BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1995/1996REPORT #:PAP 95-31NAME:DON JOHNSON

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRA PROSPECTING REPORT FORM (continu		1996
	PROSPECTORS	PROGRAM

MEMPR

B. TECHNICAL REPORT

- One technical report to be completed for each project area. .
- •
- Refer to Program Requirements/Regulations, section 15, 16 and 17. If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the ٠ supporting data (see section 16) required with this TECHNICAL REPORT.

Name DON JOHNSON Reference Number 95-96 PO66
LOCATION/COMMODITIES
Project Area (as listed in Part A) HATDUD ATENLLAME MINFILE No. if applicable
Location of Project Area NTS <u>m93K/15E</u> Lat 53°54 N Long 124'53' w
Description of Location and Access SASS HI IS LOCATED, MAINLY IN A LOLGED OFF AREA.
THE PROPERTY IS LOCATED 54 KM NORTH-NORTH WEST OF THE TOWN OF
FORT ST SAMES. BY TRAVELING ON THE NOATH ROAD TO GEAM ANSON-HAT AND TURNING WEST TO 82KM ACCESS IS GAINED.
Main Commodities Searched For
GOLD SILVER ZINC LEAD
Known Mineral Occurrences in Project Area RIO ALGOM DID EXTENSIVE SOIL SAMPLANE
WEST OF SASHI, AND ON THE WEST HALF OF SASHI. THE HIGHER
ROCK SAMPLES PARE-AU-199 PPB AND CUS25 PPM.
WORK PERFORMED
1. Conventional Prospecting (area) APP FOUR SQUARE KLOWEVERS-
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) 26 ROCK + 17 SOIL - AU + 20 MULTI ELEMENT
4. Geophysical (type and line km)
5. Physical Work (type and amount) ALL SOILS WEAF DONE WITH A SOIL AUGIER 1-2 DEEP.
6, Drilling (no, holes, size, depth in m, total m) ALL SOILS WERE DONE WITH
7. Other (specify) AUGIER. THEY WERE FROM 1-2 M DEED.
SIGNIFICANT RESULTS
Commodities GOLD, SILVER, ZING + LEAD Claim Name SAS # 1
Location (show on map) Lat 5.3° 36' N Long 124° 42' W Elevation APP 1000 M
Best assay/sample type GOLD - 2490 PPb. THIS SAMPLE IS A MAGNIESLUM
CAABONATE ROCK WITH SLIKEN SLOES ON SAMPLE SAM-42
Description of mineralization, host rocks, anomalies <u>Some SAMPLES HAUE AASENICAL</u>
PIRITE, MINOR GALENA AND ABUNDANT PIRITES.
HOST ROCKS ARE MONZOWITES, ANDESITES, MACNESIUM CARBONITE
ROCIL. (POSSIBLY RELATED TO MARIPOZITES), AND LITHIC TUPPS AND
CHEATY LAPPILLI TUFFS. SAN 62 IS FROM A CONTACT BETWEEN
ANDESITE AND MONZONITE, THERE IS A GODD SIZED AREA OF
ALTERATION. THE SAMPLE IS FROM ANDESITE BRITCHA AND OXIDATION.

Supporting data must be submitted with this TECHNICAL REPORT

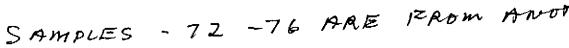
ί.

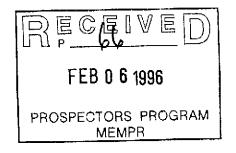
CERTIFICATE OF ANALYSIS iPL 95L1902

WERNATIONAL PLASMA LABORATORY LTD

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

#:		Analy	tica	l S	umma	ary—			<u></u>	·····				
;; Document Distribution -		## Code	Met hod	Title		Limit U High	Inits Descrip	ption		Element	##			
Johnson, Don Box 93 Fraser Lake BC VOJ 1SO	EN RT CC IN FX 1 2 2 2 1 DL 3D 5D BT BL 0 0 0 1 0	01 313P 02 721P 03 711P 04 714P	FAAA ICP ICP ICP	Au Ag Cu Pb	2 0.1 1 2	9999 100 20000 20000	ppm Ag ICP ppm Cu ICP ppm Pb ICP	AAS finish 3	10g	Gold Silver Copper Lead	01 02 03 04			
att: Don Johnson	Ph:604/699-6425 Fx:604/	05 730P 06 703P 07 702P 08 732P 09 717P 10 747P	ICP ICP ICP ICP ICP ICP	Zn Sb Hg Mo Tl	5 5 3 1 10	20000 9999 9999 9999 9999 9999 9999	ppm Zn ICP ppm As ICP ppm Sb ICP ppm Hg ICP ppm Mo ICP ppm T1 ICP	5 ppm 10 ppm (Inc	complete	Zinc Arsenic Antimony Mercury Molydenum Thallium	05 06 07 08 09 10			
		11 705P 12 707P 13 710P 14 718P 15 704P	ICP ICP ICP ICP ICP	Bi Cd Co Ni Ba	2 0.1 1 2	999 100 999 999 9999	ppm Bi ICP ppm Cd ICP ppm Co ICP ppm Ni ICP ppm Ba ICP	(Incomplete	Digest	Bismuth Cadmium Cobalt Nickel Barium	11 12 13 14 15	RF	GE EB 0 6	
		16 727P 17 709P 18 729P 19 716P 20 713P	ICP ICP ICP ICP ICP	W Cr Mn La	5 1 2 1 2	999 9999 9999 9999 9999 9999	ppm Cr ICP ppm V ICP ppm Mn ICP	(Incomplete (Incomplete (Incomplete	e Digest	Chromium Vanadium Manganese	16 17 18 19 20			PROGR
		21 723P 22 731P 23 736P 24 726P 25 701P	ICP ICP ICP ICP ICP	Sr Zr Sc Ti Al	1 1 0.01 0.01	9999 999 99 1.00 9,99	ppm Zr ICP ppm Sc ICP % Ti ICP	(Incomplete (Incomplete (Incomplete	Digest	Zirconium Scandium Titanium	21 22 23 24 25			
		26 708P 27 712P 28 715P 29 720P 30 722P	ICP ICP ICP ICP ICP	Ca Fe Mg K Na	0.01 0.01 0.01 0.01 0.01	9.99	% Fe ICP % Mg ICP % K ICP	(Incomplete (Incomplete (Incomplete (Incomplete	Digest Digest	Iron Magnesium Potassium	26 27 28 29 30			
		31 719P	ICP	₽	0.01	5.00	X P ICP			Phosphorus	31			




CERTIFICATE OF ANALYSIS iPL 95L1902

2056 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 /

A

lient: Johnson, Dr oject: None Given			-Sø Fræ	k	13	iPL	: 95L	1902			: Dec : Dec				[11]	3518:	04:4		Page 122195						Fili of 1 sayer:			9 -7898 •	¥	R
-	Au pb	Ag ppm	Cu ppm	Рѣ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo T1 ppm ppm		Cd ppm	Со ррт	Ni ppm	Ва ррт	W Pipin	Cr ppm	V ppm	Mn ppm	La ppoi	S r ppm	Z r ppm		Ti X	A1 2	Ca X	Fe 7	Mg 7	- Cr z	Na Z	P X
S = 2-63, $R = 100S = 3-64$, $R = 100S = 4-62$, $R = 100S = 5-68$, $R = 100S = 5-69$, $R = 100S = 7-61$, $R = 100S = 8-71$, $R = 100S = 8-71$, $R = 100S = 9-65, 5 = 10^{-1}, S = 100$	13 11 92 2 4 15 3 9 11	32.5 32.5 4 0.8 4	155 9 129 175 95 5 77 81 83 63	120 13 29 5 26	120 167 135 1615 627 92 141 79 164 163	84 105 84 129 26 < 37 14 49 53	<pre> </pre>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	8 5 5 5 5 4 3 4 3 5 4 3 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.6 1.7 2.8 0.5 < .8 0.5	7 24 25 23	7 39 68 15 4 18 43 79	392 165 94 424 54 1588 134 112 237 173	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	46 70 25 37 26 62 69	180 198 106 39 157 110 106	2160 4774 2890 706 2609 1339 1110	9 32 5 8 9 35 5 5 11	37 27 10 45 229 244 328 262 48 87	5 1 2	21 11 0. 2 0. 13 10 10 0.	 .01 .01 .01 .01 .01 .01 .03 .09 	0.78 1.31 2.40 1.55 0.99 1.11 0.81	0.64 0.15 0.49 6.13 2.73 137 7.21 0.92	2.46 7.33 102 4.61 2.31 5.58 4.78 4.10	0.08 0.22 1.12 1.26 0.47 1.93 2.19 1.21	0.25 0.15 0.05 0.19 0.20 0.16 0.17 0.09	0.01 0.03 0.05 0.04 0.03 0.02 0.03	0.14 0.10 0.07 0.14 0.14 0.09 0.09 0.10
12-73 Ř	6 3 11 11 3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 15 22 22 102	< 3 2 3 9	44 24 27 18 81	 8 64 65 20 	< 11 24 26 <	~ ~ ~ ~ ~	5 7 5 14 3	* * * *	0.3 < < <	3 57 1 2 32	0.1% 26 13	32 30 253 131 40	<	85 455 168 170 15	12 23 25 38 204	604 572 51 69 1038	V V V V	325 40 62 42 68	2 1 2 2 10	3 5 2 1 7 0.	~ ~ ~	0.16 0.13 0.34 0.47 3.02	0.96 0.05 0.03	3.69 1.72 1.56	15 0.08 0.04	ζ < 0.07 0.08	0.01 0.01 0.01	0.0 0.0

 Min Limit
 2
 0.1
 1
 2
 5
 3
 1
 10
 2
 0.1
 1
 2
 5
 1
 2
 1
 1
 1
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 <td

CERTIFICATE OF ANALYSIS iPL 95H1707

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Johnson, Don Out: Aug 22, 1995 Project: None Give In : Aug 17, 1995 Shipper: Don Johns	en -	B Samp: Raw Stor Pulp Stor	age: 03	8= Rock Mon/Dis Mon/Dis	0= Soil 	0= Core 0=RC 	Ct 0= Pulp	Mon=Mor	i:57:43:59082295) hth Dis≃Discar turn Arc=Archiv
PO#: Shipment: Msg: Au(FA/AAS 30g) ICP(AqR)30	rAna	lytical	L Summa	ary—	nits Descripti		Element	##	
Msg: Document Distribution —		hod		High	1103 BE307 (pe)	511			
1 Johnson, Don E	N RT CC IN FX 01 313		Au 2		ppb Au FA/AAS	finish 30g	Gold	01	
86,7 20			Ag 0.1		ppm Ag ICP		Silver Copper	02 03	
	0L 3D 5D BT BL 33 711 0 0 0 1 0 34 714			20000 20000	ррт Си ICP ррт РБ ICP		Lead	04	
BC VOJ 1SO				20000	ppm Zn ICP		Zinc	05	
ATT: Don Johnson Pt	n: 604/699-6425		_				A	06	
F>	<: 604/ 06 703		As 5 Sb 5			i ppm	Arsenic Antimony	07	
	07 702 08 732		Sb 5 Hg 3		ppm Sb ICP ppm Hg ICP		Mercury	08	
	09 717		Mo 1		pom Mo ICP		Molydenum	09	
	10 74		10 רד		ppm T1 ICP 10) ppm (Incomplete	Thallium	10	
	11 70	5P ICP	Bi 2	999	pom Bi ICP		Bismuth	11	
	12 701		Ça 0.1		ppm Cd ICP		Cadmium	12	
	13 710		Co 1		ppm Co ICP		Cobalt	13	
	-4 718		Ni 1	999	ppm Ni ICP		Nickel Romium	14 15	
	15 704	4P ICP	8a 2	9999	ppm Baller (1	[ncomplete Digest		15	
	16 72	7P ICP	W 5	999	ppm W ICP (I	Incomplete Digest	Tungsten	16	
	17 70	9P ICP	Cr 1			Incomplete Digest		17	
	18 72		V 2		ppm V ICP		Vanadium Manganese	18 19	
	19 71(20 71)		Mn 1 La 2	9999 9999	ppm Mn ICP ppm La ICP (1	[ncomplete Digest		20	
				0000		Incomplete Digest	Streative	21	
	21 72 22 73		\$r 1 Zr 1	9999 999	ppm Sr ICP (1 ppm Zr ICP	Incomptete vigest	Zirconium	22	
	22 73	ME ICE	Sc 1		pom Sc ICP		Scandium	23	
	24 72	6P ICP	Ti 0.01		77 Ti ICP (3	Incomplete Digest	: Titanium	24	
	25 70		A1 0.01	9,99	% Al ICP (1	Incomplete Digest	: Aluminum	25	
	26 70	16P ICP	Ça 0.01	9.99		Incomplete Digest	: Calcium	26	
	27 71	2P ICP	Fe 0.01		🕱 Fe ICP		Iron	27	
	28 71			9.99	% Mg ICP ()	Incomplete Digest	Magnesium	28 29	
	29 72		K 0.01		76 K ICP (. 77 N⇒ TCP (.	Incomplete Digest Incomplete Digest	: Potassium : Sodium	30	
<u>.</u>	30 72	22P ICP	Na 0.01	9.00	A NA ICF (.	Incomplete bigesi		30	
	31 71	I9P ICP	P 0.01	5.00	%7P ICP		Phosphorus	RECE	VE
	·	•						ранар — рю —	<u>i</u> {
									j.
								FEB 0 6	1996
								5	1
								PROSPECTORS MEMP	

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type EL=BBS(1=Yes 0=No)

4

Totals: 2=Copy Z=Invoice 0=3-1/2 Disk 0=5-1/4 Disk

- - · · ·

.

1. -

CERTIFICATE OF ANALYSIS iPL 95H1707

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

. .

lient: Johns roject: None	Given	Я	٦	8 Roci	ι (: 95H1	_			In	Aug		_						82295				ifte Ti	A		Ça	Fe		K	Na	<u>ر</u> بر
ample Name		- Αυ	'Ag ppm	Си ррлт	РЬ ррт	Zn ppm		Şb ppm	Hg ppm		FT ppm (Cd ppm	Co ppm		Ba ppm	H ppm 	Cr ppm		Mn ppm		ppm		ррт	Z		z	7	x 3.60	Mg Z 0.53	7	7	; 0.1
1-H -47 2-H -44 3-H -48 4-H <u>-42</u> 5-H -41	Ř ř 24	20 7 90	0.7 0.7 0.3 13.6 0.6	_72 1 69 107 22	13 36 14 96 29	179 140	80 3289	19 < 5 81 <	* * * * *	5 4 17 4 5	VIV V	34	33.2	3 14 22	9 2 49 24 2	43 83 52 83 88	~ ~ ~ ~ ~	41 10 70 31 30	52 31	2842 202	21 7 6 2 25	20 779 48 621 36	12 4 8 2 7	< 4 1 <	< 0.08 < <	0.2 1.6 0.3 0.7	4 20. 3 50.	177 .82 177 .50	3.77 4.03 7.03 2.73 3.58	3.57 1.06 4.07 0.44	0.09 0.15 0.03 0.09	0.02 0.03 0.01 0.05	0.0 0.0 0.0 0.1
6-н -40 7-н -43 8-н -55 9-н -54	r R R	10 31 4 7	0.5 0.5 < 0.4 0.7	72 6 98 133 17	6 12 4 10 87	71	16 35	7 < 5 <	~ ~ ~ ~ ~	16 6 5 3 4		~ ~ ~ ~ ~	× 0.5	8 23 14	4 29 16	35 99 68 33 71	~ ~ ~ ~ ~	56	40 103 55	1441 1345	18 8	- 81	2 1	1 8 2	0.14	1.4 0.8 0.6 0.5 0.7	15 0 16 2 12 6 15 0	.44 .95 .40 .59	2.87 6.10 3.39 2.45	0.68 1.05 0.84 0.46	0.29 0.11 0.18 0.09	0.08 0.01 0.01 0.04	0.1 0.1 0.1 0.1
0-H -56 1-H -57 12-H -58 13-H -59 14-H -45	1	22 ~ 2 10	2.7 0.1 0.1 0.3	19 115 4 64	255 7 < 73	132 7 2 16) 100 1 23 3 < 7 76	< < 6 <	<	3 5		~ ~ ~ ~ ~	< 0.4	: 27 72 2 20	79 0.1 27		~ ~ ~ ~ ~	83 454 50	126	577	- S 3	23 48 17 41 232	7 1 3	1 2 3	0.19	0. 2.2 0. 2. 0.	24 1 11 1 52 2	.65 .55	2.50 4.28 3.51 3.90 3.40	2.08	0.09 Z < 0.04	0.04	0.0 0.0
15-H -60 16-H -49 17-H -50 18-H -39	M M	6 5 71			29 8 3	13 9 1 10	- B 26 1, ∢	; 7 ; 12	< 5	6		< <	0.1	< 16 1 57	; 29 7 0.1	65 2 20 144	<	17 535 31	49 19 99	1101 545 1906	10 	90 29 62) 1			< 1.2 < 0.4 2 0.4	07 1	,66	4.33 2.95 5.86	14	ZO.O 2	0;02	
									-			,											P	ĽΡ	FE	B O ME	6 1	996 PRC	_ Ľ				
Min Limit Max Reports Method —=No Test		999	2 0.	1 9 2000	1	2	1	5 99 999 CP IC	5	3 99 99	1 1 99 99	0	2 0		1 99 99	99 999	9 99	5 99 995 29 10	99 99	99 99	99 99 9	99 99 10	1 99 9 CP I	99 9 10 10	ד פיק ז פי	01 0 00 9 CP	.99 TCP	0.01 9.99 ICF	0.0 9.9 9.10	11 0.0 19 9.9 19 10	11 0.(19 9.) 29 1()1 0.1 99 5.4 29 기	01 0 00 5 CP

والممتد فيرونها ومحمو بتتراضم وتجرارا لتتراجع والتراجع والمراجع

FEB 0 6 1996
SAMPLE # 37 - SERIES OF GRAD SAMPLES OVER 8: VERY ALTERED
TUFFACEOUS ROCK.
SAMPLE # 40 - GRABSAMPLE OF
SILISIFIED AND MINERBLIZED (SOME SORT OF IRON)
ANDESITE 90'S'EAST OF #39.
SAMPLE # 41 - GAAB SAMPLE. FELSIC
ROCK WITH FRACTURE THAT SEEMS TO
BE DECOMPOSIED PIRIJE, PROBABLY SOME
SOAT OF ALTERED GRANITE.
SAMPLE #42 - SAMPLE DUG UP WHEN
HOE MADE ROAD. THE CLOSEST ROCK IN
PLACE IS ABOUT SOU NOADH.
WHEN THE HOE MAKES ROAD THEY DIG
ADEEP TRENCH · BLONG ONE GADE SIDE.
THEN THE STUMPS ARE BURRIED FROM
ROAD SURFICE. THESE FRENCHES CAN
BE UP TO 10' DEEP. I THINK THIS
SAMPLE WAS DUG UPTHIS WAY.
THIS SAMPLE IS A MAGNESIUM CARBONITE
ROCK HEAVY ON THE CALSITE + PIRITE.
RUSTY RED OXIDATION. SAME COLOR AS
- MARIPOZITE. I THINK THIS COULD BE
RELATET TO MARIPOZITES.
THE SOIL GRID WAS DONE OVER
THIS AREA. I TRYED TO GET THROUGH
OVER BURDEN WITH HER AVGIER
+ EXTENSIONS- THE DEEPEST HOCK
WAS 7', DEEP. I DON'T KNOW IF THE
RESULTS FROM THE SOIL GRID MARE SIGNIF
IGENT, OR NOT. THE SAMPLE ITAD SLIKEN
SIDES ON IT. THE SAMPLE CAME FROM DIRECTLY BELOW OR IS FROM NEAR BY.

RECEIVED
SAMPLE#43 - MONZONEBEBEBISSERAB SAMPLE
WITH MASSINE - FINE AIRITE CRISTALS.
SMALL BOOKS OF BIOFIFE AND JOM EMERLED & SPENE
CRISTALS IN SAMPLE. SIMULAR ROCK TO
47,
SAMPLE # 44 - GRAB SAMPLE VERY
ALTERED TUFFACOUS, WITH A FEW LARGER
PIRITE CRISTACS. NOT FAR FROM
ANDESITE OUT CROPS. LOTS OF CALSITE.
SAMPLE # 45 - GRAB SAMPLE FROM
BRIETCHA VIEN CUTTING THROUGH ANDESITE.
SOME QUARTZ + CALSITE WITH SOME SMALL
PIRITE CRISTAUSI
SAMPLE # 47 - LARGE TALAS
ANGULAR ROCK. MONZONITE. SMALL
YELLOW SPENE CRISTALS (RARE) SMALL
BOOKS OF BIOTITE MICH. VIEN OF
PIRIFE THASENICAL PIRITE. THE REMOVE BACK LUBS SAMPLED WAS
REASON ROCK WAS SAMPLED WAS TO SEE IF THERE WAS MAY THING IN
PIRITES - TALIS ROCK WAS DUE OUT
OF ROAD ON SIDE CUT.
SAMPLE # 48 - ALARGE AREA
OF DECOMPOSED PIRITES WAS DUG
10 BY THE HOE WHILE MARING
MAIN ROAD, GAAB SAMPLE.
ALSO A NEPHRITE BOLDER WAS DUE UP
BY MOE. APP 200 LBS, NIEL CHURCH
TOOK SAMPLE.

SAMPLE # 49 - GRAB SAMPLE DE VOLCANIC ASH WITH MINOR PIRITE AND BRETCHA. THIS IS & 10' DYKE CUTTING THAOUGH LANDING. THIS IS CUTTING THAOUGH TUFFEOUS ALTERED ROCK. THE ROCK HOUNDS REFER THIS DYKE ROCK AS WONDER STONE.

SAMPLE # 50 + SAMPLE OF MHAIDOZINE. THIS ROCK MAS INTRUDED THROUGH TUFFERDE ROCK. THE MARIDOZITE HAS BEEN COOKED UP AND ALTERED.

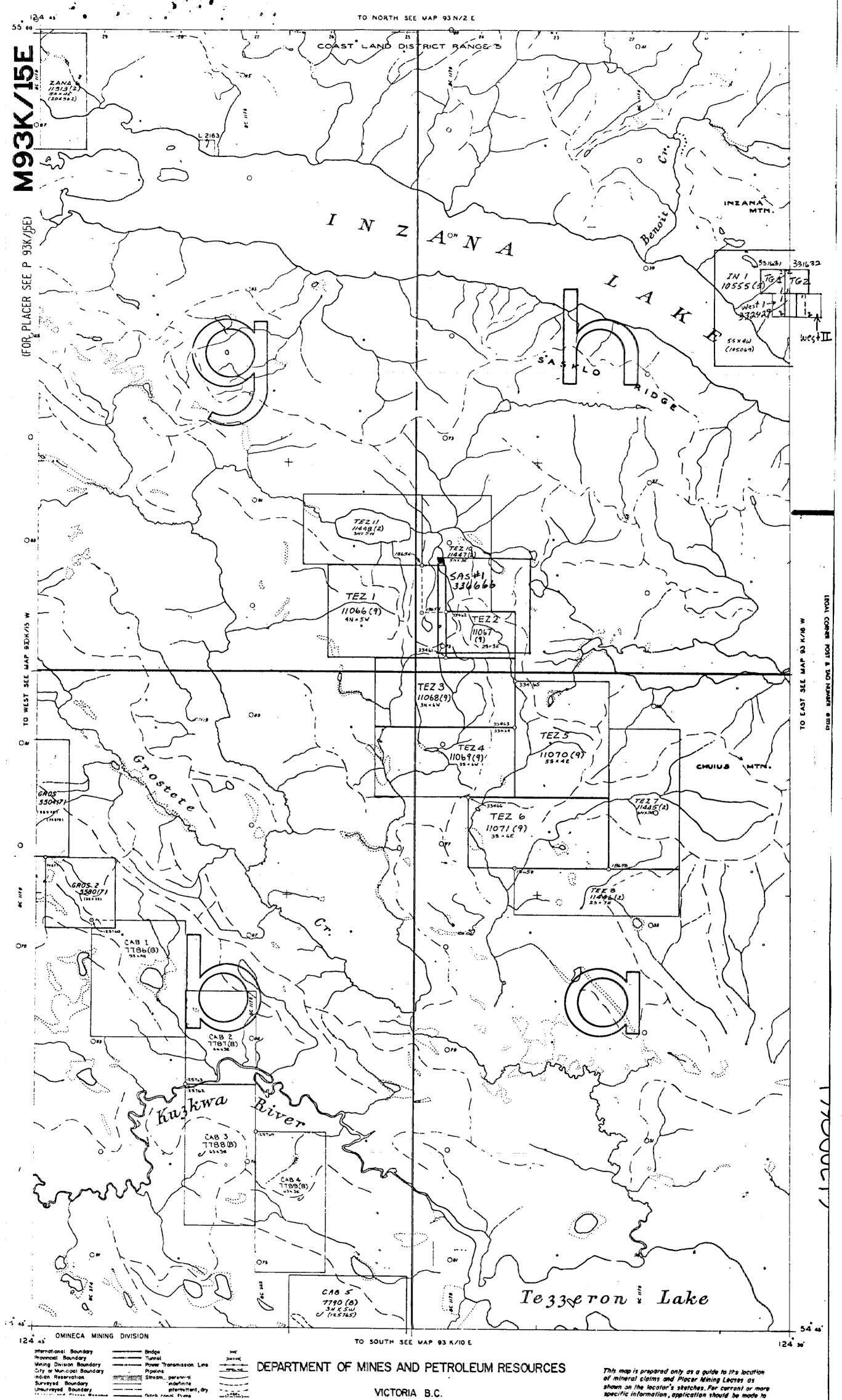
SAMPLE # 57 - TUFFEOUS ROCK WITH CALSITE AND SOME PIRITE.

SAMPLE # 55 - TUFFEOUS ROCK WITH BRITCHA AND MINUR PIRITE.

SAMPLE # 56 - FRACTURES OF BLACK DECOMPOSED MATERIAL (POSSIBLY PIRITE)

MONZONITE.

SAMPLE*57 - GAAB SAMPLE MONZONITE DYKE THAT HAS BEEN TOTALLY DESTROYED. NOT FAR FROM ANDESITE - POSSBLY 20


ON 301. THIS IS CUTS ACCROSS ROAD. THE CAT HAS CUT DOWN TO BED ROCK.

THIS	5 LOOKS	6000,	
			DECEIVED
		. 14.1.2	DIPLOB
			FEB-0 6 1996
<u> </u>		. <u></u>	PROSPECTORS PROGRAM MEMPR

SAMPLE # 58.

SAMPLE # 58.
GAAB SAMPLE OF VOLCANIC ROCK
DARK BREEN CRISTALS, POSSIBLY AUGITE.
SAMPLE # 59 - MARIPOZITE SAMPLE
ALTERED-ON EDRE OF LANDING DUG
OUT BY CAT. COULD BE FLORT.
SAMPLEAGO - MARIPOZITE SAMPLE
TAKEN FROM TWO DIFFERENT MARIPOZITE
FLOAT ROCKS.
SMMDIE + 61 - GRABSAMALE AF ANDERITE
SAMPLE # 61 - GRABSAMPLE OF ANDESITE WITH PIRITES: SOME ALTERATION.
SAMPLE # GR. GRAB SAMPLE. MANLY
RUSTY OXIDATION WITH ANDESITE #
BRETCHA, BFAF THAT IS BLEACHED
AND COOKED UP CONTACT GETTE BETWEEN SAMPLE 57 + 70.
LOOKS INTERESTING, THIS IS A
ANDESITE - MONZONITE CONTACT.
SAMPLIE# (3 SAMPLE TAKEN WITH
AUGIER IM DEEP. TUFFERIOS ROCK.
SAMPLE #64 - SAMPLE TAKEN 2
200 M. CHEMSURED WITH CHAIN) EAST OF #63
200 MENSURED WITH CARIN EASI DF F 65
SAMPLE # 65 - 100 M SOUTH OF # 64/
51'DEEP-STILL IN OVER BORDEN. SOIL SAMPLE. RECEIVE
FEB 0 6 1996
PROSPECTORS PROGRAM
MEMPR

SAMPLE # 66 - 200 SOUTH OF #67 75 FERT DEEP - STILL IN OVER BURDEN. SOIL SAMPLE. (LOTS OF KHOLIN) SAMPLE# 68 ANDESITE ROCK - GRAB SAMPLE. PIRITE AND MINOR GALENA. ITHOUGHT THIS ROCK WOULD ASSAY WITH HIGHER VALUES. SAMPLE # 69 - GRAB SAMPLE FROM DYKE OF FELSIC ROCK, REDY RUST. THIS ROCK IS COMMON THROUGH THE AREA, OFFEN CONTACTED WITH GREEN ANDESITE. I DON'T KNOW WHAT TYPE OF ROCK THIS. 15. THERE ARE LARGE CRYSTOLS THAT RESEMBLE LEUCITE. SAMPLE # 70 - 22 FT DEEP AVEIER SAMPLE. IN MIDDLE OF ROAD. DIRECTLY CONTACTED WITH ANDESITE. THE CAT OUT THE GOSSIN OFF WHILE MAKING ROBD. THE A ROCK TYPE IS UNRECOGNIZ ABLE, MORE LIKE RUSTY GOUGE. SAMPLE#71 - SOME ROCK RELATED TO MAAIPOZITES. STAper 172 RECEIVE FEB 0 6 1996 PROSPECTORS PROGRAM -MEMPR

VICTORIA B.C.

de h

shown an the locator's statches. For current or more specific information, application should be made to the Wintow Misister Assessed

 \mathcal{O}

CERTIFICATE OF ANALYSIS iPL 95J1206

INTERNATIONAL PI	ASMA	LABORAT	JRY LTD.																							Fa	x (6	04) 87	9-789	18X	the second
Client: Johns Project: None				15 Soil	I		iPL	; 95J	1206			: 0ct : 0ct				[08	7418:	17:5	F 57:591		1 of 5]	1	Cert		ion 1 BCAs	of 1 sayer:	David	1 Chiu	' 	<u>Å</u>	
Sample Name		Au ppb	Ag opm	Cu ppm	РЬ ррт	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo [] ppm ppm	Bi ppm	Cd ppm	Ca ppm	Ni ppm	Ва ррт	W mqq	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Z r ppm	Sc ррт	Ti Z	A1 X	Ca X	Fe X	Mg X	к 2	Na 7.	Р Х
00-000E 00-000E-25K	25%	17 20	0.2 0.2	83 84	31 16	141 177	60 58	۲ ۲	۲ ۲	4 **** 5 ***	۲ ۲	0.5 0.3		91 83	224 229	< <			1148 1506		66 61	5 6			1.87 2.12	1.43 0.79				0.03	
00-000E-25 7% 00-025E	15	10 8	× 0.1	78 80	12 15	107 137	30 41	< <	< <	3 805	۲ ۲			90	171 197	< <		102	918	. j	87 84 60	7 7 6	6	0.12	1.60 1.83 2.07	3.24 2.69 0.86	3.77	1.51	0.13	0.03	0.09
00-025E-25S	S č	16 34	0.1 0.2	79 83		116 138	40 54	<	د >	3 ⊟`≼ 4 ⊡≷	× · •	× 0.2	25 25		203	× د		113 110			63				1.92	1.04				2 0.03	
00-050E 00-050E-25S	38585	8	0.3	73 87	27 27	146 227	47 76	~ ~	~ ~	3 ×	<	1.4	22	76	199	< <	64	97	912 1032	10 11	92 71	7	5	0_11	1.80 1.92	2.82 1.82	3.96	1.24	0.12	2 0.03 2 0.04	0.09
00-050E-25N 00-075E	Ŝ	30 43	0.4 0.5	49 91		192 212	47 104	< <	< <	4 ⊶≪ 3 ∵.≮	۲ ۲	1.9 1.4	18 25		174 226	< <	57 65		673 1073		52 97				1,56 1,95	0.70 2.86				7 0.02 5 0.04	
00-075E-25S 00-075E-25N	ŝ		0.3 0.2	80 70	20 14	201 115	62 39	< <	< <	3 × 3 ×	۲ ۲	2.0 0.8			211 220	۲ ۲		103	883	Internet and a second	61	7 6	6	0.12	1.82 1.93	3.14 1.33	3.78	1.23	0.12	3 0.03 2 0.03	0.09
00-100E 00-100E-25S	ALCR CON	8 8	0.2	91 80 79	28 19 16	202 165	90 57 37	< <	< < <	4 < 4 < 2	<	0.6 0.4 1.2	24	87	100 C C C C	< < /	73	109	1122 1020 1068	33	58 65 68	7	6	0.12	2.11 2.01 2.00	0.88 1.41 1.61	4.05	1.33	0.12	3 0.03 2 0.03 1 0.03	0.09
00-100E-25N	ž	10	0.1	19	10	121	31	<	<	⊐ 333 5	<	1.2	23	00	<u> </u>	~	13		1000	9595 . K. A	00		· ·	v. 15	0.000					****	

SOIL GRID AT 25 MINTERVILS AT 90° 1= ROM WEST TO EAST

2036 Columbia Street

Vancouver, B.C.

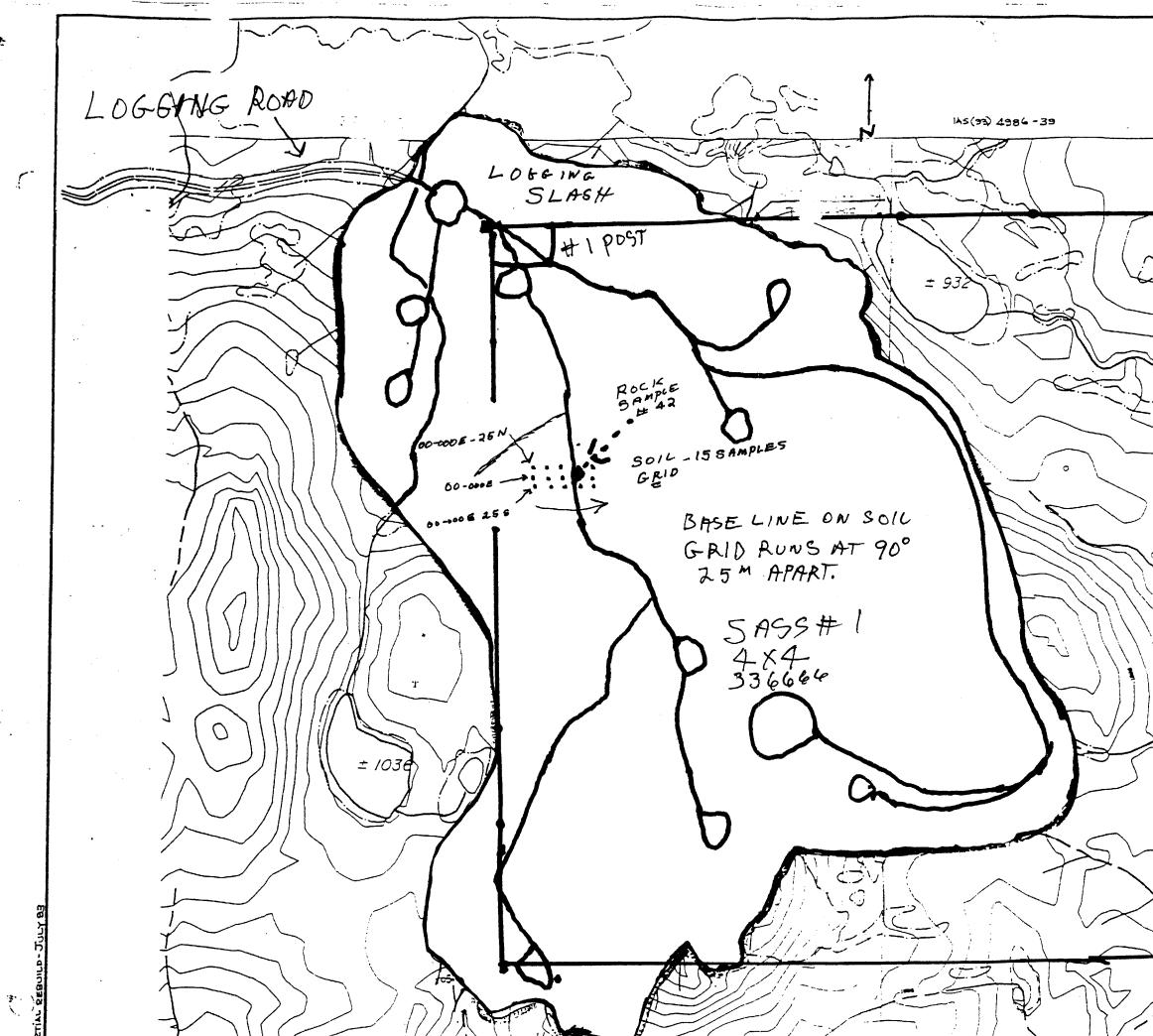
Canada V5Y 3E1 Phone (604) 879-7878

FROM STRIATIONS ON ANDESITE OUT CROP-THE GLACIER RAN AT 81° FROM WEST TO EAST.

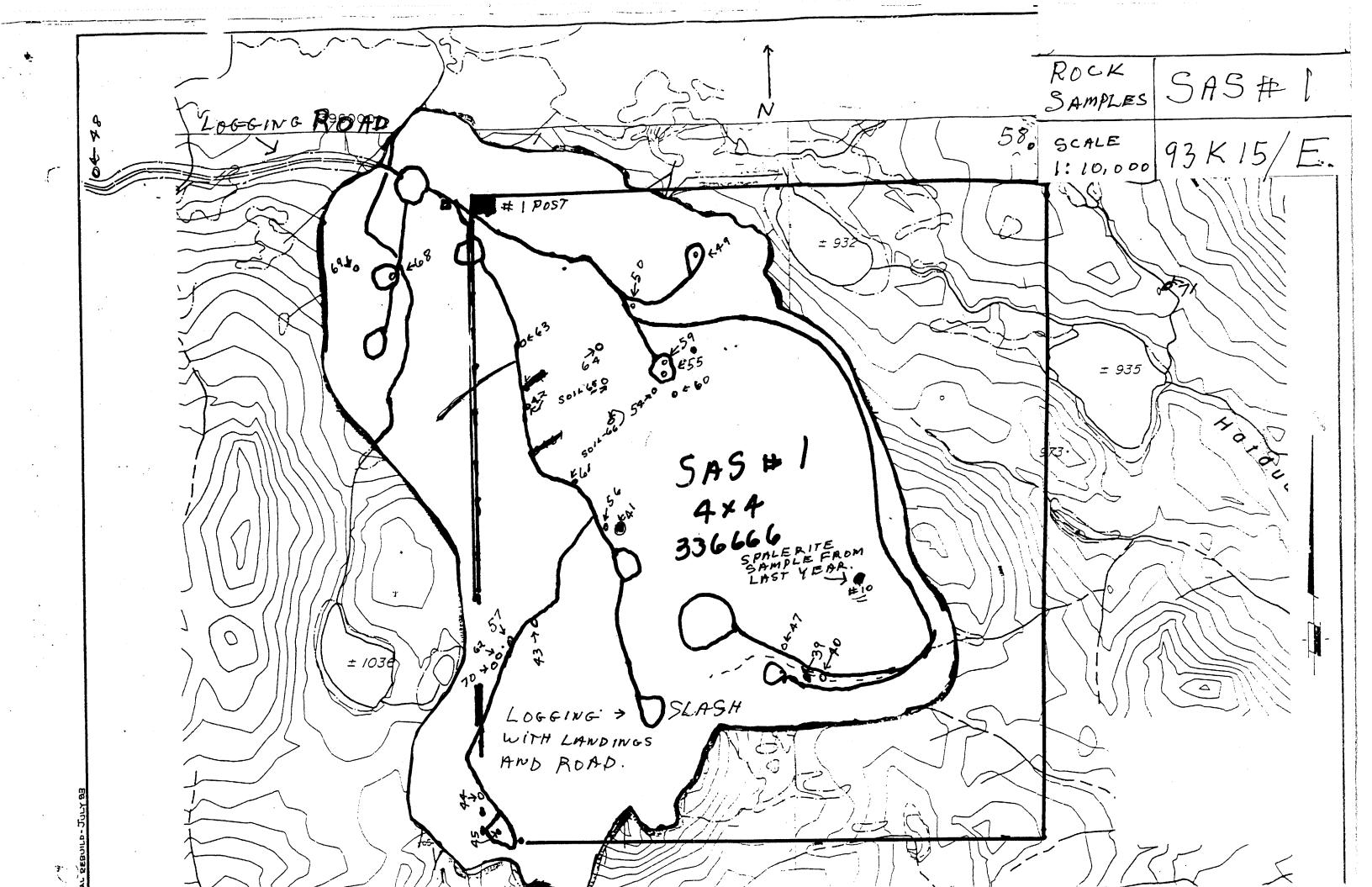
1 10 2 0.1 1 1 Min Limit 2 0.1 1 2 1 5 5 3 Max Reported* Method ----No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE OF ANALYSIS iPL 95J1206

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898


ала са се се се се се на некото на поста со на селото на селото со селото на посто на селото на селото со со с Поста се се се селото на поста се се селото на селото се се селото на поста на поста на селото се се се се селот

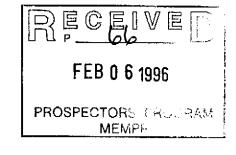
Johnson, Don Out: Oct 17, 1995 Project: Non In : Oct 12, 1995 Shipper: Don) Johnson	R.	Samp aw Sto Jp Sto	rage:		0≏ Rock 	15: Soil 00Mon/Dis 12Mon/Dis	0= Core 0=	RC Ct 0= Pulp	0=0ther 	[087418:17:52:59101795] Mon=Month Dis-Discard Rtn=Return Arc=Archive
PO#: Shipment:	ID=C022400	3 1	1.2.00	1 0.		i					
Msg: Au(FA/AAS 30g) ICP(AqR)30		[Analy						·			
Msg:		## Code		it.le l			lnits Descripti	ion	Element	##	
Document Distributio			hod			High					_
1 Johnson, Don	EN RT CC IN FX	01 313P	FAAA	Αu	2		-ppb Au FA/AAS	S finish 30g	Gold	01	
Box 93	12221	02 721P	ICP	Ag	0.1	100	ppm Ag ICP		Silver	02	
Fraser Lake	DL 3D 5D BT BL	03 711P	ICP	Cu		20000	ppm Cu ICP		Copper	03	
BC VOJ 1SO	0 0 0 1 0	04 714P	ICP	₽Б	2	20000	ррт Рь ІСР		l.ead	04	
		05 730P	ICP	Zn	1	20000	ppm Zn ICP		Zinc	05	
All: Den Johnson	Ph;604/699-6425	1									
	Fx:604/	06 703P	ICP	As	5	9999	ppm As ICP 5	ppm	Arsenic	06	
		07 702P	ICP	SБ	5	9999	ppm Sb ICP		Antimony	07	
		08 732P	ICP	Hg	3	9999	ppm Hg ICP		Mercury	08	
		09 717P	ICP	Mõ	1	9999	ppm Mo ICP		Molydenum	09	
		10 747P	ICP	n	10	999	••) ppm (Incomple	v	10	
								· · · · · · · · · · · · · · · ·		-	
		11 705P	ICP	Bi	2	999	ppm Bi ICP		Bismuth	11	
		12 707P	ICP	Čd	0. ì		ppm Cd ICP		Cadmium	12	
		13 710P	1CP	Čõ	1	999	ppm Co ICP		Cobalt	13	
		14 718P	ICP	Ni	ì		ppm N1 ICP		Nickel	14	
		15 704P	ICP	Ba	2	- • •		Incomplete Dige		15	
		1 7041	10	Da	L			incomplete bige		1.2	
		16 727P	ICP	W	5	999		Incomplete Dige	st Tuporton	16	
		17 709P	ICP	Cr	1			Incomplete Dige		17	
		18 729P	ICP	V				moonprete brige	Vanadium		•
		19 716P	ICP		2 1		ppm V ICP			18	
		19 /10P		Mn			ppm Mn ICP		Manganese	19	
		20 713P	ICP	La	2	9999	ppm La ICP (I	Incomplete Dige	st Lanthanum	20	
		04 7000	700	~	4	0000				<u>^-</u>	
		21 723P	ICP	Sr	1			Incomplete Dige		21	
		22 731P	1CP	Zr	1	999	ppm Zr ICP		Zirconium	22	
		23 736P	ICP	Sc	1	99	ppm Sc ICP		Scandium	23	
		24 726P	ICP	Ti		1.00		Incomplete Dige		24	
		25 701P	ICP	A1	0.01	9.99	% AT ICP (1	Incomplete Dige	est Aluminum	25	
		0.0000	700	~	· · ·		m o 10- /-				
		26 708P	ICP		0.01			Incomplete Dige		26	
		27 712P	ICP			9,99	% Fe ICP		Iron	27	
		28 715P	ICP			9.99		Incomplete Dige		28	
		29 720P	ICP			9,99		Incomplete Dige		29	
		30 722P	ICP	Na	0.01	5.00	% Na ICP (]	Incomplete Dige	est Sodium	30	
		Į									
		31 719P	ICP	Р	0.01	5.00	% P ICP		Phosphorus	31	
		ł									
1											
		م بين						<u>-</u>			· · · · · · · · · · · · · · · · · · ·
EN=Envelope # RT=Report Style CC	*Copies IN=Invoices	FX=Fax(1	=Yes D:	=No)							


, по так и по по полнование среме на поста по по так и так и село село на село и по на поста и поста и поста и т Г

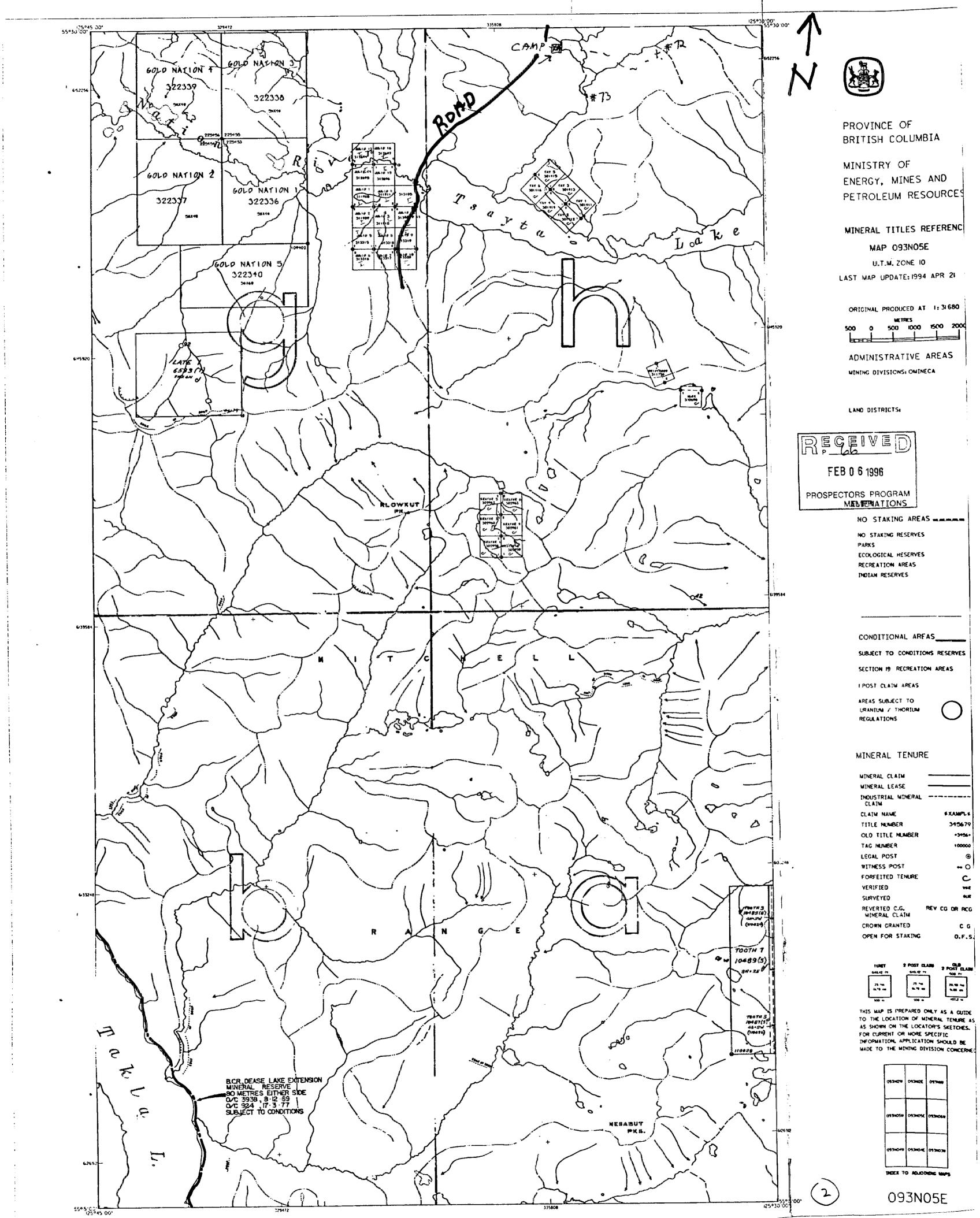
EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes D=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type BL=BBS(1=Yes D=No) Totals: 2=Copy 2=Invoice 0=3-1/2 Disk 0=5-1/4 Disk

1 IN THE REPORT OF A REPORT OF A

SDIL SAS#1 GRID SCALE 93 K/15 E 1:1000 = 935 Hard 983 -Δ


CERTIFICATE OF ANALYSIS iPL 95L1902

2036 Columbia Street Vancorver, B.C. Canaca VSY 3L1 Phone (604) 879-7875 /


8

	FRNATIONAL PL			RY LTD									<u>.</u>				-				-	age	1	1		Sam	tion 1	ියා කෝ 1	(60)4) 87	9 -7898	SI A A	L-
Clien Projec	nt: Johns nt: None	son, Give	Don n		15 Roci	k		iPL	; 95L	1902				: Dec : Dec				[11	3518:	04:4	18: 591			•	Cert	ifie	BC As	sayer:	David	I Chi	u 	X	<u> </u>
Sample	Name		Au ppb	Ag ppm	Cu ppm	РЬ ррял	Zn ppm	As ppm	Sb ppm	Hg ppm	Мо ррп	T1 ppm	Bi ppm	Cd ppm	Со ррп	N1 ppm	Ba. ppm	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Z r ppm	Sc ppm	Ti Z	A1 Z	Ca X	Fe X	Mg Z		Na X	р Х
SAS 3 SAS 4	2-63		13 11 8 92 2	< < 32.5 <	155 9 129 175 95	12	120 167 135 1615 627	84 105 84 129 26	- 16 10 32 5	* * * * *			۲ ۲	0.6 < 1.7 2.8	40 40	39 68	392 165 94 424 54	< < < < < < < < < < < < < < < < < < <	24 46 70	15 180 198	2160	32 5 8	10 45	3 5 1 2 2	2 18 21	ہ 0.01 ~	1.86 0.78 1.31 2.40 1.55	0.77 0.64 0.15 0.49 6.13	2.46 7.33 107	0.08 0.22 1.12	0.25 0.15 0.05	0.02 0.01 0.01 0.03 0.05	0.14 0.10 0.07
SAS 8	761 371 365	SAN CARRENT STATE	4 15 3 9 11	<pre> </pre>	5 77 81 83 63	5 26	92 141 79 164 163	< 37 14 49 53	< < 8 < <	~ ~ ~ ~ ~	4 3 4 3 5		۲ ۲ ۲	< < <	24 25 23	18 43 79	1588 134 112 237 173	~ ~ ~ ~ ~	62 69	157 110 106	2609 1339 1110	5	328 262 48	7 2 2 4 9	13 10 10	> > 0.09	111111111111	137 7.21 0.92	5.58 4.78 4.10	1.93 2.19 1.21	0.16		0.09 0.09 0.10
T 12 B 13 B 14	1-72 2-73 3-74 1-75 5-76	1. ALL 201 ALL 201 ALL 201	6 3 11 11 3	* * * * *	1 15 22 22 102	× 3 2 3 9	44 24 27 18 81	< 8 64 65 20	< 11 24 26 <	* * * * *	7 5 14		× × ×	0.3 < < <		26 13	32 30 253 131 40	~ ~ ~ ~ ~	168 170	23 25 38	572 51		40 62 42	1 2 2	5 2 1	<	0.16 0.13 0.34 0.47 3.02	0.96 0.05 0.03	3,69 1,72 1,56	15 0.05 0.04	%2 < €0.07 €0.08	0.02 0.01 0.01 0.01 0.01	< 0.02 0.02

SAMPLE # 72 + 73 TAKEN TASBYLA LAKE.

5 3 1 10 2 0.1 1 1 2 5 1 2 2 1 2 5 1 Min Limit 2 0.1 1 Max Reported* Method ----No Test ins=Insufficient Sample S-Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued

E

FEB 0 6 1996

PROSPECTORS PROGRAM

MEMPR

DVE TO

FIND ANY THING.

цЦБ

111

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name DON JOHNSON Reference Number 95/96 P066
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>MIAILLA ROAD</u> MINFILE No. if applicable Location of Project Area NTS <u>M93 F/IIE</u> Lat <u>52°39 N</u> Long <u>125°00</u> Description of Location and Access <u>ROLLY</u> , <u>TIMBERED</u> , <u>OCASIONAL</u> LOGGING <u>CLEA</u> <u>CUTS</u> , <u>HND</u> BUT CROPS · THE BEST ACCESS IS TB TAAUELS OUTH ON
100 ROAD TO 72 KLM AND BRANCH ONTO MIRILLA TO 12 KLM.
Main Commodities Searched For <u>COPPER - GOLD</u>
Known Mineral Occurrences in Project Area NONE
WORK PERFORMED 1. Conventional Prospecting (area) 2 SQUARE KLOMETERS
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples)
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6,. Drilling (no,. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS Commodities NのルE Claim Name
Location (show on map) LatLongLong
Best assay/sample type
Description of mineralization, host rocks, anomalies <u>GREEN ANDESITE AND</u> <u>A HOLL OF CHERTY ELOW</u> CONGODMERITE. SOME <u>MINELIAZED ANDESITE WAS ASSAYED. SOME</u> CONGLOMERATE WAS ALSO ASSAYED. ALSO
CONGLOMEANTE WAS ALSO ASSAYED. ALSO SOME BRETCHA WITH PIRITE WAS ASAYED.

OF

ITIS

 \mathbb{A}

HARD

Øł

Supporting data must be submitted with this TECHNICAL REPORT

ALSO FOUND A LOT

EYCESSIVE OVER BURDEN

CERTIFICATE OF ANALYSIS ipl 95L1902

INTERNATIONAL PLASMA LABORATORY LTD

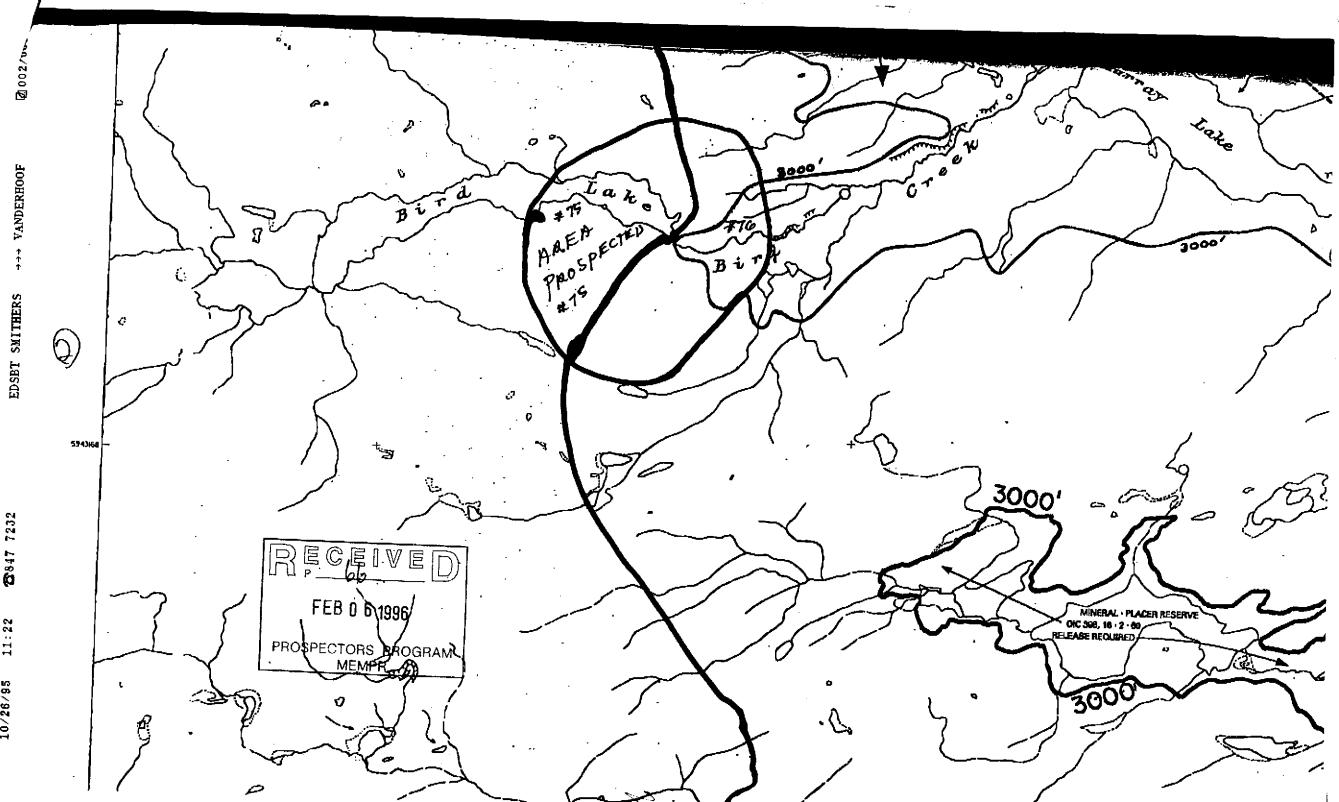
2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Johnson, Don Out: Dec 21, 1995 Project: None Given In : Dec 19, 1995 Shipper: Don Johnson PO#: Shipment: ID=C022401	Pulp	Storage: Storage:		2= Soil O= Core OOMon/Dis 12Mon/Dis	0=RC Ct 0= Pulp 	0=0ther 	[113518:04:43:59122195] Mon=Month Dis=Discard Rtn=Return Arc=Archive
Msg: Au(FA/AAS 30g) ICP(AqR)30	_Analyti ## Code _ Me	cal Su et Title L		nits Description	Element	##	
Document Distribution	03 711P I(04 714P I(Low High 2 9999 0.1 100 1 20000 2 20000 1 20000	ppb Au FA/AAS finish ppm Ag ICP ppm Cu ICP ppm Pb ICP ppm Zn ICP	30g Gold Stiver Copper Lead Zinc	01 02 03 04 05	
ATT: Don Johnson Ph:604/699-6425 Fx:604/	06 703P 10 07 702P 10 08 732P 10 09 717P 10	CP As CP Sb CP Hg CP Hg CP Mo CP T1	5 9999 5 9999 3 9999 1 9999 10 999	ppm As ICP 5 ppm ppm Sb ICP ppm Hg ICP ppm Mo ICP ppm T1 ICP 10 ppm (Ir	Arsenic Antimony Mercury Molydenum ncomplete Thallium	06 07 08 09 10	
	12 707P I 13 710P I 14 718P I	CP Bi CP Cd CP Co CP N1 CP Ba	2 999 0.1 100 1 999 1 999 2 9999	ppm Bi ICP ppm Cd ICP ppm Co ICP ppm N1 ICP ppm Ba ICP (Incomplet	Bismuth Cadmium Cobalt Nickel te Digest Barium	11 12 13 14 15	
FEB 0 6 1996	17 709P I 18 729P I 19 716P I	CP W CP Cr CP V CP Mn CP La	5 999 1 9999 2 999 1 9999 2 9999 2 9999	ppm W ICP (Incomplet ppm Cr ICP (Incomplet ppm V ICP ppm Mn ICP ppm La ICP (Incomplet	te Digest Chromium Vanadium Manganese	16 17 18 19 20	
PROSPECTORS PROGRAM MEMPR	22 731P I 23 736P I 24 726P I	CP Sr CP Zr CP Sc CP Ti CP Al	1 9999 1 999 1 99 0.01 1.00 0.01 9.99	ppm Sr ICP (Incomple ppm Zr ICP ppm Sc ICP % Ti ICP (Incomple % Al ICP (Incomple	Zirconium Scandium te Digest Titanium	21 22 23 24 25	
	27 712P 1 28 715P 1 29 720P 1	ICP Fe ICP Mg ICP K		% Ca ICP (Incomple % Fe ICP % Mg ICP (Incomple % K ICP (Incomple % Na ICP (Incomple	Iron te Digest Magnesium te Digest Potassium	26 27 28 29 30	
	31 719P	ICP P	0.01 5.00	Z P ICP	Phosphorus	31	
EN=Envelope # RT=Report Style CC=Copies IN=Invoices DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type	s FX=Fa×(1=Y s BL=BBS(1=Y		Totals	: 2=Copy 2=Invoid	œ 0≖3-1/2 Disk 0=5-	-1/4 Disk	

an and an an an and a set of the set

-

£.


CERTIFICATE OF ANALYSIS iPL 95L1902

2036 Columbia Street Vancouver, B.C.

		INTERNATI														j	Ĺ₽Ĭ	L 9	951	L19	02										('ancoi 'anada 'hone	a V5'	Y 3E1	l	3 <i>1</i>	
	Cli	ent: (John	son,	Don			Rock			iPi	.: 95L	.1902		(Dut: In:		21, 19,			[11	3518:	04:4		22195			Cert		tion JBCA	l of			•			k.
	Samp	le Na	me		Au ppb	-		Cu pm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppni	Mo ppm p				Co ppm		Ba ppm	W ppm	Cr ppm	V mqq	Min ppm	La ppni		Zr ppm		T1 7	۸۱ ۲	Ca 1	1 5	Fe X	Mg X	7	Na Z	Р Х
7	SAS SAS SAS SAS SAS	1–70 2–63 3–64 4–62 5–68			13 11 8 92 2	32.5		9 29	15 44 12 2090 120	120 167 135 1615 627	84 105 84 129 26	× 16 10 32 5	* * * * *	8 5 5 5		< < < < < < < < < < < < < < < < < < <	0.6 1.7 2.8	41 7 40 40 18	39 68	392 165 94 424 54	~ ~ ~ ~ ~	24 46 70	15 180 198	3305 1101 2160 4774 2890	9 32 5 8 9	37 27 10 45 229	5 1 2	21	× 0.01 ×	1.86 0.78 1.31 2.40 1.55	0.64 0.15 0.49	2.4	460 330 10 % 1	.08(.22(.12(0.25 0.15 0.05	0.01 0.01 0.03	0.14 0.10 0.07
-		6-69 7-61 8-71 9-65 10-66			4 15 3 9 11			5 77 31 33 53	13 29 5 26 24	92 14 79 165 163	 37 14 49 53 	< < B < <	~ ~ ~ ~ ~	4 3 4 3 5	Y Y Y Y	< < < < < < < < < < < < < < < < < < <	<	25	18 43 79	1568 134 112 237 173	~ ~ ~ ~ ~	26 62	157 110 106	2609 1339 1110	35 5 4 11 11	244 328 262 48 87	7 2 2 4 9	13 10 10	> > 0.09	0, 99 1, 11 0, 81 1, 93 1, 49	13 7.21 0 .9 2	7 5.9 4.1 4.1	581 782 101	.93 (.19 (.21 (0.16 0.17 0.09	0.03 0.02 0.03	0.10
	I B B	11-72 12-73 13-74 14-75 15-76			6 3 11 11 3	4		1 15 22 22 22	× 3 2 3 9	44 24 27 18 81	< 8 64 65 20	< 11 24 26 <	~ ~ ~ ~ ~	5 7 5 14 3		((0.3 < < <	3 57 1 2 32	0.1 % 26 13	32 30 253 131 40	<	85 455 168 170 15	12 23 25 38 204	604 572 51 69 1038	A A A A	325 40 62 42 68	2 1 2 2 10	3 5 2 1 7	<	0.16 0.13 0.34 0.47 3.02	0.96	3.0 1.7	59 720 560	157 108 (108 (<pre> </pre> 0.07 0.08	0.01 0.01 0.01	< 0.02 0.02
															FE		-			D																	
	T	11	ہے ۔ ہ	P	5. A	AY N/	۲ ر ر	A I	4	R 6 5 +	ha /	ſ		PROS		OTC		PR		RAM	1																
	Ρ	-	< 51		m	~ <i>r</i> 7	'4	- /	, , 7,8	5 +	74	•	т-к	K	Ēw	(0	n	n	1 🎢	R.	16	LØ	•	20	N	9.										
					_																																
	Hex Heth N	o Tes	ted ^e t 1	ns-1	9999 FAAA insuf	ficie	2000 9 I 9 I	ar Manala	• (1 20000 ICP S=So11 Iumb1a	9999 ICP R=Rox	9999 ICP ± C=C	9999 ICP Ione L	_ICP_i ≂Silt	99 99 69 I(P-Pu	99999 CP 1 16 U	9.9 ICP	999 ICP ofin	999 ICP	9999 ICP	999 ICP	9999 ICP t=/10	999 ICP	ICP Xafei	9999 ICP	9999 TCP	999 ICP	99 ICP	1.00		0.00	0 0	99 9	.99 :	9.99	5.00	0.01 5.00 ICP

0.847 11:22 10/26/95