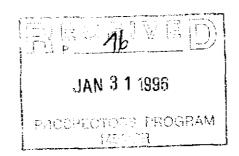
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**


PROGRAM YEAR: 1995/1996

REPORT #:

PAP 95-36

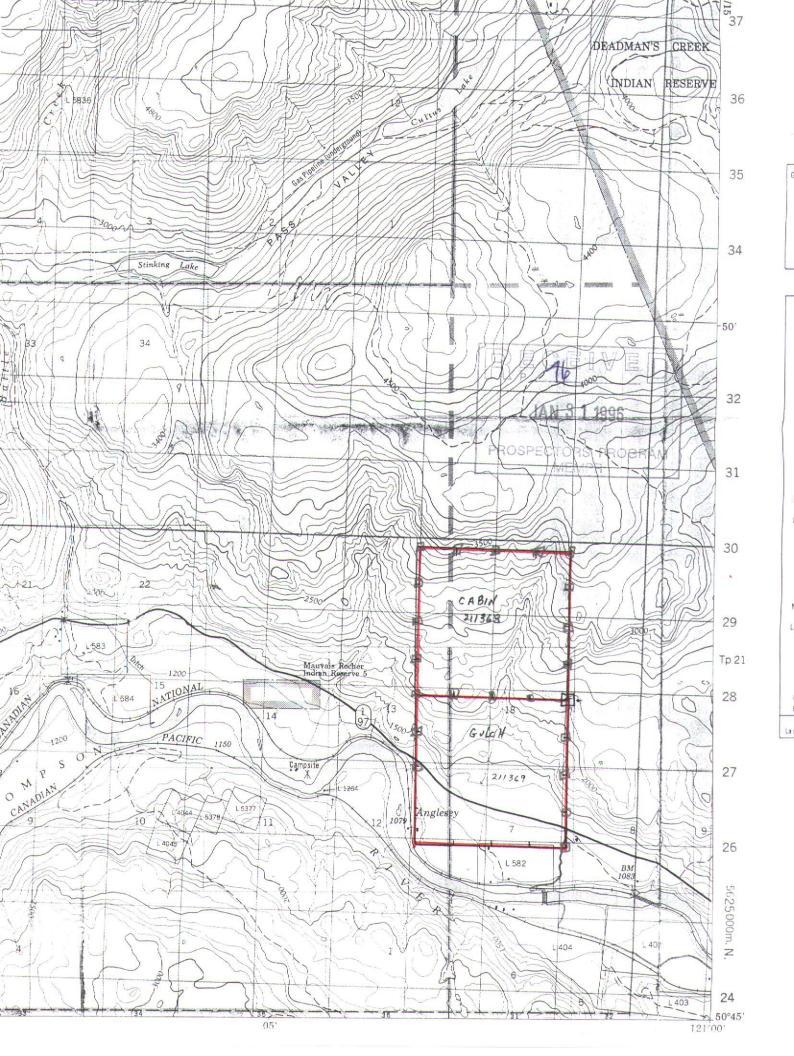
NAME:

ALLAN BLOMQUIST

REPORT No. 1 Walachin Area

Introduction

The Jaspar Claims consist of six units staked as two post claims. The claims are located one kilometre north of the Trans Canada Highway and one kilometre west of the Walachin turnoff and 22.5 kilometres east of Cache Creek.


The claims are on a gently south facing slope between the Thompson River on the south and the basalt capped Interior Plateau on the north. Elevations on the claim block vary from 500 metres on the south end to 800 metres on the north end. A broad "U" shaped gully (Cabin Gulch) trending north-south runs up the centre of the claims. Two northwest trending tributary "V" shaped gullies with 10-20 metre depths take off from the main gully.

Geology

The Jaspar claims are located within a small window of Tri-assic Nicola Group volcanics intruded by a north-west trending granitic plug from the northernmost end of the Guichen Batholith of Jurassic Age.

Summary of work carried out in this report

- (a) Prospected area with another prospector in an attempt to locate old reported showing.
- (b) Abandoned and restaked as Cabin and Gulch claims, each consisting of 16 units.
- (c) Optioned claim group to company.

Q

GRID ZO DÉS

DU (

REFF POII EASTIII imn LONGI du i Est

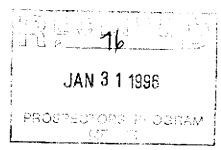
NORTH
imm
LATITU
du c
du i
Esti
this
Est
ent
GRID
RÉFÉI
Nea
a proch:

16 VED

rons PROGRAM

B. TECHNICAL REPORT

One technical report to be completed for each project area.


Refer to Program Requirements/Regulations, section 15, 16 and 17.

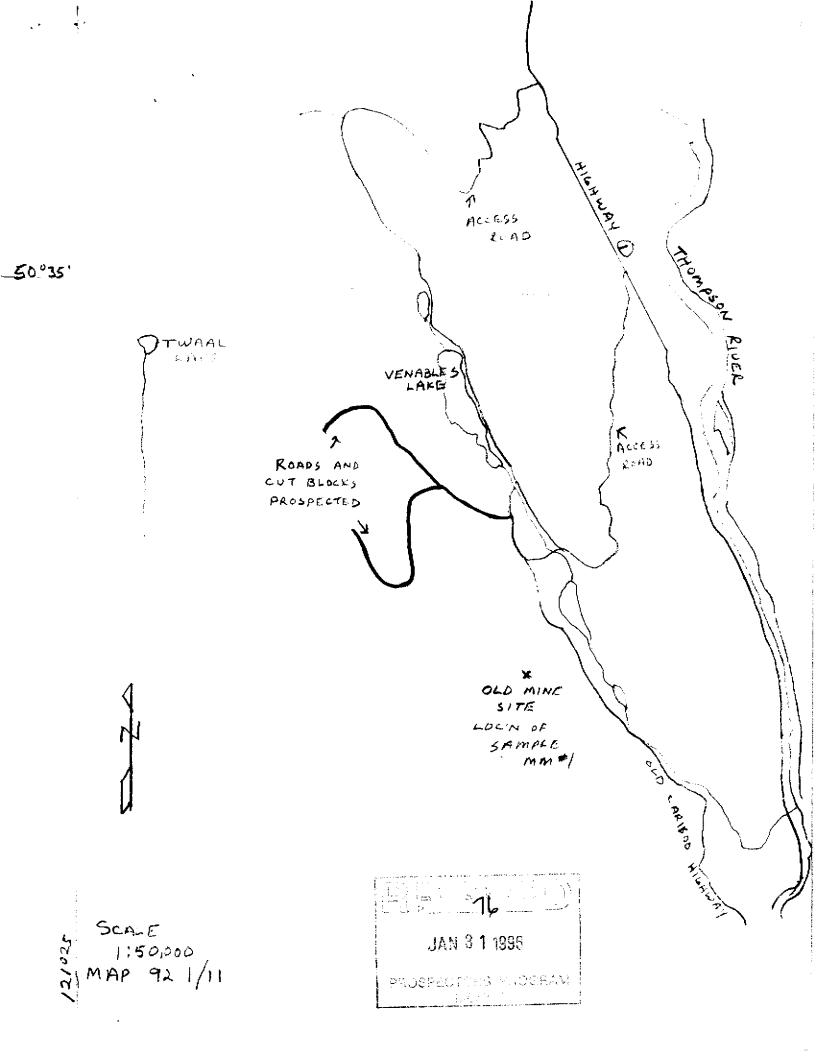
 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ALL	4W	BLOMau	15T	Reference No	umber	95/96	P07	٤
LOCATION/CO							-	
•			ALACHIN	<u>-</u>	MINFILE	No. if app	licable	
				14				
				EAST OF				
LEFT ON	b Di	RT ROAD	FOR 1K	cm, APPROX	. CENTI	CE OF	CULCH	CLAIM.
Main Commoditi	es Sea	rched For	OPPER,	ZINC				
Known Mineral C	Эссит	ences in Project	Area c	, ZN.				
WORK PERI	ORN nal Pr	IED ospecting (area)	<u> 40945 </u>	GCKING FOR	ZN ZONE	40		
3. Geochemi	cal (ty	pe and no, of sa	imples)				,	
4. Geophysic	al (ty	pe and line km)						
5. Physical V	Vork (type and amoun	t) 4 0 A	15 STAKING	320	MITS		
6, Drilling (no,. ho	oles, size, depth	in m, total m)				<u></u> .	
7. Other (spe	cify)	2. DA	45 PRUSH	PECTING ADJA	CENT T	CLAN	n45 .	
SIGNIFICANT	DPCI	птс						
					Claim Na	me		
				Long				
Description of m	inerali	zation host roc	ke anomalies		-			
-		00710		0 6.W.R				·
	7 (PVL	<u> </u>			· · - · · v · ·			
			<u></u>					
		<u> </u>	<u></u>		,,,		- · ···- · · ·	
						·····		

REPORT No. 2

Venables Lake area

Introduction


The site is accessed by following the T.C.H. 13 km south from the Ashcroft turnoff to the Murray Creek road and follow for 7 km to Venables Lake. The old mine site is accessed through private land on the west side of the lake. From the turnoff on the private road it is approximately 3 kms along the road on the west side of the lake to the turnoff to the old mine road. Then 1 km west to old mine site.

Geology

The site is located in the Permian period of the Paleozoic era and within the Cache Creek Group. The deposit is located in quartz veins within cherts and argillites. The quartz carries the mineralization along small fractures.

Summary of work carried out.

- (a) Prospected around the old mine site and took what appeared to be good samples, however nothing of any significance showed up.
- (b) Prospected along recently constructed logging roads above the old mine site, outcrops encountered were basalts and limestone and no mineralization was noted.
- (c) Prospected along approximately 9 kms of logging road and on numerous cut blocks.

17-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 MR, ALAN BLOMQUIST AK 95-928 BOX 1062

BOX 1062 ASHCROFT, BC VOK 1AO

17 Soil samples received Oct. 5, 1995 PROJECT #: None given SHIPMENT #: None given

Values in ppm unless otherwise reported

Et#	. Tag#	Au(ppb)	Ag	Al %	As	Ba	Bí	Ca %	Cd	Co	Cr	Cu	Fe %	لع	Mg %	Mn	Мо	Na %	Ni	ρ	Рb	Sb	Sn	Sr	Ti %	บ	ν	w	У	Zn
1	S.B, #1	<5	<.2	2.01	<5	200	10	1.41	<1	16	31	27	4.25	<10	0.91	664	<1	0.05	24	1110	12	< 5	<20	194	0.07	<10	100	<10	14	69
2	S.B. #2	<5	<.2	1.83	<5	15 5	<5	1.11	<1	19	33	33	4.09	<10	0.93	1108	<1	0.04	29	890	10	<5	<20	120	0.11	<10	95	<10	0	54
3	S.B. #3	<5	<.2	2.20	<5	125	5	1.48	<1	22	38	28	4.05	<10	1.23	70 5	<1	0.07	40		12	5	<20	216	0.20	<10	106	<10	7	57
4	S.B. #4	<5	<.2	2.20	<5	130	5	1.63	<1	21	32	32	4.05	<10	1.30	610	<1	0.06	40	_	12	<5	<20	210	0.20	<10	102	<10	ģ	54
5	S.B. #5	<5	<.2	2.35	<5	100	10	1.75	<1	21	39	33	4.39	<10	1.24	641	<1	0.06	38	1030	12	<5	<20	214	0.19	<10	126	<10	6	53
6	S.B. #6	<5	<.2	2.64	<5	90	10	1.92	<1	22	40	38	3.95	< 10	1.24	501	<1	0.05	34	920	12	5	<20	186	0.25	<10	116	<10	e	51
7	S.B, #7	<5	<.2	3.02	<5	55	<5	2.20	<1	17	25	31	3.60	<10	1.22	616	<1	0.05	25	830	14	<5	<20	169	0.15	<10	84	<10	J.	58
8	S.B. #8	<5	<.2	2.66	<5	100	10	2.00	<1	20	33	35	4.13	<10	1.31	_	<1	0.06	33	1040	10	<5	<20	190	0.20	<10	111	<10	4	5 8
9	SEDIMENTS F.N. #1	<5	<.2	0.89	<5	85	5	0.71	<1	9	23	12		<10		258	<1	0.01	13	740	4	< 5	<20	55	0.08	<10	68	<10	4	28
10	SEDIMENTS F.N. #2	<5	<.2	1.16	<5	115	5	0.64	<1	11	22	19	3.53	10	0.43	291	<1	0.01	12		6	<5	<20	40	0.08	<10	74	<10	3	29
11	SEDIMENTS F.N. #3 - 6.7	<5	<.2	2.04	<5	18 5	5	0.71	<1	13	18	15	3,68	<10	0.58	890	<1	0.01	15	850	12	< 5	<20	67	0,10	<10	71	<10	۵	37
12	SEDIMENTS F.N. #4	<5	<.2	0.98	<5	95	<5	0.52	<1	9	14	15	2.54	<10	0.46	408	<1	<.01	9		4	<5	<20	44	0.08	<10	52	<10	2	116
13	SEDIMENTS F.N. #5	<5	<.2	0.94	<5	85	<5	0.60	<1	9	11	10	1.84	<10	0.47	402	<1	0.01	8	1020	6	<5	<20	40	0.09	<10	38	<10	9	37
14	SEDIMENTS F.N. #5A	<5	<.2	0.91	<5	100	<5	0.53	<1	8	16	11	2.59	<10	0.39	284	<1	<.01	9	780	6	<5	<20	30	0.07	<10	51	<10	4	
15	SEDIMENTS F.N. #6	<5	<.2	1.38	<5	225	5	1.37	<1	12	25	20	3.16	<10	0.68	465	<1	0.01	17	1110	8	<5	<20	49	0.10	<10	62	<10	3	29 54
16	SEDIMENTS F.N. #7	<5	<.2	1.36	<5	195	<5	0.94	<1	11	18	13	2.94	<10	0.57	1177	<1	0.02	12	1310	8	<5	<20	82	0.09	<10	49	<10	4	<i>1</i> .4
17		<5	<.2	2.28	<5	110	<5	8,32	<1	33	216	73	4.43	<10	3.1B	900	<1	0.01	237	1020	2	15	<20	188	0.05	<10	83	<10	2	41 75

REPORT# Z

JAN 3 1 1985

JAN 3 1 1996

38 PROGRAM

B. TECHNICAL REPORT

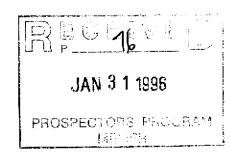
One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

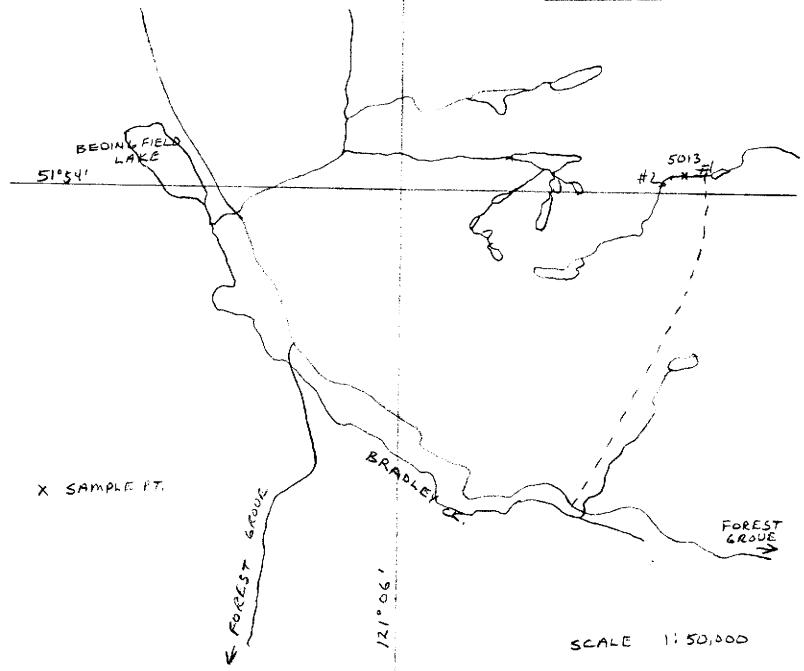
 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ALLAN BLOMQUIST Reference Number 45/96 PO76
LOCATION/COMMODITIES
Project Area (as listed in Part A) <u>VENABLES</u> LAKE MINFILE No. if applicable
Location of Project Area NTS 92 1/11 Lat 50°33 Long 121°23
Description of Location and Access 13 Km 500 CH OF 500 TH ASHCKOFT ACCESS
TURN RIGHT ON UENABLES VALLEY ROAD FOLLOW FOR 7 Km TAKE
RUAD THRU PRIVATE LAND OND WEST SIDE OF LAKE FOR 3Km.
Main Commodities Searched For
Known Mineral Occurrences in Project Area
WORK PERFORMED 1. Conventional Prospecting (area) & DAYS PROSPECTING
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples)
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6,. Drilling (no., holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS Commodities Claim Name
Location (show on map) LatLongElevation
Best assay/sample type
Description of mineralization, host rocks, anomalies

REPORT No. 3


Forest Grove area

Location


Site is located 18 km north of Forest Grove which is located north-east of 100 Mile House and 4 km east of Bedingfield lake.

Summary of work carried out

- (a) Work was a followup on last years results and the assays were not encouraging. Two field days were spent in this area.
- (b) Assay results included.

JAN 3 1 1996
PROSPECTIVES PLUGBAN

28-Sep-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

MR. ALAN BLOMQUIST AK 95-833 BOX 1062 ASHCROFT, BC **V0K 1A0**

2 Rock samples received September 20, 1995

PROJECT #: None giveл SHIPMENT #: None given

Values in ppm unless otherwise reported

C+ 4	Too #	Au(ppb)	Δa	Al %	As	Ba	Bi	Ca %	Çd	Co	Cr	Cu	Fe %	La	Mg %	MIL	Mic	NA 76	1.86	<u> </u>	FD	30	4711		11 /1		T	77		20011
Et #. 1 2	Tag # Sample #1 Sample #2	5	0.4 <.2	2.85	<5 <5	65 65	<5 <5	7.34 7.07	<1 <1	51 56	255 263		8,35 8,49	<10 <10			7 5	0.01 0.01	101 104	640 740	6 <2	10 <5	<20 <20	222 215	0.06 0 .06	<10 <10	196 199	<10 <10	5 3	60 60
Resi	DATA: olit: Sample #1	5	-	-	•	-		-	-	-	-		-	-	-	-	·	-	-	-	-	=		-	-	-	•	-	-	-
Rep 1	eat: Sample #1	i -	<.2	2.84	<5	6 5	<5	7.29	1	52	254	263	8.27	<10	2.48	1440	6	0.01	100	910	4	<5	<20	222	0.06	<10	194	<10	5	60
Star GEO	ndard: 0'95		1.2	1.69	70	160	<5	1.74	<1	19	62	80	3.78	<10	0.95	683	<1	0.02	25	620	22	5	<20	55	0.11	<10	78	<10	6	72

dt/856

XLS/95KMisc#6

ECO-TECH LABORATORIES LTD. per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

16 ED

10 PROGRAM

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

 If work was performed on claims a copy of the applicable assessment report may be submitted in licu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name	ALLAN	BLOMO	UIST	Reference Nu	mber	95/96	POT	6
	ON/COMMODI						-	
	rca (as listed in Pa		EST 6,	ROUE	MINF	LE No. if appli	cable	
Location	of Project Area	NTS	092 1	214	Lat	51054	Long	12105
Description	on of Location and	l Access	AST F	-ROM 100	me	CE HOO	15C	70
	FOREST 6	ROUE	18 Km	NORTH	OF	FORES	7 G.	ROUE
	NO 4K	n THRO	CEA BE	ish to	SITE			'
	nmodities Search							
Known M	fineral Occurrence	es in Project Are	22 <u>//</u> 0	NE				
	K PERFORMED		2_/	DAYS PR	05 <i>PE</i>	TIN6		
2. Ge	ological Mapping	(hectares/scale)					
3. Ge	ochemical (type a	nd no. of samp	es)					
4. Ge	ophysical (type a	nd line km)	·					
5. Ph	ysical Work (type	and amount)						
6, D	rilling (no,. holes,	size, depth in n	ı, total m)				····	
7. Ot	her (specify)				<u> </u>			
SIGNIFI	CANT RESULT	S						
Commodi	ities	NONE			Claim I	Vame		·····
Location	(show on map) La	ıt		Long		Elevation	·	
Best assay	y/sample type				·			
Description	on of mineralization	on, host rocks, a	nomalies _					
			·					

REPORT No. 4

Hat Creek area

Location

Numerous sites west of the Hat Creek valley and one in Upper Hat Creek were checked out. These were all recently opened up logging roads. Accessed by taking Highway 97 north from Cache Creek for 10 km then left on highway 12 towards Lillooet for 21 km, then left on Hat Creek road for .6 km then right on Finney Lake road staying on main road and taking left at next junction. Logging road begins soon after Finney Lake.

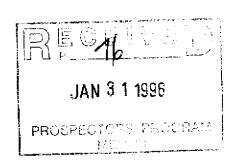
Geology

Area (a)

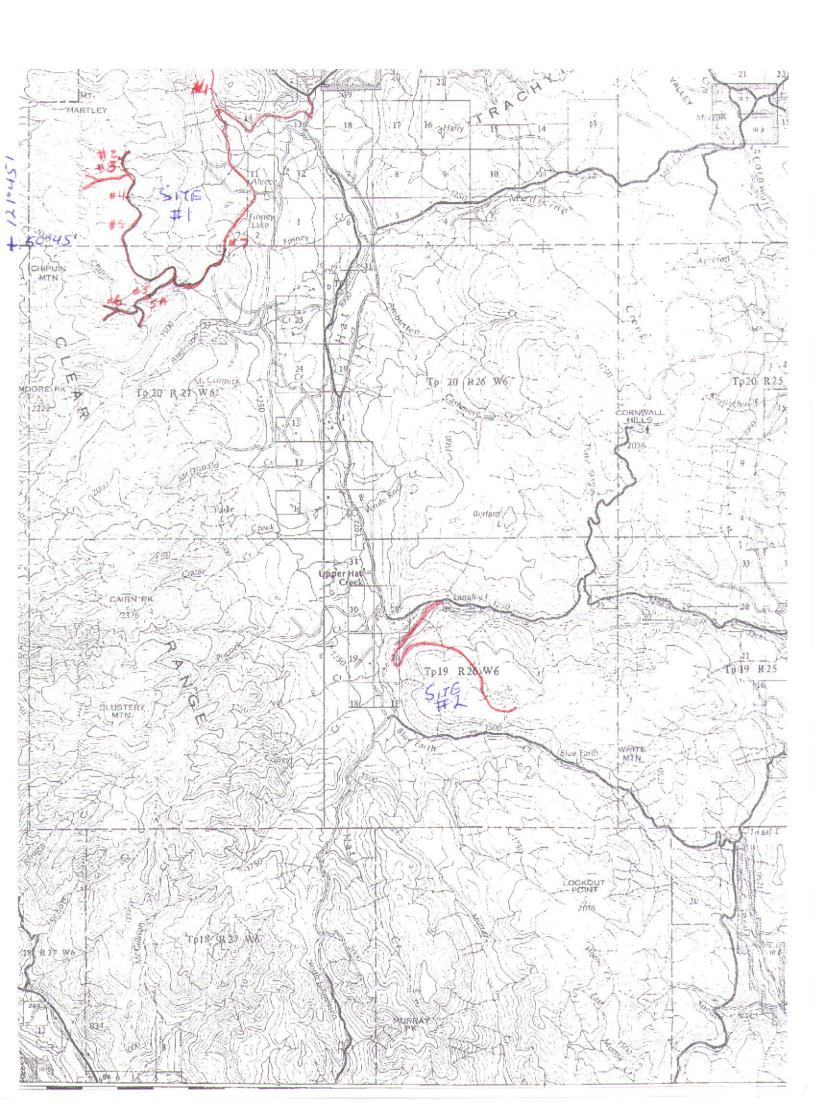
This area is host to the Mesozoic mount Lytton Batholith and the Paleozoic Cache Creek Group. There were few outcrops in the area and these were mainly limestone.

Work carried out

- 1. Prospected along roads and creeks.
- 2. Sampled all creeks along new roads.


Goelogy

Area (b)


This area is Mesozoic. Permian, Cache Creek Group. Every outcrop examined was limestone, no mineralization was observed.

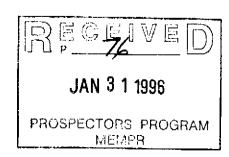
Work carried out

1. Examined outcrops.

JAN 3 1 1996

17-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4


Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

MR. ALAN BLOMQUIST AK 95-928 BOX 1062 ASHCROFT, BC VOK 1AO

17 Soil samples received Oct. 5, 1995
PROJECT #: None given
SHIPMENT #: None given

	Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	<u>Sr</u>	Ti %	Ų	<u> </u>	VV	Y	<u> Zn</u>
_	1	S.B.#1	<5	<.2	2.01	<5	200	10	1.41	<1	16	31	27	4.25	<10	0.91	664	<1	0.05	24	1110	12	<5	<20	194	0.07	<10	100	<10	14	69
	2	S.B. #2	<5	<.2	1,83	<5	155	<5	1.11	<1	19	33	33	4.09	<10	0.93	1108	<1	0.04	29	890	10	<5	<20	120	0.11	<10	95	<10	9	54
	3	S.B. #3	< 5	<.2		<5	125	5	1.48	<1	22	38	28	4.05	<10	1.23	705	<1	0.07	40	1150	12	5	<20	216	0.20	<10	106	<10	7	57
	Ā	S.B. #4	<5	<.2		<5	130	5	1.63	<1	21	32	32	4.05	<10	1.30	610	<1	0.06	40	1110	12	<5	<20	210	0.20	<10	102	<10	8	54
	5	S.B. #5	<5	<.2		<5	100	10	1.75	<1	21	39	33	4.39	<10	1.24	641	<1	0.06	38	1030	12	<5	<20	214	0.19	<10	126	<10	6	53
	6	S.B. #6	<5	<.2	2.64	<5	90	10	1.92	<1	22	40	38	3.95	<10	1.24	501	<1	0.05	34	920	12	5	<20	186	0.25	<10	116	<10	6	51
	7	S.B. #7	<5	<.2		<5	55	<5	2.20	<1	17	25	31	3.60	<10	1.22	616	<1	0.05	25	830	14	<5	<20	169	0.15	<10	84	<10	4	58
	8	S.B. #8	<5	<.2		< 5	100	10	2.00	<1	20	33	35	4.13	<10	1.31	672	<1	0.06	33	1040	10	<5	<20	190	0.20	<10	111	<10	6	58
	A	SEDIMENTS F.N. #1	<5	<.2	0.89	<5	65	5	0.71	<1	9	23	12	3.26	<10	0.44	258	<1	0.01	13	740	4	<5	<20	55	0.08	<10	68	<10	1	28
	10	SEDIMENTS F.N. #2	<5	<.2		<5	115	5	0.64	<1	11	22	19	3.53	10	0.43	291	<1	0.01	12	1280	6	<5	<20	40	0.09	<10	74	<10	3	29
7	1,1	SEDIMENTS F.N. #3 - 6.7	<5	<.2	2.04	<5	185	5	0.71	<1	13	18	15	3.68	<10	0.58	890	<1	0.01	15	850	12	<5	<20	67	0.10	<10	71	<10	6	37
K	42	SEDIMENTS F.N. #4	<5	<.2		<5	95	<5	0.52	<1	9	14	15	2.54	<10	0.46	408	<1	<.01	9	1070	4	<5	<20	44	80.0	<10	52	<10	2	116
	13		<5	<.2		<5	85	<5	0.60	<1	9	11	10	1.84	<10	0.47	402	<1	0.01	8	1020	6	<5	<20	40	0.09	<10	38	<10	2	37
₹	12	SEDIMENTS F.N. #5A	<5	<.2		<5	100	<5	0.53	<1	8	16	11	2.59	<10	0.39	284	<1	<.01	9	780	6	<5	<20	30	0.07	<10	51	<10	1	29
	15	SEDIMENTS F.N. #6	< 5	<.2		<5	225	5	1.37	<1	12	25	20	3.16	<10	0.68	465	<1	0.01	17	1110	8	<5	<20	49	0.10	<10	62	<10	3	54
	6	SEDIMENTS F.N. #7	<5	<.2	1.36	<5	195	<5	0.94	<1	11	18	13	2.94	<10	0.57	1177	<1	0.02	12		8	<5	<20	82	0.09	<10	49	<10	1	41
	17	M M #1	<5	<.2	2.28	<5	110	<5	8.32	<1	33	216	73	4.43	<10	3.18	900	<1	0.01	237	1020	2	15	<20	188	0.13	<10	83	<10	2	75

16

JAN 3 1 1996

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

 If work was performed on claims a copy of the applicable assessment report may be submitted in licu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ALLAN BLOMOUIST	Peferance Nue	oher 95-/96	P0 76
	Keretenee 14th	1001	, , , , , , , , , , , , , , , , , , , ,
LOCATION/COMMODITIES	من سو ر	AND THE PART OF STREET	
Project Area (as listed in Part A) HAT CRE	EL	MINFILE NO. II applicable	e 12104E
Location of Project Area NIS 921	$\sim \omega$	Lar <u> 2 50 37'</u> L	ong/1/-52
Description of Location and Access 10 Km M			
LEFT ON HAT CK ROAD FOR . 6K	in THEN RIGH	TON FINNEY LK.	ROAD LEFT AT
NEXT JUNCTION GTAYING ON	MAIN READ		
Main Commodities Searched For _ C U AU		· · · · · · · · · · · · · · · · · · ·	
·			
Known Mineral Occurrences in Project Area			
WORK PERFORMED		range in a d	
Conventional Prospecting (area)	443 / KOS/F	CING	
2. Geological Mapping (hectares/scale)			
3. Geochemical (type and no. of samples)			
4. Geophysical (type and line km)			
5. Physical Work (type and amount)			
6,. Drilling (no,. holes, size, depth in m, total m))		
7. Other (specify)			
SIGNIFICANT RESULTS			
Commodities HOME			
Location (show on map) Lat	Long	Elevation	
Best assay/sample type			
Description of mineralization, host rocks, anomalies			
			

JAN 3 1 1996
PROSPECTORS PACERAM

REPORT NO. 5

Salmon Arm & Wild Rose Bay areas

Introduction

The sites prospected in this area are within the Kootenay Terrane - Adams Lake Belt, Paleozoic and Lower Paleozoic eras. These areas were prospected because they had recently been accessed by new logging roads and had numerous bank cuts.

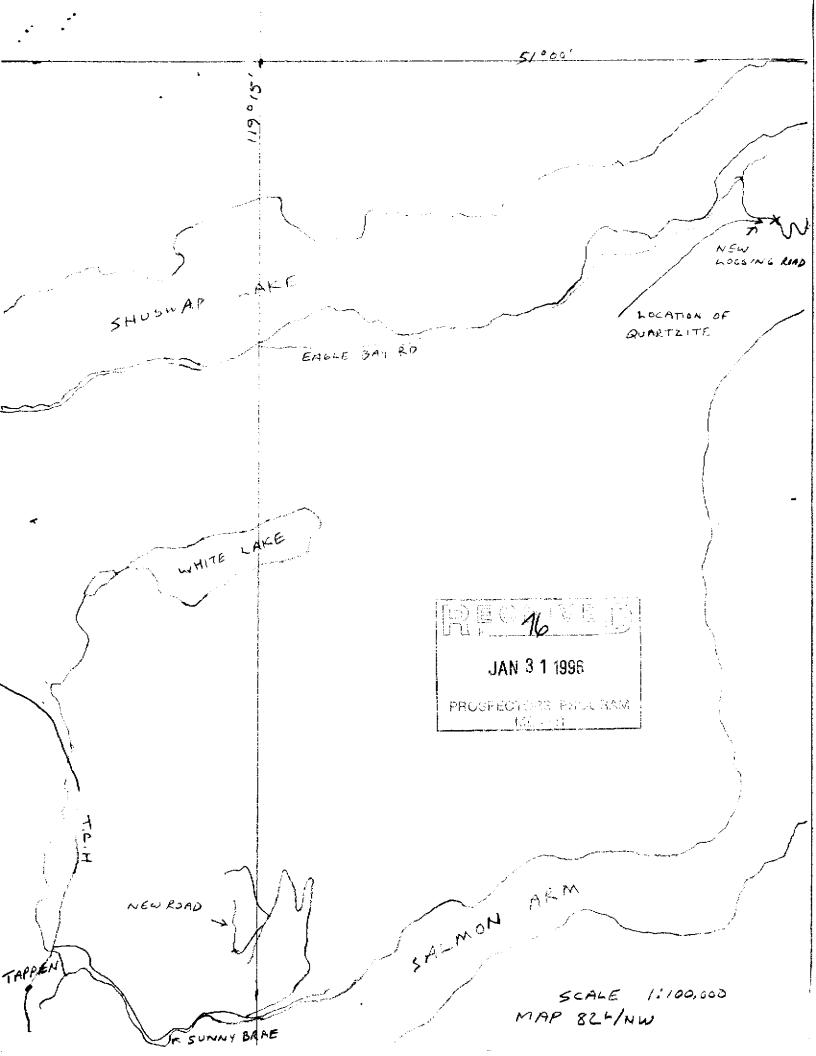
Area (a)
Salmon Arm , Bastion Mountain
Area is accessed by the Sunnybrae Road 1 km north of Tappen which is west of Salmon Arm on the T.C.H. Follow Sunnybrae road for 6 km then onto Bastion Mountain for 9 km at which point new section of road is found.

Geology

This area is in the Sicamous Formation of the Lower Paleozoic era. Rock exposed in road cuts is assumed to be black phyllite and a schistose type. No mineralization was encountered on the newly exposed road or the 9 km of old logging road.

Area (b)
Wild Rose Bay area
Area is accessed by heading east from Sorrento along the
Eagle Bay road for 38 km, then 1.5 km along a logging road
then south on new logging road. Approximately 7 km of new
road was built in 1995.

Geology


This area is within the Paleozoic Era. Schists and conglomerates were found within the bank cuts. In the vicinity of km 5, over a length of 1 km Quartzite has been exposed. This was evidenced by the pieces of quartzite which had been pushed to the side of the road. The material ranged from coarse grain to very fine grained. Minor mineralization was observed at the sampling points.

Work carried out

- 1. Prospected along roads and landings.
- 2. Attempted to find extent of quartzite but found too much overburden. This work will require a small backhoe.
- 3. Samples were taken from cut banks and results are included.

Recommendations

- 1. Further examination of the quartzite zone by backhoe.
- 2. Further work in the area of sample km 6.2.

16-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

A. BLOMQ BOX 1062 ASHCROFT VOK 1AO

5 Rock sam PROJECT I SHIPMENT

Frank J. Pez

B.C. Certifie

Values in ppm unless otherwise reported

	Et #.	Tag #	Au(ppb)	Ag	AI%	As	Ba	Bi	Ca %	Cd	Co	C1	<u>Cu</u>	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	\$n	<u>ş</u>
~ <u>=</u>	71	#KM-4.3	5	0.2	0.17	20	25	<5	0.39	<1	9	231	14	1.34	<10	0.09	1165	8	<.01	18	300	22	<5	60	1
¥ }	2	#KM-4.8	5	<.2	0.09	10	60	<5	0.60	<1	5	282	15	0.89	<10	0.05	91	9	<.01	17	60	6	<5	60	1
+ - (3	#KM-6.2	5	12.6	0.09	<5	70	35	0.37	<1	37	204	116	4.69	<10	0.02	149	147	0.03	23	390	1030	<5	80	4
3	4	#KM-6.5	5	<.2	3,32	<5	520	15	3.05	1	35	142	42	6.42	40	4.42	777	<1	0.24	85	2780	26	15	<20	40:
Keport	5	#Q-C	5	<.2	2.90	<5	330	10	4.40	<1	33	115	30	5.61	20	4.18	626	<1	0.19	98	2420	20	15	<20	32
	<u>QC/D</u> Respi R/S 1		5	0.4	0.19	10	25	<5	0.43	<1	10	208	17	1.40	<10	0.11	1201	7	<.01	19	320	16	<5	40	2
	Repe	at:																							
	1	#KM-4.3	_	0.2	0.18	10	25	<5	0.41	<1	9	227	14	1.34	<10	0.12	1159	8	<.01	18	300	18	<5	40	1!
	3	#KM-8.2	5	-	-	-	•	-	•	-	-	+	-	-	•	-	-	-	-	-	-	-	-	•	
	Stand GEO'		150	1.2	1.60	60	155	<5	1.61	<1	20	68	83	3.80	<10	0.90	614	<1	0.02	27	630	20	<5	<20	6:

df/916 XLS/95Kmisc.#6

JAN 3 1 1996

PROCESSIONE PROGRAM

Page 1

JAN 3 1 1896

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

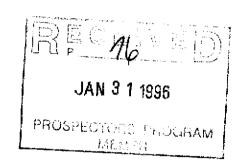
 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name _	ALLAN	BLOMBUIST	Reference Number	95/96	P076
LOCAT	ION/COMMOD	TIES			
Project A	rca (as listed in Pa	IN A) BEALMON AR	m MINF	TLE No. if applic	able
Location	of Project Area	NTS 42L NU	Lat <u>is</u>	50°58	Long <u>119°14</u>
		d Access SITE () WEST			
ALUM	YG T.C.H. TO	SUMMY BRAG ROTT	HENGKM LEFT O	A BASTION	RD. SITE (2) EMS
		FOR BEICH ALONG A			
Main Co	mmodities Search	ed For CU AU			
			·		
Known N	dineral Occurrenc	es in Project Area <i>Ne</i> ~	6		
WOR	K PERFORMEE	1			
1. C	onventional Prosp	ecting (area) 4 DAS	(S PROSPECTI	N6	
		(hectares/scale)			
3. G	eochemical (type a	and no. of samples)	C SAMPLES (<i>S)</i>	
4. G	eophysical (type a	nd line km)			
5. Pł	ysical Work (type	and amount) TRENC	HING BY HAN	10	
6,. D	rilling (no,. holes,	size, depth in m, total m)			
7. 0	ther (specify)				
	ICANT RESULT				
		LITE Ph mo cu A			
Location	(show on map) La	ıt <u>50°58'</u>	Long // 9002	Elevation	750 m.
Best assa	y/sample type <u>/</u>	46 12.6 ppm cu 11	6 ppm mo 147pp.	m P6 1030	pm
Descripti	on of mineralizati	on, host rocks, anomalies	SCHISTS & CON	16Low ERA?	TES .
MIN	EKALIZAT	ION MINOR IN	SAMPLES		
			· 		_
					,
			<u> </u>		

REPORT No. 6

Spences Bridge area

Introduction


This area is accessed by Murray Creek logging road immediately south of Spences Bridge and on the west side of the Thompson River. Follow this road for 20.2 km staying on main road. At that point 10.1 km of new logging road was built in 1994.

Geology

The area prospected is Mesozoic Spences Bridge Group. The area prospected appeared to be mainly basalts and a few agglomerates.

Work carried out

All the outcrops along the 10 km of road were examined and no sign of any mineralization was seen. Sediment samples of all the creeks were taken and results are included. The samples were numbered as S.B. 1 - S.B. 8 Nothing of any significance was noted.

30.3Km JAN 3 1 1998 0 2 PROSPECTOUS PROGRAM MAP 921/NW MAPALISW OSAMPLE POINTS REFERRED TO AS 5.B,#t.S.B.#8

17-Oct-95

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

JAN 3 1 1996 PROSPECTORS PROGRAM MR. ALAN BLOMQUIST AK 95-928 BOX 1062 ASHCROFT, BC VOK 1AO

17 Soil samples received Oct. 5, 1985 PROJECT #: None given SHIPMENT #: None given

Values in ppm unless otherwise reported

E	Et #.	Tag #	Au(ppb)	Ag	AI %	A≋	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	ها	Mg %	Min	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	IJ	ν	W	γ	Zn
7	1	S.B. #1	<5	<.2	2.01	<5	200	10	1.41	<1	16	31	27	4.25	<10	0.91	664	<1	0.05	24	1110	12	<5	<20	194	0.07	<10	100	<10	14	69
	2	S.B. #2	<5	<.2	1.83	<5	155	<5	1.11	<1	19	33	33	4.09	<10	0.93	1108	<1	0.04	29	890	10	<5	<20	120	0.11	<10	95	<10	9	54
1	3	S.B.#3	<5	<.2	2.20	<5	125	5	1.48	<1	22	38	28	4.05	<10	1.23	705	<1	0.07	40	1150	12	5	<20	216	0.20	<10	106	<10	7	57
1	4	S.B.#4	< 5	<.2	2.20	<5	130	5	1.63	<1	21	32	32	4.05	<10	1.30	610	<1	0.06	40	1110	12	<5	<20	210	0.20	<10	102	<10	8	54
Ų	5	S.B. #5	<5	<.2	2.35	<5	100	10	1.75	<1	21	39	33	4.39	<10	1.24	641	<1	0.06	38	1030	12	<5	<20	214	0.19	<10	126	<10	6	53
}			_																												
1	6	S.B. #6	<5	<.2		<5	90	10	1.92	<1	22	40	38	3.95	<10	1.24	501	<1	0.05	34	920	12	5	<20	186	0.25	<10	116	<10	6	51
\	7	S.B. #7	<5	<.2		<5	55	<5	2.20	<1	17	25	31	3.60	<10	1.22	616	<1	0.05	25	830	14	<5	<20	169	0.15	<10	84	<10	4	58
/	_8	S.B. #8	<5	<.2	2.66	<5	100	10	2.00	<1	20	33	35	4.13	<10	1.31	672	<1	0.06	33	1040	10	<5	<20	190	0.20	<10	111	<10	6	58
	9	SEDIMENTS F.N. #1	<5	<,2	0.89	<5	85	5	0.71	<1	9	23	12	3.26	<10	D 44	258	<1	0.01	13	740	4	<5	<20	55	0.08	<10	68	<10	1	28
1	10	SEDIMENTS F.N. #2	<5	<.2	1.16	<5	115	5	0.64	<1	11	22	19	3,53	10	0.43	291	<1	0.01	12	1280	6	<5	<20	40	0.09	<10	74	<10	3	29
	11	SEDIMENTS F.N. #3 - 6.7	<5	<2	2.04	<5	185	5	0.71	<1	13	18	15	3,68	<10	0.58	890	<1	0.01	15	9EA	40	€	~00	67	0.40	-40	7.	-48		
	12	SEDMENTS F.N. #4	<5		0.98	<5	95	< 5	0.52	<1	.0	14	15	2.54	<10	0.48	408	<1	<.01		850 4070	12	<5	<20 	67	0.10	<10	71	<10	8	37
	13	SEDIMENTS F.N. #5	<5		0.84	<5	85	<5	0.60	<1	ā	44	10	1.84	<10	0.47	402	<1	0.01	9 9		4	<5	<20 <20	44	0.08	<10	52	<10	2	116
	14	SEDIMENTS F.N. #5A	< 5	<2		< 5	100	<5	0.53	<1	ġ	16	11	2.59	<10	0.39	284		<.01	_	,	6	< 5	<20	40	0.09	<10	38	<10	2	37
	15	SEDIMENTS F.N. #6	<5	<.2		< 5	225	5		<1	12	25	20	3.16	<10	0.68	465	<1 <1		9 17	780	6	<5 -	<20	30	0.07	<10	51	<10	1	29
		DCDIME(410) (14, III)		~.£a	1.00		220		1.07	٠,	12	ZU	20	3.10	10	0.06	400	e- 1	0.01	17	1110	8	<5	<20	49	0.10	<10	62	<10	3	54
	16	SEDIMENTS F.N. #7	<5	<.2	1.36	<5	195	<5	0.94	<1	11	18	13	2.94	<10	0.57	1177	<1	0.02	12	1310	8	<5	<20	82	0.09	<10	49	<10	1	41
,	17	M.M. #1	<5	<.2	2.28	<5	110	< 5	8,32	<1	33	216	73	4.43	<10	3.18	900	<1	0.01	237	1020	2	15	<20	188	0.13	<10	83	<10	2	75

16 ED

JAN 3 1 1996

B. TECHNICA	LREP	ORT
-------------	------	-----

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

• If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ALLAN BLOMBUST Reference Number 95/96 9076
LOCATION/COMMODITIES
Project Area (as listed in Part A) SPENCES RRIDGE MINFILE No. if applicable
Location of Project Area NTS 92 15 W Lat 50°33 Long 121°26
Description of Location and Access MURRAY CK. LOGGING RD. IMMEDIATELY SOUTH O.
SPENICES BRIDGE, FOLLOW FUR 2012 Km STAVING ON MAIN RD. AT THAT
FOINT 10.1 KM OF NEW LEGGING RD.
Main Commodities Searched For Au Cu
Known Mineral Occurrences in Project Area
WORK PERFORMED 1. Conventional Proposation (gree) Z (1845 PROSCECTIVAL)
1. Conventional Prospecting (area) 3 DAYS PROSPECTING 2. Geological Mapping (hectares/scale)
2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) <u>SEOIMENT SAMPLES</u> (8)
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6,. Drilling (no., holes, size, depth in m, total m)
Į
7. Other (specify)
SIGNIFICANT RESULTS
Commodities Claim Name
Location (show on map) LatLongElevation
Best assay/sample type
Description of mineralization, host rocks, anomalies