BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:	1995/1996
REPORT #:	PAP 95-25
NAME:	RALPH KEEFE

106 2 5 100P

 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see sectin 16) required with this TECHNICAL REPORT.
Name Ralph R. Keefe Reference Number 95/95 PO52
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>On-going Dev Plan</u> Minfile # if applicable <u>N/A</u> Location of Project Area NTS <u>93M 1/E</u> Lat <u>55 15'</u> Long <u>126 11'</u> Description of Location and Access <u>All areas accessed by logging roads on</u> <u>East side of Babine Lake.</u> Main Commodities Searched For <u>Au, Cu, Porphyty</u>
Known Minerial Occurrences in Project Area - Numerous mines and known mineral deposits (of which all are porphyry in nature) Granisle, bell, morrison - Double R, Babs, Nak, Dorothy and trail Peak, plus others.
WORK PERFORMED 1. Conventional Prospecting (area) & silting of creeks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)
<u>SIGNIFICANT RESULTS (if any)</u> sample # 12840 - new log block - S.E. of existing showing on Babs claims.
Commodities <u>Cu, Au.</u> Location (show on map) Lat <u>54°57′</u> Long <u>/26°</u> Elevation <u>2800′</u> Best assay/sample type <u>- Cu - 12500 PPM, Au-265PPB (BFP) class.</u>
Descrition of mineralization, host rocks, anomalies - A total of 57 log blocks plus haul roads were prospected this past season. The new showing on the Babs M.C. has resulted in further option of said property. Indications of additional mineralization on the M.R. property has drawn the attention of INCO Exploration, whom are presantly reviewing and assessing. Additional prospecting on the Double R property and surrounding area to the West has improved the potential of optioning. The Double R Property is presently under review by J. Dawson (Lucero Resources).

Supporting data must be submitted with this TECHNICAL REPORT.

20.06 R	80. 8 03 9 0 1 2 3 4	700, 2176 Ba 12840 44089 44090 44091 44092	265 265 20 5 20 5		6.65 2.06 0.15 5.80 7.22	44 2 28 6 2		0.5 0.5 0.2 0.6 1.6	5 5 5 5 5	2.75 0.48 0.02 1.83		0000 64 34 10 52	14 14 8 4 15	31 81 113 44	971 971 12500 981 68	3.06 4.37 10.92 3.88	95 0.25 0.81 0.05	21	26 10 6 07	355	99 98 74 1	0.03 0.03 0.05 0.02	35 0. 20 0. 4 0.	7 PP 13 2 17 2 12 2	2 317 2 317 2 21 2 24	75 0.09 0.15 0.03 0.14	92 92 102 13		<u>4.20</u>
20100 R - 5 20102 - 2947 BIN - 9 PARTE (SIMMA) - 40 CHESURTE IN 41 TOCHATE 2 1 4 1 4 1 4 4 1 4 4 1 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	6 0. 9 0 1 2 3 4	2176 Ba 12240 44089 44090 44091 44092	5 265 5 20 5	03 02 02 02	6.65 2.06 0.15 5.60 7.22	44 28 6 2		9.8 0.3 0.2 0.6 1.6	5 5 5 5 5	2.75 0.48 0.02 1.83	63 64 62 02	64 34 10 52	<u>14</u> <u>8</u> 4 15	31 84 113 44	671 12500 181	3.06 4.37 10.92 3.88	0.25 0.81 0.05	21 ··· 16 3 ·	26 1.0 6 0.7	355	95 74 1	0.03 0.05 0.02	35 0. 20 0. 4 0.	13 2 17 2 12 1	317 21 24	0.09 0.15 0.03 0.14	92 102 13		
12-12-2-2-45 AIR - 29 <u>Proster (SHAW)</u> - 40 <u>CHEVETE N 41</u> <u>TUCHA-E</u> 1 4 1 4 1 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4	0 1 2 3 4	44090 44090 44091 44092	265 5 20 5	03 02 02 02	2,06 0.15 5.60 7.22	2 28 6 2		0.5 0.6 1.6	5 5 5 5	0.48 0.02 1.83	82 82	34 19 52	<u>8</u> 4 15	84 113 44	12530	4.37 10.52 3.88	0.81 0.05	<u> </u>	6 0.7	162	74 1	0.05 0.02	20 0.1 4 0.1	17	21	0.15 0.03 0.14	102		
1 4217E (\$164097 - 40 CHERRETA H 41 TUCHA-E 22 11 11 12 14 11 14 11 14 11 14 14 14 14	0 1 2 3 4	44090 44091 44092	<u>3</u> 20 5	02 02	0.15 5.60 7.22	<u>- 28</u> <u>- 6</u> 2	12	0.6	5 5 5	0.02 1.83 0.06	02	<u>10</u> 52	4	113 44		10.92 3.RR	0.05	3	<u> </u>		<u> </u>	<u>002</u>	4 01	2 2	24	0.03	<u>13</u>		
<u>CHESCRITA H 41</u> TUCHA-E 22 " 43 " 44 " 45 <u>H</u> 45 <u>BABILLE</u> CAMPER 5	1 2 3 4	44091 44092	<u>20</u> 3	02	5.60 7.22	2	72	0.6	<u>5</u>	183	. 02	<u></u>	15	- 44 :	60	3.88	A 11	30	39 6 2	E 10 1 1	· · · · · · · · · · · · · · · · · · ·	A 64	AC 61	H . 4	S 67	0.14	94		
TUCHA-E 42	2 3 4	44091	5		7.22	2	: <u></u>	1.6	5	0.06					A COLORED AND A		11.71	<u> </u>	10 40	- 16		9100	<i>∞</i> v.,	14 w	<u> </u>				
11 43 11 44 11 45 800/05-000000000000000000000000000000000	3 4	44092		1.1								- 52	7	14	1	3.71	2.76	33	3 0.1	24	, ; ; t .	0.2 0	3 0.3	10 6	573	0.01	82	10	
11 43 11 45 - Bading - Correct 40	4	44092		والمشر وتعاد			- <u></u>				-3ž.				1.8				11 A.		2000 - 100 100 - 100								
11 45	4	4 4000	3.	92	6.74	2	12	6.6	5	6.73	62	- 94	17	36	- #	5.46	0.96	27	9 0.7.	1499	1	0.23	13 0.0	9 2	599	0.31	- 172 -	, 	
- 800 mm - Come ce 10	-	44053	5	62	4.79	2		0,7	5	334		83	16	56 (. 35 .	2.99	0.06	_ 23 ;	12 10	970	1 1 -	0.50	13 0.	X8 (2)	352	0.33	113 :	- 5	
- BABINE- CAME CE 10	5	44234	5	6 2	6.34	2	784	18	5	0.22	02	- 55	6	15	12	2.03	2,27	30 -	i 🕴 0,#	56	4	0.20	4 0,1	15 9	650	0.85	89 -	19	
	<u>6 </u>	44095	<u> </u>	02	2.98	<u> </u>	15	0.8		1.62	<u> 92</u> .	_83_	4	29	<u> </u>	3.14	0.52	34	15 0.6	416	2	0.15	3_0.1	13 2	: 82	0.20	74	*	
	7	440,96	5	0,2	4.24	3.	- 66	0.5	5	3.29	02	67	53	26 ·	33	7.33	0.24	25	24 1.5	526	· .1	0.15	25 0.1	2 2	617	42. 0	184	- 🐠 -	
- 4, 17 ius		4 0000 00.							-												•								
50640000 - 51	· · · · ·	17877/ 191	3	02	9.9/	- 7	- 13	0.7	<u></u>	5.10	<u><u></u></u>	64	16	31	<u> </u>	<u>. 535</u> -	0.04	20	11 0.8	624	<u></u>	0.19	6 80	6 2		0.33	120	<u>ns</u>	
SALAHAAAA	2	19021	12	.V20.	1.92	4	584	0,4	2	0.03	466	37	130	110	- 24	9.36	0.81	17	14 0,35	-474	. 1	0.04	13 04	<u>n</u> 2	35	0.13	56	6	
	~ A	17037 Lin	5	1044 1074 2	100		440	U.Z	2	100	U.4	11	14 ⇒4	142	- 25	1.90	9.50	12	÷ 0.05	80	1	0,05	5 0.0	12 2	6	9.03	19	24	
5/R	ζ	14934 510 1492 5 Berl	~	447.	2,34	<u></u>	- <u></u>	0.7		134 :	324.0	%			<u> </u>	11,60	U.04	- 41	<u>3 0.17</u>	61	_ //	9.07	14 0.6	B 60	257	0.25	94	46830	
((, m, c), c)		THOM OF A PARTY	3	0.25	2.13	37		V./	2	1704	<i></i>	4/	14	29	- 45	4.97	ų., 99	۵	4 4 0.74	- 654	2	Q. 17	24 G.1	8 Z	40	u.15	97	-50	
1 .56	6	4409R *	5	02	2 20	4	12	06	5	171	1.1	54	11	46		4.40	0.05	26		t.e	1.14	0.15	10 04		202	6 A7	64		
" 57	7	44099	ŝ	10	6.74	14	-	13	Š	Δ.7.4 ·	07		24	1 77	112	2.14	146	25	- X 0 21	202		0.1.1	22 04			0.53	70	. .	
	B	44100 Si	5	144	1 50	2	143	15	÷.	105.	3.0	- AK	17	56	Ж	3.16	0.77	26	28 14	- 442		0.11	18 01	0 20	20	4.00	.00	31 (77)	-
HOLA 9	9	12822 Se	~Ţ-	02	2.83		78	0.8	- 5	3.61	14	ā	- 75	104		201	A 18	28	2 18	100		677	70 01	9 9		11		-11-	
" 60	д (12523 Se	5	02	3.16	2	833	0.7	5	1.72	0.0	73	24	22	45	1.11	0.39	- 1	276 1 91	778		0.52	20 0.7	1 1	177	0.51	178	102	
																				PROSPECTORS PROGRAM	ARRI G 7 NHO								

•

8.3

10/19/95 10:50

NORANDA DELTA

REQUED	
JAN 2 5 1996	-
PROSPECTORS PHOGRAM MELLES	NORANDA DELTA

LABORATORY

Geochemical Analysis

		1	'roject Na Vistorial:	aic A	No.:		BCGE 35 Sila	ENEX 5, 20 1	- 122 Ra	(HE	LC)				Geol. Sheet	R.K. 1of 2	2		Onte Date	reacit comp	ed: Ictod:	SEP. (SEP.	06 11		LAB	OODS	ē	9509)-01	2
		3	leads:		•	Sample		ed 🖲	15 M	SH (1	.5 📷	;																		
					NC.	Organi	e i H	1 1 1 1,	\$ \$4 %)	Ør 👘			As — el	R # 30	L I \$.0 (s ascepte	dgeste	d with m	d19ce	gia and	449619	inel ty	A. A. (C	DL.2 P	PB) Ra	ц 10.0 у	ARA	A (DL S	163)	
		K	T - 02 6 H	mpie č	gened	rich) a	I HCIO	#H NO	'y (4:L) I	n 20 <u>0</u> 1	C for 4	'sears di	lated to	• 10 ml •	कोंद्रे जा	ter. Lee	n se PS3	900 IC1	' deteri	pined e	le meal.	a l'ectrice	.							
		H	.2. The maj	x oxide	C 688-21	nto and 1 examples	32. 14 . (Ce, 14.	Li. Gai	HER COC:	ty dirite	Mrsd 000	n#1466)	r trois p	t coluție	: AČ 60 91.6	ria la witi	h 2h n es	H GINO	111 120 12	09¥06.									
			<u>=Habase</u>	<u>no#n</u>	<u>uun</u>	34-31	<u>, 30 = 3</u>		<u>100</u>	~	~	~	~	~	~	E.		1.	1:	Me	14-	Ma	Ma	N		25	8	Ti	Ŷ	7.
	· L.L.	No	<u>مر</u>	~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					2						44				- 5	000				-				PDIn	000
RADINE		SH 217: B	2	· · · 2	<u>- < 11</u>	2	415	- <u>-</u>	- T	0 10	-02	10	11	45	27	144	07	15	29	05	607	1	0.17	37	0.98	9	78	0.16	95	100
	-14	12824 1	b 2	62	4.42	2	361	1.2	5	3.6	0.5	- 4	14	12	- KS	4.03	1.28		22	0.94	1678	ż	0.05	16	0.11	11	76	0.12	58	127
,	s	1282	2	62	2.97	11	225	0.6	5	0.92	0.6	50	11	21	44	4.23	0.66	17	-14	0.90	1:97	. 2	0.07	13	0.39	5	69	022	97	1.00
ien	6	128.26	2	C.2	213	2	111	0.6	5	1.05	0.8	49	- 14	69	Ω	3.79	0.36	68	- 15	1.54	946	;	0.06	42	01.0	7	63	0.25	96	1,18
A11 45	7	12927	2	0.2	3.29	3	347	1.0	5	0.7	0.5	40	D	- 14	38	4.70	0.84	16	15	1.13	1661		0.0:	13	0.11	- 6	55	0.16	116	1.56
A 510 -							•												· .								_			
	8	12825	2	6,4	2.54	2	102	0.6	5	1.%	. 13	:9	13	- 25	63	4.54	0.38	22	- 14	1.05	1277	1	0.06	15	0.39	- 14	- 26	025	107	207
	1	12829 M	ð 4	0.2	2.40	3	268	a 9	5	1.24	- 15	:5	12	26	្ល	3.52	0.36	27	13	0.83	1752	- 2	0.04	17	110	60	68	0.15	79	162
	-110	44082 *	SL 2	0.2	2.70	4	234	0.5	5	1.14	07	<u> </u>	15	22	<u>.</u>	5.43	021	16	14	05:	2047	÷.	0.04	12	0.13	2	.	U.IC	93	- 69 - 44
	- <u>-</u> u	44084 *	2	62	2.45	- 4	119	0.5	5	0.97	02	- 39	9	17	- 25	3.52	0.29	12	17	0.50	1.14	1	0.04	11	0.10	2	51	0.1.1	/-0	- 6
Ba	-102	4408.5	2	0.2	3.26	6	168	0.6	5	9,82	02	46	12	18	36	3.69	039	16	18	0.54	1702	1	0.06	12	0.96	, e	01	0.12		3.5
51412	1		_			-			,					~~			A.71		-	64-	13.00	••••	0.04	14	A 11		et	A 17	61	in
2	48	44035	2	0.2	3.08		2013	uo	2	0.8	- 04	40	4	<u>ب</u> تہ	 8		0.01	1.		0.0.	1.7	· · ·	0.0	14	0.11			0.71	77	16
	- 14	440,81			6 /	د	130	UL/	2	1.0	0.4	20	12			1.57	0.10	10	1.	0.30	1018		0.04	- 11	0.17		ŝ	0.14	97	î
		444.00			3.04		- 21/3	0.0	2	9,73 A 6C			10	- 22	- 10 - 10	5.47	04	10		077	1444		005	14	0.09	ំភ្នំ	71	0.17	117	- iã
	17	444430	4	- 11-2	1.74		120	- UL		- A	62	~	11	30	1/A	1.04	0.53	16	11	074	414	17	007	13	0.08	23		0.12	101	140
519512	ר"	44 139	-		9. 9 .			ψυσ	-	4.74							•				,	-		~				• • •		14
- /	1	41100 5	2	67	3 94	2	217	06	<	n 91	ns.		17	15	æ	4.40	0.53	15	: "Ž	0.77	2067	6	0.05	16	0.10	17	68	0.15	111	Ľ5
	-110	12912 5	2	02	179	2	731	07	š	1.79	n2	i.	13	29	31	4.10	0.42	15	· 18	0.94	850	- 1	0.06	23	0.07	. 4	96	022	105	- 95
_	120	12814	2	02	3.43	2	193	06	<	(.00	03	Ē	14	27	77	3.76	0.35	15	24	0.73	1528		0.00	20	0.09		89	0.20	- 99	52
	121	12815	2	0.2	3.67	2	178	07	Š	0.41	02	40	15	39	19	3.87	0.25	14	- 43	0.68	L452		0.04	20	0.12	; 1 5	- 54	0.17	93	120
~	- 22	12816	2	02	3.27	2	206	0.7	5	0.79	02	44	9	-4	3	3.12	0.32	19	. 23	061	- 467		0.05	21	0.10	4	75	0.19	52	1
5F1							· · · · ·															; ÷								
art	123	12817	4	- 0.Ż	3.16	2	213	0.7	5	0.78	02	•	11	60	-5	3.41	043	19	: Z.	066	625		0.01	25	0.97	·	76	0.1 0	92	- 80
5	124	12318	2	02	3.00	2	208	0.7	5	0.75	02	- 47	12	81	- 22	3.45	0.36	18	2	062	- 757		0.01	- 24	0.97	1.12	80	0.19	92	- 52
	+ 25	12819	2	0.2	2.96	2	207	0.7	5	0.77	02	- 47	12	- 58	- 23	3.37	0.40	18	2.	: 063	737		0.04	- 24	0.97		B1	0.12	90	 - -
	+26	12320	2	02	2.78	2	177	0.6	5	0.65	- 10Ž	- 42	11	45	- 🛱	3,47	037	15	19	0.62	646		0.05	21	0.97	3	75	0.15	92	- 76
	-1-27	12621	2	02	2.99	2	193	0.6	5	0.93	02	- 47	11	46	చ	3.52	0.40	17	20	, 0 <i>6</i> 9	636		0.07	- 22	0.97	3	78	0.20	94	7 8
				- 63 }								•											í							6.
	- 28	44 19 1	2	02	3.44	2	200	0.7	5	1.17	02	- 47	13	- 36	्यः	4.14	041	18	2)	0.80	874		007	22	0.38	Ľ	101	02	105	2
	29	44172	2	02	2.75	2	. 191	0.6	- 5	6.09	02	- 41	11	41	- 20	3.11	0.36	16	20	064	639		0.06	Z 3	0.96		71	0.17	51	
	30	44 193	2	0.2	4.19	2	221	0.7	5	0.68	02	- 46	12	49	- X	1.66	054	17	- 28	0.71	87		00	19	0.07	3	66	0.17	92	6
*"	31	44194	2	0.2	3.23	2	227	8.6	5	€£ 7	:02	28	12	49	<u> </u>	3_37	0.32	13	- X -	060	1366	- 1	00:	19	0.06	<u></u>	. 81	51.0	81	~ D4
all a	32	44195	2	0.2	3,80	2	248	0,7	5	6.8 9	02	22	11	40	- 27	1.74	025	16	26	0.60	826	- 1 1	00	20	0.99	🖣	n	0.18	64	70
6161			_	1		_			_										<u>.</u>					10	A 147	8. s		0.21	1011	
2	33	44196	2	002	162	2	- 222	0.6	5	1.31	01	26	в	23	38	4.31	0.38	13	2 6	: 092	915			19	0.07	4		0.21	- 102 04	No.
	34	44197	2	02	4.37	2	322	0.7	Ş	1.05	. 93	36	11	44	- 40	3.36	0.29	21	2	0/2 • AA4	الاختار			20 24	0.10	5	20 114	0.12	72	2
	35	441,98	2	0,2	3.95	2	- 26	0.7	5	1.40	02	30			- 1	3.91	046	12	به :	0.20		11	. 0.09 . 0.04	20	0.07	 	6	0.14	01	៍
	36	44199	2	02	3.43	2	- 224	0.7	3	0.03	- V2 - 44	4	11		1	144	0.46	· 14	<u>्</u>	• 900 097	2 10		0.0	25	0.00		71	0.20	101	10
	- <u>w7</u>	ME 41270 SI		97	010			<u>u/</u>			92	φ	11				0.41			V01					- 10					
		و معنه ر	5																											
	•	7 5																												

10-12-95 00145

•

2 CO4 940 0055 NORANDA DELTA

0 N

1

NORANDA DELTA LABORATORY Geochemical Analysis

Project Name & No.: BCGENEX - 127 (HEMLO) Material: 2 Site & 19 Rg Genl.; R.R.K. Date received: NOV. 08 Sheet: I of 1 Date completed: NOV. 15 LAB CODE: 9511-003

<u>ار:</u>

Remarks: * Sample second @ -35 M88H (#5 mm)

Au - sitt & soit, 19.4 g mappie digeneed with squa-regis and determined by A.A. (D.L. 2 PPB); D.r. 19.4 g/AE/AA (DL 5 PPB)

2 Organic, & Hamme, S Serie Au - sit & soit, 19,8 g matrie dignore with spin-ragis and determined by A.A. (I KCP - 0.2 g sample dignored with 3 nsi HCiOg/HNOg (41) at 203 °C for 4 inoun dimend to 18 mi with water. Lemme P\$2000 (CF determined elemental operation)

H.B. The surjer out de elements and Ba, Be, Ce, La, Li, Ou are tarely dissolved somy lately from gentegical materials with this sold dissolution method.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TĨ	. SA	MPLE	As	A	Â	A Ba	Be	B	G	C4	Č.	Cb.	Cr.	Ċ.	F	X	LA I	u Mg	M	Mo	Ne	N	7	r.	8	<u>n</u>	V _ Z	-
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	_	No	•	No.	թթծ	779	<u> </u>	TON POIL	<u>, 1999)</u>		. *	772	PP.			PPM	<u> </u>		<u>778 8</u>	7		FD	2	PR:	2		변종.	<u>79</u>	111 532	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N. BABS -N & BARK BRANC	3	SILT	2201 mit	6		3.96	5	12	- Ş	1.85		52	13	39 §		5.28	0.47	19 20		2617		9.05	34	9.14		107	0.17	01 200	霸 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEV PROVING	4	"	2202 elt	10	E A	4.76	4 38 200	10		1.93		<u> </u>		- 44	1998 - 9 1996 - 9	361	0.45	21.38			000503997 000-0-5-5-	0.07	- -	4.28	#. / T	11/46	A 10	135.0%	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Six STATION-77-	-15	Rock	2189 az	<u>s</u>	84	3.71	1	1.2	2	3.39		- 26	- 14	43	<u> </u>	N.17	1.00	N 200	144	910		204	19	126		206	0.41	233	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BEP 98-	+0		2190	2	\mathbf{x}	4.49		01	2	3.71	8	44	41			1.41	0.45	- 7 2	a 21			2.08	2	602		27	1.06	- 9 240	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1'	.,	4191	3	1	1.30		0,3	2	1		-	*			1.000	0.75						-				••••		80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· 03_			2102	۲		691		61	5	0.85		47	11	- 48	- (22)	2.43	0.10	17 🖾	0.81	314		0.07	10	9,11		29	0.11	- 50 💹	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6		2193	10	<u> </u>	151	2 3 2 4	0.3	5	0.40	100	40	2	62		1.43	0.68	17 🎇	0.24	- 84		0.07	2	0.03		17	0.06	12 🎆	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- " et	- 10	4	2194	5		3.85	Ø all	1.1	5	4.85		95	30	- 46		2 6.09	1.25	36 🎆	3.05	879	22	0.13	36	0.24		294	0.43	204 388	
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	n:	12	4	2193	10		3.29	13 18	0.8	5	3,44		57	- 24	7		2636	0.75	13 🙀	2.94	827)		0.13	- 47	0.12		120	0.26	187 🛒	
0 0.51 14 6 2157 5 0.20 2 27 0.2 5 0.05 0.1 5 1 175 44 0.05 2 0.11 71 0.01 3 0.01 3 4 0.01 13 15 15 15 15 10 15 10 15 10 15 10 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 10 13 14 10 10 13 14 10 13 14 13 14 13 14 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 13 14 14 14 14 14 14 14 </td <td>X 87</td> <td>-13</td> <td>4</td> <td>2196</td> <td>់ឋ</td> <td>22</td> <td>3.10</td> <td>U/ 🕷</td> <td>0.9</td> <td>- 5</td> <td>1.05</td> <td></td> <td>39</td> <td>18</td> <td>109</td> <td>1 .</td> <td>/4.59</td> <td>127</td> <td>10 🛒</td> <td>S 0-33</td> <td>910</td> <td>26</td> <td>0.04</td> <td>75</td> <td>a.11</td> <td></td> <td>17</td> <td>0.11</td> <td>120 888</td> <td>翩</td>	X 87	-13	4	2196	់ឋ	22	3.10	U/ 🕷	0.9	- 5	1.05		39	18	109	1 .	/4.59	127	10 🛒	S 0-33	910	26	0.04	75	a.11		17	0.11	120 888	翩
		1.			_					-									. 2		-			•	Ant			44	11 🗱	饡
		- 14	4	2197	5		0.29		0.2	5	0.05		2		175		9,99 6 9 1	1156	- 4 翻	11.0.11 11.0.11	722		0.01	an a	0.24		443	0.01	231	
	<u> </u>	12		205	-2	935 CA 1600 SA	2.10	11 81 33	84		622		- 14		17		11.60	2.00	29 5	0.19	722	S. 7	0.65	21	0.08		241	0.05	160	
	- Be Ren WHIT	10		2200			440	79 3800 0	0.8	- 5	5.98		69	- KT	149	÷.,	6.66	0.18	16 📖	6.17	936	8. S	0.13	163	0.21	Here i	179	0.32	159 部部	
	5 4 Carrie de il de	21		2203		100 A	0.87	63 200	0.2	5	0.15	1	20	2	69		4.57	0.26	12 🖉	0.16	70		0.07	6	1.13	S	119	0.34	96	
	<u> </u>	1										1			_	1.1			135											
		2		43924	10		6.67	4 2026	0.9	5	4.23		49	25	13		630	2.59	14 🎬	1 11	1005	51X -	0.06	10	9.11		106	0.07	196 88	1
	· · · · · · · · · · · · · · · · · · ·	23		(3924 A	400		10.23	6 200	0.3		0.21		30			æ. 19	<u> 8,03</u>	248	15 333	<u>8: 0.11</u>	183	1997 - 1997 1997 - 1997	4.00	<u>_13</u>	0.00	2000 2004 (March 19	- 774	0.04	200 262	
	1 Posts WHITT -	- 25		439725	45	Sec.	11.14	7 2 3	0.4	2	0.24		40	13	12	<u></u>	0,72 0 OC	2,60	21 22		40		615	2	4.01		25	0.07 0.07	190 10	61
	Kenne	- 20		43923	- 20	2 2017 - 191	117	14 300 34	- 0.5 A.		3 40		- 27		- #	9920 - 14	5.67	0 19		2 2 2	956	1693	0.14	Ъ	108		- 88	0.34	18. 800	
	evices 192 -	- 4'		43333	Ģ		4.17			-	3637							4.3-	1					-		Sec.				顯
Dan- / 28 43942 cr 10 425 307 12 204 03 5 1.18 409 35 16 52 34 5.42 0.48 8 30 0.99 586 20 0.10 7 0.06 31 55 6.08 79 340	Doneprise Mc -	- 28		43942 (7	10	1	3.07	12	03	5	1.18	-0.4	35	16	52		5.42	0.48	5 W	1 0.99	.586		0.10	1	0.06	8. A.	55	6.05	79 🎆	.
EN-LAD	EN-LAD	-				recorded 2		10.000000		•			K	•									. 1							
Mint	Min-	l																												
		i.					•																							
							5)	Ē /																						
						$ _{\tilde{r}}$	57 !		r^{-1}		1																			
						Γ^{u}	1.1	2	50	> `			1						۱.											1
						1				`		1.111																		
													1																	
I JAN 25 mag								JAN ∠	5	1200	-		Ì																	ł
									•.•	ι υ υ:																				1
155 Contraction of the second s						1.1	500																							
		1			į		4CF.)	11 I I I I	15	F.F.	15. 2		1																	
$\sqrt{\frac{1}{2}}$							-	1vir	2.62	t tau t	25 U 3	2×11/2	ţ																	
								**************************************		<u> </u>															_					لہ
W. W KK			4. 1	W KK																										

۰.

.

٠,

 B. TECHNICAL REPORT One technical report to be completed for each projection Refer to Program Requirements/Regulations, section 1 If work was performed on claims a copy of the approximate in lieu of the supporting data (see section REPORT. 	ct area 15, 16 & 17 plicable assessment report may be on 16) required with this TECHNICAL
Name <u>Ralph R. Keefe</u> Refere	ence Number 95/96 P052
LOCATION/COMMODITIES	
Project Area (as listed in Part A) <u>Holm</u> Location of Project Area NTS <u>93L6/E&W</u> La Description of Location and Access <u>- Approxim Lake. Main Commodities Searched For<u>Au. Ag. Epit</u></u>	Minfile # if applicable nil at 54 15' Long 127 13' mately 6 km. North of Chisholm chermal & Placer
Known Mineral Occurrences in Project Area - F	Placer gold - Hagman's Creek.
<pre>WORK PERFORMED 1. Conventional Prospecting (area) & silt recent and 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, tot 7. Other (specify) </pre>	ting of creeks. Prospecting of active log blocks.
SIGNIFICANT RESULTS (if any) No Au. or Ag. bu of coal.	it we located a 4 1/2 - 5' seam
Commodities <u>Coal</u> Claim Na Location (show on map) Lat <u>54 14'</u> Long <u>1</u> Best assay/sample type <u>- Surface sample clas</u> bituminous coal believed simliar to the qu	ame - nil, lease to date 27 13' Elevation 1060 m sified as a high volatile nality of the Telkwa Colleries.
Description of mineralization, host rocks, an <u>discovered in creek and embankment while a</u> <u>in heavy timber and ground foliation (dev</u>	omalies : Coal seam was ttempting to take a silt sample il's club).
Supporting data must be submitted with this T	ECHNICAL REPORT.
	JAN 2 5 1996

PROSPECTORS PROGRAM

Mr. R Keefe Box 201 Francois Lake, B.C. V0J 1R0

Re - Analysis of Grab Sample Coal, Morice River Area B.C.

Dear Ralph

Please find attached the proximate analysis of the coal sample received this summer. In brief the coal appears to fall into the rank of a high volatile (B or C) bituminous coal, with further analysis required to determine if it has metallurgical applications (coking coal). It must be noted that this coal will be partially weathered or oxidized, which may lower the quality results. If you have any further questions you can contact me at (403) 231-7100.

Yours Truly

G. Seve

LORING LABORATORIES LTD.

629 Beaverdam Road N.E. Calgary, Alberta T2K 4W7 Tel : (403) 274-2777 Fax : (403) 275-0541

•*

TO : MANALTA COAL LTD. ATTN : GLENN SEVE PROJECT : FRANCOIS LAKE FILE # : 3 7 8 0 4 DATE : Nov 17, 95 REPORT BY : ARNO HOOGVELD

SAMPLE TYPE : RAW COAL

P.O.#

		***********		%		
SAMPLE ID	BASIS	H2O	<u>V.M</u> .	ASH	F.C.	MJ/K
'FANCOIS LAKE	A.R. D.B. DMMF	2.24	22.81 23.33 3 <i>1.</i> 79	26.47 27.08	48.48 49.59 68.07	23.9 24.48
VM Volati FC Fixed AR As rec DB Dry P DMMF Dry r MJ/kg Megaj	le motter l'Corton eived basis nineral matt loule/kg x	ter free 239 = cab	rics/gm × 1	8 = 6tu's/16		

			STUCETION	OI COALS IN	y Kank*				•
Class	Group _	Fixed C Limits, ((Dry, M Matter-Fr	larbon percent ineral- ce Basis)	Volatile its, per Mineral	Matter Lim- rcent (Dry, -Matter-Free Basis)	Calorific V Btu per por Mineral-M Ba	alue Limits, und (Moist," Matter-Free usis)		- i
		Equal or Greater Than	Less Than	Greater Than	Equal or Less Than	Equal or Greater Than	Less Than	Aggiomerating Character	
I. Anthracitic	I. Meta-anthracite 2. Anthracite 3. Semianthracite ^C	98 92 86	 98 92	 2 8	2 8 14	***		nonaggiomerating	-
II. Bituminous	 Low volatile bituminous coal Medium volatile bituminous coal High volatile A bituminous coal High volatile B bituminous coal High volatile C bituminous coal 	78 69 	86 78 69 	14 22 31 	22 31 	14 000 ⁰ 13 000 ⁰ 11 500	 14 000 13 000	commonly agglomerating ⁵	្ រៀក U 38
III. Subbituminous	1. Subbituminous A coal 2. Subbituminous B coal 3. Subbituminous C coal			···	•••	10 500 10 500 9 500 8 300	11 500 11 500 10 500	agglomerating	
IV. Lignitic	1. Lignite A 2. Lignite B					6 300	9 300 8 300 ¹ 6 300	nonaggiomerating	

TABLE 1 Classification of Coals b

This classification does not apply to certain coals, as discussed in Note 1.

Moist refers to coal containing its natural inherent moisture but not including visible water on the surface of the coal.

^a Moist refers to coal containing its natural interent moisture but not including vision water on the surface of the coal. ^c If agglomerating, classify in low-volatile group of the bituminous class. ^b Coals having 69 % or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of calorific value. ^t It is recognized that there may be nonagglomerating varieties in these groups of the bituminous class, and that there are notable exceptions in high volatile C bituminous group.

251

NORANDA DELTA LABORATORY

Geochemical Analysis

Project Name & No	- BCGENEX ~ 127 (HEMLC)		Geol. R.	K.	Date received: SEE	2.06	LAB_CODE:	9509-012
Minterial :	35 Silles, 20 R.t		Sheet: 1 c	12	Date completed: SF	2. 11		
Remarks:	* Sample among of @ -)\$ MESH (T.S mo ;							
	di Chananta di Manan di Basista				 			

= Qrg An - shi & soil, 150 ; somple digented with agan-regia and descentions by A.K. (D.L. 2 PPB) Ra, 10.0 ;/AR/AA (DL 5 PP3) vic. A Hummer, S Sulfale ICF = 82 & sumple & general with 3 all HCHO #1903 (4:1) at 209 °C for 4 hours dilated to 20 all with water. Learn in P\$3000 ICF determined at submetal ecourse.

M.E. The major oxide a amount and B1, B4, C4, La, La Ga are meety discoved completely from people interactive with the solid discover store. BaseRahmer Hog FCY M. SimSTR. SamShahman

$ \begin{array}{c} He_{2} & He_{2}$
$ \begin{array}{c} 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$
$ \begin{array}{c} 1 \\ 5 \\ 12225 \\ 1225 \\$
$ \begin{array}{c} 1 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$
$\int_{1}^{10} \int_{1}^{10} \int_{1}^{10$
$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \frac{1227}{1} = 2 0.2 3.29 3 347 149 5 0.77 0.5 40 13 14 39 4.70 0.92 16 15 1.13 1667 100 11 0.11 6 57 0.12 116 11 16 57 0.12 116 11 16 57 0.12 116 11 16 57 0.12 116 11 16 57 0.12 116 11 16 57 0.12 116 11 11 100 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 107 2 0.6 15 0.99 14 96 0.25 0.16 79 1 0.14 60 66 0.16 79 1 0.14 100 11 0.16 5 57 0.25 0.17 0.04 12 0.04 12 0.01 13 0.15 5 0.17 0.14 0.11 0.16 5 57 0.12 78 0.14 100 11 0.16 5 57 0.12 78 0.14 110 0.01 11 0.16 5 57 0.12 78 0.14 110 0.01 11 0.16 5 57 0.12 78 0.14 110 0.01 11 0.10 5 57 0.12 78 0.11 77 110 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 0.$
$ \frac{1}{5} 1$
$ \begin{array}{c} 8 \\ 5 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
$\begin{array}{c} 12229 \ 160 \\ 44082 \cdot S_{1} \\ 2 \\ 44082 \cdot S_{2} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
$ \begin{array}{c} 100 \\ -4062 \cdot Si \\ -112 \\ -11$
$\begin{array}{c} 11 \\ 51^{10} \\ 51^{10^{10}} \\ 12 \\ 14084 \\ 12 \\ 13 \\ 14084 \\ 14085 \\ 2 \\ 12 \\ 13 \\ 14086 \\ 2 \\ 12 \\ 13 \\ 13 \\ 14086 \\ 2 \\ 12 \\ 13 \\ 13 \\ 14086 \\ 2 \\ 12 \\ 13 \\ 13 \\ 14086 \\ 2 \\ 12 \\ 13 \\ 13 \\ 14086 \\ 2 \\ 12 \\ 13 \\ 13 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$
$ \begin{array}{c} 12 \\ 5 \\ 5 \\ 13 \\ -14 \\ -14 \\ -14 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 \\ -17 \\ -17 \\ -18 $
$\begin{array}{c} 5^{107} \\ -14 \\ +40087 \\ -14 \\ +40087 \\ -15 \\ +40086 \\ -2 \\ 0.2 \\ 2.77 \\ -17 \\ -15 \\ -15 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 $
$\begin{array}{c} -13 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -16 \\$
$ \begin{array}{c} -14 \\ 44087 \\ 5 \\ -15 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$5 \times 3 \times 5 \times 11^{17} = 17 \qquad 44159 \qquad 4 0.2 3.24 \qquad 8 189 0.6 5 0.74 0.3 45 11 20 109 4.04 0.53 16 17 0.74 914 17 0.07 13 0.08 23 56 0.17 101 11 11 11 11 11 11 $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 100 & 12814 & 2 & 022 & 3.43 & 2 & 193 & 0.6 & 5 & 1.00 & 9.3 & 42 & 14 & 27 & 27 & 1.76 & 0.35 & 15 & 24 & 0.75 & 1.528 & 0.006 & 20 & 0.09 & 5 & 899 & 0.20 & 99 \\ \hline 21 & 12815 & 2 & 0.2 & 3.47 & 2 & 178 & 0.7 & 5 & 0.61 & 0.2 & 40 & 15 & 29 & 39 & 3.87 & 0.25 & 14 & 43 & 0.68 & 1452 & 0.04 & 20 & 0.12 & 5 & 54 & 0.17 & 93 & 1 \\ \hline 22 & 12816 & 2 & 0.2 & 3.27 & 2 & 216 & 0.7 & 5 & 0.79 & 0.2 & 44 & 9 & 54 & 25 & 3.12 & 0.32 & 19 & 2.0 & 0.61 & 467 & 0.05 & 21 & 0.10 & 4 & 76 & 0.19 & 92 \\ \hline 23 & 12817 & 4 & 0.2 & 3.16 & 2 & 213 & 0.7 & 5 & 0.78 & 0.2 & 47 & 11 & 60 & 25 & 3.41 & 0.43 & 19 & 22 & 0.66 & 624 & 0.05 & 25 & 0.07 & 4 & 76 & 0.19 & 92 \\ \hline 24 & 12818 & 2 & 0.2 & 3.00 & 2 & 208 & 0.7 & 5 & 0.75 & 0.2 & 47 & 12 & 61 & 22 & 3.45 & 0.38 & 16 & 25 & 0.62 & 737 & 0.05 & 24 & 0.07 & 5 & 87 & 0.15 & 92 \\ \hline 24 & 12818 & 2 & 0.2 & 3.00 & 2 & 208 & 0.7 & 5 & 0.75 & 0.2 & 47 & 12 & 61 & 22 & 3.45 & 0.38 & 16 & 25 & 0.62 & 737 & 0.05 & 24 & 0.07 & 5 & 87 & 0.15 & 92 \\ \hline 25 & 12819 & 2 & 0.2 & 2.96 & 2 & 207 & 0.7 & 5 & 0.77 & 0.2 & 47 & 12 & 58 & 23 & 1.37 & 0.40 & 18 & 25 & 0.63 & 737 & 0.05 & 24 & 0.07 & 5 & 81 & 0.12 & 90 & 12 \\ \hline 26 & 12820 & 2 & 0.2 & 2.78 & 2 & 177 & 0.6 & 5 & 0.55 & 0.2 & 42 & 11 & 45 & 73 & 3.47 & 0.37 & 15 & 19 & 0.62 & 644 & 0.06 & 21 & 0.07 & 3 & 75 & 0.15 & 92 \\ \hline 26 & 12820 & 2 & 0.2 & 2.78 & 2 & 177 & 0.6 & 5 & 0.55 & 0.2 & 42 & 11 & 45 & 73 & 3.47 & 0.37 & 15 & 19 & 0.62 & 644 & 0.06 & 21 & 0.07 & 3 & 75 & 0.15 & 92 \\ \hline 26 & 12820 & 2 & 0.2 & 2.78 & 2 & 177 & 0.6 & 5 & 0.55 & 0.2 & 42 & 11 & 45 & 73 & 3.47 & 0.37 & 15 & 19 & 0.62 & 644 & 0.06 & 21 & 0.07 & 3 & 75 & 0.15 & 92 \\ \hline 26 & 12820 & 2 & 0.2 & 2.78 & 2 & 177 & 0.6 & 5 & 0.55 & 0.2 & 42 & 11 & 45 & 73 & 3.47 & 0.37 & 15 & 19 & 0.62 & 644 & 0.06 & 21 & 0.07 & 3 & 75 & 0.15 & 92 \\ \hline 26 & 12820 & 2 & 0.2 & 2.78 & 2 & 177 & 0.6 & 5 & 0.55 & 0.2 & 42 & 11 & 45 & 73 & 3.47 & 0.37 & 15 & 19 & 0.62 & 644 & 0.06 & 21 & 0.07 & 3 & 75 & 0.15 & 92 \\ \hline 26 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100$
$\begin{array}{c} -2.1 \\ -2.2 \\ -2.2 \\ -2.4 \\ -2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51° 12317 4 0.02 3.16 2 2.13 0.7 5 0.78 0.2 47 11 60 25 3.41 0.43 19 22 0.06 62.1 0.01 25 0.07 14 75 0.16 92 -24 12818 2 0.2 3.00 2 208 0.7 5 0.75 0.02 47 12 61 22 3.45 0.38 16 22 0.02 24 0.07 3 82 0.19 92 +25 12819 2 0.2 2.365 2 207 0.7 5 0.77 0.2 47 12 58 23 1.37 0.40 16 22 0.63 73* 0.02 24 0.97 5 81 0.12 90 12 12 13 147 0.37 15 19 0.62 646 1 0.07 5 81 0.12 90 12 13 147 0.37 15 19 0.62 646 1
-24 12818 2 0.2 300 2 208 0.7 5 0.75 0.2 47 12 61 22 3.45 0.38 16 25 0.62 757 0.00 24 0.07 3 82 0.19 92 +25 12819 2 0.2 2.96 2 2007 0.7 5 0.77 0.2 47 12 58 23 1.37 0.40 18 22 0.63 737 0.01 24 0.07 5 81 0.19 90 +26 12820 2 0.2 2.78 2 177 0.6 5 0.55 0.2 42 11 45 73 1.47 0.37 15 10 0.62 646 1 0.02 21 0.07 3 75 0.15 92
123 12819 2 0.2 2.36 2 2.07 9.7 0.2 47 12 58 23 1.37 6.40 16 22 0.63 73* 0.04 24 0.07 5 81 0.12 90 126 12820 2 0.2 2.78 2 177 0.6 5 6.55 6.2 42 1 6.02 6.46 1 0.02 21 0.07 3 75 0.15 92 127 12820 2 0.2 2.78 2 177 0.6 5 6.55 6.2 42 1 6.02 6.46 1 0.02 21 0.07 3 75 0.15 92
1262 1262 1 2 0.2 2.78 2 117 0.6 5 0.55 0.2 42 11 45 73 1.47 0.37 15 19 0.62 646 1 0.04 21 0.07 15 75 0.15 92
- 1 12561 2 9-2 6.57 2 193 U.6 5 9.53 92 47 11 46 25 3.52 0.40 17 20 0.69 636 1 0.07 22 0.07 3 76 0.28 94
23 44191 2 82 344 2 880 0.7 5 L17 82 47 13 36 23 4.14 0.41 18 23 0.80 874 10 0.07 22 0.08 13, 10) 0.21 109 7
27 44192 2 02 2-3 2 0191 0.6 5 0.69 0.92 41 11 41 20 3.11 0.38 16 20 0.64 639 3 0.06 23 0.06 38. 72 0.17 81 3
100 4411/3 Z 102 4.19 2 221 0.7 5 0.68 022 43 12 49 35 3.66 0.54 17 328 0.71 827 35 0.05 19 0.07 33 66 0.17 92
× 31 44194 2 97 3.23 2 227 0.6 5 6.87 022 28 12 49 25 3.37 0.32 15 22 0.60 1368 19 0.06 2 81 0.18 81
(1 ₆ 1 ¹ / 1 ⁻¹ 372 44195 2 (0 2 3.80 2 (2018 0.7 5 0.89 (30.2 32 11 40 (27 3.74 0.25 16 (1256 0.60 826 (11) 0.05 20 0.09 (11) 76 0.18 84 (11)
33 44190 2 922 362 2 222 06 5 1.31 92 26 13 23 26 4.31 0.38 12 26 092 915 3 0.06 19 0.07 3/2 86 0.21 102
341 441977 Z 022 4.27 2 322 0.7 5 1.05 023 38 11 44 48 0.58 0.29 21 238 0.72 1238 1 0.01 25 0.10 25 74 0.16 95 1
57 41157 2 324 355 2 256 0.7 5 1.40 322 30 13 29 34 3.51 0.48 15 23 0.96 706 3 0.06 25 0.97 3 112 0.22 101
2 41D7 2 022 3A3 2 224 0.7 5 0.5 92 26 11 22 23 3.5 046 14 23 0.83 518 1.005 27 0.07 3 60 0.15 91
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

=5/4 6w 48

10-12-95 80145

20

604 040 0055

HORANDA DELTA

		T.T.	SAMPLE	Az	A	A	A	Be	Bo	Bi	a	ČJ.	C2	Co	G	<u>O</u>	fe	ĸ	1.9		-		Ma	26	140			1	- 15		-	 ,
-		10.	<u>No</u>		_ ppin	%	20.0		ppm ;		76						- e	ê	-	-	- 2		Table .	4		- É	10			_ <u>*</u>	24 W	MP-012
2	with R	-136	n 2176 Ba		22	6.65	44	186	0.\$	5	2.75	83	64	14	31	641	3.06	0.25	21	26	107	255	<u>64</u>	0.02	25	0.12		212	0.00		PPER FO	2017
12.12	5 - EAST BIR	122	12840	265		2.05	2	255	0.5	5 (0.48	GA.	34	8	81	12400	A 37	0.81	36		0.21	167		0.05		0.13		31/	0.09	<u> 92</u>		(
$-\frac{P_{p}}{P_{p}}$	RITH (SHAWN)	40	44089	5	03	9.15	28	19	0.2	5 (0.02	- 5	10	···· 4	111	101	18 07	0.01	- 19_		0.00	201	- (3 -	4400	- 4	0.07		41	0,15	102	41	- -
C'He	NATA N	41	44090	20	02	3.00	6	127	3.0	5	1.83	62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15	4		1.82	A 27		-	0,02		24 6 .	474		0.02	. 😤	- <u>(A</u>	0.03	. 13	. 16	
	TUCHA-E	42	4.031	5	07	722	2	738	16	50	ññ.	12			-11		27		- 17	- 20-	A 14	3/2		0.00		<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	3	6/	0,14	94		
		1			- 19 E			1000				S. 19		•	14		3.71	2. NO	- 35	. . .	A'N	- 49 (V.20	5	0.10	· •	573	0.04	82	13	1
	•• •	43	44092	5	62	6.74	2	15	0.6	5 6	673	02	04	17	34		E 44	0.04		ä			1.1			.	7.2				1.10.10	1
	u.	44	44093	5	61	4.79	2	**	67	Č,	2 24	82		14	2		3,40	0.00	- 4/ ·		0.72	1499	1.	0.23	13	0.09	- 19 - 19	555	0.31	172		1
	4	45	44094	ŝ	- 02	6.34	2		1.8	\$ 1	77	8.7	56	10	36	33	2.37	0.00	40	- 14	1.91	970 3	- - -	0.30	13	0.08	2	352	0.33	113	- 19	
	<u> </u>	j 46	44095	5	62	2.98	6	185	44	5	1.67	87	92	4	- 10	34	2.05	221	30		0.09	30 :.	- 4	0.20	- 1	0.15	9	650	0.65	89	10	1
сн_{яб} Вал	BING - CAMPLE	47	44095	5	62	4 74	ž	 	05	5 5	1 70		<u>63</u>	. .		1.7	3.14	<u>V.X</u>		10	9.49	416	 2_	0,15	3	0.13	2	- 82	0.20	74	*	_
				-					V.J		147	97	0/	39	20	.35	733	0.24	25	14	1.59	526	1	0.18	25	0.12	2	617	0.50	184	-	7
"	<u>, , , ,</u>	48	44097 Ba	5	6.2	4 07	,	15	07		C 1A	87	~	14	ðn.								1									ļ
34	THAMAGEN -	51	12830 Ho	15	62	107		374	0.7	<u> </u>	/-AV	<u> </u>	- 04	10			-2-52	0.04	_ 20	_ 11	0.88	624	<u> 1 </u>	0.19	6	0.08	2	53	0.33	120	115	
50	LAHAREN -	53	12831	, i i	62	1 00	5	716	0.2		7.00 1 00	0.4	3/	<i>L</i>	110	- 24	9.36	0.81	17	14	0.39	474	. 1	0.04	13	0.07	2	35	0.13	56	69	
		54	12817 14	5	174	5 57	17		0.2		7.000 1.000 - 2	9,9 6 a 2	11	14	145	25	1.90	9.50	12	6	6.09	86	1	0.05	5	0.02	2	6	0.03	19	24	1
	518 -	. 55	44092 4 /	Per A R		215		- 11	0.7	2.1	26.3		- 05	- (4	30	235	11.60	0.04	. 21		0.17	2961	79	0.07	14	0.03	60	257	0.25	94	46000	1
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	د	V.#.	213	31	-9,3	Ų.7	2 3	2,404	4	47	14	19	45	4.97	0.39	20	42	0.74	854	2	0.12	24	0.10	2	40	0.15	92	230	
	A	56	44098		0.7	7 70		12	A.2		. 72																				P	i i
	"	1.57	44090	, z	16	6 34			1.5	21	1.75	11	- 54	11	40	46	4.40	0.05	26	- 24	1.02	565	2	0.15	10	0.07	2	202	0.43	96	80 ·	1
	<i>*</i> <u> </u>	458	44100 5		- 1.4 	1 45	13	336	1	2 4		9.6	35	34	57	113	4.36	2.55	25	6	0.25	64	j. 1	0.11	22	0.05	12	56	0.06	58	31	1
	Heley		12822 5			7.02			<u></u>	21		<u> </u>	40	- 12	56	<u>71</u>	3.16	0.27	20	28	1.45	543	1	0.11	18	0.10	30	30	0.19	88	67	1
	17	60	179772 Sa	ŝ	- 1	2.14		A\$77	0.8	23	201	14	67	28	104	72	6.01	0.18	28	37	283	1053	-3	0.22	70	0.18	2	103	0.31	179	117	
				د .		7.10	4	6.33	0.7	21	.72	0.9	73	24	22	45	5.33	0.39	34	28	1.91	778	3	0.52	20	0.21	3	377	0.55	178	102	
	1	·																														
																																!
																																1
																																i
	ļ																															í
																																į
	:																															i
	·																															ł
]																															
	4																															
	1																															ł
																																1

.`

е И

10/19/95 10:50

2604 949 8055

NORANDA DELTA

.

۰.۰

.

Copy Caly

January 18/96.

. 1

> Box 201 Francois Lake, B.C. V0J 1R0

Manalta Coal Ltd. Box 2880 Calgary, Alberta T2P 2M7

Attn: Terry Brizzoni (Pres)

Re: Coal Discovery - South of Houston, B.C.

I am writing this letter in response to my recent phone call with you, as well as conversations with K. Stone & B. Ryan within the Ministry of Energy & Mines in Victoria.

First off, thank you for your response and assistance to-date.

- 1) I am in the process of applying for a coal licence as suggested by Kim Stone. Fee being \$25.00.
- 2) The Ministry of Mines advise me that I must have some tenure (lease) prior to any development work (trenching, backhoe or cat) or drilling can be done to properly evaluate. Use of handtools is permitted without tenure.
- My suggestion (only) to you at this date would be somewhat along the following lines. For the rights of first look at the property for option purposes would you consider the following;
 - a) Confidentiality agreement for 2 years I believe you have such, or I could possibly send you one which could be modified.
 - b) Assist me with the coverage cost of the minimum hectares involved to cover the area in order to make the evaluation of the discovery possible. The cost per hectare is 7.00. I believe the minimum size is about 259 hectares. Area of influence around same would be 2 or 3 km.
 - c) Some sort of minimal re-imbursment up front to help with costs to date as well as a little good faith. We should retain a royalty interest in the event that the discovery should be economical.

READER JAN 2 5 1996 PHONE DE REPORTAN

d) An advanced royalty clause down the road, say commencing the 2001. The area has just recently been opened up by new logging development. A main haul road passes within 100 m of the discovery site. Further prospecting of the area for additional seams can be made this coming summer.

These are some of the ideas that I have thought of. Your suggestions are more than welcome.

Please review and contact me at your earliest convenience. Hopefully we can put something together before this summer, in order that the discovery can be examined and evaluated. I am familiar with mineral claim options, but I have never dealt with any form of lease agreements.

Your assistance would be very much appreciated. I do prospecting in the summer months. This past 2 years I have had assistance through the B.C. Prospector's Grant. My partner S. Turford and I made the discovery in the late summer of 1995.

Again, thank you for all your help so far. We look forward to hearing from you favourably before spring.

Sincerely,

R.R. Keefe A.Sc.T.

	ENCLIVED)
BRITISH COLU PROSPECTORS ASSISTA PROSPECTING REPORT FO	MBIA NCE PROGRAM JAN 2 5 1896 (Continued)
B. TECHNICAL REPORT - One technical report to be completed for each pr - Refer to Program Requirements/Regulations, secti - If work was performed on claims a copy of the submitted in lieu of the supporting data (see a REPORT.	oject area on 15, 16 & 17 applicable assessment report may be mectin 16) required with this TECHNICAL
Name Ralph R. Keefe Rei	erence Number 95/96 PO52
Project Area (as listed in Part A) <u>TETE</u> Location of Project Area NTS <u>93M 1/E</u> Description of Location and Access <u>7 km S</u> Main Commodities Searched For <u>Au, Cu, Po</u> Known Minerial Occurrences in Project Area	Minfile # if applicable <u>nil</u> Lat <u>55</u> 15' Long <u>126</u> 11' .E. of East end of Nakinilerak Lk. orphyty - to N. Dot & Nak mineral claims.
WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, 7. Other (specify)	total m)
<u>SIGNIFICANT RESULTS (if any)</u> nil CommoditiesClai	m Name
Location (show on map) Lat Long Best assay/sample type	Elevation
Descrition of mineralization, host rocks, construction between (2) existing stal with visible chalcoprite & bornite in porphyry which was barren. Soils alon for approx 150 metres. No assays were necessity of properly locating of exis	anomalies - Recent road ing blocks has exposed tuff float addition to Babine Feldspar g road were heavily oxidized (red) taken to-date because of the sting mineral claims.

4

Supporting data must be submitted with this TECHNICAL REPORT.

B. TECHNICAL REPORT - One technical report to be completed for each project area - Refer to Program Requirements/Regulations, section 15, 16 & 17 - If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT. ******* _____ Name Ralph R Keefe Reference Number 95/96 P052 LOCATION/COMMODITIES Project Area (as listed in Part A) <u>Sib</u> Minfile # if applicable <u>nil</u> Location of Project Area NTS<u>93E,93K,93L,93M</u> Lat<u>53 & 56</u> Long <u>124</u> <u>15'& 128</u> Description of Location and Access - Approx 100km - Houston Forest Products. Main haul road or Tahtsa - Huckleberry- Alcan Road. Main Commodities Searched For <u>Cu. & Au. Ag.</u> Known Mineral Occurrences in Project Area - Huckleberry Mine 6 km S.W. WORK PERFORMED 1. Conventional Prospecting (area) & silting of creeks. 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples)_____ 4. Geophysical (type and line km)_____ 5. Physical Work (type and amount) _____ 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS (if any) None highly significant.

 Commodities
 Claim Name

 Location (show on map) Lat
 Long
 Elevation

 Best assay/sample type_____ Description of mineralization, host rocks, anomalies : <u>Host rocks</u> <u>predominantly sedimentary with some volcanic present. Elevated Cu. silts</u> plus one rock sample #44099 East of the mouth of Whitting Creek and Tahtsa Reach. Back ground level of zinc in general area appears slightly above normal. Follow up prospecting to be done upon construction of proposed road - 1996/97. Shown on covering map. Supporting data must be submitted with this TECHNICAL REPORT.

JAN 2 5 198 PROSPECTORS & POHAM

Πį	F 62
	JAN 2 5 1996
PRO.	GPCCOPANILLE AL BARRA

9509-012

18-12-95 00145

Þ

604 940 0055

HORAHDA DELTA

60 10

F) iff.

1

LAB CODE:

NORANDA DELTA LABORATORY

Geochemical Analysis

Project Name & No	BCGENEX - 127 (HEMLC)	Goet.: R.K.	Date received: SEP. 06
Material :	35 Sille, 20 Rr	Sheet: 1 of 2	Date completed: SEP. 11
			-

🖥 Sant ple souces ad 😰 — 15 MESH (C.S tous

= Organic. & Humas, S Sullida An - one of soil, 150 g comple digested with squa-regia and determined by A.A. (D.L.2 PPB) Ra, 200 g/AR/AA (D.J.3 PP3) ICF - 0.2 & sumple & gented with 3 al HCIO of HOO (4:1) at 200 °C for 4 yours dilated to 10 al with water, Leven to PS0001CF date: mined elements | contants.

N.E. The meteroxide e ements and Ba, Be, Ce, La, L. Ga are meety discoved completely from geological materials with this wid discolution method.

Do-Bobing Mo-LOV M Cin STR Sam Salahanan

Re

	TT	SAMPLE				<u>A</u> .	<u>, 19</u>	1	<u></u>	~~~~	C4	- OF	0	Ω.	0	- Free	x	1.4	11	Me	Me	Mo	Na	NG	P	Pb	S	Ti	v	7.
	No.	No.	sob			-		-					DDB		000	5	- <u>-</u>			- 3	000	-	*	1703	*		ppdi	- %	PD TO	pp D
BAOME -		51: 2177 Ba	2	62	5.11	2	415	6.9	5	0.50	02	39	11	45	27	3.44	0.7:	15	29	0.5?	601		0.17	37	0.36	9	78	0.16	95	108
·	4	12824 👬	2	<u>E.2</u>	4.42	2	361	1.2	5	0.76	0.5	- 4	14	12	65	4.03	1.28	19	2Z	0,94	1678	2	0.05	16	0.11	11	76	0.12	58	127
.)	5	1252.	2	¢2	2.97	- 11	225	0.8	5	0.22	0.6	.50	11	21	44	4.23	0.66	17	14	0.90	1197	- 2	0.07	13	0.39	3	69	022	97	120
LER	5	12826	2	¢.2	2.33	2	111	0.6	5	1.05	- 0.8	- 49	- 14	69	52	3.79	0.36	18	15	1.50	946	3	0.05	42	0.10	7	63	025	- 96	118
JULA " 51175	7	12827	2	0.2	3.29	3	347	1.0	5	0.77	0.5	40	ß	14	38	4.70	0.84	16	15	1,13	1667	•	0.01	U	0.11	6	55	0.15	116	1.56
)	8	12825	2	0,4	2.54	2	102	0.6	5	1.56	. 13	:9	13	- 25	63	4.54	0_38	22	14	105	1277	3	0.00	15	0.39	14	96	025	107	207
	• •	12829	- 4	6.2	2.40	3	268	0.9	5	1.24	16	- 55	12	26	្ល	3.52	0.36	2.	13	0.83	1752	· 2	0.01	17	0.14	- 60	68	0.15	79	162
	10	44082 * Si	2	0.2	2.70	4	234	0.5	5	1.14	07	- 47	15	- 22	27	5.43	021	16	1	0.5:	2041	1	0.04	12	0.15		- F	0.16	93	
	11	44084 *	2	_ <u>a z</u>	2.45	- 4	119	6.5	5	0.97	02	38	. ?	17	25	3.52	0.29	17	17	0.54	1.14	1	0.04	11	0.10		21	0.12	18	
Sill and Sill	12	44085	2	0.2	3.36	6	168	0.6	5	9.102	02	46	12	18	26	3.69	0.39	16	18	0.50	1702	1	0.06	12	0.98	2	01	0.13	34	44
· · ·	10	44036	2	02	3.68	2	203	Q 6	5	0.78	0/	46	13	- 23	- 25	2.97	031	17	21	0.61	138		0.01	14	0.11	14	57	0.17	81	172
· •	- 14	44087	2	-0,Z	2.77	3	136	0.7	5	1.33	04	- 56	•	21	. 20	4.97	0.16	23	17	034	2171		0.03	8	0.19		50	0.11	77	168
	לי	44085	2	0.2	3,04	- 4	175	0,6	5	0.55	- 03	- 54	13	28	34	4.07	024	18	16	0.55	1810		0.05	13	0.13	8	SE	0.14	57	1 <u>5</u>
	16	44195	2	-02	3.34	8	223	65	- 5	0.85	02	- 46	11	23	12	5.47	0.64	16	- 15	0.7	1254	26	0.07	14	0.99		7	0.17	11	لما
5185145 -	17	41199	4	az	3.24	8	189	0.6	\$	9,74	03	45	н	20	109.	4.04	0.53	16	17	Q.74	914	17	00,	B	0.98		X	0.17	101	
	18	44190 S	2	0.2	3.94	2	237	06	5	9.91	0.5	- 47	17	25	.68	4.50	0.53	17	22	0.77	2067	. 6	0.05	16	0.10	17	68	0.15	111	135
	19	1281.2 Sa	2	02	3.79	2	233	07	5	1.39	02	- 42	13	29	.71	4.10	0.42	15	18	0.94	880	1	0.00	23	0.07	4	96	022	105	55
-	20	12814	2	a 2	3.43	2	193	04	5	1.09	0,3-	æ	14	27	~7	176	035	15	- 24	0.73	1528		0.06	20	0.09		89	0.20	99	5Z
-	21	12815	2	02	3,67	2	175	0.7	S	641		- 40	15	- 29	29	3.87	0.25	14	- 43	0.68	1452		0.04	20	0.12		54	0.17	93	130
ute , ⁻	22	12816	2	02	3.27	2	206	07	5	0.79	•2	44	9	<u>-</u> 4	25	3.12	0.32	19	23	061	467		0.02	21	0.10	4	75	0.19	52	Ň
r cut .	23	12817	4	02	3.16	2	217	07	5	0.7 8	02	- 47	11	60	- 25	3.41	043	19	- 22	066	625		0.01	25	0.97	- ja 14	76	0.U	92	80
י ק	Į24 —	12818	2	02	3.00	2	208	6.7	2	0.75	02	- 47	12	81	- 22	3.45	0.36	18	2	062	- 757		0.01	24	0.97	- 5	8C	0.19	92	82
-	25	12819	Z	0.2	2.56	2	207	0,7	5	0.77	02	- 47	12	58	23	3.37	0.40	15	2	063	737		0.0	24	0.97		81	0.12	90	- 89
-	-26	12820	2	0.2	2.78	2	177	8,6	5	0.65	02	- 2	11	45	- 33	3.47	037	- 15	: D -	0.62	646	-	0.01	21	0.97	3	75	0.19	92	- 2
	-27	12821	2	02	2.99	2	193	0.6	5	0.93	02	47	11	46	2	725	0.40	17	20	069	636		0.07	22	0.97	. 3	78	0.20	94	8
	28	44 19 5	2	0.2	3.44	2	200	07	5	1.17	02	•	13	36	- 21	4.14	041	18	20	0.80	874		0.07	22	0.08	- 8 1 4	101	023	109	69
	29	44192	2.	02	2.75	2	. 191	0.6	5	0.09	92.	41	11	41	20	3.11	0.38	16	20	064	699		0.06	23	0.96		7,	0.17	51 -	72
	10	44193	- ž	ି ପିଥି	4.19	2	221	0.7	5	0.68	02	43	12	49	. 🛣	3.66	0.54	17	28	0.71	827		0.01	19	0.07	3	68	0.17	92	89
	31	44194	2	0.2	3.23	2	27	0.6	5	0.57	02	28	12	49	2	3.37	0.32	13	2	0.60	1368		0.01	19	0.06	2	81	0.18	61	82
Holl 12	32	44195	2	02	3,80	2	248	0.7	5	0.89	02	32	11	40	-	1.74	025	16	26	0.60	826	54 131	0.0;	20	0.09	2	Æ	0.18	64	23
1° 5°	n	44196	2	0.2	1.62	2	272	06	5	1.51	07	24	13	23	2	4.31	0.35	12	- 20	092	915	· .,	0.06	19	0.07	2	86	021	102	19
	3	44197	2	62	1.27	2	322	0.7	5	1.0	03	38	n	44	40	3.55	0.29	21	22	072	1236		0.0	25	0.10	3	76	0.15	95	\$7
	35	44198	2	.02	3.95	2	256	07	ŝ	1.40	:02	30	ū	29	36	3.91	0.48	1.5	23	096	706	1	0.06	25	0.07	3	115	0,22	10 t	91
	36	44199	2	02	3.43	ź	224	0.7	Š	1.23	02	26	n	22	. 2	1.53	0.45	14	2	083	518	1	0.05	27	0.07	3	60	0,19	91	91
	37	41200 SA	Ā	02	4.65	ž	277	0.7	Ś	1.19	02	26	11	47	36	3.54	0.41	16	31	087	.585	3	0.05	25	90.06	4.	71	0.20	103	100
																												-		

=5/4 (w 18

Column	Control of the second		T.T.	SAMPLE	An	A	A	Å	Ĥe	844		a	G	Č2	<u>_</u>	Q	ō	Fe	F			N											
carceter der Si 1240 124 125 127 125 127	armstructure 1 2 1 3 1 4 1 4 1 <	Druble R -	- 28	7176 Pa	_ 199	100		pp		77				200		-		- 5			-	3	2048		- 5		÷	10	36	- 11 	¥.		1868
0 0 400 0 400 0 400 0 400 0 <th0< th=""> 0 0 0</th0<>	Image: Display and the second seco	AL GALT BIN	120	12844	- 2		0.60			0.8	<u> </u>	275		64	<u> </u>	31		3.06	0.25	21	- 26	107	355		0.03	35	0.13	2	217	0.00	P		
Control 1 Control 2 Control 2 <th< td=""><td>Image Image <th< td=""><td>ADITE (SHAWAY</td><td>- 40</td><td>44080</td><td></td><td></td><td>410</td><td>- 2</td><td>_&</td><td>65</td><td>5</td><td>0.48</td><td>- 94</td><td></td><td>8</td><td>81</td><td>12500</td><td>4.57</td><td>0.81</td><td>16</td><td></td><td>0.71</td><td>162</td><td>74</td><td>0.05</td><td>20</td><td>0.07</td><td>- 5</td><td>21</td><td>A 15</td><td>107</td><td></td><td></td></th<></td></th<>	Image Image <th< td=""><td>ADITE (SHAWAY</td><td>- 40</td><td>44080</td><td></td><td></td><td>410</td><td>- 2</td><td>_&</td><td>65</td><td>5</td><td>0.48</td><td>- 94</td><td></td><td>8</td><td>81</td><td>12500</td><td>4.57</td><td>0.81</td><td>16</td><td></td><td>0.71</td><td>162</td><td>74</td><td>0.05</td><td>20</td><td>0.07</td><td>- 5</td><td>21</td><td>A 15</td><td>107</td><td></td><td></td></th<>	ADITE (SHAWAY	- 40	44080			410	- 2	_&	65	5	0.48	- 94		8	81	12500	4.57	0.81	16		0.71	162	74	0.05	20	0.07	- 5	21	A 15	107		
2 42 4007 3 43 300 6 22 0.5 1.00 0.22 0.7 1 0.8 0.8 0.97 1 0.60 3 0.01 3 67 0.01 3 67 0.01 3 0.02 2.01 3 0.02 2.01 3 0.02 2.01 3 0.02 2.01 3 0.02 2.01 3 0.02 2.01 3 0.02 2.01 0.01 3 0.05 3 1.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <th0.01< th=""> <th0.01< th=""> <th0.01< th=""> <th0.01< t<="" td=""><td>Converse Cli <thcli< th=""> Cli Cli <</thcli<></td><td>GALATA W</td><td>41</td><td>44000</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td></td><td>0.15</td><td></td><td></td><td>0.2</td><td></td><td>0.02</td><td>. 62</td><td>14</td><td>4</td><td>113</td><td>_ 101</td><td>10.92</td><td>9.05</td><td>3</td><td>2 84</td><td>0.02</td><td></td><td>1</td><td>8.02</td><td>- 7</td><td>0.02</td><td>5</td><td>24</td><td>A.M</td><td>12</td><td></td><td>-</td></th0.01<></th0.01<></th0.01<></th0.01<>	Converse Cli Cli <thcli< th=""> Cli Cli <</thcli<>	GALATA W	41	44000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.15			0.2		0.02	. 62	14	4	113	_ 10 1	10.92	9.05	3	2 84	0.02		1	8.02	- 7	0.02	5	24	A.M	12		-
		TOCHA-E	12	1200		42	3.00	- 6	127	0.6	5	<u>_L83</u>	0.2	.52	15	44		3.88	0.31	19	12	6.87	572	<u> </u>	0.06	<u>x</u>	0 11		- 67	014			
4 44092 5 623 623 5 673 623 94 17 36 44 5,46 0.06 27 9 0.72 1409 1 0.23 13 0.06 2 99 0.31 177 44 45 4609 5 0.22 2.33 11.3 5 0.22 12.3 15 5 0.22 12.3 15 1.22 13 0.06 2 90.31 177 4005 5 0.02 4.03 6.00 1.02 1.00 1.02 1.00 0.06 2.99 0.06 2.99 0.05 0.05 1.00 1.02	G 4002 5 02 674 2 10 04 5 627 02 10 04 5 677 04 2 05 14 15 567 04 2 04 15 5 677 04 2 04 15 10 04 11 12			14441	3	. <u>U</u> Z	122	- 2	- 1	1.6	- 5	0.06	02	52	_ Y	14	U	3.71	276	33	3	0.10	24	ें हैं।	0.20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.10	- 2	d i	0.04		<u> </u>	
1 4 40000 3 6.2 4.7 3 0.6 27 9 0.7 1 0.2 10 0.0 2 59 0.1 17 3 44 5.6 0.0 2 59 0.1 17 3 16 55 35 22 90 16 55 35 22 90 16 55 35 22 90 16 50 16 55 35 22 90 16 50 1 0.00 2 50 0.05 90 0.01 17 3 4 90 56 1 0.01 16 0.01 10 0.02 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.02 10 0.01 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 J	143	44007	e	-					_		22											100			v.10		3/3	4.44	. 04	?	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 13 4000 1 13 4000 13 13 14 15 15 12	14	44	44000	2	14 A	0.74	2	12	0.6	5	6,73	02	- 94	17	36	ा (4 4)	5.46	0.06	27	9	0.72	1499	ં્	9.23	13	0.09	2	900	0.21	197		
# #	int int <td>4</td> <td>45</td> <td>44094</td> <td>2</td> <td>- 14</td> <td>4.73</td> <td>4</td> <td></td> <td>0.7</td> <td>2</td> <td>334</td> <td>- 42</td> <td>83</td> <td>16</td> <td>- 56</td> <td>ં 🗯</td> <td>2.99</td> <td>0.06</td> <td>23</td> <td>12</td> <td>1.01</td> <td>970</td> <td>Ĩ</td> <td>0.50</td> <td>13</td> <td>0.08</td> <td>2</td> <td>352</td> <td>1 31</td> <td>112</td> <td>1 🛣</td> <td></td>	4	45	44094	2	- 14	4.73	4		0.7	2	334	- 42	83	16	- 56	ં 🗯	2.99	0.06	23	12	1.01	970	Ĩ	0.50	13	0.08	2	352	1 31	112	1 🛣	
6 aux Article (47) 4606 5 0.2 4.2 3 1.20 0.2 8 4 9.7 5 1.4 0.2 1.4 0.2 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6	ματ ματ <thματ< th=""> <thματ< th=""></thματ<></thματ<>		46	44095	*	473	2.04	4	1927 C	1.5	5	0.22	02	- 55	6	- 15 -	. 12	2.03	2.27	30	4	0.19	56	. .	0.20	- 4	0.15	5	690	Å 85	. 20	- 22	
1 1	4 40071 Bit 5 0.2 4.2 67 53 25 33 7.33 0.24 21 11 0.05 25 12 26 17 0.05 120 <th140< th=""> <th120< th=""> 120<td>BING - BAMP CC</td><td>7</td><td>44096</td><td></td><td>02</td><td><u></u></td><td>9</td><td></td><td>. 0.8</td><td><u> </u></td><td></td><td><u> 87</u></td><td>83</td><td>4</td><td>29</td><td>15</td><td>3.14</td><td>0.52</td><td>- 34</td><td>15</td><td>0.69</td><td>416</td><td>2</td><td>0.15</td><td>3</td><td>0.13</td><td>· 2</td><td>12</td><td>0.20</td><td>74</td><td>- <u></u></td><td></td></th120<></th140<>	BING - BAMP CC	7	44096		02	<u></u>	9		. 0.8	<u> </u>		<u> 87</u>	83	4	29	15	3.14	0.52	- 34	15	0.69	416	2	0.15	3	0.13	· 2	12	0.20	74	- <u></u>	
1/2 1/2 <th1< td=""><td>Image: 1 4 -4977 Ba 5 102 2 15 0.7 5 500 22 23 0.45 2064 25 21 100 27 533 0.04 20 11 0.06 20 11 0.05 23 0.08 2 35 0.13 55 12 100 2 23 0.31 100 100 20 11 0.06 10 100 25 100 100 25 100 100 25 23 0.03 100 20 21 100 25 23 0.03 100 20 21 100 25 23 0.04 21 100 21 0.05 100 21 23 0.05 21 23 0.05 21 23 0.05 20 21 20 20 20 20 20 20 20 20 20 20 20 21 20 21 20 21<td></td><td></td><td></td><td>-</td><td></td><td>- 24</td><td>¢</td><td>00</td><td>0.5</td><td>2</td><td>529</td><td>9Z</td><td>67</td><td>53</td><td>26</td><td>33</td><td>7.33</td><td>0.24</td><td>25</td><td>74</td><td>1.59</td><td>526</td><td><u>`</u></td><td>0.18</td><td>25</td><td>0.12</td><td>ž</td><td>617</td><td>8 98 ·</td><td>184</td><td></td><td>•</td></td></th1<>	Image: 1 4 -4977 Ba 5 102 2 15 0.7 5 500 22 23 0.45 2064 25 21 100 27 533 0.04 20 11 0.06 20 11 0.05 23 0.08 2 35 0.13 55 12 100 2 23 0.31 100 100 20 11 0.06 10 100 25 100 100 25 100 100 25 23 0.03 100 20 21 100 25 23 0.03 100 20 21 100 25 23 0.04 21 100 21 0.05 100 21 23 0.05 21 23 0.05 21 23 0.05 20 21 20 20 20 20 20 20 20 20 20 20 20 21 20 21 20 21 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>- 24</td> <td>¢</td> <td>00</td> <td>0.5</td> <td>2</td> <td>529</td> <td>9Z</td> <td>67</td> <td>53</td> <td>26</td> <td>33</td> <td>7.33</td> <td>0.24</td> <td>25</td> <td>74</td> <td>1.59</td> <td>526</td> <td><u>`</u></td> <td>0.18</td> <td>25</td> <td>0.12</td> <td>ž</td> <td>617</td> <td>8 98 ·</td> <td>184</td> <td></td> <td>•</td>				-		- 24	¢	00	0.5	2	529	9Z	67	53	26	33	7.33	0.24	25	74	1.59	526	<u>`</u>	0.18	25	0.12	ž	617	8 98 ·	184		•
$\frac{13}{1230} + 6 = \frac{15}{12} \frac{12}{120} + \frac{15}{12} \frac{12}{120} + \frac{15}{12} \frac{12}{120} + \frac{15}{12} \frac{12}{120} + \frac{15}{120} \frac{110}{120} + \frac{15}{120$	$\begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \\$	11 17	İ 48	44097 Ba	5	''n 3	4 97	,	- 10	67		Z 10												1.1		_		: T	•••	****		. .	
	$\frac{1}{3} \frac{1}{3} \frac{1}$	HAMPGEN -	51	12830 Ho	15	82	102		- 12	9.7	~ }	-2.10	- 92	<u></u>	16		<u></u>	535	0.04	20	11	0.88	624	1	6.19	6	6.06	2	53	0.33	120	115	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} \\ \hline \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \hline \begin{array}{c} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \\$	μ 130 130 150 160 160 160 160 160 160 160 160 160 160 160 160 16	LAHAREN -	53	12831	5	0.2	1 00	5	274	0.4	3	0.00		37	130	110	74	9.36	0.81	17	14	0.39	474	1	0.04	13	0.07		35	0.13	~~		
$ \begin{array}{c} 5.63 \\ = 53 \\ = 53 \\ = 50 \\ =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>	54	12832 Ho	5	124	1.52	12	-7	0.2	2	102		11	14	125	<u>Z</u>	1.90	9.50	12) 🕷 -	0.09	86 -	Ť	0.05	5	0.02	2	6	9.03	19	<u> </u>	
55 44098 5 0.2 2.39 4 13 0.6 5 1.73 1.1 54 14 65 46.497 0.39 20 42 0.47 854 2 0.15 24 0.0 7 40 0.15 52 280 40 0.15 52 7 11 54 11 46 440 0.05 20 24 10.2 0.15 12 0.05 2 200 0.05 2 200 0.05 2 200 0.05 2 200 0.05 2 200 0.05 2 200 0.05 2 200 0.05 2 50 0.05 2 50 0.05 2 50 0.05 2 50 0.05 2 50 0.05 2 50 0.05 2 50 10 11 2 0.05 2 25 50 10.11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	55 44098 5 6.2 2.39 4 13 6.6 5 17 46099 2 6.12 2.40 6.14 9.4 2 6.12 2.40 6.15 2.40 6.15 9.2 2.01 2.40 6.15 9.4 6.15 9.4 13 5.10 6.15 13 5.10 6.24 13 5.10 13 5.10 6.24 13 5.10 6.24 13 5.10 6.25 13 5.10 6.25 6.25 5.6 6.25 5.6 6.25 5.6 6.25 5.6 6.25 6.25 5.6 6.25 5.6 6.25 6.3 6.1 6.11 6.	سر 3،2	- 55	44082 5 Flor	< 5	62	115	77	-	07		134	334.0		-74		235	11.60_	0.94	<u>21</u>	8	0.17	2961	79	0.07	14	0.03	60	257	0.25	94	46600	
55 44098 * 5 0.2 2.39 4 13 0.6 5 1.73 1.1 54 11 46 46 4.00 0.05 20 2.4 1.02 0.15 10 0.07 2 2.02 0.43 9.6 96 33 44100 Si - 5 0.2 51 0.06 42 33 34 57 115 6.02 0.15 10 0.07 2 2.02 0.43 9.6 96 33 4400 Si - 5 0.02 51 0.05 11 46 4.45 2.55 25 5 6.02 9.6 96 95 31 11 46 4.45 2.55 25 5 6.02 9.6 96 96 96 96 97 12 2.0 6.03 32 11 10.11 10 10.0 30 0.19 86 97 10.11 10.11 10.10 10.11 10.10 10.11 10.10 10.11 10.10 10.11 10.10 10.1	57 44008 * 5 0.2 239 4 13 0.6 5 1.75 11 54 11 46 66 4.48 0.06 20 24 1.42 56 2 0.15 10 0.07 2 202 0.43 56 66 38 37 34 57 4000 52 5 0.25 4 1.0 11 22 0.05 2 56 0.65 38 37 39 37 113 4.38 2.55 25 6 0.25 44 1.0 11 22 0.05 2 56 0.65 38 37 39 123 2.55 5 0.25 5 0.25 10 0.07 2 202 0.43 56 10 0.07 2 202 0.43 56 10 0.07 2 202 0.45 56 0.65 38 37 39 123 2.55 5 0.25 5 0.45 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 56 0.65 38 37 0.55 1.05 10 0.07 2 202 0.45 1.0 0.07 2 20 0.21 1 3 377 0.55 178 1.42 1.0 0.07	<u> </u>						•1		W . F	-	1.444		41	14	29	4	4.97	0.30	20	42	0.74	854	2	0.12	24	0.10	2	40	0.15	92	290	· .
x 57 40099 n 5 16 52 13 5 0.08 42 33 41 67 113 4.36 205 22 14 101 113 4.35 225 23 14 113 4.36 205 22 24 1.40 101 113 4.35 225 23 50 23 50 23 50 23 50 24 1.01 210 100 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110 101 110	-57 44009 /r 5 1.6 626 1.3 5 6.2 7.3 54 57 1.0 6.0 2 2.0 6.0 2 2.0 6.0 2 2.0 6.0 2 2.0 6.0 2 2.0 6.0 2.0 2.5 6.0 2 2.0 6.0 2.0 2.5 6.0 5.0 3.0 1.0 4.0 2.2 2.0 2.5 4.00 2.5 4.00 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0 3.0 0.0	2	56	44098	5	0.2	2_39	4	13	0.6	5	12	. *1	**																			
<u>1982 18 5 122 28 5 122 28 5 122 28 5 122 28 2 289 08 5 35 1.05 10 46 67 28 104 72 607 20 28 145 566 1 0.11 18 0.10 39 30 0.19 88 157 60 п 1222 28 5 0 0.2 3.16 2 0.05 1 5 1.72 0.9 73 24 22 45 5.33 0.39 34 28 1.91 778 3 0.52 20 0.21 3 377 0.55 178 102 </u>	$\frac{13}{7} + \frac{4100}{12} \frac{5}{8} + \frac{5}{5} + \frac{61}{62} + \frac{150}{28} + \frac{7}{25} + \frac{56}{63} + \frac{75}{28} + \frac{15}{12} + \frac{5}{48} + \frac{7}{28} + \frac{10}{128} + \frac{56}{28} + \frac{103}{28} + \frac{56}{28} + \frac{103}{28} + $		57	44099 v	5	1.0	6.24	13	÷.	11	ŝ	0.02	- <u>11</u>	29	41	40		4,40	8.06	20	24	1.92	565	- 2	0.15	19	9.07	2	207	0.43	96	80	
Solution of the second	¹⁹⁹ 12822 5. 5 627 283 2 7299 68 5 3 321 27 70 28 10 12 28 10 12 28 12 13 62 1 1 11 18 0.01 29 03 0.01 18 10 17 ¹⁹⁰ 11 12823 5. 5 622 316 2 633 0.7 5 1.72 0.9 73 24 22 45 3.33 0.39 34 22 1.91 778 3 0.52 20 0.21 3 377 0.55 178 122 ¹¹⁰ 12 12 12 13 16 2 533 0.7 5 1.72 0.9 73 24 22 45 3.33 0.39 34 22 1.91 778 3 0.52 20 0.21 3 377 0.55 178 122 ¹¹⁰ 12 12 12 12 12 12 12 12 12 12 12 12 12		58	44100 Si	. 5	0.4	1.50	2	193	0.5	Ť	1.05	10	44	29	34	113	4.30	2.55	25	<u>.</u>	0.25	- 64 .	1	0.11	Z 2	0.05	-2	56	0.66	38	31	
60 x 12823 Ss 5 62 3.16 2 63 6.7 5 1.72 63 73 24 22 43 5.33 0.39 34 28 1.91 778 3 0.52 20 621 3 577 0.55 178 162 Image: Solution of the state	0 12223 Sa 5 62 3.16 2 60 6.7 5 1.72 60 73 24 22 64 5.33 0.39 34 24 151 778 3 0.52 20 0.21 3 577 0.55 178 182 Image: Same Signal Sign	11-11-1	139	12822 Se	5	02	2.63	2	279	0.8	5	3.61	14	7	- 20	104	- 5	<u>-2.10</u>	0.27			1.45	- 543	1	0.11	_ 18	<u>0.10</u>	30	30	0.19	88	87	
DAN 2.5 1996 PROSPECTIVITY OF WORKSARD	JAN 2.5 1996 PROSPER WAIT AND																								: , : , : , : ,	5	7						
PROSPER VIZIT - TWO ASA	PROSPECTOR STATES																								J	AN	25	199(
PROSPERATION CONTRACTOR I		.																													-		
																							į	PRO	1.51	. 1				~ .			
																										1 *	1.1						
		ļ																					L								· 4		
		1																															
		i i																															
		1																															

•

8

10/19/95 10:50

٠.

• •

NORANDA DELTA

B. TECHNICAL REPORT

- One technical report to be completed for each project area

- Refer to Program Requirements/Regulations, section 15, 16 & 17

- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Ralph R. Keefe Reference Number 95/96 P052

LOCATION/COMMODITIES

Project Area (as listed in Part A) Bine Minfile # if applicable nil Location of Project Area NTS 93M 8/W Lat 55 25' Long 115 20' Description of Location and Access - Houston Forest Products are presently constructing an all weather road into ajoining area.

Main Commodities Searched For Porphyry Cu.

Known Mineral Occurrences in Project Area - Trail peak - Cu. to S.E.

WORK PERFORMED

1.	Conventional Prospecting (area) & silting of creeks.
2.	Geological Mapping (hectares/scale)
3.	Geochemical (type and no. of samples)
4.	Geophysical (type and line km)
5.	Physical Work (type and amount)
6.	Drilling (no. holes, size, depth in m, total m)
7.	Other (specify)
SIC	GNIFICANT RESULTS (if any) nil

 Commodities______
 Claim Name_____

 Location (show on map) Lat______
 Long______
 Elevation_____

 Best assay/sample type______
 Elevation______
 Elevation______

Description of mineralization, host rocks, anomalies : 8 1/2 km of new road construction (Morrison Main) prospected from end of existing haul road km 31 1/2. No bed rock observed and no creeks crossed. Additional road building was carried out late in the fall of 1995. Further follow up to be done during 96. Delay of project was due to the locating of road access into area versus the high helicopter cost.

Supporting data must be submitted with this TECHNICAL REPORT.

.

.

 B. TECHNICAL REPORT One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 & 17 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.
Name <u>Ralph R Keefe</u> Reference Number <u>95/96 P052</u>
LOCATION/COMMODITIES
Project Area (as listed in Part A) <u>Tahlo</u> <u>Minfile # if applicable</u> <u>0</u> Location of Project Area NTS <u>93M 8/w</u> Lat <u>55 20'</u> Long <u>115 20'</u> Description of Location and Access - 6 Km east of Km <u>31 Houston Forest</u> <u>Products. Morrison Main Haul Road.</u>
Main Commodities Searched For Cu. & Au. B.F. Porphyry
Known Mineral Occurrences in Project Area <u>- Located in the Northerly porphyry</u> belt of the Bell & Morrison Cu. deposits.
<pre>2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)</pre>
<u>SIGNIFICANT RESULTS (if any)</u> No significant Cu. or Au. values indicated. Commodities Claim Name
Best assay/sample typeLongElevation
Description of mineralization, host rocks, anomalies : <u>Majority of host</u> rocks found in place were either sedimentary or volcanic in origin. A high background of zinc has been noted. No elevated Cu. assays could be found that may have been related to Noranda's findings on the alpha #2 (1969). Property is now staked by Tech Corp. Staking believed to be related to a wide spread airborne survey. Supporting data must be submitted with this TECHNICAL REPORT.
<u>52</u>
JAN 2 5 1895
PROSPECTATION AM

NORANDA DELTA LABORATORY

Geochemical Analysis

 $\begin{array}{l} \textbf{Geol.:} R.K. \left(\mathcal{G}, \mathcal{B}_{*} \right) \\ \textbf{Sheet:} 1 \text{ of } 2 \end{array}$

RE 52	
JAN 2 5 1896	
PROSPECTORE AND ACTIVE	
LAB CODE: 9509-032 R #?	

 \checkmark

* Sample acceened @ -35 MESH (0.5 mm) ¤ Organic, & Humus, S Sulfide

18 Silts, 44 Rx

BCGENEX - 127 (HEMLO)

Project Name & No.:

Material:

Remarks:

^H Organic, & Humus, S Sulfide Au - silt & soil, 15.0 g sample digested with aqua-regia and determined by A.A. (D.L. 2 PPB); Rx, 10.0 g/AR/AA (DL 5 PPB) ICP - 0.2 g sample digested with 3 ml HClO_d/HNO₃ (4:1) at 203 °C for 4 hours diluted to 10 ml with water. Leeman PS3000 ICP determined elemental contents.

Date received: SEP. 05

Date completed: SEP. 28

N.B. The major oxide elements and Ba, Be, Ce, La, Li, Ga are rarely dissolved completely from geological materials with this acid dissolution method.

ſ	T.T	SA	MPLE	Au	Ag	AI	As	Ba	Be	Bi	Ġa	Cd	Ce	Co	G	Ō	Fe	ĸ	Ī.	- Ti	Me	Mn	Mo	N-	N	p	Ph	Q-		v	7.
,			No.	թթե բ	ppm	%	ррш с	DDIII	DDM	DOM	96		300 m	DDU	00m		ġ,	ġ,	24 DOT			1111	178.	1 MI.	141	ar ar	10	36	1	¥	
\sim_1	- '	0	17432 silt NIC	5 े	0.2	5.00	6	106	0.6	5	2.12	67	44	27	54	77	5 54	0.33	14 14	Nhim Nhim	<u>70</u> <u>4 16</u>	970		0.02	<u>1979</u>	0 12	hhm	ppm	70	167	PD T
	4 9	ر علان ا	17433	68	0.2	2.73	11	142	0.4	Š	1 73		63	10	40		4 00	0.00	- 14 -	17	9.10	0/0		0.05	64	0.12		203	0.09	157	01
	5		17434 NIC	8	0.2	2.74	10	149	04	Š	1.61	<u></u>	60	16	22	72	2.07	0.30	21		1.00	800		0.10	41	0.12	- - 4	102	0.51	121	ି 30
_	6		17435 *CLIN	4	0.2	1.99	7	126	04	5	1 99	03	30	10	14	10	- 3.04 - 1.60	0.10			1.37	033		0.12	-41	0.12		86	0.42		- 59
₹ /	7,	. 5	17436 CLIN	4	62	2.58	ේ	121	04		2.02	- 1	35	14	10	- 34 23	2.30	0.19	11		0.67	201		0.05	9	0.15	.	111	0.20	61	40
X [5	1.		÷.			1	n de la composition A Constantion Se constantion	0.4	5	2.03		40	10	19	0.5	3.32	0.26	् ४४	11	1.22	670		0.09	15	0.16	2	116	0.28	93	- 58
4	3		17437 CLIN	् ९ ि	62	347	- 6 ⁽²⁾	145	0.5	5	1 68		40	14	- 20				, j						_						<u>.</u>
-10	, ,		17443 NAT		0.2	2.96	8	335	0.5		1.05	0.4	- 42	10	42	41	4.21	0.33	12	11	1.28	758	1	0.09	21	0.10	2	108	0.31	113	63
싀	10]		17444 NAT	೯೭	62	261	្តី	200	0.0	2	1.04		37		43		3.14	0.27	16 :	3 14	0.43	576	.	0.05	18	0.10	(† 191 2)	78	0.19	80	84
	11	T	2185 TAHL 80#	75	0.2	4.25	12	Si la	0.0		0.40		41		34	<u>- 30</u> .	3.39	0.31		-12-	0.49	600		0.05	18	0.07	<u> </u>	64	0.21	92	72
	12	4	2186	ន ទ	12	2 10	16	200	0.0	5	0.40	3 V.O .	40	12	44	41	6.02	0.47	12 %	_ 1 9	0.50	2173	1	0.05	28	0.12	6	65	0.17	92)	117
1			2.00			3.13	- 1 0 ()		0.0	J	0.51		44	14	40	2 0.	3.31	0.50	14 _{हे}	- 15 -	0.36	3022		0.05	23	0.09	4	65	0.13	72 :	120
_ [1	13	1	2187	1 5	0.2	2.10	15	ide.	0.5		1.75			~					Å			2								į.	
	14	(2188 - /	10 e	0.2	2.17	10 N	437	0.5	5	1.00		44	8	28 :	- 26	3.41	0.20	13 🐒	-16	0.35	2452	essis -	0.03	20	0.12	3	93	0.10	52	122
	15	-	17445 Sirds	, <u>,</u>	47	2.10	1∡ ⊖0	017	0.0	3	0.83	്പും	47	13	22	18	3.94	0.35	- 14 _	- 22	0.44	4695	199 1 99	0.06	24	0.09	5	76	0.11	- 71 ·	134
	16	κ.	17446	់ភ្ល	0.2	2,47	10	434	0.0	2	0.85	្រុប	52	12	32	- 20	3.15	0.39	16 🚊	31	0.46	1319	1 - I	0.06	28	0.08	б.	78	0.13	74	97
	17	Χ.,	17447	4	0.2	4.77 00	10	424	0.0	Ş	1.30		53	. 9	- 34	_ 7	4.07	0.28	- 15 _S	18	0.44	1132	1	0.05	24	0.11	6	104	0.12	64	- 94
!*	. (5	1/77/ " ,	•••	U.4	4.93	्र १९	9U4	U.0	3	T.10	1.4	52	12	- 38	- 27	3.11	0.38	- 15 🖗	19	0.46	1792	3 L (0.05	25	0.10	11	83	0.13	78	135
	R	3	17440		~ ~	A 17	a n 3		~ ~			n de general de la composition anno de composition anno des compositions											s hann beilde Na San Stan Na San Stan							2	
	0	[17440	- ?	V.2.	3.13	20	360	0.6	5	0.85	1.0	46	12	45	- 22	2.74	0.31	ା 15 ୍ରି	-28	0.42	1824 🗄	33 1 (0.05	26	0.08	8	76	0.14	72 ်	94
	17 M	k	17449	, <u>,</u>)	U.2	2.58	- 25 ु	482	0.6	5	1.15	19	44	10	29	24	2.83	0.26	- 14 🛞	20	0.42	2622	33 1 0 (0.04	25	0.09	7	91	0.11	64	164
-#	<u>ب</u> ۳	<u></u>	17450 sill TAHL	<u> </u>	02	3.38		411	0.7	5	0.69	1.2	44	14	33	29	3.58	0.36	15 🔅	19	0.47	17 <u>9</u> 7 े	8 1 (0.05	25	0.10	14	62	0.13	84	146
١L		(0()	17401 m NIC - Ku	က်ခဲ့သည်	0.2	4.95	13 ្	626	-0.9	-2	3.29	1.5	68	- 34	86	203	5.74	2.02	15 🖗	-14	3.14	1137	.885	0.06	91	0.12	9	TIZ	0.42	732	177
^	•	Ð	1/40Z .s	5 SS	0.2	4.95	- 16 🍕	287	0.9	- 5	5.09	04	71	23	42	168	4.42	1.57	11 🖗	8	0.87	615	ें <u>दि</u> ं।	0.22	39	0.08	2	106	0.26	145	40
	-							A CLÉR SQUE A QUE A																			833 -	100	0.00	••• ÷	
- 12	3	6	17403 ^	5 (3)	0,2	2.64	3 🚉	366	0.2	5	0.91 🤅	02	47	13	47 🖗	26	3.80	0.97	14 Š	ТŤ (0.85	264	- î (0.11	10	0.08	888 - B	117	0.21	9 2 3	74
2	4	**	17404 v	5	0.2	5.18	2 🗟	649	0.4	5	0.50	0.4	47	11	23 ି	29	3.07	1.73	16	- 	0.55	128		0.25	10	0.06		117	0.06	രാ	an
2	5	4	1 7405 🕠	5 🔛	0.2	2.73	7 3	137	0.3	5	1.46	10	58	15	56	36	3 50	0.30	15	3 1 40	1 26	866	3 î 1	0.15	11	0.00	ୁ ଅକ୍ଷର ଅ ଲ୍ଲ ା	102	0.00	100	
2	6	44	1 7406 "	5 80	0.2	4.16	5	596	0.3	5	0.57	0.2	35	12	20	- 29	265	154	12		0.40	- 0000 ∶ - 2002 ∑		0.12	10	0.00	40	133	0.13	100 8	44
2	7	ч (1740 7 _I .	. 5 🗒	0.2 (6.65	4 े	714	0.6	ŝ	2.26	64	66	10	\tilde{n}	36	2 50	1.00	12 00	CORO -	1 10	421		0.13	10	0.04		99	0.09	୍ଷ୍ୟୁ	:33
				- 20	137				212	-		988 	U	13	ہ س ے۔ ج		2.27	1.00	्र व	9 19	1.10	431 8		v.10	41	V.11		203	0.28	15Z ୍	59
2	8	4	17408	5	<u>62</u>	2.42	8	77	∩ 4	5	260 ်	n.t.	71	2	110	20220) 3 3 6 -	04.0	0.74				્રે ગામ છે.								0	S S
2	9		17409	5	02	7 22	o 🖓	197	0.2	5	4.00 S	. VA . NO	/1 FO	12	100	12	4.40	0.24	17 2	0	99	526	<u></u> _(0.09	4	0.09	5	281	0.37	70)	26
3	D	4	17410	. 	ກາ	1 59	- 7 -30 6 88	111	0.0	5	1.04 0	U.2	27	13	100	44	4.23	0.49	_17 g	6 (0.37	244	<u>2</u> (0.15	10	0.07	5	121	0.23	67 🔅	23
2	ĩ	*	17411		0.0	1.10	10	()) ())	0.5	2	1.0/	V.4	48	13	64	- 745 -	2.42	0.29	14 🔅	<u> </u>	0.62	370	() (1	0.13	11	0.03	2	95	0.11	- 69 ੂੰ	65
2	,		17410 "		ن شکن ا	6.14	_ 10 🔅	N)	0.3	2	1.38	·U.4	57	13	78	- 24	3.73	0.63	14	9 9 (D.77	517 🖉	i ().11	12	0.09	2	116	0.25	- 88 ି	- 54
10	0	` - `	1/412))	12 ji	V.Z .	3.51	8	>/A	0.3	5	1.41	0.5	62	10	_ 42 §	18	3.40	1.14	17 🔅	9 (D. 93	468	<u></u>).16	9	0.08	2	162	0.20	1 20 ି	47
1	•	. .									ŝ								000 000			8				i.					6.000
3	2 4	н (17415	<u> </u>	0.2 4	1.23	5	20	0.3	5	3.85 🗄	0.8	64	10	86 ି	14	3.63	0.18	11 🕈	10	1.56	686	<u>_1</u> 0).10	23	0.11	2	328	0.39	159 ⁸	76
34	•	μ	17414	5 🖓	0.2	3.94	6 8	308	0.3	5	0.82 🖇	0.4	47	12	40	- 50	2.50	1.51	14	12	1.11	455	in in the second se).14	11	0.09	2	102	0.09	69	
3	2	¥]	7415	5 S (02 ().68	2	14	0.2	5	0.95 🖔	0.7	51	16	107	39	3.05	0.09	11	S. (0.66	458	៍ ខែរិខ័ ក) 18	30	0.04	3	12	0.27	ି 🏹 ି	<u> </u>
, 3		n j	17416	5 🔆 🤇	0.2 3	3.54	4 2	36	0.5	5	1.91 Å	1.0	73	30	108	75	6.70	1.35	18	21	2.17	1092	SR N).21	62	0 12	- 19 - 19	79	0.40	200	
4	1 '	K	17417 nr. NIC	5 🔍	0.2 .	5.54	_ 12	29	0.5	5	5.42	0.9	69	33	90	S3	4.97	0.07	16	ೊ	2.06	545	set n	N NR	67	0.12	3	797 797	0.07	101	2
•	. /		1. 64																	15.00			2999 P			v.11	- 1 -	404	0.00	101	96

YW - qR

