BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 1995/1996

REPORT #:

PAP 95-54

NAME:

KAAREN SOBY

DOROTHY PROJECT

RECONNAISSANCE SOIL GEOCHEMICAL

AND

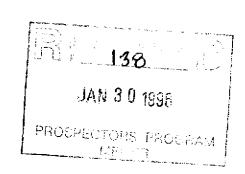
PROSPECTING REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-M-1

Latitude 55 degrees 15 minutes north Longitude 126 degrees 08 minutes west

Annual Work Approval No. PRG-1995-1300424-6807


For

Larry Hewitt & Kaaren Soby

By

Kaaren Soby

January 27, 1996

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

REGIVED

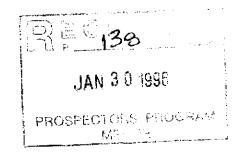
MAR 2 9 1996

PROSPECTORS PROGRAM MEMPR

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.


• If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name	KAAREN SOBY Reference Number 95/96 - P138
	TION/COMMODITIES
	Area (as listed in Part A) Dorothu MINFILE No. if applicable
	of Project Area NTS 93M VE-2 t Lat 55 5 N Long 126 08
Descri	ion of Location and Access Browne Region of the Ominera Minus Riv
Nh	unilevale lake Access By at 56 & Som Noise Ray & Stort
6:3	ion of Location and Access Balune Pleguin of the Ominece Mining Riv ciniterials take Access by id, 56 K from Nose Ray & short tex flight 1996- Logging road extends through clau
Main (ommodities Searched For CU AU
)
Known	Mineral Occurrences in Project Area Dorotty
	onventional Prospecting (area) 800 ha
3.	eological Mapping (hectares/scale) eochemical (type and no. of samples) 70 core 88 Aorl , 14 rock
: 4, i	eophysical (type and line km)
	hysical Work (type and amount)
	Oritling (no,, holes, size, depth in m, total m)
	ther (specify)
	ICANT RESULTS
Comme	(show on map) Lat 55° 15 30 Long 126° 11° 20° Elevation 3400°
Locatio	(show on map) Lat 55 15 30 Long 126 11 21) Elevation 3400
Best as:	ny/sample type
Descrip Che	on of mineralization, host rocks, anomalies <u>Elevated</u> CU, AU fill geometry occurs on LINE 5500 N 3300-3700E
	V

TABLE OF CONTENTS

SUMMARY	P.1
PROJECT LOCATION	P.1
NTS MAP	P.1
ACCESS	P.1
COMMODITIES	P.1
DEPOSIT TYPE	P.1
GEOLOGY	P.2
WORK UNDERTAKEN	P.3
CLAIM RECORD DATA	P.3
CLAIM OWNERSHIP	P.3
ROCK & SOIL GEOCHEMISTRY RESULTS	P.3
CONCLUSIONS	P.4
RECOMMENDATIONS	P.4
STATEMENT OF EXPENDITURES	P.4
REFERENCES	P.4
Figure 1. Claim Man	

Figure 1: Claim Map
Figure 2: Location Map
Figure 3: Map (showing claims, grid & sample locations)
Appendix: Certificates of Analysis
Photocopies of rock sample slices

GEOLOGY

area is characterized by low lying This gently rolling topography, much of it obscured by glacial drift. It lies within the Intermontane Tectonic Belt bounded by the Omineca Belt to the east and the Coast Crystalline Complex to the west. Most of the granodiorite/diorite isunderlain by an Omineca a Babine B.F.P. The B.F.P. "Dorothy intrusive and Pluton', a multiphase, dioritic, biotite-feldspar-hornblende porphyry, is an elliptical body paralleling the main NW-SE trend. Phenocrysts of biotite, quartz and feldspar are visible in hand specimens. The hornblende phenocrysts and ground mass of fine feldspar laths have been identified previously in this section.

The copper mineralization is hosted by the potassic zone (mainly hydrothermal biotite), peripheral to this is a large propylitic zone present in the outer rim of the intrusive and in the host volcanics. Outside the potassic zone is a moderately developed Pyrite halo. A lower grade propylitic alteration overprints much of the potassic alteration as partial or complete replacement of the biotite by chlorite. A later phase of the B.F.P. occurs as a of large brecciated dykes in the potassic zone. mineralization occurs to moderately disseminated as weak chalcopyrite in the potassically altered core of the B.F.P. There occurs occasional moly and rare bornite. Field descriptions of rocks found, include:

- KR-95-01 Coarse textured hornblende feldspar porphyry, dark green/black patches magnetite, Pyrite infilling seams and finely disseminated, minor sirecitization
- KR-95-02 B.F.P. with minor disseminated pyrite
- KR-95-03 Granodioritic, v.f.g. disseminated pyrite, moderately magnetic
- KR-95-04 Biotite altered hornblende feldspar, diorite porphyry weakly magnetic, 2% pyrite
- KR-95-05 Hornfels with pyrite stringers and disseminated pyrite. Minor gypsum and limonite, dark green patches of ghost porphyritic texture
- KR-95-06 Strongly altered andesitic B.F.P., patches of ghost B.F.P. texture, moderately magnetic, widely scattered altered hornblende phenocrysts, fine scattered pyrite
- KR-95-07 Andesitic, hornfels (?) weakly magnetic with minor carbonate alteration
- KR-95-08 Diorite, biotite altered, strongly magnetic

- KR-95-09 Granite
- KR-95-10 Cherty tuff with a few widely scattered dark fragments with minor patches of v.f.g. pyrite
- KR-95-11 Meta-limestone? outcrop
- KR-95-12 Highly altered green rock, ang. chlorite, minor patches C.P.Y. and some disseminated C.P.Y.
- KR-95-13 Carbonate altered granite
- KR-95-14 Granite. Coarse textured feldspar phenocrysts, patches of C.P.Y., strongly magnetic patches of serecitization
- KR-95-15 Strongly altered vuggy, quartz-carbonate, large quartz fragments. Widely disseminated C.P.Y. weakly magnetic

WORK UNDERTAKEN

Field work was performed during the period of October 22 to November 10th by Kaaren Soby of Telkwa and October 22,23, and October 30 - November 8th by Lawrence Hewitt of Telkwa. Robin of Edmonton joined the field work on October 30 through November 8th. Work comprised of six maydays including equipment and supply preparation, travel, camp mob and demob, and thirtyseven maydays soil sampling, core sampling and prospecting. samples, soils and 14 rock samples Seventy core 88 collected. Core from the Dorothy claims, held by Homestake and Twin Peaks was examined to provide familiarization with rock i. types and to check assays and the type of alteration. Two soil established to determine the possibility of mineralization adjacent to the Dorothy project.

CLAIM RECORD DATA

<u>Claim Name</u>	No. Units	Record No.	<u>Date</u>
DOT-1	16 units	335722	May/95
DOT-2	01 unit	335723	May/95
DOT-3	01 unit	335724	May/95
SIN-1	20 units	338886	Aug/95
SIN-2	15 units	338887	Aug/95
SIN-3	12 units	338888	Aug/95

CLAIM OWNERSHIP

Hewitt Co. & Associates (50%) and Valley Gold (50%)

ROCK & SOIL GEOCHEMISTRY RESULTS

Sample analysis was performed by Min-En Labs. Observations on these are included in the summary, page 3. Data is attached at back.

CONCLUSIONS

- 1. There may be additional porphyry Cu mineralization up ice from Line 5500N 3300-3700E.
- 2. High background gold in the Dorothy porphyry suggests that gold mineralization could occur in zones peripheral to the Dorothy porphyry system. Possible gold exploration targets, to name two, are:
 - A. Peripheral auriferous propylites
 B. Structurally controlled stock works and/or vein systems.

RECOMMENDATIONS

- 1. More prospecting on the DOT and Sin claims
- 2. More reconnaissance till sampling
- 3. More detailed sampling up ice from L5500W 3300-3700E

REFERENCES

The International Corona Corp. Assessment Report #22143

Figure #1	Mineral titles reference map
Figure #2	Dot & Sin location map

(In pocket) Soil and rock sample location map Figure #3

Appendix:

Certificates of analysis

Photos of rock sample slices

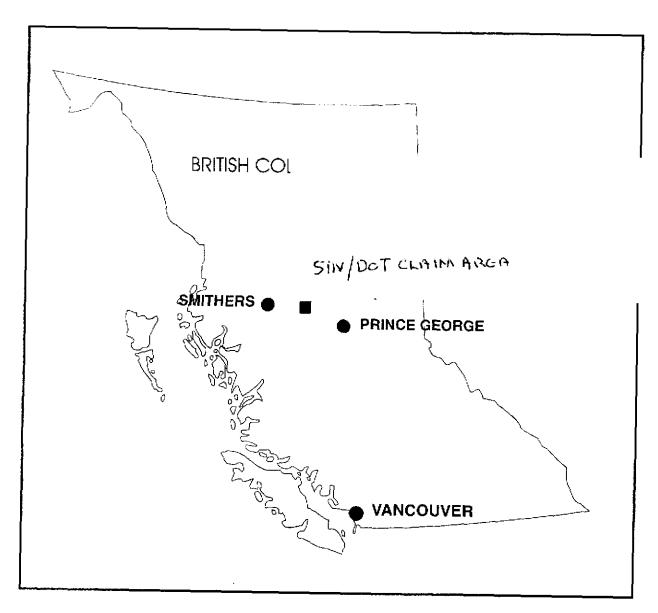
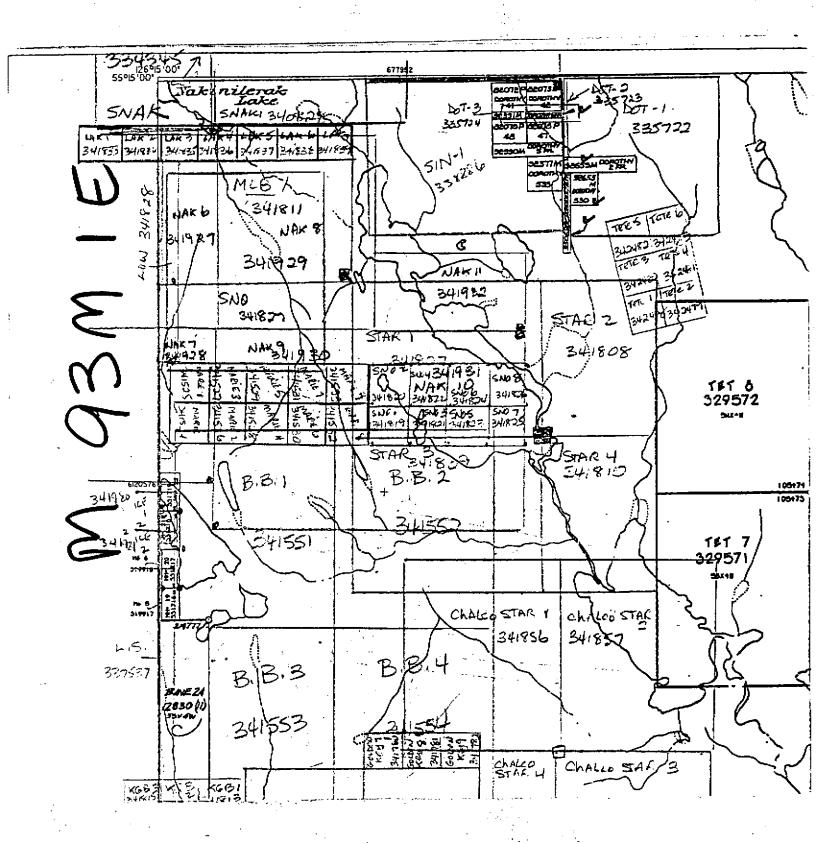



Figure 1. Location of Hautete copper-gold porphyry prospect.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C. CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 5M11 TEXT SAB. 3176 TATLOW ROAD SMITHERS, B.C. CANADA VOJ 2NO TEL (604) 847-3004 FAX (604) 847-3005

Assay Certificate

5S-0196-RA1

Company:

HEWITT CO & ASSOCIATES

Date: NOV-10-95

Project:

copy 1. Hewitt Co. & Associates, Telkwa, B.C.

Aun:

LARRY HEWITT / KAAREN SOBY

We hereby certify the following Assay of 18 CORE samples submitted NOV-03-95 by L. Hewitt.

Sample	Au-fire	Au-fire	
Number	g/tonne	oz/ton	
KC-95-41	.03	.001	
KC-95-42	. 05	.001	
KC-95-43	. 02	.001	
KC-95-44	. 02	.001	
KC-95-45	.01	.001	•
KC-95-46	.01	.001	
KC-95-47	.01	.001	•
KC-95-48	.01	.001	
KC-95-51	.01	.001	
KC-95-56	.01	.001	
KC-95-57	.01	.001	
KC-95-58	.01	.001	
KC-95-59	.01	001	
KC-95-60	. 05	. 001	
KC- 95- 61	.01	.001	
KC-95-62	.01	.001	
KC-95-63	. 02	. 001	
KC-95-64	. 02	. 001	
		•	

Certified by

MIN-EN LABORATORIES

ATTN: LARRY HEWITT

PROJ:

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 55-0202-RJ1+2 DATE: 95/12/15

* rock * (ACT:F31)

TIN: LANKI IILWI	· · · · · · · · · · · · · · · · · · ·								TEL:(6	04)327	3436	FAX:(604)32	7-342	23									*	rock '	* (ACT:F3
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B1 CA PPM %	CD PPM	CO CR PPM PPM	CU PPM		GA PPM	K LI % PPM		MN PPM	MO PPM	NA % P		P PPM P		B SN	SR PPM		TI % Pi	U V	PPM F	ZN A	u-fire PPB
KC-95-01 KC-95-02 KC-95-03 KC-95-04 KC-95-05	2.2 1.8 2.4 4.8	1.43 2.09 1.63 2.41 3.13	70 1 1 1	47 51 68 21 48	2.5 3.1 1.8 1.9 2.7	1 1.62 13 1.59 5 1.54 1 2.95 1 3.37	.1 .1 .1 .1	40 86 42 87 23 48 24 107 23 70	1163 94 200 1621 4120	8.91 11.25 5.43 6.14 7.98	4 .4	11 7 29 6 11 4		182 28 56 142 355	6. 9. 6.	. 19 . 13 . 20	33 21 21 1	580 680 210	76 95 44 46 66	1 8 1 10 1 4 3 6 6 7	1 1 1 1	1 1 1	.03 .05 .05 .03	1 58.9 1 172.4 1 94.3 1 61.0 1 98.1	2 4	57 50 37 51 93	15 5 6 25 46
KC-95-06 KC-95-07 KC-95-08 KC-95-09 KC-95-10	4.9 4.6 1.5 4.3 2.5	.52 .27 .27 .42 .41	75 107 115 123 99	162 209 158 162 142	1.1 .9 .8 .8	1 2.26 1 2.03 1 2.42 1 1.83 1 1.88	.1 .1 .1 .1	10 170 20 92 8 63 14 114 11 156	5743 5560 207 3649 1334	2.03 2.20 1.78 1.72 1.48	1 .1 1 .1 4 .1	22 2 14 1 14 1 17 2 16 1	.82 .71 .84 .63	705 524 462 281 453	158 . 15 . 209 .	.04 .04 .03	13 1 14 9	130 040 140 9 3 0	21 31 18 26	5 6 7 2 1 1 5 2 4 3	45 29 51 33 92	1 . 2	.01 .01 .01 .02	1 25.2 1 19.0 1 25.0 1 26.8 1 20.2	8 5 3 7	53 39 48 42 39	140 112 17 56 54
KC-95-11 KC-95-12 KC-95-13 KC-95-14 KC-95-15	3.9 5.7 5.2 1.6	1.16 2.40 .31	1 68 93 1 45	38 179 54 107 213	4.1 1.2 1.9 2.1 .5	1 2.23 1 1.33 1 1.76 1 2.65 1 .86	.1 .1 .1 .1	38 98 76 133 43 114 53 91 8 99	2711 3915 7282 4517 912	13.74 3.23 5.24 6.25 1.04		7 9		42 140 110 133 149	67 . 50 . 74 .	. 80. . 80.	25 9 25 13	970 950 330	54 46	1 9 5 3 6 4 7 5 3 1	1 25 1 286 31	1 .	.02 .04 .03 .07	1 52.7 1 51.8 1 91.7 1 134.8 1 6.5	3 8 8 7	88 42 51 64	31 64 137 66 7
KC-95-16 KC-95-17 KC-95-18 KC-95-19 KC-95-20	6.2 2.4 2.4	.28 3.96 .96 .65 .32	42 1 86 56 62	60 79 110 64 194	4.5 1.0 1.1 .7	2 .55 1 3.24 1 1.52 1 1.95 1 2.99	.1 .1 .1 .1	16 52 125 134 18 159 18 104 19 82	6985 1701 1846	.53 >15.00 2.49 2.40 1.84	4 .1 5 .4 4 .3 2 .1	0 8 5 6 50 3		25 191 152 88 1181	227 306.	.06 .04	87 4 20 9 14 11	920 150	35 23 23	3 1 2 14 8 3 3 3 4 4	16 1 33 57 135	7 . 1 . 1 .	.01 .12 .05 .01	1 4.5 1 238.2 1 61.0 1 16.0 1 14.3	3 7 1 10 5	11 23 50 24 46	1 80 99 18 19
KC-95-21 KC-95-22 KC-95-23 KC-95-24 KC-95-25	3.5 10.7 3.3 2.7 .1	.31 .42 .42 .85 .18	131 188 86 85 1	162 155 113 313 979	.7 1.6 .6 .8	1 1.75 1 1.31 1 1.52 1 1.49 1 2.68	.1 .1 .1	16 122 76 125 8 118 12 183 5 124	2827 9165 2491 1136 878	1.99 4.75 1.16 1.82 1.24	3 .1 7 .1 4 .2 7 .3 1 .1	3 3 2 1 1 4	.60 .94	372	1755 . 688 . 1432 .	03 05 07	23 7 9 8 16 9	780 820 940	59 15	5 3 9 9 4 3 4 5 1 2	74 48 146 142 4160	3 . 1 . 7 . 6 .	.01 .01 .01	1 16.7 1 19.5 1 21.7 1 42.1 1 7.4	6 6 9	49 44 30 40 22	34 60 26 30 7
KC-95-26 KC-95-27 KC-95-28 KC-95-29 KC-95-30	2.4 2.0 3.6 1.4 1.9	.82 .59 .89 .76	2 241 61 61 447	503 73 168 164 52	2.7 1.2 1.2 2.5	1 1.42 1 1.81 1 .88 1 .88 1 3.50	.1 .1 .1 .1	10 116 47 119 17 108 23 146 25 93	2043 1136 4977 337 490	1.47 8.12 2.53 2.48 6.91	2 .3 1 .4 2 .4 1 .4	0 3 7 4 7 4		162 234 85 96 222	293 . 43 . 412 .	06 07 08	33 7 26 10 16 7	070 710		2 2 4 7 4 2 1 3	372 1 12 1 94	1 .	.07 .07 .09 .08	1 48.4 1 42.9 1 65.5 1 60.2 1 19.0	5 2 5 7	50 59 42 43 64	47 38 107 14 25
KC-95-31 KC-95-32 KC-95-33 KC-95-34 KC-95-35	9.8	.39 .64 1.02 1.43 1.05	45 1 528 315 336	57 102 64 50 50	1.5 .9 4.7 3.7 4.0	1 2.15 1 1.43 1 4.44 1 2.86 1 2.35	.1 .1 .1 .1	12 66 15 128 133 188 66 102 90 153		3.31 1.97 >15.00 12.85 12.54	1 .1 1 .2 6 .1 2 .4 1 .2	7 3 6 6 2 9	.78 .80 1.00 1.54 1.10	145 470 273 379 391	270 . 261 . 32 .	07 06 03 12 04	22 12 15 9 23 11 57 13	240 990 150 1	28 20 48 24	1 3 2	147 36 1764	1 .	01 03 02 07 05	1 24.0 1 49.4 1 64.3 1 211.0 1 98.9	1 6 5 5 1	36 41 81	17 44 109 196 52
KC-95-36 KC-95-37 KC-95-38 KC-95-39 KC-95-40	1.9 3.1 .1 .4 1.7	.96 .65 .26 .93 .28	90 75 1 1	36 137 112 133 30	1.6 .6 .9	1 1.67 1 1.35 1 1.81 1 1.27 1 1.85	.1 .1 .1	18 176 28 157 10 70 10 84 12 57	1466 4001 1997 2607 4409	4.47 2.03 1.35 1.80 2.48	1 .5 3 .2 1 .1 1 .5	9 3 8 1 3 10	1.17 .72 .62 1.22	193 83 180 113 174	40 . 969 . 85 . 97 .	08 07 10 09	21 6	500 710 160 080	37 21 10 1	1 3 4 4 1 2 1 3	1 43 263 159 119	1 .	09 05 01 07 01	1 123.0 1 42.8 1 11.8 1 50.2 1 13.8	9 8 1	52 37 41 46	16 39 48 38 22
KC-95-49 KC-95-50 KC-95-52 KC-95-53 KC-95-54	3.5	1.52 3.31 1.33 .94 .76	1 1 1 1	98 193 52 243 97	1.7 1.4 2.1 1.1 1.7	1 1.47 1 1.49 7 1.00 1 .92 1 1.14	.1 .1 .1 .1	20 73 24 183 52 107 11 170 16 67	5448 3895 341 1534 2083	5.15 4.77 7.04 2.94 5.48	1 1.2 1 2.1 1 .6 1 .6	0 12 7 8 2 8	1.82 2.50 1.11 1.15 1.10	114 188 74 212 253	41 . 19 . 5 . 53 .	12 40 17 15	17 17	750 350 190 340	25 1 53 8 42	1 6 1 6 1 8 1 3	1 1 1 8	1 .	15 34 14 10 08	1 111.7 1 224.6 1 94.5 1 59.0 1 122.1	1 10 2 6	52 62 75 41 50	52 57 16 33 34
KC-95-55 KC-95-65 KC-95-66		.67 4.15 2.35	1 1 1	103 213 119	1.0 2.2 3.5	1 1.45 11 2.15 6 1.55	.1	8 119 22 99 86 84	1052 188 787	2.37 6.52 12.94	1 .2 1 2.2 1 1.1	1 8	1.08 2.45 2.10	333 270 487	4 :	09 <i>1</i> 55 3	16 8 30 12	380 240	13 10	1 3 1 9 1 12	38 1	1:	04 18 25	1 59.3 1 120.6 1 250.3	2	65 56 83 73	17 12 50

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

ATTN: LARRY HEWITT

PROJ:

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 58-0202-RJ3 DATE: 95/12/15

* rock * (ACT:F31)

SAMPLE NUMBER	AG AL P	AS BA PM PPM		B1 CA	CD PPM			CU PPM	FE %	GA PPM		L I PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM I	SB :	SN SR	TH MPP	71	U PPM	PPM I	PPM I	PPM	-fire PPB
KC-95-67 KC-95-68 KC-95-69 KC-95-70	2.4 2.88 2.9 2.40 2.0 2.45 2.6 2.13	1 43 1 89 1 61 1 69	1.8 2.6 1.9 1.8	11 2.45 4 1.58 6 1.68 10 2.56	.1	16 26 31 15	115 96 72 86	81 4 657 7 151 3 73 3	7.30 3.74 3.67	6 3 1 4	.30 .85 .29 .39	9 5 1 10 2 7 1	.80 .62 .04 .55	176 144 395 389	12 1 1 2	.42 .22 .37 .16	25 29 15 15	870 600 1820 1650	22 48 14 20	5 1 1 2	4 39 7 1 5 95 3 66	1 1 1	.06 .15 .09 .08	1 1 1 1 1	134.2 141.3 73.5 64.0	7 5 3 4	67 61 76 72	7 5 1 3
																												
																												. ,
																						· · · · · · · · · · · · · · · · · · ·	·					
									· · · · · · · · · · · · · · · · · · ·							·		- -										
									 -																			
											• 1					·	-											
				·•···																								
					•				<u>-</u> .									· • • • • • • • • • • • • • • • • • • •										
									·															·	•			
·						,, <u>-</u>								· · · · · ·			<u>.</u>		· ·-									

PROJ:

MIN-EN LABS --- ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 58-0196-RJ DATE: 95/11/10

SAMPLE NUMBER	AG PPM			BA PPM		BI (PPM			CO PM I	CR PPM	CU PPM	FE %		K %	L I PPM	MG %	MN PPM	MO PPM	NA %	N I MAA	P PPM	PB PPM	SB PPM	SN PPM	SR PPM		TI %		V PPM	W PPM
C-95-41 C-95-42 C-95-43 C-95-44 C-95-45	3.8 4.0 2.6	1.76 1.55 1.63 1.18 1.18	1 1 19		3.2 2.7 3.2	1 1.0 1 2.0 13 2.0 6 1.0 13 2.0	90 . 04 . 85 .	.1 3	24 48 37 76 36	94 1 38 1	2723 1036 1262	5.45 10.84 8.58 11.80 8.30	1	.89 .13 .43 .03	9	1.94 1.49 1.74 .83	192 898 322 219 223	1 7 1 15 10	.08 .08 .15 .06	19 41 28 42 29	760 900 410 510 940	41 103 73 114 87	1 1 1 1 1	5 7 5 6 2	1 1 1 1 1	1 1 1 1	.17 .13 .37 .18	1 1	171.1 272.4 582.9 234.4 252.8	4 4 11 2
C-95-46 C-95-47 C-95-48 C-95-51 C-95-56	2.7 1.7 2.8	1.19 .96 1.28 1.09 1.11	54 1	64 38 255 41 70	2.2 1.2 2.1	12 2.1 14 2. 9 1.1 6 1.1 16 1.	15 32 61 39	.1 4 .1 2	36 48 17 36 23	55 109 64 1	471 199 1099	6.36 6.79 3.30 6.96 8.69	1 1 1	.18 .07 .45 .09 .42	3 6 3	1.26 .91 1.62 .82 1.13	344 229 227 163 154	1 26 34 2 1	.09 .11 .08 .11	25 25 23 30	380 70 1540 770 1500	60 66 24 65 83	1 1 1 1 1	2 4 2 4	1 1 67 1	1 1 1 1	.28 .25 .14 .25	1 1	430.7 397.3 91.9 399.0 168.4	8 8 5
(C-95-57 (C-95-58 (C-95-59 (C-95-60 (C-95-61	3.0 3.7 3.4	1.58 1.20 2.78 2.13 1.76	1 1 1	118 29 237 119 201	2.1	16 1.7 20 1. 23 1.7 14 1.7 20 1.6	88 .	.1 2	38 29 25 41 24	60 49 66	242 117 664	6.97 8.34	1	.53 .04 1.92 .84 .73	2 5 5	1.36 .58 2.82 1.99 1.57	310 260 363 372 308	14 1 1 1	.13 .15 .11 .09	27 22 16 19	600 1320 2280 1750 730	56 72 33 68 54	1 1 1 1	3 2 5 3 3	1 1 1 1	1 1 1 1	.29 .31 .40 .28 .33	1 1 1	377.1 203.9 98.1 74.4 376.6	7 5 1 3
KC-95-62 KC-95-63 KC-95-64	2.7	2.49 1.02 1.38	113	123 37 60	3.1	15 2.6 14 1.6 16 2.6	62 .	.1 9	51 91 33	66	570	6.96 10.90 6.56	1	.47 .21 .36	4	1.56 1.12 1.08	196	1 1 1	.20 .06 .15	32 40 30	630 1260 790	51 111 64	1 1	4 5 3	1 1	1 1 1	.21 .18 .26	1	277.2 157.5 212.9	6

PROJ:

ATTN:

COMP: Larry Hewitt

MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6V-0026-RJ DATE: 96/01/1

* rock * (ACT:F31

TTN:										11	:L:{0\4	1321	- 2430	r A	# : fon	4,321	-2452														
SAMPLE	AG	AL	AS PPM	BA PPM	SE PPH	BI PPN	CA X	ÇO PPN	CO PPM	CR PPM	CU PPH	fE %	-	K X	LT PPM	KG %	MM PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TW PPM	11 % P		_	I PPM	Au-fii Pf
NUMBER KR-95-01 KR-95-02 KR-95-03 KR-95-04		.41 .21 .84	1 42	76 100 110 145	2.8 2.8 2.3 3.2	11 8 8 8	1.05 .78 .58 .78	.1	12 11 9 19	13 47 61 100	30 3 133 3 32 2 15 3	3.45 3.39 2.52 3.76	1 1 1	.14 .19 .16 .36	11	1.00 1.11 .82 2.52	587 303 515 357	2 2 2	.07 .06 .05 .06		1970 1060 990 1350 1970	27 29 22 28 30	18 15 10 22	1 1 1	11 28 6 31	1 3 1	.08 .03 .04 .05	1 59. 1 49. 1 40. 1 90. 1 66.	3 4 1 4 6 6	91 49 53 5 49 2 28	
KR-95-05 KR-95-06 KR-95-07 KR-95-08 KR-95-09	.8 .1 .1 .1	.87 .52 .36 2.41 .79	73	55 218 51 73 41	3.2 2.8 1.1 4.8 1.5		2.26 .32 1.52 2.26		11 15 4 26 6 20	18 55 53 54 48 42	6 1 43 5	2.92 1.14 5.46 1.48	1	.08 .07 .06 .03 .06	22 20	.17	296	2 2 2 2	.05 .03 .05 .04 .04	36 7 37 17	1380 480 830 920 460	27 10 37 15	18 5 27 10 33	1 1	57 9 6 22 1	1 1 1	.01 .01 .05 .01	1 52. 1 7. 1 103. 1 28. 1 90.	7 6 5 3 3 8	142 3 35 4 149 4 57 4 70	
KR-95-10 KR-95-11 KR-95-12 KR-95-13 KR-95-14	.1	2.62 2.49 3.04 1.92 1.86	1 1 1	66 72 54 334 74	3.5 3.6 4.5 3.3 2.2	10 5 6 6 8	2.18 >15.00 2.46 2.40 1.98	.1	22 33 15 10	118 136 28 51	78 4 64 21	4.10 5.30 3.61 2.49		.06 .01 .12 .15	34 20 20	2.96 4.29 1.95 -58	1647 844 2011	1 3 3	.02 .02 .02 .22	47 66 36 12	1370	27	29 32 24 26	1 1 1	1 7 96 112	1	.01 .07 .01 .06	1 109. 1 138. 1 48. 1 140.	7	7 59 6 88 3 299 6 56	

MIN-EN LABS - ICP REPORT

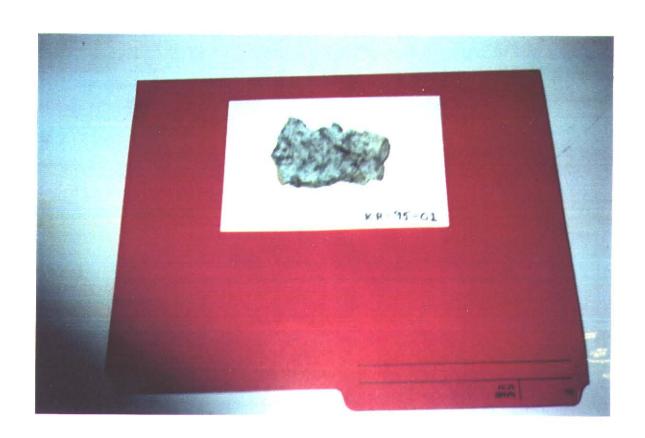
8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

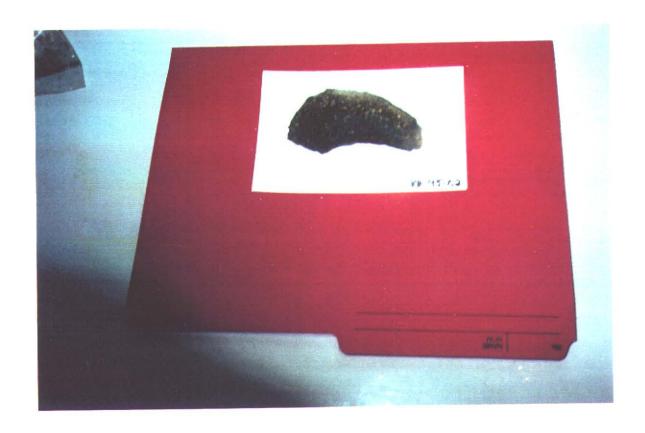
FILE NO: 55-0202-SJ1+2 DATE: 95/12/15 * soil * (ACT:F31)

ATTN: LARRY HEWITT								ÜŁ)327-3	436		(604)			ta										•	DA * Soil		/5/12/19 ACT:F 3 1)
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE X	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA % P	NI PM	P PPM	PB PPM I	SB PPM P	SN PM P	SR PPM F	TH 1	[] % P	U V	₩ PPM P	ZN Au	J-fire PPB
L5000N-2500E L5000N-2600E L5000N-2700E L5000N-2800E L5000N-2900E	.5 1.88 .4 1.61 .3 .96 1.0 2.52 .3 1.38	1 1 1 1	318 187 155 455 212	1.9 1.6 1.2 2.7 1.5	6 2 1	.69 .58 .33 .78 .58	.1	18 17 11 17 14	33 32 20 36 26	64 28 311	4.14 3.64 3.31 4.50 3.78	1 1 1 1	.05 .06 .05 .10	31 13 9 17 10	.60 .62	739 571 494 2776 813	1 1 7	.02 .01 .01 .02	30 27 16 46	640 540 1700		1 1 1 3	4 3 5 3	1 1 1 1		04 02 02 01	1 66.5 1 62.3 1 55.9 1 78.4 1 66.2	2 1 1	33 83 99 66	16 6 1 17 17
L\$000N-3000E L\$000N-3100E L\$000N-3200E L\$000N-3300E L\$000N-3400E	.4 1.86 .2 1.45 .3 1.84 .7 1.87 .4 1.79	1 1 1 1	209 166 149 132 112	1.8 1.5 1.6 1.5 1.1	6 6 5	.43 .48 .42 .33 .13	.1 .1 .1	16 14 15 12 8	28 23 26 27 14	46 70 35	4.24 3.35 3.53 3.48 2.32	1 1 1 1	.05 .04 .05 .04 .09	10 7 8 8 11	.44 .44 .50 .37 .23	782 715 522 358 512	2 2 3	.01 .01 .01	22		36 29 28 29 21	1 1 1 1	4 3 3 3 2	1 1 1 1 1	1 .0 1 .0 1 .0 1 .0)2)3)3	1 72.1 1 56.1 1 60.0 1 69.0 1 48.0	3 1 2 1 3 1 2 2	99 95 12	15 5 6 9 4
L5000N-3500E L5000N-3600E L5000N-3700E L5000N-3800E L5000N-3900E	.4 1.53 .7 1.89 .5 1.45 .8 1.75 .6 .36	1 1 1 1	291 144 152 169 129	1.8 1.6 1.6 1.6	7 6 5	.28 .32 .77 .54	.1 .1 .1 .1	12 14 16 14 2	25 32 30 26 9	60 108	4.50 3.74 3.47 3.41 .43	1 1 1 1 1	.03 .04 .06 .06	9 8 9 11 1	.41 .57 .64 .43	809 345 849 544 331	2 1 2	.01 .02	26 '	610 1020 610 1060 680	35 27 31 33 12	1 1 1 1 3	5 3 3 1 2	60 1 1 1 227	1 .0 1 .0 1 .0 1 .0)4)4)3	1 57.1 1 70.0 1 63.8 1 58.7 1 9.6	2 1 2 1	86 ⁻ 36	5 7 15 8 7
L5000N-4000E L5000N-4100E L5000N-4200E L5000N-4300E L5000N-4400E	.1 .39 .7 1.17 .5 1.45 .7 2.37 .6 1.78	1 1 1 1	118 160 130 196 155	.3 1.1 1.1 1.8 1.5	5 9 5	.01 .70 .48 .50	.1	2 9 17 14	25 26 34 29	31 38	.67 2.03 2.52 4.36 3.41	1 1 1 1	.01 .03 .04 .07	1 7 10 12 9	.08 .48 .58 .52	629 341 269 712 506	1 1 1	.02	24 3	800 330 470 5040 740	11 20 17 57 26	2 1 1 1 1	1 1 1 2 4 3	71 1 1 1	1 .0 0. 1 0. 1 1 .0)3)3)5	1 9.3 1 45.7 1 57.6 1 70.1 1 68.2	1 2 3 1	81	4 16 11 8 3
L5000N-4500E L5000N-4600E L5000N-4700E L5000N-4800E L5000N-4900E	.3 1.64 .8 2.10 .1 1.97 .5 1.87 .5 1.52	1 1 1 1	161 216 214 155 168	1.3 1.8 1.9 1.8 1.4	8 6 1 8	.75 .34 .04 .59	.1 .1 .1 .1	12 15 16 15 10	24 33 31 29 26	46 60 36	3.17 3.99 4.06 3.91 3.06	1 1 1 1	.04 .03 .05 .05	9 10 9 8 9	.55	1031 459 1750 633 608	2 2 1	.01 .01	21 24 27 22 22 20	660 1330 1220 1990 630	24 25 40 30 24	1 1 1 1	3 3 3 3 3	1 1 1 1)4)3)4	1 56.9 1 72.3 1 71.5 1 71.1 1 56.5	2 14 2 14 3 2 2 25 1 1	45 78 24	12 4 5 4 3
L5000N-5000E L5000N-5100E L5000N-5200E L5000N-5300E L5000N-5400E	.4 1.54 .4 1.20 .5 1.46 .4 2.12 .1 1.97	1 1 1 1	141 145 104 155 215	1.3 1.3 1.3 1.8 1.8	6 1 7 8	.53 .06 .34 .31 .54	.1 .1 .1 .1	12 13 13 15 16	23 23 22 29 30	40 28 25	3.22 3.19 2.78 4.08 4.03	1 1 1 1	.03 .05 .03 .04 .05	9 7 6 13 9	.50 .54 .48 .42 .69	357 763 328 448 1858	2 1 1	.02 .02 .01	19 19 16 28 1	490 730 470 1300 590	25 38 26 24 32	1 1 1 1 1	33243	1 1 1 1	1 .0	13 12 13 13	1 58.3 1 58.7 1 54.2 1 68.5 1 78.1	1 1	92 16 35 41	2 4 15 1 6
L5000N-5500E L5000N-5600E L5000N-5700E L5000N-5800E L5000N-5900E	1.1 3.74 .6 1.65 1.1 1.45 1.0 1.96 .8 1.71	1 1 1 1	179 182 117 130 199	2.7 1.3 1.3 1.6 1.4	9	.10 .21 .79 .46 .26	.1 .1 .1 .1	19 14 9 14 13	30 30 22 28 37	21 40 21	4.54 3.19 2.90 3.78 3.10	1 1 1 1 1 1 1	.06 .06 .03 .04	13 10 4 8 8		978 1516 334 492 853	1 1	.03 .01 .01		770 850 600 970 850	36 29 28 30 29	7 1 1 1	4 3 3 3	1 1 1 1 34	1 .0 1 .0 1 .0	18 16	1 86.8 1 63.4 1 56.2 1 72.7 1 66.7	5 1: 2 1: 2 1:	36 59 14 43	4 1 3 4
L5000N-6000E L5000N-6100E L5000N-6200E L5000N-6300E L5000N-6400E	1.2 2.14 .8 1.57 .4 1.60 .8 1.98 .5 1.76	1 1 1 1	174 123 116 104 154	2.2 1.4 1.3 1.6 1.4	8 8 8	.15 .81 .73 .55	.1 .1 .1 .1	17 12 14 16 11	54 29 23 32 27	40 30 40	4.94 3.09 3.27 3.75 2.79	1 1 1 1	.05 .04 .05 .06 .03	11 11 9 11 13	1.10 .62 .57 .71 .60	744 505 726 446 838	1 1 1	.02 .02 .02	33 1 20 20 24 19	100 400 680 690 550	40 27 27 27 31 25	1 1 1 1 1	5 3 4 3	1 1 1		3	1 85.3 1 63.7 1 66.2 1 99.1 1 58.5	3 1	40 06 01 29	8 3 4 7
L5000N-6500E L5000N-6600E L5000N-6700E L5000N-6800E L5000N-6900E	.7 1.75 .8 1.83 .8 2.31 .5 2.06 .6 1.77	1 1 1 1	146 164 143 212 174	1.7 1.6 1.6 1.9 1.7	8 9 1	.68 .55 .83 .25	.1 .1 .1	15 15 16 19 15	28 30 36 41 29	26 30 51	3.65 3.75 3.90 4.42 3.62	1 1 1 1	.04 .04 .10 .07	10 9 12 13	.58 .61 .69 .78 .65	681	1 1 2	.02 .02	25 1 31	720 1090 1700 760 820	37 33 33 50 32	1 1 1 1	3 4 4 4	1 1 1 1 1	1 .0 1 .0 1 .0)4)4)5	1 72.9 1 73.0 1 78.3 1 84.8 1 67.7	2 1/ 2 1/ 3 1/	40 24 37 39	6 4 5 7 6
L5000N-7000E L5500N-2500E L5500N-2600E	.7 1.61 .8 1.05 .9 1.72	1 1	129 135 283	1.5 1.0 1.7		.90 .80 1.05	.1	16 12 15	25 23 . 30	39	3.42 2.77 3.53	1 1	.04 .05 .06	5 7 8	.49 .54 .57	754 496 1123	1	.02	19	1280 410 500	29 27 37	1 1	3 3 3	1 1 9	1 .0)4)3	1 68.8 1 51.1 1 60.2	2 1	74 32	3 5 8
								·																						

ATTN: LARRY HEWITT

PROJ:


MIN-EN LABS - ICP REPORT


8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 5S-0202-SJ3+4 DATE: 95/12/15 * soil * (ACT:F31)

IIN; EARK! REWITT									,,,,	(004)52		,	~~.	04/32/	*3423											•	י וום	(ACI:F31
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	B1 PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %		K LI X PPM		MN PPM	MÓ PPM	NA % P	NI PM	P PPM 1	PB PPM F	SB PM P	SN PM P	SR T	H TI		V PPM	W ZI PPM PPI	Au-fire
L5500N-2700E L5500N-2800E L5500N-2900E L5500N-3000E L5500N-3100E	.4 1.65 .4 1.16 .6 1.44 .6 1.67 .4 1.14	1 1 1 1	172 165 182 149 203	1.6 1.3 1.5 1.5 1.1	5 6 4 5 6	.56 .58 .75 .35	.1 .1 .1 .1	13 10 13 12 10	23 17 25 23 18	55 3. 26 2. 47 3. 30 3. 24 2.	81 09 31 78	1 .0 1 .0 1 .0 1 .0 2 .0	16 6 14 9 16 11 14 7	.55 .26 .48 .37	366 355 661 338 556	1.	.02 .01 .02 .01	23 2 15 22 24 17	340 930 440 650 830	30 26 29 29 29 28	1 2 1 1	3 2	1	1 .03 1 .02 1 .02 1 .02 1 .02	1 1 1 1	59.8 50.3 58.3 57.8 58.2	2 109 2 110 2 9/ 2 11/ 2 10/	5 8 2 2 5
L5500N-3200E L5500N-3300E L5500N-3500E L5500N-3600E L5500N-3700E	.7 2.31 .7 2.47 .9 1.73 .6 1.82 .5 2.36	1 1 1 1	121 166 141 180 349	1.8 1.8 1.7 1.6 2.1	8 7 9 6 9	.31 .36 .66 .59	.1 .1 .1 .1	12 13 17 15 18	25 28 30 25 30	38 3. 58 3. 72 3. 74 3. 53 4.	.88 .94 .87 .77	1 .0 1 .0 1 .0 1 .0)4 13)5 11)8 14)6 14	.42 .54 .59 .53 .62	311 325 609 631 1001	2 3 2 1	.02 .02 .02	26 27 26 1 29 5	720	29 32 42 35 43	2 3 3 2 1	4 3 3 4	i	1 .03 1 .03 1 .04 1 .03 1 .04	1 1 1 1	69.3 68.0 73.0 65.0 79.3	2 15/ 3 13/ 3 21/ 3 119 3 20/	7 14 17 11
L5500N-3800E L5500N-3900E L5500N-4000E L5500N-4100E L5500N-4200E	.4 1.37 .7 1.58 .8 1.39 .4 1.22 .1 1.62	1 1 1 1	190 206 180 153 127	1.2 2.2 1.3 1.0 1.5	6 9 5 6 7	.79 .77 .73 .57 .47	.1 .1 .1 .1	11 20 10 7 17	26 30 23 17 23	46 3. 54 5. 39 2. 21 2. 56 3.	.01 .65 .19 .85	1 .0 1 .0 1 .0 1 .0	14 11 14 11 15 9 16 9	.58 .72 .48 .38	704 826 430 672 1532	1 . 1 . 1 . 2 .	.02 .02 .02 .01	29 17 13 28 1		31 51 21 23 46	1 2 1 2	4 2 2 3	• •	1 .02 1 .03 1 .02 1 .02 1 .04	1 1 1 1	55.5 77.5 54.0 47.3 68.6	1 128 2 100 2 100 1 90 2 120	3 7 0 · 5 7 4 0 8
L5500N-4300E L5500N-4400E L5500N-4500E L5500N-4600E L5500N-4700E	.9 2.29 .5 1.57 .4 1.69 .8 2.16 .5 1.65	1 1 1 1	144 135 146 175 163	2.2 1.3 1.6 1.8 1.4	12 5 7 7 8	.45 .69 .58 .64	.1	15 10 13 12 13	36 23 22 28 25	42 5. 29 2. 37 3. 34 4. 37 3.	.89 .45 .00 .39	1 .0 1 .0 1 .0 1 .0	14 10 17 13 15 9	.55 .51 .49 .52	552 412 771 379 440	1 .	.02 .01 .02	Z2 1	670 890 140	61 28 29 36 34	1 1 3 3 1	5 2 3 3 3	i 1	1 .05 1 .03 1 .03 1 .03 1 .03	1 1 1 1	111.7 60.5 61.8 75.1 66.2	4 213 2 96 2 155 3 155 2 117	6 6 7 7 8 8 8
L5500N-4800E L5500N-4900E L5500N-5000E L5500N-5100E L5500N-5200E	.8 1.50 .7 1.60 .5 1.34 .2 1.88 .5 1.07	1 1 1 1	190 151 141 147 116	1.7 1.5 1.4 1.5 1.1	7 7 7 4 3	.97 .50 .51 .27	.1 .1 .1 .1	12 12 11 12 9	29 26 23 25 20	46 3. 34 3. 35 3. 32 3. 27 2.	.24 .10 .39 .52	1 .0 1 .0 1 .0 1 .0)4 7)5 8)4 8)3 8	.47 .50 .47 .40	551 441 496 400 452	1 1 2 1	.02	23 21 26 16	700 410 600 510 300	36 28 29 27 20	1 1 1 1	2 3 2	į 1	1 .03 1 .04 1 .04 1 .03 1 .02	1 1 1 1	64.7 60.3 61.0 62.3 48.6	2 99 2 99 2 90 2 100 1 73	8 7 1 5 5 7 2
L5500N-5300E L5500N-5400E L5500N-5500E L5500N-5600E L5500N-5700E	.7 1.50 1.2 2.56 .8 1.51 .4 1.95 .9 2.02	1 1 1 1	132 145 159 197 156	1.1 1.9 1.6 1.8 1.7	6 8 5 7 8	.44 .67 .75 .69	.1	11 13 12 17 14	24 30 27 30 32	32 2. 40 3. 29 3. 36 3. 33 3.	.56 .72 .97 .89	1 .0 1 .0 1 .0 1 .0)3 10)6 13)7 15)7 16	.61 .52 .71 .67	392 500 417 1144 506	1 1 2 1	.02 .02 .03 .02	22 24 1 29 24	620 710 370 630 620	30 33 30 34 35	1 1 1	3 3 4 4	į	1 .03 1 .03 1 .03 1 .03 1 .04	1 1 1 1	59.5 66.2 67.5 72.4 71.1	1 93 3 106 2 153 2 146 3 132	8 8 7 25 0 1
L5500N-5800E L5500N-5900E L5500N-6000E L5500N-6100E L5500N-6200E	.8 2.01 .9 2.42 1.3 1.89 1.0 2.40 1.0 1.32	1 1 1	132 140 106 190 103	1.5 1.8 1.3 1.6 1.1	7 8 6 8 6	.51 .53 .36 .43 .80	.1 .1 .1 .1	11 16 11 15 11	29 31 28 30 27	34 3. 31 3. 27 3. 38 3. 37 2.	.92 .19 .73 .72	1 .0 1 .0 1 .0 1 .0)8 13)3 8)6 13)4 7	.58 .69	386 728 362 455 558	2 2 1	.02 .02 .02 .02	26 1 22 26 16	470 500 340 740 320	18 35 22 30 24	1 3 4 2	3 4 2 4 2	1 1 1 1	1 .04 1 .05 1 .04 1 .04 1 .04	1 1 1 1	64.7 73.0 67.3 71.9 61.1	2 106 3 164 3 99 3 146 2 87	5 8 5 4 7 2
L5500N-6300E L5500N-6400E L5500N-6500E KS-95-01 NO NUMBER	1.0 2.29 .9 1.88 1.1 1.61 .1 2.29 1.2 1.90	1 1 1 1	145 214 135 512 140	1.7 1.7 1.5 2.7 1.4	7 7 5 17 7	.48 .64 .62 1.23 .36	.1 .1 .1 .1	14 12 13 38 13	33 26 27 1 29	31 4. 28 4. 32 3. 87 7. 84 3.	. 13 . 40 . 13	1 .0 1 .0 1 .0 1 .0)8 12)6 10)8 15	.71 .54 .54 .69 .61	499 711 504 10000 431	2 2 7	.01 .02 .02	26 22 68 1	880 750 810 140 800	36 37 34 113 31	2 1 1 3	4 4 7 3	1	1 .04 1 .03 1 .03 1 .03 1 .03	1 1 1 1	77.9 71.6 65.0 97.0 63.4	3 13! 2 132 3 110 5 562 2 100	5 5 6 2 14
							· · · · · · · · · · · · · · · · · · ·																					
																								-			··	
																										-	-	
<u> </u>																												



