BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 1995/1996

REPORT #:

PAP 95-38

NAME:

FRED NILSEN

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

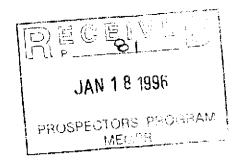
One technical report to be completed for each project area Refer to Program Requirements/Regulations, section 15, 16 and 17 If work was performed on claims a copy of the applicable assessment report may be OFF THEOTORS PROGRAM submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

JAN 18 1996

Fred J. Nilsen. Reference Number 95 /96 P081 Name LOCATION/COMMODITIES Project Area (as listed in Part A.) Area #3 Minfile No. if applicable _____ Location of Project Area NTS Many different areas Lat _____ Long _____ Description of Location and Access These are recently logged areas or new road construction that 1 have prospected this year, I will enclose maps showing all areas looked at. two of them are out of district but hope they will be accepted as they are interesting areas for the future. One is near the Equity mine, the other west of okanagan lake. Main Commodities Searched For AU, AG, CU, PB, ZN, MO, NI, CO, W, AND IN THE OKANAGAN PRECIOUS OPAL. Known Mineral Occurrences in Project Area Noknown occurrenes in local areas but at Houston . the Equity silver mine and in the okanagan the Okanagan Opal Mine. ALL other areas grassroots prospecting mostly float prospecting,___ WORK PERFORMED 1. Conventional Prospecting (area) Collecting likely looking float or rock chips for assay. 2. Geological Mapping (hectares/scale) None. 3. Geochemical (type and no. of samples) Soil smples 4. rock samples 33. 4. Geophysical (type and line km) None. 5. Physical Work (type and amount) Collecting soil rock samples, traversing recently logged lareas 6. Drilling (no. holes, size, depth in m, total m) None. 7. Other (specify) Collected many agate+common opal samples for microsopic study, no fire DKANAGAN. SIGNIFICANT RESULTS (if any) Commodities AU AG CU PB ZN Claim Name None. Location (show on map) Lat_____ Long____ Elevation___ Best assay/sample type Rock-float samples #3F 4E \$ 5E shown on attached map.assay sheet. These samples are from near the equity silver mine taken on unstaked ground, see map. Description of mineralization, host rocks, anomalies Much altered tuffs with visible sulphides thruout also scheelite in some of the samples from this location one sample in quartz contained wolframite crystals, a very interesting place to prospect.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE


G.H. Klein & Associates File # 95-3786 Box 2059 Prince George BC VZN 2J6

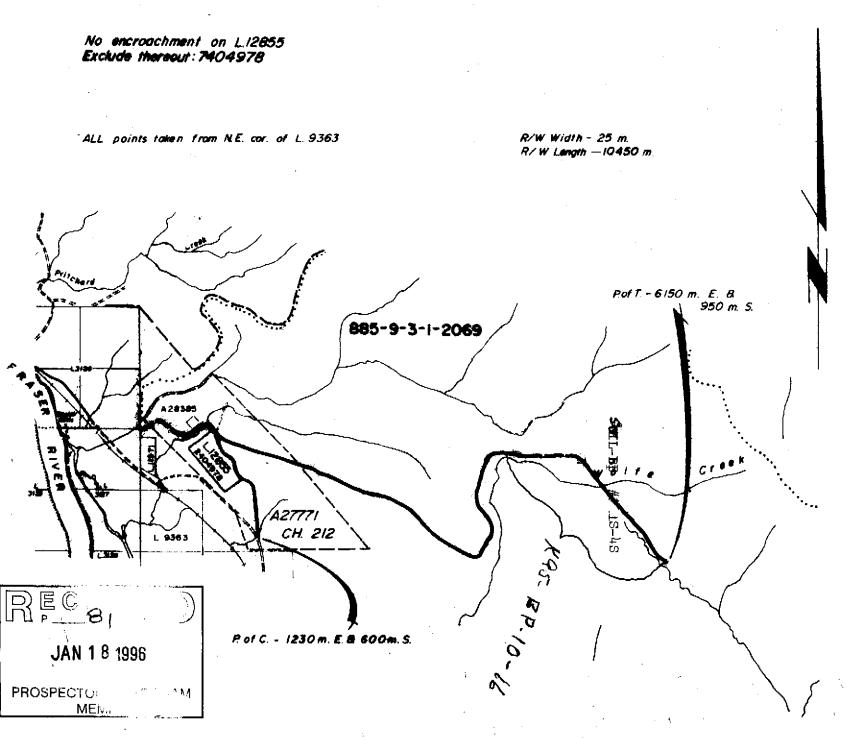
Page 1

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppn	Mn ppm	Fe %	As ppm	D D D	Au ppm	Th ppm	\$r ppm	Cd ppm	Sb ppm	Bí ppm	V ppm	Ca %	P La X ppr			Ba ppm	Tî %	ppm B	Al %	Na X	К *	ppm W	Au*
	<u></u>		• • •		··-				4 57			-2	_	70/		20	-23	135	5.86 .07	7 6	243	3.19	600	< 01	3 1	.58	.01	. 15	<2	6
(95 AL 14	2	179	14	80	.4	440		2025	6.57	185	< 5	<2	-	284	. 4	20	<2 -2		.52 .21		273	.39	15			.84	.02	.41	<2	3
(95 AL 15	- 11	81	34	62	<.3	74	19	392	8.10	99	•	<2	8	60	≺.2	11	<۲	28			, ,			.01	<37		.01	.05	- 2	7
K95 AL 16	1	256	170	133	2.3	250	71		22,31	914	<5	<2	7	11	<.2	60	3	55	.30 .12			2.10			-	.07	.01	.01	<2	3
K95 BP 10	1	1178	6	11	<.3	188				2	<5	<2	10	58	<.2	2	3		16.06 .00			6.74		<.01		-			~2 <2	-
K95 BP 11	Z	47	9	15	.7	72	14	307	2.83	4	<5	<2	8	26	<.2	Z	< 2	66	2.66 .28	6 53	125	1.30	306	-03	56 1	.32	.01	.69	₹2	1
K95 BP 12	1	124	4	۰	. 5	106	32	725	3.34	A	<5	<2	. 18	70	<.2	6	<2	13	8.43 .14	5 56	35	3.08	123	<.01	5	.39	<.01	.23	<2	4
K95 BP 13	÷	,T	10	27	<.3	239	36	620		5	<5	<2	7	51	.3	4	<2	71	6.27 .14			1.79	14	.44	8 1	.54	_01	.44	<2	2
RE K95 8P 13	2	7	11	27	<.3	227	36			7	<5	₹2	7	51	. 3	3	<2	70	6.18 .13			1.75	14	.44	8 1		.01	.42	<2	1
	2	10	44	34		321	47	763	6.26	ć	<5	<2	12	64		ž	₹2	81	7.78 .17			2.19	17	.47		.92	-01	.56	<2	1
K95 BP 13	- 4	10	11		۲.۶					305	₹5	₹2	15	77			₹2	109	2.52 .11			2.80		<.01	<33		.03	.08	<2	13
k BP 15	<1 	134	18	157	-4	78	44	1090	6.65	303				- 11		.		,07	2.32 .11	_		2.00				<u> </u>				
K95 BP 16																														
24K FN	167	12	6	3	<.3	7		- 52	.36	- <2	- उ	<2	- 3	14	₹.2	2	<2	3	.20 .00	2 <1	8	.10	27	-01	_	.16	.06	.08	<2	1
25K FN	3	324	31	7	<.3	282	51	62	2.87	<2	<5	<2	3	472	<.2	<2	6	20	6.71 .08	61	27	.10	50	. 15	<39		.21	.03	<2	1
26K /= N	11	208	5	Á	5	10	5	570	1.36	<2	<5	<2	2	49	.2	2	3	30	.85 .14	1 2	9	.06	14	-04	<3	.44	.09_	_02_	<u>3</u>	1

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNG3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

......D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

G.H. Klein & Associates FILE # 95-3786


Page 2

ACHE MMALYTICAL																															
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	PDW WU	Fe X	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	ppm Cd	Sb ppm	Bi ppm	ppm V	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	ppm B	Al %	Na %	K X	ppm W	Au* ppb
K95 BP 15 FN K95 BP 25 FN K95 BP 35 FN K95 BP 45 FN RE K95 BP 45	1 <1 1 1	10 19 10 19	8 11 14 19 21	28 32 107 82 80	<.3 <.3 <.3 <.3	22 44 24 44 42	6 12 7 12 12	516 2	.58 .60 .68 .23	3 5 3 11 10	5 5 5 5	<2 <2 <2 <2 <2	\$ \$ \$ \$ \$	48 25 15 30 29	.2 <.2 <.2 .2	2 5 4 5 4	<2 <2 <2 <2 <2 <2	35 29 45	.54 . 2.09 .	054 074 125 082 081	9 13 10 17 16	37 31 38	1.09 1.14 .37 1.40 1.35	63 104 177 252 248	.03 .03 .03 .04 .04	6	.47 .69 1.00 1.22 1.19	.01 .01 .01 .01	.04 .05 .07 .11	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 1 2 1 2

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

JAN 1 8 1996 PROSPECTORS PROGRAM MEMORE

\$ DISTRICT OPG AREA Fast

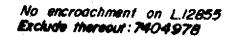
rowince of ritish Colu linistry of

0

0

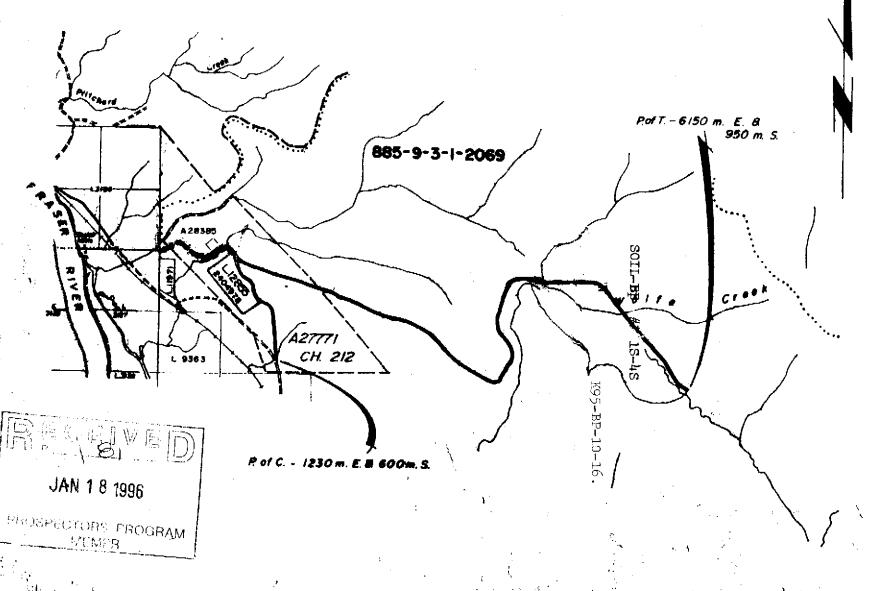
0

0


0

6

Ø


9

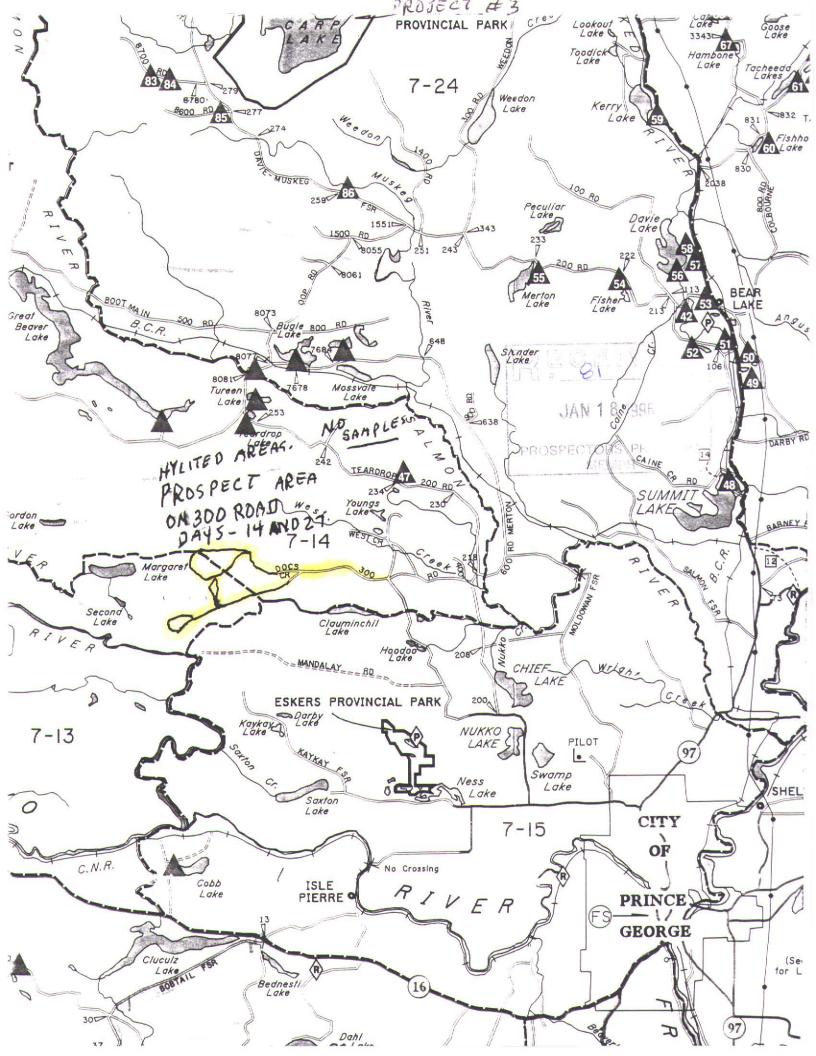
हम मानागरे

"ALL points taken from N.E. cor. of L. 9363

R/W Width - 25 m. R/W Langth - 10450 m.

0 Ġ OPG 9 0 0 0 3347 TIMBER SUPPLY AREA 9 860 5

Ö


Ministry of Forests

\$

MONKMAN

FOREST

400,H/39h

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

G.H. Klein & Associates File # 95-3786 Box 2059, Prince George BC V2N 2J6

Page 1

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As	Dpm	Au	Th	Sr	Cd	Sb	Bi ppm	V	Ca %	P %	La	Cr ppm	Mg %	Ba ppm	Ti %	ppm	Al %	Na %	K %	bbu	Au*
VOE 41 1/	2	179	1/	80	/.	440	45	2025	6.57	185	<5	<2	8	284	2	20	<2	135	5.86 .0	077	4	243	3.19	600	<.01	3 1	.58	.01	.15	<2	6
K95 AL 14	11	81	7/	62	- 7	74	19	392	8.10	99	<5	<2	8	60	<.2	11	<2	28	.52 .2		6	7	.39		<.01	3 1		.02	.41	<2	3
K95 AL 15	11	256	170	133	2 3	250	71		22.31	914	<5	-2	7	11	<.2	60	3	55	.30 .		2	<1	2.10	8	.01	<3 7		.01	.05	<2	4
K95 AL 16	4	1178	170	11	- 3	188	72		4.97	214	<5	<2	10	58	<.2	5	3	0	16.06 .0		4		6.74	100	<.01	1000	.07	.01	.01	<2	2
K95 BP 10 K95 BP 11	2	47	9	15	.7	72	14	307	2.83	4	<5	<2	8	26	<.2	2	<2	66		286	53		1.30	306	.03		.32	.01	.69	<2	1
K95 BP 12	1	124	6	9	.5	106	32	725	3.34	8	<5	<2	18	70	<.2	6	<2	13	8.43 .		56	1000	3.08	123	<.01		.39		.23	<2	4
K95 BP 13	2	8	10	27	<.3	239	36	620	5.29	5	<5	<2	7	51	.3	4	<2	71	6.27 .		6	100	1.79	14	-44	8 1		.01	.44	<2	2
RE K95 BP 13	2	7	11	27	<.3	227	36	611	5.17	7	<5	<2	7	51	.3	3	<2	70	6.18 .	139	5		1.75	14	.44	8 1		.01	.42	<2	1
RRE K95 BP 13	2	10	11	34	<.3	321	47	763	6.26	5	<5	<2	12	64	.3	4	<2	81	7.78 .		7		2.19	17	.47	9 1		.01	.56	<2	1
K95 BP 15	<1	134	18	157	.4	78	44	1090	8.65	305	<5	<2	2	77	.2	9	<2	109	2.52 .	113	2	120	2.80	49	<.01	<3 3	. 17	.03	.08	<2	13
K95 BP 16	2	14	5	8	<.3	40	6	617	1.67	2	<5	<2	8	295	<.2	4	<2	8	10.66	026	7	12	5,63	16	<.01	12	.09	.01	.07	<2	1
24K FN	167	12	6	3	<.3	7	1	52	.36	<2	<5	<2	5	14	<.2	2	<2	3	.20 .0	002	<1	8	.10	27	.01	<3	.16	.06	.08	<2	1
25K FN	3	324	31	7	<.3	282	51	62	2.87	<2	<5	<2	3	472	<.2	<2	6	20	6.71 .0	086	1	27	-10	50	. 15	<3 9	.76	.21	.03	<2	1
26K FN	11	208	5	6	.5	10	5	570	1.36	<2	<5	<2	2	49	.2	2	3	30	.85 .	141	2	9	.06	14	.04	The second of the latest and the second	.44	.09	.02	3	1
STANDARD C/AU-R	21	60	lale	131	6.5	70	34	1023	4-06	42	15	1	40	52	19.0	19	21	62	.51 .6	093	40	56	.93	189	.08	25 1	.86	.06	-14	10	480

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: P1 ROCK P2 SOIL AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 27 1995 DATE REPORT MAILED:

......D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY ...

G.H. Klein & Associates FILE # 95-3786

Page 2

																														ACRE AN	MUTTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sp	Bí ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B B	Al %	Na %	K X	ppm W	Au* dag
K95 BP 1S FIN K95 BP 2S FN K95 BP 3S FN K95 BP 4S FN RE K95 BP 4S	1 <1 1 1	10 19 10 19 19	8 11 14 19 21	28 32 107 82 80	<.3 <.3 <.3 <.3 <.3	22 44 24 44 42	6 12 7 12 12	281 516 803 550 543	2.68	3 5 3 11 10	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	\$ \$ \$ \$ \$ \$ \$ \$	-	.2 <.2 <.2 .2	2 5 4 5 4	\$ \$ \$ \$ \$ \$ \$	35 1 29 45 2	.54 .	.054 .074 .125 .082 .081	9 13 10 17 16	37 31 38		63 104 177 252 248	.03 .03 .03 .04		.47 .69 1.00 1.22	.01 .01 .01 .01	.04 .05 .07 .11	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3 1 2 1 2

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

JAN 1 8 1996

F-~(604)253-1716

GROCHEMICAL ANALYBIS CERTIFICATE

G.H. Klein & Associates File # 95-2885 Box 2059, Prince George BC VZN ZJ6

Сu Ni Co Mn Αu Th Sr Cd Sb SAMPLE# Mo Zn As X POIII DOM × X ppni DOM PPM DOM DOM DOM PPRI DOM DOM pore pom DD@ ppm DOM pon ppm ppm ppm ppm .02 .005 21 .01 36 < .01 <3 .03 <.01 3 3 K95 AS 01 <.3 15 <2 2 <2 <2 5 31 17 3 85 1,62 <5 .2 5 <2 2.0 <2 <2 141 .51 .270 55 452 1.37 436 .06 <3 2.30 .01 .30 <2 K95 JW 01 114 .5 537 67 2733 12.35 16 4 <1 138 1.98 5 .58 <3 2.96 .08 <.01 <2 3 <.2 <2 <2 173 1.81 .049 <1 K95 JW 02 <1 53 ⋖3 34 .4 62 15 530 6.35 <2 <5 <2 <2 55 2 .78 .076 16 .94 <3 1.46 .12 .15 <2 2 ⋖3 42 .3 13 7 383 <2 <5 <2 .4 2 70 8 80 .16 K95 FN 04 2.97 .22 10 <.3 100 **.7**0 <5. <2 37 <.2 3 <Z 5 .04 .009 10 .04 81 <.01 <3 .37 <.01 16 6 1 6 K95 FN 05 .01 358 < .01 <3 .28 <.01 <.3 13 .56 13 <5 <2 13 2 .02 .003 K95 FN 06 11 10 6 1 107 2 454 1.30 <2 5 <2 2 14 <.2 <2 <2 19 .07 .029 13 17 .54 702 .01 3 _64 _01 _18 <2 5 24 <.3 13 K95 FN 07 3 62 23 1.07 157 .05 <3 1.11 .03 .52 <2 5 70 5 129 .3 35 7 252 2.00 <2 6 .6 <2 <2 29 .03 .011 10 <1 K95 FN 08 6 .34 .06 .23 5 <2 <2 <2 1 .31 .015 29 5 .03 351 <.01 <2 1 69 <.3 25 <1 1294 2.14 18 <.2 K95 FN 10 5 3 2.93 .24 1.37 52 28 653 6-47 123 1.51 .307 36 1.51 K95 FN 11 166 1.0 .03 .004 17 ...03 749 .01 <3 .08 .01 .04 7 <.3 92 .71 <5 <2 <2 18 <.2 <2 <2 3 6 K95 FN 12 14 <₹ 12 <2 K95 FN 13 1.8 67 25 38 17.38 156 <5 <2 <2 5 <.2 4 3 8 _02 _011 14 .05 20 .01 9 .22 .01 .09 <2 450 5 247 47 10 <5 <2 <2 33 <.2 <2 <2 34 .44 .048 10 .97 135 .08 3 1.06 .11 . 15 <2 K95 FN 14 31 ⋖3 57 16 7 445 2.53 3 6 .4 <5 <2 <2 33 <.2 · <2 <2 33 .43 .047 11 .95 144 .07 <3 1.03 .10 <2 RE K95 FN 14 2 31 3 .4 16 7 434 2.44 35 34 .43 .047 .96 .07 3 1.08 .12 RRE K95 FN 14 32 57 16 7 445 2.46 12 K95 FN 15 107 68 505 3.44 1655 <5 <2 3 37 <.2 <2 <2 81 .53 .073 .70 188 <.01 3 .78 .10 15 2 112 16 -4 86 <2 133 1.83 .062 18 1.43 85 .27 5 3.99 -49 .76 <2 5 39 .5 25 26 462 4.68 <5 <2 <2 160 <.2 <2 4 K95 FN 16 59 .82 11 2.90 .09 .04 <2 22 <2 <2 31 <.2 <2 <2 175 2.14 .111 12 73 1.96 K95 FN 17 <1 114 <3 86 .7 95 26 544 6.74 <2 36 51 17.5 20 66 .52 .095 43 54 .96 176 .09 31 1.86 .06 12 470 61 35 127 7.0 72 30 1048 3.82 40 20 6 STANDARD C/AU-R 18

> ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNG3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY. D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

PLEASE NOTE=samples shown as K95FN #4 to #17 are taken along road marked in yellow, this road is new development and not shown on maps so location of road is approximate.

JAN 18 1996

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

44

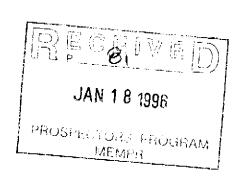
GEOCHEMICAL ANALYSIS CERTIFICATE

<u>Fred Nilsen</u> File # 95-2588 7078 Harvard Crescent, Prince George BC V2N 2V7 44

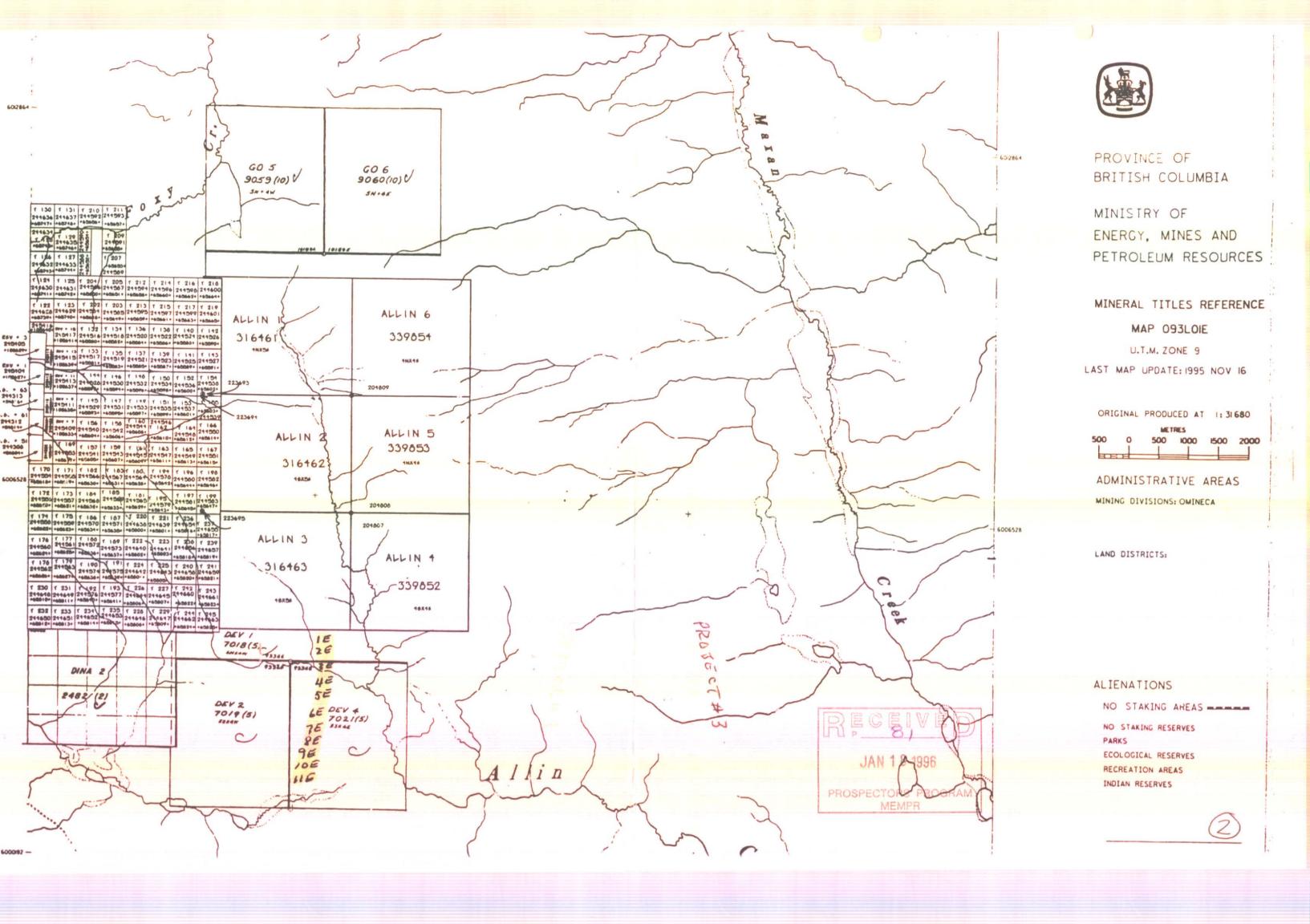
SAMPLE#	Mo ppm			Zn. ppm	_		Co ppn			As Ppm		Au ppm			Cd ppm		-	V Ppm	Ca %	P %		Cr ppm		Ba ppm	Ti %	ppm ppm	Al %	Na %	K %		Au*	Hg ppb
1E	4	374	268	20	2.6	13	1	554	.81	16	5	<2	<2	11	٦.	4	29	<u> </u>	12	.027	Ω.	36	.02	16-	01		Λο	- 01				
2 E	6	469	73	8	21.9		7	82				_	_	12			65			.003	_	18				-	.08					10
3E	11	2855	107	639	7.7		162		33.99			₹2	7	20	1.6		11			.005			1.41				.07					40
4E		271	,	22		87	31		12.44				3		<.2			13			13				.01		4.11			_	48	105
5E					183.3				7.90											.092		12	.02 .35		.01 .01		.13· .95				930 540	10 685
6E	9	615	24	67	1.0	53	33	165	2.66	15	<5	<2	3 .	238	.7	<2	7	9	6.00	.003	2	9	. 13	88	กร	<3	8.32	16	03	16	10	10
7 E	73	28	74	15	3.8	10	6	31	10.24			<2							.08		11		.02				.21				180	25
8 Ę	6	41	39	77	1.6	51	12	603	4.82		_	<2			2.0	_			1.15		, .	•				-				√2		
9E	6	49	14	59	<.3	49	14	590	4.28	11	-	₹2		-	2.0	_				.195			1.80			_	1.65				14	20
RE 9E	6	52	17	63	.3	52	15		4.47		_	<2	5	92	1.9	<2			1.15				1.88			_	1.72			<2 <2	4	20 20
RRE 9E	6	34	20	66	<.3	50	15	608	4.39	11	5	<2	5	92	2.1	<2	10	92	1.13	.201	14	32	1.87	16	27	3	1.72	06	OB.	₹2		15
10E	5	86	17	86	.3	46	8	733	4.00	27	9	<2	8	85	.5		5		1.50		48		1.78				1.85			<2	7	15
11E	4	23	24	62	₹.3	12	3	464	1.51	4		_	_	25	.6	-	3	19		.035						- 7	.52			\2	4	12
STANDARD C/AU-R	20	59	38	134	6.7	76	32	1109	3.91	40					19.4	_	22		.51								1.84			_	/00	20 1860

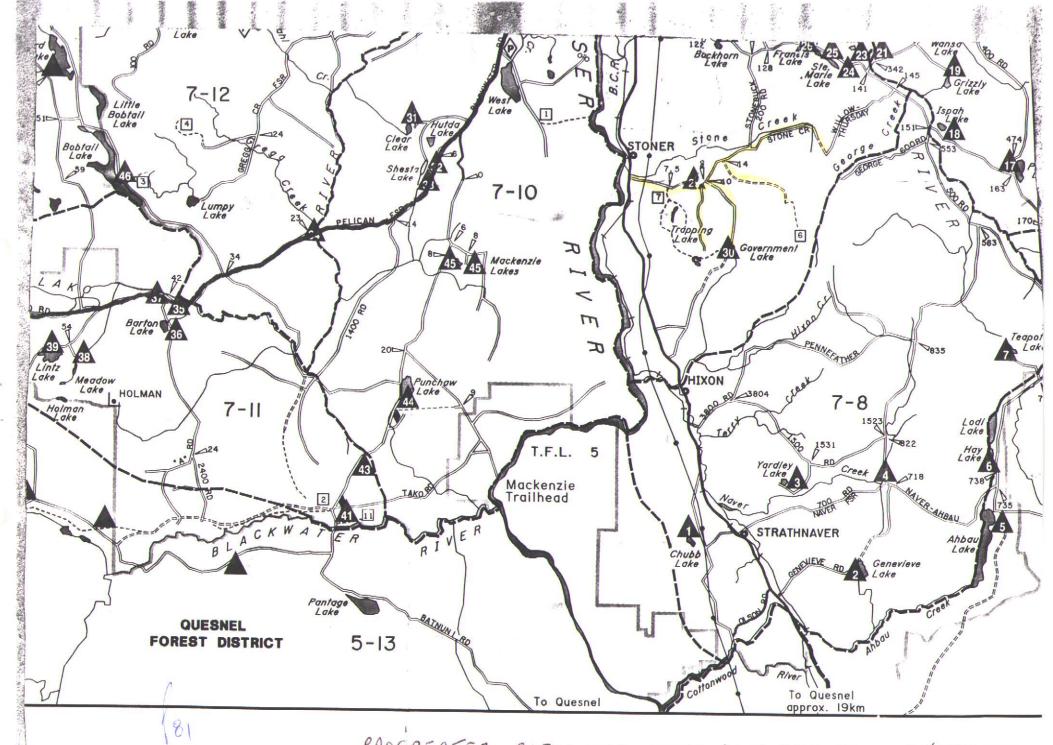
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

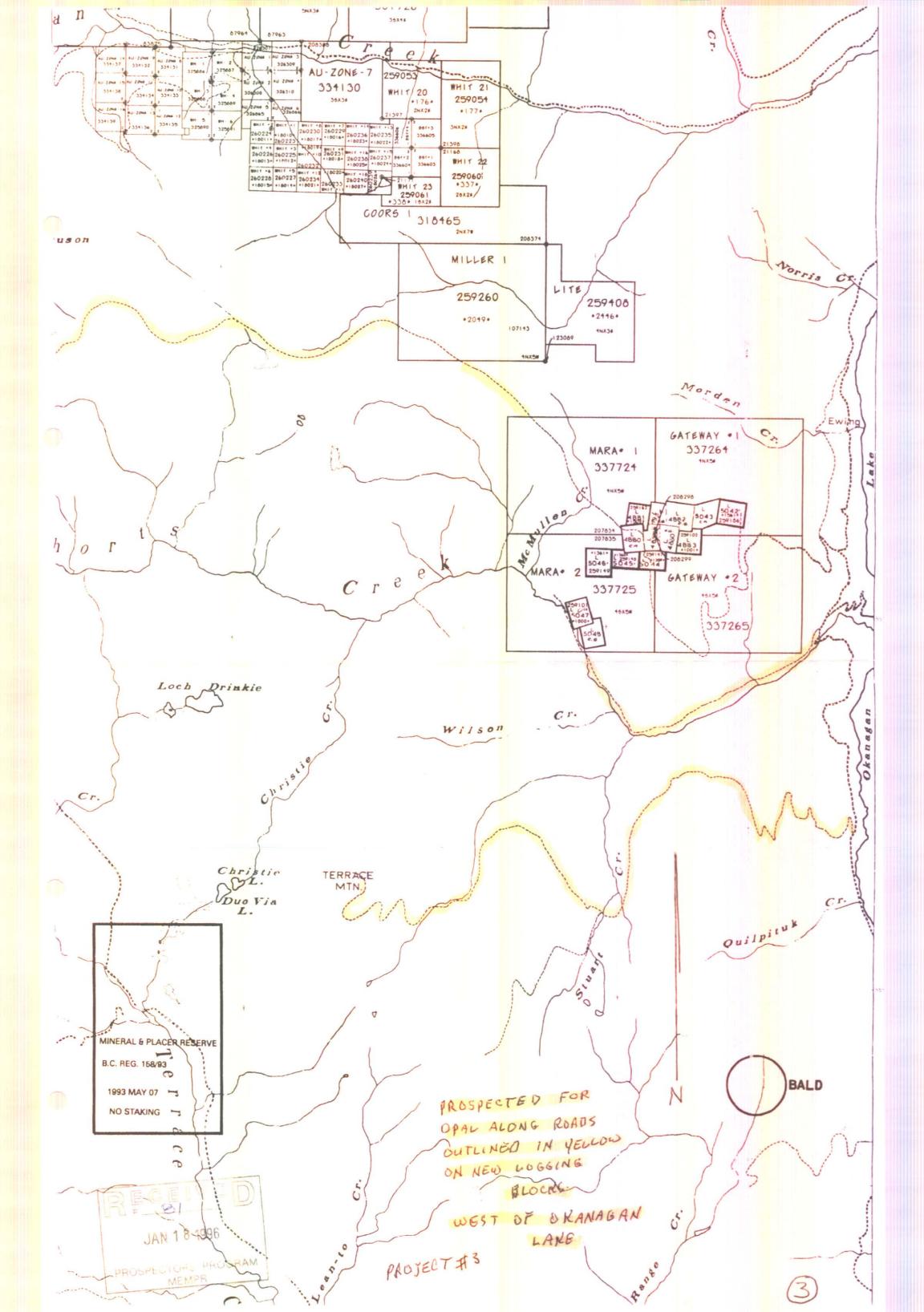

- SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. HG ANALYSIS BY FLAMELESS AA.

Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.


ATE RECEIVED: JUL 28 1995 DATE REPORT MAILED:


Any 4/95

SIGNED BYD.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS


-

PROSPECTED CLEAR CUTS ALONG ROAD TRACED IN YELLOW.

PROJECT #3

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

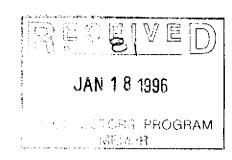
B. TECHNICAL REPORT

One technical report to be completed for each project area
Refer to Program Requirements/Regulations, section 15, 16 and 17
If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

	Reference Number 95796 P081
LOCATION/COMMODITIES AREA	# 4
	AG-CU-PB-ZN Minfile No. if applicable
	And 93G Lat 53° 40' N Long 123° 50' W
Description of Location and Access Acc	es via the Bobtail forest service road, leaving highwa
	e east end of Cluculs lake.then in on the 400 road and
the 800 roads.	
Main Commodities Searched For_AU	AG PB CU ZN MO
Known Mineral Occurrences in Project	Area None.
WORK PERFORMED	
l 1 Conventional Prospecting (area) Ar	200 # N Floot proceposting compling outerons
1. Conventional Prospecting (mod)	rea # 4,Float prospecting,sampling outcrops.
2. Geological Mapping (hectares/scale	e) None
Geological Mapping (hectares/scale Geochemical (type and no. of samp)	e) None. les) 25 Rock samplse and five soil samples.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of samp 4. Geophysical (type and line km)	les) 25 Rock samples and five soil samples. None.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of samp 4. Geophysical (type and line km)	e) None. les) 25 Rock samples and five soil samples.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m,	None. les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount)_F_1 6. Drilling (no. holes, size, depth in m,	None. les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, 7. Other (specify) Much climbing fair 5. COLUMN PESULTS (if any)	None. None. None. None. None. Note sampling, soil sampling, sampling outcrops. Notal m) znone. The sampling outcrops looking for mineralization.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, 7. Other (specify) Much climbing fair 5. COLUMN PESULTS (if any)	None. None. None. None. None. Note sampling, soil sampling, sampling outcrops. Notal m) znone. The sampling outcrops looking for mineralization.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) For the same and line km) For the formula of the same and amount) For the formula of the same and	None. les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone. rly abundant rock outcrops looking for mineralization. IN Float Claim Name None. Long 124 06W Elevation 3460 Ft.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) For the same and line km) For the same and amount) For the same and amount) For the same and same	None. les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone. rly abundant rock outcrops looking for mineralization. IN Float Claim Name None. Long 124 06W Elevation 3460 Ft.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) For the following fair 6. Drilling (no. holes, size, depth in m, 7. Other (specify) Much climbing fair SIGNIFICANT RESULTS (if any) CommoditiesCU, PB, ZN, AG Same AU. I Location (show on map) Lat 53 34N Best assay/sample type Float rock #1	None. les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone. rly abundant rock outcrops looking for mineralization. IN Float Claim Name None. Long 124 06W Elevation 3460 Ft. 41-42-43 carbonaceus tuff.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) For the same and line km) For the following fair for the form of	les) 25 Rock samples and five soil samples. None. None. Loat sampling, soil sampling, sampling outcrops. Lotal m) znone. Lotal m value abundant rock outcrops looking for mineralization. Long 124 06W Elevation 3460 Ft. Lang 124 06W Elevation 3460 Ft.
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, 7. Other (specify) Much climbing fair SIGNIFICANT RESULTS (if any) Commodities CU, PB, ZN, AG Same AU. I Location (show on map) Lat 53 34N Best assay/sample type Float rock #4 Description of mineralization, host rock found in a thin layer of glacial	les) 25 Rock samples and five soil samples. None. loat sampling, soil sampling, sampling outcrops. total m) znone. rly abundant rock outcrops looking for mineralization. IN Float Claim Name None. Long 124 06W Elevation 3460 Ft. 41-42-43 carbonaceus tuff. ks, anomalies The best samples where in float that was till covering basalt that outcrops quite abundantly
2. Geological Mapping (hectares/scale 3. Geochemical (type and no. of sample 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, 7. Other (specify) Much climbing fair SIGNIFICANT RESULTS (if any) Commodities CU, PB, ZN, AG Same AU. I Location (show on map) Lat 53 34N Best assay/sample type Float rock #4 Description of mineralization, host rock found in a thin layer of glacial	les) 25 Rock samples and five soil samples. None. None. None. Notal many soil sampling, sampling outcrops. Lotal many s

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716


GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 95-4939 7078 Harvard Crescent, Prince George BC V2N 2V7

SAMPLE#	Mo				Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm		Sr MQQ	Cd ppm	Sp pbw		Ppm V	Ca %	P %	La ppm		Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	К %	ppm p	
37K	34	199		10	. 4	7	4	138	1.94	3	7	<2	3	53	.2	<2	<2	25	.42	.076	7	11	.04	353	.07	<3	.33	.10	.05	3	3
38K	5	192	_	34		ġ	5		3.20	_	< 5	<2	2	93	.4	_	_	60	1.37	.104	14	10	.93	34	.17	<3	1.99	. 17	. 14	7	2
39K	25	35		8	<.3	é	ž		2.01		_	<2	<2	3	.2	_	3	63	.09	.004	1	12	.02	16	.05	<3	.39	.04	.02	4	3
40K	1 4	16	_	259	<.3	ģ	20	1264		_	<5	<2	2	9	.8	<2	4	36	.08	.046	10	6	.44	276	.01	<3	1.76	.01	.57	14	2
41K	<1	265		99999		18		6537			<5	<2	<2	63	635.2	75	<2	16	7.65	-014	<1	13	1.88	30-	<.01	<3	.22	<.01	.12	<2	26
42K	<1	2261	21644	34087	304.2	21	19	7399	3.63	28	<5	<2	<2	79	190.8	528	<2	40	9.07	.016	<1	35	1.28	36	<.01	<3	.20	<.01	.11	8	80
43K	<1	643	19383	9434	265.4	23	13	7781	4.28	31	<5	<2	<2	52	49.8	605	<2	30	4.09	.021	1	24	1.19	40	<.01	<3	.36	<.01	. 12	<2	29
44K	6	205	934	690	2.4	5	2	352	2.37	3	<5	<2	5	87	3.2	4	<2	40	. 94	. 164	5	14	.08	53	.05	<3		. 12		<2	2
RE 44K	8	199	871	669	2.4	5	2	316	2.30	<2	<5	<2	4	83	3.3	5	4	37	.90	. 161	5	13	.08	52	-05	- 3		. 11		<2	1
RRE 44K	7	200		686	2.5	5	2	324	2.32	<2	<5	<2	4	83	3.2	4	4	38	-91	. 162	5	14	.08	51	.05	<3	.54	.12	. 05	<2	1
45K	5	33	1709	364	4.7	12	1	128	.81	4	5	<2	<2	2	1.9	6	12	7	.08	.002	<1	14	.01	4	<.01			<.01		2	2
46K	3	3754	683	81	7.8	14	4	566	2.76	6	<5	<2	<2	65	1.2	5	<2	29	9.33	.049	3	114		1316	.09			.01		=	56
47K	3	3276	113	107	4.0	1407	105	292	4.74	2	<5	<2	<2	26	1.2	2	<2	65	1.42	.016	<1	423	2.62	40		-	1.53		.08	<2	4
4 8K	3	36	123	74	.4	27	7	237	2.24	<2	<5	<2	4	80	<.2	<2	<2	59	.87	. 148		17	.47	171	.19	_			.26	<2	-
STANDARD C/AU-R	21	58	38	145	6.3	65	31	1006	3.88	39	17	8	37	50	17.7	20	17	66	.53	.092	39	60	.89	176	.08	26	1.87	.06	. 15	11 4	450

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: DEC 4 1995 DATE REPORT MAILED: DEC 7/45 SIGNED BY. A. C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHENICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 95-3969 7078 Harverd Crescent, Prince George BC VZN ZV7

SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	B i ppm	bbw A	Ca %	P *	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	ppm B	AL %	Na %	K %	ppm	Au* ppb	_
27K 28K 29K 30K 31K	5 8 2 2	186 192 299 43 858	3 3 3 3	17 50 67 68 43	.5 .6 .7 .4 2.2	29 10 12 455 24	8 9 17 37 194	458 807 692	3.86 15.16 6.57 4.89 43.21	21 5 6 3 77	<5 <5 <5 <5 <5	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	<2 <2 <4 <2	20 15 21 374 3	<.2 <.2 .3 .2 1.4	3 2 5 2 2	3 2 3 3 5	99 110 191 60 <1	.27 . .80 . 2.09 .	.028 .071 .133 .130 .001	5 9 9 22 1	27 10 4 77 2	.61 .30 .92 6.25		.04 .29 .29 .17 <.01	_	1.01 .71 1.16 2.56 .02	.06 .06 .06 .36 .01	.02 .08 .10 .16 <.01	2 2 3 3 5	10 2 4 1 220	
32K 33K RE 33K RRE 33K 34K		156 295 294 319 79	42 성 성 성	99 15 15 16 28	1.6 .5 .5 .6 <.3	32 239 239 260 49	24 43 43 46 18	424 140 126 134 289	3.70 3.75 3.73 3.99 2.24	33 3 3 5 <2	<5 <5 <5 <5	<2 <2 <2 <2 <2	\$ \$\$ \$\$ \$\$	137 19 19 20 12	1.4 .2 <.2 <.2 <.2	7 2 <2 3 3	3 2 2 3 <2	17 17	1,39 . 1,48 .	.097 .094 .101	3 4 4	11 51 51 53 97	.32 .37 .37 .40	20 18 18 19 16	.35 .35	उ उ	.36 .40	.05	.15 .04 .04 .04 .04	2 2 2 2 2	3 1 1 1 1	
35K 36K	24 3	54 162	<3 <3	12 17	<.3 .4	10 66	3 15	119 140	.78 2.28	8 3	6 <5	<2 <2	17 4	22 17	<.2 <.2	<2 2	3 7	13 28	. 35 . 88	.023 .088		15 52		63 74		∢3 ∢3		.09 .12	.06 .07	<2 63	1 2	

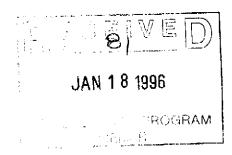
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 2N AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

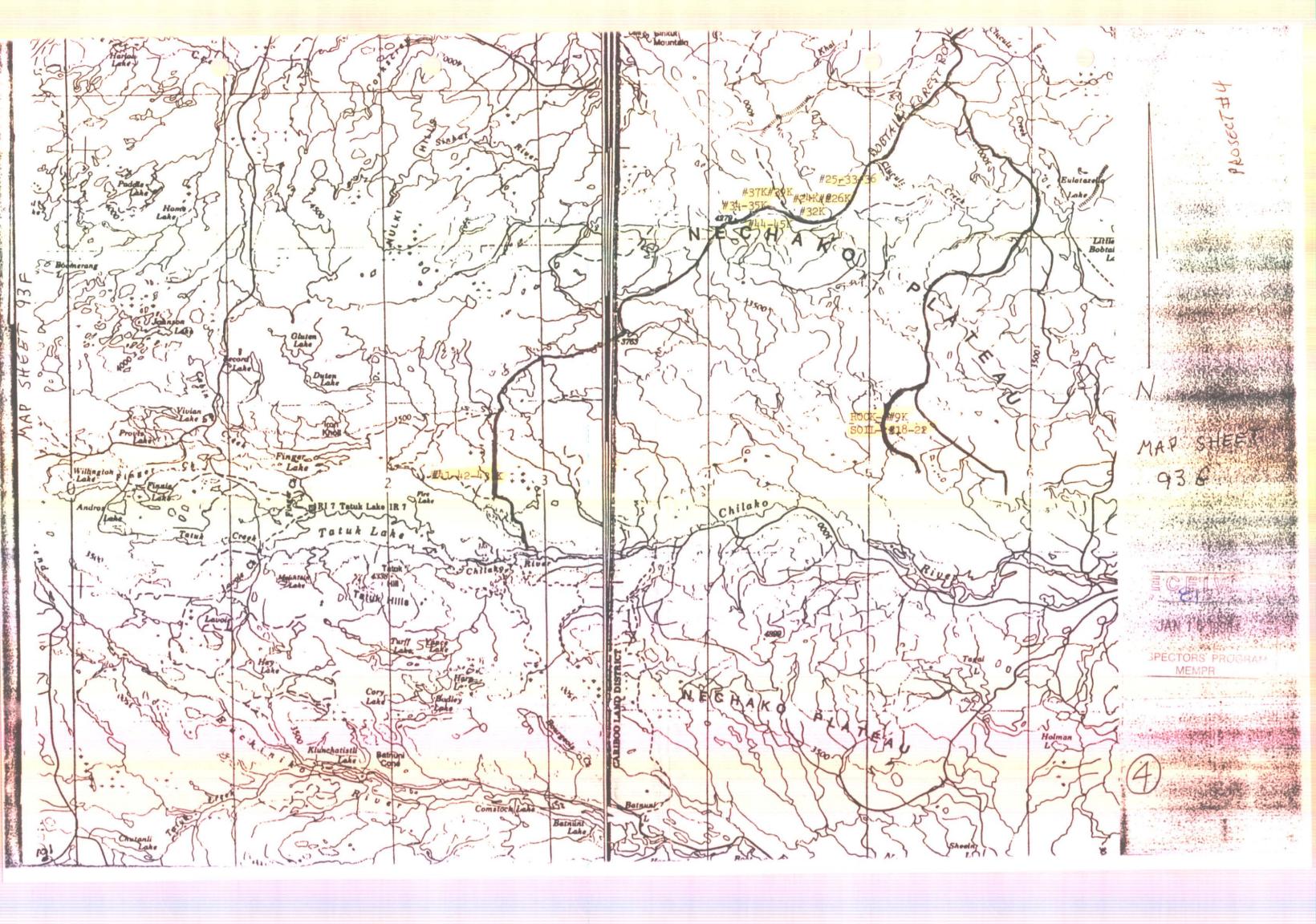
- SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

16/95 SIGNED BY. M. M. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

JAN 1 8 1996

PROSPECTIONS PROGRAM MEMPA


Fred Nilsen FILE # 95-3483



ACRE AMALYTICAL																															•	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppn	\$r ppm	Cd	Sb	Bi ppm	V	Ca %	P %	La ppm	Çr ppm	Mg %	Ba ppm	Ti %	B ppm	AL %	Na %	K %	ppn W	Au* ppb	
	PP	PP.II	FF	F	F.F	FF		P P		· · · · · · · · · · · · · · · · · · ·										_												
	_		,	~	-	407	47	532 2	5 EZ	8	<5	<2	2	38		2	<2	45	.37	.019	11	103	.86	91	.11	5	1.12	.03	.04	<2	1	
13\$	1	16	6	24	د.	103	13			_	-	-		==		-2	7	37				60	.56	67	13	<3	1.08	.03	.04	<2	1	
14S	1	9	4	25	< .3	50	6			<2	- 5	<2	- 4	31	<.2	~2	3				,				.13	5	.91	.02	.04	<2	1	
158	1	8	7	22	<.3	33	5	220 '	1.42	3	<5	<2	2	26	.3	2	<2	27		.014	. y	49	.46	58		-					÷	
16\$	1	26	9	31	<.3	73	8	183 2	2.28	4	<5	<2	4	40	<.2	<2	4	35	.48	.065	20	140	.69		.12	_	1.13	.03	.04	<2	-	
17S	-	45	Ω	32		247	25	2892		6	≺5	<2	3	47	<.2	2	2	61	.51	.022	21	129	.79	309	.10	3	1.66	. 03	.06	<2	5	
1/5	٠	4.7		JE	-4	E-71		LUIL .		_	-	-	_	•••			_															
					_					-		-9	-	70		7		53	.67	.084	14	43	.96	111	.20	<3	1.20	.07	. 10	<2	1	
185	1	27	6	65	<.3	48	14			- (<5	<2	2	78	_	2	7				47		.92		.20		1.17	.07	.09	<2	2	
RE 18\$	1	27	5	61	<.3	44	13	501	3.46	4	<5	<2	2	76		3	<2	52	.64	-	13	40								<2	5	
19\$	1	28	4	77	<.3	47	13	496	3.53	5	<5	<2	2	77	≺.2	<2	5	52	.62	.077	13	41	-96	116	.20	_	1.19	.06	-10	_		
20\$		28	- 1	66		45	12	497	3 SR	6	<5	<2	3	80	<.2	<2	3	55	.62	-083	14	42	.94	115	.21	3	1.17	.07	.09	<2		
			7							7	< 5	<2		76	.8	2	<2	56	-61	.079	14	43	.99	113	.21	<3	1.21	06	-11	<2	1	
218	1	32	6	78	<.3	42	12	277 ·	3.07	4	*>	\ 2	,	10	.0	-	-2	- 30														
	1										_	_	_			_	_			001			02	127	.21	7	1.18	0.7	.10	<2	1	
2 2 S	1	29	6	68	<.3	40	13	529	3.53	8	<5	<2	3	80	.3	2	<2	53	.64	.084	14	41	.92	127	- 21		1.10	-01	- 10		<u>-</u> _	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

***	~: ~:	, I.E.	Ī.	₩.	in.	M
:=: P		S	ı			

B. TECHNICAL REPORT

One technical report to be completed for each project area

JAN 18 1996

Refer to Program Requirements/Regulations, section 15, 16 and 17

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORTSPECTORS PROGRAM MEMPR.

Name Fred J. Nilsen.	Reference Number 95-96 p081
LOCATION/COMMODITIES	
Project Area (as listed in Part A.) Area # 2	Bobtail MtrMinfile No. if applicable
Location of Project Area NTS 93g	Lat ⁵ 3"45N' Long 123°15W'
	located N.E.of Bobtail mountain, acces to the east
-	ng hyway 16% of prince george 25Km west of P.G.
	ogging road west of Bednesti Lake service station
one half Km.	
Main Commodities Searched For AU, AG, CU,	DR 7N W
Main Commodities Searched For 110, 110, 110, 110,	2 2 3 2 4 5 11 4
Variable and Orange in Paris at Assa	Mana
Known Mineral Occurrences in Project Area	Rolle.
WORK PERFORMED	
1. Conventional Prospecting (area) Area #2	2.Float prospecting, looking for rock outcrops etc.
2 Carlesian Morning (hartons /amla) NC	one.
3 Geochemical (type and no of samples) Sc	il sampling 17 samples.Rock-42 samples.
1 / ~	
5 Physical Work (type and amount) Colect	ing samples for assay, traverses looking for outcrops
	· · · · · · · · · · · · · · · · · · ·
6. Drilling (no. holes, size, depth in m, total	,
7. Other (specify) Panning small creeks t	o try and pick up mineralization.
SIGNIFICANT RESULTS (if any)	OL '- NI
Commodities AU AND CU	Claim Name None.
Location (show on map) Lat 53 45′ 50N	Longitude Blanch Blevation 2000 F.
Best assay/sample type Rock #9G Skarn-AU/	
	ntine with 1.10% CU and 160 PPB AU. omalies All samples are float.THERE are some skarnish
	mineralization, but also some of the limestones
	chite.it appears the mineralization may originate
	oil survey in the area, however before starting I
	st was to become protected area so untill that
is resolved the area is off limits.	50 was to occome protected area so untill that

Supporting data must be submitted with this TECHNICAL REPORT.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 95-1581 7078 Harvard Crescent, Prince George BC V2N 2V7

	SAMPLE#	Mo			Zn ppm	_		Са	Mn ppm		As ppm		Au DOM I		Sr DDM	Cd ppm	Sb mod		V	Ca %	P %	La ppm		Hg %	Ba ppm	Tí %	B ppm	Al %		K %		Au* ppb	
		''' -		1.	FF											FF	J- F						F F										
}	K88 GREGG	4	3	<3	3	<.3	4	<1	42	.22	70	<5	<2	10	7	<.2	4	<2	1	.06	.004	35	6	.02	32<	.01	<3	. 28	.01	. 25	<2	12	
2	K89 GREGG	53	18	24	13	.4	11	2	63	.47	157	13	<2	8	28	.2	18	-2	2	.02	.006	29	5	.04	1461-	.01	<3	.39	<.01	.28	<2	44	
3	K90 GREGG	3	5	15	89	<.3	7	2	521	1.99	53	<5	<2	2	10	<.2	2	<2	5	.06	.024	20	8	.22	99<	.01	<3	.50	.01	. 19	<2	9	
ŭ	K91 GREGG	3	18	3	43	<.3	10	1	506	1.76	21	<5	<2	35	5	.2	<2	<2	4	.03	.004	47	9	.29	15	.05	<3	.50	.05	.30	<2	5	
3	K95 GREGG	1	15	<3	39	<.3	7	6	471	3.76	31	<5	<2	<2	25	<.2	<2	<2	17	.58	.029	3	3	.96	13	. 15	<3	1.35	.06	.02	<2	51	
1	K96 GREGG	2	79	5	12	<.3	11	6	250	3.52	19	<5	<2	<2	8	<.2	2	2	7	.43	.031	1	9	.58	15	.10	-3	.98	.06	.02	<2	8	
ž	K97 GREGG	25	9	22	11	.6	4	3	63	1.55	16	<5	<2	3	15	<.2	<2	<2	3	.16	.066	11	5	.02	57-	:.01	3	.31	.01	.24	<2	11	
ó	K98 GREGG	1	22	<3	27	<.3	18	6	235	1.76	285	<5	<2	<2	4	1.3	3	2	11		.036	6	13	.02	103<		5	.30				33	
S ₂	K99 GREGG	12	3994	5	19	6.6	<1	<1	453	14.43		<5	3	2	6	1.6	5	25	36	16.92	.010	2	3	-07	21	.01	44	. 17	.01	.01	125	3720	
4	RE K99 GREGG		3871	8	19	6.2	2	<1		14.18		<5	<2	<2	6	1.6	3	32		16.77		2	3	.06		.01	44	. 17	.01			3970	
ą	RRE K99 GREGG	11	3991	7	20	6.2	<1	<1	450	14.35	43	<5	<2	<2	6	1.5	4	33	36	16.69	.009	2	4	.07	16	.01	45	.16	.01	.01	125	4250	
	K100 GREGG	27	36	37	3	2.9	5	3	37	2.89	14	<5	<2	<2	18	<.2	<2	<2	6	.09	.049	13	7	.04	21-	.01	<3	.31	.01	.33	<2	23	
	K101 GREGG	3	689	5	106	1.6	6	2	126	.31	33	<5	<2	<2	44	1.1	2	2	2	24.54	.006	1	3 1	3.94	4.	.01	26	.03	<.01	.01	<2	24	
	zK102 GREGG	1	1440	<3	21	.9	1	1	134	.45	23	<5	<2	<2	52	<.2	4	<2	2	19.88	.006	1	2 1	4.06	6.	.01	<3	.01	.01	.01	- 2	57	
	K103 GREGG	12	11029	7	62	8.3	9	9	150			<5	<2	<2	5	.7	31	69	-	1.32		3		2.85			316	.44	<.01			160	
	gK104 GREGG	2	173	100	62	4.3	9	<1	219	.34	10	<5	<2	<2	56	2.1	36	3	5	4.85	.008	2	11	3.19	21	<.01	4	.01	.01	<.01	<2	11	
	STANDARD C/AU-R	20	62	38	130	7.5	74	34	1072	4.26	41	18	7	37	50	18.9	18	21	61	.54	.093	44	61	.96	183	.08	28	1.96	.06	. 16	9	530	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED: July 2/95 MAY 24 1995

SIGNED BY.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

JAN 18 1996

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 95-1868 Page 1 7078 Harvard Crescent, Prince George BC V2N 2V7

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Nî	Сo	Mn	Fe	As	u	Au	Th	Sr	Cd	Sb	Βî	٧	Сa	P	La	Cr	Mg	Вa	Τí	В	ΑL	Na	K	W	Au*
	bbm	ppm	bbw	ppm	ppm	þþm	bbu	ppm	%	ppm	ppm	ppm	bbu	bbu	ppm	ppm	ppm	ppm	*	*	ppm	ppm	%	ppm	*	ppm	*	*	*	ppm	ppb
15-G	1	77	<3	59	<.3	32	11	365 3	3.45	9	<5	<2	<2	83	.4	2	<2	89	3.16	.064	1	41	1.11	121	.24	4 1	.36	.07	1.00	<2	4
16-G	3	17	10	70	.3	12	2	226 3	.17	9	6	<2	3	42	.3	3	<2	29	.42	.088	11	15	.98	79	. 13	5 1	.52	.04	.22	<2	4
17-G	1	16	<3	68	<.3	37	6	1370 4	.79	8	<5	<2	<2	86	.2	2	<2	102	1.41	.077	4	15	.85	18	.11	4 1	.48	. 05	.06	<2	8
18-M.R.	<1	38	<3	41	<.3	2828	134	1002 5	.68	7	11	<2	<2	11	.5	<2	2	42	.06	.003	1	1878	16.45	34	<.01	71	.81	.01	<.01	<2	8
19-G	<1	10	<3	23	<.3	2475	97	677 3	.87	10	<5	<2	<2	7	.3	<2	<2	∙19	.04	.003	1		16.52		<.01	39	.39	<.01	<.01	<2	Z
20-G	2	30	3	27	<.3	35	11	273 2	2.87	17	<5	<2	<2	18	.4	3	<2	53	.31	.045	2	21	1.40	70	. 13	6 1	.47	.03	. 16	<2	55
21-G	1	227	<3	25	<.3	64	13	408 2	2.82	8	<5	<2	<2	30	.2	2	<2	63	2.36	.013	<1	111	1.79	8	. 15	4 1	.32	.04	.03	<2	5
22-G	234	267	3	16	.5	14	2	157	.35	37	<5	<2	<2	38	<.2	<2	7	3		.018	1	3	7.89	17	<.01	29	.07	.01	.02	31	30
23-G	3	517	<3	17	.3	7	1	146	.22	18	<5	<2	<2	60	<.2	<2	2	1	20.01	.009	1	3	11.04	7	<.01	4	.01	.01	.01	<2	160
24-G	15	500	<3	19	.5	10	2	150	.42	62	<5	<2	<2	48	<.2	<2	<2	2	22 .29	.007	1	3	13.25	28	<.01	91	.01	.01	.01	2	12
k_ 24-G	15	521	<3	20	.4	9	2	153	.43	61	<5	<2	<2	49	<.2	<2	<2	2	23.15	.007	<1	3	13.62	29	<.01	97	.01	.01	<.01	<2	13
RRE 24-G	15	529	<3	18	.4	7	2	151	.42	60	<5	<2	<2	49	<.2	<2	<2	2	22.95	.007	2	2	13.47	28	<.01	95	.01 •	<.01	.01	2	15
25-G	18	1238	<3	37	1.1	9	4	210	.71	58	<5	<2	<2	51	.3	<2	2	2	24.53	.008	<1	3	13.33	166	<.01	100	.01	.01	<.01	<2	12
26-G	19	1349	<3	13	1.0	7	2	139	.42	48	<5	<2	<2	49	<.2	<2	2	2	23.21	.007	<1	2	13.35	5	<.01	73	.01	.01	.01	<2	10
27-G	2	24	5	45	<.3	11	4	421 1	.77	5	<5	<2	3	12	<.2	3	<2	25	.63	.031	12	12	.61	122	.06	4	.73	.05	.40	<2	3
28-G	1	9	<3	8	<.3	1247	34	289 2	2.21	4	<5	<2	<2	229	<.2	<2	<2	9	19.31	.003	<1	85	14.13	17	<.01	3	.11	.01	.01	<2	1
29-G	1	8	<3	12	≺.3	25	10	303 3	5.56	<2	<5	<2	<2	23	.2	<2	<2	42	1.99	.025	<1	19	1.13	52	. 13	3 2	.00	.04	.01	<2	3
30-G	1	25	<3	48	<.3	16	16	650 3	3.77	<2	9	<2	<2	93	.2	<2	<2	64	1.24	.002	<1	6	2.62	26	.20	<3 2	.67	.03	.05	<2	2
31-G		1081	<3	10	.7	7	2	142	.54	28	<5	<2	<2	47	<.2	≺2	3	2	21.02	.006	<1	3	13.26	4	<.01	43	.06	.01	<.01	4	52
STANDARD C/AU-R	20	57	37	127	7.2	71	32	1081 4	. 23	43	20	6	37	51	17.7	18	22	69	.60	.095	41	58	.92	186	.09	29 1	₋ 81	.06	.16	10	470

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 ROCK P2 SOIL AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

JUN 19 1995 DATE REPORT MAILED: JUNE 29/45 SIGNED BY ...

.D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

JAN 18 1996

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

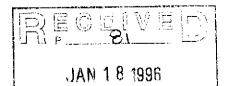
GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 95-2374 7078 Harvard Crescent, Prince George BC V2N 2V7

 SAMPLE#	Mo ppm	Cu ppm	Pb	Zn ppm	Ag	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bî ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ppm B	Al %	Na %	К %		Au* P ppb		ppb d**	
	•	3186	<3	36	7.1		4	577	3.41	<2	7	<2	2	76	1.0	<2	3	42	8.83	.056	4	162	.94	1165	.12	<3	1.17	.01	.04	3	57	•	-	
32-G		2144	19		3.1	17	44		12.46		Ś	<2	25	83	1.0	₹2	<2	13	.49	.009		11	.43	17	.05	<3	1.18	.05	.11	<2	93	-	-	
				151	1.7	65	50		13.11		7	<2	-5	14	<.2	<2	<2	154	.41	.030	3	80	1.25	12	.23	<3	2.00	.03	.10	610	4	-	-	
34-G	4	529			1.7		108	264	5.08		<5	<2	2	5		<2		26		.003		537	3.07	39	.02	<3	1.83	.01<	.01	3	2	3	<3	
35-G	1	101		<1	.3	903	89	142	3.04		< 5	<2	<2	7	.5	<2	<2	25		<.001		1223		19	.01	3	1.06	<.01<	.01	<2	9	3	17	
36-G	1	91	D	<1	د.	1177	07	146	3.04		~,		~~	-	.,		٦.																	
			-		. 7		٥	740	7 01	<2	<5	<2	<2	12	.8	<2	Ţ	Q	55	.041	<1	17	-97	5	. 14	<3	1.41	.08	.01	4	53	-	-	
37-G		722	3	57	<.3	17	y	368	3.81 .68			-∠ -<2	≺2	26	<.2	7	2	13		.043		21	.11			4		.06		2	63	-	-	
38-G	8		8	29	• <u>· · ·</u>	19	3	92			<5	=	3	20 8	1.2	<2	<u>۔</u>	20		.049		16	.03		<.01	Ä		<.01		<2	5	-	•	
39-N	4		6	128	٤.	28	ŏ	809	5.97	_	<5 -E	<2	_	_		_	3	22				69	.78		.11	Ĺ		.04		6	5	-	_	
40-N	1	31	<3	19	<.3	41	•	216	1.18		<5	<2	<2	42	<.2	<2	√ 2	3		.012		16	.03			3		<.01		2	8		•	
41-G	42	89	528	514	1.5	11	4	342	.83	31	6	<2	<2	12	8.0	•	٠.۷	9	.00	.012	_	10	.03	727		•	• • • •			-	_			
							_			7.4				42	7 0	7	<2	7	05	.012	. ,	14	.03	452	c 01	3	. 11	<.01	.03	3	8	-	-	
RE 41-G	41			512	1.3	11	5	284	.78		_	<2	_	12	7.8	,	=	7	.05			16				~ ~		<.01		2	10	_	-	
RRE 41-G	43		551	573	1.2	13	4	280	.82		<5	<2	<2	12	8.1	-0	<2	3	-01			13	.01		<.01	<3		<.01<		جَ	1749		_	
42-W	8	1026	26780		163.7	10	2	95	1.55		<5	5	<2	84	3.9	34	54								. 13	_		.07			37			
43-G	3	21	184	72	.4	7	<1	407	1.30		<5	<2	15	5	<.2	2	5	17		.006		8			. 19	7		.03			7	_		
44-M	2	36	27	57	<.3	161	24	815	3.46	<2	<5	<2	3	99	<.2	<2	4	80	2.10	.082	8	80	3.08	237	. 19	•	2.02	.03	.07	~	,			
STANDARD	22	72	40	139	7.6	78	32	1059	4.14	43	16	8	41	57	18.6	18	23	68	.48	.097	43	64	.86	177	.09	33	1.95	.07	. 16	11	49	47	45	_

Standard is STANDARD C/AU-S/FA-100S.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.


THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

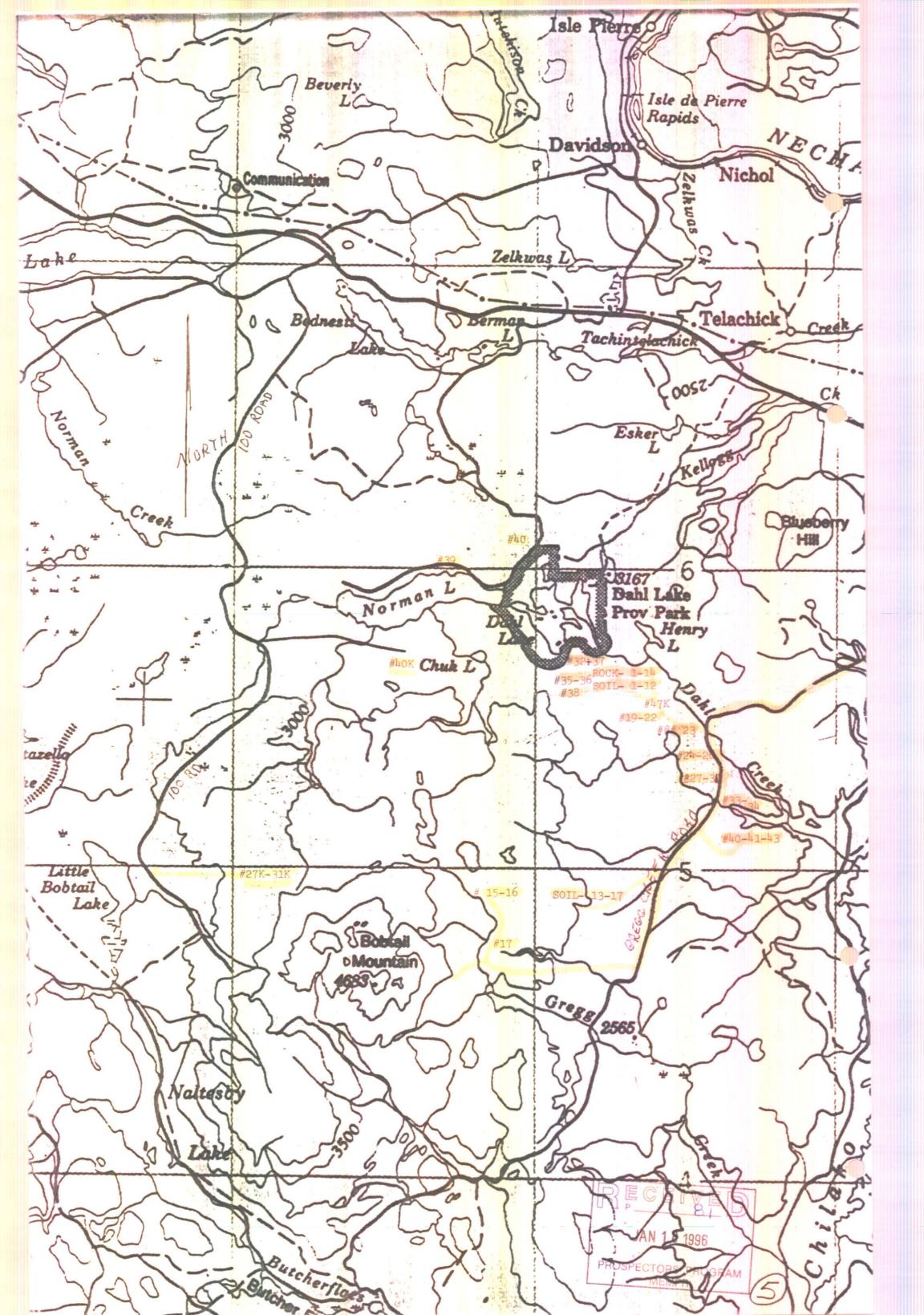
AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

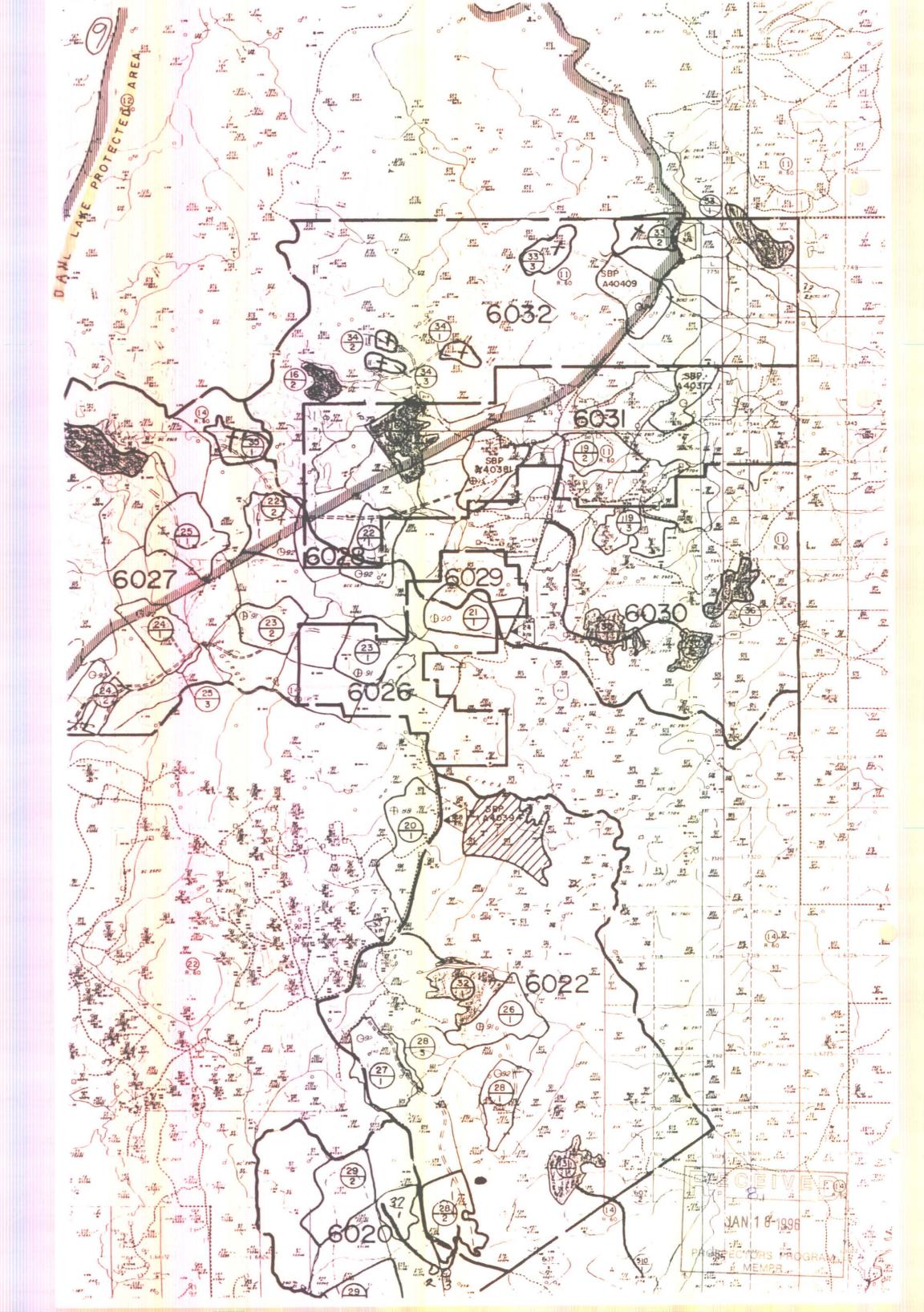
PT** PD** BY FIRE ASSAY & ANALYSIS BY ICP/GRAPHITE FURNACE. Samples beginning 'RE' are/Reruns and 'RRE' are Reject Reruns.

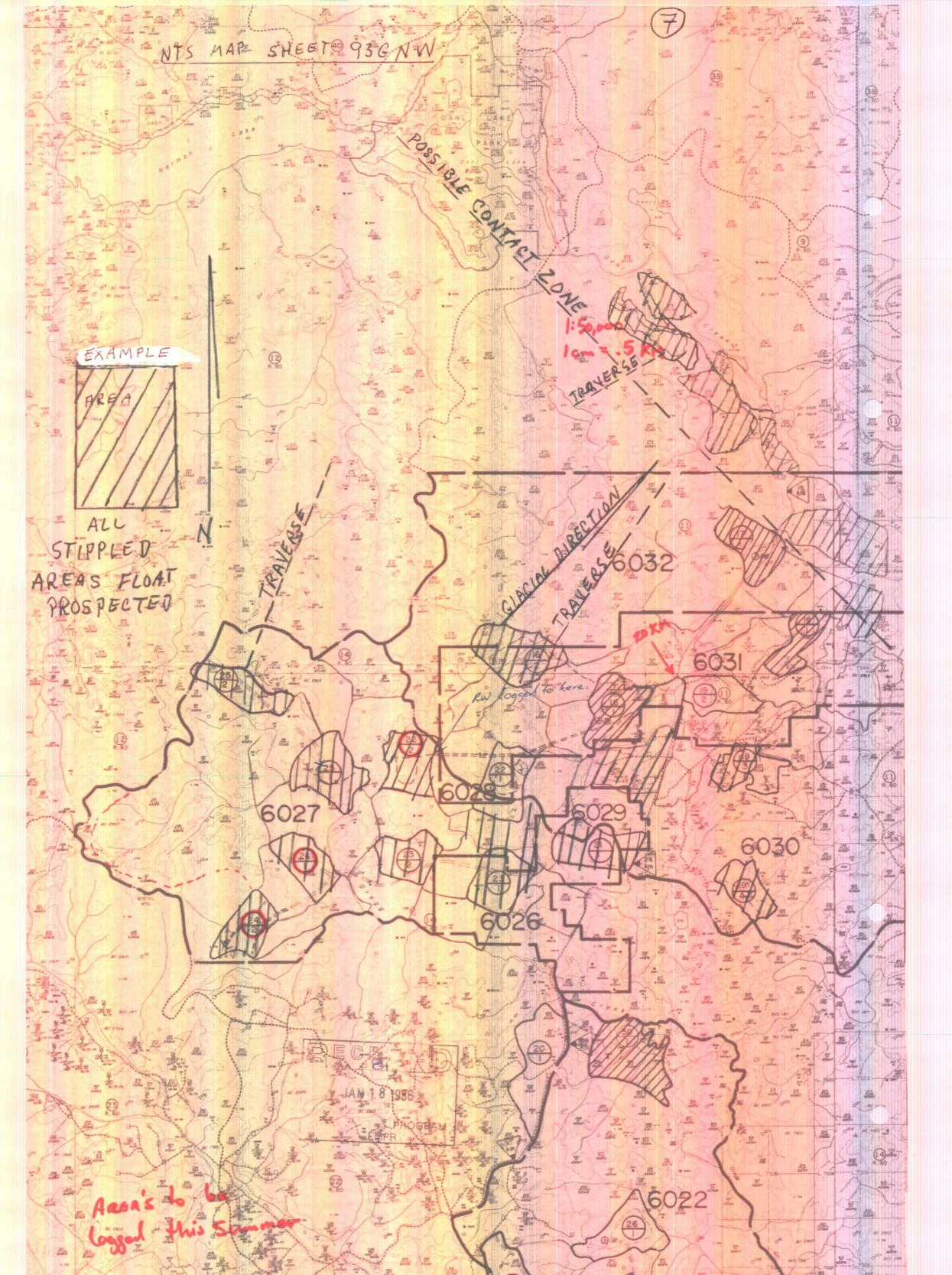
JUL 18 1995 DATE REPORT MAILED: Union DATE RECEIVED:

Fred Nilsen FILE # 95-1868

Page 2


SAMPLE#	Mo	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ní ppm	Со ррп	Mn Fo	As ppm		Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tī %	B B B B B B B B B B B B B B B B B B B	Al X	Na %	K %		Au* ppb	Au* ppb
	1		'-3																										_		
1-S	1	9	9	114	<.3	20	6	321 2.92	3	<5	<2	<2	30	<.2	<2	<2	63	.42 .	233	9	35	.24	164	. 14	-3		.01	.11	<2	8	-
2-S	<1	15	7	81	<.3	64	11	215 3.27	' 7	<5	<2	2	17	<.2	<2	<2	63	.25 .	146	11	43	.38	107	. 14	<3	2.34	.01	.05	<2	3	-
RE 2-\$	1	15	6	81	<.3	64	11	212 3.27	7 5	<5	<2	2	17	<.2	<2	<2	64	.25 .	143	11	44	.38	105	.14	<3	2.32	.01	-05	<2	3	-
3-S	1	13	9	80	<.3	33	9	549 3.17	' 6	<5	<2	2	16	.2	3	2	70	.24 .	162	9	37	.30	105	. 14	3	1.54	.02	.04	<2	5	-
4-S	1	17	5	58	<.3	47	10	277 3.7		<5	<2	3	18	<.2	<2	<2	81	.27 .	234	12	41	.46	100	. 13	<3	1.80	.01	.06	<2	790	4 4
5- s	1	14	7	68	<.3	54	13	264 4.26	. 4	<5	<2	2	16	<.2	<2	<2	102	.22 .	138	11	48	.35	96	.16	<3	2.18	.01	.04	<2	4	-
6-S	i	13	8	35	<.3	24	5	194 2.3		<5	<2	2	29	<.2	<2	< <u>2</u>	54		029	10	37	.38	94	.17	<3	1.21	.03	.05	<2	1	_
7-S	i	11	ŏ	127	<.3	27	10	471 2.9		<5	<2	<2	13	<.2	<2	2	58	.18 .		10	38	.27	153	.13	<3		.01	.05	<2	1	-
8-s	1	16	ś	97	<.3	40	, o	565 3.17		< 5	<2	2	21	<.2	7	<2	65		225	11	39	.37	129	.13	_	1.98	.01	.05	<2	<1	-
9-S	i	13	ś	41	<.3	46	ģ	216 2.7		< 5	<2	3	17	<.2	<2	<2	66		078	9	43	.34	130	. 14	<3		.01	.03	<2	<1	-
s	1	17	7	39	<.3	35	7	239 2.5	5	<5	<2	2	26	<.2	3	<2	66	.27 .	044	11	47	.37	100	.17	<3	1.06	.02	.04	<2	<1	-
\$	1 1	16	7	72	<.3	48	8	248 3.2	6	<5	<2	3	15	<.2	<2	<2	73	.20 .	131	10	40	.36	125	.15	<3	1.91	.01	.04	<2	2	•
12-\$	1	13	8	69	<.3	42	10	273 2.9	ا 6	<5	<2	2	22	.2	<2	<2	63	.28 .	089	9	42	.31	129	. 13	<3	1.81	.01	. 05	<2	12	-
STANDARD C	19	58	38	120	6.5	74	30			16	6	34	46	17.0	17	20	63		089	41	57	.86	167	.08	26	1.77	.06	. 14	11	47	_


Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


* re-run Au 4 ppb

JAN 18 1996

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

 	 	_
	 :	
V)		

B. TECHNICAL REPORT

One technical report to be completed for each project area

Refer to Program Requirements/Regulations, section 15, 16 and 17

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT OF THE SECTION OF T MEDOB

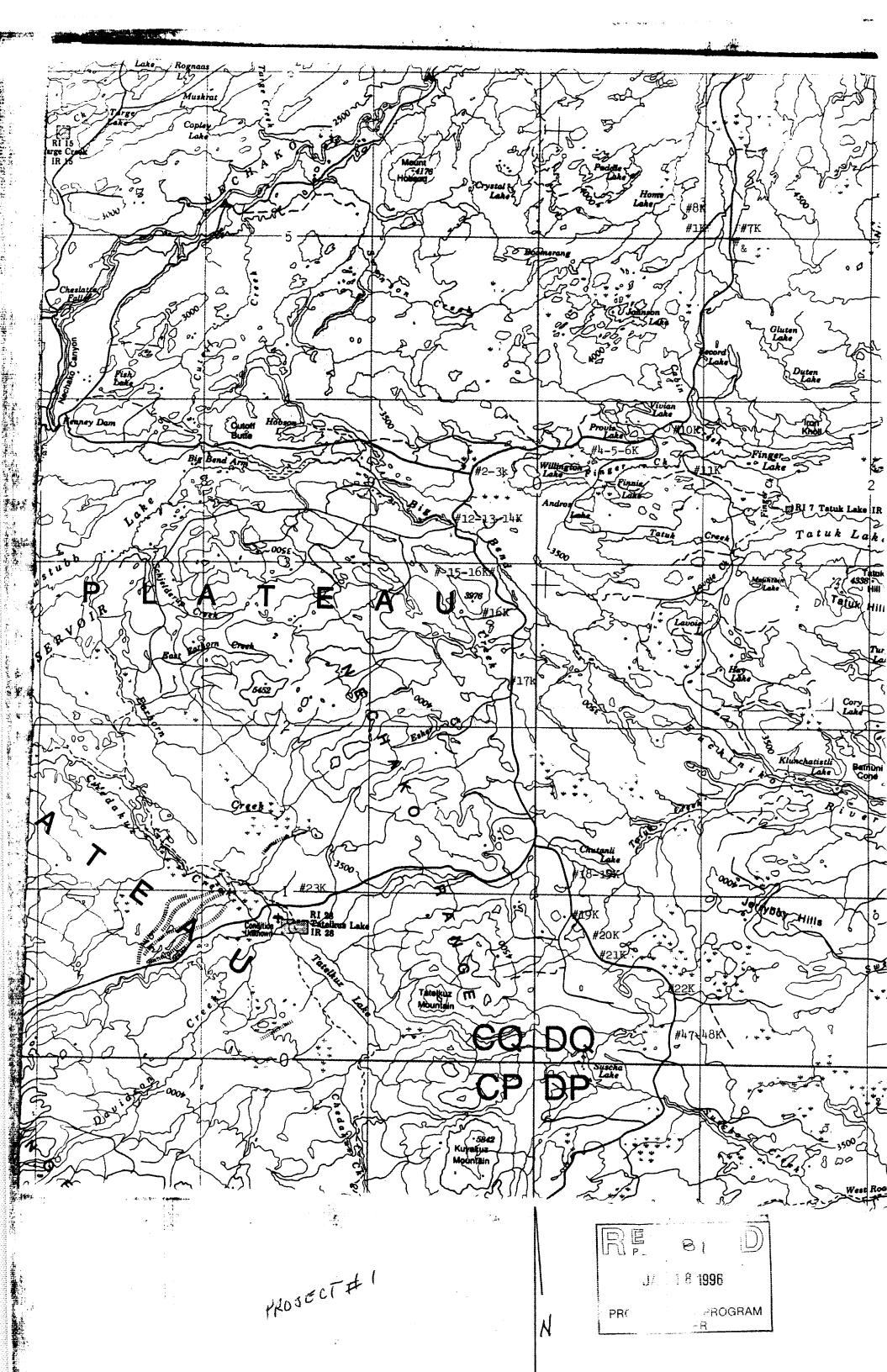
Name Fred J. Nilsen	Reference Number 95-96- P 081
LOCATION/COMMODITIES	
Project Area (as listed in Part A.) #1-Tat	uk Lake west. Minfile No. if applicable
· cm · . A NETCO 75-1	T T 10) 2017
Description of Location and Access VIA T	THE KLUSKUS FOREST RD.SOUTH OF VANDERHOOF, B.C.
AND THE COLD BOAD AND THE BLUE RO	AD OFF THE KLUSKUS FOREST ROAD.
acia un a in partir si	LVFR, COPPER, LEAD ZINC ASWELL AS OTHER COMMERCIALY
VIABLE MINERALS FOUND.	EVIR, COLLEGE ALTO LONDED TO CITED CONTROL
Known Mineral Occurrences in Project A	rea NONE.
	<u> </u>
WORK PERFORMED	
1. Conventional Prospecting (area) WEST	AND SOUTH OF TATUK LAKE_THE GOLD ROAD AREA_KLUSKUS R
2. Geological Mapping (hectares/scale)_	
3. Geochemical (type and no. of samples) 24 ROCK SAMPLES.
4. Geophysical (type and line km) NONE	
5. Physical Work (type and amount) FLG	DAT PROSPECTING NEW ROADS AND LOGGING, SOIL SAMPLING.
6. Drilling (no. holes, size, depth in m, to	
7. Other (specify)	
SIGNIFICANT RESULTS (if any)	
Commodities #47 ANOMALOUS IN-CU,PB,	ZN, AG. Claim Name NONE.
Location (show on map) Lat 53 16 1	Long121 23 Elevation 3575
Best assay/sample type ROCK CHIP. 13	
Description of mineralization, host rocks,	anomalies FLOAT, ULTRA BASIC FORK VISITATIONAL AND APPRICE

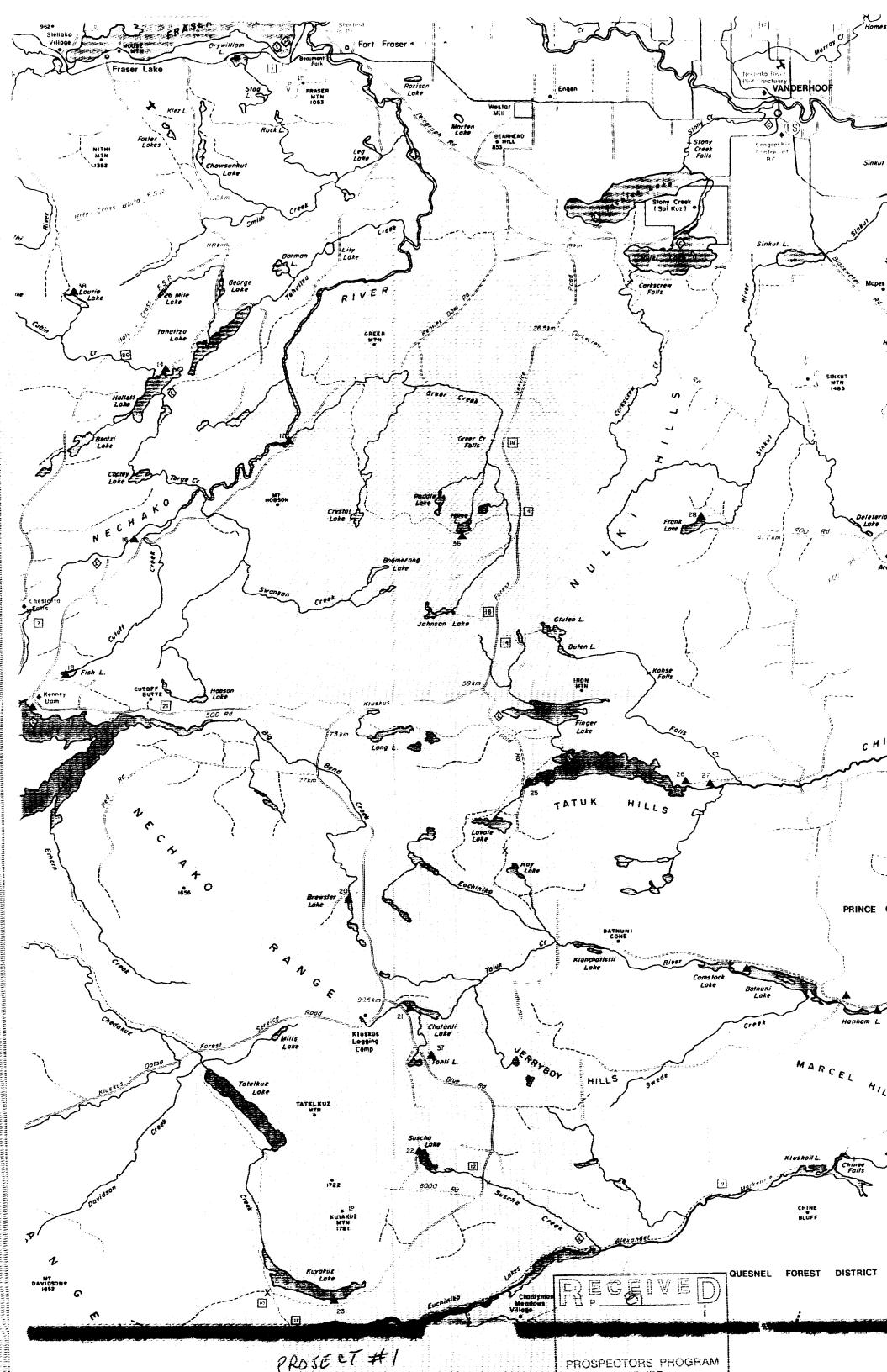
Supporting data must be submitted with this TECHNICAL REPORT.

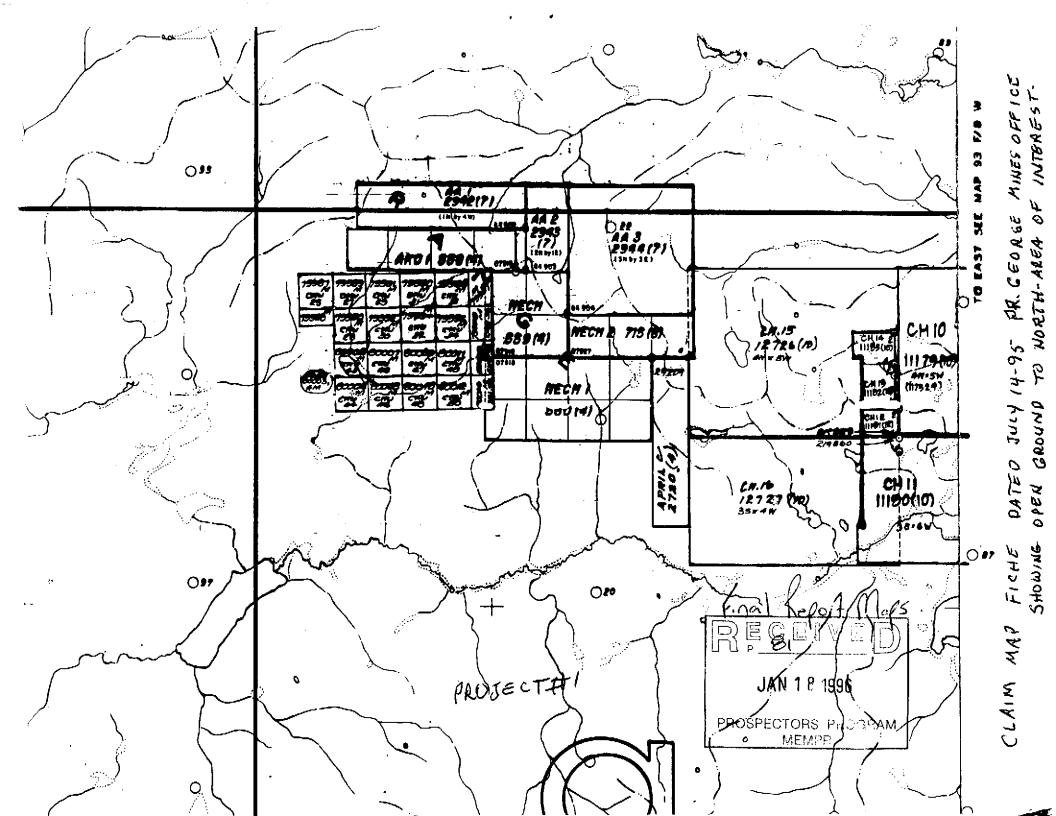
852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

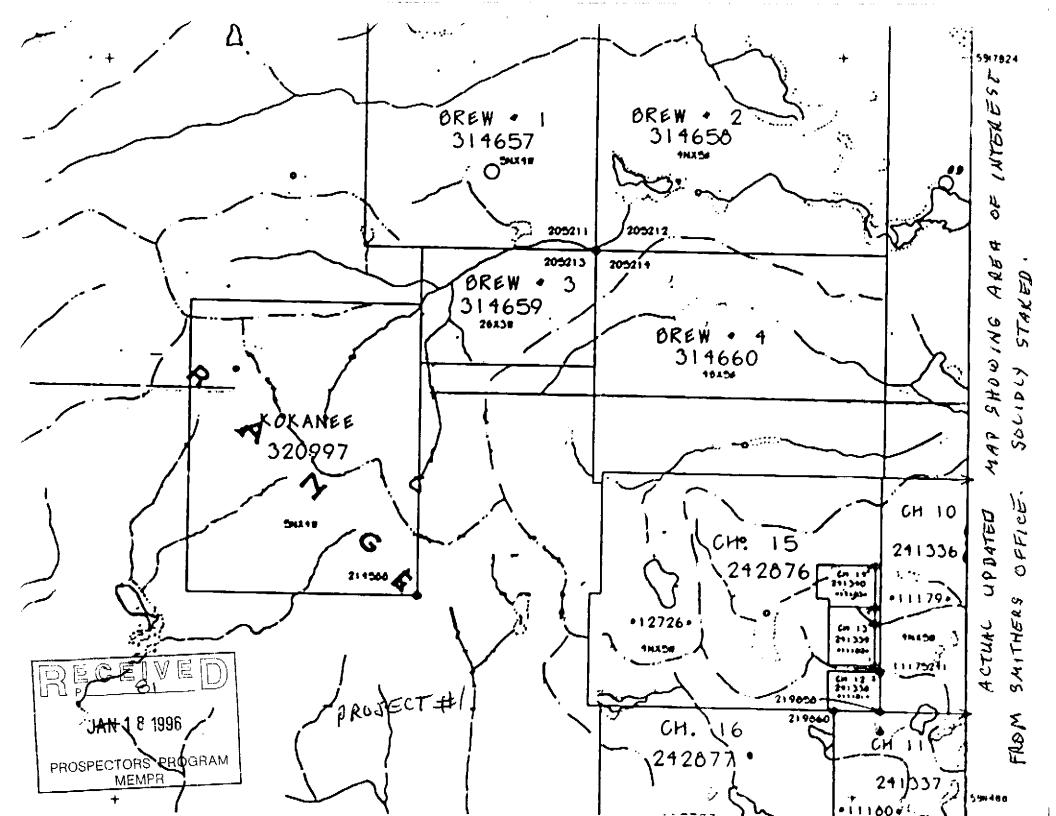
PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE


Fred Nilsen File # 95-3483 Page 1 7078 Harvard Crescent, Prince George BC V2N 2V7


SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn pom	Ag ppm	Ni ppm	Ço	Mn ppm	Fe %	As ppm	D D	Au ppm	Th ppm	Sr ppm	Cd ppm	Sp Sp	Bi ppm	ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Τί *	ppm B	AL X	Na %	X 	bbu	ppb pbb
1K 2K 3K 4K 5K	53 6 3 2	48 16 52 7 42	<3 59 37 <3 <3	24 33 54 11	<.3 2.4 3.7 <.3 <.3	2 9 14 14 6	<1 1 12 27 19	143 58 135 136 89	6.24 1.65 3.03 3.95 6.85	8 190 87 12	\$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2	3 6 <2 2 4	16 3 82 117 69	<.2 .6 1.1 <.2 <.2	<2 21 3 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	24 3 12 77 78	.03 .01 2.11 1.25 .75	.033 .003 .071 .175 .132	5 19 5 11 14	11 13 8 11 5	.61 .02 .05 .64		<.01 <.01 .14 .31 .15		.72 .26 2.42 1.08 .85	.04 .03 .75 .09	.28 .17 .13 .03 .07	2 <2 <2 <2	9 24 32 3 4
K K K K K K OK	4 34 2 115	8 469 815 20	3 3 3 4 3	13 14 27 4	<.3 .3 1.1 4.2 <.3	8 6 30 13 7	15 27 97 2	139 73 287 87 324	6.14 7.60 6.64 2.06 2.89	15 2 3 632 21	ঠ ঠ ঠ ঠ	<2 <2 <2 <2 <2	3 12 3 <2 4	121 86 46 13 37	<.2 <.2 <.2 <.2 <.2	<2 <2 <2 9 <2	3 <2 <2 3 <2	96 7 51 3 31	1.08 .37 1.02 .04	.014 .080 .005	10 18 5 <1 13	8 9 23 17 15	.79 .30 .59 .02	48 23 15 35 71	.25 .02 .17 .01	5	1.27 .78 1.07 .08	.06 .07 .12 <.01 .03	.04 .08 .10 .02 .10	<2 <2 10 4 2	3 2 22 150 3
RE 10K RRE 10K 11K 12K 13K	3 3 4 8	7 7 36 44 25	<3 4 <3 12 5	10 9 140 74 116	<.3 <.3 <.3 .3	7 8 54 6 5	2 2 19 10 16	305 322 199 718 1004	2.83 2.86 6.85 7.71 6.28	13 15 9 18 21	<5	<> <> <> <> <> <> <> <> <> <> <> <> <> <	3 3 2 3 <2	36 37 104 18 40	<.2 <.2 1.2 .3	<2 <2 <2 <2 <2	<2 <2 <2 <2	30 31 46 34 89	.69 .04 .13	.091 .091 .050 .072	12 13 11 8 2		.11 .11 .02 1.18 1.53	68 71 1441 23 17	.15 .15 .01 <.01 .21		.43 .43 .47 1.57 2.02	.03 .02 <.01 .04 .03	.10 .10 .08 .22	2 <2 <2 <2	2 2 20 13
4K 5K 6K 17K 18K	5 175 9 5	89 6 32 20	5 8 73 4	23 22 133 144	.3 <.3 .6 .3	15 6 3 11	<1 8 22		4.89 2.28 5.79 3.28 5.80	216 8 44	<5 <5 <5	<2 <2 <2 <2 <2	4 2	5 24 143		3 <2 <2	<2 <2 4	100 5 19 35 101	.03 .11	.005 .058 .009	10 2	_	.41 .01 .66 2.31 1.26	48 12 46 98 132	.01 .01 .01	<3 <3 4	3.77 .19 .96 .30 2.12	.06 .05 .01	.28 .13 .18 .04 1.28	<2	1
9K 9K BE 19K RRE 19K 20K 21K	4 4 4 4 3	111 118 118	10 9 14	51 52 51 41	.9 1.1 1.1 <.3	9 7 8 4	16 16 16	285 293 336	3.32 3.42 3.40 4.02	21 22 23 68	<5 <5 <5	<2 <2 <2	2	286 284	5 . <.2 . <.2	<2 2 <2 2 <2	<2 <2 <2	67 66 42	5.20 5.14	7 .152 0 .160 4 .156 4 .045 5 .016	10 9	6 6 7 7 5	.27 .26 1.15	26	. 14 . 15 . 09	3 4 7 <3	8.15 8.54 8.48 1.37	.75 .75 .10	.37 .36 .75	. 3 <2	
22K 23K STANDARD C/AU-R	2	37	7 <3	158 279	3 <.3	26	, 9	2629	10.11	57	7 <5	<2	2 7	2 56		2 <2	≥ <2	53	1.9	3 .068 7 .079 3 .094) 5	40	2.06 1.35 -94	15	.01	<3	2.55 1.18 1.94	.02		. <	


ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. - SAMPLE TYPE: P1 ROCK P2 SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


DATE RECEIVED: SEP 12 1995 DATE REPORT MAILED: Sept 16/95 SIGNED BY.....D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

JAN 18 1996

