BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1995/1996REPORT #:PAP 95-23NAME:TIM TERMUENDE

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

£

t

:au

- One technical report to be completed for each project area. ٠
- Refer to Program Requirements/Regulations, section 15, 16 and 17. ٠
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the . supporting data (see section 16) required with this TECHNICAL REPORT.

Name I'm TERMUENDE	Reference Number	95/96 F050
LOCATION/COMMODITIES		
Project Area (as listed in Part A)	D/DOCTOR CKS MIN	FILE No. if applicable 82FNE 107, 89, 90, 9
Location of Project Area NTS <u>82 F/16,82</u>	<u> くに</u> Lat_	SOCC N Long 166 12 W
Description of Location and Access LOCATED	AT HEADWATERS OF	GREENLAND, DOCTOR, AND
ALTON CREEKS. ACCESS BY 4W	D ATV UP GREENLA	ND CREEK & DOCTOK CREEK,
AND BY HEUCOPTER FROM CA	ANBROOK.	· · · · · · · · · · · · · · · · · · ·
Main Commodities Searched For PB , ZN	. Av. Ac. W. Sn	
	1 45	DARA UN EVOLOTINE FOIL
Known Mineral Occurrences in Project Area <u>/</u> WORK PERFORMED 1. Conventional Prospecting (area)	1WFILE # ⁵ 82FNE-85, 2 km ²	90,92,107 = 82KSE-41,53,60
Known Mineral Occurrences in Project Area // WORK PERFORMED 1. Conventional Prospecting (area) (2. Geological Mapping (hectares/scale) (1WFILE # 5 82FNE-85, 2 hm ²	90,92,107 \$ 82,55-41, 5 3,60
Known Mineral Occurrences in Project Area // WORK PERFORMED 1. Conventional Prospecting (area)(2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)	MWFILE # S & FRE-85, 2 km ² 39 SILT SAMPLES	90,92,107 \$ 82,555-41,53,60 57 ROCK SAMPLES
Known Mineral Occurrences in Project Area _/ WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km)	MWFILE # S & FRIE-85, 2 km ² 39 SILT SAMPLES	90,92,107 \$ 82,555-41,53,60 57 ROCK SAMPLES
Known Mineral Occurrences in Project Area // WORK PERFORMED 1. Conventional Prospecting (area) // (2. Geological Mapping (hectares/scale) // (2. Geological Mapping (hectares/scale) // (2. Geophysical Mapping (hectares/scale) // (2. Geophysic	MWFILE # S & FRIE-85, 2 km ² 39 SILT SAMPLES	90,92,107 \$ 82,555-41,53,60 57 ROCK SAMPLES

SIGNIFICANT RESULTS

	Commodities Ag, Pb, By	Claim Name FW 31, Doc 5,6 CORE 7
	Location (show on map) Lat 52 42 40"	Long <u>116° 15'00"</u> Elevation <u>7700</u>
that	"Best assay/sample type 2.29/t Ag, 664 pt	n Ab. /FLOAT (TTG95-19)
NUMER	1 (R 82 FNE 107 ("me" showing): 53.0	(4/t Ag, 3.66 26 16, 3.34 2 3 (CDCR95-09)
00	Description of mineralization, host rocks, anomalies	HOST ROCKS RECAMBRIAN ADRINGE FORMATION
	NEAR CONTACT WITH WHITE CREEK	CATHOLITH, NUMEROUS MINERAL DECURPENCES
	IN PROPERTY ANEA, PRIMALILY WE	NEW VEWS , OPTEN ASSOCIATED WITH GABBROIC
	MOYIE SILLS. MWERKEIZED FLOAT	CONTAINS FINE DUSEMWATED GA WITH
	QUARTZITE.	

PROSPECTORS PROGRAM MEMPR

	- 5	0	V/	с. 	·
M bd)	JAN	22	199	6	

Supporting data must be submitted with this TECHNICAL REPORT

7. Other (specify)

ASSESSMENT REPORT

for the

CORE, FIN, and DOC CLAIM GROUPS

GOLDEN AND FORT STEELE MINING DIVISIONS, BC NTS 82F/16E, 82K/1E

Latitude 50°00'N. Longitude 116°12'W.

Prepared for

ŧ.

κ.

MINER RIVER RESOURCES LTD. 3010, 350-5TH Ave. S.W. Calgary, AB T2P 3C4

and

EAGLE PLAINS RESOURCES LTD.

P.O. Box 20022, Tamarack P.O. Cranbrook, B.C. VIC 6J5

by

Tim Termuende, P.Geo. of **Toklat Resources Inc.** 2720 - 17th St. S. Cranbrook, BC VIC 4H4

Submitted: January 20th, 1996

TABLE OF CONTENTS

-

ban - ----

Sec. -

-

_

- مع

-

b...

.

•

---.

*****---

•

۰.

•

. •

.

.

Summary	1
Property, Description and Location	2
History	
Regional Economic History	4
Property Area History and Previous Work	4
Geology	
Regional Geology	6
Property Geology and Mineralization	7
1995 Program	9
1995 Results	9
Conclusion and Recommendations	10
References	11
Certificate of Qualification	13

LIST OF FIGURES

After Page

.

Figure 1 General Location Map	3
Figure 2 Claim Location Map	3
Figure 3 Geology/1993 Sample Location Map	in pocket

LIST OF APPENDICES

Appendix 1:	Analytical Results
Appendix 2:	Statement of Expenditures

SUMMARY

The **Core, Fin, and Doc** claim groups were staked over the period from May through October, 1995, and consist of an extensive land-holding containing preCambrian miogeosynclinal sediments of the Belt Purcell Supergroup. Numerous base- and precious metal showings are documented within property boundaries, and form a framework for further exploration. The property is considered to hold significant potential for hosting "Sedex"-type base metal deposits, based on its geology, structure, and proximity to Cominco's Sullivan deposit, located 30km to the south.

The claims were staked in conjunction with a \$600,000 airborne geophysical survey conducted during the fall of 1995 by the G.S.C. and the B.C.G.S.. The claim area covers a total of 16% of the Findlay block survey coverage.

A cursory exploration program was conducted in late 1995, and consisted primarily of prospecting and stream-sediment sampling. Early snowfall caused the postponement of work at high altitudes for the season. A number of anomalous drainages were indicated, and will see follow-up work carried out in the future. As well, areas of Sullivan-type alteration were outlined, and will also be revisited.

÷.

.

A 100% interest in the claims was sold to Eagle Plains Resources Ltd., and Miner River Resources Ltd., two Calgary-based companies in November, 1995. These companies plan to undertake advanced exploration of the claims in the 1996 season, using data from the airborne survey.

The Core, Fin, and Doc Claim Groups consists of a total of 267 claim units staked in accordance with the Modified Grid and Two-Post Grid Systems. The claims are located approximately 30 km north of Kimberley, B.C., and lie within both the Fort Steele and Golden Mining Divisions on NTS mapsheets 82F/16 and 82K/1E. The property is centered at 50°00' N latitude, 116°12' W longitude (Figure 1 following page).

The claims cover an area of approximately 67 square km (16,611 acres), and are located along a topographic high between the Kootenay Lake valley and Rocky Mountain Trench. Elevations range from 5000 to 9000 feet, with vegetation coverage occurring at lower elevations. Vehicular access to the property area is provided by rough 4WD roads which extend up Greenland Creek to over 7000 feet, and one which extends past an existing Forest Service road to the headwaters of Doctor Creek. Terrain elsewhere in the property area is access only by helicopter from Invermere or Cranbrook, located 55 and 50 km away, respectively. Outcrop exposure is good overall, but is in some areas inaccessible due to rugged terrain. The property sees moderate precipitation, and is accessible from late-May to mid-October.

ς.

Claim Status							
<u>Claim Name</u>	<u>Record No.</u>	<u>Claim Type</u>	No.	<u>Recording Date</u>	*Expiry Date		
Core 1	335994	MGS	12	May 19, 1995	May 19, 1996		
Core 2	335995	MGS	9	May 19, 1995	May 19, 1996		
Core 3	335996	MGS	16	May 19, 1995	May 19, 1996		
Core 4	335997	MGS	8	May 19, 1995	May 19, 1996		
Core 5	335998	MGS	20	May 19, 1995	May 19, 1996		
Core 6	335999	MGS	15	May 19, 1995	May 19, 1996		
Core 7	336000	MGS	20	May 19, 1995	May 19, 1996		
Core 8	336001	MGS	20	May 19, 1995	May 19, 1996		
Core 9	356002	MGS	6	May 19, 1995	May 19, 1996		
Core 10	336003	MGS	20	May 19, 1995	May 19, 1996		
Core 11	336004	MGS	16	May 19, 1995	May 19, 1996		
Fin 1	339857	MGS	20	Sept 14, 1995	Sept 14, 1996		
Fin 2	339858	MGS	20	Sept 15, 1995	Sept 15, 1996		
Fin 3	339859	MGS	20	Sept 15, 1995	Sept 15, 1996		
Fin 4	339889	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 5	339890	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 6	339891	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 7	339892	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 8	339893	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 9	339894	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 10	339895	2P	1	Sept 13, 1995	Sept 13, 1996		
Fin 11	339896	2P	1	Sept 15, 1995	Sept 15, 1996		
Fin 12	339897	2P	1	Sept 15, 1995	Sept 15, 1996		

<u>(3)</u>

<u>ن</u> ا

~

•

-

.

-

-

۰

.

.

*

ς.

-

ς.

1.

٠

۳ .

-

_

<u>Claim Name</u>	Record No.	<u>Claim Type</u>	<u>No.</u>	<u>Recording Date</u>	*Expiry Date
Fin 13	339898	2P	1	Sept 15, 1995	Sept 15, 1996
Fin 14	339899	2P]	Sept 15, 1995	Sept 15, 1996
Fin 15	339900	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 16	339901	2P	1	Sept 15, 1995	Sept 15, 1996
Fin 17	339902	2P	7	Sept 15, 1995	Sept 15, 1996
Fin 18	339903	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 19	339904	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 20	339905	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 21	339906	2P	1	Sept 15, 1995	Sept 15, 1996
Fin 22	339907	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 23	339908	2P	1	Sept 15, 1995	Sept 15, 1996
Fin 24	339909	2P	٦	Sept 15, 1995	Sept 15, 1996
Fin 23	340423	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 24	340424	2P	٦	Sept 18, 1995	Sept 18, 1996
Fin 25	340425	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 26	340426	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 27	340427	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 28	340428	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 29	340429	2P	1	Sept 18, 1995	Sept 18, 1996
Fin 30	340430	2P	٦	Sept 18, 1995	Sept 18, 1996
Fin 31	340431	2P	٦	Sept 18, 1995	Sept 18, 1996
Fin 32	340432	2P	٦	Sept 18, 1995	Sept 18, 1996
Fin 33	340433	2P	ſ	Sept 18, 1995	Sept 18, 1996
Fin 34	340434	2P	1	Sept 18, 1995	Sept 18, 1996
Doc 1	340983	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 2	340984	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 3	340985	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 4	340986	2P	1	Oct. 6, 1995	Oct. 6, 1996
Doc 5	340987	2P]	Oct. 6, 1995	Oct. 6, 1996
Doc 6	340988	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 7	340989	2P	1	Oct. 6, 1995	Oct. 6, 1996
Doc 8	340990	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 9	340991	2P	٦	Oct. 6, 1995	Oct. 6, 1996
Doc 10	340996	2P	1	Oct. 6, 1995	Oct. 6, 1996
Doc 11	340997	2P	1	Oct. 6, 1995	Oct. 6, 1996
Doc 12	340998	2P	Ţ	Oct. 6, 1995	Oct. 6, 1996

Total: 267 Units

HISTORY

The East Kootenay area has long been known as a mineral resource-rich area, with numerous mineral showings documented over the years. The turn of the century discovery of Cominco's world-class Sullivan deposit near the present city of Kimberley, put the area into focus with mineral explorationists world-wide. The Sullivan massive sulphide ore body contained 160,000,000 tonnes of ore averaging 5.6% zinc, 6.5% lead, 25.9% iron, and 67g/t silver, with a mineable lifetime of over 80 years, and a contained metal value in present dollars estimated to be in excess of 25 billion dollars. The mine is scheduled for shutdown in the year 2001.

Numerous other past-producers in the area reflect the excellent mineralogic potential of the region. These include:

- 1) St. Eugene Mine (1899-1929) 1.63 million tons grading approximately 8% lead, 1% zinc, 4.4 oz/t silver
- 2) Estella Mine (1951-1967) 120,000 tons grading 4.8% lead, 9.0% zinc, 6.4 oz/t silver
- Kootenay King Mine (1952-1953) 14,616 tons grading 5.3% lead, 15.1% zinc, 1.94 oz/t silver.

The area is also well known for the presence of once-rich placer gold deposits, though no economic hard-rock concentrations have yet been located. The Wildhorse River saw frenzied placer mining activity beginning in 1864, with over 1,500,000 ounces of gold extracted from its gravels. Placer mining operations are still in place along the river.

PROPERTY HISTORY AND PREVIOUS WORK

The entire property area encompasses ground which at various times was under the control of different operators. A summary of their work, and approximate geographical locations is given below.

<u>Period</u>	Operator	<u>Claim Name</u>	Location	Activity
1959-1969	Cominco	Pico	Core 8	Trenching, drilling for tungsten.
1960	?	Pimaco	Core 7	Prospecting for cassiterite in quartz.
1965	Newconex	SKO	Core 7,9,11	Prospecting, mapping.
1969	Arrow Inter.	Val	Core7,9,11	180m diamond-drilling.
1971-1975	Kerr-Addison	Nine Lake	Core 7	508' BQ diamond drilling-base-metal showing in augrtz-monzonite.

Period	Operator	<u>Claim Name</u>	Location	Activity
1977-1978	Amax	Mob	Core 7	Geological
1979-1981	Utah Mines	HRPL 1-5	Core 7	Soil sampling for tin, tungsten
1981	Minequest	Skook	Core 7	No work reported.
1983	Billiton Can.	RR1,2,6-9	Core 5,7,11	Stream-sediment sampling, prospecting.
1984	Cominco	Echo 1 to 5	Fin 22,30	UTEM geophysics.
1984	Billiton Can.	Limekiller	Core 11	Geological/geochemical for Sn,W
1988	Cominco	Echo 1 to 6	Fin 22, 30	Geologic mapping, sampling
1988	Cominco	Echo 1-11	Fin 19-34	UTEM geophysics
1992	Teck Corp	Cotton	Core 7, 9	Geologic Mapping, Soil Geochem.

(5)

۰.

•

-

b....

•

.

.

-

.

-

.

۔ د

-

•

GEOLOGY

REGIONAL GEOLOGY

h. .

Regionally the area is underlain by rocks of the Purcell Supergroup on the western flank of the Purcell Anticlinorium, a broad, north-plunging arch-like structure in Helikian and Hadrynian aged rocks. The anticlinorium is allocthonous, carried eastward and onto the underlying cratonic basement by generally north trending thrusts throughout the Laramide orogeny during late Mesozoic and early Tertiary time.

The oldest rocks exposed in the area are greenish, rusty weathering thin bedded siltites and quartzites of the + 4000m thick Lower Aldridge Formation, along with the facies-related, dominantly fluvial Fort Steele Formation (the base of which is unexposed). The Sullivan deposit is located some 20-30m below the upper contact of the Lower Aldridge Formation. Overlying the Lower Aldridge is a continuous section of Middle Aldridge quartz wackes, subwackes and argillites some 3000+ m thick. Within the Middle Aldridge formation, fourteen varved marker horizons can be correlated over hundreds of kilometers. These represent the only accurate stratigraphic control. A number of aerially extensive, locally thick gabbroic sills are present within the Lower and Middle Aldridge Formations. These sills and dykes; the "Moyie Sills", locally were intruded into wet, unconsolidated sediments, and have been dated to 1445 Ma, providing a minimum age for Aldridge sedimentation and formation of the Sullivan deposit. The Middle Aldridge is overlain conformably by the Upper Aldridge, 300 to 400 meters of thin, fissile, rusty weathering siltite/argillite.

Conformably overlying the Aldridge Formation is the Creston Formation, comprising approximately 1800 meters of grey, green and maroon, cross-bedded and ripple marked platformal quartzites and mudstones. The Kitchener-Siyeh Formation, which includes 1200 to 1600 meters of grey-green and buff coloured dolomitic mudstone are shallow water sediments overlying the Creston Formation.

The upper portion of the Purcell Supergroup consists of the Dutch Creek and Mount Nelson Formations. The Dutch Creek formation consists of approximately 1200 meters of dark grey, calcareous dolomitic mudstones. Overlying the Dutch Creek formation is the Mount Nelson formation, 1000 meters of grey-green and maroon mudstone and calcareous mudstones. This unit marks the top of the Purcell Supergroup.

The Belt Purcell Supergroup in the Sullivan area was deposited along an active tectonic basin margin. Dramatic thickness and facies variations record Purcell-age growth faults and contrast with gradual changes characteristic of most Purcell rocks elsewhere. These faults reflect deep crustal structures that modified incipient Purcell rifting, and led to the development of an intercratonic basin in middle Proterozoic time.

PROPERTY GEOLOGY AND MINERALIZATION

The claims overlie stratigraphy of the Belt Purcell Supergroup, as described above. Rocks on the property decrease in age to the north, with rocks in the Core 10-11 area forming the contact between the granitic White Creek Batholith, and deep water marine sediments of the Lower Aldridge. The Lower/Middle Aldridge contact is located on the south side of the Doctor Creek valley, and trends northeasterly until truncated on the east by the White Creek Batholith. Throughout the property area, sediments are intruded by the primarily concordant Moyie Sills.

Structurally, the sediments form a northwest-dipping panel of a broad antiform, with shallow dips of 20°-30° noted throughout the area. North-northeast trending faults have been noted by previous operators, but are poorly documented to date. Teck Corporation sampled a northeast-trending shear structure to the north of the property area which returned 4.1 g/t Au within ferricrete, but no further work is reported.

Mineralization

έ.

Numerous mineralized showings have been documented within property boundaries, and are included within Minfile reports. A brief summary of these occurrences is provided below:

Pico (Star.Nine.Lake) #082FNE089

Located along the boundary of the Core 8 claim, this showing consists of tungsten, lead, zinc and copper occurring in sediments within a skarn zone (likely related to White Creek Batholith). No assay results are available.

Val (Sko, Chuck, Cas) #082FNE090

Poorly documented- reports only tin and tungsten. No mode of occurrence given. Located within the Core 10 claims.

Pimaco (Cas. Sko. Chuck) #082FNE 092

Veins in diorite (Moyie Sills) reported to contain Cassiterite, Scheelite. Located within the Core 10 claims.

<u>Mc # 082FNE 107</u>

Poorly documented. Lead and Zinc showing reported within Core 7 boundary. It is believed that this area saw limited diamond drilling (500') in the early seventies, but information is unclear at this time.

Greenland Ck (Burnt Ck) #082FNE112

Located within Core 8 boundary, this showing is reported to contain Beryllium within pegmatite.

St. Anthony # 082KSE041

r N

.....

λ.,

۰

Located within the Doctor Creek watershed, this showing is overlain by the Core 2 claims, and is reported to consist of an adit driven in 1963 from which 5 tons of material yielded 355 ounces silver, 55 pounds copper, 180 pounds lead, and 55 pounds zinc. No geologic description is available for this occurrence.

Silver Key (Key) # 082KSE053

This occurrence is located 500m east of the Core 2 property boundary, and has seen limited production over the past 55 years. Described as layer-parallel veins within greenstone and quartzite near the contact with the White Creek Batholith, 308 tons of ore produced 148 ounces gold, 3,816 ounces silver, 33,849 pounds lead, 33,849 pounds zinc, and 271 pounds copper.

Ace #082KSE063

Located within the boundaries of the present Core 1 claim, this prospect is reported to have seen limited diamond drilling. Mineralization is described as being vein-hosted and contain disseminated copper, lead and zinc within both aldridge sediments, and Moyie Sill material.

1995 PROGRAM

The focus of the \$22,000 1995 program was to provide grassroots reconnaissance scale sampling and prospecting throughout the property area. A total of 39 silt samples and 57 rock samples were taken, before heavy snowfall prohibited further work. The last day spent on the property was October 8th, with 8" of snow on the ground at 5000'.

Samples were shipped to Eco-Tech Labs at Kamloops, BC. Once at the lab, samples were n dried, sieved to -80 mesh and analyzed for Au geochem and 30 element ICP using aquaregia digestion. High-grade samples were further fire-assayed.

1995 RESULTS

Results of the 1995 drilling program yielded encouraging results (see map, figure 3; in pocket), with new zones of Sullivan-type albite/tourmalinite alteration recognized in the headwaters of Doctor Creek; within the Fin 22/Fin30 claims. Within this area, a single 1m x 1m, rusty-weathering quartzitic float boulder was located which returned 2.2 g/t Ag and 664ppm Pb (#TTG95-19). As well, silt samples taken in the upper Doctor Creek area returned values anomalous in silver, copper, lead and zinc (#s TTGS-29, TTGS-30). Silt samples taken from Greenland Creek confirmed the anomalous zinc content as reported in RGS stream-sediment sampling data, with sample TTGS95-38 yielding 346 ppm Zn. Sample numbers CDCOR95-06,07,09 taken from the "Mc" showing area (Minfile 082FNE107) returned encouraging values up to 53.4 g/t Ag, 3.66% Pb, and 3.34% Zn (grab). Sample CDCR-19, taken from the Silver Key workings (500m east of property boundaries) confirmed the high-grade tenor of mineralization in the area, returning values of 763.5 g/t Ag, and 1.82% Pb.

۰.

÷.,

....

(10)

CONCLUSIONS AND RECOMMENDATIONS

The area overlain by the Core, Fin and Doc Claims covers a stratigraphic package which is known to host the Sullivan silver-lead-zinc deposit, a world-class orebody located 30km to the south. The area contains numerous documented mineral showings, with an assemblage similar to the Sullivan Deposit itself. Though numerous operators have examined the area in the past, very little drilling has occurred; considering the large spacial area, and the number of individual mineral occurrences. The occurrence and widespread distribution of Sullivan-type alteration assemblages also underscores the considerable exploration potential of the area.

At present, it appears that the most promising area encountered to date lies toward the northern boundary of the claim area, were widespread albite/tourmalinite alteration occurs in conjunction with weakly mineralized float material. In addition, detailed prospecting activity should be aimed at the Lower/Middle Aldridge contact, mapped by Reesor to occur to the south of Doctor Creek.

ŝ.

With the added benefit of the airborne geophysical data to be released in 1996, numerous additional targets will likely be generated. When used in conjunction with existing stream geochemical data and the extensive minfile occurrences, a more definite focus will likely develop.

REFERENCES

- Canadian Institute of Mining (1957): Structural Geology of Canadian Ore Deposits (Volume II), from 6th Commonwealth Mining and Metallurgical Congress, Canada, 1957.
- Leitch, C.H.B. and Turner, R.J.W. (1992): Preliminary Field and Petrographic Studies of the Sulphide-Bearing Network Underlying the Western Orebody, Sullivan Stratiform Sediment-Hosted Zn-Pb Deposit, British Columbia *in Current Research, Part E; Geological Survey of Canada, Paper 92-1E, p. 61-70.*
- Leitch, C.H.B. (1992): Mineral Chemistry of Selected Silicates, Carbonates, and Sulphides in the Sullivan and North Star Stratiform Zn-Pb Deposits, British Columbia, and in District-Scale Altered and Unaltered Sediments. *in Current Research, Part E; Geological Survey* of Canada, Paper 92-1E, p. 83-93.
- Leitch, C.H.B. (1992): A Progress Report of Fluid Inclusion Studies of Veins From the Vent Zone, Sullivan Zn-Pb Deposit, British Columbia, *in Current Research, Part E; Geological* Survey of Canada, Paper 92-1E, p. 83-93.
- McMillan, W.J. et al (1991): Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera. BCMMPR Paper #1991-4.

Reesor, J.E. (1993) G.S.C. Open File #2721 Geology of Nelson Map Sheet (East Half)

Schofield, S.J. : G.S.C. Memoir #76, pp147-152

١.

h....

ς.

h. ..

- Shaw, D.R., et al (1993): Geochemistry of Tourmalinite, Muscovite, and Chlorite-Garnet-Biotite Alteration, Sullivan Zn-Pb Deposit, British Columbia *in Current Research, Part A; Geological Survey of Canada, Paper 93-1A, p. 97-107.*
- Shaw, D.R., et al (1993): Geochemistry of Albite-Chlorite-Pyrite and Chlorite-Pyrrhotite Alteration, Sullivan Zn-Pb Deposit, British Columbia *in Current Research, Part A*; *Geological Survey of Canada, Paper 93-1A, p. 97-107.*
- Turner, R.J.W. et al (1992): Guide to the Tectonic, Stratigraphic and Magmatic Setting of the Middle Proterozoic Stratiform Sediment-Hosted Sullivan Zn-Pb Deposit, South-eastern British Columbia (Field Guide)
- Turner, R.J.W. and Leitch, C.H.B. (1992): Relationship of Albitic and Chloritic Alteration to Gabbro Dykes and Sills at the Sullivan Deposit and Nearby Area, Southeastern British Columbia. *in Current Research, Part E; Geological Survey of Canada, Paper 92-1E pp 95-105.*

EMPR Minfile #082FNE 089, 090, 092,107, 112, 122 EMPR Minfile #082KSE 041, 053, 060, 063

(11)

EMPR/GSC British Columbia Regional Geochemical Survey; Kaslo, Lardeau (NTS 82F, 82K).

Sec. -

.

.

p --

EMPR Assessment Reports # 5832, 11224, 11737, 12635, 12994, 13224, 15195, 16925, 18169, 21275, 22229.

CERTIFICATE OF QUALIFICATION

I, Tim J. Termuende, of 2720-17th St. S. in the city of Cranbrook in the province of British Columbia do hereby certify that:

- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia.
- 2) I am a 1987 graduate of the University of British Columbia with a B.Sc. degree in geology, and have practiced my profession as exploration geologist continuously since graduation in 1987.
- 3) This report is based on my personal examination of the Core, Fin, and Doc Claim Groups, Golden and Fort Steele Mining Divisions.
- 4) This report is supported by data collected during fieldwork carried out intermittently between September 13th and October 8th, 1995.

Dated this 20th day of January, 1996.

T.J. Termuende, P.Geo.

.....

APPENDIX 1

--

.

٠

e -

.

.

e ...

•

г. С

.

.

•

` .

÷ -

ет К

•

•

Analytical Results

.

ς.

١.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, **B.C. V2C 6T4 Phone (604) 573-5700** Fax (604) 573-4557

CERTIFICATE OF ASSAY AK 95-942

TOKLAT RESOURCES INC. 2720-17th STREET SOUTH CRANBROOK, B.C.

20-Oct-95

ATTENTION: TIM TERMUENDE

57 Rock samples received Oct. 10, 1995

PROJECT #: None given

V1C 4H4

SHIPMENT #: None given

5	ET #. Τασ #	Ag (a/t)	Ag (oz/t)	Pb (%)	Zn (%)	
	8 CDCR-19 20 CDCOR95-06 21 CDCOR95-07 23 CDCOR95-09	763.5 - 55.6 53.4	22.27 - 1.62 1.56	1.82 1.94 3.66	1.04 - 3.34	
	<u>QC DATA:</u> Standard: Mp-1A	70.0	2.04	4.32	19.00	

ECO-TECH LABORATORIES LT Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/95Toklat#2

23-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

TOKLAT RESOURCES INC. AK 95-943 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

39 Silt samples received October 10, 1995 PROJECT #: None given SHIPMENT #: None given

Мар	# Tag #	Au(ppb)	Ag	AI %	As	8a	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	Мл	Мо	Na %	NI	P	Pb	Sb	Sл	Sr	Ti %	U	v	w	Y	Zn
51	CDC5-01	<5	3.4	1.44	160	70	10	0.29	<1	16	16	36	3.92	<10	0.45	1445	20	0.01	16	490	746	15	<20	18	0.05	<10	29	<10	4	215
52	CDCS-02	<5	2.8	1.22	140	70	5	0.34	<1	29	12	48	3.84	10	0,48	2595	14	0.02	23	850	956	35	<20	15	0.07	<10	29	<10	6	199
\$3	CDCS-03	<5	0.2	1.93	135	40	5	0.39	<1	14	43	13	2,59	10	0.84	413	<1	0.01	15	610	42	<5	<20	16	0.07	<10	37	<10	11	121
54	CDCS-04	<5	<.2	1.32	135	60	5	0,28	<1	16	25	17	2.69	20	0.60	833	<1	- 01	18	510	40	<5	<20	11	0.06	<10	22	<10	10	95
\$5	CDCS-05	<5	0.2	1.79	110	95	5	0.63	<1	12	26	22	2.41	30	0.60	665	<1	<.01	14	880	32	<5	<20	21	0.05	<10	29	<10	23	90
\$6	CDCS-06	<5	0.4	1.40	30	100	5	0.33	<1	15	15	13	2.62	10	0.42	1259	<1	<.01	10	450	30	<5	<20	11	0.07	<10	24	<10	7	99
57	CDCS-07	<5	0.2	3.66	400	110	<5	D.55	<1	37	58	117	6.40	10	1.38	778	1	0.01	34	730	76	<5	<20	30	0.13	<10	119	<10	15	384
8 کر	CDCS-08	<5	<.2	0.92	<5	75	<5	0.26	<1	7	301	14	2.07	20	0.37	330	8	0.06	9	530	10	<5	40	22	0,11	<10	25	<10	6	47
\$9	CDCS-09	<5	1.0	1.27	35	50	10	0.6 2	<1	10	21	16	1,99	<10	0.36	379	6	0.01	8	440	32	<5	<20	29	0.07	20	31	<10	4	63
S10	CDCS-10	<5	0.2	0.96	20	50	10	0.45	<1	9	16	17	1.68	<10	0.32	460	4	<.01	9	430	38	<5	<20	14	0.06	40	29	<10	4	64
S11	SKCS-01	<5	0.2	1.07	50	65	5	0,67	<1	16	10	14	2.08	40	0.27	1226	2	0.04	13	730	46	<5	<20	29	0.05	<10	12	<10	23	141
\$12	5KC5-02	<5	<.2	1.46	65	80	10	0.30	<1	16	12	26	3.59	20	0.41	769	1	<.01	16	660	58	<5	<20	12	0.09	<10	18	<10	13	164
S 13	SKCS-03	<5	0.2	1.60	95	145	10	0.18	<1	21	324	31	4.77	20	0.47	1290	13	0.03	28	550	70	<5	40	9	0.10	<10	18	<10	10	197
\$ 14	SKCS-04	<5	0.4	1.47	25	75	5	0.25	<1	18	19	37	3.20	30	D.41	1080	<1	0.01	35	800	72	<5	<20	12	0.08	<10	18	<10	19	224
515	SKCS-05	<5	0.8	2.41	85	90	5	0.20	<1	25	19	72	4.25	30	0.40	814	3	<.01	20	950	72	<5	<20	11	0.10	<10	27	<10	24	29 0
S 16	SKCS-06	<5	0.4	1.68	30	75	<5	0.41	<1	11	19	19	2.14	40	0.45	481	<1	<.01	14	450	34	<5	<20	18	0.05	<10	20	<10	21	76
S 17	SKCS-07	<5	<.2	1.26	75	60	<5	0.28	<1	13	18	16	2.49	20	0.52	363	<1	<.01	13	310	28	<5	<20	12	0.07	<10	19	<10	10	80
S1 8	SKCS-08	<5	<.2	1,89	55	75	10	0.39	<1	12	24	17	2.30	<10	0.55	497	<1	<.01	11	540	24	<5	<20	12	0.07	<10	32	<10	7	87
19ع	SKCS-09	<5	<.2	1.47	25	80	5	0.2 6	<1	11	22	14	2.40	10	0.51	547	<1	<.01	13	350	26	<5	<20	9	0.05	<10	23	<10	6	82
520	SKCS-10	<5	<.2	1.04	15	50	5	0.19	<1	9	16	20	1.81	<10	0.37	226	<1	<.01	8	330	16	<5	<20	6	0.06	<10	26	<10	4	45
521	SKCS-11	<5	<.2	1.74	10	105	15	0.67	<1	17	139	29	4,03	<10	0,76	499	2	0.06	17	650	16	<5	<20	13	0.15	<10	65	<10	6	88
522	TTG\$95-08	<5	<.2	1.59	85	110	10	0.24	<1	18	14	30	4.22	20	0.48	835	<1	<.01	20	790	86	<5	<20	10	0.11	<10	18	<10	13	172
<i>\$</i> 23	TTGS95-13	<5	0.8	1.65	160	65	10	0.26	<1	16	10	21	3.49	20	D.35	792	2	<.01	19	740	72	<5	<20	13	0.04	<10	15	<10	9	82
\$24	TTGS95-14	<5	0.6	2.04	190	65	5	0.36	<1	23	20	36	4.30	10	1.15	838	3	<.01	31	620	66	<5	<20	16	0.04	<10	23	<10	11	99
S 25	TTG\$95-15	<5	<.2	1.96	70	65	10	0.15	<1	19	366	14	4.88	10	1.37	631	17	0.05	38	380	24	<5	40	8	0.02	<10	58	<10	3	73

Page 1

TOKLAT RESOURCES INC. AK 95-943

. .

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Au(ppb)	Åg	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Мп	Мо	Na %	Ni	P	РЪ	Sb	Sn	Sr	Ti %	U	V	W	Y	Ζn
S 26	TTG\$95-18	<5	0.6	1.08	135	45	5	0.24	<1	17	19	20	3.68	10	0.51	634	3	<.01	22	570	50	<5	<20	14	0.02	<10	16	<10	6	93
\$27	TTGS95-20	<5	1.2	1.60	200	70	5	0.56	<1	14	21	31	3.30	20	0.44	650	3	<.01	26	1310	68	<5	<20	33	0.02	<10	18	<10	11	112
\$28	TTGS95-23	<5	9.0	1.74	575	135	5	0.15	<1	83	807	155	7.63	<10	0.30	598 8	41	0.05	55	320	2648	20	40	7	0.03	<10	25	<10	13	354
\$29	TTGS95-26	<5	7.2	1.54	230	115	20	0.22	<1	37	351	77	6.61	<10	0,46	3923	20	0.03	34	340	1576	60	60	6	0.05	<10	31	<10	5	228
\$30	TTGS95-27	<5	0.6	1.29	40	55	10	0.30	<1	13	31	16	2.50	30	0,57	623	<1	< 01	18	390	54	<5	<20	14	0.04	<10	23	<10	15	76
531	TTGS95-28	<5	<.2	1.23	95	75	5	0.19	<1	21	17	21	3.07	10	0.42	1345	1	<.01	15	400	46	<5	<20	8	0.08	<10	18	<10	8	141
\$32	TTGS95-29	<5	0.6	3.66	135	160	15	0.81	<1	61	47	169	7.87	<1D	1.43	1850	1	0.02	40	106D	116	<5	<20	30	0.16	<10	118	<10	13	356
\$33	TTGS95-30	<5	0.4	3.59	155	145	<5	0.84	<1	80	84	172	5.79	<10	1.70	1700	1	0.03	63	800	114	<5	<20	84	0.11	<10	100	30	15	235
534	TTGS95-34	<5	0.4	2.76	70	160	10	0.64	<1	43	67	58	5.93	<10	1.68	1067	2	0.D1	63	120D	58	<5	<20	24	0.08	<10	99	<10	8	152
\$35	TTG595-36	<5	<.2	1.62	40	75	<5	0.29	<1	18	23	42	2.88	<10	0.61	376	<1	0.D1	16	450	32	<5	<20	10	0.09	<10	42	<10	5	72
536	TTGS95-38	<5	<.2	1.66	20	85	5	0.47	<1	19	27	52	3.00	<10	0.61	557	<1	0.01	23	820	26	<5	<20	15	0 10	<10	43	20	10	346
\$ 37	TTGS95-39	<5	<.2	1.01	<5	55	<5	0.53	<1	8	12	16	1.98	20	0.34	320	<1	<.01	6	1440	16	<5	<20	29	0.07	60	29	<10	13	56
\$38	TTGS95-41	<5	< 2	1.03	<5	70	5	0.42	<1	8	258	11	2.19	20	0.41	364	9	0.06	9	530	18	<5	40	21	0.11	<10	33	40	5	41
\$39	TTG595-43	<5	<.2	1.42	<5	85	10	0.65	<1	13	228	26	3.46	10	0.58	481	8	0.07	15	540	56	<5	20	15	0.12	<10	53	20	6	79
QC/E	DATA:																													
Repe	eat:																													
1	CDCS-01	<5	3.8	1.53	190	80	10	0.31	<1	20	15	38	3.02	<10	0.49	1490	26	0.01	17	530	810	15	<20	19	0,05	<10	28	<10	4	222
10	CDCS-10	<5	<.2	0.97	10	50	5	0.45	<1	9	16	17	1.67	<10	0.32	449	4	< 01	10	440	26	<5	<20	16	0.06	40	28	<10	4	63
19	SKCS-09	<5	0,4	1.48	30	80	5	0.26	<1	11	22	14	2.44	10	0.51	55 5	<1	< 01	12	360	28	<5	<20	11	0,05	<10	23	<10	6	83
28	TTGS95-23	-	9.0	1.78	605	140	<5	0.16	<1	85	818	158	7.77	<10	0.31	6070	41	0.05	55	320	2684	20	40	9	0.03	<10	26	<10	13	361
30	TTGS95-27	′ <5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
36	TTGS95-36	I <5	<.2	1.60	15	80	10	0.45	<1	10	28	49	2.93	<10	0.59	524	<1	0.01	22	800	24	<5	<20	13	0.10	<10	42	20	9	335
Stan	dard:																													
GEO	'95	145	1.4	1.67	70	165	<5	1.66	<1	18	66	83	3.96	<10	0.94	678	<1	0.01	22	680	24	<5	<20	55	0,10	<10	75	<10	5	74
CEO	05	145	4.0	4 70	ĊE.	400	~C	4 66	~ 4	40	EO.	a^	2 65	~10	0.04	000		0.00	76	000		~ 5		E 4	A 4 B	~10	75	-40	-	70

. .

ECG-TECH LABORATORIES LTD. Por Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/943 XLS/95Toklat#3

19-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ŝ.

Values in ppm unless otherwise reported

TOKLAT RESOURCES INC. AK 95-942 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

.

57 Rock samples received Oct. 10, 1995 PROJECT #: None given SHIPMENT #: None given

Et #	L Tag #	_Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	<u>Ni</u>	P	Pb	<u>\$b</u>	Sn	Sr	Ti %	<u> </u>	<u> </u>	<u></u>	Y	Zn
1	SKCR-01	5	0.4	0.09	<5	5	<5	0.01	<1	2	263	4	0.87	<10	0.03	232	<1	< 01	6	<10	16	<5	<20	1	< 01	<10	2	<10	<1	25
2	SKCR-02	5	<.2	3.59	<5	220	30	0.99	<1	19	110	33	9.21	<10	1.15	1163	<1	0.04	2	3200	30	<5	<20	10	0.40	<10	44	<10	18	337
Э	SKCR-03	5	<.2	1.79	<5	75	20	0.72	<1	18	108	21	7.77	<10	0.62	620	4	0.03	2	2650	20	<5	<20	5	0.17	<10	7	<10	17	135
4	SKCR-04	5	0.2	1.28	<5	95	15	0.26	<1	6	199	6	4.76	<10	0.50	627	<1	0.01	3	1040	38	<5	<20	1	0.09	<10	7	<10	3	72
5	5KCR-05	5	<.2	2.42	<5	75	30	0.72	<1	23	91	37	9,11	<10	0,79	685	<1	0.04	2	2920	16	<5	<20	6	0.31	<10	12	<10	13	162
6		5	D 4	1 39	<5	120	20	0.12	<1	16	170	105	7 31	<10	6 4 f	430	~1	0.04	5	350	80	-5	<20	٥	0.25	<10	24	~10	<i>c</i> 1	08
7	SKC2 07	5		1 34	<5	195	15	0.12	<1	12	181	52	5.60	<10	0.41	305	21	0.07	3	1010	16	-0	~20	2	0.17	210	16	~10	-1	80
, D	COCR 10	265		0.27	885	55	25	0.12	c1	14	118	1646	14 70	<10	0.41	N10000	17	< 0.02	12	010	510000	0440	~20	2	0.17	~10	ы, а	210		210
0	CDCR-19	200	8.0	0.27	5	10	25	0.12	-1	5	170	0-01 AA	761	<10	0.77	401	1	0.03	د، د	260	167	9440 70	~20	47	0.03	<10	25	210	11	215
10	CDCR-20	10	16	3.03	ۍ د5	150	25	0.72	-1 2	17	100	57	10.60	<10	1.00	836	21	0.00 7.10	5	7500	726	5	~20	24	0.10	~10	22	~10	-11	196
10	0000-21	10	1.0	0.20	-9	100	2.5	0.72	2	••	100	51	10.00	-10	1.00	0.00		0.10	-	2000	200	-0	~20	27	0.40	~10	50	10	~1	100
11	CDCR-22	5	0.8	0.63	<5	25	<5	0.40	<1	3	263	7	1.61	<10	0.20	175	<1	0.01	7	400	68	<5	<20	36	0.02	<10	12	<10	5	30
12	CDCR-23	5	1.4	0.79	10	55	<5	0.22	3	21	208	85	2.94	<10	0.23	451	6	0,04	13	190	202	<5	<20	11	0.08	<10	14	<10	8	91
13	CDCR-24	5	0.8	0.30	<5	20	<5	0.03	<1	29	330	105	3.32	<10	0.11	135	<1	<.01	54	60	38	<5	<20	5	0.01	<10	4	<10	<1	42
14	CDCR-25	5	<.2	6.06	<5	80	<5	2.55	<1	85	48	710	8.59	<10	1.90	667	<1	0.32	81	640	52	<5	<20	65	0.21	<10	194	<10	<1	147
15	CDCOR95-01	5	<.2	1.37	<5	100	5	0.09	<1	9	83	36	5.27	. 10	0.66	296	<1	0.03	5	340	26	<5	<20	8	0.19	<10	16	<10	1	45
16	COCOR95-02	5	<.2	2.19	<5	130	20	0,10	<1	12	92	26	5.86	<10	1.25	380	<1	0.03	7	470	30	<5	<20	7	0.28	<10	45	<10	2	40
17	CDCOR95-03	10	< 2	0.72	<5	65	<5	0.17	<1	4	94	8	1.29	10	0.32	129	<1	0.04	5	490	18	<5	<20	4	0.10	<10	24	<10	11	17
18	CDCOR95-04	5	<2	2.95	25	195	20	0.59	<1	19	101	60	7.72	<10	1.14	599	<1	0.04	8	1540	70	<5	<20	8	0.33	<10	110	<10	2	92
19	. COCOR95-05	5	<.2	0.43	. <5	55	<5	0.22	<1	3	233	9	1.25	<10	0.20	185	23	0.03	4	960	18	<5	<20	5	0.05	<10	11	<10	5	39
20	CDCOR95-05	590	19.8	0.31	>10000	45	<5	0.11	<1	255	143	1901	12.30	<10	0.03	105	11	<.01	33	50	4314	50	<20	<1	0.02	<10	6	<10	<1 :	>10000
			_				_																							
21	CDCOR95-07	10	>30	0.02	150	35	<5	0.01	98	33	283	1779	12.70	<10	<.01	66	4	<.01	65	<10	>10000	<5	<20	3	<.01	<10	<1	<10	<1	8833
22	CDCOR95-08	520	12.2	0.07	3245	15	<5	0.03	<1	27	261	2782	2.92	<10	0.01	76	18	0.01	8	100	2762	<5	<20	4	<.01	<10	2	<10	<1	1196
23	CDCOR95-09	25	>30	0.53	8155	110	<5	0.15	351	144	74	5771	> 15	<10	0.08	335	6	0.02	186	<10	>10000	<5	<20	9	0.02	<10	11	<10	<1 :	>10000
24	CDCOR95-10) 5	0.6	1.08	70	145	60	0.02	2	5	155	39	3,08	<10	0.40	240	9	<.01	6	270	206	<5	<20	З	0.07	<10	9	<10	1	254
25	CDCOR95-11	5	0.4	1.78	30	65	<5	0.61	2	20	237	80	5,51	20	1.04	465	<1	0.08	22	2060	276	<5	<20	14	0,15	<10	42	<10	14	242

.

Page 1

.

a second and a second

TOKLAT RESOURCES INC. AK 95-942

Et #	. Tag #	Au(ppb)	Ag	Al %	As	Ba	<u>_8</u>	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Ρ	РЬ	ŞЪ	Sn	Sr	Ti %	U	v	w	Y	Zn
26	CDCOR95-12	5	<.2	3,49	35	110	<5	2.02	<1	25	112	69	2.68	~10	0.99	259	<1	0.21	19	240	46	10	<20	37	0.12	<10	61	<10	<1	43
27	CDCOR95-13	5	<.2	0.62	10	80	<5	0,30	<1	5	154	10	0.68	20	0.16	167	<1	0.04	9	470	42	<5	<20	3	<.01	<10	6	<10	5	36
28	CDCOR95-14	5	0.8	D, 16	<5	60	<5	0.02	2	83	146	516	> 15	<10	<.01	68	25	<.01	43	<10	2	<5	<20	2	<.01	<10	3	<10	<1	23
29	CDCOR95-15	5	<.2	1.04	15	55	<5	1.21	<1	27	209	141	3,83	<10	0.66	484	'<1	0.05	30	650	32	<5	<20	5	0.20	<1D	72	<10	4	54
30	CDCOR95-16	5	<.2	1.18	<5	285	10	0.87	<1	9	144	11	3.04	<10	0.68	618	<1	0.07	7	1040	20	<5	<20	81	0.15	<10	47	<10	2	58
																													-	
31	CDCOR95-17	5	<.2	2.01	15	30	<5	4,44	<1	23	141	80	3,97	<10	1.54	782	<1	0.02	35	280	26	15	<20	43	0.12	<10	90	<10	<1	66
32	CDCOR95-18	5	1.4	2.50	210	130	<5	0,74	<1	26	117	43	5.42	<10	0.84	2709	4	0.03	40	1710	128	<5	<20	35	0.04	<10	39	<10	8	168
33	TTG95-01	5	1.0	0.24	20	35	15	0.07	2	6	105	9	7.81	<10	0.02	3568	10	<.01	8	110	204	<5	<20	3	<.01	<10	3	<10	<1	423
34	TTG95-02	5	0.2	4.16	20	920	15	9.36	<1	33	311	6	7.42	40	5.38	2174	<1	0.01	69 3	>10000	126	20	<20	388	0,19	<10	146	<10	12	276
35	TTG95-03	5	<.2	3.10	10	170	10	1.34	<1	44	90	79	7.02	<10	1.74	730	<1	0.07	53	1370	24	<5	<20	15	0.30	<10	160	<10	2	110
																						•					+		-	
36	TTG95-04	5	<.2	4.45	<5	315	30	1.36	<1	38	151	11	8,94	<10	2.63	957	<1	0.01	34	1080	30	<5	<20	21	0.40	<10	200	<10	<1	164
37	TTG95-05	65	0,6	0,46	<5	40	<5	0.06	1	108	141	563	7.92	<10	0.11	112	5	0.01	262	90	20	<5	<20	<1	0.06	<10	10	<10	<1	47
38	TTG95-06	5	0.2	0.45	10	25	<5	0.05	<1	6	131	10	1.46	<10	0.16	316	3	0.03	9	100	24	<5	<20	3	0.04	<10	8	<10	2	39
39	TTG95-07	5	<.2	4.67	<5	140	45	0.91	1	28	47	47	12.70	<10	1 38	1238	<1	0.06	3	3430	44	<5	<20	7	0.51	<10	49	<10	1	191
40	TTG95-09	5	<.2	0.20	35	5	<5	0.06	<1	7	67	3	0.40	<10	0.02	76	2	0.07	3	270	6	<5	<20	< t	< 01	<10	1	<10	2	7
												-					~	4.41	-		•	•	~~	•			•	1.	-	•
41	TTG95-10	5	0.8	0.22	495	5	<5	0.02	<1	7	126	34	1.02	10	0.07	133	2	0.02	8	140	156	<5	<20	<1	< 01	<10	2	<10	2	173
42	TTG95-11	5	<.2	0.08	10	15	<5	0.22	<1	2	211	6	0.91	<10	0.03	253	7	0.01	6	250	10	<5	<20	6	<.01	<10	1	<10	<1	14
43	TTG95-12	5	0.6	0,46	15	5	<5	3.17	1	15	88	18	2.27	<10	0.28	979	2	0.04	14	20	32	<5	<20	17	<.01	<10	7	<10	14	142
44	TTG95-16	5	0,6	0.56	155	5	<5	0.03	<1	9	130	6	1.88	<10	0.51	71	6	0.05	2	40	56	<5	<20	<1	<.01	<10	11	<10	< 1	26
45	TTG95-17	5	<.2	4.82	<5	25	20	0.13	<1	27	284	4	9,30	<10	4,43	592	5	<.01	84	650	30	<5	<20	<1	0.02	<10	194	<10	<1	83
																	_					_								
46	TTG95-19	5	2.2	0.22	255	5	10	0.01	<1	8	163	16	3.94	<10	0.02	28	9	0.04	4	160	664	<5	<20	7	<.01	<10	11	<10	<1	11
47	TTG95-21	5	5.2	0.43	170	25	<5	0.58	<1	8	105	13	6.74	40	0.15	8946	9	<.01	5	1690	64	<5	<20	10	0.01	<10	4	<10	6	11
48	TTG95-22	5	3.4	0.39	<5	20	<5	0.32	<1	4	190	6	6.46	<10	<.01	9433	49	< 01	5	720	8	<5	<20	10	0.01	<10	3	<10	2	7
49	TTG95-24	5	5.2	0.37	70	25	<5	0.05	<1	6	109	51	2.81	<10	0.02	3039	4	<.01	14	180	872	<5	<20	<1	< 01	<10	3	<10	<1	26
50	TTG95-25	5	19.8	0.45	55	25	<5	0.08	<1	8	135	325	5.33	<10	0.10	5213	10	<.01	13	160	4360	535	<20	2	<.01	<10	4	<10	<1	69
																•													•	
51	TTG95-31	5	1.4	1,92	95	180	<5	1.91	<1	21	68	86	4.52	<10	1.01	743	<1	0.02	30	800	36	10	<20	64	0.12	<10	85	<10	4	89
52	TTG95-32	5	< 2	0,06	5	<5	<5	0.04	<1	2	199	37	1.28	<10	0.02	94	7	<.01	4	20	20	<5	<20	1	<.01	<10	11	<10	<1	5
53	TTG95-33	5	<.2	1.38	15	45	<5	0.60	1	17	189	320	4.28	<10	0.62	273	2	0.06	18	90	14	<5	<20	11	0.06	<10	52	<10	<1	27
54	TTG95-35	5	0.2	0.07	5	<5	<5	0.03	<1	3	226	42	0.66	<10	0.04	58	8	< 01	6	<10	4	<5	<20	<1	< 01	<10	4	<10	<1	6
55	TTG95-37	5	<.2	2.08	<5	70	<5	1.10	1	66	58	567	8.82	<10	0.92	366	<1	0.06	13	2330	14	-5	<20	7	0.25	<10	55	<10	6	53
•							:		-									*.**						•	e					
58	TTG95-40	5	<.2	2.07	30	85	5	0.29	8	31	152	90	5,58	<10	1.26	508	<1	0.05	36 -	1050	22	<5	<20	7	0.23	<10	50	<10	7	808
57	TTG95-42	5	0.2	0.35	<5	10	<5	0.15	<1	з	110	28	0.72	<10	0.07	183	3	0.05	3	530	10	<5	<20	3	0.01	<10	4	<10	3	18
		-	-	-	-		-			-							-		-			-		-	1				•	

Page 2

. .

ток	TOKLAT RESOURCES INC. AK 95-942															ECO-TECH LABORATORIES LTD.														
Et	#. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Ċo	Cr	Cu	Fe %	La	Mg %	Мл	Мо	Na %	Ni	P	Pb	Sb	Sл	Sr	Ti %	u	v	w	Y	Zn
<u>QC/D</u> Resp.	ATA: (it:	_			_		_																							
R/S 1	SKCR-01	5	0.4	0.12	5	10	<5	0.05	<1	2	256	3	0.91	<10	0.06	223	2	< 01	6	20	12	<5	<20	<1	<.D1	<10	3	<10	<1	20
R/S 3	6 TTG95-04	5	<.2	4.37	<5	310	25	1.29	1	37	151	10	8.78	<10	2.58	923	<1	0.01	33	1050	26	<5	<20	23	0.37	<10	196	<10	<1	161
Repe	at:																													
1	SKCR-01	5	0.6	0.09	5	5	<5	0.02	<1	2	264	5	0.89	<10	0.03	236	<1	<.01	6	<10	22	<5	<20	<1	< 01	<10	2	10	<1	20
10	CDCR-21	10	1.2	3.16	<5	145	30	0.70	2	17	96.	56	10.30	<10	0.98	808	<1	0 10	2	2540	222	<5	<20	23	0.39	<10	38	<10	<1	173
19	CDCOR95-0	5 5	<.2	0.41	<5	60	<5	0.22	<1	3	238	9	1.14	<10	0 19	177	25	0.03	5	970	. 20	<5	<20	7	0.04	<10	-11	<10	5	40
36	TTG95-04	5	<.2	4.42	<5	315	25	1,35	<1	38	148	10	8.88	<10	2 61	945	<1	0.01	33	1020	28	10	<20	23	0.39	<10	198	<10	<1	163
45	TTG95-17	5	<.2	4.69	<5	25	10	0.12	<1	27	278	6	9.08	<10	4 30	576	6	< 01	82	620	30	<5	<20	<1	0.01	<10	100	<10	<1	70
54	TTG95-35	5	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stand	lard:																													
GEO'	95	145	1.2	1,65	65	170	<5	1.90	<1	21	60	82	3,80	<10	0.92	631	<1	0.02	22	610	22	<5	<20	62	0.12	<10	69	<10	4	72
GEO'	95	150	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-			-				-	I L	-	•	-	-	

ECO-TECH LABORATORIES LTD.

ECO-TECH LABORATORIES LTD Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/941 XLS/95Toklat#2 •

Page 3