			788W	2:41	57270	+3_	57273	1244
77825W		230	<i>44</i>	234		78750W	-	268	+3_	27/	
77850W		239	+4	243	1170	787 W	2:42	278	+3	281	1225
77875w	I	210	+4	214	1146	786W	2:46	281	+3	284	1207
	12:41	222	74	226	1134	785W	2:49	268	+3	27/	120
77925W	12:42	276	+4	280	1109	78450W	2:53	2.78	+3	281	no
77950W	<u></u>		+4	293	1109	784W	2:55	2.79	+3	282	1189
	12:47	252	+4	256	1109	783W	2:59	294	+3	297	1177
78025W			74	281	1134	78250W	3:01	279	+3	282	
780 So W	<u> 2:51</u>	293	+4	307	1140	782W	3:03	277	+3	280	
78062w	ل	380	14	384		781W	3:06	270	+3	273	1177
78075W	12:55	474	74	478	1146	780W	3:10	267	+3	270	1164
78088W	12:57	589	+4	593		78050W	3:17	273	+3	276	,,,,
	12:59	637	+4	641	1146	779W	3:18	255	+3	258	116 y
78112W		485	+4	489	/	77850W		278	+3	281	1165
78125W	1:03	385	+4	389	1164	778W	-	300	+3	303	
78/50W	1:06	326	+4	230	1189	77775w	-	298	+3	301	h
78175W		290	77	294	12/3	77762W	∿ - ↔	594	+3	597	533
782W	1:09	294	+4	298	1184	77775w	3:24	366	+3	369	Ave
78225W	1	338	+4	342	1184	790W	4:00	268	+2	27D	
78250W		354	74	358		791W	4:15	261	+2		1274
783W	1:15	348	+4	352	1170	792W	4:20	240	12	-	1329
78350W	1:19	353	14	357	1184	793W	4:22	223	+2		1317
784W	1:22	332	+4	336	1201	794W	4:24	2//	+2	2/3	129
78450W	1:25	33/	74	335	1219	795W	4:28	201	72		1275
785W	1:33	329	44	333	1244	796 W	4:31	2/2	72	2/4	/
78550	1:35	313	+4	314	1280	797W	4:34	177	+2		1280
786W	1:41	324	74		1298	798W	4:37	/83	+2	185	1292
78650W		322	+4	326	1305	799W	4:40	155	12		1303
787W		321	74	325	<u> </u>	BOOW	4.46	 73	12	1/9	1311
78750W	1:45	328	+4	332	1298		1.19	<u> </u>	Ľ		
788W	1:49	330	14	334	1292	BLBOOW					
78850W		349	74	354	1274	43~		57132	42	57134	
789W	1:54	347	14	351	1280	42N		105	/ <u> </u>	106	1236
	1:58	325	+4	329~		4IN		079			1426
-11-11		<u></u>	<u> </u>	247~	1305 133	40 N			4/	080	
LYYN	<u> </u>	[]	<u>├</u> ────┘	t		10 20		079	<i>±</i> /	080	
	2:28	57269	+3	57272	t						
			$\frac{73}{+3}$	257	1.000	}					
789W	I - I	254			1244	 		······			
78875	2:35	271	+3	274	+						
78850	2:39	246	13	249	1	1	1				

· · · · · ·

MAG PR		RTY				v <i>ts</i> _931/1	<u>13E</u>	OPERATOR L.GREXTON INSTRUMENT <u>Scintrex MP2</u> BASE STATION BOO A M 57-06 5:35 PM 57-08					
LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	correction	Corrected Reading	Topography		
BOOW			×			L78950W				Receiving			
HIN	8:30	57076	0	57076			11:19	57248	D	57248			
LYYN	8:42	57116	0	116					1				
HHN	8:46	120	0	120	1317	LLON			-				
	8:50	149	0	149	1317		11:22	57218	0	2/8			
4550N	-	147	0	147	1311		11:30	2/8	0				
	8:54	187	0	187		788W	~	222	0	222	1469		
4650N	-	160	0	160		787W	11:40	226	0		1487		
	9:56	152	0	152	1329	786 W		191	0	191	1523		
480	9:03	172	0	172	1372	78550W		194	0	194	1524		
49N	9:07	150	Õ	150	1353	785W		206	0	206	1505		
50 N	9:15	174	0	174	1426	78450W		/82	0	182	1487		
5150N	-	159	0	159	11 49	784W		149	0	149	1469		
SIN	9:20	146	0	146	1469	78150W		150	0	150	1445		
LSZN	9:30	168	0	168	1487	783W		162	0	162	1420		
52N	9:35	160	Ø	160	1523	78275W	11:30 	129	ð	129	1920		
53 N	9:42	147	Ō	147	<u>,,, c. </u>	78250W	12:22	108	0	108	1390		
	9:45	146	0	146		78225W		103	0	/03	<u>1313</u>		
55N	9:49	/37	0	137		782W	-						
56N	9:52	128	0	128		781750		092	0	. 092	1378		
57N	9:55	121	0	121		78150W		093	ŏ	093	1359		
582	9:57	104	0	104		ZRIW	-	095	\overline{o}	085	113.9		
- 59 N	10:01	08.8	0	088		780500	_	089	0	089			
60 N	10:05	093	0	083		1.	12:12	096	0		1323		
<u></u>	14.05		<u> ~ _ </u>			77950W	12.72	038	0		1298		
LGON			h			779W	12020	016	0		1329		
	10'39	57107	0	57107		1- /		56984	ŏ				
798W		138	0	/38	1523	777W		57019	0	<u>56984</u> 57019			
79750W	-	148	0	148	1517	Roment		57021	0	21017			
797w		155	0	155			· · · ·		10	ELAND			
796W		176	0	176	1511	77675W		56943	0	56943 56955			
795W	1	196	0	196	15/1	77625W		56955 56945	0	56945			
79450W	-	2//	0	211	1493		1	56938	0		1220		
794W	1115)	219	0	219	1499	775500	·		0	56938	1327		
793W	1058		0		[<i>111</i>]				0	56936	1229		
792W	11:01	<u>199</u>	0	199	1533	775W	12:42	56920	10	56920	µ14/		
- 791W			0	203	1523	tier	<u> </u>		<u> </u>				
790W	11:09	215	0	215	1517	LSGN	11.0.2	51070			1212		
TION	11.09	110	+ <u> </u>	220	1523	7750		56979	0		1262		
170050	+		+	<u> </u>	÷	77575W		56985	0	56995			
L78950W	1	21-			1.5.5.00	1	1:04	57056	0	57056	1814		
60N 5925N	11:16	215	$\frac{0}{0}$	215	1505	77650W		57031 57040	0	57031 57040	12-11		

			13E	DATE AUG. 19 1994 OPERATOR L.Grexton INSTRUMENT Scintrex MP2 BASE STATION BOD AM 57086 E 5:35PM 57088			MAGNETIC SURVEY DATA								OATE <u>Aug. 191994</u> OPERATOR <u>L.Grexton</u> INSTRUMENT <u>Scintrex M</u> BASE STATION					
3 ¹⁰⁰ C	orrected	Topography	LOCATION			-clion	Corrected		LOCATION	Time	Reading	rection	Corrected Reading	Topography	LOCATION	Time	Reading	orrection	Corrected	Т
	Teading	ropography	<u> </u>	16004	Reading	Cotto	Reading	Topography	LSGN				Housing		156N			<u> </u>		╈
5	7076		1278950W	11:19	57248	Ð	57248			1:28	57042	0	57042	1271	791W	3:43	57336	-5	57334	1
1	116		1 7 11		-1-10-				77750W		049	0	049	1256	79150 W		337	-2	332	1
\uparrow	120	1712	LLON				1	 .	778w	1:37	109	0		1225	792W	3:45	333	-2	· 331	1
T		1317		11:22	57218	0	2/8		778250	4 -	091	0	091		79250W		338	-2	336	\downarrow
T		1311	Repeat		2/8	0			779 W		070	0	070	1219	793 W	3:49	348	-2	346	\downarrow
	187		788 W		222	0	222	1469	77950W		125	0	125		79375W		348	-2	366	4
ſ	160		787W		226	Q	226		7BOW	1:51	151	0	151		794W	3:56	322	-2	353	μ
	152	1329	786 W	11:43	191	0_		1523	7Busow			0		1292	794500		337	- 2	332	+
	172		78550W	11:45	194	0	194	1524	781W		163	0		1311	795W	4:05		-2	303	4
1_	150	1353	785W		206	Ð		1505	78150W		/35	0	135	1329			292	-2	290	4
1		1426	78450W		182	0		1487	78175W			0	328	la C	796W	4:12	269	-2	267	4
L	159		784W		149	Ð	149		7B2W	_	420	0	420		79650W		239	- <u>२</u> - २	237	1
		1469	78250W		150	0	150		78225W		327	0		1365	797W		22/	- 2	219 189	+
	/68	1487	783W		162	0	162	1420	78237W 78250W		238	0	238	1204	798w		19/	-2	159	+
	160	1523	78275W		129	0	129	120	78262W		221	0	22/	<u> </u>	LBOOW		132	-2	130	+
	147		78250W		10B	0	108	1370	782754		214	0		1395		1.02		<u> </u>	1.50	\dagger
	146		78225W 782W		<u> 03</u> _	0	/03		783W		232	õ		1365	BLOON			1	1	†
	128		781750			Ö	092	1770	78325W		238	0	238			4:50	57147	-2	57145	T
	121		78/50W		092	ŏ	093		78350W		237	0	237				57147	-2	145	Τ
	104		78IW		095	0	085	1127	78375W		285	0	285	1359						I
Ē	088		78050W		089	Ø	089		784 W		296	0	296							Ţ
	083		ZBOW		096	0	096	1323	78425W	12:25	314	0		1359				ļ	ļ	Ţ
Ĺ			77950W		038	O		1298	78450W		307	0	307		-			<u> </u>	<u> </u>	4
_			779W		016	0	016		78475h	-	1	l <u>o</u>	332					 		+
5	7/07				56984	0	56984		785W		326	0	326	1365	+	ļ			┨────	∔
		1523			57019	0	57019	1335	Repeat	2:43		10	200					+	<u> </u>	+
	148	1517	Ropent			0			78550W	+ •	345	0	345	in a	·· [· ····	┣		 	+	+
	155	1511	77675W		56943	0	56943		786W 78650W		<u>343</u> 314	0	393 314	1272		 	ļ	+	╆───	+
	176	1499	7765°W		56955		56955		787 N		329	0	317 329	1290				<u>+</u>	+	+
-		15/1	77625W	1 -	56945		56945	1220	788 W	2.53		0	326		-+			<u>+</u>	1	+
+	211	1493	776W				56938	1529	789W				3/8					<u>†</u>	1	+
-		1499	775530				56936 56920	1229	790 W		1	1 õ	322		1			<u>+</u>	1	t
	199 203	1522	775W	12.92	36720	<u> </u>	269 20	<u>17. ()</u>	1790n		1	1						1	1	t
-	215		LS6 N	+											1	· · · · · ·		1		T
	220			1:00	56979	0	56979	1262	L790W											T
	- *	≁ ┙ ╲┙ 			56985		56935	/ · ` · · · · · · · · · · · · · · · · · · ·	561	3:06	57326	0	57326	1433			L			ſ
_			771. 4	1:04	57056	Ő	57056	1274	571	v 3:10	309	0	309	1457						T
	215	1505	77650W	- T	57031		57031	LX 1 1		13:14		0	280	1493						
	225		777W	1:07	57040	ŏ	57040	1271	S5/ All reading Elevations	3:22	341	0	341	1414						Ţ

		τις s _{rty}			DATA	v <i>ts</i> _ 93 1/1	<u>3E</u>	INSTRUME	нт <u>SC</u> тюл <u>7/1</u> []:0	Grexton cintrex I 30 Am 574 50 AM 574 5 PM 574	063
	Time	Reading	correction	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Topograph
RLBOOW			<u> </u>	, induction		139 N					
	11-15	57003	424	57031		790W		56972	+28		
20/*		<u>. Loot</u>	1.0	1.19.51				<u> </u>			
LJUN						2790W					
	11:15	57000	424	57028		3750N		57079	+28	57/07	
79950	1113		+28	046	1208				Γ		
799W	11.19		128	049		139N					
79850W		028	+28	056	<u> </u>		12:01	57017	+29	046	
79850W		025	128	063	1323	790W			+29	076	
79750W			123	075		78950W		073		102	1231
797W		052			13/1	799W		098	1 .	127	1237
79650W	11.5		+ 28	101	1305	78850W	12:08	120	+29	149	
796W	11.25	065	+28	093	1248	1000					
79550W		080		108	1286	·					
795250		094		122	12.89	LYIN					
795W			728	140	1277		12:20	57214	+29	57243	
79450W	1	136	+2B	164	1268	790W		1	+29		1244 -
794W			128	194	1262	740500		190	+ 29	219	
79375W			428	212	-	79/W		172	+29	201	1262
79350W			128	258-	1259	79150W		152	+29	181	Ľ
79337W			428	302	1	792W	12:32	145	+29	174	1268
79325W		344	128	372		79250W		130	+29	159	
79312 h			428	399		793W	12:34	125	+29	154	1274
793 W			428	387	1244	79350W		126	+29	155	
792872		259	1,	387	1, ,	794W		097	+29	126	1280
79275W		237	128	261	1	79450W	1	57 055	129	57084	
792624		188	1	216		79475W		56999	+29	57.029	
79250W		1	+28	295	1250	79487W		- F	+29	1 .	1296
79225W			+28	225		795W		364	729	393	
79212 W			+28	238		795121	N -	334	+29	363	
792W	~ .		428		1253	79525W	-	333	129		
79187W			428	393		795374	-	313	+29	342	
791754			128	511	-	795501		241	729	270	
791624	_		123	50/	<u> </u>	79562W		157	+29	186	
791504		1	128		1253	79575W	T	146	+29		
79137 W			128	358		796 W		5 142			1292
791250			128	256		796500		132	1729		
79/23 V 79/W		253			12 74	797W			729		1292
		57345				797500		097		126	
790874		2 56663		56691	1263	793W			17 29	130	1286
				56976	I	798521		105	429	134	
1110951	v //:56 v	56843		57268		799W	-	+	1-1		

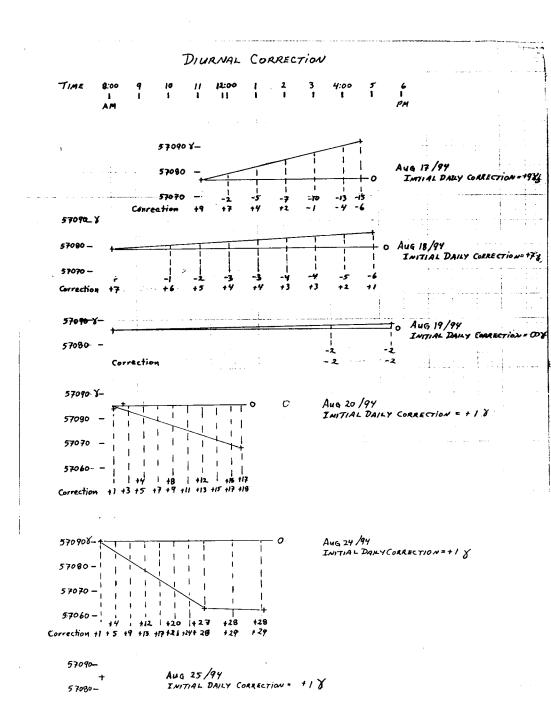
Aug. 2/1994 Tor L.Grexton JMENT Scintrex MP2			MAG	INE		SUR	VEY	DATA			DATE Aug. 201994 OPERATOR L.Grexton				
TATION <u>7:30AM 57090</u> 11:00AM 57063 105 PM 57062			PROPERTY DAVINCI					/	NTS_931/13E			BASE STATION 8:00AM 57 8:20AM 57 12:20 57			
orrection	Corrected Reading	Topography		LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Topogr
				BL BOOW	9:10	57167	+5	57172		LYBN					
128				52N	9:20	164	15	169		79050W		57330	+13	57343	
				1.74				ļ		791W	11:11	316	+13	329	1274
172	57/07			LSIN	0	57107		67100	1.022	79150W	<u> </u>	3/4	+13	327	
<u>7 20</u>	-1197			799W	4:55	57/83	+5	57/88	1493	792W	r	304			1268
-				79850W	0	187	15	192		79250W		3/0	+13	323	
+29	046		1	798W	7:29	184	+5	189		793W		313	+13	326	1286
+29	076			79725W	9.70	209	+5	214		794W	11:20	278		291	tion
+29	102	1231		79675	11 47	234	+5	216	1517	79450W 795W	11,25		413	273	
+29		1237		79650w		239	+5		1999 1981	79550W	11:5-	244	+13	257 243	1329
+29	149		1	796 W	9:22	265	+7	272	-	77550W	11:30		1/5	230	1372
				795750	1.75	269	+7	276		79650W	11.22	206		221	1342
			1	79550W	9:40	284	+7	293	1420	797w		192	+15	217	1372
		L	1	79525W	•	283	+7	290	120	79753W	1 6.27	192	+15	199	1
+29	57243			79512 W		298	+7	305		798W	11:43	181	+15	196	1378
29	22/	1244		795W	9:42	3/3	+7	320	1402	79850W			115	179	1
29	219	<u> </u>		79475W		3/8	47	325	· · ·	799 W	11:46	144	1		1378
29	201	1262		74450W	9:47	301	47		1384	79950W			115	161	1
29	18/	<u> </u>		79425W		320	77		1384	BOOW	11:50		115-		13.8
29	174	1268		79350W	 	329	<u>+7</u>	336	1381						
29	159			793 W		341	+7_		1335						
29	154	1274		79250W		361	17_	368	1317				L		
29	155	1200		792 W		373	±7	380	1317	· ·			-	 	Ļ
29		1280		79150W	9:59	393	<u>+7</u>	400	1305	i			ļ		
	57084			791 W	-	412	<u>+9</u>	421	1286		ļ	h			
	57.029	1212/		79075W		420	+9	429		 	ļ		 		<u> </u>
29	57/90 292	11520		79050W	<u> </u>	391	+9	400		<u> </u>				ļ	
127	393			79025W	<u>.</u>	392	+9	40/	<u></u>						
29	363			7.90W	 	386	+9	395	1286		ļ	· · · · · · · · · · · · · · · · · · ·			ļ
27	362	+		Repeat	<u> </u>	<u></u>	19	393	1236		 		 		
29		+		L740W				<u> </u>		<u> </u>			ļ		<u> </u>
9		1			100	C7701	+9	5720-		 			 		<u> </u>
9				52501	10:20		+9	57395 724	175)	<u>+</u>		<u>├</u>	 		+
9		1293		53501	10. 0	365	+11	374	<u>ביצו</u>	<u> </u>		<u></u> + ·−			<u> </u>
	161			54N	t	202	Ψ <u>μ</u>	376 388	אברו						†
ģ	136	1292		5425 N	10:40	369	111		1384	<u>†</u>					+
9	126						1 ··· /				 	-	† · · · ·		†
9	130	1286		LYBN	1	1		t		t	 	+			
9	134				10.53	57316	+//	57327		1	••••••	<u> </u>		<u> </u>	† ·· · ·
	1			Ropent		316	113				•		1	+	
				All readings Elevations i	in gomn	nas. C.	OMME	NTS · L'	18N/79317	JW 5729	19 +	138 ->	57312	28	
			1					L :	52N/7944	1 57320	,	78 s	5732	78	

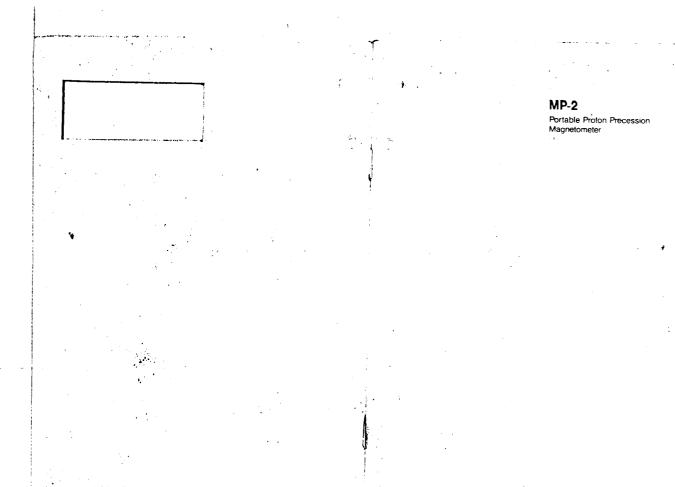
and a second second second second second second second second second second second second second second second

		TIC \$			DATA		OPERATOR <u>L.Grexton</u> INSTRUMENT <u>Scintrex MP2</u> BASE STATION VTS <u>931/13E</u>						MAGNETI PROPERT				
LOCATION	Time	Reading	Correction	Corrected Reading	Topography	LOCATION	Time	Reading	correction	Corrected Reading	Topography	LOCATION	Time	Readin			
L39N		•	Car	Reading	repetrupity			Reading	cont	Reading	lopography	HILLTOP		-			
799W	-	-	1							_		NOF HAT	7:12	5195			
	1259	57064	+29	57093								CREEL ROA		1 28/3			
800W		57043		072								- SRE.S. MA	1	1			
												1.5 KM E					
	L											ON N SIDE	756	5684			
									+			Hwy 99N					
												L75KM W	+	+			
									[ON N SIDE	3:05	56907			
												HwyggN		1			
·												2,5 KMW	0.00	5/07:			
				<u> </u>								L'S EMM	8.40	13607-			
												2.7 Km N	18:15	5683			
														<u> </u>			
						<u> </u>							-	+			
			+			<u>+</u>								+			
_									1								
				l								·	<u> </u>	.l			
				<u> </u>													
													+	· 			
			+	<u> </u>		-			+								
						1								+			
			-				<u>├</u> ──					; [+	+			
			1			1							+	+			
			1	†		†	!		<u>†</u>				1	1			
			1	<u> </u>								· · · · · · · · · · · · · · · · · · ·	1	+			
				[[1				1	1			
													1				
			L			L	ļ		L			ļ	- 	_			
							Ļ		Ļ				_				
	<u> </u>			<u>├</u>		 	<u> </u>		i					+			
	-		·			l			<u> </u>			· · · · · · · · · · · · · · · · · · ·	+	+			
			+	+		· · ·	}·		· []					+			
			+	<u> </u>		• · · · · · ·	<u> </u>							+			
ll readings	in gamm	nas.	OMME	NTC.	L	I	L	L		_		All reading					
Elevations	• m q.4										9_ or 10	Elevations		<u>an</u> ∀_Lix			

en en en en el ser en en en el ser en el ser en el ser en el ser en el ser en el ser en el ser en el ser el se

		TIC S	DATE AUG. 75 1994 OPERATOR L.Grexton INSTRUMENT Scintrex MP2 BASE STATION 7:30 AM 570 35								
LOCATION	Time	Reading	COFTECTION	Corrected Reading	Topography	LOCATION	Time	Reading	Correction	Corrected Reading	Topography
HILLTOP		51051		F4					 		
CREEL ROAD		56956	+/	56957							
ISKME											
NN 5104- IWY 99N	756	56842	*/	56843							
75KM W											
WNSIDE HWY99N	8:05	56902*	<i>+/</i>	56903							
2.5KMW	8:08	56873*	+/	56874							
2.7 km W	8:15	56888*	+/	56839							
			<u> </u>				_				
-											
								· · · ·			· · · · · · · · ·
	<u> </u>	 									
	-										
	İ										
	<u> </u>	<u> </u>									
All readings	in game	CC	OMME	NTS:							


+ LIXCLY INTERFERENCE . HYDROLINES


BASE STATION INITIAL DAILY CORRECTION

Assigned Base Station Value= 57086 gammas

Base Station Readings

Aug 17/94	57077 gammas	Correction Required = +9 gammas
Aug 18/94	57079 gammas	Correction Required = +7 gammas
Aug 19/94	57086 gammas	Correction Required = 0
Aug 20/94	57085 gammas	Correction Required = $+1$ gamma
Aug 24/94	57090 gammas	Correction Required = -4 gamma
Aug 25/94	57085 gammas	Correction Required = +1 gamma

767 700 February 82

1.0 General Information

1.1 Introduction

The MP-2 is a portable proton precession magnetometer. Such instruments utilize the phenomenon of nuclear magnetic resonance to measure the flux density of the total mangetic field.

The MP-2 Sensor consists of a chamber filled with a proton rich fluid such as kerosene enclosed within two wire wound coils. When a current is passed through these coils for a short period of time, a magnetic field is set up which aligns the spinning protons. When this polarizing current is abruptly switched off, the protons begin to precess around the earth's magnetic field and eventually realign with it. This precession induces a small, exponentially decaying, AC signal in the sensor coils whose frequency is proportional to the flux of the ambient magnetic field (23.4874 gammas/Hz). This frequency is measured by the signal processing electronics of the MP-2, converted to a gamma value and presented on the digital display.

The MP-2 is designed for portable magnetic surveying. As no levelling is required, a rapid survey is possible to a high accuracy anywhere on the earth. An optional external battery kit converts the instrument easily for winter use. The sensor is either staff mounted, or carried in a backpack. Two separate attachment joints orient the sensor for either polar or equatorial use.

Coupled with a module into which the MP-2 is easily inserted, the magnetometer can be used as a base station unit for continuous analogue or digital recording. The entire unit of MP-2 and module is called the MBS-2 Magnetic Base Station. Full information on the MBS-2, shown in Figure 1, is available from Scintrex.

The carrying case is designed to serve as a shipping or storage container and should contain the following items:

.

.

Ι.	console	1	manual
1	sensor with cable	8	alkaline batteries
1	staff (in lid)	8	carbon-zinc batteries
1	harness	1	spare sensor cable

Optional: External Battery Kit consisting of: 2 battery cables 1 battery case

.

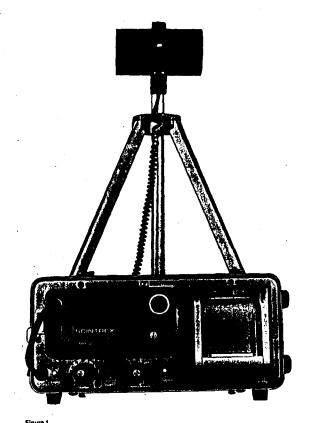
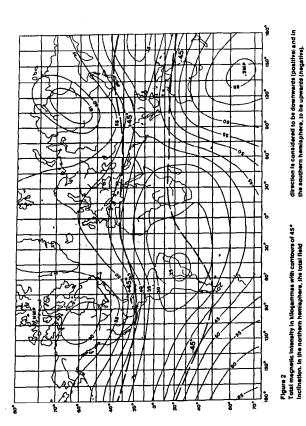



Figure 1 MP-2 with module forming the MBS-2 Base Station Magnatomate

1.2 Magnetic Environment

Figure 2 is a map of the total intensity of the earth's magnet field in kilogammas (kr). Comparison of the magnitude of these values with those on the Range Switch of the MP-2 indicates 'h the instrument has a world wide range. The contours on Figure 2 are, however, undisturbed background values which might be altered considerably by localized magnetic bodies. This should be considered when selecting the proper Range Switch setting after entering an unknown area.

Superimposed on the map are two dashed horizontal lines marked 245°. These are the contours of 45° inclination of the total field. It should be remembered that toward the poles the strongest component of the earth's field is vertical, while between the lines, in equatorial regions, the horizontal component is most important. These facts will be of importance when setting up the instrument as outlined in Section 3.2.

For accurate measurements, the sensor has to be exposed to a "clean" magnetic environment. Objects carried by the operator such as metal parts on clothing, knives, or pencils are frequently magnetic and can severely affect the results, especially when the sensor is carried in the backpack.

To establish if an object is magnetic, the sensor is set up in a stationary position and the readings compared first with the object removed and then with the object in the position with respect to the sensor in which it is to be carried. Various orientations of the object should be tried as certain positions may not affect the reading. Small objects such as a screwdriver, file etc. can give anomalies ranging between 5 and 150 gammas when they are placed within 1 m of the sensor. Large objects such as an automobile or an iron fence could give anomalies between 40 and 2000 gammas when within 10m of the sensor.

1.3 The Magnetic Method

The magnetic method of applied geophysics consists of measuring accurately the resultant magnetic field of the earth's magnetism acting on rock formations having different magnetic properties and configurations. The resultant field is the vector sum of induced and remanent magnetism. Thus, there are three factors, excluding geometrical factors, which determine the magnetic field at any particular locality. These are the strength of the earth's magnetic field, the magnetic suscepti-

bilities of the rocks present and their remanent magnetism.

The earth's magnetic field can be represented to a close approximation as the field due to a bar magnet situated near the center of the earth. Both the polarity and the orientation of this bar magnet are variable.

The flux lines of the geomagnetic field are vertical at the north and south magnetic poles where the strength is approximately 63,000 y. In the equatorial region, the field is horizontal and its strength is approximately 30,000 y. The geomagnetic field is variable in both space and time. The spatial variation has magnitude and direction components and these must be taken into account when magnetic measurements are taken over large areas.

The short term temporal variation is perhaps more troublesome. Significant variations in the earth's magnetic field may occur within periods of seconds, minutes and hours. There are also long term variations extending over months, years and millions of years, but these secular variations can be neglected in magnetic surveys. The magnitude of the short term variations is extremely variable and in the case of sudden magnetic storms, may reach several hundred gammas. This means that in magnetically active areas, it may be necessary to take continuous readings of the geomagnetic field with a base station magnetometer such as the MBS-2, while the magnetic survy is being done. An alternative field procedure is to make periodic repeat measurements at convenient traverse points.

The intensity of magnetization induced in rocks by the geomagnetic field ${\sf F}$ is given by:

 $\vec{1}_1 = k\vec{F}$

where $\vec{1}_1$ is the induced magnetization in cgs units

k is the volume magnetic susceptibility

 \vec{F} is the strength of the geomagnetic field

For most materials, k is very much less than 1. If k is negative, the body is said to be diamagnetic. Examples are quartz, marble, graphite and rock salt. If k is positive, but very small, the body is said to be paramagnetic, examples of which are gneiss, pegmatite, dolomite and syenite. If k is positive and the body is strongly magnetic, it is said to be ferromagnetic, for example, magnetic (k = 0.3).

The susceptibilities of rocks is mostly determined by their magnetite content since this mineral is so strongly magnetic and so widely distributed in the various rock types

The remanent magnetization of rocks depends both on their compo-sition and their previous history. Whereas the induced magne-tization is always parallel (or, rarely, anti-parallel) to the direction of the geomagnetic field, the natural remanent magnetization may bear no relation whatsoever to the present direction and intensity of the earth's field. The remanent magnetization is related to the direction of the earth's field at the time the rocks were last magnetized. Movement of the body through folding etc. and the chemical history since the nervious magnetization are additional factors which affect the magnitude and direction of the remanent magnetic vector.

Thus, the resultant magnetization M of a rock is given by:

$\vec{M} = \vec{M}_{1} + k\vec{F}$

E min.

where \vec{M}_n is the natural remanent magnetization. \vec{F} is a vector which can be completely specified by its horizontal (\vec{I}) and vertical (\vec{Z}) components and by the declination (D) from true north. Similarly, \vec{M}_n is specified when its magnitude and direction are known. Thus, considerably simplification results if $\vec{M}_n = 0$, whereupon M merely reduces to kf. In the early days of magnetic prospecting, it was usually assumed that there was no remanent magnetization. However, it has now been established that both igneous and sedimentary rocks possess remanent magnetization, and that the phenomenon is a widespread one.

1.4 Applications of the MP-2

Basic Geological Mapping

Readings taken with the MP-2 are normally presented as profiles and/or as contoured maps. These are now routinely used as integral parts of geological mapping programs. Qualitative interpretation of these maps and profiles assists in the identification of rocks, in mapping their distribution, in indicating sub-surface plutons and in revealing structural features such as faults. Quantitative interpretation provides depths to basement, dip and strike of dike-like features and estimates of magnetic susceptibility.

Mining Exploration

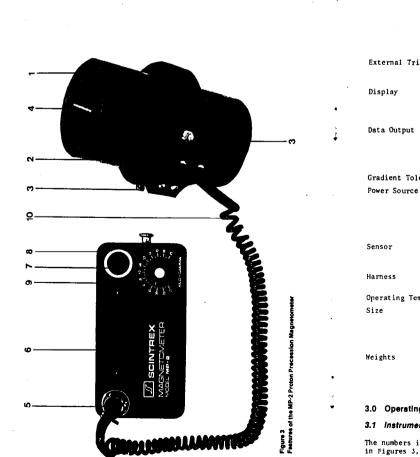
The MP-2 is an excellent instrument to use in exploring for certain types of iron deposits which can be strongly ferro-magnetic. Under some circumstances, the grade and tonnage of the deposit may be estimated.

In other cases, an anomalous magnetic field may arise from ore bodies containing metals such as nickel, chrome and asbestos, since these bodies often have magnetic pyrrhotite or magnetite as accessory minerals.

Iron Objects

Iron objects hidden from view will nevertheless have an asso-ciated magnetic field, the strength of which will depend on the size of the object and the depth of burial. A lightweight, sensitive instrument such as the MP-2 can be used to find such objects.

Archaeological Exploration

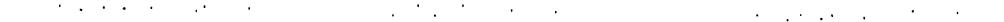

This is an extension of the use of the MP-2 to find iron objects. At some archaeological sites the contrast in magnetic properties between cultural features (iron tools, bricks, pottery, etc.) and the surrounding medium is sufficient to produce a magnetic effect that is detectable with a sensitive instrument. Such features as buried walls, pathways, entrances, fire-pits, etc. have all been detected and mapped by portable magnetometers.

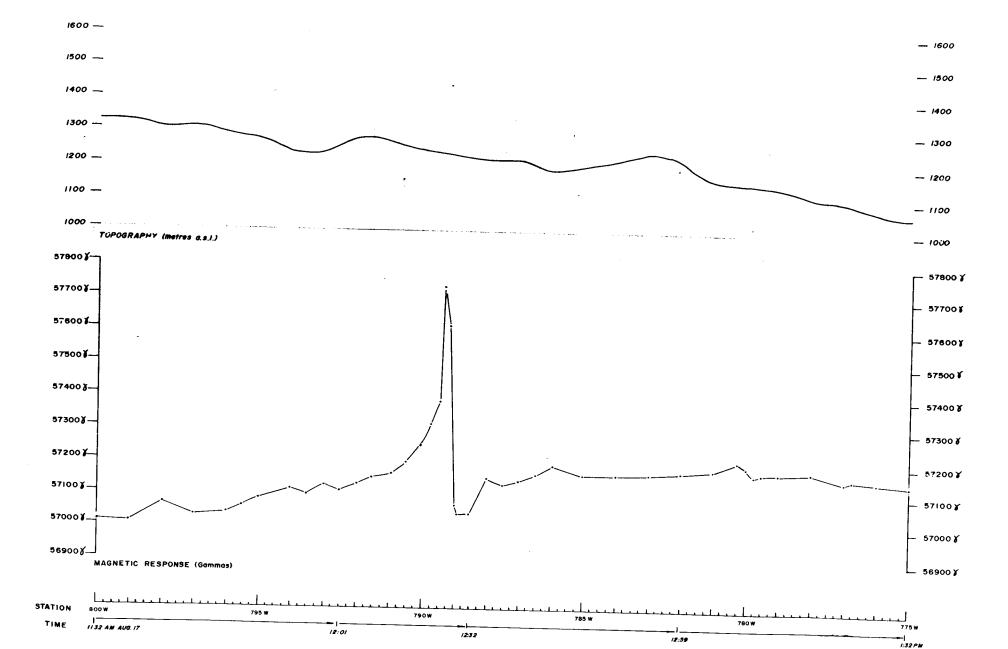
2.0 Specifications

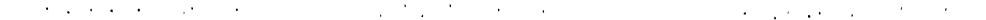
The MP-2 has the following specifications:

Resolution	l gamma
Total Field Accuracy	±1 gamma over full operating range
Range	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program	A reading appears 1.5 seconds after depression of the Operate Switch and remains displayed for 2.2 seconds for a total of 3.7 seconds per single reading. Recycling feature permits automatic repetitive readings at

3.7 second intervals.

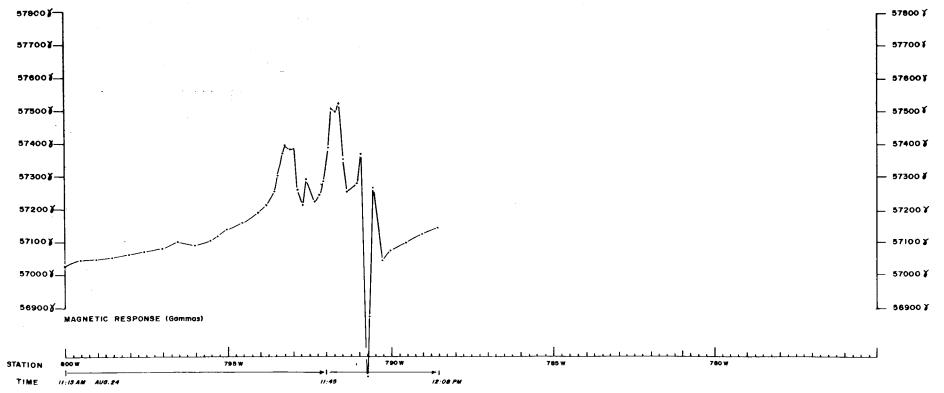

igger	External trigger input permits use of sampling intervals longer than 3.7 seconds.
	5 digit LED (light emitting diode) readout displaying total magnetic field in gammas or normalized battery voltage.
	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
lerance	Up to 5000 gammas/meter.
e	8 alkaline "D" cells proyide up to 25,000 readings at 25°C under reasonable signal/noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about 40% of this number.
	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
	Complete for operation with staff or back pack sensor.
emperature Range	$-35^{\circ}C$ to $+60^{\circ}C$
	Console, with batteries: 80 x 160 x 250 mm Sensor: 80 x 150 mm Staff: 30 x 1550 mm (extended) 30 x 660 mm (collapsed)
	Console, with batteries: 1.8 kg Sensor: 1.3 kg Staff: 0.6 kg

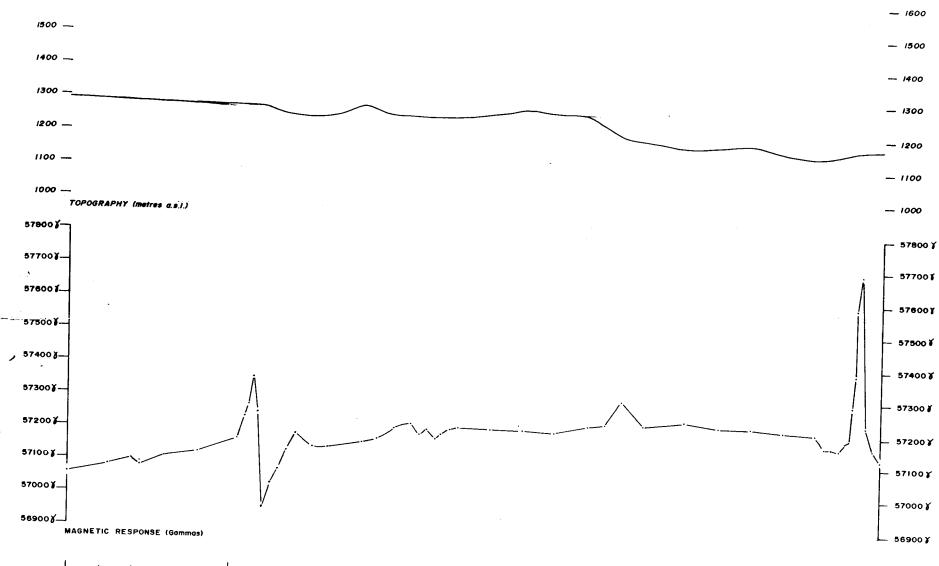

3.0 Operating Instructions


3.1 Instrument Description

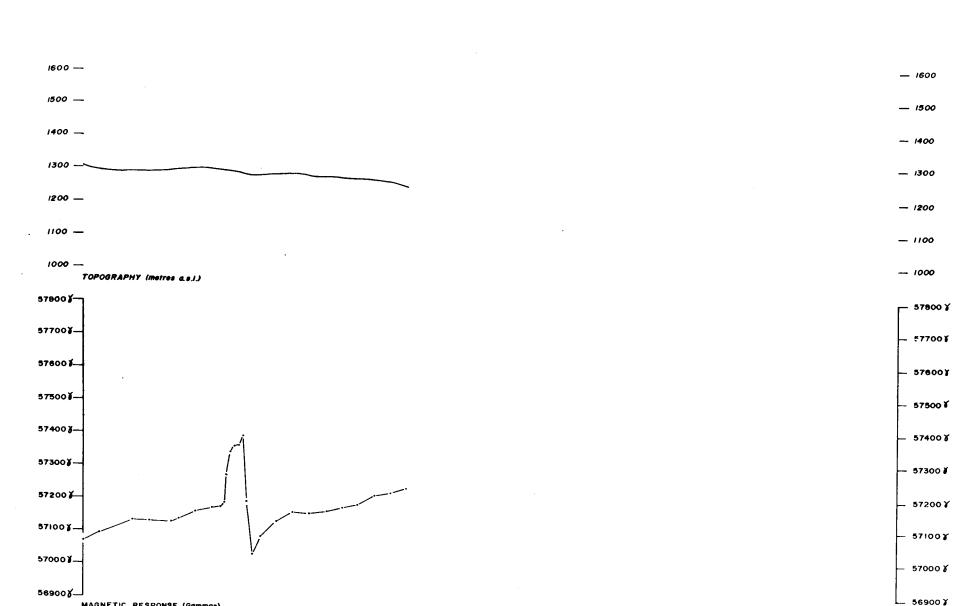
The numbers in brackets refer to the features of the MP-2 shown in Figures 3, 4, and 5.

(1) Sensor: Shielded, noise cancelling, dual coil type.



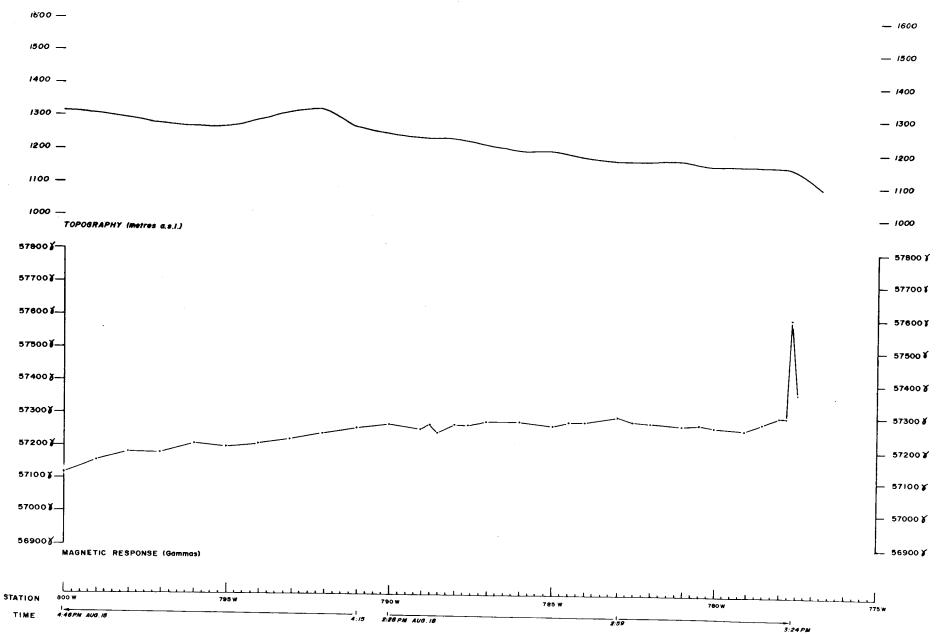


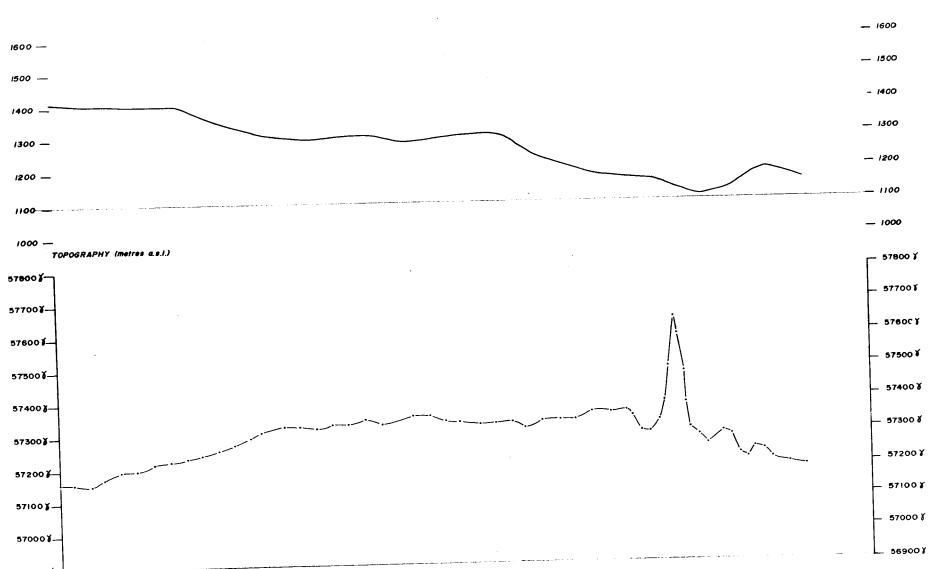
· · · · · · · A second s ,

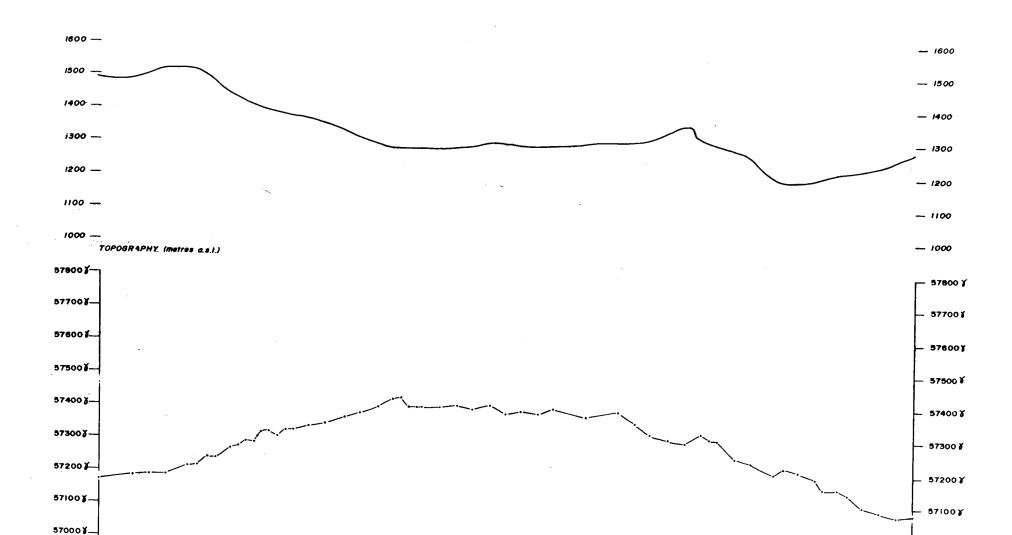


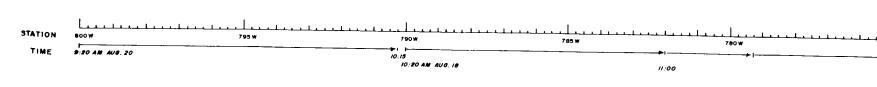
1

DAVINC PROPERTY Magnetic Survey-Line $40\,\text{N}$






· . • • . • . ۰.


.

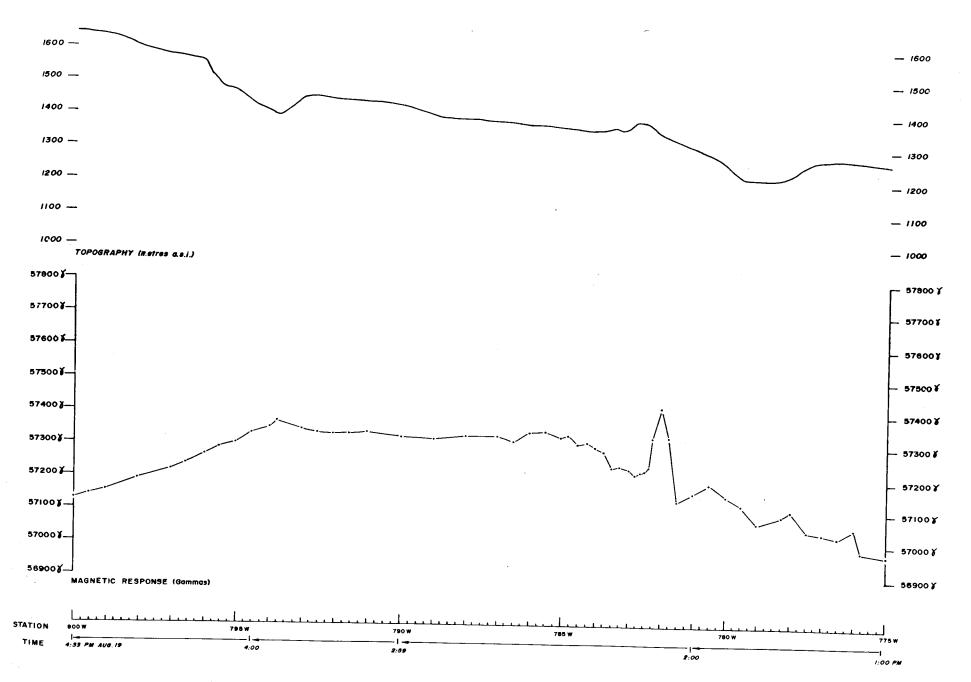
569008-MAGNETIC RESPONSE (Gammas)

569008-

MAGNETIC RESPONSE (Gammas)

DAVINCI PROPERTY Magnetic Survey-Line 52N

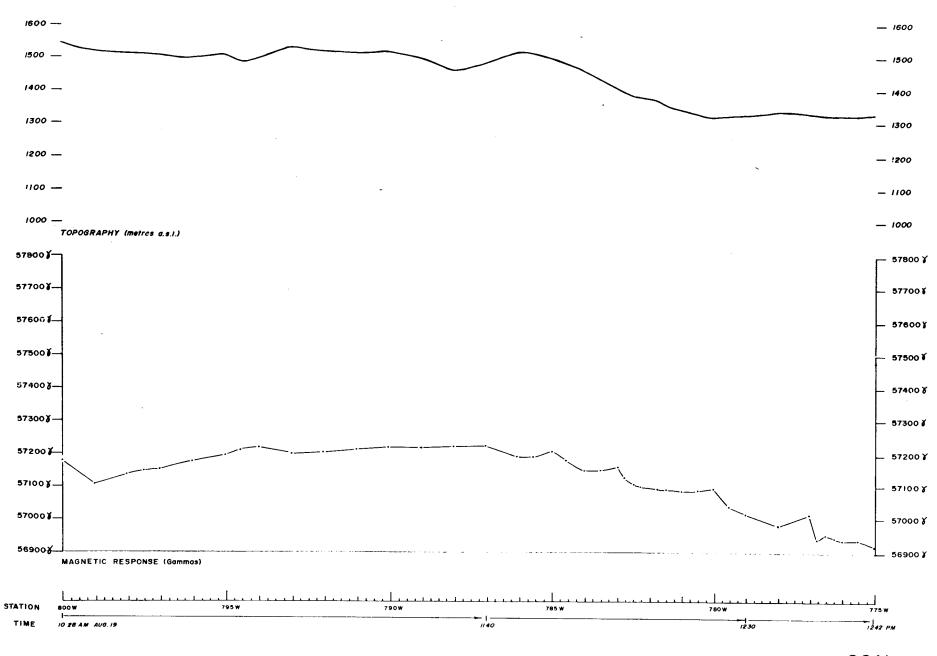
57000 X


L 56900¥

775W

11:52

-1



DAVINCI PROPERTY Magnetic Survey-Line 56 N

FIGURE 9K

- ----

DAVINCI PROPERTY Magnetic Survey-Line 60N Figure

FIGURE 9

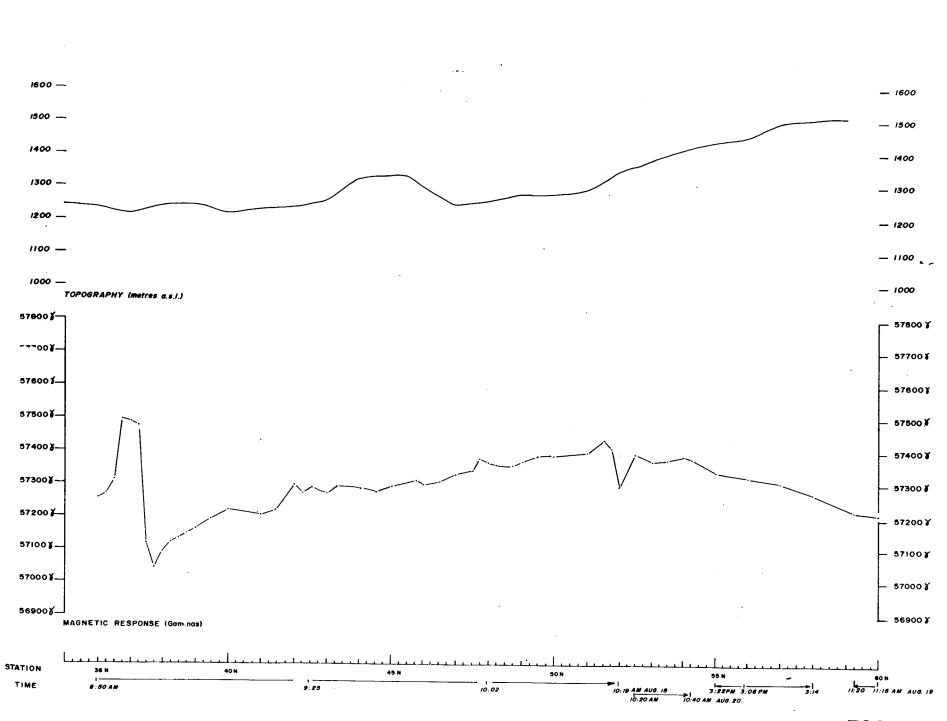
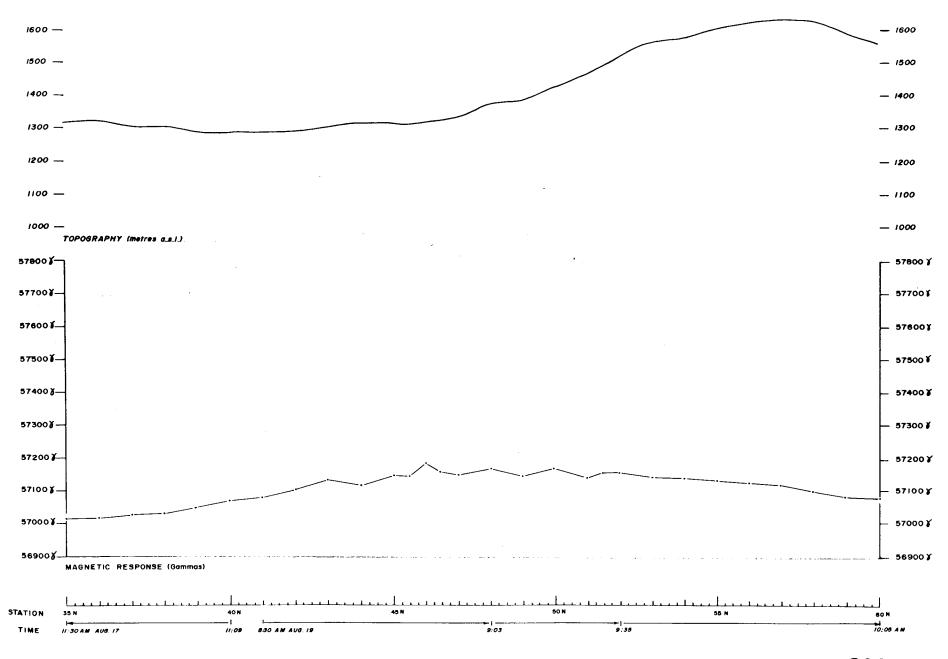
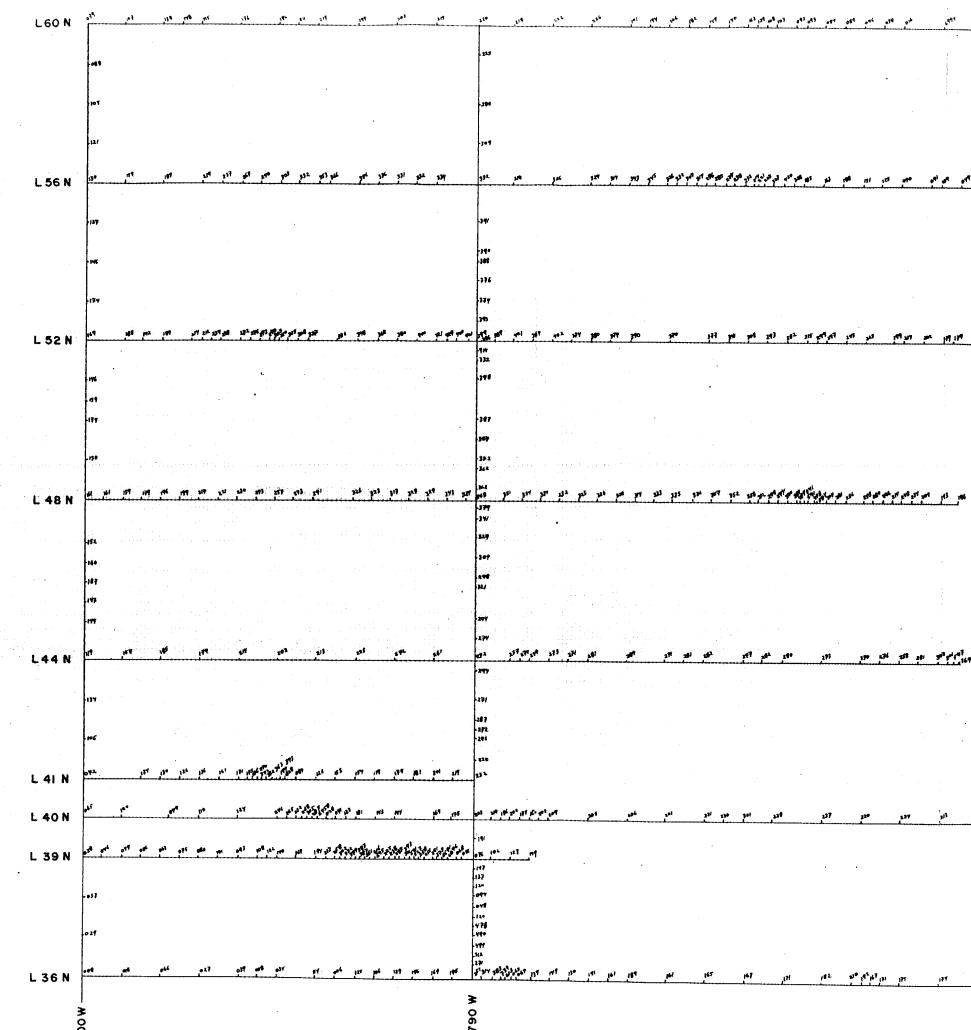




FIGURE 9M

DAVINOL DRODERTY KAR

610 413 415 415 415 1936 1936 1810 -=((N))⊧ Values in Gammas Maximum = 57734 & Minimum = 56691 8 300m 1 11 11 M

15¹ Ho 154 HS

FIGURE 90

notio Cumunu Data Dist

APPENDIX V

VLF Survey Data, Methods and Instrumentation

÷

.

٠.

.

•

VLF SURV				NTS <u>93I//3e</u>	DATE <u>AUG 21, 23 1997</u> OPERATOR <u>L. GREX700</u> INSTRUMENT <u>EM-16</u> STATION <u>CUTEER MAINIK</u> DIRECTION OF FIRST NULL <u>EAST</u> READINGS LOOKING NOATH			
LOCATION	In Phese	QUAD	Slope	LOCATION		in Phase		Slope
12 800W /40 N	-1	+3	SEE	A 800 W/5	0+25N	+27	+14	
40 25	0	+3	Mag	LS2 INT	ERCEPT	+26	+8	
4050	-16	+3	DATA		150	+20	+14	
4075	-/0	+3						
4/87	<u>_++</u>	+/	L	39	75 N	+20	+13	
<u> </u>	+12	+6	 	395		+5	+1	
4125	+6	+4	<u> </u>		25	-4	+1	
4150	+3	42	_		9 N	-6	-3	
<u> </u>	<u>/</u>	-8			875	+5	-6	
42	-4	-/	 		850	+15	-5	
4250	+10	+14			325	+11	-5	
4275	+34	+14			<u>3 N</u>	-2	-13	
<u> </u>	+30 +3	+12	· · · ·		775	-/0	+ 18	
LYYN INTERCEPT 4325	+8	+1			750	+3	-8	<u> </u>
4350	-/0	+4	<u> </u>		725	+15	-8	
4375	-8	-5			<u>37 N</u>	+5	-11	
<u> </u>	+14	0			675	-5	-17	
4425	123	-2			650	-10	-22	
4450	+28	+5			36N:	+2	-10	·
4475	+28	-6	t		3575	+16	-2	
45 N	+12	-5	i		3550	+5	-8	
4525	17	-4			3525	+10	-2	
4550	+3	o			35N	+14	-12	· · ·
4575	+2	-2						
46N	+5	+2						
4625	+13	+6						
4650	+14	+5						
4675	+19	+ 4						
47N	+27	+4						
4725	+22	-2						
4750	+22	-4						
<u>4775</u>	+ 30	+2		· · · · · · · · · · · · · · · · · · ·				
<u>48N</u>	+34	-2		· · · · · · · · · · · · · · · · · · ·		_		
4825	+40	<u>+5</u>		······································	<u>.</u>			
4850		±4			•			
<u> </u>	+11	13			<u> </u>			
<u> </u>	-12	-6		<u> </u>				
4925	+15	+5						
4950		±7						
<u> </u>		<u>+8</u> +5						

. . . .

, **'**

COMMENTS: AT 49N Sharp dith - NW trending winding gully Aug 23 READING 40N In Phase +5, Quad. +3 Control Harper Control WEAR MARINE READING DIFFICULT PAGE 1 OF 13

DATE _____ AUG 21 1994 VLF SURVEY DATA OPERATOR L. GREXTON INSTRUMENT EM-16 STATION SEATTLE PROPERTY DAVINCI NTS_ DIRECTION OF FIRST NULL SOUTH READINGS LOOKING BATT LOCATION in Phase QUAD Slope LOCATION in Phase QUAD **S**K LSIN/RBOOW +) +8 LS2N/789W -2 +2 799+25 -6 +14 78875 -4 0 799 -11 -14 78850 -3 0 79875 -20 +10 78825 -6 -2 798 50 -19 +10 788W -6 -8 79825 -14 +11 78775 -3 -13 798W -19 +4 78750 +5 -9 79775 -16 +5 78725 +6 -10 79750 -16 +2 787W +5 -12 79725 -15 -2 78675 -4 -16 797N -12 -2 73650 -5 -12 79675 -7 -4 73625 0 -4 79650 -9 - Ź 786W +10 +11 79625 -20 70 78575 +10 +11 796N -26 -20 79550 +10 +4 79575 -10 -12 73525 1+5 -2 79550 -22 -10 785W +8 -2 79525 -35 -10 78475 +3 +1 795N -28 -6 78450 -2 - 3 79475 -34 -4 78425 ~ 3 +2 79450 -43 -4 784W -1 +1 79425 -45 -6 78375 +3 +1 794W -41 -4 78350 - 2 +5 79375 -35 -4 78325 0 +7 79350 -22 -3 783W -12 -26 79325 -19 -2 78275 -15 -9 793N -20 -6 78250 -4 -Ý 79275 -28 -14 78225 -7 +1 79250 -24 -/0 782W +4 -3 79225 -19 -7 CLIF EDGE 78175 17 -3 792 -/8 -12 7R150 + 16 -1 79175 -18 -13 78125 -8 +179150 -17 -16 73112 -8 -32 79125 -11 -/0 781W -41 -9 791N -9 -17 73075 -20 -5 79025 -6 -13 78050 -40 -12 79050 +3 -19 73025 -30 -9 79075 +14 -21 -23 -9 780W 790 +19 -13 77975 -23 -6 78975 +18 -10 77950 -25 -4 78950 +7 -4 77925 -25 -14 78925 13 ο -6 779W -12

• . • . • . •

CONMENTS:

r

VLF SURVE				vrs		· GR.17			VLF SURV	
OCATION	in Phase	QUAD	Slope	LOCATION		In Phase	QUAD	Slope	LOCATION	In Phe
52N/778+75W	-3	-5			<u> </u>				L48N/776+75W	-24
77850	410	+2	Wedgeof			1			777W	-31
77825	429								77725	1-12
<u> </u>	421	+12							77750	
77775	+6	+4							77775	+2
77750	+6	+6							7784	+13
77725	+7	-3							77825	+33
<u>777W</u>	+9	0							778 50	+33
77675	+6	-4							77875	+40
77650	+10	-/							779W	+8
77625	+8	-7							77925	-25
776 W	+7	-/							77950	1-7
77575	-2	-7							77975	+8
77550	-14	-17								+3
77525	+3_	-22							78025	+1
775W	+23	-//							78050	42
									78075	-2
	·								781W	-4
	ł								78/35	+5
									78150	-3
	ł ł								78/75	-19
										-23
									78225	-25
									78250	-16
									78275	-12
									783W	-22
	┠───┤								78325	-28
									78350	-32
	┢╌┈─┟								78375	-29
									784 W	-9
									Aug 22 784W	-10
			<u> </u>						78425	-3
									78450	-6
									78475	-/3
										-22
		 -							785 25	-14
						\vdash			795 50	-17
		—— -		·		┟───┟			78575	-
				·		\vdash			786 W	-16
									78625	-17
		—		···					78650	-19
						1 ł		1	787W	-/8

			,	NTS	INSTRUMENT	<u>L. Gr</u> <u>EM-18</u> ATTLE FIRST NUL	<u>×73/</u>	V
	In Phea	QUAD	Slope	LOCATION	<u>~~40///63</u> 1			
76+75W	-24	-8	<u> </u>		78775		╋━━━	+-
777W	-31	-/0						+
77725	1-12	-7	[╋
	-2	-7		1				╉─
77775	+2	-6		T				╀
179W	+13	-4		· · · · · · · · · · · · · · · · · · ·				╀
77825	+30	+3		T				┢
78 50	+33			t				+
77875	+40	+20		1				_
779W	+8	+12		1				┢
77925	-25	+2		t				┞
77950	1-7	-2		1.2001				┣
77975	+8	-/		<u>27701</u>				┡
780W	+3	-9		<u> </u>				⊢
	+1							\vdash
78050	42	0						⊢
	_			t				-
781W						- · · · ·		-
78125	+5							-
78150	-3	0						
		+1						
								þ
78250		_				+ +		
		_						
	-28							
	· · · · ·					+ · · · · · · · · · · · · · · · · · · ·		
	-29							-
								_
	-3							
						-13	-9	
							-8	
	-17				796W			
						-25	-2	
						-33	0	
				_	79675	-28	+1 T	_
78650	-19	-3	r		797W	-35	11-1	
	ERTY 74+75 W 777 W 777 S 777 S 777 S 778 25 778 25 778 25 778 25 778 25 778 25 778 25 778 25 779 W 779 25 779 W 779 25 779 X 780 25 780 75 780 75 781 25 781 Davine 72475 -24 72725 -12 72725 -12 72725 -12 72725 -12 72725 -12 72725 -12 72725 -12 7375 +2 73825 +10 77825 +40 77925 +40 77925 +40 77925 +40 77925 +40 77925 +40 77925 +40 77925 +40 77925 +40 78275 +10 780050 +2 780050 +2 780255 -2 78125 -10 78125 -12 78225 -12 78320 -32 78225 -12 78320 -22 78325 -12 78450 -6 78470 -13 7850 -17 7850	Improve OUND 2475 W $-2Y$ $-g$ 777 W -31 -10 777 W -31 -70 777 W -31 -70 777 W -31 -70 777 S $+2$ -7 777 S $+2$ -6 7380 -2 -7 7785 $+20$ $+33$ 77875 $+10$ $+12$ 77875 $+10$ $+20$ 77875 $+10$ $+20$ 77870 -7 -2 779725 $+10$ $+12$ 77925 $+20$ -7 78005 $+2$ 0 78025 -12 -9 78025 -12 -9 78025 -12 -9 78125 -19 $+1$ 78235 -12 $+12$ 78235 -12 $+12$ 78325 -12	In Proce QUAD Stope $74+75W$ $-2Y$ $-Q$ $-2Y$ $-Q$ 7775 -12 -72 -72 -72 7775 $+2$ -72 -72 7775 $+2$ -6 -72 7775 $+2$ -6 -72 7775 $+2$ -6 -72 77825 $+70$ $+3$ -74 77825 $+70$ $+13$ -74 77825 $+70$ $+20$ -72 $779W$ $+8$ $+12$ -72 $779W$ $+8$ $+12$ -72 78025 -72 -72 -72 78025 -12 -74 -74 78050 $+2$ 0 -72 78125 -19 $+1$ -72 78125 -12 7825 -12 78125 -12 $7433W$ -22 <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INPERIMENT	IMPROVEMENT	Improvement E $M = 16^{-1}$ for $Start T + E$ Improvement E $M = 16^{-1}$ NTS Improvement E $M = 16^{-1}$ Readings Looking East NTS Improvement E $M = 16^{-1}$ Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Looking East Readings Colspan="2">Readings Colspan="2" Readings Colspan="2" Readings Colspan="2" Readings Colspan="2" Readings Colspan="2"	

• • • • • • • • • •

COMMENTS: STOPPED 784 W DUE TO THUNDERSTORM

STATION 786+75 W DOES NOT EXIST - 25 m FROM 786+50 W to 787W

VLF SURVE				VTS	DATE <u>AUG</u> OPERATOR <u>I</u> INSTRUMENT <u>E</u> STATION <u>SE</u> DIRECTION OF PL READINGS	- GREX M-16 ATTLE	بر ذ7 50 ע		VLF SURV			T .
DCATION	In Phese	QUAD	Slope	LOCATION		in Phase			LOCATION	In Phase	QUAD	T
L48N / 79750W	-32	+5							144N /800W	-9	-10	+
79775	-17_	+12							79975	-6	-/0	t
<u>798 W</u>	-5	+14							79950	+4	-10	t
79825	-4	+15							79925	-8	-14	t
79850	-4	+14							799W	-22	-8	f
79875	-/0	+/0							79875	-29	-3	t
799W	-14	+//							79850	-22	-1	t
79925	-19	+14							79825	-/8	6	t
79950	-6	+/2							798W	-16	-/	╀
79975	+1	+2							79775	-9	0	t
800W	-12	-1						• • • • • • • • • • • • • • • • • • • •	79750	-6	-4	╀
									79725	1-1	-4	t
							-+		797W	+5	-7	t
									79675	+12	-5	┢
									79650	+13	-10	╀
								i	796 25	+14	-6	┢
						t 1				-/	$\frac{-6}{+3}$	╀
									79575	-8	+7 +7	╀
						+			79550	-		┢
						t f			79525	-4	+5	┢
			• •• ••	· · · · ·		1 1			<u>795</u> W	-12	+ · · · ·	╀
			·····								+4	+
						{ }			79475	+3	+12	┢
			-			╂}	<u> </u>		79450	-10	+14	┡
······						┨──┤			79425	-16	+12	┡
	+ +					<u> </u>			<u>797W</u>		+/3_	Ļ
						┼			79375	-11	+14	┡
	<u> </u>								79350	-/6	+/2	L
	t +					┦───┤			79325	-12		L
	1					├ ──┤			<u>793W</u>	-7	+/2	L
			•		·	<u> </u>			79275	-2	+8	L
				· · · · · · · · · · · · · · · · · · ·					79250	-1	+9	1
									79225	+2	+3	-
	<u>├</u>					╞───┤			792W	-/-	-/	L
	┝───┤					┠╴╶┥			79175	0	-4	⊢
- <u></u>	┟──┤								79150	-3	-10	L
	┟╴──┤	ł		···		├ ───┤			79/25	12	-/3	L
	┠╌─┤								<u> </u>	-13	-14	L
	┟──┟			·					79075	-1-1	-12	
	<u>├</u> ──┟					┝			79050		-/3	
	┝┣					┡			79025	+13	-16	
· · · · · · · · · · · · · · · · · · ·	┝╍─┤					 			790W	+5	-/2	
	LL					i ł	- 1	1	78975	-11	-14	1

VLF SURVE				VTS	DATE <u>Aug</u> OPERATOR INSTRUMENT STATION <u>SE</u> DIRECTION OF F READINGS L	<u>L. Gr</u> <u>EM-1</u> ATTLE IRST NULI	5007	~
LOCATION	In Phase	QUAD	Slope	LOCATION		in Phee	QUAD	Slop
L44N /800W	-9	-10			78950	+		
79975	-6	-/0		·	78925	-19	-4	
79950	+4	-10			789W	-10	- 2	·
79925	-8	-14			79875	-11	0	
799W	-22	-8			78850	- 47	+14	
79875	-29	-3			78825	-21	+12	
79850	-22	-1			788W	-21	+9	
79825	-/8	0			78775	-24	+6	
798W	-16	-/			78750	-12	+6	
79775	-9	0			78725	-10	+3	
79750	-6	-4			797W	-3	0'	
79725	-/	-4			78675	+6	- 2	
<u>797</u> W	+5	-7			78650	+17	0	
79675	+12	-5			786 25	-5	õ	
79650	+/3	-10			786W	-23	+4	
79625	+14	-6			78575	-16	+9	
796w	-/	+3			78550	-/8	+5	
79575	-8	+7			78525	~23	+3	
79550	-4	+5			785W	~6	+5	
79525	-7	13			78475	-20	+1	
795W	-12	t4			78450	-15	+/	
<u> </u>	+3	+12			78425	- 8	-1	_
79450	-10	+14			734W	-22	-8	
79425	-16	+12			78375	-17	-10	
<u>797W</u>	-15	+13			78350	+ ?	-12	
	-11	+14			78325	+11	-13	_
79350	-/6	+12			783W	+3	-10	
79325	-12	+10			78275	-14	-7	
793W	-7	+12			78250	+1	-2	
79275	-2	+8			78225	-15	+1	
79250	-1	+9			732W	-19	+3	
79225	+2	+3			78175	-14	+2	
792W	-/	-/			78150	-11	-1	
79175	0	-4			73125	-2	0	
79150	-3	-10			731W	+9	+3	
79125	72	-/3			78075	-3	-7_1	
<u>791W</u>		-14	ł		78050	-14	-2	
	-/	-/2			78025	~11	0	
79050	+4	-/3		·······	730W	-3	+2	
79025		-/6			77975	0	+1	
	75	-/2			779 50	-1	<i>†</i> 7	
78975	-//	-14			77925	-41	+6	

- . · . · · · ·

and the second second second second second second second second second second second second second second second	1
--	---

DATE A46 22 1994

· · ·

VLF SURV				NTS	STATION	INSTRUMENTSTATION STATION DIRECTION OF FIRST NULL				
OCATION	in Phese	GUAD	Slope	LOCATION		in Phose	QUAD	Slope		
L44N/ 779W	-37	+/3								
778 75	-14	+16								
77850	-2	+13								
77825	-9	+5								
778W	-16	0								
77775	- 24	-2								
77750	-36	-/3		1						
······································										
				1						
				1		1				
				1						
				1		1				
	<u> </u>	<u> </u>				1				
						+				
		<u> </u>		-						
		<u> </u>				+				
		Į	 			+				
	<u>_</u>	ļ								
			 							
								 		
		ļ	ļ							
		ļ					 			
							L	L		
							ļ	ļ		
							L			
							L	L		
								Ļ		
							I	L		
							L	1		
		T	1							
		T	1	-1		1				
		1	1				1	1		
		1	1	_		1		1		
			<u>t</u>	1		-+	1	1		
· · · · · · · · · · · · · · · · · · ·		1	<u> </u>	+			t	1		
		1	<u> </u>				<u>+</u>	t		
		+	+	-	·		ł	f		
		+	+				<u>+</u>	+		
	1	1	1	1		1	1	1		

COMMENTS: AT 777+50 W - upper edge of cliff

VLF SURVE	DATE <u>Aug 23 1994</u> OPERATOR <u>L. GREXINA</u> INSTRUMENT <u>EM 16</u> STATION <u>SEATTLE</u> DIRECTION OF FIRST NULL <u>South</u>							
				v <i>ts</i>	READINGS L	OOKING	<u>EAST</u>	
OCATION	In Phese		Slope	LOCATION	<u></u>	in Phase		L
<u>40N/800W</u>	-15	1/0			78950	-10	-8	
<u> </u>	-23	+B		L	78925	-13	-7	Ļ_
79450	-15	-2		ļ	789W	+1_	+2	L
79925	-15	0		ļ	79975	-8	+1_	Ļ
799W	CAMP			1	78950	-20	+4_	Ļ
79875	+3	-1			78825	-16	+ 10	
79850	+5	-3		.	798W	-10	+10	Ļ
79825	+/	-3		l	70775	-7	+11	Ļ
798W	+ 4	+10		l	78752	-8	+/3	┞
79775	-5	<u>+9</u>	ļ		78725	-2_	+14	L
79750	+4	+8		l	787W	-5	+10	┞
79725	+4	+6			78675	0	+12	Ļ
<u>797</u> w	-//	+4			78650	-5	+6	┞
79675	<u> -/-</u>	+5			78625	-3	+7	┡
79650	-4	+3			786W	-2	76	┞
79625	-3	0	↓		78575	+4	+7	┞
796W	-4	-2		+	78550	+2	77	┞
79575		-			78525	0	+5	┞
79550	1-4	-3	·····	+	785W	-5	<u>+1</u>	╀
79525	1-5	-4		+	78475	-14	-3_	╀
<u>795W</u>	+2	12			78450	-14	-6	╀
79475	-5	+3		 	78425	-15	-/2	╀
79450	-/2	74	ļ	· [<u>784W</u>	-12	-/2	╀
79425	-23	-/		<u> </u>	78375	-5	-/3	╀
<u>794W</u>	-/3	<u>+/</u>		Downstope		+6	-22	┢
79375	-12	-3		+	1 78325	+20	-22	╀
79350	-9	-6		 	703W	-/9	-12	╀
79325	+ 4	-/			78275	-25	<u>+7</u> +7	╀
<u>793</u> W	-4	-/3		1	78250	-30	$\frac{\tau +}{-2}$	╀
79275	-5	-/2			78225	-24		╀
79250		+12	l	ł	<u>782W</u>	-10	+2	ł
79225	1-13	+7		+	78175	-/8	0	╉
<u> </u>	-17	+5		+	78150	-19_	+2	╀
79175	-14	+4		+	73125	- 20	+2	╀
79150	-/3	+/		1		-10	+7	╀
79/25	- 7	+2		+	78075	-5	15	╀
<u>791w</u>	+1	<u>+1</u>			78050	+5_	+//_	╀
79075		0	<u> </u>	<u> </u>	78025	-6	+ 7	╀
79050	+1	-2			780W		<u>+7</u>	╀
79025	+6	~2	<u> </u>	+	77975	-24	+6	ł
<u> </u>	+2	- Z			<u>77950</u> 77925	-14	0	╀

COMMENTS: AM READING 790W In Phose +1, Quad -1

VLF SURVEY DA	TA
---------------	----

.

			4
DATE _	Aug 2	1994	
OPERAT			
INSTRUM	ENT		
STATION			

PROPERTY DAVINCI NTS_

DIRECTION OF FIRST NULL

and the second second second second second second second second second second second second second second second

LOCATION	In Phese	QUAD	Slope	LOCATION	in Phase	QUAD	Slope
L401V / 779W	-3	+2		· · · · · · · · · · · · · · · · · · ·			
77875	-2	-2					
77850	+11	-3					<u> </u>
77825	+13	-4					<u> </u>
778W	-9	-6					<u> </u>
77775	-19	-5					<u>-</u>
77750	-4	+3					
77725	-9	+6					
777W	-9	+19					
77675	0	+21					
77650	+2	+/8					
77625	-/3	+16					
776 W	-/7	+13			-+		
77575	-29	+6					
77550	-43						
77525	-43	-3			-+		
775W	-43	-7					
					<u> </u>		
					-++		
				· · · · · · · · · · · · · · · · · · ·			
					-++		
	_	_				- +	
							··· _··
					-+		
					-+ +-		
					1 1		

PROPERTY_D	DATE <u>AUG 23 1994</u> OPERATOR <u>L. GREXTON</u> INSTRUMENT <u>EM - 16</u> STATION <u>SEA TTLE</u> DIRECTION OF FIRST NULL <u>South</u> READINGS FACING EAST							
LOCATION	IA Phos	QUAD	Stope	LOCATION		In Phone		51
L36N/775W	-18	-14		t	78550W	-19	+3	+
77525	-26	-14			78575	-7	0	+
77550	-24				786 W	+ 3	-14	
775.75	-9	-2			786 25	+8	-2	
776 W		+1			78650	-4	-6	t—
77625	-20	+2			78675	0	-1	<u> </u>
77650	-31	-2			787W	-2	+2	
77675	-34	+2			78725	-5	+4	-
777W	-22	+6			78750	-6	$\frac{77}{+3}$	-
77725	-/3	+4			78775	+13		
777 SU	-5	+3		T	788W	+5	+Y	
77775	-20	+2			78825	-5	-6	-
778W	-19	0	······		78850	- 8	-11	<u> </u>
77825	-/8	+6			78875	-9		
77850	-16	-3			789W		-12	
77875	-14	-6			78925	-4	-6	
779W	1-/	0			<u> </u>	-/3 -/3	-7	·
77925	+10					13-1		
77950	+7	+4				-/6	-7	
77975	-5	+3			79025	+3	<u>+7</u>	
780W	-15	+2				+3	+4	
780 25	-30	+7			74050	+/	-5	
73050	-/7	-8			79075	!	- 2	
78075	-15	-15				-3	0	
781W	-28	-/6			79125	-13	-7-1	
78125	-25	-/3			79150	-9	<u>+7</u>	
78150	-8	-9			79/75		+5	
78/75	-4	-8			792W	+3	<u>+2</u>	
782W	-3	-5			79225		+6	
78225	-6	-4			79250	-	<u>+1_</u>	
78250	-6	-4			79275		-7	
78275	-6	-/			793W	-17	-/	
783W	-7	-/-+			793 25	-/	<u> </u>	
78325	-12	+4			79750	-9	+5	
78350		78			79375		15	
78375		+5			794W		<u>+8</u>	
	0	+12			79425		-2	
78475		<u> 112</u> <u> 112</u>			79450		-8	
78450		+14			79475	-4	-8	
78425					795W		-6	
		<u>+/0</u>			79525		-4	
	- 10	48 L			79550	- 7	-3	

COMMENTS:

1

•	۰.	•	· '	•

VLF SURVEY	DATA
------------	------

LF SURVEY DATA		DATEAUG 23 1994 OPERATOR INSTRUMENT	4,
PROPERTY DAVINCI	NTS	STATION DIRECTION OF FIRST NULL	

LOCATION	In Phese	QUAD	Slope	LOCATION	in Phase	QUAD	Slope
L36N/796W 79625	-8	-4			<u> </u>		t
796.25	-14	-3					
79650	-14	0					T
796 75	-14	+1					<u> </u>
797W	-15	+3					t
79725	-/3	+4				·	t
79750	-15	0					f
79775	-19	-13					
798W	44	-15					
79825	+24	-12					
79850	+30	-10					
79875	121	-17					
799W	+17	-11					
79925	+15	-12					
79950	+10	-8					
Baseline Intersected							
at 799+60W							
					· · · · · •	ł	
					t		
	1						
						ł	

VLF SURV	EY	DAT	ΤΑ		DATE <u>AUG</u> OPERATOR <u>L</u> INSTRUMENT <u>I</u> STATION <u>CUT</u>	. <u>G'rex</u> 5M - 16	73~	
PROPERTY_D		NTS	DIRECTION OF F READINGS L	IRST NULL	EAST			
LOCATION	in Phese	QUAD	Slope	LOCATION		in Phase	QUAD	314
L790W/36N	-5	-3			4650N	+4	-9	
3625	-10	-4			4675		1	
3650	-16	-2			47N	+5	-22	
3675	-8	+4			4725	+3	-26	
37N	-14	-14			4750	+12	-19	
3725	-8	-12			4775	+ 36	-22	
3750	+ 4	-/2		3m Eof Creek	482	-6	+7	
3775	+24	+5			4825	-/3	+19	
GULLY 38N	+7	+15			4850	-3	+/3	
3825	-5	+13			4875	-10	+14	
3920	- 9	-/			49N	+8	+22	
3875	+3	+14			4925	+ 31	+ 25	
39N	+4	-1			4950	+15	+11	
3925	+3	-5			4975	+4	+5	
3950	+13	-3			50~	+ 3	+6	
3975	+18	-5			5025	+4	+6	
YON	+7	-12			5050	+13	+7	
4025	+10	-10			5075	+10	+5	
4050	-7	-12			SIN	+15	+1	
4075	+14	+1			5125	+29	0	
YIN .	-7	- 9			5150	+19	- 7	
4/25	-13	-7			5175	+15	-7	
<u> 4150</u>	-4	-6			SIN	+15	-3	
4175	+17	-3		4.				
<u> </u>	+4	-10						
4225	-3	-8						
4250	+2	-7						
4275	+4	-6						
43N	+10	-4						
4325	+17	-4						
4350	+20	42				T		
4375	+24	+12						
44N	-24	+19						
4425		+ 25						
4450	-3	+30						
4475	12	+23				1		
45N	+5	+13				1		
4525	+10	+14				1		
4550	+2	+6						
4575	+2	+2		T				-
46N	-5	-9		1		1		
4625	+3	-9				+		

COMMENTS:

			. •	
		•		•

•	 • •	•	

VLF	SURVEY	DATA
-----	--------	------

PROPERTY_

NTS_

STATION ____ DIRECTION OF FIRST NULL __

DATE _ OPERATOR_ INSTRUMENT_

.

а **с** а с

LINES SURVEYED AUG 1997 1800-W/35N \$ 5250 N 290-W/36N \$ 52 N 36N / 800 W \$ 775W 40N / 800 W \$ 775W 442N / 800 W \$ 77675W 443N / 800 W \$ 77675W 52N / 800 W \$ 775 W			/, 750/ /, 600 2, 500 2, 500 2, 250 2, 250 2, 325 2, 500			
			1.600 2.500 2.500 2.250 2.325			
			1.600 2.500 2.500 2.250 2.325			
			1.600 2.500 2.500 2.250 2.325			
2900W/35N \$ 5250N 290W/36N \$ 5250N 36N /800W \$ 775W 49N /800W \$ 775W 44N /800W \$ 775W 44N/800W \$ 77675W 52N/800W \$ 775 W			1.600 2.500 2.500 2.250 2.325			
290W/36Nt 52N 36N/800Wt 775W 40N/800Wt 775W 44N/800Wt 77750W 44N/800Wt 77675W 52N/800Wt 77675W		711	1.600 2.500 2.500 2.250 2.325			
36N /800 to 775W 400 / 800 to 775W 44N / 800 to 77750W 43N / 800 to 77675W 52N / 800 to 77675W 52N / 800 to 775 W			2,500 2,500 2,250 2,325			
40N/800W \$ 775W 44N/800W \$ 77750W 43N/800W \$ 77675W 52N/800W \$ 775 W			2,250			
44N/800w to 77750W 42N/800W to 77675W SZN/800W to 775 W			2,250			
-43N/ 800W to 77675W .SZN/800W to 775 W		7	2,325	 		
5 2/V/800W to 775 W		7	2 500			
		711	14,300			
	1	Tota/	14:925	 		
1				 —— —— 		·
]			 		
				 	+	
				 	+	
				┈─┼──┼		
				 ++		
					_	
		+		 		
				 		_
	-	+		 		
	-+-		——	 		
	-+-			 		
	-+-			 		
	-+-		——			
	-+-	-+-				

· . · . · · ·

		1	_	
	Page 1			·
EM1	6 SPECIFICATIONS		GEONICS LIMITED	Tel. (416) 67
			1745 Meyerside Dr. Unit 8 Mississauga, Ontario Canada L5T 1C5	Tel. (416) 676 Telex 06-9686 Cables: Grani
MEASURED QUANTITY	Inphase and quad-phase components of vertical magnetic field as a percentage of horizontal primary field. (i.e. tangent of the tilt angle and ellipticity).			
SENSITIVITY	Inphase: ±150%			,
	Quad-phase: ± 40%		•	
RESOLUTION	±1%		••	
OUTPUT	Nulling by audio tone. Inphase in-		•	
	dication from mechanical inclinometer and quad-phase from a graduated dial.			er en de serve
OPERATING FREQUENCY	15-25 kHz VLF Radio Band. Station selection done by means of plug-in units.		, 	
OPERATOR CONTROLS	ON/OFF switch, battery.test push button, station selector switch, audio volume control, quadrature dial, inclinometer.		OPERATING MANUAL for EM16 VLF-EM	
POWER SUPPLY	6 disposable 'AA' cells.		ENTO APL-EN	
DIMENSIONS	42 x 14 x 9cm			•
WEIGHT	Instrument: 1.6 kg			
METOUI	Shipping: 5.5 kg			•
				· · · ·
	· · ·			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
	•		· · · · ·	
	n. A start and a start and a start and a start and a start and a start and a start and a start and a start a start		· · ·	

Page 16 VLF STATION INFORMATION 2 8 n The following list of plug-ins are the standard plug-in crystals pro-5 N vided with the EM16 for the various areas listed throughout the world. 20 0 ί STATION FREQUENCY LOCATION CO-ORDINATES XW 20 EUROPE ß 0 NAA 17:8 24.0 Cutler, Maine 67W17-44N39 1000 GBR 0 16.0 Rugby, England 01W11-52N22 750 FUO 15.1 Bordeaux, France 00W48-44N65 500 JXZ 16.4 Helgeland, Norway 13E01-66N25 350 UMS 17.1 Moscow, Russia 37E01-55N49 1000 NORTH AMERICA East NAA 17.8 24.0 Outler, Maine 67W17-44N39 1000 NLK 24.8 Seattle, Washington . 121W55-48N12 125 NSS 21.4 Annapolis, Maryland 76W27-38N59 400 GBR 16.0 Rugby, England 01W11-52N22 750 NORTH AMERICA Central NAA 17.8-24.0 Cutler, Maine 67W17-44N39 1000 9. NLK 24.8 Seattle, Washington 121W55-48N12 125 NSS 21.4 Annapolis, Maryland 76W27-38N59 400 (Westcoast & Alaska) NAA -17.8-24.0 Cutler, Maine 67W17-44N39 1000 NLK NSS 24.8 Seattle, Washington 121W55-48N12 125 76W27-38N59 21.4 Annapolis, Maryland 400 NPM 23.4 Lualualei, Hawaii 158W09-21N2S 600 Planning rike ъ Q (Mexico) Ð Ģ NTM 23.4 158W09-21N25 Lualualci, Ikwaii 600 NAA 67W17-44N39 17.8 Cutler, Miine 1000 NI.K 24.8 Seattle, Washington 121W55-48N12 125 P SOUTH AMERICA (North only) Q *of* NAA -17.8 24.0 Cutler, Maine 67W17-44N39 1000 60. JAPAN Ś NDT 17.4 Yosami, Japan 137E01-34N58 50 urve NWC 22.3 N.W. Cape, Australia 114E09-21S47 1000 AUSTRALIA NWC 7 22.3 N.W. Cape, Qustralia 114E09-21S47 1000 NDT (10%) 17.4 Yosami, Japan 137E01-34N58 50 Noise ASIA (East) NDT 17.4 Yosami, Japan 137E01-34N58 50 NWC 22.3 N.W. Cape, Australia 114E09-21S47 1000 UMS 17.1 Moscow, Russia 37E01-55N49 1000 ●6¥d L The Property of the Apple of the 1

.

. • . •

Page 21

(1) Open both eyes.

(2) Aim the hairline along the slope to the next station to about your eye level height above ground.

(3) Read on the left scale directly the distance necessary to measure along the slope to advance 100 (ft) horizontally.

We feel that this will make your reconnaissance work easier. The outside scale on the inclinometer is calibrated in degrees just in case you have use for it.

PLOTTING THE RESULTS

For easy interpretation of the results, it is good practice to <u>plot</u> the actual <u>curves</u> <u>directly on the survey line map</u> using suitable scales for the percentage readings. (Fig.15) The horizontal scale should be the same as your other maps on the area for convenience.

A more convenient form of this data is easily achieved by transforming the zero-crossings into peaks by means of a simple numerical filtering technique. This technique is described by D.C. Fraser in his paper "Contouring of VLF-EM Data", Geophysics, Vol. 34, No. 6. (December 1969)pp958-967. A reprint of this paper is included in this manual for the convenience of the user.

This simple data manipulation procedure which can be implemented in the field produces VLF-EM data which can be contoured and as such provides a significant advantage in the evaluation of this data. Page 19

14

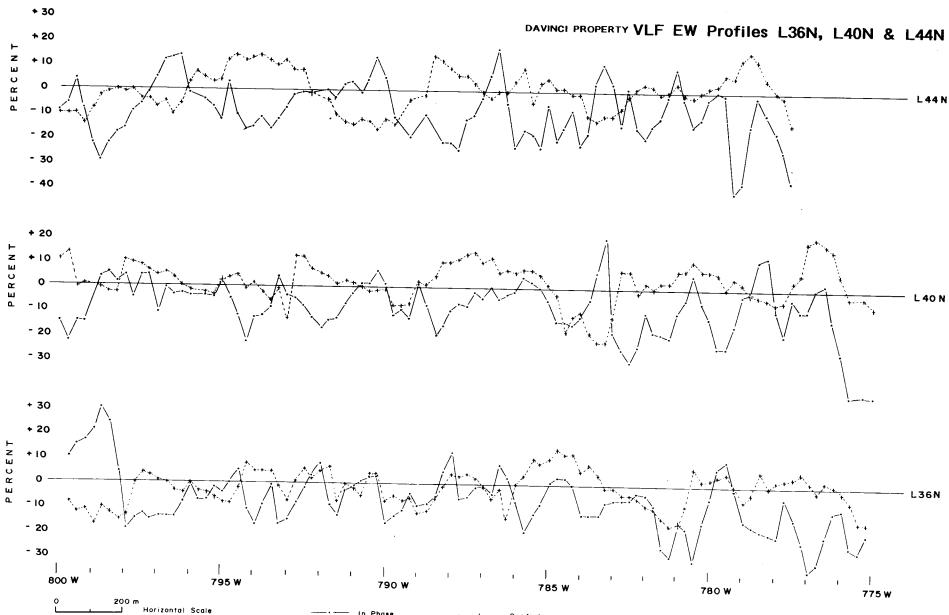
FIELD PROCEDURE

Orientation & Taking a Reading

The direction of the survey lines should be selected approximately along the lines of the primary magnetic field, at right angles to the direction to the station being used. Before starting the survey, the instrument can be used to orient oneself in that respect. By turning the instrument sideways, the signal is minimum when the instrument is pointing towards the station, thus indicating that the magnetic field is at right angles to the receiving coil inside the handle. (Fig.11).

To take a reading, first orient the reference coil (in the lower end of the handle) along the magnetic lines.(Fig.12) Swing the instrument back and forth for minimum sound intensity in the speaker. Use the volume control to set the sound level for comfortable listening. Then use your left hand to adjust the quadrature component dial on the front left corner of the instrument to further minimize the sound. After finding the minimum signal strength on both adjustments, read the <u>inclino-</u> meter by looking into the small lens. Also, mark down the quadrature reading.

While travelling to the next location you can, if you wish, keep the instrument in operating position. If fast changes in the readings occur, you might take extra stations to pinpoint accurately the details of anomaly.


The dials inside the inclinometer are calibrated in positive and negative percentages. If the instrument is facing 180° from the original direction of travel, the polarities of the readings will be reversed. Therefore, in the same area take the readings always facing in the same direction even when travelling in opposite way along the lines.

The lower end of the handle, will as a rule, point towards the conductor. (Figs.13 5 14) The instrument is so calibrated that when approaching the conductor, the angles are positives in the in-phase component. Turn always in the same direction for readings and mark all this on your notes, maps, etc.

THE INCLINOMETER DIALS

The right-hand scale is the in-phase percentage(ie. Hs/Hp as a percentage). This percentage is in fact the tangent of the dip angle. To compute the dip angle simply take the arctangent of the percentage reading divided by 100. See the conversion graph on the following page.

The left-hand scale) is the secant of the slope of the ground surface. You can use it to "calculate" your distance to the next station along the slope of the terrain.

. . .

.

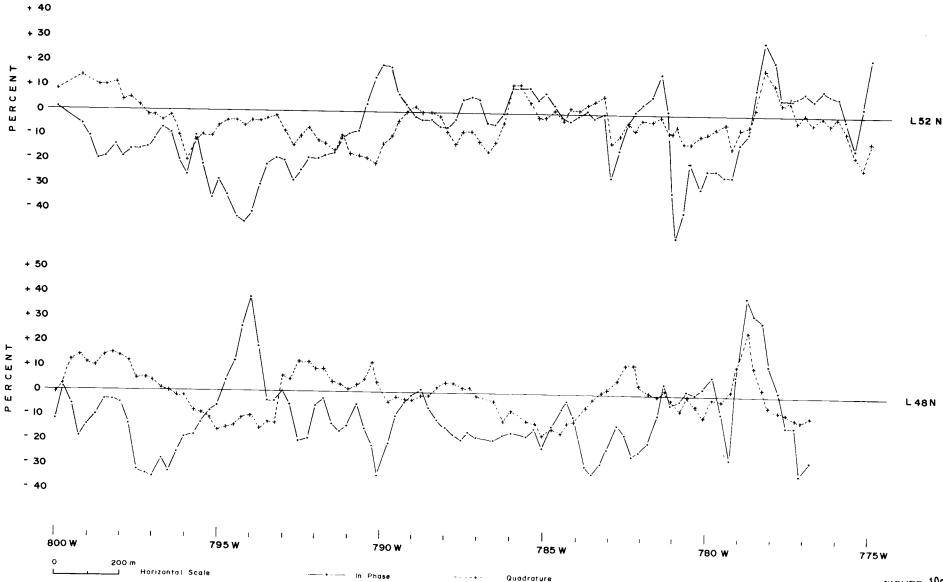
. * . *

.

+

.

. *


.

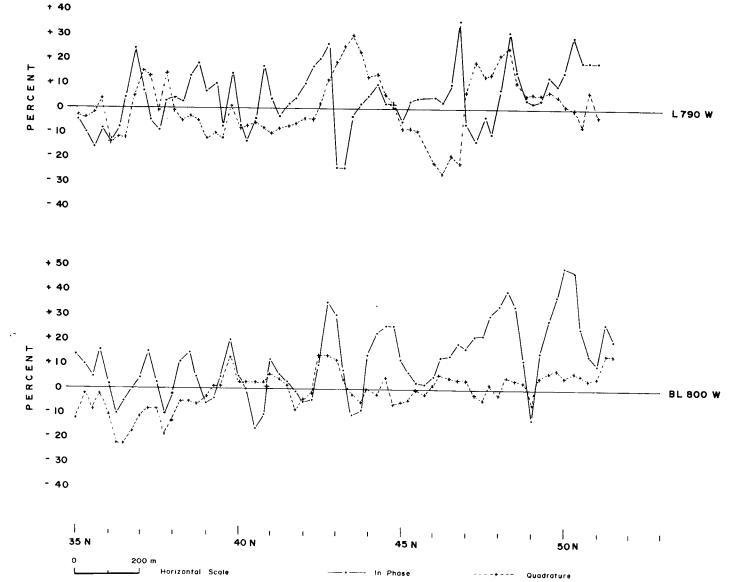
.

. .

> in Phase ----Quadrature

> > FIGURE 100

DAVINCI PROPERTY VLF EW Profiles L48N & L52N


.

•

•

.

FIGURE 100

DAVINCI PROPERTY VLF NS Profiles L790W & L800W

e se se se e

	-		· ·		Ň
الم 1 − 1 − 19-19 × 5 +7-8 - 5 - 11 × 10 × 10 × 10 × 10 × 10 × 10 × 10	35 TY 18 8 474 45 32 3Y 4 9 43Y 415 18 16 8 6 417	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 +8 187 MI 14 24 24 19 19 14 48 48 48 47 17 7 19 7	j j j , y +3 +26, 41, 10 +0 +4 +16 +7 +7 37 + 4	12+21 41 4242 12 21 41041432 3 32 22 43 431 411
					•
++ ++ ++ +++++++++++++++++++++++++++++	4- ۹- ۲۹- ۱۹- ۴۱- ۱۱+ ۹۵ ۴۱۹ ۶۱۹ ۶۱۹ ۶۱۹ ۲۹ ۲۰ ۲۰ ۹۲- ۴۱۹ ۱	; +17 +3ª 513-19-16 ,16 ;2 ⁹⁻² -19-4 -7-8-5-	£ +3 = 0 - 11 +4 +41 +81+33+10 - 1 -12 -28 -43 - 1	+69+93+61-94436+3+411-7-24-30-14-48+85+30+	1-34-34-27-29 15 -5-41-05 -5-4-20+2 +32 +25 +94
					Values plotte
-15-19-18-19-24-86-86-86-86-86-8-1-1-1-1-1-1-1-1-1-1-1-	417 424 0 -4 42 -8 -19 -16 -10 - 4 +2 +4 0 +8 43 -14 -31	-15 423 444 50-14 484 51 -16 -23 45-1 -1	5_36_9_51+5 ¹ +5 ¹ +6+42 -5-15 +6+3 - 5 +86-16 -37- 	<u>,18 + 2 + 1 + 1 + 1 + 1 - 1 - 1 - 1 - 1 + 1 + 1</u>	**************************************
_				العديد والمراجع والمراجع والمراجع	. 19 m
	<u></u>	<u>a an an an an an an an an an an an an an</u>			
۱۴ مه. ۱۹ در ۱۵. (ز. ا <u>ز. ۱</u> ۶- ۲- ۹- ۲. ⁽ ر. ۲. ۴۶، ۱۹	ر 18-18 و 19-19-19 و 20-0 ⁴⁴ الد ² 2-18 و 10-10 الم	×+ ×+ 11, 11, 81, 81, 41, 54 11, 42, 14, 54 11, 42, 12	+≠ -Y -3 -2 +3 +Y -13 -24 -3 +29 +49,+23,11-21	e-22 p3 y20 y1-191-391-38 y3 y1 -9 -9 y3 y44	البر ^و دم م ^ع وم به من من من من مع مع
	+* + - 4 + + - 2 - 5 + 2 + 1 + 2 - 5 - 12 + 4 4 + 2	<u> 4.4</u> ال ² - 2 - 2 - 2 - 2 - 4 - 4 - 2 - 1 - 41,4 ¹ /2 - 10 - 12 - 15 - 14 - 15 + 1,4 - 15 - 14 - 14 - 14 - 14 - 14 - 14 - 1	<u>રકે કરે ની તે મેજ કે ની તે તે ની ની મેડ કરી ની ની ની ની ની ની ની મેટ મેડ કરી ની ની ની ની ની ની ની ની ની ની ની ની ની</u>	4. 하. 4. 하. 4. 하. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	

-

~

•

-

..

. 44

-44. .

-

•.

--

-

Values plotted as percent

ER FILTER DATA PLOT

figure 10g

APPENDIX VII Statement of Qualifications

.

-

-

.

Statement of Qualifications

I, Lynn Grexton, graduated from the University of Waterloo, Waterloo, Ontario with an Honours Applied Bachelor of Science Degree, Earth Science major, in May 1980. I have worked as an exploration geologist for major companies and consulting firms in the Canadian Cordillera since that time. I have a direct interest of 100% in the DaVinci mineral claims discussed in this report.

Vancouver, British Columbia November 30, 1994

Lynn Grexton, Geologist