BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

· •

.

PROGRAM YEAR:1995/1996REPORT #:PAP 95-10NAME:GORDON JOHNSTONE

PROSPECTORS ASSISTANCE PROGRAM 1994--1997

PROGRAM COMPLETION

AUTHOR GORDON JOHNSTONE DATE DEC. 20th / 95

PROJECT NO. 1

BAKER CREEK AREA

ACCESS & PROSPECTING ACTIVITY

PROJECT NO. 1

BAKER CR. AREA

Access to the Baker Cr. area was by 4x4 truck on forestry all weather roads for 80 km. to a camp we set up on a old landing site used for logging. From our camp we drove a few km. and then hiked the hillsides. General prospecting was done and rock samples were taken on rock outcrops of interest. Much of the area was covered with overburden and a great deal of hiking was involved trying to determine how large the body of mineralization was that we had found. Grid lines were run and soil samples were taken on some of the area which was covered with overburden.

BAPTY RESEARCH was contacted and Mike Bapty came out to have a look at the area. Mike Bapty felt that the area was potential enough to be optioned to some exploration company and a few drill holes should put in. Mike Bapty is going to handle the the option agreement between Barkhor Resouces Inc. and myself.

BAKER CR. AREA / 1995

SAMPLES FROM THE JODI CLAIMS

BAKER CR. AREA / 1995

SAMPLES FROM THE JODI CLAIMS

JODI CLAIMS

Rock Sample Description.

- Jodi no. 1 White to greyish Quartzite with small amounts of lead.
- Jodi no. 2 Quartz with seams of carbonate and bedded silver, lead, zinc and chalcopyrite.
- Jodi no. 3 Quartz with carbonate and bedded silver, lead and zinc.
- Jodi no. 4 Bedded black argillite with sulfides.
- Jodi no. 5 Quartzite with small amounts of lead and pyrites.
- Jodi no. 6 Rusty Quartz with lead.
- Jodi no. 7 Rusty Quartz with lead and full of vugs.
- Jodi no. 8 Carbonate formation with sulfides.
- Jodi no. 9 Quartz carbonate with lead and pyrites.
- Jodi no. 10 Siltstone with seams of quartz and bedded silver lead zinc.
- Jodi no. 11 Quartz with carbonate and bedded silver lead zinc.
- Jodi no. 12 Carbonate with bedded silver lead zinc and pyrites.

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC. V6A 1R61 PHONE(604)253-3158 FAX(604)253 GEOCHEMICAL ANALYSIS CERTIFICATE Ram Exploration File # 95-3655 Page 1

: : : : -			ې. د نور ک						12	00 -	2nd A	Ve is 	outh	, Cr	enbr	ook I	C V1ć	283	Subm	ltte	d bý:	Gorde	xn Jo	hņst	one				20024. 21321				ini. Sec		1
	SAMPL	2#	Mo pom	Cu ppn	Pb ppm	Žn ppm	Ag PO1	NI	Co pom	Mrs IDD01	Fe	As DOM	ບ	Au	th nom	ר אר מוס	Cd	Sb ODT	Bi	V	Cə Çə	P V	L.	Cr	Kg	Bo T	i I	B A(Na Na	K	u V	TL	Xg /		
		<u></u>		÷				<u> </u>				1-1-11	F F				Address of		- py.an	Plan.	*	···· ^	ppin	PC II		<u>bbu</u>	A PP	n 7		<u>, x</u>	POR :	pipin j	i nde	xpb	
	J00 1	#1	2	4	476	686	2.1	8	3	395	.84	3	7	<2	10	36	5.2	0	4	2	10 RA	007	2	£	8 / 0	162 0	•	7 07	64	~ .					
	100 I	#2	14	31	15341	1305	114.4	23	6	3271	3.30	4	17	<2	21	\$33	54.1	141	Š	2	6 32	030	5	11	3 64	92.0	: 2	5 ,03 1/	.01	.01	< .	<1	<1	<1	
	3001	#3	7	44	15421	12795	103.6	8	3	2770	2.13	2	5	<2	17	772	241 1	130	Š.	- 2	6 52	01A	ž	-1	2.87	0.0	: 2	-> ,19 ->	- 01	.01	SZ	0	1	25	
	1001	#4	2	205	4088	861	7.5	62	32	2464	7.41	8	<5	≺2	12	97	10.6	<2	í.	527	2 12	072	-1	28	2 00	10 2		ער כ חלר די	<.01 of	<.UI	<2	\$	4	22	
	1001	# 5	1	12	2075	487	5.1	9	6	1206	1.24	13	14	<2	14	65	7.4	, Š	3	2	11.18	012		2	8 60	10,J 8920	7) 1)	2 2.37	- 04	2,4/	4	5	1	5	
																•			-	4				•	0.00	00.10	•	J .U4	, ,01	.05	~ 2	2	<1	1	
	100 I	#6	7	238	2475	724	2.9	9	1	56	.85	14	<5	<2	<2	41	5.6	10	0	<1	18	002	c 1	R	10	552 0	1 /	т от		01	•			-	
	300 I	#7	2	966	17126	249	184.4	5	2	88	5,53	537	<5	<2	4	13	2.5	2029	1260	2	Sõ	007		10	33	75.0	1 2	ניט. כי היה ולי	.01		4	< 1	1	1	
	J00 1	#8	2	63	259	122	7.6	28	19	1444	5.19	5	8	<2	9	47	.7	28	14	48	4.02	042	š	10	76	812 0		3 .U7 71 46	.01	411	52	1	2 I	120	
	RÊ JO	01#8	2	67	255	126	7.0	31	19	1501	5.33	3	<5	<2	8	49	.3	26	ហេ	50	4 06	042	ž	14	77	84 0		3 .12 7 45	.02	. 10	~~	3	<1	5	
	100 I	#9	2	40	405	5065	2.8	11	3	3680	2.81	9	7	<2	22	162	20.0	6	9	2	8.39	023	7	-1	2 74	31-0	1	2 .12 7 10	- 42	.05	54	÷,	<1	ş	
																			-	-				• •			· `	J . (V	.01	,00	~4	4	,	6	
	100 1	#10	6	209	17649	287	68.4	17	4	3341	2.63	15	<5	<2	8	332	5.7	103	29	5	2.42	.027	1	34	1 18	15 c û	1 /	3 07	< 61	07		e		10	
	J00 1	#11	24	20	15379	6154	54.2	11	3	2488	1.80	<2	<s< th=""><th><2</th><th>15</th><th>664</th><th>147.3</th><th>61</th><th><2</th><th>5</th><th>6.02</th><th>016</th><th>5</th><th><1</th><th>3 67</th><th>21 - 0</th><th>1 2</th><th>2 10</th><th>2 01</th><th>- 01</th><th>47</th><th>2</th><th>¥.</th><th>19</th><th></th></s<>	<2	15	664	147.3	61	<2	5	6.02	016	5	<1	3 67	21 - 0	1 2	2 10	2 01	- 01	47	2	¥.	19	
	J001	#12	4	21	16442	3632	117.7	11	3.	2422	1.46	7	10	<2	18	1629	76.2	141	ž	3	10.08	.009	10	<	3.16	10<.0	t a	3 07	- 01	2.01	22	- Fe 2	2	8	
															-										- I VY	10.210	• •	01			~£	-	N I	10	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HINO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PP8 - SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning (RE' are Refurs and (RRE' are Reject Reruns.

DATE RECEIVED: SEP 19 1995 DATE REPORT MAILED: Sept 27/95

SIGNED BY MANGE C. LEONG, J.WANGE CERTIFIED B.C. ASSAYERS

					-			Ran	ı E≯	ալ	brat	ior	ı	FII	JE (F 95	5-36	555								J	Page	e 2	4	H
SAMPLE#	oM PPM	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Wi ppm	Co poin	Ил ррт	Fe X	As pom	U ppm	Au pçm	Th ppm	Sr. ppm	Cd ppm	Słb pomi	gi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Se PDM	TI X	8 DOM	Al X	Na X	K X	W Norm
JODI #1 0+05 JODI #1 255 JODI #1 505 JODI #1 755 JODI #1 1005	1 , 2 4	25 7 14 22 20	86 14 24 13 16	294 33 79 80 323	<.3 .3 <.3 1.3 1.1	14 3 4 9 13	9 1 2 2 4	1378 71 183 252 94	2.79 1.83 2.93 1.92 1.74	12 8 5 6 2	ଏ ଏ ଏ ଏ ଏ	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 3 4 12 13	1,1 <.2 .5 .3	<2 3 2 6 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 18 24 19 17	.23 .02 .04 .17 .28	.042 .016 .031 .058 .043	18 12 9 16 20	11 7 8 11 9	.36 .06 .10 .22 .34	139 26 49 65 178	.05 .05 .07 .08 .05	3 3 3 3 3 3 3 3 3	1.03 2.22 3.03 2.58 2.09	<.01 .01 .01 .02 .01	.10 .02 .03 .06	6 3 2 <2
J001 #1 125s J001 #1 150s J001 #1 175s J001 #1 200s J001 #2 0+0s	4 2 3 2 3	34 12 36 34 27	42 25 64 94 32	348 134 579 638 103	1.3 <.3 .6 <.3 2.1	13 8 17 14 11	5 2 11 10 7	441 80 771 342 1223	2.76 2.84 3.04 3.51 2.80	14 8 17 15 8	11 <5 ປ <5 <5	<2 <2 <2 <2 <2 <2	2 2 2 3 2 3 2	15 5 8 8 14	1,2 .3 .9 .3 .3	5 <2 8 <2 3	29432	21 27 20 24 25	.34 .08 .25 .23 .25	.041 .017 .053 .028 .081	15 15 20 19 19	11 14 18 14 12	.23 .20 .55 .44 .24	148 104 183 143 50	.15 .07 .04 .09 .11	00000	4,46 3.01 1.92 3.19 3.26	.03 .01 .01 .01 .03	.05 .05 .12 .09 .06	3 2 6 6 ~?
JOCI #2 255 JODI #2 505 JODI #2 755 RE JODI #2 755 JODI #2 1005	1 2 1 3	11 14 9 21	28 19 17 18 23	48 74 45 46 107	.3 <.3 <.3 <.3 <.3 <.3	3 5 6 5 9	i 3 3 4	137 95 80 82 127	1.99 3.70 3.13 3.19 3.42	4 9 7 8 6	ণ্ড গ্ গ গ গ গ গ গ গ গ গ গ গ গ গ গ গ গ গ	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 4 2 2	4 2 3 10	.8 .2 .4 .3 .7	2 <2 \$ \$ 2 2	2 2 4 2 2 2	21 19 23 23 24	.04 .03 .01 .01 .16	.028 .014 .018 .018 .027	10 21 26 25 19	6 8 10 11	.06 .14 .23 .23 .30	49 27 42 45 170	.09 .04 .03 .03 .07	3 3 3 3 3 3 3 3 3 3	1.76 .90 .88 .92 1.34	.01 <.01 <.01 <.01 <.01	.03 .04 .09 .08 .09	<2 4 3 4 2
J001 #2 125s J001 #2 150s J001 #2 175s J001 #2 200s J001 #3 0+150w	1 1 2 4 1	34 12 57 96 8	15 12 21 128 97	153 79 507 1173 74	<.3 <.3 .9 .9 <.3	8 3 14 17 5	2 1 2 12 1	45 27 497 4455 148	1.33 .90 2.66 2.66 1.73	<2 <2 8 23 9	<5 <5 19 39 <5	<2 <2 <2 <2 <2 <2	<2 <2 <2 8 <2 8 <2 8 <2	12 4 29 30 3	1.2 .4 1.2 4.0 <.2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< 2 2 2 3 2 3 2 3 2 3 2 3 2	14 14 19 21 15	.29 .03 1.12 1.31 .03	.020 .009 .054 .113 .019	21 19 13 17 30	7 5 10 17 10	.11 .07 .27 .41 .27	125 53 257 400 25	.03 .05 .17 .07 .09	00000 0000	1.76 .90 2.60 3.00 1.14	.01 .02 .03 .02 .01	.05 .03 .04 .08 .13	6 2 4 5 2
JODI #3 0+125W JODI #3 0+100W JODI #3 0+75W JODI #3 0+55W JODI #3 0+25W	2 1 2 1 1	21 23 18 14 18	85 140 36 16 14	232 241 45 43 44	.3 <.3 <.3 .3 <.3	13 12 16 8 12	6 7 3 4	303 3 1191 4 205 2 118 3 258 3	3.97 .65 2.87 5.06 5.71	26 21 21 14 27		<2 <2 <2 <2 <2 <2	8 6 4 5 6	2 2 3 3 2	.2 .4 .2 <.2 <.2	4 2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2	20 12 22 26 37	.01 .02 .03 .01 .01	.030 .037 .028 .028 .028	28 26 21 12 29	13 11 16 9 14	.58 .53 .31 .20 .29	22 35 29 29 34	.12 .12 .09 .10 .10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.57 1.62 1.10 2.00 1.12	<.01 <.01 .01 .01 <.01	.23 ,20 .19 .11 .17	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
JDDI #3 0+04 JDDI #4 0+1504 JDDI #4 0+1254 JDDI #4 0+1004 JDDI #4 0+754	1 2 1 1 2	12 37 8 11 19	26 155 55 22 14	116 302 94 36 43	<.3 <.3 <.3 <.3 .6	8 13 7 5 10	4 6 2 3	037 1 394 3 159 2 104 1 157 2	1.59 5.85 2.69 1.91 2.96	5 20 9 14 24	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2	~2 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5 3 3 2 3	.5 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	21 15 20 19 31	.04 .04 .02 .01 .01	.033 .044 .034 .017 .021	23 24 19 19 19	11 10 8 9 10	. 19 . 57 . 48 . 19 . 21	85 26 24 31 28	.05 .11 .13 .07 .09	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.29 1.58 1.23 1.17 1.03	.01 .01 .01 .01 .01	.08 .21 .19 .10 .14	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
JC01 #4 0+50W JC01 #4 0+25W JC01 #4 0+0W JC01 #5 0+150W JC01 #5 0+125W	1 1 2 2 2	53 11 11 37 32	23 9 13 59 124	88 94 46 143 260	<.3 <.3 <.3 1.3 .4	23 10 8 7 16	11 6 5 3 11	291 5 372 3 76 1 563 2 1073 3	.64 .31 .94 .27 .85	43 16 4 11 23	<5 <5 <5 <5	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	62424 24	2 6 3 7 5	<.2 <.2 <.2 1.0 ,2	<2 3 <2 <2 3	<u>^</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	82 23 14 22 46	.03 . .13 . .04 . .07 .	.054 .034 .024 .049 .032	18 13 26 17 18	34 11 7 8 15	.67 .31 .19 .11 .45	25 136 18 147 120	. 14 . 07 . 02 . 13 . 08	<3 <3 <3 <3 <3	1.65 2.02 .49 1.52 1.46	4.01 201 4.01 202 102	.27 .15 .06 .05 .18	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$
STANDARD C	21	62	40	133	6.6	70	32	937 4	.03	39	17	7	38	53 1	8.0	18	20	60	.52.	.094	39	60	.92	171	. 09	29	1.95	.06	. 17	11

Sample type: SOIL, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Ram Exploration FILE # 95-3655

.

SAMPLE#	Mo ppm	Cu Ppm	Pb ppm	2л ррп	Ag pçin	ri ppm	Co ppm	Nn ppm	Fe X	As ppm	U pom	Au ppin	Th ppm	\$r ppm	Cd ppm	Sb ppn	81 ppm	V ppm	Ca X	Р Х	La ppm	Cr ppin	Hg X	Be ppm	Ií X	B ppm	AL X	Ha X	K X	Li Dicket
JODI #5 0+100W JODI #5 0+75W JODI #5 0+50W JODI #5 0+25W RE JODI #5 0+25W	<) <) , 1	22 16 36 22 23	26 20 30 69 68	56 32 88 86 89	<.3 <.3 <.3 <.3 <.3	10 7 10 8 8	4 3 6 6 6	153 3 129 1 130 3 199 3 209 3	.50 .93 .06 .71 .83	21 20 2 5 8	<5 <5 <5 <5	<2 <2 <2 <2 <2 <2	3 22 22 22 22 22 22 22	2 1 3 4 4	<.2 <.2 <.2 <.2 .2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24 19 50 22 24	.01 .01 .02 .04 .04	.025 .015 .024 .040 .041	12 21 23 14 14	13 11 13 9 9	.28 .17 .38 .13 .13	47 24 59 110 113	.08 .03 .04 .05 .05	00000	2.01 .96 1.35 2.68 2.78	.01 <.01 <.01 .01 .01	.18 .09 .12 .05 .04	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
JOD 1 #5 0+0W JOD 1 #6 0+150W JOD 1 #6 0+125W JOD 1 #6 0+100W JOD 1 #6 0+75W	1 4 1 1	13 70 32 26 22	28 45 78 36 179	48 128 96 69 86	<.3 <.3 <.3 <.3 .3	8 20 12 10 9	5 9 10 5 6	295 3 520 4 853 2 326 3 558 3	.01 .70 .99 .79	13 62 19 30 20	\$ 8 5 5 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	29 25 4	45424	<.2 .3 <.2 <.2 <.2 <.2	2 3 <2 <2 <2	4 5 2 4 2	31 19 33 39 30	.03 .11 .02 .01 .03	.041 .022 .035 .021 .043	21 18 14 15 12	9 14 13 15 13	. 12 . 45 . 26 . 36 . 22	28 48 50 56	.04 .13 .07 .12 .08	00000 00000	.85 1.30 1.82 1.39 2.49	.01 <.01 .03 .01	.05 .28 .11 .17 .14	~~~~
JOB1 #6 0+50W JOD1 #6 0+25W JOD1 #6 0+0W JOD1 #7 0+150W JOD1 #7 0+125W	<1 <1 1 2 1	42 8 26 57 19	46 18 88 85 56	114 69 123 278 62	<.3 <.3 <.3 <.3	14 4 10 18 8	13 3 8 12 5	776 3 259 1 2247 3 667 4 302 2	57 .87 .21 .19 .04	20 5 13 31 16	<5 <5 <5 8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 7 3	2 3 4 3 3	<.2 <.2 .4 .5 <.2	\$ ₹ ₹ ₹ ₹ ₹ ₹ ₹	<2 <2 <2 <2 <2 <2 <2 <2 <2 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	13 25 19 22 36	.02 .01 .03 .03 .02	.041 .023 .047 .030 .021	27 25 19 23 16	8 6 10 14 18	.20 .09 .16 .52 .35	51 58 71 68 47	.02 .04 .03 .12 .12	0 0 0 0 0 0 0 0	1.03 .59 1.32 1.68 1.40	<.01 .01 .01 .01 .01	.07 .05 .07 .21 .15	~~ ~~ ~~ ~~ ~~
JOD1 #7 0+100# JOD1 #7 0+75W JOD1 #7 0+50W JOD1 #7 0+25W JOD1 #7 0+25W JOD1 #7 0+0W	1 2 <1 1 <1	30 30 13 27 41	89 21 44 64 14	239 57 48 170 57	5.0 .9 <.3 <.3 <.3	13 8 3 11 13	8 4 5 8 7	529 2 212 2 796 1 553 2 453 3	.80 .71 .56 .82 .73	10 4 7 9 8	\$ \$ 6 \$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 2 3 2	5 5 3 8 2	<.2 .4 .2 <.2	<2 5 <2 2 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	24 23 21 13 10	.06 .05 .01 .02 .01	.026 .068 .053 .031 .036	19 9 25 25 17	9 11 6 8 6	.30 .13 .10 .23 .12	245 41 55 431 26	.04 .11 .04 .02 .01	ठ ठ ठ ठ ठ	1.61 4.82 .66 .80 .69	.01 .02 .01 <.01 <.01	.10 .05 .06 .09 .03	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
JODI #8 0+150W JODI #8 0+125W JODI #8 0+100W JODI #8 0+75W JODI #8 0+75W JODI #8 0+50W	3 2 2 1	73 37 45 34 28	169 69 55 44 67	512 163 131 100 80	1.1 <.3 <.3 <.3	20 10 25 18 10	16 12 18 14 7	1834 4 1670 4 1636 6 781 5 1100 4	.70 .50 .18 .20 .37	31 3 62 35 9	17 <5 <5 <5	<>> < < < < < < < <>> <>> <>> <>> <>> <	5 3 6 5 2	65424	.9 .7 .2 <.2 .7	3 ~ ~ ~ ~ ~ ~ ~ ~	63 22 4 2	30 58 56 56 51	.07 .04 .04 .01 .03	.060 .055 .068 .048 .064	24 15 16 24 15	17 15 27 17 14	.48 .29 .56 .47 .27	94 149 88 60 71	.13 .09 .13 .08 .11	८ ८ ८ ८ ८ ८ ८	2.67 3.01 1.97 1.52 1.28	.01 .01 .01 <.01 .01	.22 .13 .23 .21 .11	5.68.2 A
JODI#80+25W JODI#80+0W JODI#90+150W JODI#90+125W JODI#90+125W JODI#90+100W	1 2 2 1	25 14 31 36 21	62 29 89 220 57	76 68 452 307 68	<.3 <.3 .4 .7	8 6 18 12 9	9 3 9 11 5	653 3 439 2 323 5 1111 4 380 2	.64 .86 .00 .47 .82	6 7 36 27 20	6 <5 7 7	<>< < < < < < < < < < < < < < < <>< <><	<2 <2 6 3 4	3 2 4 3 3	<.2 <.2 .4 .3	42234	4 2 5 3 2	29 17 24 39 97	.02 .01 .05 .05 .01	.041 .031 .034 .057 .030	21 17 20 18 22	9 8 17 13 10	.16 .10 .52 .37 .27	62 30 58 101 121	.03 .04 .09 .06 .13	ひ ひ ひ ひ ひ ひ ひ	1.19 1.31 1.75 2.00 1.07	.01 .01 <.01 .01 .01	.07 .04 .15 .15 .13	~~~~~
JODI #9 0+75W JODI #9 0+50W JODI #9 0+25W JODI #9 0+0W STANDARD C	<1 1 1 20	147 41 22 44 61	88 127 62 46 38	174 150 104 196 132	 <.3 .5 .6 <.3 <.4 <.5 	35 18 9 15 69	26 18 9 11 32	1512 7 1244 3 1017 4 1525 4 969 4	. 14 . 85 . 66 . 24 . 05	22 17 12 20 38	<5 <5 <5 <5 16	<2 <2 <2 <2 <2 <7	8 2 3 2 37	3 6 4 3 53	<.2 .5 <.2 <.2 18.0	<2 <2 <2 <2 18	<2 <2 <2 <2 21	157 38 38 11 62	.05 .08 .02 .03 .52	.072 .061 .064 .046 .094	14 19 21 17 39	32 15 10 8 62	.88 .31 .18 .18 .91	173 267 55 34 192	.20 .08 .06 .03 .09	ひ ひ ひ ひ 28	2.39 2.46 1.37 .97 1.95	<.01 .01 .01 <.01 .06	.54 .18 .09 .06 .15	<2 - <2 <2 2 11

.....

......

Sample type: SOLL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.

1.1

......

AAA MAR AMALITICAL

Ram Exploration FILE # 95-3655

Page 4

. ,

SAMPLE#	Hp.	Ću	Pb	 7 n	Aa	R I	C.o.	Mo	Fa			Å.,	Th	Čr.	r.d.	ch	D i		<u> </u>			0-			+ /					
	pon	ppn	poe	DOUL	DOR	200	DOUL	DOM	ž	DOM	000	DON	000	nbmi	500	nna	2000	200	. ца У	*	1.8		ng	2.0	11	۴ دمست	- AL	NA.	ĸ	¥
			P.1.							P P + 1.	Press.	popular				-	P-p-m	-	~		- Marini	- ppsii	^	ppa	<u>^</u>	- Libra	^	h		Ppm
JOD1 #10 0+150W	3	33	345	530	1.3	16	12	1212	3.55	28	<5	< Z	8	7	.5	5	5	22	05	046	26	10	45	240	07	~7	1 74	01	10	. –
JOD1 #10 0+125W	1	23	126	102	.7	8	4	407	3.41	11	Ś	<2	3	4	<.2	<2	5	55	02	035	19	13	28	40	17	7	4 22	-01	. 17	4
JODI #10 0+100W	1	51	233	315	<.3	17	12	875	4.63	14	હ	<2	7	Å	7	<2	õ	55	. 04	045	21	14	54	123	1.1.2	-7	1.44	- 01	. 13	5
J001 #10 0+75₩	1	118	166	205	.6	37	26	2196	7.88	19	6	- Ś	12	Ś	. o	<7	2	202	12	1004	11	71	1 18	160	19	2	2 47	.01	. 10	2
JOD1 #19 0+50W	2	36	38	91	.3	18	10	532	4.89	26	<5	ō	5	Ĩ.		2		00	02	0/5	17	10	51	40	15	2	1 /6	.01		~
	1 -											-	-	-			~	,,	.01		14	1.3	. 21	00	. 1.2	Q	1-40	.01	.4	< 2
JOD1 #10 0+25W	1 1	58	309	245	.4	28	39	15737	15.80	28	<5	<2	A3	5	22	<2	27	8	62	0.85	30	9	17	341	62	-7			07	-
JOD1 #10 0+097	1	20	30	131	.4	8	7	1032	3.05	- 9	<5	<2	ŝ	5		5	<2	18	.02	030	16	11	16	30	-02		1.¢0 1./0	<.U1	- 43	<2
3001 #11 0+150₩	2	23	134	270	<.3	10	5	372	2.64	16	< <u>\$</u>	<2	<ż	ž	<.2	- Ś	<2	24	05	220	22	10		213	-00		1.440-	.01	-00	ų.
JODI #11 0+125V	2	35	133	292	1.0	13	10	697	3.70	23	-<5	<2	5	ŝ	Ā	2	<2	24	n/.	050	23	12		203	-00-	3	1	.01	+ 19	د
JODI #11 0+100W	3	44	153	361	.B	20	12	951	6.30	45	<5	<2	ģ	ž		3	7	44	03	074	20	14	.41	107	100	-2	1.33	101	- 19	<2
	ł													•		-	-	•	.02		20	10	- 24	101		~ >	1.04	.01	+23	<2
JODT #11 0+75₩	2	31	172	180	.7	13	11	1512	4.84	25	s	<2	7	6	5	2	0	57	02	086	13	14	44	114	17	~7	1 60	04	40	
1 JOD1 #11 0+50W	2	40	136	177	< 3	17	14	2239	4.18	21	<5	õ	Å	ŝ	Ŕ	~2	2	20	05	250	10	18	- 14 1	174	11	-7	1.20	-91	+19	<2
JODI #11 0+25W	2	21	81	266	<.3	8	7	3323	3.70	30		2	š	Á	15	1		17	26	100	17	10	140	110	. 17	-7	1.17	.01	.20	Z
JC01 #11 0+04	1	31	128	415	<.3	14	11	3625	3.88	24	- 5	~	ŏ	ž	3.4	5	~2	11	.20	330	77	f K	. 10	110	02	7	. 90		-08	<2
JODI #12 0+150W	4	102	649	476	1.2	18	16	3244	6.15	75	<5	2	14		 T	2		44	02	027	22	12	74	04	.02	< <u>-</u>		<.UI	-08	<2
																5	• •				22	14	, 30	904	,00	53	1.55	• • • 1	.15	<2
RE JOD! #12 0+150W	4	97	650	466	1.6	19	16	3110	6.09	61	7	<2	13	R	6	4	٦	67	62	0/.7	21	17	24	954	04		4 /7	•••		-
i JOD{ #12 0+125₩	1 1	36	327	742	4	19	10	1346	3.48	18	<5	~2	3	7	t.a	õ	-2	25	11	045	20	13		431	.00	-12		-01	. 12	Ŷ
JOD1 #12 0+100V	l z	86	167	278	.3	30	16	958	6.63	26	<5	<2	Ř	ź	ž	Ť	-2	128	07	075	15	25	95	127	.07		1.21	.01	. < 1	~2
JOD1 #12 0+75W	2	49	225	535	< 3	20	12	567	4.47	17	<5	0	š	3		- 2	-2	30	- 00	044	22	12	102	107	. 17	· · · · ·	4 AA	.01		< <u>Z</u>
JOD1 #12 0+504	2	41	82	372	1.0	20	10	952	3.62	11	8	<2	ż	12	1.0	2	-	32	67	083	18	14	74	347	.05	<u>د</u> ر	1.70 774	N, U I	. 12	< <u>2</u>
i I											-	•	•			-		20			10			101		2	4.10	.02	.09	< <u>2</u>
- JOD [#12 0+25W	<1	18	Ì104	305	<.3	8	5	1853	3.71	17	<5	<2	2	7	1.0	<2	<2	23	.to .	.074	12	8	. 14	101	- 07	3	2.30	01	70	- 7
JOOI #12 D+0U	5	14	28	62	.3	7	2	451	3.22	4	<5	<2	- 4	8	.3	<2	<2	22	.11	073	4	ž	.09	33	.11	\sim	3.37	02	.07 M	
STANDARD C	21	59	40	133	6.6	69	33	986	3,94	43	23	10	42	52	18.4	19	22	62	.51	.094	41	61	.90	185	.09	20	1.88	.06	17	12
					• • • • •					· ~ -									_		· · · ·									1.3

Sample type: SOIL, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

MOLY

Description of Rock Samples

Sample Moly no 1 Carbonate with pyrites.

- Sample Moly no. 2 White to grey formation with sulfides.
- Sample Moly no. 3 Yellow to grey formation with sulfides.
- Sample Moly no. 4 Rusty brown to grey formation with sulfides.
- Sample Moly no. 5 Quartz with lead.
- Sample Moly no. 6 Breccia with sulfides.
- Sample Moly no. 7 Breccia.
- Sample Moly no. 8 Quartzite with pyrites.
- Sample Moly no. 9 Quartzite with sulfides.
- Sample Moly no. 10 Bedded quartzite with pyrites.
- Sample Moly no. 11 Quartz with sulfides.
- Sample Moly no. 12 Quartz with sulfides.
- Sample Moly no. 13 Rusty brown formation with sulfides.
- Sample Moly no. 14 Quartz with vugs and sulfides.
- Sample Moly no. 15 Brown carbonate with pyrites.
- Sample Moly no. 16 Quartz with lead.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE

							200	2nd	<mark>}ä</mark> ∰ Ave S	Ex outh	pic Gri	ο Γ α mbr	<u>t1</u>	<u>ол</u> вс v	F1 10 28	le ³ s	₩	95 tteo	-36 1.571	54 Gord	òn Ja	host	one.										IN P
SAMPLE#	Mo Pipan	Cu pon	Pb ppm	Zn pom	Ag ppm	i K anqq	Co POR	Ил ррт	fo X	As pom	U PPM	Au ppm	Th PPm	Sr ppm	Cd PCi	Sb pom	<u>, si⊥</u> Bi ppna	Y PPIN	Ca X	<u>باندی:</u> ۹ ۲	La	Cr PDM	Ng X	Ba	<u>)))</u> 11 21 r	B B	<u></u> Al T	Na Ya	k K	-7.43. 	TI I	ig A	
MOLY #1 MOLY #2 MOLY #3 MOLY #4 MOLY #5	10 113 11 9 1296	11 56 32 36 17	12 <3 71 6 140	144 20 23 42 34	.4 <.3 1.2 .3 2.4	16 2 25 5 12	8 1 223 2 3	688 157 70 153 78	1.69 2.74 15.10 2.55 1.83	5 <2 45 6 <2	11 <5 9 5 13	<2 <2 <2 <2 <2 <2 <2 <2	19 *2 4 3 3	41 3 23 26 3	.6 .2 1.2 .4 .3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <3	6 3 14 2 6	15 21 8 14 3	4.35 .80 .46 1.13 .06	.052 .014 .007 .013 .004	15 4 5 10 1	25 29 28 10 32	.77 .49 .10 .36 .03	35 . 27 . 3 . 22 . 27<.	15 05 08 11 01	51 6 3 3 3	.25 .19 .36 .70 .07	03 01 01 01 01 01	.95 .03 8 .04 2 .03 .09	<2 553 203 68 27	1531<1	ा त त ा ा	2 1 1 (1 3
MOLY #5 MOLY #7 MOLY #8 MOLY #9 MOLY #10	13 3 27 6 217	16 25 17 68 103	6 13 4 <3 <3	51 36 98 165 56	<.3 <.3 <.3 <.3 .5	15 8 14 18 40	9 4 4 8 32	141 658 177 1485 239	2.03 1.69 1.94 3.31 10.02	3 16 2 <2 3	6 (5 (5 5 6	<>> < < < < < < < < < < < < < < < < < <	11 8 10 14 9	15 99 8 132 30	.2 <.2 .6 .5 1.3	\$\$\$\$\$ \$	3 <2 2 3	6 4 7 9 17	.43 5.98 .26 3.60 .85	.033 .018 .031 .033 .027	21 4 28 8 9	16 43 23 142 211	.21 5.76 .19 2.40	84 .0 8<.0 82 .0 19 .0 9 .	02 01 02 01 13	3 3 3 5 3 1	.62 .06 .0 .76 .0 .93 .0	01 01 01 01 01 02 1	.50 .02 .60 .75 .07	39 2 8 14 6	1 + <1 + 1 + 1 + 8	:1 :1 :1 :1	1 3 2 1 1
RE MOLY #10 MOLY #15 MOLY #12 MOLY #13 MOLY #14	209 833 43 271 275	102 12 13 14 21	<3 9 4 5 11	83 7 67 6 21	.4 .3 <.3 <.3	38 8 25 13 17	30 3 9 1 2	226 82 195 83 59	9.70 1.29 7.46 2.06 1.31	<2 <2 <2 <2 <2 <4	ও ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2	9 <2 3 <2 2	30 4 12 3 1	9 2 < 2 < 2 < 2 < 2	18 3 <2 <2 4	19 <2 4 3 2	16 2 13 5 2	.60 .10 .39 .01 .03	.025 .003 .014 .004 .002	8 10 5 1 2	16 1 18 20 1 33 17	.45 .07 .26 .03 .02	9 22<.1 6 ,0 89<.1 5<,8	12 01 08 01	ও 1. ও 1. ও 1. ও .	.46 .0 .14 .0 .25 .0 .26 .0	02 1. 02 02 01 02	.05 .08 .93 .23	4 20 5 17 2	3 < 1 < 6 < <1 <		:1 :1 :1 :1 :1
MOLY #15 MOLY #16 STANDARD C/AU-R	14 11 20	16 25 62	5 17015 40	9 69 134	<.3 80.7 6.5	48 15 69	20 2 32	226 89 957	4.26 1.21 4.05	27 4 42	<5 <5 21	<2 <2 8	2 <2 39	3 1 52	<.2 .4 18.7	2 2 18	3 235 23	2 2 62	.13 .02 .48	.009 .006 .096	9 2 39	27 37 59	.09 .04 .94	13<.(7<.(179()1)1)8	<3 . <3 . 24 1.	16 .0 12 .0 91 .0	01 01 . 06 .	. 11 . 04	5 18 10	1 < 2 < 3)) 1 7 / A	1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-K20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU P8 ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/NIBK EXTRACT, GF/AA FINISHED, Samples beginning (RE' and Regrups and (RRE' are Reject Reguns.

DATE RECEIVED: SEP 19 1995 DATE REPORT MAILED:

ACHS ANALYTICAL LABORATORIES LTD

PHONE (604) 253-31581 FAX (604) 253

BAPTY RESEARCH LIMITED

901 Industrial Rd. No. 2 Crambrook, B.C. V1C 4C9

Telephone (604) 426-6277 Fax (604) 426-6219

JODI PROPERTY EXAMINATION REPORT

LOCATION

South side of Gray Ck. Pass Road, 46 km west of Kimberley 6200 ft. elev.

<u>CLAIMS</u>

4 only 2 post claims Jodi 1-4

MINERALIZATION

The claims overlie a NW flowing drainage about 1 km east of the height of land separating the E/W Kootenays, and include the Horsethief Creek/Mount Nelson contact series of rocks (specifically, green siltstones, black argillite, dolomitic limestone and grey green phyllites.) The strike is N 20° W with vertical dip. The zone of interest was partly covered by a geochemical grid carried out by the prospectors.

Sulphide mineralization is evident in several outcrop locations extending over a 100 meter strike length in two dolomitic limestone zones separated by about 100 meters of phyllite and argillite. The better zone is the westmost section where mineralization thickness of up to 2 meters is evident with lead/zinc/silver grades showing 6.7%/1.2%/3.0 oz/tn.

		Approx. G	<u>rid Ref.</u>	3		<u>Oz/tn</u>
<u>Zone</u>	<u>Sample #</u>	<u>Line #</u>	<u>Station</u>	Pb	<u>Zn</u>	<u>ya</u>
1(E)	B81212	11	0 + 50	1.89	1.22	0.46
1`´	B81213	8	0 + 50	3.75	0.33	1.67
Argillite	B81214	7	1 + 00	0.04	0.06	0.05
2 (พ)	B81215	7	1 + 75	5.68	0.75	2.63
2	B81216	11	1 + 75	7.73	1.59	3.48

POTENTIAL

Host rock in this location might support -800 m x 500 m x 3 m x 3.0 > 3 million tonnes of material, with economic grades of lead/zinc/silver.

WORK REQUIRED

An IP or EM survey will define the areas offering the best target, and two holes should be budgetted to test the conductors at depth.

RECOMMENDATION

Follow up with a Max-Min EM survey, with some drilling for the best conductors.

M. Bapty, P.Ehg.

Jan. 10, 1995

grid 5 WO grid 4 -0+0W grid 3 JODI NO.4 0+25W 0+50W 0+75W 体的推动的 0+100W · 1999 さららばもい うきちょうう 122 0+125W AN COLOR Excentral genus - "你们们这些你是这些这些个人的是不能的吗 u Aliante de La come d La come de la La come de la 0+150W in terre and canadiction expe

PROJECT NO. 2

BARIBEAU CREEK AREA

~

BCALE Km 100 50 0 K0 200 300 400 Kr

ACCESS & PROSPECTING ACTIVITY

PROJECT NO. 2

BARIBEAU CR. AREA

.'

Access to Baribeau Cr. area was by 4x4 truck for 57 km. on forestry all weather gravel roads to Baribeau Cr. and the remainder of the trip by helicopter, to the very end of the valley. A tent camp was set up and from there we hiked. It has been 13 years since I was there last and the open hillsides that I remembered were now thickly covered with alders. We fought our way through alders, taking what rock samples we could, it was very rugged terrain and slow going. A few of the samples of mineralization were quite interesting but not potential enough to warrant the staking of claims. We did not spend as much time in this area as we could have, but we believe we were to far west to find the main meneralization of interest and we felt that Project No. 1 (BAKER CR. AREA) was more potential and that we should spend the remainder of the time there. In the future we hope to prospect Baribeau Cr area again but further to the east.

BARIBEAU CR.

Description of Rock Samples

- Wild no. 1 Rusty quartz with lead.
- Wild no. 2 Rusty quartz with sulfides.
- Wild no. 3 Quartz with lead and pyrites.

Wild no. 4 Black argillite with pyrites.

Wild no. 5 Carbonate with sulfides.

Wild no. 6 Carbonate with sulfides.

Wild no. 7 Black argillite with bedded pyrites.

Wild no. 8 Black argillite with sulfides.

Wild no. 9 Quartzite with sulfides.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 ACME ANALYTICAL LABORATORIES LTD. GEOCHEMICAL ANALYSIS CERTIFICATE Ram Exploration (BC) File # 95-4719 Page 1 1200 - 2nd Ave South, Cranbrook BC V1C 283 Submitted by: Gordon Johnstone

and a second second

..... .20 .005 <1 10 .09 3<.01 <3 .02 .01 .01 <2 <5 2 75 64 21096 8587 104,8 21 6 86 1.54 25 <5 <2 9 2 142.0 15 421 1 WILD-1 15 6<.01 <3 .08 .01 .02 4 <5 <1 13 1.0 22 2 111 1 79 8 <5 <2 <2 3 1.2 <2 3 1 .08 .025 2 18 .02 10 145 322 126 WILD-2 1 12 .04 6<.01 <3 .08 .01 .04 <2 <5 <1 16 9 3 2.3 6 203 .08 .003 37 19964 280 26.8 13 1 79 1.15 2 <5 <2 1 WILD-3 -5 7 9 22 .67 22 .01 10 1.51 .02 .24 <2 <5 <1 6 <2 14 4 1.4 10 <2 9 .13 .046 WILD-4 5 26 681 289 1.4 75 84 259 9.99 65 9 .03 142<.01 <3 .30 .01 .24 <2 <5 <1 2 .03 .037 13 - 4 .4 16 14 26 1.49 .2 2 <2 WILD-5 4 5 87 20 7 <5 <2 12 - 3 <.2 <2 <2 2 3.92.043 5 7 1.01 105<.01 <3 .28 .02 .22 <2 <5 <1 1 2 5 82 22 <.3 12 6 1748 3.39 6 11 <2 4 46 WILD-6 .11 .044 10 14 .58 18<.01 <3 .95 .02 .19 <2 <5 <1 11 5 <5 1.1 2 <2 5 <2 10 - 4 WILD-7 10 113 665 299 .8 23 17 181 4.01 .06 .031 8 13 .36 17<.01 3 .61 .01 .15 <2 <5 <1 5 <.3 29 16 142 3.67 38 <5 <2 7 3.3 4 <2 4 3 WILD-8 8 130 442 559 .04 .005 13 10 .02 30<.01 <3 .15 .01 .15 <2 <5 <1 1 7 186 .64 2 <5 <2 16 1 .4 <2 <2 1 26 <.3 13 WILD-9 4 12 51 <.3 7 2 753 .46 <2 <5 <2 12 3 <.2 <2 <2 1 .33 .007 17 5 .05 63<.01 <3 .14<.01 .12 <2 <5 <1 3</p> WILD-10 21 25 17 1 6.4 65 31 1117 4.05 38 18 7 40 54 19.0 17 18 57 .50 .093 40 61 .93 187 .08 26 1.91 .06 .16 10 <5 2 528 STANDARD C/AU-R 22 59 41 132

> ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PFM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: NOV 21 1995 DATE REPORT MAILED: NOV 29/95

