BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1995/1996REPORT #:PAP 95-32NAME:ERIC OSTENSOE

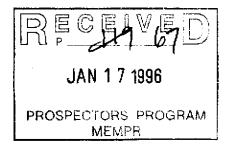
REPORT OF WORK

HAT PROJECT

Lat. 58 12', Long. 131 34'

ATLIN MINING DIVISION

NTS 104-J/4E


NORTHWESTERN BRITISH COLUMBIA

Work Done in Period July 9 to 29, 1995.

Work Done by: Erik Ostensoe, P. Geo. Thomas E. Lisle, P. Eng.

Report Prepared by: Erik Ostensoe, P. Geo.

Date of Report: January 10, 1996.

Tul A. Ostonsoe

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

JAN 171.80

lig P

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.

• If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ERIK OSTENSOE Reference Number 95-96-P119
LOCATION/COMMODITIES
Project Area (as listed in Part A) HAT PROJECT MINFILE No. if applicable
Location of Project Area NTS 104 J/4E Lat 58°12' Long 131°36'
Description of Location and Access In valley of Hackett River, Sheslay Area, north of
Telegraph Creek, Atlin M.D. Access: by road to Dease Lake; by float
plane to Hatchau Lake - 95 km.
Main Commodities Searched For _ gold, copper
J 11
Known Mineral Occurrences in Project Area Hoey showings- gold with hematite pyrite in
sheared basic volcanic rocks. Gossan Greek area - carbonate alteration
in brecciated, strongly fractured tuffs
WORK PERFORMED
1. Conventional Prospecting (area) 5 sq: Kms in two areas, plus reconnaissance
2. Geological Mapping (hectares/scale) 12 hectores 1:2500 scale
3. Geochemical (type and no. of samples) 93 soils, Z stream seds, 14 talus fines. 33 rock clip
4. Geophysical (type and line km)
5. Physical Work (type and amount) trenching - re-opened old cuts, extended zones - 25m.
6,. Drilling (no,. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS
Commodities <u>gold</u> , <u>copper</u> Claim Name <u>Hat 3</u> , Hat 4, (also Bob 1
Location (show on map) Lat $58^{\circ}/2$ Long $/3/^{\circ}36'$ Elevation $2000 - 2400 f$
Best assay/sample type BIIO ppb gold, 3559 ppm copper 2005 HOCM with - chip

outcrop sidemil. sample from_ trenched ٥٨ Description of mineralization, host rocks, anomalies At Hoen Showings 901 Conper soecularite calcareous hzue heen 1. H sruot azbbrok faulting n 1 < 5 ceous

Creet iron a v rregular sta arenita Po shearca purite. Gold and cobatt are to be present known الن م <u>opyrite</u> bre.ccuz <u>cement</u> from analyses.

Supporting data must be submitted with this TECHNICAL REPORT

CONTENTS

, . .

-

.

. .

ļ

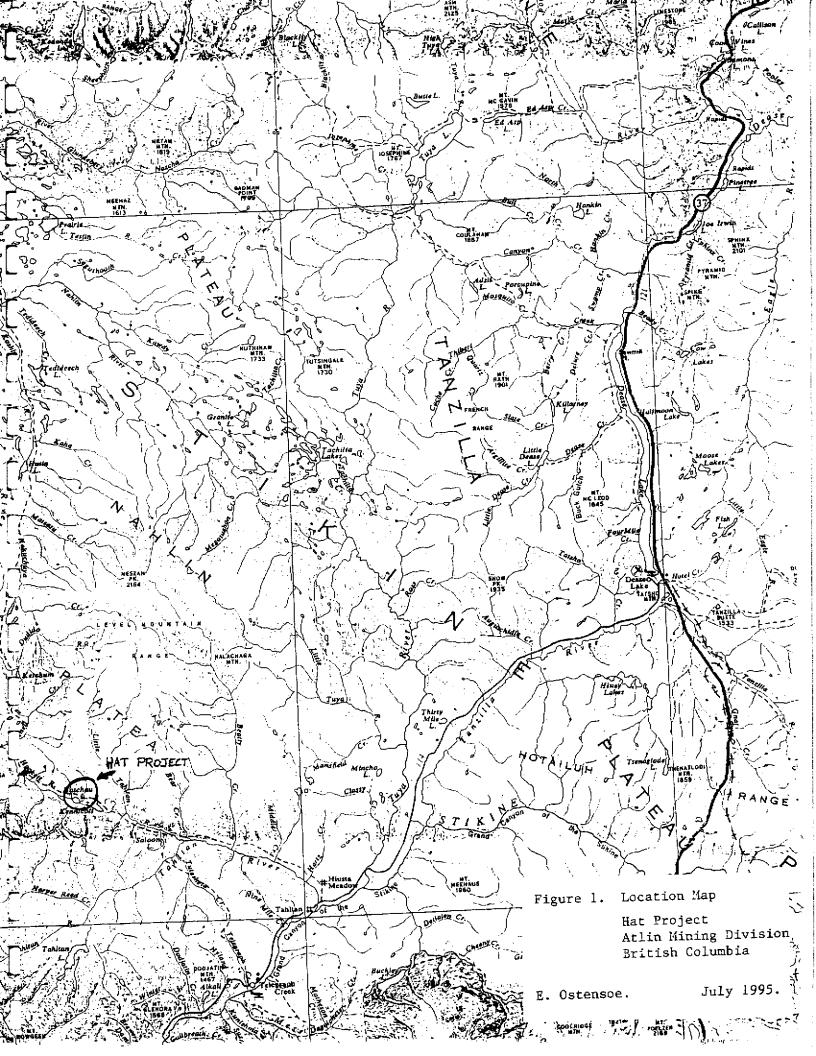
	page
0.0 SUMMARY AND RECOMMENDATIONS	1
1.0 INTRODUCTION	1
1.1 Introduction	1
1.2 Location and Access	2
1.3 Property	2
1.4 History	2
2.0 GEOLOGY OF THE HATCHAU LAKE AREA	3
2.1 Introduction	3
2.2 Geology	4
2.3 Magnetics and VLF-EM Data	5
3.0 1995 WORK PROGRAM	5
3.1 Introduction	5
3.2 Field Work	5
3.3 Work in "Gossan" Creek Area	6
3.4 Work in Hoey Showings Area	8
4.0 DISCUSSION OF DATA OBTAINED FROM 1995 WORK	9
TABULATIONS	
Table 1 - Claims - Hat Project	2
APPENDICES	follow page 9
Appendix 1 - Geochemical Data Sheets	TOHOW page >
Appendix 2 - Certificates of Analysis	
Appendix 3 - Statements of Qualifications	
Appendix 4 - Statements of Expenditures	
HILLIGTD ATTONS	
ILLUSTRATIONS	
Figure 1 - Location Map	follows p. 2
Figure 2 - Claims and Locations of Work	follows p. 2
Figure 3 - Geology - Gossan Creek. Scale 1:2500	in pocket
Figure 4 - Geochemistry - Gossan Creek. Scale 1:2500	in pocket
Figure 5 - Sampling - Hoey Area. Scale 1:2500	in pocket
Figure 6 - Belt Chain and Compass Traverse - Hoey Area	follows p. 8
Figure 7 - Sketch of Talus Fines Sampling - "Big" Creek Area	follows p. 8

0.0 SUMMARY AND RECOMMENDATIONS

Erik Ostensoe and Thomas E. Lisle completed a program of prospecting, mapping and sampling at Hatchau Lake, north of Telegraph Creek, B. C., during July, 1995. Strong hydrothermal alteration in a major fracture zone was investigated at "Gossan" Creek and fracture controlled gold-sulphide mineralization was sampled at "Hoey" Creek.

Gossan Creek is believed to represent a high level alteration suite imposed on sheared and brecciated arenaceous rocks that may be situated on the flanks of a stratovolcano. Substantial gold and copper values were obtained from the Hoey Creek area where gabbroic rocks are fractured and sheared. Other mineralized areas were examined in less detail.

Further work in the Hatchau Lake area is strongly recommended. The broad zone of alteration at Gossan Creek should be further mapped and sampled. Mineralogical studies should be completed in order to determine if the zone represents a weakly mineralized capping overlying a classic epithermal environment that may host a bonanza-type gold deposit. The Hoey mineral zones should be mapped, possibly using plane-table methods, to determine if mineralization is epithermal or volcanogenic in origin. The remainder of the Hat and Cap claims should be mapped in reconnaissance fashion with particular efforts directed to a search for evidence of porphyry copper deposit type environments.


1.0 INTRODUCTION

1.1 Introduction

A program of prospecting, geological mapping, soil sampling and rock chip sampling was completed on the Hat property at Hatchau Lake, north of Telegraph Creek, B. C. in the period July 9 - July 29, 1995. Work was done by Mssrs. Erik Ostensoe, P. Geo. and T. E. Lisle, P. Eng., geologists, with partial but substantial financial assistance provided by the Prospectors Assistance Program of the Ministry of Energy, Mines and Petroleum Resources, reference no. 95-96-P067.

Work was done under terms of Section 10, Mines Act, and Approval No. SM 1-95-0101459-147 (letter - Darryl Hanson, P. Eng., Inspector of Mines).

This report summarizes the 1995 work program. A discussion of the project is presented and further work is recommended.

1.2 Location and Access

The Hat Project is located in Atlin M. D. at Hatchau Lake, 40 km north of Telegraph Creek and 95 km southwest of Dease Lake, British Columbia (Figure 1).

Access to the project in 1995 was by float-equipped Otter aircraft from Dease Lake. The road that connects the Dease Lake-Telegraph Creek road to the Golden Bear mine passes about eight kilometres south of the property and may in future facilitate work in the area.

1.3 Property

The Hat Project comprises 59 claim units in four four-post and two two-post claims as detailed in Table 1 and illustrated in Figure 2.

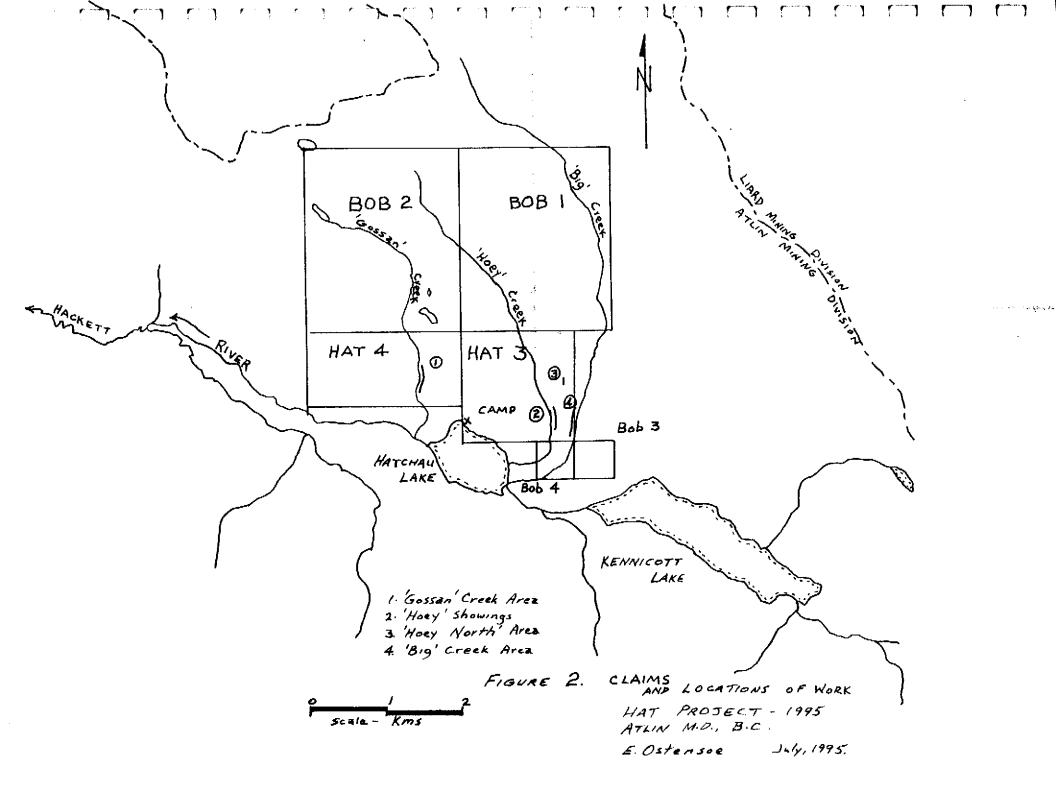

Claim	Record No.	Size	Units	Owner	Expiry Date
Bob 1	338097	5 X 4	20	E. Ostensoe	July 12, 1996
Bob 2	338096	5 X 4	20	T. E. Lisle	July 12, 1996
Bob 3	338098	2 post	1	T. E. Lisle	July 25, 1996
Bob 4	338099	2 post	1	E. Ostensoe	July 25, 1996
Hat 3	326685	3 X 3	9	T. E. Lisie	June 12, 1996
Hat 4	326782	2 X 4	8	E. Ostensoe	June 12, 1996

TABLE 1. Claims - Hat Project

1.4 History

The gossaned carbonate alteration zones prominently displayed along the hillsides north of the Kennicott - Hatchau Lake and Hackett River valley undoubtedly have attracted the attention of prospectors since the earliest explorations of the area. The Hoey showings may have been discovered in 1963 by Frank Hoey, a prospector from eastern Canada with financing provided by a syndicate of mining companies.

Atled Resources Ltd., Colorado Corporation (a unit of King Resources), Newconnex Canadian Exploration Ltd., and United Cambridge Resources Ltd., a VSE junior company, variously carried out work on porphyry copper prospects near the west end on the valley in the period 1968 to 1988. Utah Mines Ltd. explored claims (Ski 1 - 6 claims) in the immediate Hat Project

And the second second

area in the period 1977 through 1980 (MEMPR assessment report 6835), established an 144 kilometre line grid, conducted induced polarization and magnetic surveys, bulldozer trenching, and analysed almost 2000 soil samples for copper. More recent work in the area known to the writer includes airborne magnetic and VLF-EM surveys by United Cambridge Mines Limited in the Hatchau Lake area during 1987 and regional scale airborne surveys in the Hackett River valley directed by Golden Ring Resources Ltd. during 1991 (MEMPR assessment report 22100).

2.0 GEOLOGY OF THE HATCHAU LAKE AREA

2.1 Introduction

The Hatchau Lake area is located at the southwest edge of the Nahlin Plateau, a sub-division of the Stikine Plateau in the Intermontane Belt of northwestern British Columbia, immediately east of the Coast Mountains. It is south of Level Mountain, a Plio-Pleistocene plateau volcano, and north and west of the Grand Canyon of Stikine River. Elevations vary from 625 to 1200 metres above sea level. Streams flow westerly via Hackett River into Sheslay River, a tributary of the Taku River system.

Prevailing structural trends are those of the Cordillera - northwest with strong northerly disruptions. Dominant lithologies are pre-Triassic age Cache Creek formation sedimentary rocks and Late Triassic-Early Jurassic age Stuhini Group volcaniclastic rocks. Granitic intrusive rocks, including the Kaketsa stock ten kilometres west of Hatchau Lake, have been dated as Late Triassic age.

Stuhini Group rocks are related to Takla and Nicola Group formations that are extensive in British Columbia and that are hosts to most of Canada's porphyry copper deposits. Low grade copper deposits have been explored in the vicinity of the Kaketsa stock, at Dick Creek and at Copper Creek in the Sheslay area and, in the Hat Project area, north of Hatchau Lake. Gold occurrences include the Wolverine deposit that has been explored at Kilometre 44, eight kms south of Hatchau Lake, and at Hoey, north of that lake. Large brightly coloured carbonate altered zones that occur along the east-west valley of Hackett River appear to be related to north-trending structural zones. Superficial Quaternary gravel and clay deposits present along the north side of the valley occasionally exhibit depths in excess of three metres.

2.2 Geology

No systematic geological mapping was undertaken as part of the 1995 program of work and the following observations are in large part based on previously recorded information, in particular the work of Utah Mines Ltd. (MEMPR assessment reports 6835, 7482).

The Hat Project area lies at the south edge of the Plio-Pleistocene age Level Mountain volcano. Massive dark grey to black basaltic flows from that source are present in the northern parts of the claims. The principal Stuhini Group rocks are porphyritic augite andesites, with basalt, chert, siltstone and tuffaceous sedimentary members. Alteration in many variations is widespread, comprising pyritization, chloritization, argillization, and, to a limited extent, potash feldspathization. Monzonitic intrusive rocks are present in the uplands immediately north of Hatchau Lake where they were excavated in bulldozer trenches and in small outcroppings near the point of emergence of Hoey Creek into the Hatchau Lake valley. Small amounts of disseminated magnetite, pyrite and chalcopyrite accompany the intrusions.

Carbonate altered rocks exposed in "Gossan" Creek northwest of Hatchau Lake are strongly fractured sedimentary units, principally tuffs, siltstone, claystone and probably rocks of primary carbonate origin.

A broad north-striking fault zone occupies the deeply incised valley of "Gossan" Creek where it is exposed throughout over a distance of one kilometre, weakening and disappearing at the canyon headwall near where the transition from sedimentary terrain to igneous rocks occurs.

Air photographs that cover the Hatchau Lake area show strong linear features: both northwesterly, conforming in a general way not only to the principal drainage direction but also to Cordilleran trends, and northerly, approximating the trends of the Shesley River- Dudidontu River valley, a few kilometres to the west, and Beatty Creek to the east. Relating such structures to the fundamental fractures that support the major volcanoes in the regional is an intriguing but wholly speculative exercise. Similarly speculative is the concept that the area of work is one the flank of a broad stratovolcano that has existed through considerable geologic time and that now forms the platform on which the Level Mountain volcano has been built.

The Wolverine gold prospect, located eight kilometers south of the Hat project, and explored by Homestake in 1989-91, is located in proximity to a north striking lineament that, if projected, would pass through the project area and, incidentally, into the heart of Level Mountain.

2.3 Magnetics and VLF-EM Data

The airborne magnetometer and VLF-EM survey of the Moon claims, predecessors of the Hat project claims, in 1987 confirmed that the southern portion of the claims is mainly sedimentary whereas the northern portion is mainly volcanic in character (Mark and Cruikshank, 1987). The geophysicists, on the basis of magnetic patterns, postulated that a large gabbroic-diorite stock is present in the northwest quadrant of the project area. They also postulated from VLF-EM data, the presence in the same general area of a sulphide-bearing shear zone with strike direction (northerly) similar to that of the "Gossan" Creek shear zone. However, the locations of neither the latter nor the Hoey zone were obvious from their data.

3.0 1995 WORK PROGRAM

3.1 Introduction

Erik Ostensoe, P. Geo. and T. E. Lisle, P. Eng., in spring, 1995, applied to the Prospectors Assistance Program for funding in support of a proposed program of prospecting work on the Hat Property. The application was successful and work was undertaken in the period July 9 - July 29, 1995. The prospectors were visited in the field on July 25 by P. J. Wojdak, P. Eng., district geologist, Ministry of Energy, Mines and Petroleum Resources.

Work included prospecting and reconnaissance on the "Gossan" Creek and Hoey showings, geochemical sampling and rock chip sampling. Crude survey grids and traverses were established by belt-chain and compass methods. One hundred and twenty-four samples were taken and subsequently were analysed by induced coupled plasma methods for 30 elements and by graphite furnace/atomic absorption for gold. Eighteen soil samples taken between 10 W and 19W on line 8+00 North were not analysed but are in storage for possible future analysis.

3.2 Field Work

.

Mssrs. Ostensoe and Lisle travelled to Dease Lake, B.C. by vehicle (1795 km) and thence to Hatchau Lake by chartered aircraft operated by BC Yukon Air Service. A tent camp was set up on the shore of the lake. The constant and annoying attention of a black bear necessitated innovative methods to protect the food supply but even so the sleeping tent was slashed and almost totally destroyed. Work (Figure 2) was divided between the "Gossan" Creek zone where the brightly orange-coloured canyon walls highlight a zone of intense shearing and accompanying carbonate alteration and the Hoey showings where a zone of gold-bearing sulphide mineralization has been shredded by a complex of fractures. Some secondary areas of interest were also checked. The prospectors left the field site on July 27, 1995.

A grid of soil samples was established across the canyon of "Gossan" Creek and, following prospecting, several of the mineral zones were chip sampled (Figures 3 and 4). Old trenches at the Hoey site were refreshed, enlarged, mapped and sampled in detail and adjacent areas were prospected (Figures 5 and 6). Two nearby, possibly related, mineralized areas were investigated: a bulldozer trench about 500 metres north of Hoey, and the lower canyon of "Big" Creek, the stream that enters Kennicott Lake-Hatchau Lake valley immediately east of Hoey (Figure 7).

Rock chip samples were placed in plastic bags which were identified by numbered paper tags. Soil samples were taken from 'B' and 'C' horizon soils and placed in standard kraft paper envelopes identified by marker pen notations. Sample details were recorded on prepared data sheets (Appendix 1). Certain samples from non-critical areas were not analysed: due in part to financial limitations but also pending receipt of other, presumed more pertinent, analytical data.

Thirty-three rock chip samples, 75 soil samples, 2 stream sediment samples, and 14 talus fines samples were submitted to Acme Analytical Laboratories Ltd. 0.5 gram samples of dried soil or crushed rock materials were digested in hot aqua regia and analysed for 30 elements by standard ICP-ES (induced coupled plasma emission spectrometry) methods. Gold determinations were performed on 10 gram samples with aqua regia digestion, MIBK extraction and graphite furnace atomic absorption analysis. Gold detection limit by this method is 2 ppb.

Geochemical analysis certificates are included in Appendix 2 of this report.

3.3 WORK IN "GOSSAN" CREEK AREA

Eighteen man-days were devoted to work in the "Gossan" Creek area. A series of east-west grid lines were extended across parts of the canyon and where terrain and conditions permitted, soil samples were taken at 50 metre intervals (Figures 3 and 4). Line 8+00S was extended westerly to 19+00W where it was ended close to Hackett River. Soil samples from 10+00 W to 19+00W on Line 8+00S were not analysed, and, pending further financing, remain in storage.

"Gossan" Creek flows southerly in a steep, narrow canyon into the Hackett River valley where it disperses into the gravel beds. The canyon is developed in a series of bedded rocks, mostly tuffs, that are strongly sheared. Intense silica and carbonate alteration accompanies mylonitized and gougy strands of a broad fault zone and several areas of carbonate-cemented

breccia were noted. Similar brightly coloured altered and brecciated rocks were found along the hillside for a distance of one kilometre west of the canyon. Rocks to the north in the canyon are more competent and are somewhat less intensely faulted, perhaps in response to proximity to the transition that is believed to exist northerly from sedimentary rocks into primarily volcanic and intrusive rocks that underlie the upland terrain.

Dominant rock types are andesite, which is present as bedded tuff and as more massive beds, possibly flows, and various sedimentary rocks. Finely banded tuffs and narrow layers of chert are indicative of a sedimentary environment and the abundance of calcareous alteration minerals suggest that limestones or limey sediments may have been present but were absorbed and re-distributed by faulting and shearing.

Small amounts of monzonite are present in the upper part of "Gossan" Creek canyon and large areas of flatter ground to the north are known to be of similar intrusive character. It is speculated that the small occurrences found in the canyon are slices caught up in the faulting. The outcroppings of intrusives were altered approximately to the same degree as were nearby bedded rocks.

Figure 3 illustrates several zones of shearing and faulting, the most dominant directions of which are northwest and northeast. A gently northwest dipping, northeast striking, zone of shearing in the vicinity of 3+50S/7+75W is consistent with gold and copper geochemical patterns that are suggestive of the presence of layered structures that have been disrupted by steeper angled north-trending faulting.

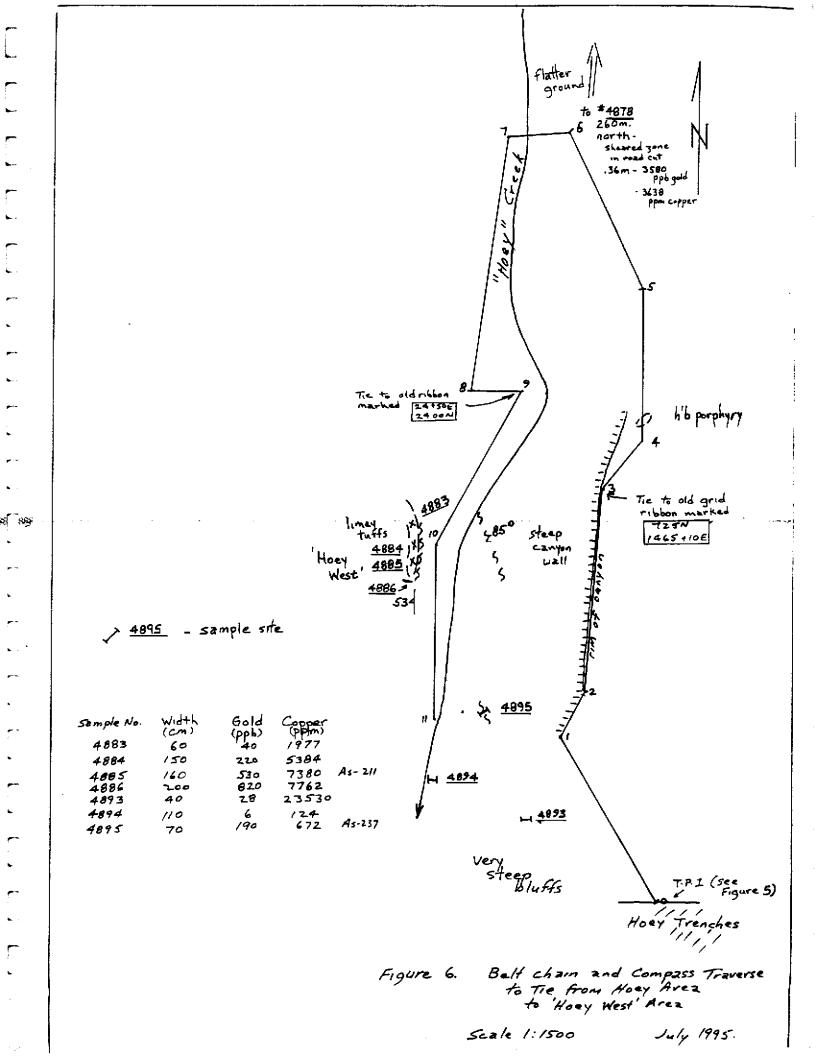
Figure 4 illustrates partial geochemical data from the "Gossan" Creek area. Only gold and copper values are shown and other analyses are available from geochemical certificates included in Appendix 2 of this report. Further study of the analyses is required, with particular attention to data for cobalt, arsenic, and zinc. Manganese is present in significant amounts.

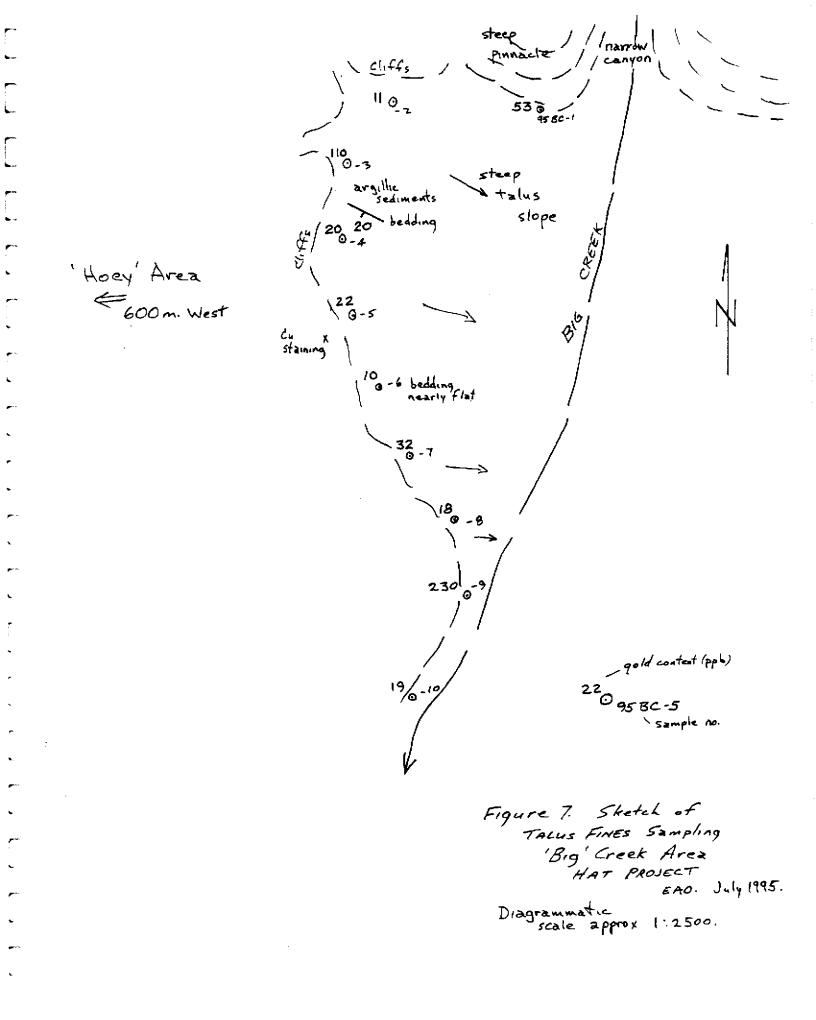
Eight rock chip samples from "Gossan" Creek canyon area were analysed for 30 elements plus gold. Locations of samples are plotted on Figure 3 and sample numbers have been underlined. Rock analyses returned low gold and copper values.

A compilation of all available data from previous work in the Hatchau Lake area is in progress but to date no conclusions regarding the potential of the "Gossan" Creek area have been reached. The strong overprinting of ferruginous carbonate and argillic alteration is similar to that found in acid sulphate clay-silica cappings in the upper levels of epithermal systems, as described by Panteleyev (in Ore Deposit Models, Geoscience Canada, 1988) and by Buchanan (presentation, 1980 Geoscience Forum, Whitehorse). Substantial gold deposits may be expected to occur at shallow depths below such environments.

3.4 WORK IN HOEY SHOWINGS AREA

Fourteen man-days were directed to work in the vicinity of the "Hoey" showings. This area is located along the east side of a steep-walled canyon formed by the incision of Hoey Creek into the south-facing slope of the Hatchau Lake-Kennicott Lake valley.


First known work in this area is believed to have been done in 1963. Several small follow-up programs of work are evidenced by several small hand-dug trenches developed on mineralized structures in strongly fractured dark rocks of volcanic origin. The mineralized structures are narrow layers of deeply oxidized specular hematite, pyrite, and minor chalcopyrite. Secondary minerals are present to the depth of the trenches.


Work in 1995 included refreshing, deepening and extending the old trenches and new digging on other nearby showings. A simple belt-chain and compass survey was established over the mineralized area as a basis for taking chip samples from the various strands of metallic minerals (Figure 5). Twelve chip samples were submitted for analyses.

A belt-chain and compass traverse from the north end of the trenched area followed the east rim of the canyon, crossed the creek to the west side and then ran southerly (Figure 6). The purpose was to provide a crude means of relating samples from the "Hoey West" area to the main area. Four chip samples were taken from a prominent carbonate bluff located close to the creek bottom. Three additional samples were taken from narrow strands of mineralization located on the lower east side of the canyon. Sample no. 4878 was taken from a shear zone exposed in an old roadcut situated about 260 metres north of the north end of the traverse ("Hoey North"). Figure 7 illustrates a line of talus fines samples that were taken from the west side of "Big" Creek. Big Creek occupies a valley located about 600 metres east of the Hoey area.

Samples at the main Hoey area were taken from nine different strands of mineralization, all of which had similar characteristics but the degree of shearing and oxidation varied considerably. Gold analyses varied from 220 to 8110 ppb and copper values, from 779 to 22041 ppm. The carbonate bluff west of Hoey Creek ("Hoey West") returned lower gold and copper values than did the main area, from 40 to 820 ppb gold, and 1977 to 7762 ppm copper. The "Hoey North" sample returned 3580 ppb gold and 3638 ppm copper. Talus fines samples from "Big Creek", east of Hoey, contain background to anomalous amounts of gold but the number of samples is probably insufficient to be more than marginally indicative of mineral potential in the area.

Sampling in the Hoey area has revealed strongly anomalous gold and copper values over moderate to narrow widths and distributed from the rim of the canyon to creek level, a vertical separation of about 100 metres. Rocks that host the mineral zones are andesitic to gabbroic in composition and are both sheared and oxidized. Dominant structures trend northerly to

northeasterly and dip steeply to the east. Interpretation of results is speculative due to the difficulties of mapping structures that are disrupted by fractures and to the possible distortions of values that may be introduced by oxidation.

Further work is required to help determine if worthwhile amounts of precious metals are present.

4.0 DISCUSSION OF DATA OBTAINED FROM 1995 WORK

Work in the Hat Project area during 1995 confirmed the presence of strongly altered and fractured bedded rocks in an area that extends from west of Gossan Creek to Big Creek (informal names) on the Hat 3 and 4 claims. Substantial gold and copper values were returned from various samples that were analysed.

It is postulated that at Gossan Creek a high level epithermal system has introduced carbonate and metallic minerals into epiclastic rocks (Stuhini Group). This model implies fracturing and brecciation followed by argillic alteration with development of colloform banding, crustification structures, and cementation of the breccia and introduction of fine grained metallic minerals, including chalcopyrite, pyrite, and tetrahedrite.

At Gossan Creek the wide zone of intense shearing/faulting has been excavated by stream erosion, exposing weakly mineralized bedded rocks, apparently tuffs and arenites. Soil and rock chip sampling indicate that this area may be fitted into the upper level of an hypogene environment. Bonanza type gold deposits often are present at shallow depths below such zones.

The Hoey mineral zone is a complex of gougy fractures developed in mafic volcanic rocks. Specular hematite and fine to coarse grained sulphide minerals are present in fragments of narrow bands that may be either flow top structures or sheared zones. Gangue minerals are only sparcely present, comprising sparry calcite and patchy quartz. Some of the hand-dug trenches did not extend beneath the surface oxidation effects.

Hoey mineralization is characterized by a substantial gold content and the presence of massive, gabbroic host rocks. The controlling fracture system is narrower than that found at Gossan Creek and the rocks do not show evidence of alteration by magmatic hydrothermal fluids. Further exploration should include drilling in search of stronger, less disjointed mineral bands.

APPENDIX I.

Geochemical Data Sheets

_

b....

ь.

-

.

-

•

-

•

•

с 1

, .

ר ר ר

•

.

.

۰.

5

	 	LOCATION	NTS UTM GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock Remarks
1		8+202	8 t oo w	Soul Rock	.25	C	Yellow+	Regidual Sol Collavia	/5		15	20		
(2			•	Rock										see notebook
3		8+005	8toow	٢	. 4	ຊ	DK	Ċo	10	5	25	30	30	on slope to Cr. (50n E)
4			8+50W	5	. 4	ß	DK	60		5	20	40	35	almost flat aspen
5			9+00W	5	0.55	в	med	60			25	50	25	1, 1, F 1,27
8			9+50W	5	0.35	B	med br			5	20	40	35	VOCKY Soil
7			10+001NJ	5	0.35	B	dk br			5	20	60	15	Fine soil V
8		• • • • • • • • • • • • • • • • • • •	10 + 50W	5	0.25	В	br		15	5	20	30	20	Gravelly soil + vocks
9			(1+00W	٤	0.A5	B	med	501	10	5	20	50	15	Good Edge of soil, store wto CV.
10			11+500	\$	0.4	B	br	Soil	15	5	15	50	15	Good Soil. Gentle Slope to SW.

 $\left(\right)$

DEPTH; Measured in meters.

1

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

.

PROJECT : HAT DATE : July 13,1995 Sampler ; E.A.O.

(

b

]

		UTM GRID												
	 NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1	L 8+005	12+00W	Soil	0.4	?	Brown	Graveli	25%	10	25	25	35		stream ked material
2	 	12-150W	5	0.25	7	Brown	fine gravel	20	10	5	40	25		E slope of stream
3		13+00W	5	0.25	B ?	Brown	Fluvial	15	5	10	50	20		Sidehill slope 2505 Traction mat 1. Fair to go
		13+50W	5	0.35	B	Med	Soil	0	5+	10	45	40		Sidehill, Good Soil nied to lk brown
5		14+000	5	0,4	ß	med br	Soil	0	5	15	4.5	35	_	
6		14+50W	R	0.25	Rock	Yellow brown	Collevia brokenb	edrock					V. T. gr V. s.l.	No soils - just organic layer and rx frag
7		15400 W	۶	0.4	В	DK br	Soil	0	5	15	50	30		Good Soil. 20° slope to south. Agrens.
8		15+50W	ন	0,35	B	DK br	soil	(2)	5	15	45	35		4 spens.
9		16+00W	S	0.4	B	yellow by	5011	20	5	20	30	25	l'imonite 51. tuff	Rocky
10		16+50W	S	0.4	В	Yellow to med	Gravely Soil	20	5	15	35	25		Rocky

r

(乞)

64.

DEPTH; Measured in meters.

ſ

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alkuvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments. CLAY-SILT-SAND. Low to moderate to high estimates.

7

			LOCATION	NTS UTM GRID					-				•				
	 		NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks	
1			L8+005	17+00W!	Soil	0.4	B	Reddish brown	Soil	2	5	15		20		Flat. Aspens.	
2				17+50W	5	0.4	B	Yellow brown	Soil	20		20	30	30	Por phyry	Slope 25°5.	
3				18+000	کر	0.4	LWT	choe br.	Soil Minor C	。 10	15	15	20	30		el	
4				18+ 50W	5	0,3	B	Med b.	Soil+ Halus	20	5	10	25	40	DK. porphyry	Telegraph Trail at Telegraph Trail at The pursele of p Thury yellow/orange lim Stained boxed with pyrite, mail co	Ā
5				19+00W	ک	0.2	?	Yellow br	Soil+ detritus	25	. 5	5	3.5	30	Calcid Silic Pr	Tply y vellow/orange lin	ante
6					Hackett R.	1 15	2 bout	80m 5	and 31	Pm lower	in elevin.					with printe mal ch	rmn
7																1 2 201 4	1
8																	
9																	
10																	

1

1

(3)

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic.

ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

			LOCATION	NTS UTM GRID		-							·			
		 	NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			10+005	5+00W/	5	.3	LVVR A	choc br	Soul Co	10	5	10	50	25	Unk.	25° slope South Soil + talus.
2				5+50W	S	ک،	Linna A	chor br	5011	5	15	10	50	20	Unk	Soil only. Poor
3				6+00W	٤	. 65	B	Green Carey	Till ? Alluv.	10	?	10	40	40	Unk	Surface interval is allowed conterval by areen sardy Soil. The is
•				6+5DW	Stream se	1.10	N/A	orange bläck	Alluv.	30	7	5	25	40		From active stream channel
5	_			7+00W	5	.35	В	BR.	Co.	30	5	10	30	25		Steep Slave to E. Rocky angular.
6	-		9+00,5	6+00W	٤	.40	B?	Lt br.	٢.	25	5	15	25			to Gossan Cr. Pror.
7				5+50W	5	.3	B?	DKbr	Co	25	5	ID	35	25		Side hill, Surface soil is dr. underlan by rocky talu
8			<u> </u>	5-+00W	\$. 3	B	DK br	C.	20	5	10	35	30		As above. Steep shipe to s. Poor soil develop.
9			8+505	5+00W	5	.3	B	DK br	Co	15	5	10	40		Bladed B TT	Better soil. Rocky talus.
10			8+005	5 4 00W	5	.3	B	lt yel' br	50	20	J,	10	35	35	5 1	Better soil - under dk br. soil Dyer.

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

HAT PROSECT July 14, 1995. EAO + TEL.

4.

. "

. .

			LOCATION	NTS									·			
		 	NORTH SOUTH	UTM GRID EAST (WEST)	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			8+005	5+500	2	.35	Lwr A		few v+	15	5	5		40	And.	Good soil but too rocky to reach good B.
2				6+00W	\$. 4	в	Yellow br	Soil + rock frac	s 20	7.	5	40	35		FAIR but rocky soil.
3				6+500	2	.45	B	1t br	Soil + VX frag	. 15		10	50	25		Uppermost B. on steep stone to 5.30.
4	_			7+00W	5	.35	ß	Vellow Vellow	Sandy Soil Allow		?	ς	35	50		Steep slope SW to Gossa CV.
5				* 7+43W	5	.25	ß	Yellow br	Sandy	20	v.low	r low	med	high		Taken The East of Creek Slough material off slope
6				7+50W	stream sed.			Orange Yellow	Silt + sand	20	-	1	40	40		Discard ? Spl of active channel of Gossin Cr.
7			7+505	5+00W	S	.4	B?	DK	Soil+	10	10	10	50	20		May be lower A. Not a good sample,
8			7+005	5+00W	5	.45	в	Red br	Soil +	15	10	10	35			Better Bample. Bocky: Under 'A'
9				5+50W	<u>ح</u>	. 4	B?	DK br	Soil	20	10	10	30	30	FS TT	FAIR SAMPLE
10				6+000	S	125	B	Recl	Rocky Soil	30	10	10	25	25		Angular rx frags.
+																LAT PROTECT

]

1

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

1 1

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light,

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

HAT PROJECT.

r 6) .

July 14195 EO+TEL

4

1

1

				LOCATION	NTS UTM												
_	 			NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1				L7+005	6+50W	5	.35	LWY	DK	5011 PEBBILES	15	10			25		Poor soil some red brown-B? Good soil:
2					7+00W	5	.3	В	Olive green prov		0	0	25	40	35	?	Good Soil. On slope to Gossan Cr. Limonite, tr. mal. in
3					7+41W	R			Yellow br.								Limonite, tr. mal. in sh. zone, Width Ishouel
4					7+50W	SOILS + Talus find	s·2	B	Br	Granular talus fines	45	5	15	20	15	π	Sh. zone, Width Ishovel Fine's From steep + 6 inch slope-does not include previou CR. at 7+70W. Sh. Zone
5				L6+505	5+00W	5	. 35	B(?)	Red brown	Soil + Angalar	5 frags	5	15	40	35		CR. at 7+70W. Sh. Zone Aspens. Mod. shope.
				16+005	5+004	S	. ٢	B	Yellow		5	<u> </u>	20	40	35		Aspens. Mod. slope. As above. Good Soil
7		_	_														
8																	
9																	
10																	
2	 									••••••••••••••••••••••••••••••••••••••					I	L	L'AT OKOT

DEPTH; Measured in meters.

1

ſ $\left(\begin{array}{c} \end{array} \right)$

.

!

HORIZON; Marked A, B, or C COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

EOTTEL

HAT PROSECT

. . . **...**.

. -

Ð

GEOCHEMICAL DATA

JULY	16	199	S
EAO	+	TE	L_

		LOCATIC	N	NTS UTM GRID												
r	 	 NORTH	south)	EAST (WEST)	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1		5→	5.5	5+00W	ح	.35	A/B	Aved		15	5	20	40	30		Fair
2		5-	5005	5700W	S	.5	B	Pale		25	0	20	30	25		Good - see below?
3			•	5+50W	5	.4	C	Red by	Bir	40	3	15	25	20		Broken vock
4			~	6-15711	5	,4	BZ	Ye'	f) (140.7	30	Berger 1	·",	35	15		Shoulder of Joil Goissin Cr.
5				6-1500	5.	.2	B	Vell Orang	· AII ?	20		20	35	25		Contra Strengther the
8		4-1	505	510000	ŝ	. 0	3	jræll br					\mathbb{S}	36		1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
7		. 4.	1-00 5	STOON	M	.4	R .	Yen Vor	2 Jay 501	15			-1 	-j0		S. a. Sylpton
8				5=+501,1	5	. 4	B	Med Br	9 F	1.5		25	40	20		Fair,
9				6-000	5	,4	ß	1/e []. 1.51-	SAID			5	30	60		Af sheating on state
10		,		64300	5	+1-3	Ľ	Nel an	411.11	λŋ.	* * * . . * .	15	30	50		An unterpresent

]

1

17

.

1

DEPTH; Measured in meters.

2.

HORIZON; Marked A, B, or C COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL; T Till; Co. Colluvium. A. Alkuvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

. .

			LOCATION	NTS UTM												
,	 		 NORTH SOUTH	GRID EAST WEST	Survey-type		and a second	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			A+075 4+06.25 4+12W	6+50W	Rockel	ک در	\mathcal{R}	Grand read						:	TF.	2 fe chip across flat ven Spl. of material on slope Similar to above
2			 4-1-06-25	6+88W±	Times	5		11	Sand Silt						Tuff	Spl. of material on 3/0 pe
3	_		4+ 12W	6+88 =	T. fines	5		U	117						Tuff	Similar ta aboue
4	_															
5	-															
6																
7																
8																
9																
10																

•

1-1/195 (8)

()

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

24

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

1

٦

<u>, ר</u>

T

GEOCHEMICAL DATA

1

					NTS UTM GRID		Denth		Ostaur	64 -4-4-1						.	
	-	T	П	NORTH SOUTH	EAST WEST)	Survey-type	Depth	Horlzon	Colour Vellow	Material CO+	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	
				L 3+505	Stook1	SOIL	0.5	B	brown	Soil	25		15	45	15		Good soil. Upperslope
				L 3+005	5+00W	5	0.4	B		C0+ Soil	2D		15	45	20		Ressilly till?
					5+20W	ک	0.4	B	Med. br.	Sandy Soil	15		20	40	25	١	Some rx. Possibly
					6+00W	5	0.9	B	1t br	Rocky ALLUV.	20		20	35	స్	- 1	In a drainage Deep'A' W
					6-50W	5	0.25	B	Ct-nied brown	Talus soil	20		20	40	20	T14	Better soil than expected
ŀ					6+64W	Str. Sed		-	Hived Yellow hi + dk br		40		5	20	35	(Hived material - lightle blors for nearby slides, dk from higher upstream. Not much silter
					7400W	S	.3	В	Yellow br-gr.	1.F.+ 501L	25		20	35	20	-	Colour Jone, Steep
					7+50W	S	.6	B	Vellow br.	SOIL GF?	10		35	35	20	-	5/0pe-likely in motion. Good soil Gentle slopes. No otp. Clayey.
					8+00w	\$.4	В	med br.	Soil GF?	15		35	35	15		Good foil.
					8+52W	5	.5	Lar A/ B	RK	Rocky	30 TF.		15	50	10		Rocky soil. Silic tuff is oto nearby.

1

1

1

-

DEPTH; Measured in meters.

...

ſ

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

НАТ Ргојест Јису 18.1995 EAO + TEL

			LOCATION	NTS UTM GRID									•			
		····	NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			L3+005	9+00W	5	.45	B	med br	Rocky Soil	25		25	35	15		Good soil. Aspen groves 1
2				9+50W	S	135	U	DK br	Rocky	20		25	40	15		Gopd. Possibly a lower A hovizon
3				10+00W	ک	.35		2k br	501/1y			50	40	JD		END OF LINE
4			L 3+505	10+000	S	,4	B	br	Rocky Soil	20		45	30	5		Stoney ground Dea-gravel+coarser
5			L 4+005	10+000	5	.35	ß	Yellow br	SOIL	20		30	30	20		Good but stoney
8				9+50W	٢	.3	B	Lt brown		25		10	45	20		Tuff + stubby fs grain T
7	_			9+006	5	. 3	ଷ	Reddich	C.	25		10	40	كىر		Turft + stubby fs grain TT Stoney ground - collingium, Approaching edge of leanyout - 8+80
8				8+50W	5	.55	B	Drown		15		20	40	25		FAIR SOIL of Canyou 1- 8+80
9	_			8+000	5	. 4	B	medye br.	soil	10		20	40	30		Allumal?
10				7+500	S	.35	в	Yellow Grown	Alluu	15		15	45	2:5		top of steep stope to creek - CO3/SiD2 Jone
DE	PTH;	Meas	red in meters.													EOL

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

HAT PROJECT July 18, 1995 EAO + TEL

0

1

1

٦.

				LOCATION	NTS UT m												
-	 			NORTH	GRID EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	Remarks
1			_	L 5t005	7+50W	5	.20	B	Yel br	Talus sp.	25		20	30	25	Tuff	on open slide
2		_			8+0010	5	.3	B?	DK br	GF? Stoney	20		20	35	25		Flatground. Poor?
3					8+50W	5	.35	B	Ye!	Deep	10		20	30	30		Flat. In a chamage
4					9+000	5	.4	B	med	Organic Over Soil	5		35	40	20		Flat. Wet. E.O.L
5			_														
6																	
7																	
9		_															
10																	

DEPTH; Measured in meters.

.

1

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light. MATERIAL; T Till; Co. Colluvium, A. Alluvium, F. Fluvial, GF. Glaciofluvial, O. Organic. ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments. CLAY-SILT-SAND. Low to moderate to high estimates. HAT PROJECT July 18,1995 EAO+TEL ר ר

 (Π)

			LOCATION	NTS UTM GRID									•			
		 	NORTH SOUTH	EAST WEST	Survey-type	Depth	Horizon	Colour	Material	% Gravel	% Organic	Clay	Slit	Sand	Bedrock	Remarks
1	_		6+005	8+00W	5	.3	B	yellow	T.F. + Gravel	50		10	25	15	Tuffs	Vistere slope to E May be stightly slumped.
2				8+50W	5	<u>،</u> \$5	A	DK brown	Soil	5	10	20	45	20		Flat. Deep soil.
3				9+00W	5	,5	B	Khaki brown	5011	5	5	35	35	20	/	11 11 11
				9+50W	5	.4	B	brown	7.11	5	5	40	35	15	-	11 " E.O.L.
5			6+505	9+50w	9	,35	B	Med brown	Soil	10	5	45	25	15	/	11 (1
8			7+005	9+500	5	.35	BA		Soul	10	5	40	30	15	-	Steep slope Swily.
7				9+00W	5	.25	В	SANdy Yellow br	soil+ Sand	15	5	25	30	25	-	Lige blars present. G.F. ?
				8+500	5	.5	0	red.yel	sandy	5	1	20	40	35		Approach present. CT.F. Approach p top of steept ly slope to Gosse W side Aralloy below 1
9			6+505	7+68W	Talus fines	-	-	Yellow brown	Talusfun + clay	^{es} 60		!5	20	5		Wride of vallay below coloured zone
10			L6+805	7+60W	Taky fines	-	-	Yellow brown	Tahis fines td	vt 65	0	10	20	5	Tuff	From E side of valley belows prominent bluffs

DEPTH; Measured in meters.

HORIZON; Marked A, B, or C

COLOUR: Br. Brown. Bl. Black. R. Red. G. Grey. O. Orange. Dk. Dark. Lt. Light. MATERIAL; T Till; Co. Colkuvium. A. Alkuvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates,

НАТ РКОЛЕСТ July 19,1995 Е АО + ТЕС (2

Talus fines

(3)

			LOCATION	NTO					-				•	-		-
	•		LOCATION	NTS Utm												
		 	NORTH SOUTH	GRID EAST WEST	Survey-type	Depth	Hortzon	Colour	Material	% Gravel	% Organic	Clay	Silt	Sand	Bedrock	
1			7-20-1		Talus fines	.20	''B ''	med brown	Angulas chaps+ soil	60		-	15	25	Tuffs	Taken 2 cross 7 m. width of light colouved colluvium
2			uly 26/95 4+005	7+00W	50.1	.25	в	L+ brown	Sandy soil	20	5	25	25	25	V.2172 tufig	Taken a cross 7 m. width of light coloured collumn 13 m. w of creek. Good spl. In still zone.
3			7-26-1		str. sed											, , , , , , , , , , , , , , , , , , , ,
4			Jul 27/93	A Big Cree	K)							·				
5		95	BC-1	1 - /	Takes fines			dk grey	t.f. seds							immediately workigh bluff 2t entrance to canyon elev. 2250 ft
ه_			-2_		r'			med brown	diorite - argillic seas							In basin 11 9 Stor 1
7			-3	50 m et 217° from-2	1.			She brown	argillic Seds							Fairly good fines. See noteboo, for same Fair spl.
8			-4	50 m x 184 from 3	47			black	arg Seds			·		······································		
9			- 5	50 m at 174° from 4	• 1			dK grey	sed,				• [:] .		235D'	Copper statued fist bed about, 20m. SW.
10			-6	50 m at 160 from, 5	4 ,			brown	seds						alt. 2260'	Flat bddg Fair sul
			t in meters.	······		•	•		ų,	1	I	ł	ı	I	· · · ·	,;

1.

1

11

27

.

1

1

HORIZON; Marked A, B, or C

.

5

COLOUR: Br. Brown, Bl. Black, R. Red. G. Grey, O. Orange, Dk. Dark, Lt. Light.

MATERIAL; T Till; Co. Colluvium. A. Alluvium. F. Fluvial. GF. Glaciofluvial. O. Organic. ORGANICS; Visual estimate of organic content.

5. . . .

144

1.0

111 ż 1. 1. 1

GRAVEL; Estimate of Gravel sized fragments.

CLAY-SILT-SAND. Low to moderate to high estimates.

							-				-					•			
					LOCATION	NTS													
						UTM													
						GRID													
						EAST WEST	Survey-type	Death	Madaaa	Calava	Material	% Gravel	% Organic	Class		Sand	Bedrock	Bamadra	
_					NORTH SOUTH			Depui				7 GIEVEL	7 Organic	Ciay	on	Jano	Dedrock	T	
						50m. at				hearly black				1				1	
		11			DERCH	158° from 6	the		l	Lbak	seds					i	00.001	Corre	talus fines
1	_	\square	_				rains the			6 10.0.1	• - • • •						12215	COATSE	· Rins Tines
	1	11			95868	50. +			i i										
1		11	- 1		Drang.	JUM. al				41	1 4								
2					45000	146°					ļ					i			
										1	1							1	
		11			00000	SOM. AT			1	black	seds						S. 4.1	11 . 1	Big Creek
t					95BC-9	1720				PIACK	1000						2090	beside	Big Creek
				-		1			1	1.	miked					[1	
		11	1		0000				1	1dk	Volcani	clastics		1		1		1	6 11
	1	11			1958C70	75m # 21	b°		1	dk grey	and may	t-		1			2050	1	
- Th		+-+		-	110-12	1	F		· · · · ·	10.1		Zensis							
				1						1 '		-							
							1				ļ			1 1		•			
•		+-+	-								+					<u> </u>			
- 1			- 1		1					1						1	1		
		11				1													
• L							ļ					ļ		l		ļ			
	1	1 1						1						i					
					1		•	1		1	1						1		
7					1		L.,			1		L					1	1	
									-									1	
																		1	
	1	1 1			1				i					1					
						1		1	T	1	T	1	[1		1	1	T	
					1	1				1							1	1	
		1						1	1	1	1	1		1			1	1	
1		+		+	t		1	i	1	+	1	1	1	1		t	1	1	
	1			1				1			1	1					1		
10		1		1	1	1	ļ		1		1	1	1				1	1	
10					L		.L.,	L	L		1	I	L		L		1		

1

Ţ

(14)

7

1

DEPTH; Measured in molers. HORIZON; Marked A, B, or C COLOUR: Br. Brown. BL Black. R. Red. G. Grey. O. Orange. Dk. Dark. Ll. Light. MATERIAL: T TB; Co. Colkuvium. A. Alkuvium. F. Fluviel, GF. Glaciofluvial. O. Organic, ORGANICS; Visual estimate of organic content. GRAVEL; Estimate of Gravel sized fragments. CLAY-SILT-SAND. Low to moderate to high estimates.

7

PROJECT .: HAT PROJECT CLAIM : HAT 3 DATES : July 27, 1995

4.

GEOCHEMICAL DATA

APPENDIX II.

.

-

1

.

-

.

F

.

_

.

e -

. . .

•

*

ь,

Ļ.

.

.

.

Geochemical Analysis Certificates

						E				43	06 We	st 3rd	d Ave	, Ve	ncouv	er B.(c. v6	r 1M7	4 / V	9	ra:	Je	L								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	fe	As	U mqq	Au	Th	Sr	Cd ppm	Sb	Bi	V		P	La ppm	Cr	Mg		Ti	B ppm	Al X	Na %	к %	W ppm	Au
L3+005 10+00W		137		129	.3				5.95	25	<5	<2	<2	24		3				.088	11	121	1.13		.17	7 3	5.01	.02	.25	<2	
L3+00S 9+50W		131 135	12	111 72	<.3	97 84			5.94 6.13	24 26	<5 <5	<2 -2	<2	26		<2				. 105			1.17		- 19	6 3	3.11	.02	.32	<2	
L3+005 8+50W		819		165		141			7.26	20 59	<5	<2 <2	<2 <2	25 55		2 <2				.079 .165			1.13		. 15	5 3	3.23	.02	.26	<2	1
L3+005 8+00W		648		87	.9				7.92	137	<5	<2	<2	46		2	<2	175	1.46	. 165			1.13 1.25		.12 .07	34	.58	.01 <.01	.34 .21	<2 <2	2 16
L3+005 7+50W		224	9	101	.4				8.11	25	<5	<2	2	32		4	<2	143	.96	.035	16	107	1.17	40	.13	8 2	2.78	.02	. 16	<2	1
L3+00S 7+00W	1	50 255	<3		<.3				2.41	13	7	<2	<2			4	<2	66	3.22	.105	5	129	1.45		<.01			.01	.04	<2	•
L3+00S 6+00W	-	225	3 10	43 48	.3 .3				5.74 6.21	16 19	7 <5	<2 -2	<2		<.2	5				.091			1.72		.07			.01		<2	
13+005 5+50W		104	6		<.3				5.76	21	<5	<2 <2	<2 2	36 29		2 <2				.115 .117	6 8	135 97	1.31		.06 .20				.09 .24	<2 <2	1
L3+005 5+00W		131	<3		<.3				5.68	22	<5	<2	<2	30	<.2	3	<2	129	.93	.091			1.18		. 18			.01	.23	<2	
13+505 10+00W		133	8		<.3				5.62	36	<5	<2	<2	29	<.2	<2	<2	130	.96	.091	11		1.10		.14		.13	.01	.23	<2	
L3+50S 5+00W L4+00S 10+00W		126 160	8 6		<.3 .3				6.08 5.85	19	<5 -5	<2	2			2	<2	133	.96	.150		112	1.69	68	.25	53	.43	.02	. 29	<2	1
L4+005 9+50W		264	9		.3 <.3		25	752	5.86	28 35	<5 6	<2 <2	2 2	27 36	<.2 .3	<2 2				.063 .096	11 17		1.08	48 29	.21 .23		.73		.26 .23	<2 <2	1
RE L4+005 9+50W		242	13		<.3				5.58	39	9	<2	2	35	<.2	<2	<2	104	1.12	.091	17	81	.90	28	.22						•
4+005 9+00W		914 575	5		.3				7.23	39	5	<2	2	31	<.2	4	<2	180	1.27	.139	20		1.47		.13		.32		.20	<2 <2	1
L4+005 8+00W		545 125	<3 6	68 35	<.3 .3				5.12	30 10	<5 7	<2 <2	<2 <2		<.2	2	3	113	1.57	.130	12	40	.68	43	.17	94	.15	.02	.45	2	6
L4+005 7+50W	i		ঁ		<.3		-		5.29	11	6	<2	<2 <2	55 49		2 <2	<2 <2			.090 .098	6 10	49 130			<.01 .03	4 5 1	.87 .25	.01 .01		<2 <2	
L4+005 7+00W		153	<3		<.3				5.79	20	6	<2	<2	44	<.2	<2	<2	95	5.19	.103	R	140	1.47	36	.02						
L4+005 6+50W		150	5			132			6.14	24	6	<2	<2	52	<.2	<2	<2	98	4.27	.125	7	135	1.33	34	.02	31			.12	<2 <2	1
L4+00S 6+00W		109 122	9 6		.4 <.3	150			9.86	17	5	<2	<2	18		<2	<2	117	1.19	.087	10	125	.54	34	.01	<3 1	.24		.08	<2	2
4+005 5+00W		168	8		<.3 <.3	89 114			5.67 6.83	19 31	<5 <5	<2 <2	<2 <2	34 32	.5 .7	2 2				.106 .122	12 12		1.17	83 75	.21 ,22			.02 .02		<2 <2	1 1
4+50s 5+00W		256	5		<.3	89	28	1005	6.18	21	<5	<2	<2	30	.2	<2				.058	10		.99		.16						-
5+005 9+00W		64	<3		<.3	30	47	300	4.84	69	<5	<2	<2	60	<.2	2	<2	93	1.18	.031	7	34	.71	25	. 16			.01 .01		<2 <2	
5+005 8+50W		120 113	7		<.3 <.3				5.93	24	<5	<2	<2	31	.8	2	<2	137	.86	.088	9	107	1.21	54	.17		.01	.01	.23	<2	
5+005 7+50W		1137	-3		1.6	93 86			6.10 8.64	18 19	<5 <5	<2 <2	<2 <2	25 79	1.2	4 3	<2 <2	123 137 1	.91 5.85	.119 .082			1.07		.14		.66	.01 .01	.29	<2 3	5
.5+00s 6+50w	5	748	40	387	2.9	89	100	1798	7.02	67	<5	~?	0	24	6.1	~?	,	OR 1	7 18	140	10	10	43	10	- 01	,				-	_
5+005 6+00W	1	148	8	96	.7	84	33	2305	7.41	20	<5	<2	<2	31	1.3	- 3	<2	105	1.62	.100	9	59	. 43	38	.01	4		.01 .01	.04 .08	<2 <2	2
.5+00\$ 5+50W .5+00\$ 5+00W		217 212		107	• 4	70	20	1020	0.13	23	<>	<2	<2	24	1.2	<2	<2	149	1.00	.131	17	95	.79		.13				.25	<2	1
5+50\$ 5+00W		108	3	107	<.3	112 110	32 27	1048	7.56 6.44	17 13	<5 <5	<2 <2	<2 2	25 21	.9 1.1	<2 2	<2 2	137 123	.86 .81	.077 .099			1.12		.18 .25	<33	-46 -09	.01	.24 .21	<2 <2	
TANDARD C/AU-S	19	63	36	124	7.1	74	· 31	1107	3.80	42	17	6	35			19				.092											
		ICP	50	0 GRA	M SAM	IPLE I	S DIG	ESTE	WITH	3ML (3-1-2	HCL-H	KN03-I	H20 A	T 95 I	DEG. (: FOR	ONE		AND IS							. 04	.00	. 10	9	4
		1413	LEAD	U 12	PAKII	AL FU	K MN	16 21	I CA P	LAC	RMGI	BATI	8 V J	AND L	IMITE AG >	DEDR	NA K	AND	A 1		, VIL	31CD	10 10	ML W	III W	AIER.					
		- \$A	MPLE	IYPE:	P1 T	O PJ	SOL	P4 S8	5/P5 T	F P6 '	TO P7	ROCK	1	al 1*	IGNI	SU PR TED, /	an & 1 Ngua-1	AU ≻ Regia,	1000. / N F15k	PP8 Extr <i>i</i>		GF/AA	FINIS	SHED.							
		samp	les D	eginn	ing '	<u>RE'a</u>	<u>re</u> Re	runs	and '	RRE'	are Ro	eject	Reru	ns,				2	[-										

ACHE AHALYTIGA

Erik Ostensoe PROJECT HAT FILE # 95-2709

Page 2

££

ACHE ANALYTICAL				<u></u>							· · · · · ·							·											ACI	IE ANALY	TICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	sь	8 i	V	Ċa	P	Le	Cr	Mg	Ba	Ti	₿	AL	Na	ĸ	W	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppn	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	7.	2	ppm	ppm	X	ppm	*	ppm	X	*	2	ppm	ppb
L6+00\$ 9+50W	<1	139	17	73	.5	119	31	955	6.14	22	<5	<2	<2	44	<.2	4	~2	151	1.00	037	12	141	1 5 8	63	. 18	4 7	5.23	.02	.37	<2	14
L6+00S 9+00W	1	85	13	135	.5	95		1010		23	<5	<2	<2	39	< 2	5	4	133		.096		118		87	.20	10 2		.02	.37	<2	11 5
L6+005 8+50W	<1		14	170	.5	103		1426		15	<5	<2	<2	30	<.2	<2	<2	138		. 140	11	124		116	.18		5.33	.02	.45	<2	7
L6+005 8+00W	1	351	্র	50	.3	64		1082		38	<5	<2	<2	58	<.2	3	<2	124	1.78	.095	15	46	.49	24	.02		2.21	.01	. 19	<2	23
L6+005 5+00W	<1	262	3	91	<.3	109	30	1214	6.39	12	<5	<2	<2	37	<.2	3	<2	140	1.01	.116	14	118	1.35	90	. 18	4 3	5.38	.02	.26	<2	11
L6+50S 9+50W	1	167	21	150	.5	130	32	1010	6.29	31	<5	<2	<2	35	<.2	3	0	141	96	. 129	13	131	1 43	96	. 18	87	5.13	.03	.35	<2	12
L6+50S 5+00W	<1	223	5	90	.3	88		1182		10	<5	<2	<2	32	.2	<2	<2	140		.115	11	107		86	.14		3.13 3.24		.39	~2	6
L7+00S 9+50W	<1	266	5	85	.3	65		1040		55	<5	<2	<2	42	<.2	2	<2	143	1.10		15	83	.95	63	.14		. 96		.50	<2	56
L7+005 9+00W	9		<3	54	<.3	34		1667		36	<5	<2	<2	36	.6	- 4		125	.85	.179	24	29	.35	95	.01		.28	.01	.13	<2	8
L7+005 8+50W	1	327	18	82	<.3	52	29	850	6.69	40	<5	<2	<2	33	.6	<2	<2	119	.95	.107	13	53	.72	46	.09	31	.61	.02	.13	<2	14
L7+00S 7+50W	3	1397	29	133	1.9	55	142	1686	B.81	41	<5	<2	<2	28	1.1	<2	<2	137	2.53	. 181	19	15	.75	20	.01	4 1	.68	.01	.09	<2	31
L7+00S 7+00W	<1	284	7	102	.3	105		1084		20	<5	<2	<2	62	.6	3	<2	137	1.28		12	107		85	.16		2.98	.02	.25	<2	12
L7+00S 6+50W	<1	211	4	119	<.3	66		821		2	<5	<2	<2	30	1.5	5		135		.114	13	85	.91	73	.11		5.36	.02	.30	<2	27
L7+00S 6+00W L7+00S 5+50W	<1 1		43	70 127	<.3 <.3	48 92		997 / 1140 /		7	<5	<2	<2		1.7	3		135		.096	10	42	.67	44	.06		2.46	.01	.22	<2	5
	'	190	L	121	×.>	72	21	1140	0,20	10	<5	<2	<2	31	1.6	5	<2	138	.84	.095	12	126	1.03	112	. 16	43	6.65	.02	.35	<2	4
L7+005 5+00W	<1	209	4	125	<.3	84		1051		16	<5	<2	2	31	1.9	3	2	139	1.02	. 136	11	102	1.05	109	. 13	93	.46	.02	.40	<2	6
L7+50S 5+00W	<1	123	<3	19	<.3	24		325		3	<5	<2	_	1204	.7	<2	2		19.03	. 099	2	12	.36	16	<.01		.77	.01	.05	<2	1
L8+00S 10+00W L8+00S 9+50W	<1 1	91 113	22 13	242 145	.3 .3	74		1166		16	<5	<2	<2	47	1.4	3		118	1.01		12	97	.98		.22		5.11	.03	.31	<2	13
L8+005 9+00W	<1		6	145	 <.3	75 91		968 1090 (37 7	<5 <5	<2 <2	<2 <2	32 33	1.4	2	<2	120		. 129	12	103	.95	126	.17		.90	.02	.30	<2	11
					· • •	~	Γ,	1090		•	~	16	~2	22	1.4	2	<2	126	.99	.135	11	110	1.24	143	.17	73	1.16	.02	.41	<2	4
L8+005 8+50W	<1	136	17	123	<.3	124		937		23	<5	<2	<2	37	1.5	3	<2	151	1.03	.076	11	145	1.49	75	.17	8 3	5.38	.02	.43	<2	3
L8+005 8+00W	1	232	17	105		124		1305		22	<5	<2	<2	51	1.7	4	<2	125	1.74			116	1.35	66	.09		.29		.21	<2	10
L8+00S 7+50W L8+00S 7+43W	1	263 400	5 16	51 71	.3 .6	52 46		1513		48	<5 - F	<2	<2		1.0	<2			2.44		14		.82	29	.01		. 19	.02	.08	<2	44
L8+00S 7+00W	1		12	67	.0	40 81		1965 1340 (13 11	<5 <5	<2 <2	2 <2	44 70	.3 .2	<2 2	<2 <2		2.98	· · · ·	18	20		23	.01			.01	.09	<2	30
				0.		0,	55	1340		••	.,	12	12	10	.2	2	*4	114	3.62	.112	13	39	1.38	73	.07	5 1	.79	.02	.12	<2	11
L8+005 6+50W	1	287	<3	65		121		997		22	<5	<2	<2		<.2	2	2		4.69	.105	13	81	1.75	56	.08	17 2	2.27	.02	.28	<2	7
L8+00S 6+00W L8+00S 5+50W	<1 <1	205 168	5	95 133		119		1124		17	<5	<2	<2	39	<.2	2	<2	160	1.09			122		97	.20			.02	.27	<2	28
L8+005 5+00W	<1	188	6	113	.3	122 201		1243 (1242 (14 26	<5 <5	<2	<2	36	<.2	<2	<2	150	1.03			134		140	.22				.49	<2	5
L8+50S 8+00W	1	792	3	46	.7	17		1730		69	<5	<2 <2	<2 <2	29 24	<.2 1.1	2 <2	<2 <2	149 84	.94	.098	12	172 5		65	.17		.29	.02	.38	<2	3
			_									•	~	F.4	111	~6	76	04	1.01	. [33	0	2	.77	20 -	s.Uł	<3	.66	.02	.04	<2	210
L8+50S 5+00W	<1	311	6	121	.3	86		1561		9	<5	<2	<2	44	.8	2			1.33		9		.95	88	.14	10 3	. 85	.01	.62	<2	3
L9+005 6+00W L9+005 5+50W		283 296	7	62	.6	574		1324		115	<5	<2	<2	117	.4	2	<2		3.82			381 (28	.16	6 2	2.75	.02	.06	<2	13
L9+005 5+00W		187	9 8	108 116	.4 .3	105 123		1292 1 1265 1		14	<5 -5	<2	<2	52	.5	2	3	137	1.42		10	108		110	.15		5.14		.41	<2	5
RE L7+005 8+50W		318	22	78	.4	52		821		10 42	<5 <5	<2 <2	<2 2	35 31	.5 1.0	2 <2	<2 <2	132		.122	11	136		141	.17		6.13		.55	<2	4
						22	20			46		16	-		1.0	~4	~2	110	.92	. 100	13	22	.70	45	,08	51	.55	.02	. 13	<2	26
STANDARD C/AU-S	18	60	36	122	6.9	69	31	1044	3.91	43	16	7	32	47	19.1	16	20	66	.50	.091	40	61	.89	175	.08	29 1	.86	.06	. 16	10	53
																											-				

Sample type: SOIL, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

££	
ACHE ARALYTICAL	

T

Erik Ostensoe PROJECT HAT FILE # 95-2709

Page 3

													······										<u> </u>							ACHE AN	ALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Čd	Sb	Bj	v	Са	Р	La	Cr	Ma	Ba	Τi	8	Δl	Na	ĸ	u	Au*
	ppm	ppm	ppm	PPm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppin	ppm	ppm	ppm	ppm	ppm	*	%	ppm	ppm		ррт	*	ppm	*	%	×		ppb
L10+005 7+00W	2	256	485	1017	1.8	789	102	1948	9.96	195	7	<2	4	57	4.1	<2	3	127	1.64	.087	5.	366	3 61	147	10	<3 :	z 20	02	22	<2	27
L10+00S 6+50W				114				1422	5.66	38	<5	<2	2	73	<.2	<2	<2	85 3				73				<3				~2	28
L10+005 6+00W				62				941		17	<5	<2	3	- 77	<.2	<2	<2	63 8	B.18	.099		113			.01		1.36			-	- 3
L10+005 5+50W			-	108								_	2	38	.4	<2	3	139 1	1.10	.084	9	90	1.15				2.43				6
L10+005 5+00W	<1	193	3	107	<.3	78	27	970	5.59	18	<5	<2	4	42	1.0	<2	4	128	.99	.064	9	98	1.14	91	.17		2.60			_	5
7-20-01	<1	133	<3	26	<.3	89	36	1457	4.99	12	<5	<2	4	106	<.2	<2	<2	109	7.84	.084	7	56	1.79	13	.04	<3	1.59	.01	. 14	≺2	6

Sample type: SOIL.

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W A ppm ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm	ACHE ANALYTICAL						/ e r	RUU	JEC1	: H/	ΥT.	FII	.Е#	95	-27	09					Pag	e 4		
	SAMPLE#			 		 	-			- •			Bi ppm	V mqq		P %	 	Mg X	 ŤΪ %	B ppm	Al %	Na %	К %	

Sample type: STREAM SED., Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns,

ACHE AMALYTICAL

÷

Erik Ostensoe PROJECT HAT FILE # 95-2709

														_																ACRE ANA	LALICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag PPM	Ni ppm	Со ррп	Mn. ppm	Fe V	As	U	Au	Th	\$r	Cd	Sb	Bi	۷	Ca V	P	La	n3	Mg	Ba	Ti	В	AL	Na	K	W	Au*
<u> </u>		p p m	PP**	PPm	PP	PPin	P.S.	PP		ppm	PPm	PPm	ppm	ppm	ppm	ppm	ppm	ppm	~	•	ppm	ppm	A	ppm	*	ppm	4			ppm	ppb
L4+055 6+88W	1	184	7	50	<.3	93	63	1468	5.42	19	<5	<2	4	74	<.2	<2	<2	88	4.29	.075	8	81	1.36	33	.03	<3	1.95	.01	.11	<2	54
L4+0625 6+88W	1	517	8	41	<.3	70	81	1348	6.26	55	<5	<2	3	84	<.2	<z< td=""><td><2</td><td>83</td><td>3.05</td><td>.107</td><td>7</td><td>31</td><td>.88</td><td>21</td><td>.01</td><td></td><td>1.52</td><td>01</td><td>.06</td><td><2</td><td>41</td></z<>	<2	83	3.05	.107	7	31	.88	21	.01		1.52	01	.06	<2	41
L6+50\$ 7+68W	1	456	34	86	.6	40	43	1212	5.24	92	<5	<2	2	34	<.2	<2	<2		1.73		10	23	.50		<.01	<3	.70	01	.04	<2	28
L6+80S 7+60W	1	543	34	111	.8	62	45	1676	5.62	16	<5	<2	3	41	.5	<2	<2		2.37		10	36	.65		<.01	_	1.09	.01	.04	<2	45
95-BC-1	1	679	5	35	<.3	47	71	846	7.13	43	<5	<2	3	71	< 2	<2	<2		2.42		1		2.71	27	. 18		2.56	.02	.44	<2	53
95-BC-2	3	510	5	74	<.3	93	72	1888	7.39	67	<5	<2	5	90	<.2	<2	<2	146	2.36	.074	13	78	2.13	31	. 15	<3 2	2.37	.02	.20	<2	11
95-BC-3	5	611	9	52	<.3	135	109	1646	7.59	172	<5	<2	7	158	<.2	<2	4	136	5.73	.064	13	66	1.59	19	.14		1.93	.02	.10	<2	110
95-BC-4	5	750	21	150	.8	172	139	2780	9.04	42	<5	<2	8	89	<.2	<2	3	183	3.88	.092	9		1.36	41	.15		2.01	.02	.08	<2	20
95-BC-5	4	481	9	87	<.3	- 77	67	1672	9.46	40	<5	<2	5	76	<.2	<2	2	175	2.39	.080	16		2.23	38	.19		2.54	.02	.38	<2	22
95-BC-6	1	733	3	87	<.3	58	95	3455	8.33	6	<5	<2	11	92	<.2	<2	3	170	2.84	.092	10		2.90	54	.10		2.89	.01	.06	<2	10
95-BC-7	3	407	12	93	<.3	106	87	1853	7.72	48	<5	<2	5	133	<.2	<2	3	171	2.44	.067	11	78	2.43	40	.17	<3 2	2.50	.02	.08	<2	32
RE 95 -8C-7	3	413	9	92	<.3	104	85	1858	7.61	56	<5	<2	5	132	<.2	<2	3	169	2.42	.067	11		2.40	40	.17		2.44	.02	.08	<2	8
95-BC-8	2	1167	9	68	<.3	51	51	1503	6.36	35	<5	<2	4	266	.5	<2	3	198	2.29	.106	5	52	2.08	50	.25		2.87	.02	.07	<2	18
95-8C-9	2	973	6	71	.5	61	62	1721	6.72	81	<5	<2	5	189	.2	<2	3	192	2.20	.090	10	-	2.03	39	.19		2.55	.02	.06	<2	230
95-BC-10	4	740	13	138	.3	84	89	2720	7.12	21	<5	<2	8	46	.3	<2	5	195	2.34	.088	8		1.79	63	.16		2.34	.02	.08	<2	19
STANDARD C/AU-S	19	60	37	121	7.1	70	32	1069	3.78	44	18	7	40	54	19.0	17	22	59	.49	.089	44	57	. 89	176	.08	26	1.61	.06	. 14	10	47

Sample type: TALUS FINES, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE AMALTYIGA

Erik Ostensoe PROJECT HAT FILE # 95-2709

Page 6

SAMPLE#	Mo ppm			Zn ppm	Ag ppm		Co ppm	Mn ppm	Fe گ	As ppm					Cd ppm		Bi ppani		Ca %		La ppm		-		Т{ Х			Na X	K X	W ppm	
	F F ***	FF1"	F F. #	1.1	F			f.L		FF					<u>cr</u>			• • • • •	<u> </u>		_ <u></u>			- -							
95E-1	2	171	<3	29	<.3	- 24	13	682	4.23	7	<5	<2	<2	53	.5				3.15										. 14	<2	10
95E-2	6	584	- 3	24	.3	6	32	355	5.33	10	<5	<2	<2	29	.3	<2	<2	78	1.61	. 195	11	2	.26	35	.08	11	1.54	.04	.11	<2	- 18
X 4871	1	22041	4	53	3.2	- 39	149	410	10.01	13	<5	<2	<2	21	1.8	3	<2 7	202	1.23	.152	8	31	1.84	17	.35	<3	2.44	.03	.38	22	2020
X 4872	5	4380	3	18	2.8	23	74	184	20.42	32	<5	6	<2	8	1.1	<2	<2	115	.29	.049	2	46	1.10	13	.17	-3	1.36	.03	.54	79 1	7130
X 4873	1	779	<3	16	<.3	24	61	293	5,65	4	<5	<2	<2	7	.4	2	<2	98	.72	.073	2	75	1.73	11	.22	4	1.77	.06	.48	2	220
X 4874	3	4089	3	32	1.6	29	79	315	17.76	18	<5	2	<2	6	1.1	<2	<2	144	.36	.045	2	66	1.54	11	. 19	3	2.01	.04	.25	59 6	-360
X 4875	1	8036	<3	63	1.0	- 48	109	464	10.71	10	<5	<2	<2	9	1.2	2	<2	145	.87	.063	3	94	2.46	10	.27	<3	2.75	.03	.29	13 2	2370
X 4876	1	5529	<3	33	.9	50	170	565	10.89	11	<5	<2	<2	11	.9	<2	<2	131	.59	.068									. 28	20 2	2050
X 4877	3	7688	<3	38	1.4	- 44	151	290	12.37	15	<5			5			<2		.46	.068									1.05		4340
X 4878	-	3638							30.13		<5			68			<2			.043			1.28				2.32			7 3	
X 4879	4	3559	<3	24	2.9	33	55	320	13.56	43	<5	7	<2	7	<.2	<2	<2	139	.39	.059	2	67	1.76	25	.25	<3	1.99	.04	1.36	49 8	8110
RE X 4879	-	3612							13.74	- 44	<5	5			<.2				.40	.060			1.79						1.39		
RRE X 4879		3475	_						13.28	42		6		7			<2			.059									1.34		
X 4880	-								30.75		ŝ				<.2					.030									. 15		
X 4881	_	10490				_		. –	10.70										1.18								1.74				283(
X 4882		4164	.7	22	.8	45	743	450	14.64	52	25	~2	~>	16	~ 2	-2	<i>~</i> 2	128	4.11	037	~1	37	1 26	7	12	л	1 /0	0.2	.36	31	5.8/
	-	1977							10.59				~2		.5				.74				2.13				3.87		.10	3	
X 4883									4.18				<2						14.61				.89						.16	-	
X 4884																	14	73	14.01	.004	3										
X 4885									2.18										29.20				.34				.53			_	
X 4886	1	7762	5	121	5.9	59	55	859	2.30	80	<>	~2	<2	49	.9	<2	4	25	30.50	.045	4	1	.27	2	.06	<\$.53	.01	.03	<2	821
X 4887		39676							7.93										10.91										.04		
X 4888	5	3484	<3	- 22					14.90				<2						1.12				1.59		.23	<3	1.78	.02	.10		
X 4889	3	6265		- 43					14.43		-	<2		7			<2	105	.56	.083	2	30	1.79	13	.24	<3	2.11	.02		39 3	
X 4890	4	5114	3	- 26	1.0	28	212	347	15.06	25	<5	<2	<2	17	.7	<2	2	126	.75	.115	5	17	1.15	10	.21	<3	1.40	.02	.06	28	870
X 4891	9	6910	<3	19	1.6	39	607	188	21.33	31	<5	4	<2	12	.3	<2	2	82	-49	.075	7	11	.51	12	. 14	3	.96	.01	.05	32	3020
x 4892	3	3981	<3	36	.5	31	116	602	11.38	8	<5	<2	<2	19	.6	<2	3	138	1.09	. 119	5	39	1.70	9	.24	<3	2.10	.03	.06	13	52(
RE X 4892	2	3900) <3	37	.6	31	113	599	11.04	9	<5	<2	<2	19	<.2	<2	<2	134	1.08	.117	6	38	1.70	9	.23	<3	2.05	.03	.06	12	44(
RRE X 4892	2	3805	<3	36	.3	- 29	115	578	10.79	7	<5	<2	<2	18	.4	<2	<2	132	1.06	.114	6	37	1.65	9	.22	<3	2.01	.03	.05	10	39
X 4893	1	23530) <3	56	.4	96	524	908	5.41	18	<5	<2	<2	33	1.5	2	3	139	3.02	.060	4	142	2.41	9	.21	4	2.42	.02	.07	<2	- 20
X 4894	2	124	<3	6	<.3	9	5	150	2.87		<5				<.2								.18		.05	5	.41	. 06	.25	<2	
X 4895	2	672	2 <3	20	.4	26	139	482	3.47	237	<5	<2	<2	25	.3	<2	2	40	7.98	.060	12	24	.57	9	.05	4	.80	.03	.21	<2	19
X 4896	5	190							12.54				<2						6.88				3.21					.02			
x 4897	3	1429		82					9.58				<2						6.29				2.92		<.01				.02		
x 4898	<1	84	-	99		89			13.51			-	<2						7.84				3.68		<.01				.01		
X 4899	1	71							8.04				<2						4.87				2.30					.04		<2	
L5+358 7+10W	<1	53	s <3	82	4	88	17	2127	8.18	18	~5	0	<2	50	R	~?	0	66	11.67	014	र	44	4.26	Ŕ	<.01	a	20	01	.01	0	
	1	31							11.15		<5		~2						9.54								.33				
16+005 7+00W																															
STANDARD C/AU-R	18	21	כב ו	120		00	64	1022	3.87	44	10	1	34	40	14.14	10	21	01	.48	.00/	41	00	• QA	141	, UY	20	1.00	, UQ	. 14	12	12

Sample type: ROCK. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX III.

Personnel

1. Erik Ostensoe, P. Geo.

.

.

.

.

.

.

.

.

,

•

٠

×

-

κ.

-

. .

ŝ

•

-

ь.

ъ.

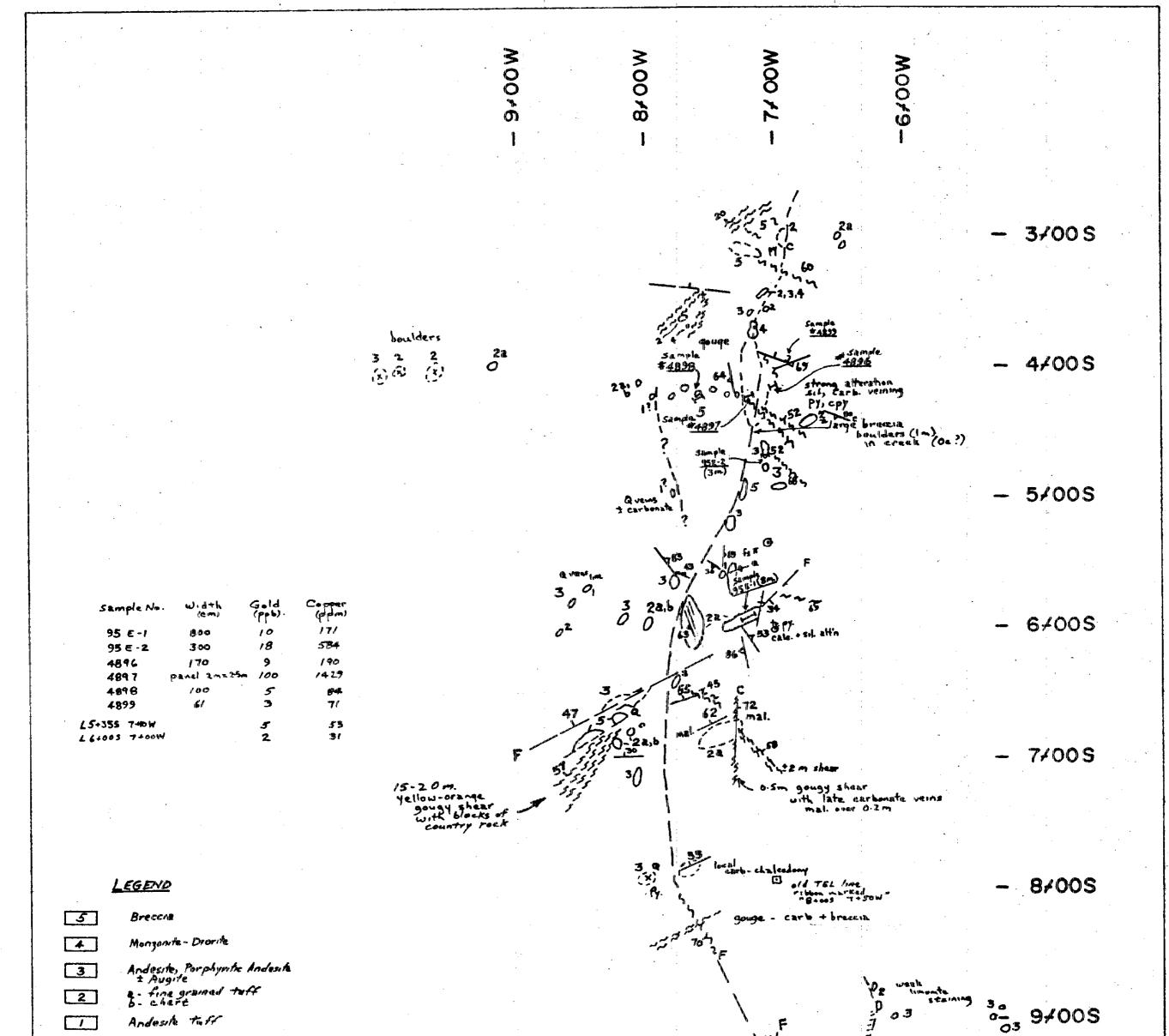
.....

.

-

2. Thomas E. Lisle, P. Eng.

Personnel

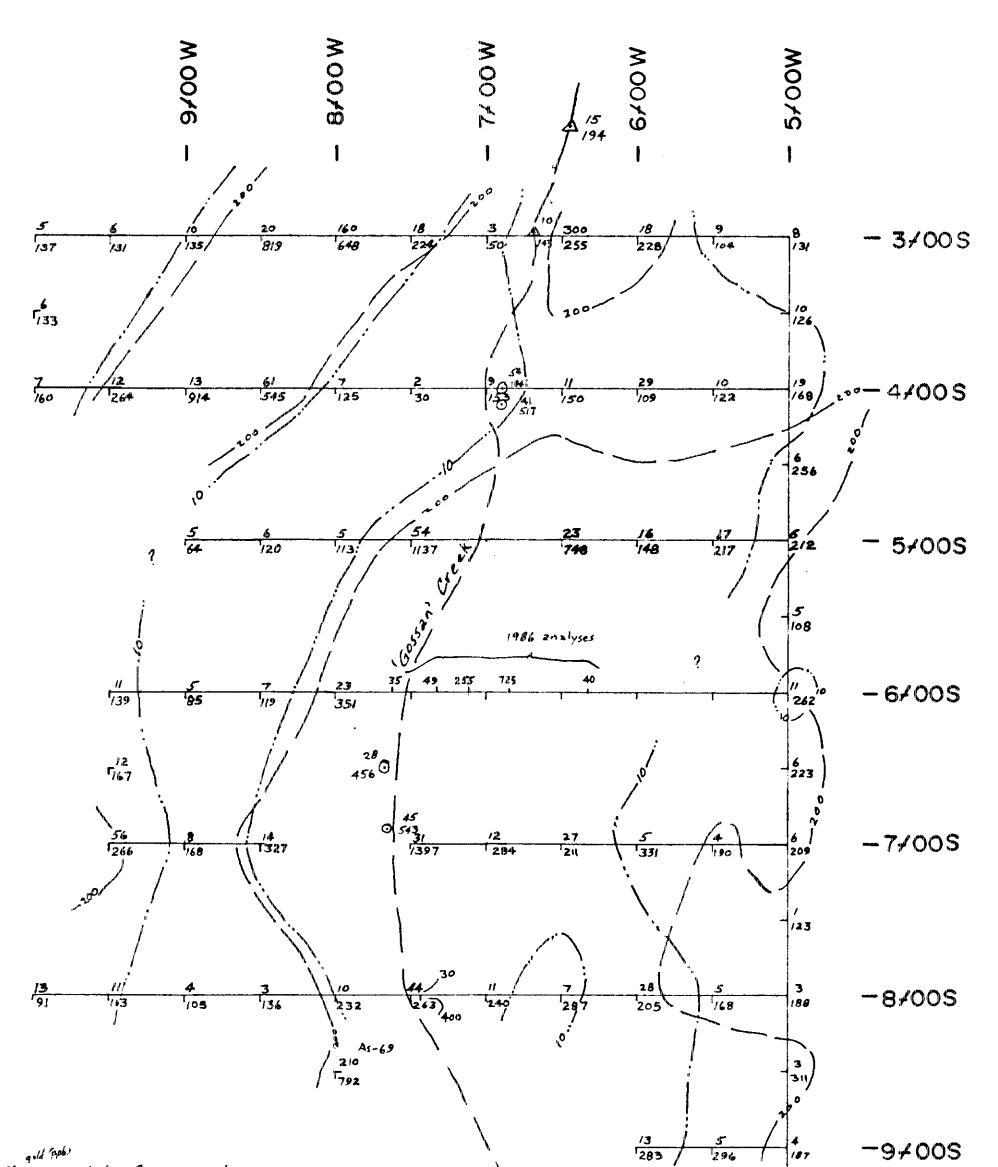

The following persons carried out the field work described in the accompanying report:

1. Erik A. Ostensoe, P. Geo. - geologist (UBC, 1960)

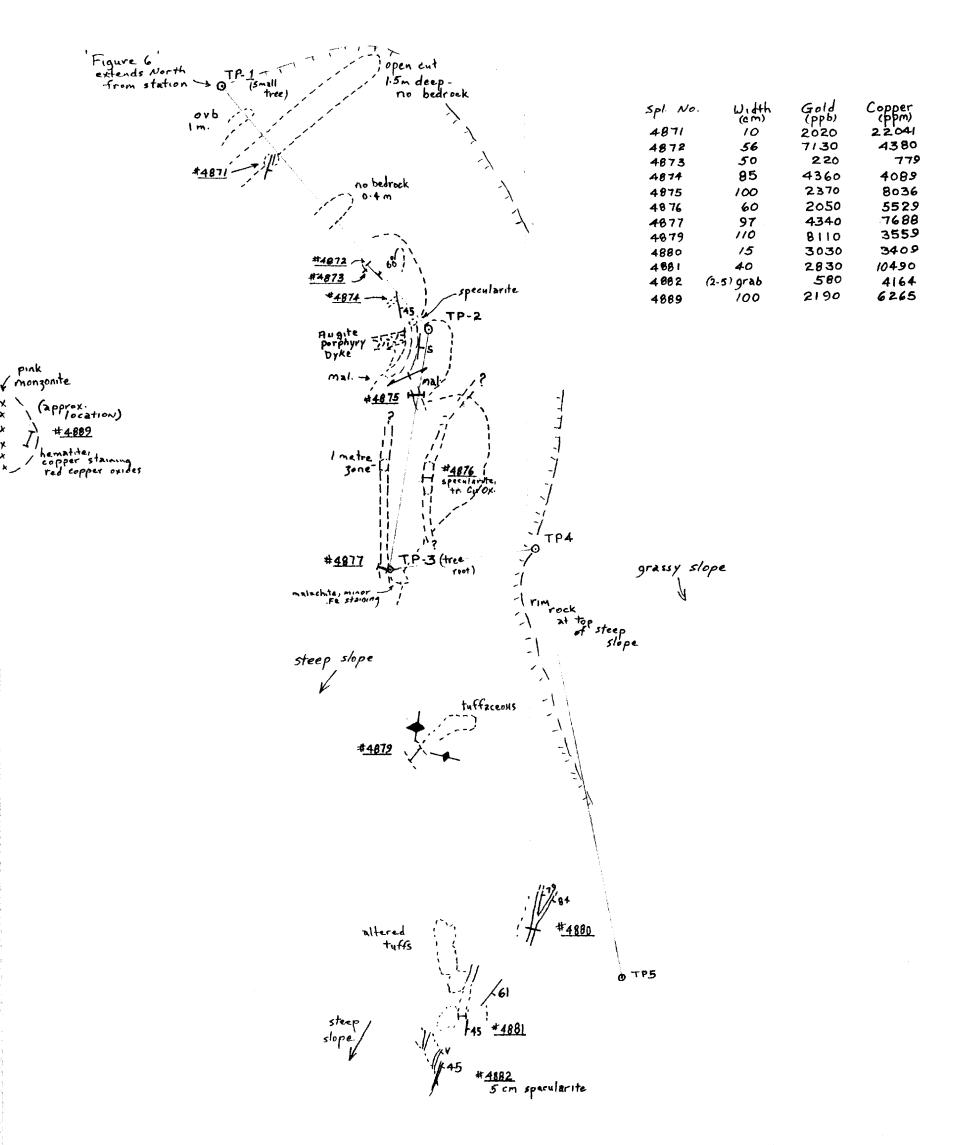
à......

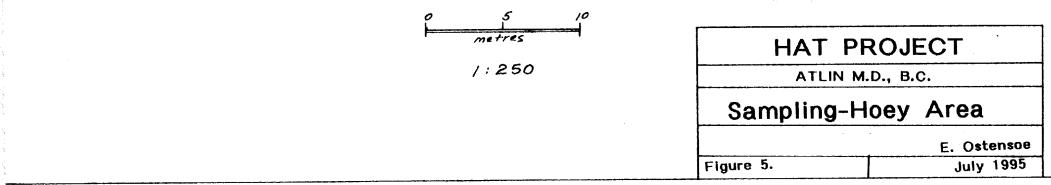
Ł

- more than thirty years experience in mineral exploration, principally in western North America
- member of APEGBC, no. 18727
- performed field work described in this report in period July 9 through July 29, 1995
- principal author of the report.
- 2. Thomas E. Lisle, P. Eng. geologist (UBC, 1964)
 - more than thirty years experience in mineral exploration, principally in western and northern Canada
 - member of APEGBC, Geol. Assoc. Canada, CIMM
 - performed field work described in this report in period July 9 through July 29, 1995.



(2) Float Fault F --130 O outerop Quarty verns 0 30 ~~~~ shear / shear yome Carbonutia viens С VAA Fractures V30 Bedding sil - siliceous matachite Mal limonite LIM -Py/Cpy- pyrita/chaleopynta


17 **76** carb 40 ١F RECEIVE 214 HAT 4 CLEME 25-11W Ō JAN 1 7 1996 PROSPECTORS PROGRAM 100 HAT PROJECT. ATLIN M.D., B.C. Geology - Gossan Creek E. Ostensoe July 1995 Figure 3.


50 Matres

1:2500

talus fines sample 54 O 184 copper pant q + tel (ppb) 15 1017 20-1017 As-195 claimat Mat 4 F # 25 IW -10#005 stream sediment sample A. 194 t copper "ppm" 37 255 28 278 204 214 t¹⁴ 901d (ppb) t₃₂₇ copper(ppm) soil sumples -18 168 ... 10 10 ppb gold contour 200 200 ppm copper contour 50 100 metres HAT PROJECT 1:2500 RECEIL ATLIN M.D., B.C. Geochemistry-Gossan Cr. JAN 1 7 1996 E. Ostensoe Figure 4. July 1995 PROSPECTORS PROGRAM MEMPR

