# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1995/1996REPORT #:PAP 95-8NAME:DENIS DELISLE

#### TABLES of CONTENTS

34 \*\* "

**Technical Report** 

#### Page:

Ì

1 Columbia Valley ~ GOLDSTREAM 2 Hoskins Creek **3** Anglemont 4 Scotch Creek 5 Onyax Creek 6 continued 7 Seymour Arm & General mag survey maps 8 Summary of Prospecting 9 M 10 Daily reports (1-30) 11 " " (31-43) 12 Technical Report Sheep 1 13 " " Goldstream 14" " Seymour River 15" " Anglemont " Hoskins Creek 16 " 17 " " Onyax Creek 18 \* " Scotch Creek 19 Summary of prospecting activity 20 Claims map Ralph 21 Claims map Phil & Sheep 1 22 Main maps of Onyx Creek 23 Main Maps of remining areas 24 map of Goldstream 25 N " HOSKINS 26" " Anglemont 27 \* " 28 \ '" 29° ″ 30° ″ 31×# 32 . " 33 \* \*



```
55

36

37

38

39

40 Analysis results AK 75-524 (P.1)

41 " " AK 95-529 (P.2)

42 AK95-532(P1)

43 (P2)

43 (P2)

43 (P2)

44 AK 95-766 (P2)

46 AK 95.768 (P1)
```

۹

47 AK 96 - 768(P2) 48ETK-95-837 49 AK 95 - 838 (P.1 50 AK 45 - 838(P.2 51 AK-95-930 52 AK-95-532-53 Receipts Analysis - AK-95-768 54 Analysis Receipts 55 Analysis Receipts



# 95/96- PO15

1995 Prospecting Report

#### TECHNICAL REPORT

This report has **1** main parts divided into smaller areas by quadrants north west, south west etc.. Some of this report has been written in the summary.

Columbia Valley North Map # 1

Goldstream- Starting from the mine east along road is granite with some limestone. A mixture of phyllites and micasous quartzite mostly phylittes beyond the 18km. Near the southern junction of Stiffer ck & Goldstream ck greenstone starts showing, it is here that some the flag stone starts though usually in very thick 20 cm sheets there are thinner layers unfortunatly the colors are grey and nondescript not wanted much by the public .The access is very good even if it is far removed from civilization. The rock changes from greenstone to a quartz phylite the greenstone becomes very weak and in lesser amounts. Near the end of the road 43 km is a small body of rusty phylite samples were taken but results of analysis showed only Fe. There is some feldspar float in the area and that may warrant further investigation of that contact zone where they are found. The show anomallies. matts did any moss пot



Hoskins Creek Map # 2

2)

The main rock type is gneiss, with biotite. The vegetation is the typical rain forest of hemlock, cedar, alder, devils club, ferns, and stinging nettle fairly thick. Topographry climbs quickly out of the creek valley to cliffs. Near the mouth of Hoskins Creek (to the south) is a biotite gneiss with quartzite. There is also a grey and tan gosssan that is barren of mineral, the north side is mica and quarzite beds striking generally 300 degrees with a dip of 25 degrees NE. As it progresses up the creek the quartzite tends to be shallower dip. Hornblende, olivine, and quartz is found as one continues up the valley with large angular boulders there. Some kynite is found as firings in the pan. Gossans are seen up in the cliffs but are not accessible they range from a tan grey color to dark reddish orange. Garnets start to appear in the pans near the 4km distance and are more common in the rocks. Large boulders containing mineralization of azurite, pyrite and chalcopyrite. Gold has yet to be found in the pans, at this point we went south to a huge orange godson the samples HOS 02 from the gossan showed no mineralization. Large mafic biotite, homblende boulders held Cu 6943ppm, with some Au and Ag. The south side of the creek is a mossy thick talus slope and very dangerous. Due to the heavy rains and thick fog we were unable to continue safely further. I was hoping to take a helicopter to the head of the valley but the excessive wet weather in the summer and my punctured eardrum from a stick stopped those plans.



#### Anglemount (the NE flank.) Map # 3

The growth is a thick willow birch, poplar, fir, spruce, and cedar the aftermath of the 1967 Mag fire. The rock is a thick layers of quartzite, interbedded in between biotite gneiss. There are also 5 to 10 cm thick bedded layers of rusty colored rock often a gneiss but also at times non-discernible. These I analyzed though they showed small amounts of copper and gold I did not think it needed more work as yet even though I had staked it initially.

#### Anglemount (North flank) Map # 4

A large quartz feldspar porphory bed lies here with some gossanous rock lying near its boundaries. The north contact is a mixture of a biotite granite and greenstone the granite changes to a synite. Diorite dykes are common and run NE the boitite granite intrudes into the porphory as a pegmatite bubble. The quartz porphory gives way to greenstone beds extensively to the east. These interlay and overlay the limestone -calc beds which are crossed by thin south east trending quartz veins some of which carry small bits of galena. In the greenstone there are flat lying varied in thickness flag stone but show a small deposit 10m by 5m possibly more.



#### Scotch Creek- Lamberton Pass Map # 5

Coded with letters SC starting at the confluence of Scotch creek and Kikowate Creek going east is a weakly foliated limy-graphite shist cliffs. Heading east 2km is a gneissic body overlying the limestone. Quartzite bodies appear easterly for 6 km in the limestone with a general south east strike. As we begin to climb the rock tends to become more fragmented turning into a mica shist and a limy shist. As we rise to the top of the hill between Scotch Creek and Lamberton Pass the rock becomes weaker with more quartz rich diorite dykes finally on the top. The rock is very gossanous with a small showing of brecciated limestone shist. These showed no anomalous results though very interesting.

On the north side of the hill near Scotch Creek were large gossanous diorite dykes with 40cm quartz veins cutting through them having galena (2cm thick) at the hanging side of the contact zone. They seemed to run at a south east strike giving results like Age .88 per T., Pp 3.12%. Overburden made it difficult to follow. Continuing easterly the rocks are micacous, in greenstone beds striking north west. This continues for about 4kms where limestone beds start reappearing striking and are SE shallow dipping. Underlying this is a 10m thick rusty quarzite bed cut by a quartz rich diorite dyke. To the east is the greenstone beds which form a meroposite type shist with the contact of the limestone and greenstone. South to the Lamberton pass is mostly graphitic shist with some limestone beds becoming more prevalent as one goes SW. The diorite quartz showings are worth prospecting further as the galena followed the contact zone continuously it could very well increase deeper down toward the creek.





Onyax Creek Area Map # 6

5)

West side coded with the letters NX defining the second drainage north. In 1994 moss matts led me to the north west side of the NX drainage. I followed these up in this very steep hillsides. The area is covered in large fir, cedar, hemlock and pine trees and has little underbrush except in creek valleys where it is thick devils club and alder. The whole area in the Onyax creek is limestone calcite, graphitic shist and greenstone beds. These are cut by young diorite, felsic, and quartz veins. To the south of the NX creek by Onyx creek are limestone beds these extend south to the next drainage where it changes to massive graphite shist beds. Near the head waters of NX and south the BEW samples show some galena seams in the limestone. To the north was hematatic quartz float though plentiful I was unable to find the source. This rose quartz had some chalcopyrite, pyrite but most of the float was oxidized. Further north XNX, AXE, and TR1 was limestone calcite beds with some greenstone. OXE which contained the quartz porphyry with feldspar phenocrysts and the alteration here it seems to lay between limestone calcite beds and as yet has been very slow to show any mineralization near the alteration although it has intrusions of quartz pyrite that is all analysis shows. The alteration runs 1 to 2 km in length and is about 500 meters widest point. The geochemical samples taken over the OXE area are yet to be analyzed I am waiting for some one to analyze them for me and I need to get more samples to make a clear er picture of the deposit beneath the over burden. (Map 6 and 7) 7(a), 7(b)

The east side starting at the northern head waters was the most exciting and surprising finds. The SEPT 17 showing is at the 5000' level on the west flank of Crowfoot mt. Chlorite shist (greenstone) and limestone beds contact near this point striking generally north west. Diorite type dykes (similar to a fine grain Quartz porphyry) cuts across them at a north east strike this diorite is fine grained. Continuing south along steep hill and cliff for about 500 meters is a Quartz porphyry with feldspar phenocyrsts similar to the Oxe 2 km north. Near this bed is a gneissic bed very rusty colored overlain by sericite shist and quartzite. Cobalt ,arsnic, nickel, and copper readings were very high in the rock. This was about 100 meters wide and seemed to be capped by limestone above by 30meters. Mica shist became more prevalent down the hill and then turned back into a Quartz porphyry with the feldspars altered slightly. Moss matts show little sign of mineralization . Pannings showed a lot of magnetite and lesser amounts of epidote, garnet(rare), and mica shist. (Map8)

Directly south west near the road above Onyx creek is the drainage referred to as the PHR. Where the road and the creek meet was a contact zone between the quartz porphyry and the limestone and a shale and a possible intrusion definitely quartz. Specks of galena was in the quartz vein it struck south east, above the bedded limestone graphitic shist. This bed had thin intrusions pyritic in nature some carrying as much as 3892 ppm The quartz porphyry becomes increasingly altered as it continues north then becomes compact again. At the 4700 ' level east (up PHR drainage) was some more pyritic mineralization massive in a bedded limestone with quartz vein. This mineralized area near the PHR drainage is in strike of 315 degrees generally of the OXE alteration zone. This a very exciting possible contact zone. (Map9)

6)

Directly south of here is the PHIL claims here about 500 meters to the east of the Onyx creek road are limestone bluffs cross cut by quartz veins for a distance of 500 meters containing small seams of galena in the northern most section to massive galena(6") thick to the north. Underlain is a limestone graphitic shist which returns to compact bedded limestone as it nears Onyx creek to the west. Southwardly it becomes a crumbly graphitic shist. North of the bluffs and the Phil Claim line, it continues to be a



compact bedded limestone cross cut by hematite quartz veins. Interdispersed among the limestone shist is a brown colored sandstone type rock. The quartz veins seem strike about 345 degrees directly to the OXE alteration. (Map 10) MEMPR

These veins seem to dip almost vertical and cross over each other at least 3 successive times. The quartz tends to be with the galena when it contacts the limestone, mineralization starts as thin wisps and continue to massive 15cm chunks. Gold occurs in lesser amounts with copper in the same amount increasing southerly abruptly stopping at the ridge. The ridge runs about 20 degrees north east the limestone runs about 90 degrees along the ridge and suddenly turns to 170 degrees at this point there is no increase in mineralization as would be expected with such a tight fold. Though the ground is very steep there's much of it covered with 3'-4' of overburden so either geochemical and or geophysics must be used to continue for other mineralized bodies in the area. Float of hematite quartz very similar to that found at the areas mineralization seems to follow in bands in three distinct bands above and below the Phil showing indicating more mineralized area. Mineralization of Au was (highest) 135ppb, Ag 4.9 oz/t, Pb 9.46%, Zn 3508ppm over 8 rock samples. This was very exciting in area I had already covered previously to find such mineralization with so much potential. The area to the north of the Phil 1&2 Claims becomes thick with alder and devils club with islands of large cedar very difficult to travel and hard to prospect. The area to the south dropped off into another drainage with no sign of mineralization it just disappeared. Logging is supposed to start there this winter and a road pushed 250 meters below the showing and then logged to within 75 meters of the showing (Map 10)

The SHT area is to the south east of the Phil Claims by about 500 meters across the valley on the other side of a drainage. Limestones underlay the quartz-mica shist beds that hold mineralization of pyrite and pyrrhotit overlaying this is the graphitic shist common to the area. Progression to the south east the mica-sericite shist become fractured quartzite with bands of greenstone intruding intermittently. Micashist lays concordantly periodically with the quartzite until graphite shist starts to show with limestone beds and meter wide bands of dolostone heavily pyritic. These rocks tend generally south north but the mineralized rock tends to run more 320 degrees. Graphitic shist prevails southerly for quite a distance about 200 meters away is a dyke of brownish quartz porphyry with alteration of the feldspars in some area of the dykes they run basically east west. These occur again about another 200 meters south no mineralization occur in or near these intrusions. Geochem results from samples are (highest) Au ppb 155, Ba 610ppm, these show some promise but other samples being richer should show better results when they are returned. (Map 11)  $3^{SHT-MAG-MAP}$  #A

#### NORTH SEYMOUR RIVER Map # 12

7

North of the town of Seymour Arm the road was recently put in and I thought could possibly offer access to Hoskins Creek. Prospecting was in the form of following the road and checking out crops. The area is mostly gneissic with some diorite dykes and quartz veins cutting through the gneissic beds. Panning the area brought up mostly garnets and magnetite with numerous amounts of biotite, silica and feldspars. Near the last 500 meters were many veins striking south east of quartz feldspar they often were mineralized and heavy. Analysis showed very little ore but the area is of interest because of the alteration and close proximity to the Cotton belt deposit. There is a lot of chunky building stone along the way (good for thick walls) but access is to rough and far away.

-

ĥ

1

ł

#### General Mag Survey Maps Maps # 13

These were general prospecting method looking for a drastic change of a 100 or more with a fluxgate magnetometer. Rock outcrops were also tested to see the change (diorite, barren quartz, limestone, and culverts) it hovered around 100 generally. Culverts changed 100 and a wide area near the OXE ranged from -50 to +90 to -180 more or less where the mineralization should be near the Oxe alteration.



#95/96 P015

A REAL PROPERTY OF A

#### Summary Prospecting 1995

This season proved to be very successful starting in July after returning from prospecting and sampling drainage ONA finding a chalky white alteration with a quartz in limestone veins. Though it was just a dusting of alteration, no mineralization I returned. This proved fruitful for it lead to a discovery of galena, trace of copper & gold. Though no large mineral deposit there is 500 meters of seams (averaging lcm by 10 cm)sporodically placed and in one area 20cm x20cm lump of mineralization. There are traces of galena 300 meters to the west and 200 meters to the east(float).

Anglemont east showed a gossan with a new wash out showing concordent veins over a depth of 50 meters. Analysis showed Zn,Cu trace of Au.It has some promise but the vegetation is thick and the terrain is steep.

Anglemont north there was a trace of mineralization but a gossanous area was showed by the new scariffing done this year. More interesting was a small area of flag stone a beautiful green. It would split in a varying thickness of 2cm tol0 cm, it is compact and very flat. There would be very good potential if this was bigger. Access is a skid trail about 800 meters from a logging road.



?. **g**)

Hoskins creek north of Revelstoke proved to be very interesting ,though I only spent 2 days in the area I found many gossans and a non-discripe hornblende-biotite boulder with Copper in 6000ppm area. This area is steep thickly forested, secluded with lots of devils club. A natural place for grizzlies, I insist on a partner when I go in this area as its potential for danger. The rain drove us out of this area. My plan was to fly in but the combination of stormy august weather and a stick that had punctured my ear stopped that plan. Access is by canoe from the Mica dam road to Hoskins creek across the columbia river.

Goldstream area prospecting was hapered by washouts during the first attempt as when I arrived there both the Gold stream and NormanWoods roads were washed out. I returned and gave it another try I reached the destination and prospected along the road the area of interest turned out to be a pyrite in silicous bed as I understand is a common occurrance in that area to the east of Goldstream.We left on that account and the fact we might be trapped there by more floods.

Seymore Arm near the 42 km area showed mineralized veins over a 500 meter width veins about 1 meter wide with 4cm of a mix oxidzed mineral and alteration. Though not high results it warrents follow up someday.

The Scotch creek discover referred as SC11 is a diorite vein boulder 1.5 meter wide heavily pryratized with 12 cm wide quartz veins having 2 cm or more galena between the boundries. To the south 500meters is a heavily pyratized limestone in a creek 5 meters by 10 meters.

The west side of Onyax which I had so much hope for proved to be elusive. Though I did find bits of mineralization it was nowhere as excited as the phil claims directly east.

One of the difficulties I ran into was my kneesgot real sore going up down NX area with samples I took time off and did more road prospecting. In september on the Phil claims my knees went again but I kept going until I could not lift my leg over a log. That really slowed me down and wrecked my prospecting.

Another set back was I did soil sampling in the OXE area and had set them near aabondon road and someone took them



#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS DELISLE Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number 95 12 200 #                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION/COMMODITIES<br>Project Area (as listed in Part A) <u>SHEEP 1</u><br>Location of Project Area NTS <u>338800 nE 5654000 nN</u><br>Description of Location and Access <u>Go up GARLAND</u> Rd, Fillow<br><u>go another 5km</u> to end of ROAD.                                                                                                                                                                                                                                                                                                                               | MINFILE No. if applicable<br>Lat <u>51°02′</u> Long <u>118°18′</u><br>vel up to Greeptrail Skin twen Right                                                                                                                                                  |
| Main Commodities Searched For Au Ag C. Plo Zon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I MOUSTRIM MINIERALS                                                                                                                                                                                                                                        |
| Known Mineral Occurrences in Project Area Aro, Pb, Zn, Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |
| WORK PERFORMED         1. Conventional Prospecting (area) $500 \text{ metars}$ 2. Geological Mapping (hectares/scale) $500 \text{ metars}$ 3. Geochemical (type and no. of samples) $10 \text{ Rock click}$ 4. Geophysical (type and line km)       —         5. Physical Work (type and amount)       —         6. Drilling (no. holes, size, depth in m, total m)       —         7. Other (specify)       —         SIGNIFICANT RESULTS       Commodities         Control (show on map) Lat $51^{\circ}02^{\circ}$ Location (show on map) Lat $51^{\circ}02^{\circ}$ Long $11.$ | $\frac{2m_{SSS} M_{HS}}{2m_{SSS} M_{HS}}$ |
| Description of mineralization, host rocks, anomalies <u>GUART2 ME</u><br><u>69</u> QUARTZ Veins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHIST - LIMESTONE WTRUDED<br>RECEIVED<br>DEC 14 1995                                                                                                                                                                                                        |
| Supporting data must be submitted with this TECHNICAL REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROSPECTORS PROGRAM<br>MEMPR                                                                                                                                                                                                                                |

13

#### BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

i

© Copies

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS DELISLE Reference Number 95/96 PO15                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------|
| LOCATION/COMMODITIES                                                                                                                     |
| Project Area (as listed in Part A) GOLOSTREAM MINFILE No. if applicable                                                                  |
| Location of Project Area NTS <u>5716000N-427600mE</u> Lat <u>51°31</u> Long <u>118°05</u>                                                |
| Description of Location and Access DRIVE 43 Km ON GOLDSTREM ROAD TO END OF ROAD                                                          |
|                                                                                                                                          |
| Main Commodities Searched For AU, A, CU, Pb, Za, AND INDUSTRIAL MINERAL                                                                  |
| Known Mineral Occurrences in Project Area Au, Cu, Pb.                                                                                    |
| WORK PERFORMED                                                                                                                           |
| 1. Conventional Prospecting (area) 43 km of Rorto                                                                                        |
| 2. Geological Mapping (hectares/scale) 43km 1:50,000                                                                                     |
| 3. Geochemical (type and no. of samples) 2 moss melts 2 Rock CAIP SAMPLES                                                                |
| 4. Geophysical (type and line km)                                                                                                        |
| 5. Physical Work (type and amount)                                                                                                       |
| 6, Drilling (no, holes, size, depth in m, total m)                                                                                       |
| 7. Other (specify)                                                                                                                       |
| SIGNIFICANT RESULTS<br>Commodities Claim Name<br>Claim Name                                                                              |
| Best assay/sample type Agl. Appm.                                                                                                        |
| Description of mineralization, host rocks, anomalies <u>I. ROW IN</u> QUARTZEESHIST.<br>GREZ, QUARTZITE - FLAT - 10cm thick, FLAG STONE. |
|                                                                                                                                          |

|                                                              | RECELVED -                   |  |
|--------------------------------------------------------------|------------------------------|--|
|                                                              |                              |  |
| Supporting data must be submitted with this TECHNICAL REPORT | PROSPECTORS PROGRAM<br>MEMPR |  |

#### **B. TECHNICAL REPORT**

14

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS Deliste Reference                                    | e Number 95/96 PCC5               |
|-----------------------------------------------------------------|-----------------------------------|
| LOCATION/COMMODITIES                                            |                                   |
| Project Area (as listed in Part A) SEY MOUR RIVER               | MINFILE No. if applicable         |
| Location of Project Area NTS                                    | Lat 51° 32′ Long 118° 55′         |
| Description of Location and Access Gro to Say move ARM          | take the Suprour ARM ROAD to 53km |
| the last 500 meters on the south side or Re                     | · 940                             |
| Main Commodities Searched For Anna Commodities Searched For     | LEUVSERIAL FLORTS                 |
| Known Mineral Occurrences in Project Area, Z                    |                                   |
| WORK PERFORMED                                                  |                                   |
| 1. Conventional Prospecting (area) <u>5.5 km</u>                |                                   |
| 2. Geological Mapping (hectares/scale)                          |                                   |
| 3. Geochemical (type and no. of samples) <u>10 miles (here)</u> | bek Onip                          |
| 4. Geophysical (type and line km)                               |                                   |
| 5. Physical Work (type and amount)                              |                                   |
| 6,. Drilling (no,. holes, size, depth in m, total m)            |                                   |
| 7. Other (specify)                                              |                                   |
| SIGNIFICANT RESULTS                                             |                                   |
| Commodities P                                                   | Claim Name                        |
| Location (show on map) Lat $5l^{p} 32'_{1}$ Long $1l$           | 8*55' Elevation 2900'             |
| Best assay/sample type Ag. 1 ppm, Ev SBpom.                     |                                   |
| Description of mineralization, host rocks, anomalies            | with quarty Veins                 |
|                                                                 |                                   |
|                                                                 | RECEIVED                          |
|                                                                 | DEC 1 4 1995                      |
| Supporting data must be submitted with this TECHNICAL REPORT    | PROSPECTORS PROGRAM               |

MEMPR

÷.

ł

1

کی دفنورت

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.

• If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS DELISLE Reference Nur                                        | mber <u>95/96 P015</u>                    |
|-------------------------------------------------------------------------|-------------------------------------------|
| LOCATION/COMMODITIES                                                    |                                           |
| Project Area (as listed in Part A) ANGLEMONT                            | MINFILE No. if applicable                 |
| Location of Project Area NTS 5654 000me N 349000 mE                     | Lat 5/ 02 Long 119938'                    |
| Description of Location and Access DRIVE UP Ross CK FOR                 | RESTRY Rd BKm, TURN UP SMALL              |
| SKID TRAIL, GO TO LANDING                                               | ·                                         |
| Main Commodities Searched For <u>Au, Au, Au, Do, Do, Zo, AND</u>        | I NOUSTRIAL MUNEARIC                      |
| Known Mineral Occurrences in Project Area Pb_2~                         |                                           |
| WORK PERFORMED         1. Conventional Prospecting (area)               | Сlaim Name <u>RALPH 1+2</u><br>BElevation |
| Description of mineralization, host rocks, anomalies <u>Borne Gaves</u> | BECEIVED<br>DEC 1 4 1995                  |
| Supporting data must be submitted with this TECHNICAL REPORT            |                                           |

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area. •
- Refer to Program Requirements/Regulations, section 15, 16 and 17. •

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the • supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS DELISIE Reference Nu                                                                                                                      | umber 95/96 8015                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| LOCATION/COMMODITIES<br>Project Area (as listed in Part A) <u>HOSKINS</u> CREEK                                                                      | MINFILE No. if applicable                       |
| Location of Project Area NTS                                                                                                                         | Lat <u>5/° 42</u> Long <u>1/8° 40′</u>          |
| Description of Location and Access VORTHOF REVELSTOKE -1                                                                                             | 10 Km South MICA DAM, BADDLE ACROSS             |
| to mouth of Hosnins Creek, WALK UP CREEK (WEST)                                                                                                      |                                                 |
| Main Commodities Searched For $\mathbf{A}_{\mathcal{A}}, \mathbf{A}_{\mathcal{A}}, \mathbf{C}_{\mathcal{A}}, \mathbf{Pb}, \mathbf{Za}, \mathbf{Avd}$ | INDUSTRIAL MINERALC                             |
| Known Mineral Occurrences in Project Area <u>P5, 7n- Ac.</u>                                                                                         |                                                 |
| WORK PERFORMED                                                                                                                                       |                                                 |
| 1. Conventional Prospecting (area) 35 m 7                                                                                                            |                                                 |
| 2. Geological Mapping (hectares/scale) <u>3 Mm</u>                                                                                                   |                                                 |
| 5. Geochemical (type and no. ot samples) <u>7 moss anally 5 Rock</u>                                                                                 | C DAMALOS                                       |
| 4. Geophysical (type and line km)                                                                                                                    |                                                 |
| 5. Physical Work (type and amount)                                                                                                                   | ······                                          |
| 6, Drilling (no, holes, size, depth in m, total m)                                                                                                   | · · · · · · · · · · · · · · · · · · ·           |
| 7. Other (specity)                                                                                                                                   |                                                 |
| SIGNIFICANT RESULTS                                                                                                                                  |                                                 |
| Commodities Cy, Au                                                                                                                                   | Claim Name                                      |
| Location (show on map) Lat Long 51°                                                                                                                  | <u>42'</u> Elevation <u>//8 <sup>6</sup>40'</u> |
| Best assay/sample type Cu                                                                                                                            |                                                 |
|                                                                                                                                                      |                                                 |
| Description of mineralization, host rocks, anomalies $B_{10T, 1TE}$ , $G_{1}$                                                                        | ueine 5                                         |
|                                                                                                                                                      |                                                 |
|                                                                                                                                                      |                                                 |
|                                                                                                                                                      | REGEIVED                                        |
|                                                                                                                                                      |                                                 |
|                                                                                                                                                      |                                                 |
| Supporting data must be submitted with this TECHNICAL REPORT                                                                                         | PROSPECTORS PROGRAM<br>MEMPR                    |

کے زفان دآب

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name DENIS DELISLE                                           | Reference Number 95/96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P015                      |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| LOCATION/COMMODITIES                                         | MINIPU E Ma 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annliachta                |
| Project Area (as listed in Part A) <u>ONTA</u> <u>CREEN</u>  | $\frac{1}{100} = \frac{1}{100} $                                                                                                                                                                                                                   |                           |
| Location of Project Area NTS <u>066000<sup>-1</sup> V 33</u> | $\frac{1}{2} \frac{1}{2} \frac{1}$ | Long                      |
| Description of Location and Access LN Celota VA              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The 120 Road, go enalling |
| Jim to the RAST SIDE DAMX (Kig Phill                         | almis 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |
| Main Commodities Searched For <u>Au, Au, Cu, Pb</u> ,        | AND INDUSTRIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kinerson                  |
| Known Mineral Occurrences in Project Area _Pb, Za,           | v,Ag:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
| WORK PERFORMED                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 1. Conventional Prospecting (area) 5 Kmc                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                  |
| 2. Geological Mapping (hectares/scale) <u>5 km</u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In ic i rol               |
| 3. Geochemical (type and no. of samples) <u>MossM</u>        | TT = 15 / Soil SAMPLES 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /Kock Samples 30/         |
| 4. Geophysical (type and line km)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>               |
| 5. Physical Work (type and amount)                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 6,. Drilling (no,. holes, size, depth in m, total m)         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| 7. Other (specify)                                           | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |
| SIGNIFICANT RESULTS<br>Commodities Au Cu, Pb, Zn, Ag.        | Claim Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PH16_1+2                  |
| Location (show on map) Lat <u>51°01</u>                      | ong <u>119°19</u> Ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vation <u>3800′</u>       |
| Best assay/sample type Ag 35.3 geston Pb 9                   | 46%, Au-135ppb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
| Description of mineralization, host rocks, anomalies         | mestone with pastin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trusions with Ayporton    |
|                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|                                                              | RĘC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>4 /895</u>             |
| Supporting data must be submitted with this TECHNICAL REPORT | PROSPECTO<br>ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS PROGRAM                |

١Ĉ

#### **BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)**

#### **B. TECHNICAL REPORT**

- .
- One technical report to be completed for each project area. Refer to Program Requirements/Regulations, section 15, 16 and 17. •

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the . supporting data (see section 16) required with this TECHNICAL REPORT.

| LOCATION/COMMODITIES<br>Project Area (as listed in Part A) <u>Scotcit</u> <u>CREEK</u> MINFILE No. if<br>Location of Project Area NTS <u>5664000<sup>m</sup>N 330500<sup>m</sup>E</u> Lat <u>5/°01</u><br>Description of Location and Access <u>Follow</u> Angloment Highway to Scotch Gre<br>730 Read, Term night go 6.5 km term night for Boometers.<br>Main Commodities Searched For <u>Au, Ay, Cu, Pb, Zn, Aud</u> <u>Ludustrenau</u><br>Known Mineral Occurrences in Project Area <u>Au, Pb, Zn.</u>                                                                                                                                                       | applicable<br>Long <u>119° 06'</u><br>ut <b>acc</b> el follero to |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Main Commodities Searched For <u>Au, Au, Au, Da, Zn, Aud</u> <u>Evoustrenac</u><br>Known Mineral Occurrences in Project Area <u>Au, Pb, Zn</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |
| Known Mineral Occurrences in Project Area <u>Au, Pb, Zn</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N: WE KNO                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ······································                            |
| WORK PERFORMED         1. Conventional Prospecting (area)         2. Geological Mapping (hectares/scale)         3. Geochemical (type and no. of samples)         3. Geochemical (type and no. of samples)         3. Geochemical (type and no. of samples)         3. Geophysical (type and line km)         5. Physical Work (type and amount)         6. Drilling (no., holes, size, depth in m, total m)         7. Other (specify)         SIGNIFICANT RESULTS         Commodities       ?b, Zm, flog         Location (show on map) Lat       51°01         Long       119°06'         Elev         Best assay/sample type       Age: 30. 6 gapentory, Pb | /ation _2800'                                                     |
| Description of mineralization, host rocks, anomalies <u>Metomosphic limitatore</u> , 51<br><u>mony Quaatz Varas</u> , and discrit,<br><u>DEC</u><br>Supporting data must be submitted with this TECHNICAL REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                | histsgets.cxt by                                                  |





12.

.

THIS MAP IS PREPARED ONLY AS A G TO THE LOCATION OF MINERAL TENUI AS SHOWN ON THE LOCATOR'S SKETCI FOR CURRENT OR MORE SPECIFIC INFORMATION, APPLICATION SHOULD MADE TO THE MINING DIVISION CONC

| 082M05E | 082M06W | 082M06E |
|---------|---------|---------|
| 082M04E | 082M03W | 082M03E |
| 082LI3E | 082L14W | 082L14E |

INDEX TO ADJOINING MAPS

082M03W

12-12-4i

8-Aug-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

.

5

.

RECEVED DEC 1 4 1995 PROSPECTORS PROGRAM MEMPR

DELISLE EXPLORATION AK 95-524 RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0

ATTENTION: DENIS DELISLE

43 Moss/Matt samples received July 25, 1995 PROJECT #: None Given SHIPMENT #: None Given

Values in ppm unless otherwise reported

| Et #.  | Tag #     | Ag   | AI %   | As              | Ba           | Bi | Ca %   | Cd   | Co | Cr | Cu           | Fe % | La l | Mg % | Mn           | Мо             | Na <u>%</u> | Ni   | Р              | Pb | Sb | Sn  | Sr  | Ti % | U   | V              | <u>w</u> | Y  | Zn         |
|--------|-----------|------|--------|-----------------|--------------|----|--------|------|----|----|--------------|------|------|------|--------------|----------------|-------------|------|----------------|----|----|-----|-----|------|-----|----------------|----------|----|------------|
| 1      | MM-AXE-01 | 0.4  | 0.74   | <5              | 125          | <5 | (2.26) | 10   | 11 | 39 | <b>∂63</b> 2 | 2.21 | <10  | 0.73 | 1255         | 2              | 0.07        | 32   | 1460           | 12 | 5  | <20 | 47  | 0.02 | <10 | 34             | <10      | 3  | 109        |
| 2      | MM-AXE-02 | <.2  | 1.20   | <5              | 170          | <5 | 2.07)  | 1    | 18 | 54 | 49           | 3.67 | <10  | 1.05 | 1950         | 2              | 0.04        | 44   | 1590           | 14 | <5 | <20 | 49  | 0.03 | <10 | 58             | <10      | 5  | <u>133</u> |
| 3      | MM-EOD-05 | <.2  | 0.71   | 10 <sup>.</sup> | 155          | <5 | 1 43   | 1    | 17 | 29 | 50           | 3,19 | <10  | 0.62 | 836          | 3              | 0.02        | 51   | 1160           | 18 | <5 | <20 | 48  | < 01 | <10 | 32             | <10      | 1  | 74         |
| 4      | MM-EOD-06 | <.2  | 0.58   | <b>10</b> 1     | 115          | <5 | 1.58   | 1    | 19 | 22 | 46           | 3.22 | <10  | 0.54 | 623          | 4              | 0.03        | 48   | 1070           | 12 | <5 | <20 | 49  | < 01 | <10 | 41             | <10      | <1 | 69         |
| 5      | MM-EOD-07 | <.2  | 0.73   | <5              | 115          | <5 | 0.85   | <1 ` | 18 | 27 | 62           | 3.53 | <10  | 0.63 | 885          | 5              | 0.02        | 58   | 890            | 18 | <5 | <20 | 27  | <.01 | <10 | 36             | <10      | <1 | 80         |
| ĥ      | MM-EOD-08 | < 2  | 0 26   | 10-             | 175          | <5 | 1.86   | <1   | 8  | 10 | 37           | 1.62 | <10  | 0.30 | 711          | 3              | 0.03        | 55   | 1530           | 18 | 5  | <20 | 56  | <.01 | <10 | 10             | <10      | <1 | 69         |
| 7      | MM-EOD-09 | 0.4  | 0.61   | <5              | 230          | <5 | 1 26   | 1    | 12 | 35 | 34           | 2.59 | <10  | 0.52 | 711          | 3              | 0.03        | 60   | 1620           | 12 | <5 | <20 | 43  | < 01 | <10 | 25             | <10      | 3  | 74         |
| ,<br>8 | MM-EOD-10 | 0.4  | 0.62   | <5              | 370          | <5 | 1.63   | 1    | 13 | 32 | 46           | 2.50 | 10   | 0.52 | 1037         | 3              | 0.03        | 93   | 2060           | 14 | <5 | <20 | 61  | <.01 | <10 | 20             | <10      | 12 | 129        |
| 9      | MM-NX-301 | (0.8 | 0.36   | <5              | 165          | <5 | 1.96   | 2    | 11 | 19 | 42           | 2.44 | <10  | 0.41 | 529          | 3              | 0.03        | 70   | 1380           | 14 | <5 | <20 | 62  | < 01 | <10 | 17             | <10      | <1 | 98         |
| 10     | MM-NX-302 | 0.6  | 0.35   | <5              | 170          | <5 | 1.68   | 1    | 10 | 19 | 37           | 2.20 | <10  | 0.30 | 684          | 3              | 0.03        | 67   | 1160           | 20 | <5 | <20 | 61  | < 01 | <10 | 15             | <10      | <1 | 102        |
| 11     | MM-RMS-01 | 0.4  | 1.15   | 5               | 175          | <5 | 0.53   | 1    | 17 | 42 | 38           | 3.68 | <10  | 0.63 | 745          | 3              | 0.01        | 109  | 800            | 20 | <5 | <20 | 44  | 0.02 | <10 | 29             | <10      | 5  | 97         |
| 12     | MM-RMS-02 | <.2  | 0.93   | <5              | 150          | <5 | 0.68   | <1   | 17 | 44 | 38           | 3,30 | <10  | 0.63 | 569          | 3              | 0.02        | 94   | 1000           | 20 | <5 | <20 | 57  | 0.02 | <10 | 28             | <10      | 3  | 85         |
| 13     | MM-RMS-03 | 0.4  | 0.94   | <5              | 125          | <5 | 0.76   | 2    | 19 | 38 | 46           | 3.69 | <10  | 0.66 | 534          | 6              | 0.03        | 132  | 1220           | 24 | <5 | <20 | 62  | <.01 | <10 | 22             | <10      | <1 | +140       |
| 14     | MM-NX-315 | 0.8  | 0.30   | <5              | + <b>295</b> | <5 | 1.80   | 3    | 5  | 13 | 28           | 1,36 | <10  | 0.37 | 512          | 2)             | 0,05        | 83   | 1450           | 16 | 5  | <20 | 110 | <.01 | <10 | 9              | <10      | 1  | 118        |
| 15     | MM-NX-316 | 0.4  | 0.27   | <5              | 125          | <5 | 1.24   | 2    | 12 | 22 | 40           | 2.66 | <10  | 0.36 | 475          | 4              | 0.04        | 96   | <b>†1840</b> ) | 12 | <5 | <20 | 45  | <.01 | <10 | 11             | <10      | <1 | 121        |
| 16     | MM-NX-317 | 0.4  | 0.39   | <5              | 135          | <5 | 0.88   | 1    | 19 | 25 | 48           | 3.91 | <10  | 0.30 | 664          | 5              | 0.03        | 107  | 1110           | 18 | <5 | <20 | 32  | <.01 | <10 | 19             | <10      | <1 | 144        |
| 17     | MM-NX-318 | 1.4  | 0.29   | <5              | 140          | <5 | 0.96   | 2    | 11 | 13 | 43           | 3.06 | <10  | 0.24 | 484          | 4              | 0.03        | 1114 | 1300           | 14 | <5 | <20 | 49  | <.01 | <10 | 15             | <10      | <1 | 167        |
| 18     | MM-XNX-01 | 0.2  | 0.45 ° | <5              | 170          | <5 | 0.93   | 1    | 13 | 23 | 34           | 2.70 | <10  | 0.40 | 682          | 4              | 0.03        | 79   | 1410           | 14 | <5 | <20 | 39  | <.01 | <10 | 17             | <10      | 4  | 117        |
| 19     | MM-XNX-02 | 0.2  | 0.26   | <5              | 125          | <5 | 1.44   | 1    | 8  | 15 | 31           | 1.55 | <10  | 0.38 | 449          | 2              | 0.04        | 33   | 1230           | 20 | <5 | <20 | 53  | <.01 | <10 | 12             | <10      | <1 | 120        |
| 20     | MM-XNX-03 | 0.2  | 1.28   | <5              | 165          | <5 | 1.14   | <1   | 23 | 59 | 52           | 3.96 | <10  | 1.03 | 1083         | 3              | 0.03        | 78   | 1580           | 16 | <5 | <20 | 41  | 0.01 | <10 | <del>5</del> 3 | <10      | 5  | 77         |
| 21     | MM-XNX-04 | 0.6  | 1.20   | <5              | +230         | <5 | 1.09   | 2    | 25 | 49 | 58           | 4.72 | <10  | 0.78 | 1 <u>246</u> | 5              | 0.02        | 95   | 1270           | 22 | <5 | <20 | 38  | 0.01 | <10 | 56             | <10      | 7  | 102        |
| 22     | MM-XNX-05 | 0.4  | 1.09   | <5              | - 260        | <5 | 1.36   | 2    | 21 | 39 | 50           | 3.89 | <10  | 0.70 | (1278)       | 4              | 0.03        | 92   | 1430           | 20 | <5 | <20 | 47  | 0.01 | <10 | 45             | <10      | 8  | 113        |
| 23     | MM-XNX-06 | <.2  | 0.42   | <5              | 210          | <5 | 2.54   | 1    | 7  | 17 | 34           | 1.54 | <10  | 0.45 | 674          | 2              | 0.04        | 47   | 1970           | 12 | 5  | <20 | 69  | <.01 | <10 | 20             | <10      | 6  | 90         |
| 24     | MM-XNX-07 | 0.6  | 0.98   | <5              | 215          | <5 | 1.66   | 1    | 21 | 38 | 54           | 3.87 | <10  | 0.69 | 1109         | 3              | 0.03        | 82   | 1300           | 22 | <5 | <20 | 51  | 0.01 | <10 | 44             | <10      | 6  | 85         |
| 25     | MM-SC-01  | < 2  | 0.78   | <5              | 100          | <5 | 0.74   | 1    | 16 | 40 | 39           | 3.45 | <10  | 0.56 | 463          | $\overline{7}$ | 0.03        | 86   | 990            | 24 | <5 | <20 | 39  | 0.02 | <10 | 27             | <10      | 4  | 133        |



DELISLE EXPLORATION AK 95-524

,

ECO-TECH LABORATORIES LTD.

| Et #. | Tag #      | Ag    | AI %  | As | Ba  | BIO | Ca % | Cd | Co  | Cr  | Cu          | Fe %   | La   | Mg %          | Мл            | Мо | Na %  | Ni   | <u> </u> | РЪ  | Sb | Sn  | Sr   | TI %           | U   | <u>v</u> | <u></u> | Y              | <u>Zn</u>      |
|-------|------------|-------|-------|----|-----|-----|------|----|-----|-----|-------------|--------|------|---------------|---------------|----|-------|------|----------|-----|----|-----|------|----------------|-----|----------|---------|----------------|----------------|
| 26    | MM-SC-11   | 0.4   | 0.95  | <5 | 300 | <5  | 1.00 | 3  | 10  | 31  | 35          | 2.14   | - 20 | 0.45          | 475           | 3  | 0.05  | 117  | 1240     | 34  | <5 | <20 | [84] | 0.02           | <10 | 24       | <10     | 18             | 9 <del>9</del> |
| 27    | MM-SC-12   | 0.6   | -1.59 | <5 | 330 | <5  | 1.29 | ĩ  | 16  | 73  | 52          | 2.99   | <10  | 0.78          | 1229          | 3  | 0.03  | 144  | 780      | 26  | <5 | <20 | 96   | 0.03           | <10 | 35       | <10     | <b>`11</b> ]   | 57             |
| 28    | MM-SC-13   | 0.6   | 1.75  | <5 | 325 | <5  | 1.00 | <1 | 30) | 123 | 54          | 4.67   | <10  | [1.52]        | 1071          | 3  | 0.02  | 113) | 1410     | 14  | <5 | <20 | 63   | 0.05           | <10 | (78)     | <10     | 8              | 68             |
| 29    | MM-SC-15   | ÷ 0.8 | Õ.68  | <5 | 325 | <5  | 1.34 | 2  | 13  | 25  | 41          | 2.78   | <10  | 0.38          | 12 <u>67</u>  | 4  | 0.02  | 66   | 1200     | 22  | <5 | <20 | 101  | 0.01           | <10 | 21       | <10     | 4              | 109            |
| 30    | MM-SC-16   | 0.4   | 0.83  | <5 | 115 | <5  | 0.33 | 2  | 20  | 37  | 50          | 4.55   | <10  | 0.55          | 418           | 7  | <.01  | 96   | 780      | 26, | <5 | <20 | 35   | 0.01           | <10 | 29       | <10     | <b>&lt;1</b> , | 157            |
| 31    | MM-SC-17   | 0.4   | 0.64  | <5 | 130 | <5  | 0.65 | <1 | 24  | 38  | 54          | 4.66)  | <10  | 0.51          | 824           | 5  | <.01  | 82   | 960      | 26, | <5 | <20 | 25   | 0.02           | <10 | 37       | <10     | <1             | 106            |
| 32    | MM-ONA-100 | <.2   | 0.13  | <5 | 140 | <5  | 1.36 | <1 | 3   | 9   | 10          | 0.64   | <10  | 0.25          | 660           | 2  | 0.04  | 24   | 1020     | 6   | <5 | <20 | 73   | <.01           | <10 | 5        | <10     | <1             | 39             |
| 33    | MM-ONA-101 | 0.4   | 0.62  | <5 | 170 | 5   | 0.71 | 1  | 17  | 29  | 39          | 3.89   | <10  | 0.43          | 512           | 4  | 0.02  | 79   | 950      | 14  | <5 | <20 | 45   | 0.02           | <10 | 33       | <10     | 2              | 123            |
| 34    | MM-ONW-01  | 0.2   | 0.37  | <5 | 190 | <5  | 0.96 | <1 | 9   | 21  | 21          | 1.21   | <10  | 0.24          | 2288          | 2  | 0.03  | 15   | 1660     | 40  | <5 | <20 | 28   | <.01           | <10 | 21       | <10     | 5              | 50             |
| 35    | MM-NX-TR   | 0.4   | 0.42  | <5 | 115 | <5  | 1.27 | <1 | 13  | 21  | 41          | 2.81   | <10  | 0.63          | 589           | 3  | 0.03  | 58   | 960      | 10  | <5 | <20 | 40   | <.01           | <10 | 27       | <10     | <1             | 88             |
| 36    | MM-TRI-01  | 02    | 0.83  | <5 | 115 | <5  | 1.19 | <1 | 27  | 59  | 58          | 4.67   | <10  | 0.87          | 860           | 4  | 0.02  | 86   | 1180     | 24  | <5 | <20 | 37   | 0.01           | <10 | 50       | <10     | <1             | 110-           |
| 37    | MM-TRI-02  | 0.6   | 0.74  | 5  | 150 | <5  | 1.46 | 1  | 28  | 46  | (6Z)        | 4.40   | <10  | 0.67          | 1000          | 4  | 0.03  | 90   | 1430     | 26) | <5 | <20 | 46   | 0.01           | <10 | 44       | <10     | 2              | 119-           |
| 38    | MM-TRI-03  | < 2   | 0.45  | <5 | 120 | <5  | 1.80 | <1 | 13  | 27  | 40          | 2.34   | <10  | 0.51          | 680           | 3  | 0.03  | 52   | 1890)    | 18  | 5  | <20 | 45   | <.01           | <10 | 26       | <10     | <1             | 82             |
| 39    | MM-TRI-04  | 0.2   | 0.45  | <5 | 110 | <5  | 2.08 | <1 | 11  | 26  | 42          | 2.37   | <10  | 0.50          | 571           | 2  | 0.03  | 39   | 1230     | 14  | <5 | <20 | 51   | <.01           | <10 | 24       | <10     | 3              | 56             |
| 40    | MM-TRI-05  | <.2   | 1.18  | <5 | 125 | <5  | 0.93 | 1  | 27  | 69  | 69          | . 5.54 | <10  | <u>ví. 17</u> | 713           | 4  | 0.02  | 61   | 1140     | 18  | <5 | <20 | 35   | 0.04           | <10 | 71       | <10     | <1             | 68             |
| 41    | MM-306 *   | <.2   | 0.54  | 5  | 125 | <5  | 2.07 | 1  | 18  | 37  | 46          | 3.22   | <10  | 0.56          | 812           | 4  | 0.04  | 74   | 1750     | 22  | <5 | <20 | 46   | <.01           | <10 | 31       | <10     | 2              | 97             |
| 42    | MM-307 *   | < 2   | 1 46  | <5 | 145 | <5  | 1.51 | 2  | 29  | 59  | <b>(63)</b> | 4.90   | <10  | 1.29          | 1227          | 4  | 0.02  | 81   | 1370     | 36  | <5 | <20 | 45   | 0.02           | <10 | 181      | <10     | 2              | 134            |
| 43    | MM-310 *   | 0.6   | 0.43  | <5 | 145 | <5  | 1.22 | 1  | 15  | 22  | 43          | 2.89   | <10  | 0.42          | 682           | 4  | 0.03  | 77   | 1730     | 22' | <5 | <20 | 46   | < 01           | <10 | 19       | <10     | <1             | 138            |
| QC/I  | DATA:      |       |       |    |     |     |      |    |     |     |             |        |      |               |               |    |       |      |          |     |    |     |      |                |     |          |         |                |                |
| Rep   | at:        |       |       |    |     |     |      |    |     |     |             |        |      |               |               |    |       |      |          |     |    |     |      |                |     |          |         |                |                |
| 1     | MM-AXE-01  | 0.2   | 0.83  | <5 | 140 | <5  | 2.21 | 6  | 14  | 42  | 55          | 2.42   | <10  | 0.82          | 1 <u>3</u> 38 | 2  | 0.06) | 37   | 1440     | 12  | 5  | <20 | 46   | 0.03           | <10 | 38       | <10     | 3              | 109            |
| 10    | MM-NX-302  | 0.8   | 0.38  | <5 | 175 | <5  | 1.64 | 1  | 11  | 22  | 39          | 2.34   | <10  | 0.31          | 692           | 3  | 0.03  | 70   | 1180     | 22  | <5 | <20 | 65   | <.01           | <10 | 17       | <10     | <1             | 111            |
| 19    | MM-XNX-02  | <.2   | 0.22  | <5 | 115 | <5  | 1.47 | 1  | 6   | 12  | 26          | 1.43   | <10  | 0.37          | 413           | 2  | 0.05  | 28   | 1220     | 18  | 5  | <20 | 53   | <u>&lt; 01</u> | <10 | 10       | <10     | <1             | 125            |
| 28    | MM-SC-13   | 0.4   | 1.74  | <5 | 325 | <5  | 0.99 | <1 | 32  | 127 | 55          | 4.68   | <10  | 1.54          | 1047          | 3  | 0.03  | 114  | 1380     | 14  | 5  | <20 | 65   | 0.05           | <10 | 79       | <10     | 8              | 68             |
| 36    | MM-TRI-01  | 0.2   | 0.78  | <5 | 115 | <5  | 1.26 | <1 | 26  | 52  | 53          | 4.29   | <10  | 0.78          | 866           | 4  | 0.03  | 84   | 1200     | 24  | <5 | <20 | 36   | < 01           | <10 | 44       | <10     | <1             | 105            |
| Stan  | dard:      |       |       |    |     |     |      |    |     |     |             |        |      |               |               |    |       |      |          |     |    |     |      |                |     |          |         |                |                |
| GEC   | 95         | 1.2   | 1.61  | 60 | 155 | <5  | 1,63 | <1 | 18  | 56  | 80          | 3.87   | <10  | 0.93          | 620           | <1 | 0.01  | 26   | 680      | 16  | <5 | <20 | 54   | 0.09           | <10 | 71       | <10     | 5              | 72             |
| GEC   | )'95       | 1.2   | 1.69  | 50 | 160 | <5  | 1.69 | <1 | 19  | 64  | 81          | 4.17   | <10  | 0.86          | 630           | <1 | 0.02  | 27   | 690      | 16  | <5 | <20 | 65   | 0.12           | <10 | 70       | <10     | 6              | 75             |

NOTE: MISSING (MM-NX-306,307 & MM-NX-310) \* = EXTRA

۰.

df/416 XLS/95Delisle 7

,

,

Page 41

FOO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

#### 9-Aug-95

م و ر

•

1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway

KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

St Poge 42

RECEIVE  $\overline{\mathbb{D}}$ DEC 1 4 1995 PROSPECTORS PROGRAM MEMPR

DELISLE EXPLORATION AK 95-532

RR#1, SITE 16-B1 CHASE, B.C. VOE 1M0

**ATTENTION: Denis Delisie** 

24 Rock samples received July 25, 1995 PROJECT #: Not Given SHIPMENT #: Not Given

| Et #. | . Tag #   | Au(ppb)     | Ag   | AI % | Ba            | BI         | Ca %              | Cđ    | Co              | Cr           | Cu            | Fe %               | K %            | Mg %        | Mn                | Mo   | <u>Na %</u>       | NI               | P                | Pb           | Sr           | <u></u>       | <u> </u>         | <u></u> | Υ    | Zn             |
|-------|-----------|-------------|------|------|---------------|------------|-------------------|-------|-----------------|--------------|---------------|--------------------|----------------|-------------|-------------------|------|-------------------|------------------|------------------|--------------|--------------|---------------|------------------|---------|------|----------------|
| 1     | OC-PHL-01 | 10          | 3.4  | 0.07 | -5            | <5         | > 15              | <1    | <1              | 58           | <u>5194</u>   | 1.07               | 0.01           | 46.99       | 1100              | 249  | <.01              | 2                | A 850            | 21646        | 3704         | <.01          | 13               | <10     | 8    | 69             |
| 2     | OC-PHI-02 | 5           | <.2  | 0.38 | 50            | <5         | > 15              | 1     | 18              | 16           | 89            | 5.31               | 0.02           | 1.85        | 1112              | 4    | <.01              | 136              | <b>` </b>  410   | 4            | 329          | <.01          | 40               | <10     | 7    | 65             |
| ā     | OC-PHI-04 | 5           | <.2  | 0.02 | <5            | <5         | > 15              | <1    | 1               | 50           | 20            | 1.37               | <.01           | 11.00       | <b>∮1507</b>      | 18   | <.01              | <1               | 280              | 20           | 1076         | <.01          | 24               | <10     | 7    | <u>,</u> 51    |
|       | OC-PHLO6  | 135         | 9.6  | 0.02 | <5            | <5         | > 15              | ۱6    | 6               | 54           | 24            | 2.53               | <.01           | 8.95        | 1350              | 94   | <.01              | 12               | 720              | 9 <u>748</u> | <u>2</u> 944 | <.01          | 12               | <10     | • 12 | 416            |
| 5     | OC-PHL-07 | 110         | 2.4  | 0.04 | 10            | <5         | 0.23              | <1    | 2               | ¥ <u>305</u> | 23            | 0.91               | <.01           | 0.05        | 61                | 13   | <.01              | 11               | 90               | 31032        | 8            | <.01          | 1                | , <10   | <1   | 51             |
| 6     | OC-RB     | 10          | <.2  | 0.96 | 5             | 10         | <sup>2</sup> 3.90 | <1    | 12              | 106          | 8             | 2.27               | 0.03           | 0.61        | 712               | <1   | L <sub>0.03</sub> | 17               | م <sup>340</sup> | 14           | 119          | 20.12         | 24               | <10     | <1   | 30             |
| 7     | OC-RB-01  | 10          | 1.2  | 0.42 | 60            | <5         | 0.56              | <1    | 16              | 173          | 70            | 5.46               | 0.09 -         | 0.01        | 303               | 9    | <.01              | 29               | 2290             | 30           | 25           | <.01          | 44               | <10     | <1   | 57             |
| 8     | OC-RB-11  | 10          | <.2  | 0.48 | 25            | 5          | 0.07              | <1    | 6               | 190          | 8             | 1.94               | 0.07           | 0.20        | 168               | 2    | LO.04,            | 18               | 90               | 12           | 4            | <.01          | 15               | <10     | <1   | 40             |
| 9     | OC-88-12  | <b>⊷</b> 30 | 0.6  | 0.38 | 60            | <5         | 0.28              | <1    | 14              | 146          | 60            | 5.61               | 0.11           | < 01        | 296               | 10   | < 01              | 27               | ~1090            | 20           | 21           | <.01          | 46               | <10     | <1   | <del>5</del> 8 |
| 10    | OC-RB-13  | 10          | <.2  | 0.64 | 55            | 5          | 2.72              | <1    | 14              | 96           | 10            | 4.18               | 0.10           | 0.56        | 765               | 7    | 0.02              | 15               | 31740            | 12           | 136          | <.01          | 46               | <10     | 73   | 90             |
| 11    | 00-88-14  | 15          | < 2  | 2 22 | 435           | 10         | 1.00              | 24    | <sup>4</sup> 90 | 125          | 2 <b>-226</b> | > 15               | 0.07           | 1.81        | 594               | \$23 | 0.02              | 81               | 1100             | 4            | 76           | 30.07         | <sup>i</sup> 191 | <10     | <1   | 51             |
| 12    | 00-10-14  | 5           | < 2  | 2.82 | 120           | <5         | 374               | <1    | \$34            | <b>A</b> 228 | 42            | 36.01              | \$0.11         | 4.17        | 823               | 6    | 30.03             | <sup>3</sup> 130 | 2810             | 8            | 247          | <.01          | 3 134            | <10     | - 36 | 65             |
| 12    |           | 10          | < 2  | 0.22 | 80            | 10         | > 15              | <1    | 16              | 39           | 58            | 27.38              | ໌<.01          | 6.27        | <sup>4</sup> 2084 | 5    | <.01              | 18               | 60               | <2           | 4494         | <. <b>0</b> 1 | <b>д1</b> 10     | <10     | 112  | 29             |
| 14    |           | 10          | < 2  | 0.03 | 20            | <5         | 6 15              | <1    | 26              | 161          | 36            | 5.28               | <.01           | <b>1.83</b> | 1,2796            | 6    | <.01              | 28               | 60               | 20           | 327          | <.01          | . 9              | <10     | <1   | 59             |
| 15    | FLT-XNX-5 | 5           | <.2  | 0.01 | 10            | 5          | 0.13              | <1    | 25              | 201          | 49            | 4.18               | <.01           | <.01        | F 72              | 7    | <.01              | 2184             | 50               | <2           | <1           | <.01          | 1                | <10     | <1   | 4              |
| 40    | 00 309 F  | 5           | ~ 7  | 0.05 | 55            | <b>c</b> 5 | M 3 70            | <1    | 2               | 181          | 4             | 1.11               | <.01           | 6.74        | 459               | 4    | <.01              | 11               | 450              | ς260         | <b>3</b> 43  | <.01          | 9                | <10     | 2    | 29             |
| 10    |           | 10          | ~.~  | 0.00 |               | -5         | 2.07              | <1    | 11              | 158          | 81            | 4 75               | 40.08          | 0.18        | 297               | 5    | <.01              | 42               | 130              | <2           | 44           | <.01          | 19               | <10     | <1   | 14             |
| 40    |           | - 20        | ~20  | 0.00 | -5            | 30         | 0.40              | <br>2 |                 | 3035         | 4             | 0.85               | <.01           | <.01        | 101               | 7    | <.01              | 8                | <10              | \$10000      | 10           | <.01          | <1               | <10     | <1   | 3              |
| 10    |           |             | >20  | 0.01 | -0            | - 00<br>00 | 0.40              | ń     | <1              | 191          | 5             | 0.41               | < 01           | < 01        | 161               | 7    | 0.04              | 9                | <10              | >10000       | 14           | <.01          | <1               | <10     | . 1  | , 2            |
| 18    | 00-50-11  | 5           | - 20 | 1.24 | 45            | 10         | 32.53             | ĩ     | 18              | 155          | 23            | 4 62               | 11 19          | 2 18        | 807               | <1   | 0.08              | 70               | 710              | 98           | 266          | 10.13         | 2162             | <10     | L7   | 4208           |
| 20    | 00-50-12  | J           | ~.2  | 1.04 | 40            | 10         | 20,00             |       | 10              | 100          |               | 1.02               |                |             | •                 | -    |                   |                  |                  |              |              |               | -                |         |      |                |
| 21    | FLT-303   | 5           | <.2  | 0.12 | 45            | <5         | 0.07              | <1    | 13              | 178          | 21            | 1,83               | 0.02           | <.01        | 863               | 11   | 30.03             | ູ 41             | 260              | 30           | 2            | <.01          | 7                | <10     | <1   | , 35           |
| 22    | FLT-304   | 5           | <.2  | 0.51 | <u> ∿17</u> 5 | <5         | 0.08              | 2     | 29              | 98           | 145           | 5.33               | <b>J.O</b> .14 | <.01        | 362               | 7    | <.01              | °130             | 810              | 22           | 14           | <.01          | 42               | <10     | <1   | - 266          |
| 23    | FLT-305   | 10          | 0.6  | 0.49 | 185           | <5         | 0.03              | 2     | 21              | 112          | 157           | <sup>1</sup> 13.20 | 0.10           | <,01        | 437               | 21   | <.01              | <b>A</b> 90      | 430              | 10           | 37           | <.01          | 49               | <10     | <1   | 2 340          |
| 24    | FLT-306   | 10          | <.2  | 0.49 | 75            | <5         | 0.07              | <1    | <u>2</u> 44     | 2498         | ,389          | 6.69               | 0.04           | 0.12        | 1209              | 7    | <.01              | 1 409            | 230              | 12           | 2            | <.01          | 51               | <10     | <1   | 99             |

.

#### DELISLE EXPLORATION AK 95-532

•

ECO-TECH LABORATORIES LTD.

•

•

| Et #. Tag          | #         | Au(ppb) | Ag  | Al % | Ba  | Bi | Ca % | Cd | Co | Cr  | Cu  | Fe % | К %  | Mg % | Mn   | Мо | <u>Na %</u> | NI | P     | Pb     | Sr  | Π%   | <u>v</u> | W   | <u>Y</u> | <u>Zn</u> |
|--------------------|-----------|---------|-----|------|-----|----|------|----|----|-----|-----|------|------|------|------|----|-------------|----|-------|--------|-----|------|----------|-----|----------|-----------|
| QC/DATA:           |           |         |     |      |     |    |      |    |    |     |     |      |      |      |      |    |             |    |       |        |     |      |          |     |          |           |
| Repeat:<br>1 OC-PH | <br>HL-01 | 10      | 2.8 | 0.06 | <5  | <5 | > 15 | <1 | <1 | 54  | 182 | 0.97 | 0.01 | 6.81 | 1065 | 41 | <.01        | 1  | 780   | 1608   | 684 | <.01 | 11       | <10 | 7        | 54        |
| 10 OC-RE           | B-13      | 10      | <.2 | 0.64 | 55  | 10 | 2.70 | <1 | 14 | 97  | 10  | 4.22 | 0.10 | 0.55 | 771  | 7  | 0.02        | 17 | 1770  | 18     | 136 | <.01 | 46       | <10 | 3        | 91        |
| 19 OC-SC           | C-11      | 5       | >30 | 0.06 | 60  | 90 | 0.03 | 2  | <1 | 190 | 6   | 0.41 | <.01 | <.01 | 159  | 7  | 0.04        | 11 | <10 > | >10000 | 12  | <.01 | <1       | <10 | <1       | 2         |
| Standard:          |           |         |     |      |     |    |      |    |    |     |     |      |      |      |      |    | 4           | ~~ | 740   | -      | 50  | 0.00 | 79       | ~10 | e        | 79        |
| GE <b>O'9</b> 5    |           | 150     | 1.0 | 1.64 | 160 | <5 | 1.66 | <1 | 18 | 57  | 87  | 4.03 | 0.33 | 0.92 | 682  | <1 | 0.01        | 25 | 710   | 24     | 50  | 0.09 | 13       | ~10 | 0        | 10        |

.

.

.

ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/540 XLS/95Delisle

...

-

Page 43

.

#### 19-Sep-95

-----

-

-

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

#### Phone: 604-573-5700 Fax : 604-573-4557

#### Values in ppm unless otherwise reported

 $\mathcal{V}$ 

Page 44

| Received                     | DELIS<br>RR#1<br>CHAS |
|------------------------------|-----------------------|
| DEC 1 4 1995                 |                       |
| PROSPECTORS PROGRAM<br>MEMPR | 34 Mo                 |

DELISLE EXPLORATION AK 95-766 RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0

#### ATTENTION: DENNIS DELISLE

34 Moss/Matt samples received September 5, 1995 PROJECT #: None given SHIPMENT #: None given

| Et #. | Tag #       | Ag   | Al%  | As | Ba  | BI | Ca%  | Cd | Co | Cr  | Cu | Fe%  | La         | Mg%  | Mn   | Мо | Na%  | NI  | Р    | Pb  | Sb | Sn  | Sr  | Ti%  | U   | v  | W   | Y  | Zn   |
|-------|-------------|------|------|----|-----|----|------|----|----|-----|----|------|------------|------|------|----|------|-----|------|-----|----|-----|-----|------|-----|----|-----|----|------|
| 1     | MM-AK-06    | <.2  | 0.95 | <5 | 70  | <5 | 1.65 | 1  | 17 | 40  | 42 | 3,35 | <10        | 0.78 | 1098 | 6  | 0.01 | 51  | 1180 | 24  | 5  | <20 | 75  | 0.02 | <10 | 34 | <10 | 2  | 102  |
| 2     | MM-AK-08    | 0.4  | 1.11 | <5 | 85  | <5 | 1.62 | 2  | 18 | 44  | 52 | 3.68 | <b>≈10</b> | 0.87 | 1208 | 5  | 0.02 | 79  | 1710 | 60  | <5 | <20 | 65  | 0.03 | <10 | 48 | <10 | 5  | 247  |
| 3     | MM-AK-09    | <.2  | 1.66 | <5 | 75  | <5 | 0.80 | 1  | 28 | 64  | 58 | 5.42 | <10        | 1.36 | 1195 | 6  | 0.01 | 78  | 1310 | 34  | <5 | <20 | 34  | 0.04 | <10 | 88 | <10 | 2  | 185  |
| 4     | MM-AK-11    | 0.4  | 1 49 | <5 | 290 | <5 | 1.27 | <1 | 20 | 121 | 44 | 3.30 | 20         | 1.03 | 2535 | 2  | 0.02 | 62  | 1350 | 14  | <5 | <20 | 108 | 0.03 | <10 | 52 | <10 | 13 | 211  |
| ·5    | VMM-SCII-01 | <.2  | 0.95 | <5 | 95  | 5  | 0.37 | <1 | 23 | 58  | 40 | 5.66 | <10        | 0.69 | 614  | 5  | <.01 | 90  | 830  | 26  | <5 | <20 | 27  | 0.04 | <10 | 57 | <10 | <1 | 99   |
| 6     | MM-HOS-02   | <.2  | 0.92 | <5 | 270 | <5 | 0.83 | <1 | 13 | 35  | 30 | 2.84 | 10         | 0.53 | 492  | <1 | 0.05 | 30  | 1100 | 34  | <5 | <20 | 38  | 0.08 | <10 | 48 | <10 | 7  | 144  |
| 7     | MM-BEW01    | 0.2  | 0.11 | <5 | 135 | <5 | 2.69 | <1 | 4  | 12  | 17 | 0.88 | <10        | 0.32 | 426  | 2  | 0.04 | 27  | 2200 | 16  | 10 | <20 | 52  | <.01 | <10 | 7  | <10 | 4  | 88   |
| 8     | MM-BEW02    | 0.2  | 0.44 | 10 | 170 | <5 | 1.84 | <1 | 13 | 20  | 29 | 2.41 | <10        | 0.19 | 792  | 3  | 0.01 | 67  | 1450 | 18  | <5 | <20 | 35  | <.01 | <10 | 16 | <10 | 6  | 94   |
| 9     | MM-BEW-03   | <.2  | 0.41 | <5 | 180 | <5 | 1.43 | <1 | 11 | 14  | 27 | 2.64 | <10        | 0.22 | 813  | 3  | 0.03 | 50  | 1380 | 26  | <5 | <20 | 42  | <.01 | <10 | 20 | <10 | 2  | 68   |
| 10    | MM-BEW04    | 2.6  | 0.48 | <5 | 355 | <5 | 1.32 | 2  | 10 | 22  | 41 | 2.69 | <10        | 0.28 | 1283 | 3  | 0.01 | 101 | 1620 | 22  | <5 | <20 | 61  | <.01 | <10 | 18 | <10 | 4  | 129  |
| 11    | MM-BEW05    | 0.2  | 0.42 | <5 | 235 | <5 | 1.82 | <1 | 9  | 17  | 37 | 2.77 | <10        | 0.34 | 955  | 3  | 0.02 | 32  | 1380 | 14  | <5 | <20 | 50  | 0.01 | <10 | 45 | <10 | 15 | 59   |
| 12    | MM-BEW-06   | <.2  | 0.99 | 20 | 140 | <5 | 1.81 | <1 | 21 | 40  | 58 | 4.18 | <10        | 0.86 | 1035 | 4  | 0.02 | 98  | 1680 | 34  | <5 | <20 | 41  | 0.01 | <10 | 45 | <10 | 2  | 117  |
| 13    | MM-BEW-07   | < 2  | 0.71 | <5 | 165 | <5 | 2.05 | <1 | 13 | 28  | 40 | 2.78 | <10        | 0.65 | 946  | 3  | 0.01 | 45  | 1480 | 22  | <5 | <20 | 47  | 0.01 | <10 | 33 | <10 | 4  | 85   |
| 14    | MM-BEW-08   | <2   | 0.73 | 25 | 110 | <5 | 2.30 | 1  | 16 | 29  | 46 | 3.04 | <10        | 0.80 | 913  | 3  | 0.02 | 103 | 1880 | 38  | <5 | <20 | 50  | <.01 | <10 | 32 | <10 | 2  | 119  |
| 15    | MM-BEW09    | 0.2  | 0.37 | <5 | 95  | <5 | 1.64 | 2  | 11 | 19  | 33 | 2.59 | <10        | 0.35 | 692  | 2  | 0.02 | 83  | 1670 | 32  | <5 | <20 | 45  | <.01 | <10 | 16 | <10 | 2  | 169  |
| 16    | MM-PHL-01   | 0.4  | 0.62 | 5  | 260 | <5 | 1.23 | 6  | 13 | 25  | 39 | 2.88 | <10        | 0.36 | 1030 | 2  | 0.02 | 41  | 1710 | 234 | <5 | <20 | 44  | 0.01 | <10 | 25 | <10 | 4  | 393  |
| 17    | MM-PHL-03   | 0.4  | 0.79 | <5 | 260 | <5 | 1.67 | 1  | 15 | 37  | 52 | 3.08 | <10        | 0.65 | 879  | 3  | 0.02 | 58  | 1400 | 20  | <5 | <20 | 52  | <.01 | <10 | 30 | <10 | 4  | 82   |
| 18    | MM-PHL-05   | < 2  | 0.68 | 5  | 110 | <5 | 1.29 | <1 | 17 | 35  | 37 | 3.62 | <10        | 0.56 | 662  | 3  | 0.01 | 46  | 1260 | 14  | <5 | <20 | 41  | 0.01 | <10 | 45 | <10 | <1 | - 74 |
| 19    | - MM-PHL-40 | -0.6 | 0.52 | 5  | 165 | <5 | 2.50 | <1 | 10 | 24  | 40 | 2.11 | <10        | 0.43 | 683  | 2  | <.01 | 46  | 1530 | 24  | <5 | <20 | 71  | <.01 | <10 | 23 | <10 | 10 | 70   |
| 20    | -MM-PHI -45 | 0.4  | 1 48 | 10 | 190 | <5 | 0.69 | 1  | 28 | 77  | 95 | 5.25 | <10        | 1,19 | 1101 | 5  | 0.03 | 87  | 1740 | 20  | <5 | <20 | 26  | 0.01 | <10 | 61 | <10 | 4  | 131  |

|              |           |       |        |    |     |    |      |    |    |    |            |      |     |      |           | EIS |      | $\mathbb{D}$ |      |    |        |        |      |       |        |    |     |          |     |
|--------------|-----------|-------|--------|----|-----|----|------|----|----|----|------------|------|-----|------|-----------|-----|------|--------------|------|----|--------|--------|------|-------|--------|----|-----|----------|-----|
| DELIS        |           | ON AK | 95-766 |    |     |    |      |    |    |    |            |      |     |      | DEC       | 141 | 995  |              |      | E  | ECO-TE | ECH LA | BORA | TORIE | S LTD. |    |     |          |     |
|              |           |       |        |    |     |    |      |    |    |    |            |      |     | PROS | PECT<br>M |     | PROG | RAM          |      |    |        |        |      |       |        |    |     |          |     |
| Et #.        | Tag #     | Ag    | AI%    | As | Ва  | Bi | Ca%  | Cd | Со | Cr | Cu         | Fe%  | La  | Mg%  | Mn        | Mo  | Na%  | Ni           | P    | Pb | Sb     | Sn     | Sr   | Ti%   | U      | V  |     | <u> </u> | Zn  |
| 21 -         | MM-PHL-46 | 0.4   | 0.91   | 10 | 195 | <5 | 0.80 | <1 | 26 | 50 | 63         | 4.73 | <10 | 0.62 | 955       | 5   | 0.01 | 89           | 1280 | 26 | <5     | <20    | 27   | 0.01  | <10    | 46 | <10 | 5        | 108 |
| 22           | MM-GST-01 | <.2   | 0.67   | 5  | 50  | <5 | 0.18 | <1 | 14 | 18 | 32         | 3.79 | <10 | 0.43 | 469       | 3   | 0.01 | 31           | 450  | 12 | <5     | <20    | 11   | <.01  | <10    | 9  | <10 | <1       | 54  |
| 23           | MM-GST-02 | <.2   | 1.08   | <5 | 165 | <5 | 0.69 | <1 | 13 | 48 | 26         | 2.21 | <10 | 0.63 | 631       | 1   | 0.02 | 40           | 760  | 12 | 5      | <20    | 41   | 0.02  | <10    | 16 | <10 | 2        | 52  |
| 24           | MM-END-01 | <.2   | 1.82   | <5 | 195 | <5 | 0.50 | <1 | 23 | 96 | 38         | 3.05 | <10 | 0.81 | 273       | <1  | 0.02 | 68           | 480  | 16 | 5      | <20    | 24   | 0.21  | <10    | 51 | <10 | 17       | 56  |
| 25           | MM-END-02 | <.2   | 0.72   | <5 | 80  | <5 | 0.52 | <1 | 12 | 19 | 6          | 1.06 | <10 | 0.26 | 1047      | <1  | 0.03 | 19           | 710  | 8  | <5     | <20    | 42   | 0.05  | <10    | 15 | <10 | 2        | 51  |
| 26           | MM-END-03 | <.2   | 1.74   | <5 | 95  | <5 | 0.20 | <1 | 10 | 37 | 16         | 1.59 | <10 | 0.44 | 171       | <1  | 0.02 | 22           | 500  | 12 | <5     | <20    | 13   | 0.14  | <10    | 32 | <10 | 4        | 44  |
| 27           | MM-END-05 | 0.4   | 0.64   | <5 | 100 | <5 | 0.49 | <1 | 28 | 15 | 6          | 1,98 | <10 | 0.21 | 2871      | 2   | 0.02 | 12           | 660  | 12 | <5     | <20    | 61   | 0.04  | <10    | 18 | <10 | <'       | 42  |
| 28           | MM-END-06 | <.2   | 1.14   | <5 | 120 | 5  | 0.62 | <1 | 14 | 43 | 1 <b>8</b> | 2.41 | <10 | 0.60 | 311       | <1  | 0.04 | 26           | 1220 | 12 | <5     | <20    | 34   | 0.14  | <10    | 43 | <10 | 4        | 40  |
| 29           | MM-KIN-01 | <.2   | 1.31   | 5  | 85  | <5 | 2.37 | <1 | 13 | 31 | 19         | 2.66 | <10 | 1.49 | 681       | <1  | 0.03 | 23           | 1050 | 12 | 15     | <20    | 49   | 0.09  | <10    | 32 | <10 | 6        | 38  |
| 30           | MM-KIN-02 | <.2   | 1.26   | <5 | 130 | <5 | 0.81 | <1 | 14 | 38 | 19         | 2.35 | <10 | 0.66 | 455       | <1  | 0.05 | 28           | 1410 | 10 | <5     | <20    | 38   | 0.14  | <10    | 43 | <10 | 5        | 44  |
| 31           | MM-KIN-03 | <.2   | 0.58   | <5 | 105 | <5 | 2,32 | <1 | 4  | 31 | 16         | 0.80 | <10 | 0.28 | 469       | <1  | 0.05 | 11           | 1150 | 8  | 5      | <20    | 58   | 0.03  | <10    | 24 | <10 | 2        | 123 |
| 32           | MM-KIN-04 | <.2   | 0.07   | <5 | 75  | <5 | 1.66 | <1 | <1 | 3  | 7          | 0.13 | <10 | 0.16 | 273       | <1  | 0.05 | 3            | 1640 | 22 | 5      | <20    | 48   | <.01  | <10    | 3  | <10 | <1       | 174 |
| 33           | MM-KIN-05 | <.2   | 1,16   | <5 | 125 | <5 | 0.62 | <1 | 11 | 39 | 14         | 2.15 | <10 | 0.62 | 210       | <1  | 0.04 | - 22         | 1220 | 8  | <5     | <20    | 29   | 0.14  | <10    | 38 | <10 | 5        | 46  |
| 34           | MM-KIN-06 | <.2   | 1.52   | <5 | 150 | <5 | 0.75 | <1 | 16 | 45 | 23         | 2.76 | <10 | 0.78 | 294       | <1  | 0.05 | 33           | 1350 | 12 | 5      | <20    | 37   | 0.17  | <10    | 48 | <10 | 6        | 54  |
| QC/D<br>Rene | ATA:      |       |        |    |     |    |      |    |    |    |            |      |     |      |           |     |      |              |      |    |        |        |      |       |        |    |     |          |     |
| 1            | MM-AK-06  | < 2   | 0.90   | <5 | 70  | <5 | 1.61 | 1  | 14 | 38 | 38         | 3.11 | <10 | 0.72 | 1059      | 5   | 0.02 | 44           | 1150 | 22 | <5     | <20    | 73   | 0.02  | <10    | 30 | <10 | 2        | 93  |
| 10           | MM-BEW-04 | 2.4   | 0.48   | <5 | 335 | <5 | 1.19 | 2  | 12 | 22 | 43         | 2.77 | <10 | 0.27 | 1217      | 3   | 0.01 | 103          | 1580 | 22 | <5     | <20    | 54   | <.01  | <10    | 19 | <10 | 4        | 134 |
| 19           | MM-PHL-40 | 0.4   | 0.48   | 5  | 155 | <5 | 2.45 | <1 | 9  | 22 | 36         | 1.94 | <10 | 0.43 | 653       | 2   | 0.03 | 43           | 1550 | 22 | <5     | <20    | 69   | <.01  | <10    | 22 | <10 | 9        | 64  |
| 28           | MM-END-06 | <.2   | 1.11   | <5 | 120 | 5  | 0.58 | <1 | 13 | 42 | 19         | 2.32 | <10 | 0.60 | 317       | <1  | 0.03 | 25           | 1120 | 10 | 5      | <20    | 30   | 0.12  | <10    | 40 | <10 | 3        | 39  |
| Stan         | dard:     |       |        |    |     |    |      |    |    |    |            |      |     |      |           |     |      |              |      |    |        |        |      |       |        |    |     |          |     |
| GEO          | '95       | 1.2   | 1.75   | 65 | 165 | <5 | 1,60 | <1 | 18 | 61 | 88         | 4.04 | <10 | 0.93 | 630       | <1  | 0.02 | 24           | 620  | 22 | 10     | <20    | 57   | 0.11  | <10    | 71 | <10 | 4        | 76  |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/766W XLS/95Delisle

:

Page 45

Page 2

#### 19-Sep-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

4

ļ

.



Page 46

## DEC 1 4 1995 PROSPECTORS PROGRAM MEMPR

#### DELISLE EXPLORATION AK 95-768 RR# 1, SITE 16, COMP, B1 CHASE, BC V0E 1M0

34 Rock samples received September 5, 1995 PROJECT #: None given SHIPMENT #: None given 2

ender für gehenden som

6

.

Values in ppm unless otherwise reported

|          | Ft #       | Tao #        | Au(opb)     | Aa Ai%            | As          | Ba  | Bi Ca%        | Cd | Со | Cr   | Cu           | Fe%   | La  | Mg%  | Mn           | Mo | Na%  | Ni  | P      | Pb         | Sb | Sn  | Sr  | <u>Ti%</u> | U   | <u>v</u>    | W   | Y  | Zn           |
|----------|------------|--------------|-------------|-------------------|-------------|-----|---------------|----|----|------|--------------|-------|-----|------|--------------|----|------|-----|--------|------------|----|-----|-----|------------|-----|-------------|-----|----|--------------|
| -        | 4          |              | 5           | < 2 0 77          | <5          | 50  | 5 2.44        | <1 | 18 | 173  | 64           | 4.17  | 20  | 1.21 | 269          | <1 | 0.06 | 91  | 840    | 32         | 10 | <20 | 199 | 0.22       | <10 | 267         | <10 | 12 | 1 <u>7</u> 5 |
|          | ו<br>ס     | > 0C-SCII-02 | 5           | < 2 1 84          | <5          | 60  | <5 2.77       | <1 | 20 | 186  | 32           | 4.96  | 30  | 2.00 | 431          | 4  | 0.04 | 76  | 850    | 40         | <5 | <20 | 319 | 0.08       | <10 | 212         | <10 | 18 | 1 <u>3</u> 4 |
| ۸' -     | 2          |              | 5           | < 2 1 38          | <5          | 115 | <5 3 71       | <1 | 13 | 110  | 34           | 4.00  | 20  | 1.77 | 523          | 6  | 0.02 | 57  | 820    | 30         | 15 | <20 | 151 | 0.02       | <10 | 131         | <10 | 14 | 1 <u>5</u> 5 |
|          | 3          |              | 5           | < 2 4 27          | <5          | 45  | 20 0 41       | <1 | 47 | 688  | 111          | 10.60 | <10 | 3,07 | 455          | <1 | 0.02 | 155 | 630    | 16         | <5 | <20 | 6   | 0.30       | <10 | <u>2</u> 56 | <10 | <1 | 83           |
|          | 4          |              | 5           | 04 0 26           | <5          | 70  | <5 1.62       | <1 | 3  | 132  | 17           | 1.08  | <10 | 0.23 | 282          | 4  | 0.05 | 10  | 50     | 56         | <5 | <20 | 69  | 0.01       | <10 | 12          | <10 | 1  | 12           |
|          | J          | 00-306-03    | , 0         | 0.4 0.20          | •           |     |               |    |    |      |              |       |     |      |              |    |      |     |        |            |    |     |     |            |     |             |     |    |              |
|          | 6          |              | 5           | < 2 1 29          | <5          | 40  | <5 0.35       | <1 | 19 | 114  | 67           | 2.85  | <10 | 0.67 | 174          | <1 | 0.08 | 14  | 60     | 8          | <5 | <20 | 12  | 0.10       | <10 | 64          | <10 | <1 | 24           |
|          | 7          |              | , 5         | < 2 2 74          | <5          | 60  | 10 1.47       | 1  | 52 | 44   | 183          | 7,98  | <10 | 2.01 | 587          | <1 | 0.11 | 69  | 820    | 10         | <5 | <20 | 7   | 0.51       | <10 | 453         | <10 | 10 | 69           |
|          | 0          |              | . 0<br>I 50 | < 2 6 24          | 、<5         | 15  | <5 8.87       | <1 | 39 | 52   | 2 <u>3</u> 4 | 4.86  | 40  | 1.32 | 7 <b>7</b> 9 | 3  | 0.03 | 52  | >10000 | <2         | 10 | <20 | 183 | 0.03       | <10 | 41          | <10 | 31 | 22           |
|          | - a<br>- A |              |             | 0.2 1 40          | / <5        | 10  | <5 2.08       | <1 | 49 | 61   | 494          | 4.27  | <10 | 0.03 | 78           | 4  | 0.18 | 73  | 4400   | 6          | <5 | <20 | 310 | 0.02       | <10 | 4           | 20  | 3  | 13           |
|          |            |              | , J         | < 2 7 22          | 15          | 20  | <5 5.26       | <1 | 18 | 74   | 44           | 2.75  | <10 | 0.19 | 236          | 2  | 0.13 | 35  | 620    | 42         | <5 | <20 | 398 | 0.05       | <10 | 14          | <10 | 2  | 13           |
|          | 10         | 00-200-047   |             |                   |             |     | • • • • • • • |    |    |      |              |       |     |      |              |    |      |     |        |            |    |     |     |            |     |             |     |    |              |
|          | -1-1       | OC-PHL-200   | ) 5         | < 2 0.09          | 5           | 30  | <5 0.13       | <1 | 2  | 206  | 20           | 0.65  | <10 | <.01 | 56           | 9  | <.01 | 12  | 390    | 10         | <5 | <20 | 11  | <.01       | <10 | 1           | <10 | <1 | 13           |
|          | <br>       | OC-PHI-42    | 2 60        | >30 0.02          | <u>)</u> 10 | <5  | <5 > 15       | 39 | 1  | 18   | 10           | 0.57  | <10 | 9.20 | 836          | <1 | <.01 | <1  | 200 >  | 10000      | 95 | <20 | 858 | <.01       | <10 | 8           | <10 | 6  | 2317         |
|          | 712        |              | 2 5         | 0.2 0.02          | <5          | 25  | <5 > 15       | <1 | <1 | 13   | <1           | 1.23  | <10 | 7.14 | 1230         | 2  | <.01 | <1  | 200    | 88         | 60 | <20 | 411 | <.01       | <10 | 6           | <10 | 6  | 25           |
|          |            | FIT-PHI-30   | 130         | >30 < 0.01        | ) <5        | 10  | 40 0.28       | 11 | 2  | 290  | 27           | 0.64  | <10 | 0.07 | 122          | 11 | <.01 | 9   | 10 2   | -10000     | 35 | <20 | 9   | < 01       | <10 | 2           | <10 | <1 | 21           |
|          | 15         |              |             | 04 0.09           | 830         | 15  | <5 > 15       | <1 | 26 | 138  | 5            | 3,65  | <10 | 8,70 | 1580         | 2  | <.01 | 268 | 40     | 146        | 50 | <20 | 882 | <.01       | <10 | 7           | <10 | <1 | 23           |
|          | 10         | 1211120      | -           |                   | -           |     |               |    |    |      |              |       |     |      |              |    |      |     |        |            | _  |     |     |            |     |             |     |    | -            |
|          | 16         | ELT-PHL-44   | 4 5         | 6 0.6 0.14        | 10          | 25  | <5 0.15       | <1 | 4  | 237  | 4            | 1.40  | <10 | 0.05 | 142          | 10 | <.01 | 25  | 260    | <u>348</u> | <5 | <20 | 10  | <.01       | <10 | 13          | <10 | <1 | 78           |
|          | 17         | OC-AK-0      | 3 5         | 5 <.2 <b>0.23</b> | <5          | 190 | <\$ 0.50      | <1 | 14 | 137  | 16           | 3.10  | <10 | 0.06 | 689          | 6  | 0.02 | 56  | 430    | 36         | <5 | <20 | 41  | < 01       | <10 | 39          | <10 | 4  | 70           |
| <b>S</b> | 18         | OC-AK-0      | -<br>4 f    | 5 <.2 2.32        | <5          | 245 | <5 5.05       | 1  | 39 | 284  | 65           | 6.69  | <10 | 3.18 | 1060         | <1 | 0.02 | 116 | 920    | 30         | 15 | <20 | 223 | 0.14       | <10 | 143         | <10 | 8  | /1           |
|          | 10         | OC-AK-0      | 5 5         | 5 <.2 0.46        | <5          | 105 | 5 3.84        | 1  | 15 | 66   | 17           | 4.62  | 40  | 0.68 | 1018         | 6  | 0.02 | 24  | 2320   | 34         | <5 | <20 | 175 | < 01       | <10 | 71          | <10 | 11 | 116          |
|          | 20         | OC-AK-0      | 7 5         | 5 19.8 0.04       | ) <5        | 10  | 45 0.04       | <1 | 8  | 257  | 83           | 2,46  | <10 | <.01 | 216          | 10 | <.01 | 13  | <10    | 402        | <5 | <20 | <1  | <.01       | <10 | 2           | <10 | <1 | 5            |
|          | 20         | 007410       |             |                   |             |     |               |    |    |      |              | ,भुः  |     |      |              | •  |      |     |        |            |    |     |     |            |     |             |     | _  |              |
|          | 21         |              | 6 5         | 5 2.4 0.93        | <5          | 45  | <5 0.25       | <1 | 7  | 95   | 989          | 4.56  | <10 | 0.60 | 356          | 6  | 0.04 | 6   | 1180   | 14         | <5 | <20 | 18  | 0.02       | <10 | 31          | <10 | 3  | 15           |
|          | 27         | FI T-KIN-0   | 7 40        | 7.4 1.57          | <5          | 75  | <5 2.08       | <1 | 30 | 449_ | 6943         | 4.95  | <10 | 1.65 | 701          | <1 | 0.18 | 31  | 1470   | 18         | 15 | <20 | 105 | 0.50       | <10 | 189         | <10 | 9  | 40           |
| A        | 22         | FI T-KIN-0   | 8           | 5 <.2 0.82        | <5          | 65  | <5 0.22       | <1 | 4  | 104  | 23           | 4.18  | <10 | 0.44 | 412          | 5  | 0.07 | 4   | 1110   | 6          | <5 | <20 | 10  | 0.03       | <10 | 14          | <10 | 6  | 10           |
|          | 24         |              | 1 !         | 5 0.2 0.91        | <5          | 20  | <5 0.21       | <1 | 5  | 127  | 22           | 3,00  | <10 | 0,66 | 177          | 4  | 0.03 | 11  | 330    | 26         | <5 | <20 | 9   | <.01       | <10 | 38          | <10 | <1 | 31           |
| •        | 25         | OC_HOS-0     | 2           | 5 <.2 1.05        | ; <5        | 315 | 5 0.06        | <1 | 6  | 139  | 17           | 2.80  | <10 | 0.40 | 165          | 3  | 0.02 | 20  | 290    | 8          | <5 | <20 | 3   | 0.03       | <10 | 39          | <10 | <1 | 49           |
|          |            | QQ 1100 V    |             |                   | -           | -   |               |    |    |      |              |       |     |      |              |    |      |     |        |            |    |     |     |            |     |             |     |    |              |

DELISLE EXPLORATION AK 95-768

1

Page 47

Ι.

...

ECO-TECH LABORATORIES LTD.

الموالية المراري الموالية الموال

-

| Ft #                                       | Tag #       | Au(ppb) | Ag Al%    | As     | Ba         | Bi Ca%  | Cd  | Ċo     | Cr' | Cu        | Fe%  | La    | Mg%   | Mn   | Mo   | Na%  | Ni           | <u> </u> | Pb            | Sb | Sn  | Sr          | <u>Ti%</u> | <u> </u> | <u>v</u> | <u>w</u> | Y    | Zn          |
|--------------------------------------------|-------------|---------|-----------|--------|------------|---------|-----|--------|-----|-----------|------|-------|-------|------|------|------|--------------|----------|---------------|----|-----|-------------|------------|----------|----------|----------|------|-------------|
|                                            | 00-200-03   | <u></u> | 04010     | 20     | 30         | <5 0.28 | 2   | 4      | 202 | 8         | 1.23 | <10   | 0.04  | 237  | 15   | <.01 | 20           | 720      | 308           | <5 | <20 | 19          | <.01       | <10      | 2        | <10      | 1    | 212         |
| 20                                         | TOENCH 1    | 5       | 02010     | 5      | 35         | <5 0.02 | <1  | 12     | 419 | 34        | 2.04 | <10   | <.01  | 529  | 14   | <.01 | 34           | 90       | 66            | <5 | <20 | <1          | <.01       | <10      | 12       | <10      | <1   | 36          |
| 21                                         | TDENCU 1 #3 | 5       | 0.6 0.06  | <5     | 35         | 5 0 02  | <1  | 7      | 193 | 9         | 3.13 | <10   | <.01  | 830  | 6    | <.01 | 19           | 130      | 6             | <5 | <20 | 2           | < 01       | <10      | 20       | 10       | <1   | 31          |
| 20                                         |             | 5       | < 2 0.58  | <5     | 65         | 5 8 01  | 2   | 48     | 118 | 46        | 9.54 | <10   | 1.41  | 764  | 8    | <.01 | 1 <u>8</u> 2 | 1270     | <2            | <5 | <20 | 94          | <.01       | <10      | 70       | <10      | 1    | 133         |
| 29                                         |             | 5       | ~2 0.00   | ~5     | 35         | <5 5 20 | <1  | 5      | 113 | 21        | 2.88 | <10   | 0.23  | 541  | 4    | <.01 | 9            | <10      | <2            | <5 | <20 | 83          | <.01       | <10      | 11       | <10      | <1   | 8           |
| 30                                         | RD-02       | Ð       | <.Z 0.09  | ~0     | 55         | NJ J.20 | - 1 | Ű      | 110 |           | 2.22 |       |       |      |      |      |              |          |               |    |     | 10          | £.         |          |          |          |      |             |
|                                            |             | c       | 45 4 0 02 | ~5     | <b>~</b> 5 | Z5 5 15 | 27  | 1      | 44  | 15        | 0.89 | <10   | 9.81  | 821  | 6    | <.01 | <1           | 250 :    | >10000        | 80 | <20 | <u>66</u> 4 | <.01       | <10      | 13       | <10      | 2    | <u>1439</u> |
| 37 -                                       | OC-BEW-OI   | 5.      | 13.4 0.02 | 20     | ~0         |         | ~1  | י<br>ק | 761 | 7         | 179  | <10   | 0.02  | 86   | 68   | <.01 | 15           | 440      | 152           | <5 | <20 | 14          | <.01       | <10      | 2        | <10      | <1 ີ | 67          |
| 32                                         | FLI-BEW-01  | 5       | <.2 0.07  | 30     | 99         | <5 0.10 | ~ 1 | - 77   | 104 | 97        | 3.02 | <10   | 0.86  | 547  | े दी | 0.01 | 39           | 800      | 1.98          | <5 | <20 | 32          | 0.24       | <10      | 102      | <10      | 4    | 44          |
| 33                                         | FLT-AK-12   | 5       | <.2 0.96  | <0<br> | 35         | <5 0.72 | 1   | 21     | 40  | <u>91</u> | 0.02 | ~10   | 3 21  | 8075 | R    | < 01 | 43           | 910      | <b>.</b><br>8 | 15 | <20 | 95          | 0.01       | <10      | 12       | <10      | <1   | 82          |
| 34                                         | OC-GST-O1   | 5       | 1.4 1.08  | <5     | 45         | 10 6.18 | 1   | 20     | 40  | 40        | 0.03 | ~10   | J.Z I | 0010 | 0    |      |              |          |               |    |     |             |            |          |          |          |      |             |
| <u>QC/DATA:</u><br><i>Resplit:</i><br>R/S1 | OC-SCII-O2  | 5       | <.2 0.71  | <5     | 60         | <5 2.28 | <1  | 17     | 155 | 41        | 3.94 | 20    | 1.14  | 270  | <1   | 0.05 | 85           | 760      | 26            | <5 | <20 | 179         | 0.22       | <10      | 253      | <10      | 12   | 167         |
| -Ronost-                                   |             |         |           |        |            |         |     |        |     |           |      |       |       |      |      |      |              |          |               |    |     |             |            |          |          |          |      |             |
| 1                                          | oc_scil-02  | 5       | <.2 0.78  | <5     | 50         | <5 2.45 | <1  | 19     | 176 | 64        | 4.17 | 20    | 1.20  | 268  | <1   | 0.06 | 90           | 840      | 30            | 10 | <20 | 200         | 0.24       | <10      | 268      | <10      | 14   | 175         |
| 10                                         |             | 5       | < 2 6.65  | 10     | 20         | <5 4.83 | <1  | 16     | 70  | 40        | 2.58 | <10   | 0.18  | 230  | 2    | 0.12 | 33           | 600      | 42            | <5 | <20 | 361         | 0.05       | <10      | 13       | 10       | 2    | 11          |
| 19                                         | OC-AK-05    | 5       | <.2 0.48  | <5     | 110        | <5 3.99 | <1  | 15     | 69  | 18        | 4.78 | 40    | 0.72  | 1056 | 6    | 0.02 | 23           | 2420     | 36            | <5 | <20 | 183         | <.01       | <10      | /4       | <10      | 11   | 121         |
| <b>Standard:</b><br>GEO'95                 |             | 145     | 1.2 1.66  | 60     | 150        | <5 1.57 | <1  | 17     | 58  | 82        | 3.77 | ′ <10 | 0.86  | 626  | <1   | 0.02 | 25           | 600      | 20            | <5 | <20 | 57          | 0.11       | <10      | 74       | <10      | 4    | 71          |

df/766W XLS/95Delisle

.

C

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer P

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

29-Sep-95

DEC 1 4 1995 PROSPECTORS PROGRAM MEMPR DELISLE EXPLORATION ETK 95-837 RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0

14 Moss/Matt samples received Sept. 19, 1995 **PROJECT #: None given SHIPMENT #: None given** 

Values in ppm unless otherwise reported

| Ft # Tag #    | Au(onh)          | Αa      | AI %  | As         | Ba  | Bi | Ca % | Cd  | Co | Cr  | Cu  | Fe % | La  | Mg % | Mn   | Мо | Na % | Ni  | <u> </u> | Pb | Sb | Sn  | Sr | Tì % | U   | <u> </u> | W   | <u>Y</u> | <u>Zn</u>  |
|---------------|------------------|---------|-------|------------|-----|----|------|-----|----|-----|-----|------|-----|------|------|----|------|-----|----------|----|----|-----|----|------|-----|----------|-----|----------|------------|
| 4 MM 01 2km   | ~5               | <u></u> | 0.89  | <5         | 90  | <5 | 0.48 | <1  | 10 | 21  | 13  | 2.45 | 20  | 0.32 | 381  | <1 | <.01 | 17  | 1480     | 10 | <5 | <20 | 26 | 0.06 | <10 | 36       | <10 | 8        | 49         |
|               | ~5               | ~ 2     | 1.03  | <5         | 105 | <5 | 1 81 | 1   | 17 | 45  | 30  | 3.72 | <10 | 1.27 | 870  | 2  | 0.02 | 33  | 1150     | 12 | <5 | <20 | 37 | 0.04 | <10 | 61       | <10 | <1       | 97         |
|               | 40-              | ~.4     | 1.00  | <5         | 150 | <5 | 1 10 | 2   | 27 | 84  | 54  | 4.83 | <10 | 1.12 | 894  | 4  | 0.01 | 64  | 1420     | 22 | <5 | <20 | 46 | 0.03 | <10 | 80       | <10 | 3        | 85         |
|               | 10-<br>~5        | ~.2     | 1 3 3 | ~5         | 135 | <5 | 0.83 | <1  | 28 | 90  | 55  | 5.02 | <10 | 1.15 | 861  | 3  | <.01 | 66  | 1540     | 24 | <5 | <20 | 33 | 0.04 | <10 | 83       | <10 | 3        | 75         |
|               | ~5               | ~.2     | 1.49  | ~5         | 170 | <5 | 1 25 | 2   | 36 | 83  | 72  | 6.05 | <10 | 1.29 | 1168 | 4  | 0.01 | 79  | 1540     | 18 | <5 | <20 | 40 | 0.03 | <10 | 104      | <10 | 3        | 96         |
| 5 MM-PHK-04   | <b>NO</b>        | ~.2     | 1.40  | ~0         |     | ~  | 1.20 | -   |    |     |     |      |     |      |      |    |      |     |          |    |    |     |    |      |     |          |     |          |            |
|               | -5               | 20      | 1 80  | <5         | 205 | <5 | 1.20 | 1   | 40 | 98  | 84. | 6.49 | <10 | 1.52 | 1442 | 5  | <.01 | 92  | 1480     | 18 | <5 | <20 | 40 | 0.04 | <10 | 113      | <10 | 3        | <u>113</u> |
|               | ~5               | ~2      | 1.00  | <5         | 165 | <5 | 1.09 | 3   | 43 | 89  | 81  | 6.79 | <10 | 1.44 | 1223 | 5  | 0.01 | 87_ | 1470     | 14 | <5 | <20 | 38 | 0.03 | <10 | 118      | <10 | з        | 101        |
|               | ~0               | ~.2     | 1.00  | ~          | 140 | <5 | 1.00 | -   | 45 | 80  | 78  | 6.67 | <10 | 1.43 | 1071 | 5  | <.01 | 85  | 1130     | 10 | <5 | <20 | 34 | 0.04 | <10 | 120      | <10 | <1       | 103        |
| 8 (MM-PHR-07  | <0<br>~5         | <u></u> | 1.00  | ~5         | 125 | <5 | 0.60 | 3   | 26 | 80  | 44  | 4.59 | <10 | 1.29 | 779  | 3  | <.01 | 79  | 1320     | 8  | <5 | <20 | 27 | 0.04 | <10 | 63       | <10 | 2        | 208        |
| 9 - MM-S17-01 | <0<br>-5         | ~.2     | 0.00  | ~0         | 475 | ~5 | 1 45 | 3   | 12 | 44  | 48  | 2.35 | <10 | 0.58 | 1197 | 2  | <.01 | 55  | 1760     | 34 | <5 | <20 | 58 | 0.01 | <10 | 26       | <10 | 8        | 109        |
| 10- MM-S17-02 | <0               | 5.Z     | 0.90  | ~0         | 175 | ~0 | 1.40 | Ŭ   |    | ••  |     |      |     |      |      |    |      |     |          |    |    |     |    |      |     |          |     |          |            |
| 44 104 047 04 | ~5               | ~ 2     | 0.23  | <i>c</i> 5 | 135 | <5 | 1 87 | 2   | 4  | 21  | 15  | 0.76 | 10  | 0.57 | 569  | 1  | 0.02 | 22  | 1530     | 30 | 10 | <20 | 74 | <.01 | <10 | 11       | <10 | 7        | 42         |
| 11 MM-517-04  | ~0               | ~.2     | 0.20  | 10         | 125 | <5 | 2.08 | - 3 | 17 | 75  | 35  | 2.12 | <10 | 1.12 | 649  | 1  | 0.05 | 72  | 1400     | 12 | 10 | <20 | 79 | 0.02 | <10 | 34       | <10 | 3        | 75         |
| 12 MM-517-05  | <b>\</b> 0<br>∠E | ~.2     | 1.05  | ~5         | 130 | <5 | 1 13 | 1   | 33 | 73  | 46  | 5.35 | <10 | 1.31 | 653  | 3  | <.01 | 62  | 1540     | 8  | <5 | <20 | 53 | 0.04 | <10 | 67       | <10 | 2        | 87         |
| 13 MM-S17-00  | ~0<br>E          | ~.2     | 1.20  | ~5         | 165 | ~5 | 1.10 | i   | 30 | 101 | 46  | 6.51 | <10 | 1.28 | 805  | 3  | <.01 | 78  | 1960     | 8  | <5 | <20 | 44 | 0.05 | <10 | 83       | <10 | 2        | 76         |
| 14 MM-517-07  | 5                | ~.2     | 1.40  | ~0         | 155 |    | 1.01 | 1   |    |     |     |      | • - |      |      |    |      |     |          |    |    |     |    |      |     |          |     |          |            |
| OC/DATA:      |                  |         |       |            |     |    |      |     |    |     |     |      |     |      |      |    |      |     |          |    |    |     |    |      |     |          |     |          |            |
| Repeat:       |                  |         |       |            |     |    |      |     |    |     |     |      |     |      |      |    |      |     |          |    | _  |     |    |      |     |          |     | -        | 40         |
| 1 MM-01 3km   | <5               | <.2     | 0.88  | <5         | 90  | <5 | 0.47 | <1  | 10 | 21  | 13  | 2.39 | 10  | 0.32 | 379  | <1 | <.01 | 17  | 1440     | 10 | <5 | <20 | 25 | 0.06 | <10 | 35       | <10 | 1        | 49         |
| 4 MM-PHR-03   | <5               | -       | -     | -          | -   | -  | -    | -   | -  | -   | +   | -    | -   | -    | -    | -  | -    | -   | -        | -  | -  | -   | -  |      | -   | -        | -   | -        | -          |
| 10 MM-S17-02  | -                | 0.2     | 1.03  | 10         | 185 | <5 | 1.52 | 3   | 15 | 50  | 55  | 2.47 | <10 | 0.67 | 1290 | 3  | 0.01 | 63  | 1820     | 44 | <5 | <20 | 72 | 0.01 | <10 | 30       | <10 | 10       | 119        |
| Standard:     |                  |         |       |            |     |    |      |     |    |     |     |      |     |      |      |    |      |     | <b></b>  |    | _  |     |    |      |     |          |     |          |            |
| GEO'95        | 150              | 1.0     | 1.54  | 75         | 160 | <5 | 1.66 | <1  | 18 | 55  | 80  | 3.85 | <10 | 0.91 | 673  | <1 | 0.01 | 26  | 650      | 20 | <5 | <20 | 53 | 0.08 | <10 | 70       | <10 | 4        | 76         |

NOTE: \* = Results to follow

- df/846 CXLS/95Delisie ECO-TECH LABORATORIES LTD. PT Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

Page 48

#### 29-Sep-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

•

.

Values in ppm unless otherwise reported

| ļ | RECEIVED            | · · · · · · · · · · · · · · · · · · · |
|---|---------------------|---------------------------------------|
|   | DEC 1 4 1995        |                                       |
|   | PROSPECTORS PRODATA | •                                     |

#### DELISLE EXPLORATION AK 95-838 RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0

23 Rock samples received Sept. 19, 1995 **PROJECT #: None given** SHIPMENT #: None given

-

| Et #. | Tag #      | Au(ppb)     | Ag   | Al % | As   | Ba              | Bi | <u>Ca %</u>      | Cd | Co            | Cr  | Cu  | Fe %  | Lal | Mg % | Mn   | Mo | Na % | Ni   | P    | Pb   | Sb | Sn  | Sr  | Ti % | U   | <u>v</u> | <u>W</u> | <u>Y</u> | Zn   |
|-------|------------|-------------|------|------|------|-----------------|----|------------------|----|---------------|-----|-----|-------|-----|------|------|----|------|------|------|------|----|-----|-----|------|-----|----------|----------|----------|------|
| 1     | OC-PHR-00  | 5           | <.2  | 3.61 | <5   | 235             | 10 | 3.79             | 2  | 51            | 83  | 55  | 10.00 | <10 | 3.72 | 1449 | 3  | 0.01 | 61   | 2210 | <2   | <5 | <20 | 156 | 0.17 | <10 | 252      | <10      | 17       | 153  |
| 2     | OC-PHR-01  | 5           | <.2  | 0.58 | <5   | 80              | 5  | 4.49             | 1  | 15            | 45  | 23  | 5.28  | <10 | 1.09 | 859  | 8  | <.01 | 12   | 2610 | 12   | <5 | <20 | 100 | <.01 | <10 | 45       | <10      | 6        | 180  |
| 3     | OC-PHR-02  | 10          | <.2  | 0.95 | <5   | 50              | 5  | 8.54             | 1  | 40            | 61  | 51  | 9.42  | <10 | 2.25 | 1789 | 6  | <.01 | 46   | 1440 | 8    | <5 | <20 | 514 | 0.03 | <10 | 181      | <10      | 16       | 110  |
| 4     | OC-PHR-03  | 5           | <.2  | 0.78 | <5   | 95              | <5 | 6.27             | 2  | 33            | 50  | 44  | 6.95  | <10 | 1.61 | 1063 | 5  | <.01 | 35   | 920  | 4    | <5 | <20 | 312 | 0.03 | <10 | 122      | <10      | 9        | 67   |
| 5     | OC-PHR-05  | 5           | <.2  | 0.27 | <5   | 135             | <5 | 3.26             | <1 | 3             | 89  | 2   | 1.09  | <10 | 0.24 | 402  | 1  | <.01 | 7    | 30   | 28   | <5 | <20 | 52  | <.01 | <10 | 6        | <10      | 2        | 21   |
| 6     | OC-PHR-06  | 5           | <.2  | 0.26 | <5   | 55              | <5 | 0.08             | <1 | 1             | 68  | 3   | 0.75  | <10 | 0.02 | 228  | 2  | <.01 | 4    | 50   | 14   | <5 | <20 | 9   | <.01 | <10 | 6        | <10      | 2        | 13   |
| 7     | OC-PHR-15  | 5           | <.2  | 0.05 | <5   | 30              | <5 | 0.03             | <1 | 4             | 191 | 15  | 0.94  | <10 | <.01 | 136  | <1 | <.01 | 10   | 100  | 6    | <5 | <20 | <1  | <.01 | <10 | 2        | <10      | <1       | 10   |
| 8     | OC-PHH-01  | 10          | <.2  | 0.11 | <5   | 380             | <5 | 0.63             | <1 | <1            | 111 | 2   | 0.60  | <10 | <.01 | 225  | 3  | 0.03 | 4    | 40   | 10   | <5 | <20 | 63  | <.01 | <10 | 4        | <10      | 2        | 9    |
| 9     | OC-PFH-01  | 5           | <.2  | 0.12 | <5   | 440             | <5 | 0.74             | <1 | <1            | 97  | 2   | 0.55  | <10 | 0.01 | 199  | 5  | 0.03 | 2    | 50   | 12   | <5 | <20 | 79  | <.01 | <10 | 4        | <10      | 2        | 8    |
| 10    | OC-PFH-01E | 5           | 26.2 | 0.02 | <5   | 20 <del>5</del> | 75 | 1.71             | 2  | <1            | 203 | 4   | 0.54  | <10 | 0.02 | 288  | 18 | <.01 | 6    | 20   | 3892 | <5 | <20 | 176 | <.01 | <10 | 1        | <10      | 2        | <1   |
| 11    | OC-S17-05  | 5 5         | <.2  | 0.21 | <5   | 55              | 5  | > 15             | 1  | 30            | 36  | 31  | 7.80  | <10 | 4.97 | 1443 | 6  | <.01 | 115  | 930  | 22   | <5 | <20 | 393 | <.01 | <10 | 10       | <10      | <1       | 48   |
| 12    | OC-S17-06  | 3 30        | <.2  | 0.41 | 3135 | 95              | 20 | 0.38             | <1 | 1 <b>05</b> 3 | 96  | 322 | > 15  | <10 | <.01 | 812  | 33 | 0.02 | 1361 | 630  | 90   | <5 | <20 | 24  | <.01 | 80  | 17       | <10      | <1       | 164  |
| 13    | OC-PHL-13  | 3 40        | <.2  | 0.09 | <5   | 55              | <5 | 0.16             | 1  | 8             | 153 | 45  | 8.24  | <10 | <.01 | 164  | 14 | <.01 | 9    | 180  | <2   | <5 | <20 | 5   | <.01 | <10 |          | <10      | <1       | 14   |
| 14    | OC-PHL-51  | 5           | <.2  | 3.44 | <5   | 55              | <5 | 3.76             | 1  | 77            | 51  | 199 | 13.80 | <10 | 3.22 | 1582 | 9  | <.01 | 70   | 470  | <2   | <5 | <20 | 49  | 0.01 | <10 | 417      | <10      | <1       | 123  |
| 15    | OC-PHL-52  | 25          | <.2  | 0.07 | 70   | 10              | <5 | 0.36             | 3  | 10            | 231 | 5   | 2.12  | <10 | 0.07 | 170  | 24 | <.01 | 49   | 650  | 66   | <5 | <20 | 22  | <.01 | <10 | 3        | <10      | <1       | 379  |
| 16    | OC-PHL-54  | <b>1</b> 25 | 18.8 | 0.05 | 15   | <5              | 15 | > 15             | 68 | 5             | 75  | 36  | 1.15  | <10 | 7.99 | 958  | 91 | <.01 | 4    | 310  | 7736 | 40 | <20 | 698 | <.01 | <10 | 12       | <10      | 4        | 3508 |
| 17    | OC-OXE-74  | \$ 5        | <.2  | 0.47 | <5   | 90              | <5 | <del>5</del> .70 | 1  | 12            | 49  | 3   | 3.79  | 30  | 0.10 | 1079 | 5  | <.01 | 5    | 1340 | 24   | <5 | <20 | 37  | <.01 | <10 | 46       | <10      | 6        | 69   |
| 18    | OC-OXE-7   | 55          | <.2  | 0.35 | <5   | 910             | <5 | 4.88             | <1 | 3             | 52  | 9   | 2.15  | <10 | 0.25 | 575  | 4  | 0.01 | 5    | 230  | 42   | <5 | <20 | 94  | <.01 | <10 | 14       | <10      | 1        | 53   |
| 19    | OC-OXE-8   | ) 5         | <.2  | 0.35 | <5   | 90              | <5 | 0.15             | 2  | 31            | 180 | 76  | 8,18  | <10 | 0.06 | 824  | 10 | <.01 | 198  | 220  | 4    | <5 | <20 | 5   | <.01 | <10 | 100      | <10      | 2        | 138  |
| 20    | OC-OXE-8   | 1 10        | <.2  | 0.57 | <5   | 100             | <5 | 0.21             | 2  | 64            | 171 | 124 | 7.74  | <10 | 0.04 | 621  | 6  | <.01 | 266  | 620  | 18   | <5 | <20 | 13  | <.01 | <10 | 86       | <10      | 3        | 118  |
| 21    | OC-OXE-8   | 25          | <.2  | 0.44 | <5   | 70              | <5 | 3.81             | 1  | 36            | 184 | 101 | 8.42  | <10 | 1.13 | 570  | 8  | <.01 | 177  | 440  | <2   | <5 | <20 | 66  | <,01 | <10 | 79       | <10      | <1       | 98   |
| 22    | OC-OXE-9   | 55          | <.2  | 0.23 | <5   | 35              | <5 | 0.04             | <1 | 2             | 81  | 3   | 0.81  | <10 | < 01 | 234  | 2  | <.01 | 7    | 30   | 54   | <5 | <20 | 5   | <.01 | <10 | 5        | <10      | <1       | 18   |
| 23    | OC-OXE-95  | 35          | <.2  | 0.20 | <5   | 25              | <5 | 0.04             | <1 | 2             | 90  | 5   | 0.70  | <10 | <.01 | 54   | 7  | <.01 | 4    | 40   | 346  | <5 | <20 | 5   | <.01 | <10 | 3        | <10      | <1       | 373  |

Page 49

Page 1

| DELISL | .E EXP | LORATION | AK 95-838 |
|--------|--------|----------|-----------|
|--------|--------|----------|-----------|

ECO-TECH LABORATORIES LTD.

| Et #.                           | Tag #                                      | Au(ppb   | ) Ag        | AI 9       | As           | 8:        | I B         | i C       | 2 %          | Cd      | Co       | Cr         | Cu      | Fe %         | Lal        | Mg %         | Mn         | Mo       | Na %         | Ni       | P         | Pb        | Sb       | Sn         | Sr       | Ti %         | <u>U</u>   | <u>v</u>  | W          | Y      | Zn        |
|---------------------------------|--------------------------------------------|----------|-------------|------------|--------------|-----------|-------------|-----------|--------------|---------|----------|------------|---------|--------------|------------|--------------|------------|----------|--------------|----------|-----------|-----------|----------|------------|----------|--------------|------------|-----------|------------|--------|-----------|
| <u>QC/D/</u><br>Respli<br>R/S 1 | TA:<br>t:<br>OC-PHR-00                     | 5        | √<br><.2    | 3.6        | 4 <5         | 25        | 5 10        | ) 3       | 3.57         | 2       | 50       | 85         | 51      | 9.93         | <10        | 3.74         | 1422       | 3        | 0.01         | 60       | 2180      | <2        | <5       | <20        | 140      | 0.17         | <10        | 255       | <10        | 16     | 153       |
| <b>Repta</b><br>1<br>10<br>19   | t:<br>OC-PHR-00<br>OC-PFH-01B<br>OC-OXE-80 | 5        | 25.8<br><.2 | 0.0<br>0,3 | 1 <5<br>5 <5 | 220<br>91 | ) 7(<br>) < | 5,<br>5 ( | 1.68<br>0.15 | <1<br>2 | <1<br>31 | 193<br>178 | 4<br>74 | 0.52<br>8.13 | <10<br><10 | 0.01<br>0.06 | 289<br>821 | 18<br>10 | <.01<br><.01 | 6<br>197 | 20<br>210 | 3802<br>4 | <5<br><5 | <20<br><20 | 176<br>6 | <.01<br><.01 | <10<br><10 | <1<br>100 | <10<br><10 | 2<br>2 | <1<br>141 |
| 20<br>Stand<br>GEO'9            | OC-OXE-81<br>ard:<br>15                    | 5<br>150 | -<br>1.0    | 1.5        | <br>1 70     | 15        | 5 <         | -<br>5 ·  | -<br>1.62    | -<br><1 | -<br>18  | -<br>55    | -<br>80 | -<br>3.80    | -<br><10   | -<br>0.88    | -<br>651   | -<br><1  | -<br>0.01    | -<br>26  | -<br>620  | 18        | -<br><5  | -<br><20   | -<br>51  | -<br>0.09    | -<br><10   | -<br>70   | <10        | -      | -<br>75   |

0 Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

-

df/846 XLS/95Deliste

1

•

Page 50

#### 16-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

| RECEIVED                     |  |
|------------------------------|--|
| DEC 1 4 1995                 |  |
| PROSPECTORS PROGRAM<br>MEMPR |  |

#### DELISLE EXPLORATION AK 95-930 RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0

4 Rock samples received Oct. 6, 1995 **PROJECT #: None given SHIPMENT #: None given** 

#### Values in ppm unless otherwise reported

| Et #.                             | Tag #            | Au(ppb)    | Ag  | AI %              | As      | Ba       | Bi | Ca %              | Cd      | Co | Cr  | Cu | Fe % | La       | Mg %      | Mn       | Mo      | Na % | NI | P        | Pb      | Sb      | Sn  | Sr      | Tì %      | U        | V       | W        | Y      | Zn         |
|-----------------------------------|------------------|------------|-----|-------------------|---------|----------|----|-------------------|---------|----|-----|----|------|----------|-----------|----------|---------|------|----|----------|---------|---------|-----|---------|-----------|----------|---------|----------|--------|------------|
| 1                                 | OC-SHT-06        | 5          | 0.2 | 0.42              | 35      | 395      | <5 | 0.23              | <1      | 2  | 63  | 9  | 1.64 | 50       | 0.05      | 437      | 5       | <.01 | 4  | 470      | 14      | <5      | 20  | 17      | <.01      | <10      | 18      | <10      | 16     | 30         |
| 2                                 | OC-SHT-07        | 5          | 0.4 | 0.87              | <5      | 610      | 10 | 1.53              | 1       | 24 | 82  | 21 | 6.90 | 30       | 0.15      | 1870     | 11      | <.01 | 68 | 2510     | 16      | <5      | 60  | 55      | <.01      | <10      | 57      | <10      | 8      | 94         |
| 3                                 | OC-SHT-12        | 155        | 0.4 | 0.09              | <5      | 15       | <5 | 3.23              | <1      | 5  | 150 | 17 | 1.57 | <10      | 0.52      | 327      | 6       | <.01 | 10 | 40       | <2      | <5      | <20 | 36      | <.01      | <10      | 9       | <10      | <1     | 6          |
| 4                                 | OC-SHT-13        | 5          | 0.8 | 0.31              | <5      | 45       | 10 | 9.78              | 1       | 16 | 114 | 8  | 4.90 | <10      | 2.77      | 4501     | 7       | <.01 | 37 | 900      | 10      | 15      | <20 | 413     | <.01      | <10      | 8       | <10      | 2      | 38         |
| <u>QC/DA</u><br>Repeat            | <b>TA:</b><br>!: |            |     |                   |         |          |    |                   |         |    |     | ·  |      |          |           |          |         |      |    |          |         |         |     |         |           |          |         |          |        |            |
| 1                                 | OC-SHT-06        | _          | 0.2 | 0.41              | 25      | 390      | <5 | 0.28              | <1      | 2  | 62  | 9  | 1.62 | 50       | 0.06      | 453      | 6       | <.01 | 4  | 470      | 14      | <5      | <20 | 18      | <.01      | <10      | 18      | <10      | 16     | 29         |
| 2                                 | OC-SHT-07        | 5          | -   | -                 | -       | -        | -  | -                 |         | -  | -   | -  | -    | -        | -         | -        | -       | -    | -  | -        | -       | -       | -   | -       | -         | -        | -       | -        | -      | · <u>-</u> |
| <b>Respli</b> t<br>R/S 1          | ::<br>OC-SHT-06  | 5          | 0.8 | 0.47              | 25      | 410      | <5 | 0.24              | <1      | 2  | 70  | 11 | 1.68 | 50       | 0.05      | 447      | 6       | <.01 | 4  | 480      | 14      | <5      | 20  | 18      | <.01      | <10      | 18      | <10      | 16     | 29         |
| <i>Stands</i><br>GEO'9:<br>GEO'9: | ard:<br>5<br>5   | 145<br>150 | 1.2 | 1. <b>64</b><br>- | 65<br>- | 160<br>- | <5 | 1. <b>60</b><br>- | <1<br>- | 20 | 67  | 82 | 3.79 | <10<br>- | 0.85<br>- | 614<br>- | <1<br>- | 0.02 | 25 | 610<br>- | 18<br>- | <5<br>- | <20 | 62<br>- | 0.11<br>- | <10<br>- | 71<br>- | <10<br>- | 4<br>- | 74<br>-    |

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

1

df/916 XLS/95Delisle

Page 51

Page 1

#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING



10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 674 Phone (604) 573-5700 Fax (604) 573-4557

### CERTIFICATE OF ASSAY AK 95-532

5

DELISLE EXPLORATION RR#1, SITE 16-B1 CHASE, B.C. V0E 1M0 9-Aug-95

#### ATTENTION: Denis Delisie

24 Rock samples received July 25, 1995 PROJECT #: Not Given SHIPMENT #: Not Given

| ·.          | Ag    | Ag     | Pb   |  |
|-------------|-------|--------|------|--|
| ET #. Tag # | (g/t) | (oz/t) | (%)  |  |
| 18 OC 309   | 30.1  | 0.88   | 3.12 |  |
| 19 OC-SC-11 | 30.6  | 0.89   | 1.01 |  |

QC DATA:

Standard: MPIA 70.10

4.32

2.04

XLS/95Deliste



ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer





2-Oct-95

×,



10041 E. Trans Canada Hwy., B.R. #2, Kamloops, B.C. V2C 674 Phone (604) 573-5700 Fax (604) 573-4557

## CERTIFICATE OF ANALYSIS ETK 94-584/95

DELISLE EXPLORATION RR#1, SITE 16-B1 CHASE, B.C. VOE 1M0

95Delisie

54 moss mat samples received August 12, 1994 As per telephone request September 29, 1995

|       |           | Au           | •                     | •   |         | . · .        |     |      |
|-------|-----------|--------------|-----------------------|-----|---------|--------------|-----|------|
| ET #. | Tag #     | <u>(ppb)</u> |                       |     |         |              |     | ~    |
| 1     | MM-ONX-31 | <5           |                       |     |         | · · · 4      |     |      |
| 2     | MM-ONX-32 | <5 `         | · · ·                 |     |         | •            |     |      |
| 3     | MM-ONX-33 | <5           |                       |     | · .     | • .          |     | 1. A |
| 4     | MM-ONX-34 | <5           | +                     |     |         |              |     |      |
| 5     | MM-ONX-35 | <5           |                       |     |         |              | . * |      |
| 6     | MM-ONX-36 | <5           |                       |     |         |              |     |      |
| 7     | MM-ONX-37 | <5           |                       |     |         | · · · ·      | · . |      |
| 8     | MM-ONX-38 | <5           |                       |     |         |              | • * |      |
| 9     | MM-ONX-39 | <5           |                       |     |         |              |     |      |
| . 10  | MM-ONX-40 |              |                       |     |         |              |     |      |
| 11    | MM-ONX-41 | <5           |                       |     |         | • • •        |     |      |
| 44    | MM-OXE-01 | <5           |                       |     | Seat of | Q.Y 3        |     |      |
| 45    | MM-OXE-02 | 5            | лы () 2 <sup>-2</sup> |     |         |              |     |      |
| 46    | MM-OXE-03 | <b>5</b>     |                       | • . |         |              |     |      |
| 47    | MM-ONX-51 | 45           |                       |     |         | <b>:</b> * * |     | × *  |

ECP-TECH LABORATORIES LTD.

1

ECD-TECH LABORA (URIES LTD ⊭( Frank J. Pezzotti, A.Sc.T. B.C: Certified Assayer

Management and Management and Andrews

#### ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., B.R. #2, Kamloops, B.C. V2C 674 Phone (604) 573-5700 Fax (604) 573-4557

## CERTIFICATE OF ASSAY AK 95-768

#### DELISLE EXPLORATION RR#1, SITE 16-B1 CHASE, B.C. VOE 1M0

20-Sep-95

34 Rock samples received September 5, 1995 PROJECT #: None given SHIPMENT #: None given

8GN

LABORATORIES LTD.

| ET #. Tag #                                   | Ag<br>(g/t)   | Ag<br>(oz/t) | Pb<br>(%)            |  |
|-----------------------------------------------|---------------|--------------|----------------------|--|
| 12 OC-PHL-42<br>14 FLT-PHL-30<br>31 OC-BEW-01 | 35.3<br>168.9 | 1.03<br>4.93 | 5.22<br>9.46<br>1.09 |  |
| <u>QC DATA;</u><br>Standard:<br>Mp-IA         | 70.0          | 2.04         | 4.32                 |  |



ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Delisle









Rosts Q. GNEISS HEARAPPERS Hyste vers cut vert Rosts P. (U) in the Bland tQu Gweiss MURIT, P. ARSPRY CHILL IN Solo - ON P. ARSPRY CHILL IN W, Py, ARSPAY, CHALLA URTOCLASE, 93 CUEES Green Green Gossper 14 CEDAR 众 K RECEIVED 1 DEC 1 4 1995 111100- Emerso -PROSPECTORS PROGRAM MEMPR 1 ac- Finess -A MAP#2 Z- NORTH -== HOSKINS CREEK 250~ ANDAR RIVER (LAKE) 1"=250 METERS







د. داری در داری زیار مجمع

470 **\*** 

.

. , **\***2



CARTOON - OKE-373 CARTOON OXE 645 LOOKING NW LOOKING DOWN

\*1 ryr. ta 25% - LALT - FLSR-PORPL Concernation Pricon De NT QULAYERS



4 A ......





AMENYE 20

OXE SOIL SAMPLES ROCK SAMPLES 1"= 50"ETERS

1 1 53 OL- OXEN75 02 - 0x 2 - 217 5 62 01 70 110 4 184 61 10 22 10 110 24 18 10 82 8 83 70 101 177 62 18 10 75 5 212 35 3 7 51 18 + 158 5 2 25 5 1 34 373. Map #6

ANAY I ON CU. NIT'D ZA"

- - - - SUIL DAMPLES LAREN 25 METER STATIONS 80 SAMPLES TAKEN 43 BAMPLES - STALEN















![](_page_51_Picture_0.jpeg)

MAGNETOMETER PROSPECTING SHT-AREA NEAR SHEEP TRAIL 1"= 80 METERS MAP 11(A)

1.4

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)