BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1995/1996REPORT #:PAP 95-7NAME:WALTER GUPPY

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

REC

E

OCT 1 3 1995

PROSPECTORS PROGRAM

MEMPR

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Walter Guppy	Reference Number 95/96 P013
	Maitland MINFILE No. if applicable 3 W Lat 49° 10' Long 125° 27'
-	st of Kennedy River. By logging roads off
	kilometres west of Port Alberni
Main Commodities Searched For Go 1	d
	a <u>Gold bearing quartz veins - Leora, Roase Ma</u> r of others. "Iron Mountain" magnetite skarn.
WORK PERFORMED 1. Conventional Prospecting (area)	Mount Maitland - Westrim Claims 36 man/days
3. Geochemical (type and no. of sample	s) <u>Soil samples and moss mats. 33 samples</u>

4. Geophysical (type and line km) ____

5. Physical Work (type and amount) <u>Stripping and trenching</u>. About 16m², 1.5m deep

6,. Drilling (no,. holes, size, depth in m, total m) <u>NA</u>

7. Other (specify) Trail, site preparation, packing in and out.

SIGNIFICANT RESULTS

Commodities	Claim Name <u>Westrim #2</u>
Location (show on map) Lat <u>49° 10'</u> Long	Elevation <u>300 metres</u>
Best assay/sample type <u>Quartz vein in trench</u> Across 0.3 metres rusty quartz wit	<u>ch considrable pyrite - 7.32 g/t .</u> 302oz/
Description of mineralization, host rocks, anomalies <u>Karmut</u> of intrusive rocks. Limestone in c	sen volcanics with dikes or stocks
	<u>Magnetite skarn with minor chalcopy-</u>
- rite and gold values associated wi	ith arsenopyrite in a shear at the
<u>foot wall of the magnetite. Anomal</u> in the drainage pattern. Gold bea	lous gold, copper and zinc indicated aring quartz vein as described above.

Supporting data must be submitted with this TECHNICAL REPORT

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

OCT 1 3 1995

REC

PROSPECTORS PROGRAM

B. TECHNICAL REPORT

1

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name_Walter Guppy	Reference Nu	mber 95/96 P01	3
LOCATION/COMMODITIES Project Area (as listed in Part A)Moun	t Maitland	MINFILE No. if applic	cable
Location of Project Area NTS 92F	/3 W	Lat_49° 10'	Long <u>125° 27′</u>
Description of Location and AccessW	est of Kennedy Ri	<u>ver. By loggin</u>	<u>g roads off</u>
Pacific Rim Highway 60	<u>kilometres west</u>	of Port Albern	i
			<u></u>
Main Commodities Searched For Go	13		
Known Mineral Occurrences in Project Are			•
<u>Bear Group and a number</u>	r of others. "Iro;	<u>1 Mountsin" m</u>	agnetite skarn.
WORK PERFORMED 1. Conventional Prospecting (area)	Mount Maitland -	Westrim Claim	s 36 man/days
2. Geological Mapping (hectares/scale			
3. Geochemical (type and no. of samp)	•	nd moss mats.	<u>33 samples</u>
4. Geophysical (type and line km)			<u> </u>
5. Physical Work (type and amount)			<u>lbm²,l;5m_d</u> eep
6, Drilling (no, holes, size, depth in n		1	
7. Other (specify) <u>Trail, sit</u>	<u>e preparation, pa</u>	cking in and o	<u>ut.</u>
SIGNIFICANT RESULTS Commodities	*	Claim Name Wootr	im #2
Location (show on map) Lat			<u>300 metres</u>
Across 0.3 metres rist	n in trench 30 me y quartz with con	sidrable pyrit	e - 7.32 g/t. 3020:
Description of mineralization, host rocks, a	momalies <u>Karmutsen</u> v	olcanics with	<u>dikes or stocks</u>
of intrusive rocks. Li	<u>mestone in contac</u>	<u>t with volcani</u>	<u>cs and intrusi</u> ve
<u>at higher elevations t</u>			
rite and gold-values-a			
-foot wall of the magne			
in the drainage patter			

Supporting data must be submitted with this TECHNICA ... REPORT

RECE	IVE	\mathbb{D}
------	-----	--------------

OCT 1 3 1995

PROSPECTORS PROGRAM

MEMPR

1995 PROSPECTING PROGRAM

WESTRIM GROUP CLAIMS - MOUNT MAITLAND

As a follow-up to the 1994 prospecting program, it was proposed to concentrate on two main targets in the 1995 program, these were:

1. Try to trace, and if possoble expose, the "Fossicker Vein" which was only exposed in a road cut, in both directions along strike.

2. Try to find the source of a geochem anomaly in gold indicated by moss mats collected from the creek to the north of the Fossicker Vein, identified as "North Fork Goldrim Creek".

In the case of target No. 1, it appeared that the nature of the ground - deep overburden covered with stumps and logging debris - would make it difficult to exposed the vein by stripping or trenching. Consequently, it was proposed to try to intercept the vein by diamond drilling with a Winkie Drill.

On a trip to the site on June 24, I discovered that the Forest Service was preparing to remove the bridge across to creek on the road that provided easy access and the roads beyond the bridge were "deactivated" that is dug up and destroyed and littered with broken rock from the many roack cuts on the grade and strewn with fragments of logs and debris. This indicated that it would be difficult to get the drill to the proposed work-site and, since there seemed to be some doubt if the party that was going to get the drill for me would be able to obtain it, I decided to look into the possibility of trenching instead.

(Also, at this time, I contacted the Director regarding diverting part of my 1995 PA Program to an alternative project in the Taylor River area)

In an attempt to dileniate the Fossicker vein along strike, I collected closely-spaced soil samples in both directions from the outcrop. The results were not very meaningful since, to the north-east the vein was under the road-grade and then into a marshy area. However, a poorlydefined anomaly was indicated in the other direction.

The next step was to obtain man-power and equipment to do the job. The use of a back-hoe was precluded by the difficulty of getting a machine to the site. (And I was doubtful if a permit to use machanical equipment would be granted) It was decided to do the job with hand tools, aided by a power saw to clear away surface debris, explosives to loosen up the soil and hard pan and a high pressure pump to sluice away overburden and expose bedrock.

Simon Salmon and John Telegus were employed on this project. We were also assisted one day by Charlie Laforge but, since this man is not a qualified prospector, his time is not included in my statement of prospecting days.

The vein was stripped from the top of the exposure in the road cut for about three metres into overburden over one metre deep. The hanging wallis not exposed in this section since it dropps off into deeper overburden than the actual vein. The second trench, 30 metres to the south-west, is actually a surface cross-cut over ten metres long. My calculation of the strike of the vein on the up-hill slope was at fault but it is interesting to note that the vein was exposed at the point of the soil sample highest in gold (65 PPB) taken with an auger at about .5 metres depth. The trench is over 1 metre deep at this point and the vein was covered with glacial till under firm orange soil. The hanging wall is exposed for about 1.5 metres and carries moderate gold values. The vein itself is about 30 cm. wide and varies from friable crumbly quartz with little pyrite on one side of the cut to dense crystaline quartz stained reddish-brown on the surface and white where broken into. It contains considerable pyrite but no other sulphides were recognized. A third trench about 30 metres further along strike did not expose bedrock but, with sufficient manpower and equipment, it could be deepened to bedrock and stripped back toward the 2nd trench because the slope of the ground in this section allows for draining the excavations.

In the other direction from the first exposure in the road-cut, it would probably be feasible to strip the vein across the road grade by means of manpower and hand tools. Beyond the road grade, the ground drops off to a low marshy area where any excavation would probably fill with muck and water and the same applies along strike in the other direction beyond the third trench where there is a pond and another marshy area.

TARGET #2

It will be noticed by the accompanying sketch that there is a geochem anomaly, indicated by moss-mat sampling, in "Goldrim" creek which does not persist upstream above a waterfall that flows down over bedrock. To try to trace the source of this anomaly, a grid was established and 21 soil samples collected on both sides of the creek in this section. Three consecutive samples assayed 150ppb, 53ppb and 35ppb gold respectively. The remainder were all very low. These samples were taken with an auger but, in most cases, not a great deal of depth could be achieved without encountering boulders, bedrock or hardpan. A subsequent check by taking samples in the same location with a trowel didn't duplicate the relatively high assays so there has to be some doubt if there might have been a mix-up in the numbering. Six samples were also taken on random spacing where soil to sample could be found along the south bank of the creek. These were all very low in gold except one assaying 26 ppb just below a lens of mineralized quartz in the canyon wall of the creek. However, moss mat sampling seems to indicate that the source of the anomaly is a gravel-bottomed pool at the bottom of a waterfall. There is some shearing and a lens of quartz where the north bank of the creek rises steeply from this pool. This quartz lens peters out in an old trench extending into the north bank of the creek. Opposite, on the south side of the pool, bedrock is covered with large boulders. Consequently, the source of the anomalous gold values in the moss mats remains a mystery.

Another "showing"that was investigated is at the end of the spur road about 100 metres north east of the pool and old trench mentioned above. An exposure of volcanic rock is sheared and contains a zone of pyrite mineralization and some narrow quartz stringers. Some galena was found in a fracture amid tiny needle-like quartz crystals. This is interesting because it is the only galena that has been found on the property. However, samples of the mineralized volcanics and white barren quartz from the stringers, assayed very low in gold.

A third target for prospecting was the area at high elevation on the northerly peak of Mount Maitland which is drained by Goldrim Creek. Geochemistry and float samples indicate copper and zinc mineralization

- 2 -

- 3 -

in this area and one moss mat collected by Simon Salmon in 1944 from a tributary watercourse draining from a draw above the extensive slide area to the west of the north peak of Mount Maitland, assayed 150ppb AU.

Unfortunately, the weather during the period from August 12 to 19th, while I had Simon and John working for me, remained either wet or unsettled and unsuitable for helicopter exploration at higher elevations. However, on the morning of August 17, the pilot with Southern Mountain Helicopters in Ucluelet phoned me and said that it looked OK to make the trip that morning. There were patches of fog and clouds drifting in but it appeared that it might be the only opportunity to make the trip so we went ahead with it.

Besides Simon and John, we were accompanied by Charlie Laforge who happened by and went along for the trip. We left Ucluelet about 10 AM and, after a short hop across Kennedy Lake, landed on the east side of a small lake in a col at about 1000 metres elevation between the north peaks of Mount Maitland. Simon and John, with the pilot, traversed over the col to the north-west. I scouted along the lakeshore to the south and Charlie climbed the peak to the east.

Nothing of particular interest in the way of mineralization was found.ad. The rocks observed were all typical Karmutsen volcanics, much of it amygdoloidal basalt. An interesting feature is a light-coloured dike that extends for a considerable distance from along the east shore of the lake over the col to the north-west. There is considerable quartz float in the talus east of the lake and some discontinuous lenses of quartz in the volcanics. Samples taken did not indicate significant values in gold. I found magnetite float with minor chalcopyrite at the foot of the peak east of the lake. Steep cliffs prevented me from getting to the south end of the lake or the opposite shore. There were ample rock exposure over all the area traversed except where covered by talus or remnants of snow.

By noon clouds were closing in on the peaks and the pilot decided it would be wise to leave before we became "socked in". We circled the peaks but didn't see any landing sites clear of the fog. I was disappointed that we didn't find a landing site above the slide area from which it would be feasible to hike down to the valley.

Another helicopter trip was made to Bedwell River on August 16th to clear the helicopter landing pad at the Prosper Mine preparatory to carrying out more work in that area. Simon Salmon, John Telegus and Charlie Laforge were landed on a gravel bar in the river from which they hiked up to the Prosper camp and brushed out the pad so that they could be picked up from it. This landing pad has been used once since to facilitate an examination of the property by prospective optionees.

A report on the Taylor River project is submitted separately.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

RECEIVED]
OCT 1 3 1995	
PROSPECTORS PROGRAM MEMPR	

B. TECHNICAL REPORT

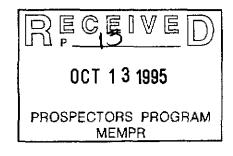
4

- One technical report to be completed for each project area. •
- Refer to Program Requirements/Regulations, section 15, 16 and 17. If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT. ٠

Namealter Guppy	Reference Number 95-96 P013
LOCATION/COMMODITIES	n.
	ver MINFILE No. if applicable
Location of Project Area NTS <u>92F/6W</u>	Lat Long
Description of Location and Access_By. loggin	ng road MB 550W about 40 km west of Port
Main Commodities Searched For <u>Copper</u> -	Gold Silver
	ne of importance except the ones described
	ental to collecting soil samples.
	soil samples
-	
)
7. Other (specify)	
	<u>enclosed</u> Claim Name <u>Cuval 1-4</u> Long <u>125° 21'</u> Elevation <u>100 to 500 met</u> res
Description of mineralization, host rocks, anomalies	s Copper, zinc, magnetite skarn deposits
in, or near the contact of	limestone cut by feldspar-porphyry dikes.
Supporting data must be submitted with this "" "HMCAL REPO)PT

TAYLOR RIVER PROJECT - Cuval 1 to 4 2-post claims

This is an alternative program that was approved in July 1995 when it appeared that access difficulties might hamper work on the Westrim, Mount Maitland project.


I discovered the copper-zinc showings at Taylor River in 1970 when the area was first made accessible by logging roads. I stripped and blasted into the showings and carried out soil sampling which indicated a strong anomaly in copper and zinc on the ridge at higher elevation but was not meaningful over the debris and till-covered area on the lower flats.

In 1980 I optioned the property to a group that formed a company on it but failed to carry out their consultant's recommendations for an exploration program and let the claims lapse. Since then I have restaked the ground a number of times but have failed to interest other prospective optionees in it. It is usually assumed that skarn deposits on Vancouver Island are too samll to have economic potential unless precious metal enrichment is indicated.

The extent of my program on the Taylor River prospect in 1995 consisted of staking the four 2-post claims and a careful survey and soil sampling along a section of road MB 550M where a deep ditch has exposed the upper horizon of bedrock at three points and where there is considerable skarn float in the road grade, in the ditch and in the soil or cemented in the till.

The attached sketch map - which is based on mapping by G.L. Garrette and my own observations, shows the location of previously-discovered showings as well as the exposures in the ditch and along the road noted in the recent program. The soil samples - with the exception of sample M4 which was a sample of the till cemented with rust or gossan were samples of orange soil over the till. It can be noted that this sample and M2 which was over a skarn and gossan outcrop, are definately anomalous in copper and weakly anomalous in gold and silver.

Volcanics and limestone is exposed in the creek and there is an outcrop of volcanic rock west of the River Showings and there are volcanics and intrusive rocks exposed on a ridge to the sout-west. However, it would appear that a considerable part of the area between Taylor River and the ridge, a distance of about 400 metres, and extending for over 1½ kilometres could be underlain by skarn deposits.

trend of creeks and ridges, implying a structural and/or geologic control on emplacement.

5 -

A soil geochemical survey, carried out by Mr. Guppy, indicates that mineralization on the upper slopes of the claim can be located by this method. It is also apparent that some downslope dispersion occurs and that the lower glaciated and till/debris covered slopes respond poorly to this technique, as would be expected.

Twelve rock samples were obtained, by the author, from the showings. These samples are considered to represent the tenor of mineralization of the showings they vare obtained from. The state of the exposures of mineralization is not sufficient to carry out detailed chip sampling for the purpose of determining average grades. The results of the sampling, as outlined below, indicates, therefore, the range of grades that might be expected from more detailed, controlled sampling.

Sample No.	Location	Description	<u>Assays</u>		
		• • •	Cu(%)	Zn(%)	Ag (oz/ton)
GTV-1	River Showing	black actinolite-tremo- lite skarn with epidote, magnetite, pyrite and biebs and streaks of chalcopyrite.	1.83	0.09	0.36
GTV-2	River showing	as above	3.07	0.03	0.66 .
GTV-3	River showing	brown massive garnet- rich skarn; finely dis- seminated magnetite; minor pyrite, malachite.	0.10	0.08	0.01
GTV-4	Ridge #1 showing	massive magnetite in green-black actinolite- tremolite skarn; abundant chalcopyrite.	1.26	0.10	0.40
GTV-5	Ridge #1 showing	dark green actinolite- tremolite skarn; pyritic; minor chalcopyrite.	0.49	0.02	. 14

. - 6 -

Sample No.	Location	Description	<u>Assays</u> Cu(%)	Zn(%)	Ag (oz/ton)
GTV-6	Ridge #2 showing	massive dark green-black actinolite-tremolite skarn with disseminations, streaks and blebs of chalcopyrite; weakly mag- netic.	0.49	0.02	.14
GTV-7	Discovery showing	grey to green skarn with abundant specularite, epidote, quartz, activo- lite-tremolite, pyrite; minor chalcopyrite and sphalerite visible.	0.11	4.04	.03
GTV-8	Discove <i>ry</i> showing	actinolite-tremolite skarn, dark green-black, with chalcopyrite.	1.44	0.20	.22
GTV-9	Top#1 showing	massive pod of magnetite and subhedral pyrite; minor quartz.	0.64	11.30	.38
GTV-10	Top #1 showing	paler green radiating crystals of actinolite- tremolite with coarse subhedral to finely dis- seminated pyrite (1-2%) Doorly formed garnets, minor hematite and quartz.	0.06	0.92	.02
GTV-11	Top #2 showing	sphalerite and pyrite disseminated in actino- lite-tremolite skarn; pyrite often occurs as crystal growths along the actinolite-tremolite crys- tal fabric.	0.22	6 .5 2	.12
GTV-12	Top #2 showing	pyrite-magnetite rich dark green-black actinolite- tremolite skarn.	0.39	1.06	14

The above results indicate a negative correlation between copper and zinc. Considering the small number of samples, and the fact that high copper and zinc values can occur within a meter of each other (Discovery showing), this relationship would not likely be useful in delineating broad zoning patterns, nor is it a definitive result. The assay results indicate the variability of economic mineralization within the skarn zones, and subsequently, the difficulty in obtaining reliable grade estimations from surface sampling of the poorly exposed showings.

DISCUSSION AND CONCLUSIONS

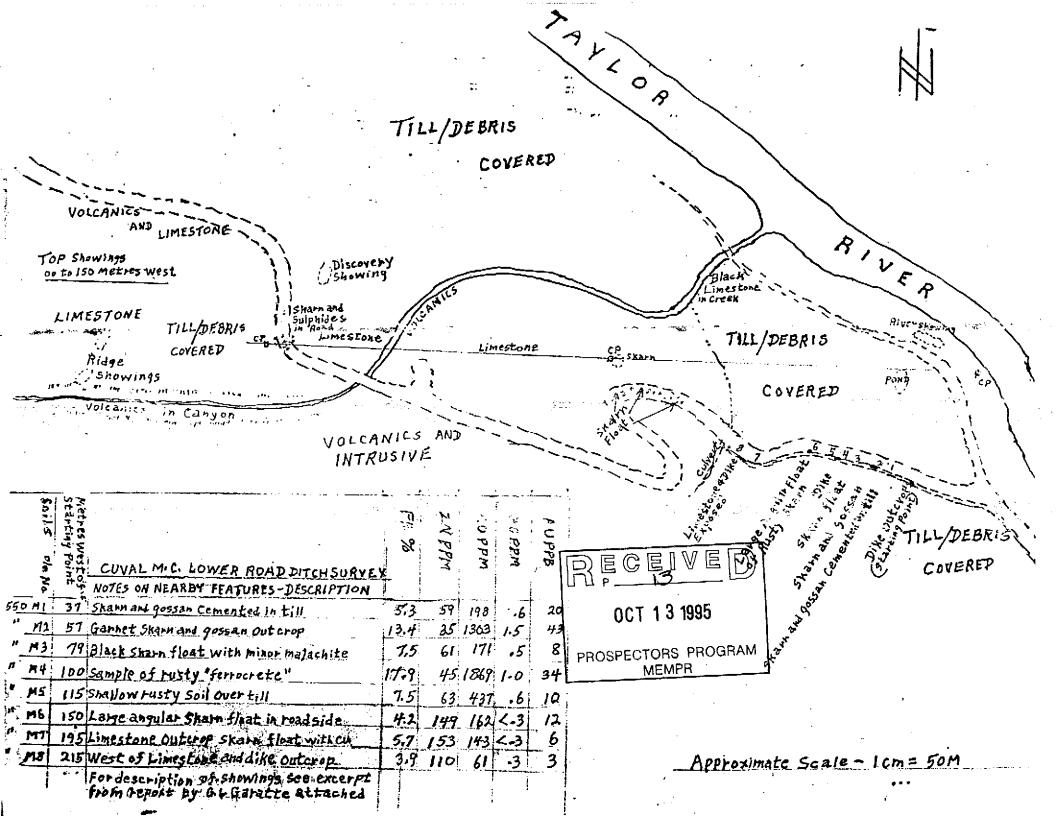
Several showings of skarn hosted mineralization occur in the Cuzn and Tacu claims. These showings exhibit variable grades of copper, zinc and associated silver mineralization in zones ranging from one to three meters in width. It is evident that linear structural (fault) and/or geologic control has influenced the potential for strike continuation of the known showings. Mineralized showings occur at separate localities over a horizontal distance of approximately 1,200 meters and it is conceivable that the mineralized zones, as a whole, could extend throughout this length. The lower slopes of the property are heavily covered in glacial till and talus debris, a factor which explains the poor soil geochemical response in this area and explains the lack of showings. This area lies along the structural continuity of the skarn zones and thus defines an area of exploration potential. With the potential for a considerable strike length having been established by the above criteria, the potential for mineable widths must be considered. Although the individual zones are in themselves too narrow to be considered in economic terms, the potential for larger mineralized skarn bodies exists, as defined by two possibilities:

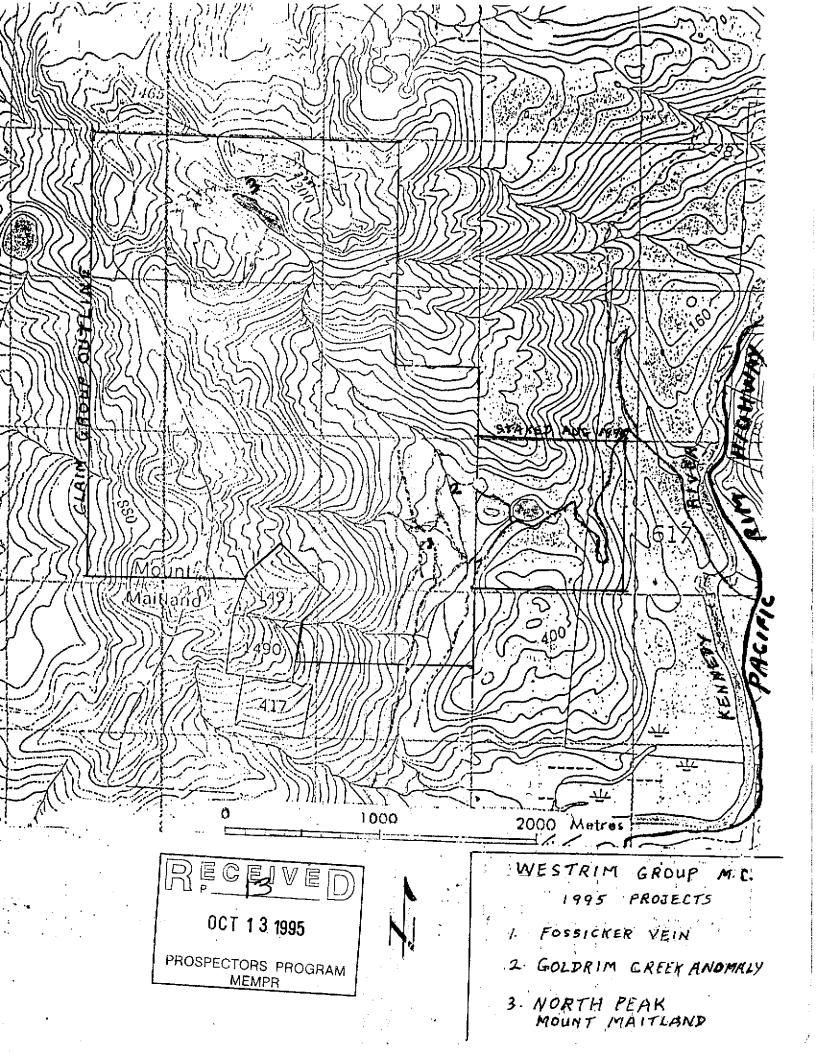
(a) skarn deposits typically have irregular shapes as determined by their capability to stope into the limestone contact zone, producing "bulges" in the ore bearing horizon.

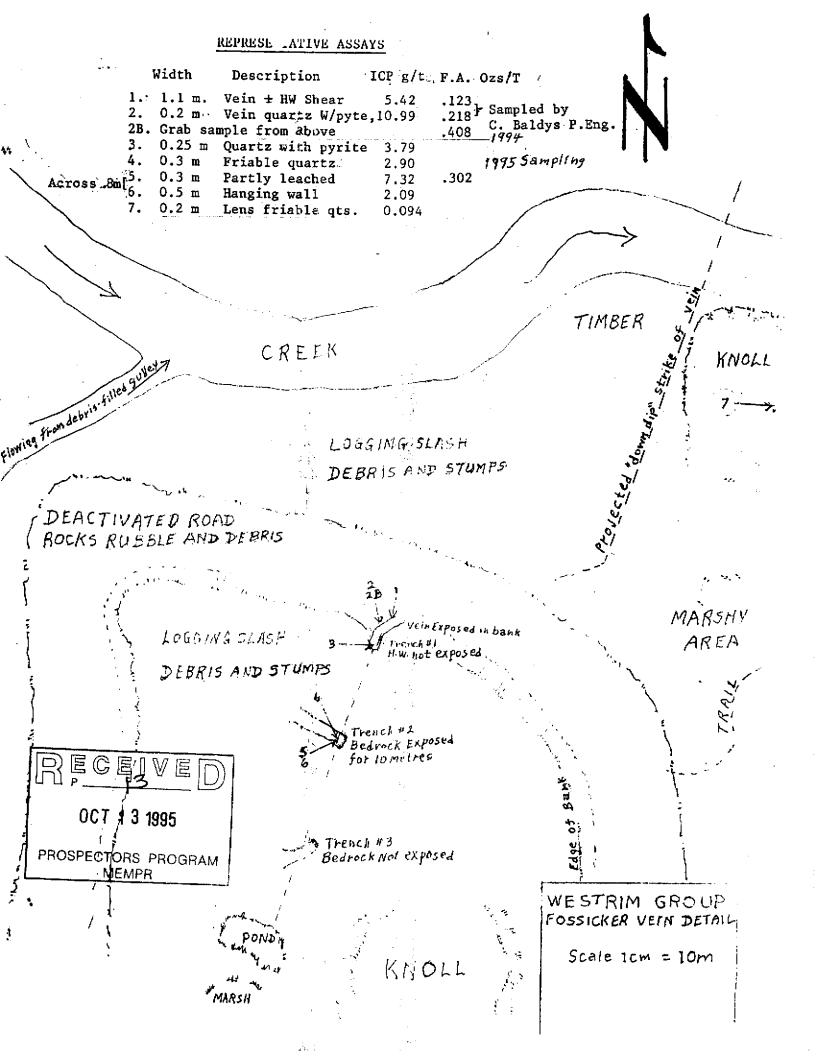
(b) There are at least two separate skarn bands and the present overburden cover defies the interpretation of the existence of more, though it is believed that this potential exists; the relatively close proximity between these bands gives the potential for anastomosing system at depth

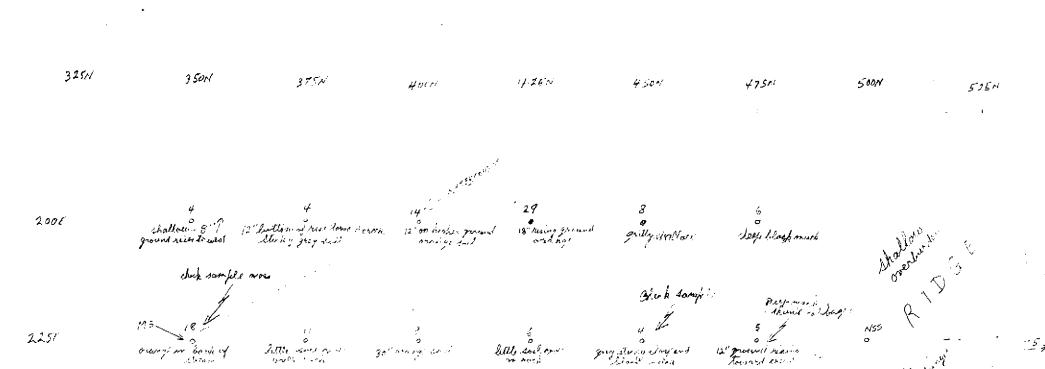
- 7 -

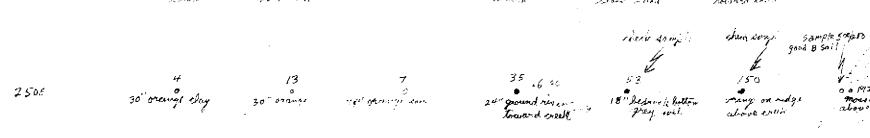
creating, in effect, a larger mineralized body.

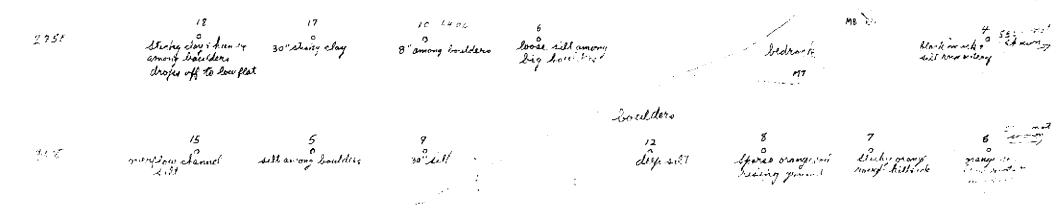

The variability in the grades of the exposed mineralization cannot be interpreted as an average representative of the potential ore zone. The existence of zones of economic grades has been verified and considering that skarn deposits characteristically display dramatic grade variations, this verification places a positive influence on the potential of the prospect.

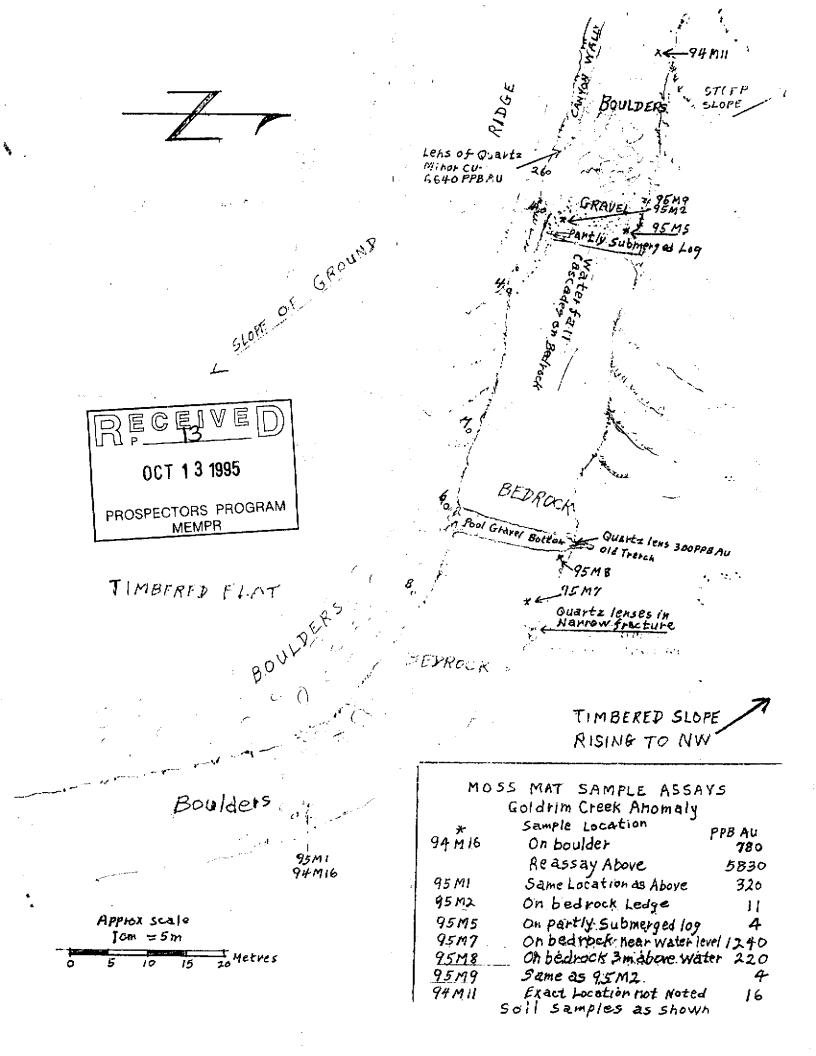

From the above statements it is concluded that the Cuzn and Tacu claims, collectively known as the Taylor River prospect, deserves further exploration. The widespread, though locally erratic, distribution of magnetite would allow subsurface delineation of skarn zones by carrying out a magnetometer survey. The excellent access allowed by logging roads provides a means for bulldozer trenching and stripping the showing areas without considerable cost or environmental damage.

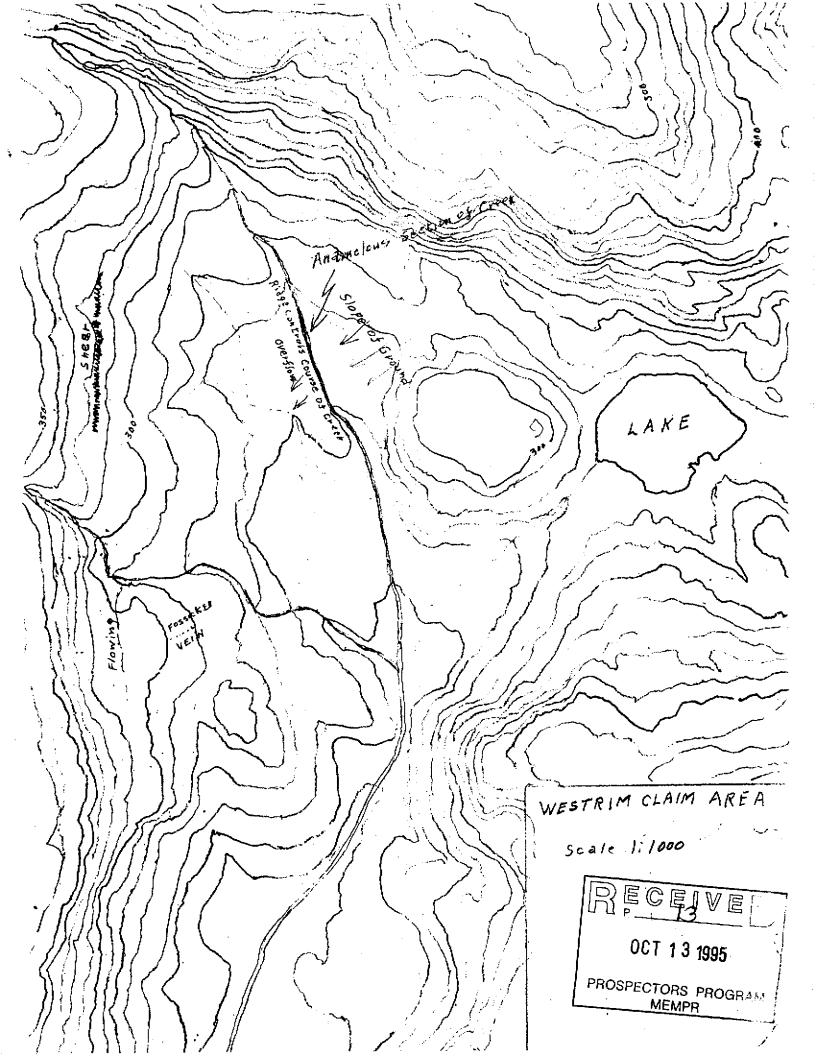

RECOMMENDATIONS


On the basis of the above conclusions a two-phase exploration program is recommended. The first phase would involve the delineation of the skarn zones by the following means:


- magnetometer survey lines should be run in a north-south orientation on a line spacing of 100 meters, and a station spacing of twenty meters; a proton-type magnetometer should be utilized for maximum depth penetration.
- Geologic mapping to accurately locate the showings with respect to a grid with the purpose of interpolating mineral zones and; to determine in detail the structural setting as it pertains to the localization of the skarn zones.
- 3. Bulldozer trenching and stripping of the known, and potentially new, showings with the purpose of subsequent detailed sampling to determine potential grades and widths of mineralization.

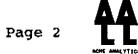






more on hear er dal

abou?



Market Guppy Pile # 95-2727 Page 1 More Burger page page page page page page page page
$\frac{MPLE#}{ppn ppn ppn ppn ppn ppn ppn ppn ppn ppn$
$\frac{1}{3} + \frac{1}{2} + \frac{1}$
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL P3 MOSS MAT AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u> DATE RECEIVED: AUG 8 1995 DATE REPORT MAILED: AUG 18 95 SIGNED BY

££

* *

Walter Guppy FILE # 95-2260

ACHE MMALTICAL						.																								CHE MAL	LALICAL
SAMPLE#	Mo ppm	Cu ppm	РЪ ppm	2n ppm	Ag ppm	Ni ppm	Co ppn	Min ppm	Fe %	As ppm	U ppm	Au ppil	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mojoji	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	к %	₩ ppm	Au* ppb
95-WS-1	1	94	8	26	.4	8	12	348	2.50	19	<5	<2	<2	19	.3	<2	<2	79	-23	.059	5	25	.25	15	. 18	4 3	3.06	.02	.06	<2	6
95-WS-2	<1	72	Š	41	.4	22	7	386		17	<5	<2	~2	39	<.2	~2	4	124		.032	3	46	.94	15	.52		2.16	.03	.05	<2	8
95-WS-3	<1	79	7	36	.5	17	10	542		17	<5	<2	<2	29	<.2	<2	3	153		.033	4	42	.71	16	.55		2.75	.01	.03	<2	29
95-WS-4	<1	38	7	35	.3	16	4	311		17	<5	<2	2	28	.3	<2	<2	181		.028	3	51	.75	14	.59	6 7	2.24	.02	.03	<2	- 14
95-WS-5	ż	78	9	88	-4	22	14	728		14	<5	<2	<2	34	<.2	<2	<2	108		.027	5		1.10	41	.41		3.06	.02	.05	<2	4
95-ws-6	1	51	5	28	.6	11	4	340	5.74	15	<5	<2	<2	24	<.2	<2	<2	192	.35	.028	4	46	.47	14	.60		2.56	.02	.03	<2	4
95-WS-7	1	20	10	26	.3	9	1	225		14	<5	<2	<2	25	<.2	<2	3	215		.025	3	38	.40	15	.60		1.32	.02	.04	2	5
95-WS-8	<1	18	5	23	<.3	8	<1	202		13	<5	<2	<2	34	<.2	<2	3	157		.021	4	36	.36	19	.60		1.58	.03	.05	<2	4
95-WS-9	<1	17	5	25	.5	8	1		3.90	17	<5	<2	<2	30	<.2	<2	3	199		.021	- 4	32	.43	16	.53		1.44		.05	<2	6
95- WS -10	<1	28	8	24	.3	10	2	200	5.94	14	<5	<2	<2	27	<.2	<2	4	220	.30	.022	4	42	.45	12	.58	ح ۲	1.91	.02	.02	<2	9
95-ws-11	2	47	6	34	.4	12	5	387		12	<5	<2	<2	32	.2	<2	<2	188		.040	4	34	.56	20	.49		2.13	.02	.03	<2	11
95-WS-12	2	62	6	32	.3	12	7		5.03	14	<5	<2	<2	35	<.2	<2	3	194	.38		4	38	-49	17	.58		2.53	.02	.03	<2	18
95-ws-13	1	30	10	22	.5	9	2	187		13	<5	<2	<2	28	<.2	<2	3	248		.023	- 3	32	.36	12	.73		1.48	.02	.04	<2	13
95-WS-14	<1	22	6	22	<.3	5	<1	177	3.79	11	<5	<2	<2	29	<.2	<2	2	210	.35	.017	3	26	.22	11	.60		1.06	.03	.03	<2	150
95-WS-15	1	65	10	54	.6	21	8	450	6.49	15	<5	<2	2	33	.2	<2	3	168	.40	.018	4	61	1.04	17	. 55	6 (2.68	.02	.03	<2	53
95-WS-16	<1	53	7	48	.6	14	6	490	6.08	13	<5	<2	2	30	.4	<2	2	173	.35		3	44	.71	14	.52		2.37	.02	.03	<2	35
75-₩s-17	<1	17	5	24	<.3	6	<1	242	4.68	10	<5	<2	<2	25	<.2	<2	2	216	.31	.021	3	24	.35	13	.54	-	1.38	.03	.04	<2	7
95-WS-18	1	74	11	59	.6	24	10	497	6.01	13	<5	<2	<2	43	.2	5	2	170	.50	.022	2		1.17	12	.54		2.59	.02	.03	<2	13
95-WS-19	6	28	8	34	<.3	13	4	298	6.40	9	<5	<2	<2	22	.4	<2	<2	141	.30	.026	3	38	.61	Z0	.41		2.96	.02	.04	<2	4
95-WS-20	6	35	7	56	<.3	7	14	243	8.28	9	<5	<2	<2	13	1.0	<2	<2	140	.12	.033	4	35	.36	30	.17	<3	6.45	.01	.04	< <u>2</u>	10
95-W\$-21	2	20	11	40	.3	6	36	1291	3.99	8	<5	<2	<2	18	.5	<2	<2	85	.25	.057	4	16		32	. 12		2 .3 5	.02	.07	<2	2
95-WS-22	1	57	8	75	.4	24	13	538	5.06	11	<5	<2	<2	38	.6	4	<2	127	.72	.030	3	- 38	1.27	20	.36		2 43	.03	.05	<2.	4
RE 95-WS-22	1	58	6	73	<.3	23	12	500	4.89	8	<5	<2	<2	37	.3	2	<2	124	.70	.028	3		1.24	20	.35		2,38	.03	.05	<2	
75-WS-23	-1	21	14	29	1.4	7	<1	197	4.52	7	<5	<2	<2	36	<.2	<2	2	205	.36	.019	3	- 34	.40	13	.54		1.88	.02	.03	<2	1
95 -w s-24	3	58	10	35	.4	12	5	326	6.29	6	<5	<2	2	36	.5	<2	<2	179	.38	.023	4	47	.61	17	.43	5	2.77	.03	.03	<2	17
95-WS-25	1	44	9	50	.4	20	7	385	5.22	3	<5	<2	<2	47	<.2	<2	2	176	.54	.022	3	51	.94	15	.56	5	2.16	.03	.04	<2	18
75-WS-26	4	23	9	31	<.3	5	25		5,23	3	<5	<2	<2	13	.7	<2	<2	- 77	.18	.058	4	17	. 19	22	.11	4	2.58	.02	.05	<2	!
75-WS-27	ż	24	12	18	<.3	6	4		6.74	5	<5	<2	<2	17	<.2	<2	2	230	. 19	.023	2	22	.23	19	.57	4	1.62	.02	.03	<2	(
75-WS-28	3	22	9	45	<.3	9	21		4.85	3	<5	<2	<2	21	.4	<2	<2	121	.30	.040	3	20	.51	26	.33	<3	1.69	.02	.06	<2	
95-WS-29	2	33	7	32	.3	9	3	277	6.09	<2	<5	<2	<2	31	<.2	<2	2	205	.38	.020	2	34	.53	18	.59	5	1.76	.03	.04	<2	8
95-WS-30	1	122	3	72	<.3	39	20	839	4.99	<2	<5	<2	<2	51	.3	6	<2	129	1.16	.044	3	58	1.66	15	.45	3	2.52	.03	.04	<2	12
95-WS-31	1	115	9	105	<.3	33	19		4.84	3	<5	<2	<2	42	.4	6	<2	118	1.07	.044	3	50	1.54	19	.37	3	2.50	.03	.04	<2	9
95-WS-32	<1	38	9	49	<.3	19	10		4.83	3	<5	<2	<2	37	.3	<2	<2	126			2	35	1.05	16	.35	3	2.04	.03	.04	<2	l
95-WS-33	<1	55	6	61	<.3	20	13			4	<5	<2	<2	33	.4	2	<2	116			3		1.16	18	.32		2.29	.03	.04	<2	1
STANDARD C/AU-S	17		36	130	6.9			1085		44	21	6			17.8	18	18	64		090	40	58	.86	173	.08	29	1.84		.15	10	4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

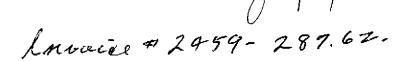
ACHE ANNE VIICAL									Wa	lte	er (Supr	Y	F	LE	# 9)5-2	2260)								Pa	age	3		
SAMPLE#	Mo ppm	Cu ppm	Pib ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm		Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppmi	Çd ppm	sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B ppm	Al X	Na %	K Z		Au* ppb
95-M-1 95-M-2 95-M-3 95-M-4 95-M-5	<1 <1 1 <1 3	117 125 111 68 19	3 7 5 10 15	74 89 49	<.3 <.3 <.3 <.3 <.3	35 36 40 16 6	24 39	678 664 788 3004 1848	5.65 5.58 3.08	322	<5 <5 <5 <5 12	~~~~~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	48 47 49 30 18		<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	00000	129 133 85	1.11 1.19 .57	.046 .051	3 4 4 6 4	56		13 13 15 36 31	.42 .41 .43 .18 .12	4 6 3	2.16 2.14 2.46 2.18 2.33	.02 .02	.03 .03 .03 .08 .06	<2 <2 <2	480 5
RE 95-M-3 95-M-6	<1 2	110 21	7 11		<.3	37 7	23		5.37	3 <2	<5 <5	<2 <2	<2 <2		<.2 <.2		<2 <2			.049 .051	3 3	57 12	1.61	15 30	.41 .14		2.39 1.76		.03		_

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

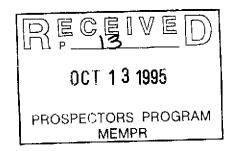
<u>r</u>.

•

<u>A</u>				 Control of the second se	Very lists (support in the constraints) and the intervention of the constraints of the constraints (support intervention) and the const	 A. Contrologic and a Control Con	Control Control Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2010/2014 Control 2014/2014 Control 2014/20	Construction of the con		n da o coara Nggalawaga		uppy	y I	File	.e #	(818 95- BC VOR	-272	27	er ne os decisió Agricación esp	ATE Age	1					Control operations Control operations Contro					
SAMPLE#	Mo				_								ι Th n ppm				Bi ppm			P %	La ppm	Cr ppm	Mg %	8a ppm	⊺i %∡	B ppm		Na %			Au* ppb
25-R4 25-R5 25-R6 RE 95-R6	6 3 11	26 25 34	29 16 51	47 112 70	7 .5 2 .6 0 .3	16 10 6	5 4 5 6 5 8	4 368 6 4462 8 359 8 323	1.30 4.78 2.19	6 7 <2	<5 <5 <5	<2 <2 <2	2 <2 2 2 2 <2	2 13 2 59 2 43		5 <2 8 <2 3 <2	2 <2 <2	13 29 39	1.78 6.82 4.53 4.27	.023 .037	<1 3 2 1	9 7	.30 .51 .68 ,64	7 17	<.01 .13 .07 .07	ও ও	.46 5 2.39 5 8.67 5 8.16	.01 .10	.03 <.01 .05 .05	4 2	36 ,
DATE R	ECEI	T A - <u>s</u>	THIS L ASSAY - SAMP <u>Sample</u>	LEACH (RECON	H IS PA OMMENDE TYPE: P eginnir 1995	PARTIAL DED FOR P1 ROC <u>ing 'RE</u> DAJ	AL FOR DR ROC DCK P2 RE' ar	S DIGES R MN FE CK AND 2 SOIL <u>re Reru</u> REPOR	E SR C O CORE P3 MO runs an RT MA	CA P L SAMPL LOSS MA Ind <u>rr</u>	LA CR PLES IF HAT RRE' ar	t MG BA IF CU F AU* are Rej	BA TI E PB ZN * - IGN <u>eject F</u>	B W AF N AS > GNITED Rerun: 05	AND LII > 1%, : D, AQU <u>ns.</u>	IMITED AG > 3 UA-REGI	PFOR N 30 PPN SIA/MIE	NA K A M & AU BK EXT	AND AL U > 10 TRACT, $\int \int \int$	000 PP , GF/A	B A FIN	IISHED					CERTIF	F1ED E	B.C. /	ASSAYE	:RS
										PR) P 0 ROSPE		13	1995	ן ביין ויין ויין ויין איז																

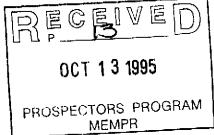

ACTE ANALYTICAL									Wal	ter	Gu	рру		FIL	E #	95	-27	27									Pag	ie 2		ACRE AN	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	к %	W ppm	Au* ppb
500N-250E 250E-450N 250E-275N 225E-450N RE 225E-450N	1 <1 1 <1	60 17 3 12 11	5 8 6 7 4	36 31 8 16 17	<.3 <.3 <.3 <.3 <.3 <.3	13 9 1 3 4	7 4 <1 2 2	273 288 53 127 126	4.63 .79 3.10	9 3 2 2 4	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2 <2 <2 <2	51 36 17 27 27	.2 <.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2	143 246	47 15 25	.021 .020 .012 .012 .012	<1 <1 <1 <1 <1	31 30 8 17 17	.59 .46 .04 .15 .14	11 8 4 10 10	.44 .44 .29 .43 .42	4	1.60 1.33 .51 .94 .93	.02 .02 .01 .01 .01	.02 .02 .01 .01 .01	<2 <2 <2 <2 <2 <2	6 1 9 2 4

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


AA									Wa	lte	er (upp	Y	FJ	LE	# 9	95-2	2727									Pa	ge	3	4	
SAMPLE#	Mo	Cu	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Şr ppm	Cd ppm	Sb ppm	Bî ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al X	Na X	к %	¥ ppm	Au* ppb
95-M7 95-M8 95-M9 95-M10 95-M11	1	126 121 58 120 66	12 8 12 11 14	85 74 52 85 268	<.3 <.3	33 30 20 30 17	22 28 25	2054	5.39 3.26 5.64	2 2 <2 2 13	জ জ জ জ জ জ জ জ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 ~2 2 2 2	60 61 40 59 45	.5 .2 .3 2.3	<>> <> <> <> <> <> <> <> <> <> <> <> <>	∾ ∾ ∾ ∾ ∾ ∾ ∾ ∾ ∾ ∾	89 131	1.27 .73 1.30	.050 .043 .049 .050 .092	<1 <1 <1 <1 2	44 1		14 12 24 13 71	.34 .37 .25 .35 .06	3 2	2.04 1.95 2.17	.02 .02 .03 .02 .04	.04 .02 .06 .03 .24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1240 220 4 Soor 10 crate 19
RE 95-M11	2	66	15	267	<.3	17	44	3823	3.26	11	<5	<2	3	44	2.4	<2	<2	53	1.87	.092	2	26	.43	71	.06	91	1.88	.03	.24	<2	17

Sample type: MOSS MAT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANAL	ITIC	al I	.AB O	RATO	RIE	- LT	D .		852 I	ing in service Constant and a Constant and a	2000.02			en e	86-0-36	GREACE. Xv. royale.					PH	one ((604) 253	-31	58	FAI (604)) 253	-17	16
AA									na an taon 1999 ang ang Taon 1999 ang ang ang ang Taon 1999 ang ang ang ang ang	OCH	et	Gup		Fi	1e	# 9	5-2														
AMPLE#	Mo ppm		Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P %	La ppm	Cr ppm	Ng %	Ba ppm	Ti %	B ppm	Al X	Na X	K X	W ppm	Au* ppt
5-300-185s 5-300-200s 5-300-220s 5-300-250s 5-300-255s	9 95 6 27 26	60 129 59 26 19	18 20 8 20 20		<.3 <.3 <.3 <.3 <.3	6 7 4 3 3	<1 1 2 3 1	193	3.62 12.15 8.13 4.38 1.22	4 12 9 4 <2		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 3 2 2 2 2 2 2	12 12 9 13 9	<.2 <.2 <.2 1.6 .3	<>> <> <> <> <> <> <> <> <> <> <> <> <>	7 33 6 2 2	202 204 226 104 45	.12 .10 .21		2 <1 <1 2 4	22 16 22 9 6	.29 .38 .10 .27 .14	11 17 10 21 14	.36 .38 .36 .08 .04	<3 <3 <3	2.32 3.40 1.30 1.47 1.19	.01 .01 .01 .02 .01	.02 .02 .02 .05 .03	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19 11 11 21 21
5-320-220S 5FS-00 5FS-5/0W 5FS-10/0W 5FS-10/0W 5FS-15/0W	7 2 2 <1	133	5 5 3 6 9	23	<.3 <.3 <.3 <.3 <.3	8 19 13 7 10	1	211	8.32 4.95 6.73 10.66 11.02	5 5 4 6		< < < < < < < < < < < < < <> </td <td>4 <2 4 3 4</td> <td>10 22 12 16 13</td> <td><.2 <.2 <.2 <.2 <.2</td> <td>~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>7 6 9 5 4</td> <td>186</td> <td>.46 .18 .23</td> <td>.025 .022 .036 .020 .019</td> <td>ং া ং1 ং1 ং1</td> <td>43 41 74 52 66</td> <td>.35 .83 .49 .30 .30</td> <td>10 10 9 6 7</td> <td>.41 .42 .47 .73 .67</td> <td>उ उ उ</td> <td>6.13 3.64 8.55 1.87 2.77</td> <td>.01 .02 .01 .01 .01</td> <td>.01 .02 .01 .02 .02</td> <td>~~~~~ ~~~~~~</td> <td>1) 2) 1)</td>	4 <2 4 3 4	10 22 12 16 13	<.2 <.2 <.2 <.2 <.2	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 6 9 5 4	186	.46 .18 .23	.025 .022 .036 .020 .019	ং া ং1 ং1 ং1	43 41 74 52 66	.35 .83 .49 .30 .30	10 10 9 6 7	.41 .42 .47 .73 .67	उ उ उ	6.13 3.64 8.55 1.87 2.77	.01 .02 .01 .01 .01	.01 .02 .01 .02 .02	~~~~~ ~~~~~~	1) 2) 1)
5FS-20/0W 5FS-20/5W 5FS-20/10W E 95FS-20/10W 5FS-25/0W	1 1 1 2	46	10 7 10 4	25 29 30	<.3 <.3 <.3 <.3 <.3	9 7 8 9 20	<1 7 6 6	98 320 478 494 293	8.88 7.76 8.01 8.22 9.19	3 6 5 3		~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 3 2 <2 3	13 9 12 13 16	<.2 .3 <.2 .2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	7	258 194 192 197 186	- 10 - 20 - 20	.019 .022 .031 .033 .021	ং 1 ং1 ং1 ং1	38 17 22 24 93	.41 .29 .50 .51 .79	9 12 10 10 9	.51 .24 .27 .28 .49	<3 <3 <3	1.83 1.35 1.47 1.52 5.66	.01 .01 .02 .02 .02	.02 .03 .02 .02 .02	<2 <2 <2 <2 <2 <2 <2 <2	1 1 6
5FS-25/5W 5FS-25/10W 5FS-25/15E 5FS-30/0W 5FS-30/10W	2 1 2 1 1	78 57 119 62 50	8 9 8 7 8	24 43 19	<.3 <.3 <.3 <.3 <.3	9 8 16 7 4	4 4 5 3 1	218 306	6.47 6.64	6 6 3 4 6	ও ও ও ও ও	< < < < < < < < < < < < < < < < < < < <	4 3 <2 2 2	14 13 20 15 11	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2	8 5 8 7	247 210 150 219 216	.17 .27 .28	.023 .019 .027 .023 .020	ব ব ব ব ব	52 31 50 29 21	.33 .27 .73 .16 .10	9 11 10 7 8	.45 .34 .52 .42 .38	⊲ ⊲	2.92 1.96 4.73 1.07 .96	.01 .01 .01 .01 .01	.01 .01 .02 .02 .02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 1 3 3
95FS-40/5E 95FS-60/5E Standard C/AU-S	2 <1 19	-	10 <3 39	9	<.3 <.3 6.7	17 2 75	6	1350 91 1101	1.33	18 <2 43	<5 <5 22	<2 <2 7	<2 <2 36	20 11 50	1.4 .7 19.0	<2 <2 16	5 <2 22	84 26 59	.11	.045 .017 .089	2 3 40			10	.15 .01 .08	<3	2.60 .45 1.76	.02 .02 .06	.03 .03 .15	<2 2 10	1 5
DATE REC	EIVE	THI - S. <u>Sam</u>	S LEA AMPLE ples	CH IS TYPE	PART : SOI ning	IAL F L 'RE'	OR MN AU* are Re	FE S IGN eruns	D WITH R CA P ITED, A and () MAI	LA CA AQUA-A RRE' 4	R MG I REGIA, are Re	BA TI /MIBK eject	BW/ EXTR/ Renur	AND L' Act, (<u>ns.</u>	IMITEL GF/AA) FOR	NA K SHED.		al. L	_							IFIED	B.C.	ASSA	YERS	



۰......

CV-895-1 3 54 3 13 .3 16 30 251 4.63 41 $< < < < < < < < < < < < < < < < < < < $								alana Marata Marata Marata Marata			och		n na ann ann ann Sin Anna Ann A' a na chann ann			a de		169680	FIC	ATE											, W	
Number pain <								ng Mi Line (Composition of the Composition of the C	WZ	<u>ilte</u>	<u>r G</u>								P	age	1											
0x 0y-1 3 18 6 6 7 13 6 555 4.05 16 -5 5 -2 1 13 2 2 5 0.03 0.006 1 6 0.5 11 -01 4 2.21 .01 0.01 1 11 .04 13 0.1 -3 2.25 .01 0.01 1 12 .01 3 .01 -3 .25 .01 .01 -3 .01 -3 .06 .01 .01 .04 .04 .04 .01 .05 .05 .04 .01 .05 .02 .02 .01 .04 .01 .05 .05 .01 .01 .05 .02 .02 .02 .01 .01 .01 .01 .04 .01 .00 .03 .01 .01 .04 .01 .00 .01 .01 .01 .02 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01	AMPLE#																				P %						-			K X		Au' pp
PV-B95-1 3 18 6 6 .7 13 6 535 4,05 16 <5 <2 1 .3 2 22 5 .05 .008 <1 16 .05 11 <01 4 .21 .01 .04 .21 .01 .04 .21 .01 .04 .21 .01 .05 .11 .04 4 .21 .01 .01 .11 .04 .21 .01 .05 .11 .01 .01 .01 .01 .01 .05 .21 .01 .	v-895-1	3	54	3	13	.3	16	30	251	4.63	41	<5	<2	<2	17	.2	3	5	4	.41	.027	1	8	.09	38	.01	4		.01	.05	<2	
$ \begin{aligned} & Fv - 695 - 2 \\ Fv - 695 - 2 \\ Fv - 695 - 3 \\ Fv - 895 - 3 \\ Fv - 895 - 3 \\ Fv - 895 - 4 \\ 2 \\ 3 \\ 6 \\ 2 \\ 3 \\ 6 \\ 2 \\ 3 \\ 6 \\ 1 \\ 1 \\ 3 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		3	18	6				6			16	<5			1		2	<2	5	.03	.008	<1	16	.05	11	<.01			.01	.04	2 3	i79
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		8			7			1							1		<2	<2	6	.02	.013	1	11	.04	13	<.01	<3	.25	.01	. 05	<2.7	:90
v_{1} 2 360 21 103 4.6 13 26 630 8.19 12 < 5 4 < 2 8 $.4$ 4 6 57 $.38$ $.147$ 7 11 11.6 46 <13 1.68 $.01$ $.21$ sv_{2} 5 40 $\cdot 3$ 10 11 1094 2.87 4 < 5 < 2 3 < 2 26 $.07$ $.025$ 2 16 $.84$ 31 <01 71.40 $.01$ $.09$ sv_{895-2 625 5 43 < 32 786 6.87 21 < 52 < 22 20 $.26$ < 22 25 $1.51.61$ $.04$ $.15$ $car - 1$ 22 2776 421 142 49 94 6.11 65 < 2 22 277.03 6 6 10 $12.7.031$ 6 10.04 8.06 61.05 0.22 2.27 33 32.625	,	Ā					11	3				9	15	2	1	<.2	<2	3	2	.01	.001	<1	12	.01	3	<.01	_⊲	.06	<.01 <	.01	<2 7	32
$\begin{array}{c} 0.0000 - 1 \\ 0.0000 - 2 $		2	_	21				-							8		4	6	57	.38	.147	7		1.16	46	<.01	3	1.88	-01	-21	<2 2	:09
$\begin{array}{c} 3V.899-2 \\ SV.899-2 \\ SV.8$	V-895-1	,	22	5	40	<.3	10	11	1094	2.87	4	<5	<2	<2	3	<.2	3	<2	26	.07	.025	2	16	.84	31	<.01	7	1.40	.01	.09	<2	1
CAR-122276421.4249946.116<5<2<26.2<2<237.09.016<121.103.06<3.45<.01<.01CAR-212627791414.93229445314.30325<23242.867191.27.031661.048.0661.05.01<.013CAR-222153091442.93229445314.30325<23242.867191.27.031661.048.0661.05.01<<.01CAR-3221530944933.14421853020.4645<525166.913<23211.2.063308.535.0351.20.01<.01CAR-419022105.447194364.85107<2<22311.2<2<21304.21.1303552.2238.23<36.65.22.09CAR-4119721105.349204764.9688<2<22311.2<2<21314.21.130				5							21	-			-		6			1.02	.074	2	25	1.31	32	<.01	5	1.61	.04	. 15	<2	2
CAR-2 CAR-2 12 6277 9 141 4.9 32 294 453 14.30 32 5 <2 3 24 2.8 6 7 19 1.27 .031 6 6 1.04 8 .06 6 1.05 .01 <.01 3 CAR-3 2 21530 9 449 33.1 44 218 530 20.46 45 <5 2 5 16 6.9 13 <2 32 1.12 .063 30 8 .53 5 .03 5 1.20 .01 <.01 .01 <.01 CAR-4 1 190 22 105 .4 47 19 436 4.85 10 7 <2 <2 22 1.30 3 55 2.22 38 .23 <3 6.66 0.22 .09 .03 .03 .55 2.22 38 .23 3 6.66 .22 .09 .03 .23 .24 .24 .23 .25 .25 .38				4																					3	.06	<3	.45	<.01 <	:,01	<2	
$\begin{array}{c} \text{CAR-3} \\ \text{CAR-3} \\ \text{Z 21530} & 9 & 449 & 33.1 & 44 & 218 & 530 & 20.46 & 45 & <5 & 2 & 5 & 16 & 6.9 & 13 & <2 & 32 & 1.12 & .063 & 30 & 8 & .53 & 5 & .03 & 5 & 1.20 & .01 < .01 \\ \text{CAR-4} \\ \text{RE CAR-4} \\ \text{RE CAR-4}$																						6	6	1.04			6	1.05	.01 <	.01	364	6
ARK-4 <1																	-					_			-						70	55
ARK - 4 <1	AP-4	61	190	22	105	4	47	19	436	4.85	10	7	<2	<2	227	1.3	<2	<2	128	4.14	. 130	4	55	2.22	38	.23	<3	6.60	.22	.09	<2	
Image: Control 1 197 21 105 .3 49 20 476 4.96 8 8 <2												Ś						-				3			38	.23	3	6.65	.22	.09	<2	
$\frac{1}{100} = \frac{1}{100} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{1000} = \frac{1}{1000}$		1															_	_							38	.23	3	6.68	.22	.09	<2	
MMR-2 2 19 3 31 <.3		z																_				_					7	.39	<.01	.08	9	
STANDARD C/AU-R 18 57 35 123 6.8 70 31 1083 3.79 44 24 7 38 51 18.0 17 19 58 .50 .091 38 65 .93 177 .08 28 1.82 .06 .14 ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. J				•																											<2	
ICP500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	.mk - 2	5	17	-	5.	~	20				,					•	-								_							
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 MOSS MAT AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.	TANDARD C/AU-R	18	57	35	123	6.8	70	- 31	1083	3.79	44	24	7	- 38	51	18.0	17	19	58	.50	.091	38	65	.93	177	.08	28	1.82	.06	.14	11	50
DATE RECEIVED: AUG 29 1995 DATE REPORT MAILED: Sept 7/95 SIGNED BY			THI Assi - Si	S LEAG Ay Reg Ample	CH IS Comme Type	PART: NDED : P1 I ning	IAL FU FOR RU ROCK - ROCK -	OR MN OCK AI P2 MO: are R:	FE SF ND COR SS MAT eruns	R CA P RE SAMI F / and /	LA CR >LES I AU* - RRE' #	MG B IF CU IGNIT Are Re	BA TI PB ZN ED, A eject	BW/ NAS> NQUA-F <u>Reru</u>	AND L: - 1%, Regia, <u>ns.</u>	IMITEL AG > /MIBK) FOR 30 PF Extr/	NAK PM&J ACT, I	AND / AU > ' GF/AA	AL. 1000 FINIS	PPB Shed.										•	
	DATE REC	CEIV	ED :	AUG	29 19	95 I	DATE	REI	PORT	MAI	LED:	Se	ept	7/4	15	SI	GNEI) BY		·. <u>~</u>	· ···	-D. TO	YE, I	C.LEO	IG, J.	WANG;	CERT	IFIED	B.C.	ASSAY	ERS	

Invoice # 3190 - 256.83

AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V Pipim	Ca X	P %	La ppm	Сг ррт	Mg X	Ва ррт	Ti X	B ppm	Al X	Na %	к 7.		Au* ppb
5-CAN-1	<1	76	4	79	.3	27	28	1906	2.09	<2	<5	<2	<2	39	.5	3	2	54	.82	.065	3	29	.76	37	. 16	5 f	.47	.04	.17	<2	1
5-CAM-2	<1	25	6	39	<.3	5	11	803	2.36	<2	<5	<2	<2	25	.2	3	<2	31		.056	7	7	-59	108	.09		.66	.03	.10	<2	1
5-GRM-1	<1	131	11	35	<.3	19	15	729	2.02	3	<5	<2	<2	14	-4	2	<2	41		.063	3	19	.64	11	.07		.53	.02	.15	<2	1
E 95-GRM-1	<1	133	10	35	<.3	19	15	734	2.02	2	<5	<2	<2	14	.4	2	2	40	.44	.064	2	- 19	.64	10	.07	5 1	1.54	.02	. 15	<2	1

	, <u>, , , , , , , , , , , , , , , , , , </u>	SAMPLE#	Cu Ag** Au** % oz/t oz/t	
		FV-895-3	.002 .09 .302	
DATE RECEIVED:	BY ICP.			REGIA, DILUTE TO 100 ML, ANALYSIS
		lovoie	x 3180R2-25	i, z.q.
	•		OCT 13 1995 SPECTORS PROGRAM MEMPR	

· · ·

.

	Walter Guppy	CERTIFICATE Z File # 95-3180R Tofing BC VDR 220	4
	SAMPLE#	Cu Ag** Au** % oz/t oz/t	<u></u>
	FV-895-1 FV-895-2 CAR-1 CAR-3	$\begin{array}{rrrrr} - &268 \\ - &081 \\ .027 & .02 & .001 \\ 2.224 & 1.00 & .022 \end{array}$	
BY ICP.	FIRE ASSAY FROM 1 A.T. SAMPLE 1 GM CK PULP ATE REPORT MAILED: Sapt 19		TA, DILUTE TO 100 ML, ANALYSIS
	Invoice #	3190 R - 47,40	
	RECEN		
	OCT 1 3 19		
	PROSPECTORS P	ROGRAM	

.

.....

•

.

...

		÷			·		· · · ·		GE	OCH	EMI (CAL	AŅ	AL Y	ŠIS	CEI	RTI	FIC	ATE				· ,							Å I	
TE					•		-		W			tox 9			le ; BC VOM		5-3	679		· .	÷.,.								ť		
AMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni p¢m	Co ppm	Mn ppm	Fe X	As	U ppn	Au ppm	Th ppm	Sr pph	Cd ppr	sic Sic pipin	<u>⊷∵.∼−</u> ie nomi	v ppm	Ca X		La	Cr ppm	Mg Y	₽ Ba ppan	Ti 7	8 pipin	<u></u>	Na X	K X	la Kapom	Au* Au* ppb
50 N1 50 N2 50 N3 50 N4 E 550 M4	20 3 7	198 1303 171 1869 1835	7 12 15 16 9	59 35 61 45	.6 1.5 .5 1.0 .8	32 6 30 35 33	38 17 55	1690 440 1144	5.32 13.42 7.53 17.90 17.44	9 57 10 17 17	7 5 6 5 5	₹2 ₹2 ₹2 ₹2 ₹2 ₹2 ₹2	2 3 2 3 2 3 2	13 6 11 46 48	1.3 .8 .9 .6 1.2	~2 4 4 5	2	93 (196 117 (5.81 .57 2.15	.055 .074 .086 .093 .091		34	1.18 .38 1.01 .81 .79	23 8 16 4 6	.49 .21 .56 .34 .33	<3 2 4 1 <3 3	5.67 2.51 7.11 3.24 3.13	<.01 .01 <.01	.02 .01 .02 .02 .02	2 6 8 n n	20 43 8 34 30
- 1 -56 - 48 		1) 61 604		、 (1) (2)	. *	50	- - 6	146 350	7.52 4.16 5.73 3.89 6.19	12 32 57 63 10	\$ 5 5 5 5 5 5	~~~~~	\$\$\$\$\$	16 12 12 7 39	.9 t.0 .7 .8 .8	< 2 2 2 3 3 3	2 <2 3	142 112 172 138 154	.68 .45 .23	,073 .081 .061 .057 .016	3 6 5 3 3	74 77 76	1.11 1.14 1.03 .67 1.32	21 20 22 20 15	.43 .34 .41 .23 .38	5 i 6 i 3 4		.02 .01 .01 .01 .01	.02 .02 .02 .02 .03	\$\$\$\$	10 12 6 3 26
ΥΠ 1.2%1 0.4415 2.505 0.555 0.555	-	94 53 120 92 50	12 13 11	× -		2. 21	20 	्भ • •	4 . 73 20 3 . 58	10 6 14 7 10	୧୨ ୧୨ ୧୨ ୧୨ ୧୨	0 0 0 0 0 0 0 0 0	0 6 6 6 6 6	38 25 31 40 36	.8 .6 .6 .7	2	<2 <2 <2	232 163 124	.30 .39 .74	.032 .016 .036 .041 .016	2 2 3 3 2	38 52 43	1.44 .42 .98 1.2: 1.05		.35 .53 .40 .30 .38	6 5 3		.02 .01 .01 .02 .02	.03 0?	5 2 2 2 2	4 4 7 6 3
SKA Stas Ard C/AU-S	20		1	41 517	3 6.2	14 65			6,31 3,97	52 42	<5 22	<2 7	<2 34	16 49	.5 18.5	5 17				.030	3 38		. 89 .91		.34 .09		3.6; 1.8°	01 . 05	. 03 . 15	2 13	3 52
DATE REG	C		.V [95 I				maii Accid											5. 27	 ,	YE, C	LEON	G, J.	WANG;	CERT	I F I ED	B.C.	ASSA	¥ERS	
	СТ	131	885																												

ž

9965,002

тотец

÷.