BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1996/1997REPORT #:PAP 96-1NAME:STEPHEN KOCSIS

Geological Mapping and Rock/Soil Geochemistry at Antler Creek

Cariboo Mining District, Barkerville Area. N.T.S. Map 93A14W Latitude 52° 58', Longitude 121° 25'

Nugget Mountain Mineral Property

October, 1996

Author:

Stephen Kocsis, P.Geo. 301-776 Vaughan Street Quesnel, B.C. V2J 2T5 1-250-992-9570

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

						
Name Stephen Kocsis	Reference Nu	umber	96/97	-P110		
LOCATION/COMMODITIES						
Project Area (as listed in Part A) <u>Nugget Mou</u>	ntain	MIN	FILE No. if a	applicable		
Location of Project Area NTS 93A14W		Lat_	52°, 5	8 Long	1210,	25
Description of Location and Access Nugget M	o untain on	east	side o	f upper	Antler	-
Creek. Drive 5 km E from Wel	ls along Hw	y 26,	13.5	km E al	ong 310)0
Road, and 5 km N along upper	Antler Cree	k Roa	ad.			
Main Commodities Searched For Lode gold	•					
Known Mineral Occurrences in Project Area 1.2	million oz	prod	luced f:	rom pyr	itized	
dolomitic siltstone/quartzite	called rep	lacer	nent or	e, and	from	
pyritic quartz-filled fissure	s along NE	trend	ling Mi	ocene f	aults.	
WORK PERFORMED						
1. Conventional Prospecting (area) <u>12 sq</u>	<u>uare km</u>				<u></u>	-
2. Geological Mapping (hectares/scale) 300	Ha, 1:5,00	0				
3. Geochemical (type and no. of samples) 49	<u>rock, 129</u>	soil				
4. Geophysical (type and line km)		<u>.</u>		_		
5. Physical Work (type and amount) 200 sq	uare m tren	ching	g, 2100	m grid	lines.	
6,. Drilling (no,. holes, size, depth in m, total m)		-		. –		
7. Other (specify) <u>Panning overburd</u>	<u>en - concen</u>	trate	e analy:	ses.		
SIGNIFICANT RESULTS						
CommoditiesGold		Claim	Name	341231		
	- 1010	36 1	: 1		oo r.	1

	Claim reame			
Location (show on map) Lat 53° , $58.4'$ Long 121° ,	24.5'	Elevation _	4500 ft	asl
Best assay/sample type 27 linear m soil 73 to 599	ppb Au.	40 lin	iear m so	<u>il</u>
13 to 327 ppb Au. Rock-4.77 g/t Au.				
Description of mineralization, host rocks, anomalies _Quartz flog	at with	80% mass	sive pyri	te
containing 4.77 g/t Au found near two Au	soil ge	ochem ar	nomalies	
with soils reaching 599 ppb Au, 616 ppm 4	As, and 1	high bas	se metals	•
Host rock is chloritic/sericitic phyllite	e, dolom:	itic qua	irtzite,	and
thin layers of fine-crystalline limestone	Э.			

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Index

Ć

	Page
Summary:	1.
Property Description:	2.
Regional Bedrock Geology:	3.
Property Bedrock Geology:	4.
Geochem Soil Survey:	5.
Conclusion:	11.
Geochem Rock Survey:	12.
Conclusion:	14.
Recommendations:	15.
Qualifications of the Author:	16.
Exploration Costs:	17.

<u>Figures</u>

Figure	1:	Location Map (Bedrock Geology - Terranes).
Figure	2:	Bedrock Geology Map, scale 1:5,000.
Figure	3:	Rock Sample Locations (21001-05, 21201-27, 21244-50).
Figure	4:	Geochem Soil Sample Locations (lines 10980N, 11030N,
-		11060N, 11130N, 11230N, 11330N).
Figure	5:	Arsenic and Gold in Soils (lines 10980N, 11030N, 11060N,
2		11130N, 11230N, 11330N).
Figure	6:	Rock Sample Locations (21214-19, 21228-33, 21402-05).
Figure	7:	Arsenic and Gold in Soils (line 12000N).
Figure	8:	Property Topographical Map, scale 1:50,000.
Figure	9:	B.C. Ministry Mineral Claims Map,
2		93A14W, Scale 1:31,680.
Appendi	.x 1	: Acme Analytical Lab. Ltd Geochemical Analyses
- -		Certificate and Invoice.

Summary

About 3 km² of bedrock across the western portion of the Nugget Mountain Mineral Property was mapped on a 1:5,000 scale. A total of 129 soil samples along 7 geochem lines, and 49 rock samples were collected. All samples were submitted to Acme Analytical Laboratories Ltd. for analyses. Various elements plus Au concentrations were determined by a multi-element ICP package for soils, and Au in rocks were determined by fire assays.

Bedrock across the western portion of the Property is made up of mid to late Paleozoic metasediments of the Downey succession. The carbonate-bearing and metabasaltic components of this succession are important host rocks for gold mineralization in different parts of the Wells/Barkerville area. Past lode gold production in the Wells Gold Camp totals about 1.2 million oz. Gold was produced from pyritic dolomitic siltstone layers called replacement ore, and from fault controlled quartz/sulfide-filled fissures.

Two neighbouring arsenic/gold geochem anomalies were identified on the Property in soils at a location 600 m northeast of the confluence of Nugget Gulch and Antler Creek. Bedrock in the survey area is less than 2 m deep in most places, but exposures are sparse. The west anomaly consists of 5 soil samples collected over 40 linear meters where arsenic and gold concentrations reach 107 ppm As and 327 ppb Au. Two quartz floats collected from the west anomaly-site contained 0.93 and 0.28 g/t Au. The east anomaly is represented by 5 soil samples collected over 27 linear meters where arsenic and gold values reach 616 ppm As and 599 ppb Au. Dolomitic finely-granular quartzite layers were mapped 500 m along strike to the northwest from the east anomaly-site. Replacement-type gold mineralization along these layers could be responsible for high concentrations of arsenic and gold at the east anomaly-site. A small bedrockincised drainage pattern was traced up the slope of Nugget Mountain to the east anomaly-site from the point where it drains into Antler Creek. One massive pyrite cobble that was collected at the base of this drainage cut contained 4.77 g/t Au.

An estimated 300,000 oz of placer gold was produced along Antler Creek at locations distributed across a 3 km section that starts near the confluence of Victorian Creek and continues downstream. At the Wells Gold Camp, Mosquito Creek and Lowhee Creek placer gold production totals 200,000 oz and 74,000 oz respectably. The similarity between placer gold production in both areas suggests that the Nugget Mountain Mineral Property has potential for significant lode gold occurrences.

Property Description

The Nugget Mountain Mineral Property consists 46 two-post mineral claims and 2 placer claims (see below and figure 9). The Property is situated along upper Antler Creek and can be located on NTS map number 93A14W (latitude 52° 58', longitude 121° 25'). To reach the Property, drive 5 km east from Wells along Highway 26, 0.5 km north along the Bowron Lake Road, 13.5 km east along the 3100 Road, and 5 km south along the upper Antler Creek Road (see figure 1):

<u>Tenure Number</u>

<u>Claim Name</u>

<u>Anniversary Date</u>

Mineral Claims

241226	Muggat	Mountain	1	0at	12	1008
341220	Nugget	Mountain	1 2	000	12,	1000
341227	Nugget	Mountain	2	001	12,	1000
341228	Nugget	Mountain	3	UCL	12,	1990
341229	Nugget	Mountain	4	UCT	12,	1998
341230	Nugget	Mountain	5	Oct	12,	1998
341231	Nugget	Mountain	6	Oct	12,	1998
341232	Nugget	Mountain	7	Oct	12,	1998
341233	Nugget	Mountain	8	Oct	12,	1998
341234	Nugget	Mountain	9	Oct	12,	1998
341235	Nugget	Mountain	10	Oct	12,	1998
341236	Nugget	Mountain	11	Oct	22,	1998
341237	Nugget	Mountain	12	Oct	22,	1998
341238	Nugget	Mountain	13	Oct	22,	1998
341239	Nugget	Mountain	14	Oct	22,	1998
344943	Nugget	Mtn 25A		Apr	09,	1999
344944	Nugget	Mtn 26A		Apr	09,	1999
344945	Nugget	Mtn 27A		Apr	09,	1999
344946	Nugget	Mtn 28A		Apr	09,	1999
344947	Nugget	Mtn 29A		Apr	09,	1999
344948	Nugget	Mtn 30A		Apr	09,	1999
344949	Nugget	Mtn 31A		Apr	09,	1999
344950	Nugget	Mtn 32A		Apr	09,	1999
344951	Nugaet	Mtn 33A		Apr	09,	1999
344952	Nugaet	Mtn 34A		Apr	09,	1999
344953	Nugget	Mtn 35A		Apr	09,	1999
344954	Nugget	Mtn 36A		Apr	09,	1999
344955	Nugget	Mtn 37A		Apr	09,	1999
344956	Nugget	Mtn 38A		Apr	09.	1999
344957	Nugget	Mtn 39A		Apr	09.	1999
344958	Nugget	Mtn 40A		Apr	09.	1999
344959	Nugget	Mtn 41A		Apr	09.	1999
344960	Nugget	Mtn 42A		Apr	09	1999
344900	Nugget	Mtn 43		Anr	09	1999
344201	Nugget	$\frac{11011}{Mtn} 44$		Anr	09	1999
211062	Nugget	Mtn 45		Apr	ñ9,	1999
344703	mugget	nch 40		ωbr	· · ·	2111

<u>Tenure Number</u>	<u>Claim Name</u>	<u>Anniversary Date</u>
Mineral Claims		
344964 344965 344966 344967 344968 344969 344970 344971 344972 344973 344974	Nugget Mtn 46 Nugget Mtn 47 Nugget Mtn 48 Nugget Mtn 49 Nugget Mtn 50 Nugget Mtn 51 Nugget Mtn 52 Nugget Mtn 53 Nugget Mtn 54 Nugget Mtn 55 Nugget Mtn 55 Nugget Mtn 56	Apr 09, 1999 Apr 11, 1999
Placer Claims		
307011 318158	Highgrade Bigtime	Jan 11, 1997 Jun 16, 1996

Regional Bedrock Geology

In the Barkerville area lode gold is hosted by middle Paleozoic carbonate-bearing and metabasaltic rocks of the Downey Succession (see figure 2). The Downey is one of the carbonate-rich successions in the Barkerville Terrane. The terrane is dominated by continental shelf and slope clastics, carbonates and finegrained pyroclastic rocks.

Gold mineralization in the Barkerville area is known to have three controls; 1) Stratigraphic controls - placer and lode gold deposits are primarily associated with bedrock belonging to the Downey Succession; 2) Structural controls - auriferous replacement pyrite in dolomitic siltstone layers are located along hinge zones and less frequently along the limbs of regional and minor folds, and gold-bearing quartz veins are most commonly associated with stress fields around Miocene northerly striking faults; 3) Metamorphic controls - lode gold concentrations are mainly confined to rocks exhibiting a chlorite grade of metamorphism.

Lode gold was mined from the Downey succession at locations 18 km northwest of the Property near Wells on Cow Mountain and Island Mountain. About 1.2 million ounces was produced from the Wells mining camp. The gold was hosted in pyritic dolomitic siltstone layers and in fault controlled quartz-filled fissures. About 300,000 oz of placer gold was produced along Antler Creek on the Nugget Mountain Property from 1859 to 1861.

Property Bedrock Geology

The western half of the Nugget Mountain Property consists of bedrock belonging to the Downey succession. The eastern portion is made up of bedrock belonging to the Hardscrabble Mountain succession. The contact between the two successions is located unconformably along a strike-slip fault that trends north to northwest across the central portion of the Property. Rocks of the Hardscrabble Mountain succession on the Property have been mapped mainly as dark grey to black graphitic phyllite, and less dark-colored siltite and micaceous quartzite. Exploration work is focussed on bedrock belonging to the Downey succession in locations along the western slope of Nugget Mountain.

In decreasing order of abundance, Downey rocks across the Property consists of olive and grey phyllite, grey micaceous quartzite, dark grey to black graphitic phyllite, light grey to black limestone, micaceous and non micaceous quartz carbonate, and green schist or meta-basaltic tuff.

The Downey rocks across the Property were mapped as five distinct units and one sub-unit (see figure 2). Units 1 to 4 progressively represents the succession from top to bottom, or younger to older rocks. Unit 1 is characterized by the abundance of light olive-colored fissile phyllite. These phyllites lack the textures seen in Unit 2. Layers of olive-colored phyllites in Unit 2 are more commonly quartzitic and/or carbonate-bearing. The main carbonate component consists of ankerite phenocrysts that reach up to 3 mm in diameter. Layers of micaceous quartzite and less pure quartzite, minor green schist, and rare thin layers of limestone all occur in this Unit 2.

Unit 3 differs from Unit 2 by the abundance of light grey-colored phyllites, otherwise both units contain the same rock-types. A 3 m layer of brown finely-granular dolomitic quartzite (see dq, figure 2) was mapped in the central part of Unit 3 along Antler Creek. The quartzite resembles layers of dolomitic siltstone found at the Cariboo Gold Quartz Mine where they host lenticularshaped gold-bearing pyritic ore bodies.

Unit 4 contains a large number of finely-crystalline limestone layers, otherwise this unit is similar to Unit 2. The limestone colors vary with shades of grey and are black where rich in organo-pelitic material. In places the limestone is partly silicified and bleached to a light grey, tan or white color. On the east side of Antler Creek, the northern-most limestone layer is sheared and exhibits a strong brown-colored gossan. The discoloration is mostly due to weathered siderite. This exposure contains up to 20% narrow quartz and calc-silica vein stockwork. Occasional veins contain patches of semi-massive galena and pyrite. Rock samples 21404 and 21405 from this outcrop did not return significant gold values. Soil samples A00098S to A00101S were taken directly above the buried portion of the limestone gossan for comparison reference purposes. Another rock type identified in Unit 4 is a highly weathered red micaceous quartz carbonate (see qc, figure 2). This layer was exposed in a trench along the Nugget Gulch Road near the central part of unit 4.

Unit 5 has been assigned to sequences of darker colored phyllite and quartzite. The rocks are predominantly medium to dark grey. Sub-unit 5b consists of black graphitic phyllite. The southernmost 5b sub-unit contains up to 10% disseminated pyrite.

Geochem Soil Survey

Grid Procedure

A 2,500 m long baseline was constructed over the Nugget Mountain Property. The baseline runs along the lower eastern slope of Nugget Mountain along a 360° azimuth. Sample stations have been assigned northing and easting grid coordinate numbers. The south end of the baseline lies on the south claim boundary and has been assigned the reference station coordinate number 10000N/10000E. Distances measured in meters north and east of the reference station are added to the respective 10000N/10000E coordinate number, and distances south and west are subtracted. For example; coordinate 12000N/10200E represents a position on the grid 2000 m north and 200 m east of the reference station.

Sample lines are aligned in east-west directions and are spaced about 100 m apart. The normal sample interval along each line is 20 m.

Sampling Procedure

A soil tube auger capable of retrieving material up to 120 cm deep was used to collect soil samples. Samples were selected from the base of the B horizon where material preferably consisted of a mixture of local fragmented bedrock and clay/silt derivatives. The typical soil profile in the coniferous-forested survey area comprises of distinct Podzolic horizons forming a decompose of parental bedrock usually not more than 2 m thick.

Geochemical Results

Sample numbers, coordinate numbers along 7 east-west lines (see figures 4 and 7), and respective Au ppb geochem results (see figures 5 and 7) are given below. Normal station intervals are

20 m, but some intervals are smaller. Soil horizon descriptive definitions are; BT - brown, clay-rich horizon; BF - red brown, iron-rich horizon; and C1 - weathered bedrock. The base of horizons sampled are given in centimeters for lines 12000N and 11230N. See Geochemical Analyses Certificate (Acme Analytical Laboratories Ltd. - Appendix 1) for 30 element plus Au ppb results and procedures:

			Soil	Base (cm)	Au
<u>Sample</u>	<u>Easting</u>	<u>Northing</u>	<u>Horizon</u>	<u>Horizon</u>	<u>ppb</u>
A00001S	10000	12000	BT	60	6
A00002S	10020	12000	BT	50	10
A00003S	10040	12000	BT	70	9
A00004S	10060	12000	BT	50	4
A00005S	10080	12000	вт	40	5
A00006S	10100	12000	BT	35	9
A000075	10120	12000	BT	50	14
A00008S	10140	12000	BT	50	10
A000095	10160	12000	BT	40	20
A00010S	10180	12000	BT	60	11
A00011S	10200	12000	BT	40	2
A00012S	-9980	12000	BT	55	6
A00013S	-9960	12000	BT	40	45
A00014S	-9940	12000	BT	45	5
A00015S	-9920	12000	BT	25	1
A00016S	-9900	12000	BT	20	<1
A00017S	-9880	12000	BT	25	7
A00018S	-9860	12000	BT	45	1
A000195	-9840	12000	<u>c1</u>	20	<1

Geochem Line 12000N

Ć

7

<u>Sample</u>	Easting	<u>Northing</u>	Au ppb
A00103S	10000	11330	6
A00104S	-9980	11330	7
A00105S	-9960	11330	7
A00106S	-9940	11330	10
A00107S	-9920	11330	22
A00108S	-9900	11330	5
A00109S	-9880	11330	5
A00110S	-9860	11330	11
A00111S	-9840	11330	7
A00112S	-9820	11330	48
A00113S	-9800	11330	1
A00114S	-9780	11330	1
A00115S	-9760	11330	3
A00116S	-9740	11330	<1
A00117S	-9720	11330	1
A00118S	-9700	11330	20
A00119S	-9680	11330	18
A00120S	-9660	11330	23
A00121S	-9648	11330	6

<u>7</u>

			Soil	Base (cm)	Au
<u>Sample</u>	<u>Easting</u>	<u>Northing</u>	<u>Horizon</u>	<u>Horizon</u>	<u>ppb</u>
A00020S	10000	11230	BT	60	3
A00021S	-9980	11230	BT	55	11
A00022S	-9960	11230	BT	30	4
A00023S	-9940	11230	BT	60	4
A00024S	-9920	11230	BF	60	11
A00042S	-9916	11230	BT	50	8
A00043S	-9912	11230	ВТ	40	12
A00044S	-9908	11230	BT	65	7
A00045S	-9904	11230	BT	80	8
A00025S	-9900	11230	BT	45	103
A00046S	-9895	11230	BT	110	599
A00047S	-9890	11230	BT	45	293
A00026S	-9880	11230	BT	35	80
A00102S	-9873	11230	BF	95	73
A00027S	-9860	11230	BT	100	9
A00028S	-9840	11230	ВТ	40	6
A00029S	-9820	11230	C1	30	4
A00030S	-9800	11230	BT	60	5
A00031S	-9780	11230	BT	25	3
A00032S	-9760	11230	C1	20	1
A00033S	-9740	11230	BT	50	4
A00034S	-9720	11230	BT	75	2
A00035S	-9700	11230	BT	120	4
A00036S	-9690	11230	C1	25	23
A00037S	-9680	11230	C1	20	327
A00038S	-9670	11230	C1	25	292
A00039S	-9860	11230	C1	25	13
A00040S	-9650	11230	C1	25	55
A00041S	-9640	11240	C1	30	3

1

ĺ

<u>Sample</u>	Easting	<u>Northing</u>	Au <u>ppb</u>
ROODEEG	10140	11120	
A000558	10140	11130	4
AUUU545	10120	11130	9
A00053S	10100	11130	4
A00052S	10080	11130	7
A00051S	10060	11130	3
A00050S	10040	11130	6
A00049S	10020	11130	2
A00048S	10000	11130	11
A00056S	-9980	11130	4
A00057S	-9960	11130	7
A00058S	-9940	11130	14
A00059S	-9920	11130	6
A00060S	-9900	11130	16
A00061S	-9880	11130	9
A00062S	-9860	11130	11
A00063S	-9840	11130	12
A00064S	-9820	11130	9
A00065S	-9800	11130	20
A00066S	-9780	11130	15
A00067S	-9760	11130	21
A000685	-9740	11130	7
A00069S	-9720	11130	7
A00070S	-9707	11130	22
A00071S	-9695	11130	
A000725	-9680	11130	<1
A00073S	-9670	11130	<1
A00074S	-9660	11130	1
A000745	-9640	11130	5
A00073S A00074S A00075S	-9670 -9660 -9640	11130 11130 11130 11130	<1 <1 1 5

Geochem Line 11060

<u>Sample</u>	<u>Easting</u>	Northing	Au ppb
A00122S	10220	11060	4
A00123S	10240	11060	1
A00124S	10260	11060	3

1

Sample	<u>Easting</u>	Northing	Au ppb
A00076S	10000	11030	б
A000775	-9980	11030	298
A00078S	-9960	11030	17
A00079S	-9940	11030	7
A00080S	-9920	11030	ġ
A00081S	-9900	11030	5
A000825	-9880	11030	11
A00083S	-9860	11030	4
A00084S	-9840	11030	35
A00085S	-9820	11030	4
A00086S	-9800	11030	4
A00087S	-9780	11030	4
A00088S	-9760	11030	4
A00089S	-9740	11030	1
A00090S	-9730	11030	32
A00091S	-9720	11030	9
A00092S	-9690	11030	3
A00093S	-9675	11030	8
A00094S	-9660	11030	4
A00095S	-9650	11030	15
A00096S	-9630	11030	25
A000975	-9615	11030	8

Geochem Line 10980

<u>Sample</u>	<u>Easting</u>	Northing	Au <u>ppb</u>
A00125S	10190	10980	3
A00126S	10210	10980	9
A00127S	10230	10980	3
A00128S	10250	10980	<1
A00129S	10270	10980	1

Limestone Gossan Location

<u>Sample</u>	<u>Easting</u>	Northing	Au ppb
A00098S	-9640	11070	5
A00099S	-9640	11050	44
A00100S	-9650	11050	· 18
A00101S	-9647	11073	10

All samples collected from the survey site appear to be soils that formed by various degrees of bedrock weathering, and not from the weathering of sediments such as alluvium or till. For this reason, soil samples containing high gold and related pathfinder element values most likely resulted from the weathering of very local mineralized bedrock. All soil horizons sampled contained various amounts of angular local bedrock fragments (5 to 80%). Bedrock depths will probably not exceed 2 m. Slope azimuth and steepness have been catalogued in field notes for lines 12000N and 11230N. This information can be used at a later time for determining trends of soil solifluction and element dispersion.

Two gold-arsenic soil anomalies were identified along line 11230N (see figure 5). The east anomaly consists of values ranging from 73 to 599 ppb Au and 138 to 616 ppm As across 27 m. The west anomaly has a range of values from 13 to 327 ppb Au and 3 to 107 ppm As across 40 m. A single-station gold anomaly (298 ppb Au) was recorded on the east end of line 11030N.

Four soil samples were collected from an area above a buried portion of the sheared limestone gossan to determine the degree of chemical mobilization of gold and lead from this weaklymineralized structure. Gold values in the soils ranged from 5 to 48 ppb and lead values ranged from 142 to 409 ppm. The limestone gossan outcrop contained rare patches of galena and pyrite, and both rock samples collected (21404 and 21405) returned values of 0.03 g/t Au.

Conclusion

The east gold anomaly on line 11230N has a strong arsenic/base metal association and suggests the presence of a local auriferous sulfide-rich quartz-filled fissure or possibly replacement-type gold mineralization in layered pyritic dolomitic siltstone. This anomaly does not clearly extend into neighbouring sample lines, but may be related to gold values found at two other stations. If gold values found at stations A00076S (line 11030N, 298 ppb Au) and A00112S (line 11330N, 48 ppb Au) are related to the east anomaly, then gold mineralization could be occurring along some type of structure closely following the regional strike of bedrock; or striking 333°. Dolomitic finely-granular quartzite was mapped along the extension of this strike where it crosses Antler Creek (see dg in Unit 3, figure 2). Five barren guartz samples from veins and floats were sampled near station A00112S (see figure 4) where bedrock was scarcely exposed, but no significant gold values were recorded.

Six quartz samples were taken from veins and floats near the west gold soil anomaly (see figure 6). Two of the quartz float samples (21217 and 21214) returned values of 0.28 and 0.93 g/t Au. These floats were arranged with a numerous amount of other quartz floats along a 20° lineament, and probably derived from a cross-cut fault-controlled vein. Since line 11230N intersects the cross-cut vein at a high oblique angle, it is unlikely that this structure is alone responsible for the 40 m long west Au anomaly.

Geochem Rock Survey

A total of 49 rock samples collected over the Antler Property were sent to Acme Analytical Laboratories Ltd. Samples 21001 to 21005, and 21201 to 21227 were pulverized and sieved into -100and +100 mesh portions. Au was determined by partial (10 g) fire assay from 1 A.T. for the -100 mesh portion, and total sample fire assay for the +100 mesh portion. The remaining samples were only assayed from a -100 fraction. The certified assay results (total Au opt or Au ppb) are given in Appendix 1. Listed below are sample descriptions and respective total Au values converted to g/t. See figures 3 and 6 for rock sample locations. Samples 21001 to 21005 were taken from Trench 1; trench strikes west-east and 00m is the west end of trench:

Sample <u>Number</u>	Description	Au g/t
21001	1 m channel sample across strike at 00 + 0 m east, olive chloritic sericite quartzite, trace f or disseminated py. S1-300°/77°N.	0.06
21002	0.5 m channel sample across strike at 00 + 3 m east, as above, <1% pv.	0.03
21003	1 m channel sample across strike at 00 + 5 m east, olive talc chloritic sericite phyllite	0.12
21004	00 + 5 m east, 25 cm wide cross-cut quartz vein striking 30°, light yellow brown stained,	<0.03
21005	1 m channel sample at 00 + 5 m east, black arg limestone. 15% quartz stringers. <1% f gr dis py.	0.03
2120 1	1 m wide discontinuous cross-cut quartz vein with 3% patches of massive f-c gr pv.	0.25
21202	Scattered brown-stained broken quartz along old cat trail.	0.03
21203	Scattered white quartz fragments along old cat trail.	<0.03
21204	Broken brown-stained quartz vein fragments along old cat trail.	0.03
21205	50 cm wide quartz vein parallel to S1-318°/78°N, grid location 10000E/12195N.	0.03
21206	30 cm wide quartz vein parallel to S1, grid location 10000E/12196E.	<0.03
21207	25 to 40 cm wide cross-cut quartz vein, strike 3°.	0.03

Sample <u>Number</u>	Description	Au g/t
21208	10 cm wide quartz vein parallel to S1.	0.03
21209	50% quartz veins parallel to S1.	0.06
21210	A0 cm wide quartz vein parallel to S1	<0.03
21210	3 narrow cross-cut quartz veins striking 37°,	0.03
	totalling 30 cm across 40 cm zone.	
21212	20 cm quartz vein parallel to S1, faint yellow brown stain along fractures, 10% siderite, 3% c gr sericite	0.16
21213	25 cm wide ductile-displaced broken quartz vein 20% c gr siderite.	<0.03
21214	45 cm dia quartz boulder from historical trench, grid location -9680E/11230N.	0.93
21215	20 cm dia quartz boulder, grid location ~9680E/ 11225N.	0.03
21216	4 parallel quartz veins 5 to 10 cm wide across 2 m wide zone of pyritic sericite phyllite, veins parallel to S1-290°/80°N, grid location -9680F/11202N	0.03
21217	30 cm diameter quartz float, 5% streaky	0.28
21218	30 cm wide quartz vein, strike 310°/70°N, grid	0.03
21219	20 cm wide cross-cut quartz vein, strike 20°/wertical, grid location -9675E/11215N.	<0.03
21220	1 m wide quartz vein in historical trench, parallel to S1-320°/75°S, adit located 100 m NW along strike from trench.	0.06
21221	Chips from quartz boulder dump near historical trench described above.	0.03
21222	25 cm dia quartz float.	0.03
21223	20 cm wide quartz vein parallel to S1-320°.	<0.03
21224	35 cm dia quartz boulder.	0.03
21225	25 cm wide quartz vein in fault gouge striking 270° plunge vertical, black graphitic phyllite S1-320°/80°N.	0.03
21226	multiple parallel quartz veins 10 to 20 cm wide, 40 cm dia brecciated quartz fragments adjacent to fault gouge.	0.22
21227	35 cm wide quartz vein in historical trench, strike obscured.	0.28
21228	45 cm dia quartz boulder, stained brown.	<0.03
21229	35 cm wide quartz vein parallel to S1-322°/vertical.	<0.03
21230	45 cm wide cross-cut quartz vein striking 32°, 15% brown Fe-oxide. 1% galena, 5% vug/gtz xls.	<0.03
21231	1 m wide quartz vein, 5% brown Fe-oxide, strike 304°/50°N.	<0.03
21232	10 to 15 cm wide quartz vein stocking in micaceous quartzite $S1-297^{\circ}/75^{\circ}N$	<0.03

1

.-

<u>13</u>

Sample <u>Number</u>	Description	Au <u>g/t</u>
21233	30 cm dia quartz boulder, 5% qtz xl-lined vugs, 5% brown Fe-oxide.	<0.03
21244	1 m wide silicified sericite phyllite with 35 cm wide guartz vein.	<0.03
21245	30 cm wide stocking quartz vein, located 5 m south of 21244.	<0.03
21246	25 cm wide cross-cut quartz vein, strike 257°/65°W, hostrock strike 305°/74°N.	<0.03
21247	90 X 60 cm quartz boulder with 15% patches of Fe-oxide.	<0.03
21248	1.3 m wide silicified phyllite layer with 20% guartz stockwork.	<0.03
21249	$\overline{1}$ m wide guartz vein parallel to S1-310°/85°S.	<0.03
21250	same vein as above, located 15 m south along strike from 21249.	<0.03
21402	Dolomitic siltstone cobble with 20% banded massive f gr py.	0.07
21403	Quartz cobble with 80% massive f-c gr py.	4.77
21404	Limestone-quartz gossan with traces of galena in narrow calc-silica vein stockwork.	0.01
21405	20 cm wide calc-silica vein in above with 7% galena and 3% py.	0.03

14

Conclusion

From the 49 rock samples collected (mainly quartz veins), 7 quartz samples came back with values between 0.12 to 0.93 gpt. Gold grades along economic quartz veins at different mining camps are generally known to be erratic. For example; at the Idaho-Maryland property in California, Emperor Gold (VSE) reports that gold values within economic veins can be extremely erratic, with values varying from 0.05 to 89.4 opt over horizontal distances less than 3 m (The Northern Miner, 11/12/95, Vol. 81, No. 41). Higher gold values along some of the 7 weakly gold-mineralized quartz veins on the Nugget Mountain Property may appear at various strike locations.

From the 7 weakly gold-mineralized quartz samples, sample 21214 contained the most significant gold value (0.09 opt or 0.93 gpt). The sample was taken from a quartz boulder adjacent a historical hand-excavated trench near the site of Old Antler Town (see figure 6). The gold-bearing vein is accompanied by consecutive high Au soil values (23,327,292,13,55 ppb - 10 m spacing along geochem line 11230N). The vein is also centrally located along a 3 km section of Antler Creek where an estimated 300,000 oz of placer gold was mined. One quartz cobble (sample 21403) containing 80% massive pyrite and 4.77 g/t Au was found at the base of Nugget Mountain; near the west end of geochem line 11330N (figure 6). This cobble and surrounding clasts appear to have been transported down slope along a postglacial fluvial-cut bedrock incision that originates at the east Au soil anomaly-site (figure 5, line 11230N).

Recommendation

The geochem soil survey should be expanded to the north and south with particular attention focussed on the strike extension of dolomitic finely-granular quartzite layers found in Downey Unit 3. Auriferous replacement-type mineralization along these layers may be responsible for anomalous gold, arsenic and base metal values found at the east Au soil anomaly-site on line 11230N.

The east and west Au soil anomaly-sites along line 11230N should be trenched to determine the nature of gold mineralization in bedrock.

Known layers of dolomitic quartzite should be studied by searching along strike for new exposures. Additional widespread detailed mapping may lead to the discovery of other mineralized layers.

Additional sampling along strike extensions of the 7 weakly goldmineralized quartz veins found on the Property is recommended.

Qualifications of the Author

I, Stephen Peter Kocsis, studied the Earth Sciences at the University of Waterloo and was issued a B.Sc. degree in 1983.

From February of 1980 to March of 1986 I was employed as a Petroleum Exploration Consultant; based out of Calgary, Alberta. I performed geological supervision at exploration and development wellsite locations throughout the Western Canadian Sedimentary Basin.

From 1982 to 1986 I worked on several Placer and Mineral Gold Exploration Projects in the B.C. Cariboo Mining District. I conducted this work during summer lay-off periods while employed with the Petroleum Exploration Industry - periods lasting up to 5 months each year.

From February 1987 to December of 1988 I was employed by the University of Toronto - Glaciated Basin Research Center. I was a Research Associate for Professor Nick Eyles and was a co-author on four published geological papers. Our work consisted of Glacial Geology research programs in the provinces of Ontario and British Columbia, and in the State of Alaska. My work primarily focused on the study of Pleistocene Placer Gold Deposits in the B.C. Cariboo Mining District.

From January of 1990 to present I have been residing in British Columbia and have been self employed as a Mining and Geological Consultant - specialized in Placer and Mineral Exploration in the Cariboo district. I have worked throughout the B.C. Cariboo Mining District, and in parts of the Yukon Territory.

For the period extending from June of 1995 to February of 1996, I was retained as a geologist by Gold City Mining Corp. and International Wayside Gold Mining Ltd. for an intensive gold exploration program along the Wells/Barkerville gold belt, central British Columbia.

Other work includes 40 days (1996) of reconnaissance mineral exploration in the Tilaran-Aguacate Gold Province, and placer gold exploration in the Golfo Dulce Gold Province of Costa Rica.

I belong to the B.C. Association of Professional Engineers and Geoscientists - P.Geo. certification issued July 6, 1993 (Registration Number 20451).

Per.

Stephen Kocsis, October 31, 1996

,

٤.

٨.

Nugget Mountain Mineral Property NTS Map 93A14W Barkerville Area Cariboo Mining District, B.C.

Scale. 1:16,000

Geochem Soil Lines: Line 1. 12000N (10200E to -9840E) Line 2. 11230N (10000E to -9640E)

-9600E

-9600E

Nel Se

.

nie obiektie in de Beleine en de Beleine

Z 🤝

Figure 7.

Arsenic and Gold in Soils (line 12000N) Nugget Mountain Mineral Property NTS Map 93A14W Barkerville Area Cariboo Mining District, B.C.

Scale. 1:2,000

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

ASSAY CERTIFICATE

Cariboo Mining Services File # 95-4367 Page 1 301 - 776 Vaughan St., Quesnel BC V2J 275 Submitted by: Stephen Kocsis

SAMPLE#	-100 gm	+100 gm	-100Au opt	+100Au opt	TotAu opt	DupAu opt	
A 21001 A 21002 A 21003 A 21004 A 21005	632 584 556 551 600	$ \begin{array}{r} 14.4 \\ 10.1 \\ 10.4 \\ 6.3 \\ 15.5 \end{array} $.002 <.001 .004 <.001 .001	.010 .023 <.001 <.001 .001	.002 .001 .004 <.001 .001		
A 21201 A 21202 A 21203 A 21203 A 21204 A 21205	565 532 570 562 556	12.4 20.8 12.0 17.7 9.7	.003 .001 <.001 .001 <.001	.207 .001 .002 <.001 .015	.008 .001 <.001 .001 <.001	- - <.001	
RRE A 21205 A 21206 A 21207 A 21208 A 21209	642 558 557 589 619	3.7 12.8 12.7 9.6 6.7	.001 <.001 <.001 .001 <.001	.087 .001 .046 <.001 .140	.001 <.001 .001 .001 .002		
A 21210 A 21211 A 21212 A 21213 A 21213 A 21214	615 585 615 554 588	13.7 5.4 12.9 4.0 15.8	<.001 .001 .005 <.001 .028	.002 .003 .011 .007 .075	<.001 .001 .005 <.001 .030		
A 21215 A 21216 A 21217 A 21218 A 21219	611 599 514 592 503	10.0 6.5 18.1 18.1 32.0	.001 .001 .009 .001 <.001	.001 .004 .002 .001 <.001	.001 .001 .009 .001 <.001		
A 21220 RRE A 21220 A 21221 A 21222 A 21223	548 596 595 508 502	6.7 35.8 13.7 24.0 .7	.002 <.001 .001 .001 <.001	.012 <.001 <.001 .001 <.001	.002 <.001 .001 .001 <.001	<.001	
A 21224 A 21225 A 21226 A 21227	562 585 542 540	14.1 2.8 5.6 1.9	.001 .001 .007 .009	.002 .002 <.001 .006	.001 .001 .007 .009	=	

-100 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -100 MESH. +100 AU - TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: P1 ROCK P2 TO P3 SOIL

A CME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 GEOCHEMICAL ANALYSIS CERTIFICATE

Cariboo Mining Services PROJECT BARKERVILLE File # 96-1928 Page 1 301 - 776 Vaughan St., Quesnel BC V2J 215 Submitted by: Stephen Kocsis

SAMPLE# Au** ppb <1 6 A 21228 A 21229 À 21230 A 21231 A 21232 <1 <1 <1 237 A 21233 À 21234 À 21235 4 A 21236 4 82 A 21237 <1 <1 <1 15 152 A 21238 RE A 21238 A 21239 A 21240 A 21241 3 A 21242 A 21243 STANDARD AU-R <1 471 AU** BY FIRE ASSAY AND ANALYSIS BY ICP/GRAPHITE FURNACE. (304m) - SAMPLE TYPE: P1 ROCK P2 SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE REPORT MAILED: 4 me 6/96 DATE RECEIVED: MAY 28 1996 D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE(604)253-3158 FAI(604)253-1716

GEOCHEM PRECIOUS METALS ANALYSIS

Cariboo Mining Services PROJECT BARKERVILLE File # 96-2236 301 - 776 Vaughan St., Quesnel BC V2J 215 Submitted by: Stephen Kocsis

SAMPLE#	Au** ppb
A 21244 A 21245 A 21246 A 21247 A 21247 A 21248	<2 <2 5 3 <2
A 21249 RE A 21249 A 21250 A 21401	2 <2 2 2

30 GRAM SAMPLE FIRE ASSAY AND ANALYSIS BY ICP/AA. - SAMPLE TYPE: ROCK

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 14 1996 DATE REPORT MAILED: 4 m 25/96

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 ASSAY CERTIFICATE Cariboo Mining Services PROJECT ANTLER File # 96-4807 Page 1

301 - 776 Vaughan St., Quesnel BC V2J 2T5 Submitted by: Stephen Kocsis

SAMPLE#	Au** gm/t
A 21402 A 21403 A 21404 A 21404 A 21405 RE A 21405	.07 4.77 .01 .03 .03

AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL Samples beginning 'RE' are Reruns and 'RRE' Are Reject Reruns.

DATE RECEIVED: SEP 26 1996 DATE REPORT MAILED: Oct 7/96

SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

					S	lar	<u>ibo</u>	GI o Mi	20CE	IEMI 1g 8	CAL lerv	AN	ALY	SIS Fil	с сн .е_1	SRT1 F 95	-43	67	, F	age?	2																			
No ppm	Cu ppm	Pb ppm	2n ppm	Ag	Ni ppm	Co ppm	Min ppm	Fe %	As ppm	U U Debu	AU AU ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bí ppm	V Ppm	Ca X	P 2	La ppm	Cr ppm	Ng Z	Ba ppm	Ti X	B PPM	Al X	800030 Na X	K X	W ppm	Au*										
1 <1 1 1	51 28 40 51 56	19 20 27 37 28	83 59 89 91 85	<.3 <.3 <.3 <.3 <.3	39 24 39 38 51	17 12 21 20 18	701 453 890 860 580	4.76 3.94 5.31 5.26 5.30	13 <2 22 19 24	<5 <5 <5 <5 <5		14 <2 4 11 8	16 7 18 12 17	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 3 <2 2 <2	<2 <2 <2 <2 <2 <2 <2 <2	15 8 15 15 15	.23 .09 .33 .19 .23	.065 .039 .081 .033 .071	41 17 25 40 34	18 10 23 18 23	.51 .28 .44 .49 .51	33 22 39 33 33	.01 <.01 <.01 <.01 <.01	00000 00000	1.14 1.00 1.47 1.11 1.87	.01 <.01 <.01 <.01 <.01	.03 <.01 .02 .02 .01	<u>^</u> ~~~~	6 10 9 4										
1 1 1 1	42 48 55 56 56	21 34 30 36 39	98 114 117 97 104	<.3 <.3 .6 <.3 .3	44 55 51 53	20 24 25 27 28	618 1009 1358 974 1018	4.78 5.57 5.40 5.49 5.77	25 27 21 22 25	ও ও ও ও ও	< < < < < < < < < < < < < < < < < < < <	10 11 9 8 8	6 21 16 9 9	<.2 <.2 .3 .3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~ ~~~~~~	16 18 16 16 16	.06 .36 .28 .10 .11	.045 .080 .077 .048 .050	41 41 32 30 31	24 25 24 28 29	.58 .57 .50 .50 .52	33 43 48 31 33	<_01 _01 <.01 <.01 <.01	0 0 0 0 0 0 0 0 0 0 0 0	1.34 1.22 1.97 1.65 1.74	<.01 .01 <.01 .01 .01	.02 .03 .02 .01 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2	1/ 1/ 1/ 2/										
1 1 1 1	35 56 64 65 55	26 37 47 26 12	122 105 93 91 77	.4 <.3 .7 <.3 .3	45 52 46 39 20	19 21 24 19 16	594 959 841 760 539	5.28 6.01 6.31 5.05 6.64	22 21 24 21 17	৩ ৩ ৩ ৩ ৩ ৩ ৩	~~~~~ ~~~~~~	9 7 6 11 4	13 13 21 5 6	.2 <.2 .3 <.2	< < 2	~~~~~ ~~~~~	19 18 15 11 32	20 18 .34 .05 .07	.056 .049 .106 .030 .063	37 31 27 45 23	29 29 25 15 24	.59 .56 .49 .35 .36	38 44 37 30 34	.01 <.01 <.01 <.01 <.01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.49 1.43 1.50 .94 2.14	<.01 <.01 <.01 <.01 <.01	.02 .01 .02 <.01 .01	<2 <2 <2 2 5	1										
1 1 1 2	24 22 31 42 82	12 16 42 11 88	77 58 82 76 280	<.3 <.3 <.3 <.3 1.1	32 19 22 31 86	14 7 12 12 31	621 215 440 383 1631	6.03 4.43 7.46 8.10 7.14	15 11 21 25 26	জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ জ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 4 9 7 7	5 5 4 32	<.2 .2 <.2 <.2	<2 3 <2 <2 <2	<> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18 21 27 16 31	.06 .02 .02 .03 .41	.067 .039 .049 .035 .105	19 25 32 26 29	32 20 24 22 63	.51 .22 .26 .22 .66	39 35 54 37 130	<.01 .01 .01 .01 <.01	3 3 3 3 3 3 3 3	1.91 1.20 1.41 1.24 2.49	<.01 <.01 <.01 <.01 .01	.02 .01 .01 .01 .08	<2 <2 <2 <2 <2 <2 <2	•										
1 1 2 1	56 82 74 83 71	55 78 32 65 57	169 177 163 140 134	.4 .6 <.3 .3 .6	49 62 63 63 35	23 28 26 30 19	1370 1548 893 1569 906	6.36 6.90 6.07 7.37 7.30	23 30 24 30 304	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5 5 12 7 4	33 52 13 19 12	.6 <.2 .2 <.2 <.2	<2 <2 <2 <2 <2 <2	<>> < < < < <>> <> <>> <>> <>> <>> <>><>>	30 32 28 25 26	.43 .79 .08 .23 .12	.131 .117 .040 .104 .079	22 23 47 35 26	40 47 44 35 31	.64 .71 .86 .52 .36	91 86 96 69 92	<.01 <.01 <.01 <.01 .01	ব ব ব ব ব	1.66 1.73 2.08 1.75 1.51	.01 .01 .01 <.01 .01	.05 .06 .08 .03 .02	<2 <2 <2 <2 <2 <2	1										
2 2 1 1	101 103 35 39 116	241 67 15 29 23	168 190 60 82 107	.5 .9 <.3 .7 .8	36 71 26 38 18	21 29 11 17 22	1061 1805 369 932 1889	7.38 7.06 4.30 6.32 9.43	138 36 18 20 26	ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ ଚ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 5 4 4	12 29 7 40 48	.5 .2 .3 .2 <.2	<2 <2 <2 <2 <2 <2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32 29 16 19 82	. 16 . 37 . 03 . 49 . 68	. 136 . 115 . 064 . 084 . 097	23 25 40 33 12	37 40 19 24 13	.43 .64 .30 .33 .64	66 86 67 56 66	.01 .01 <.01 .01 <.01	0 0 0 0 0 0 0 0 0	1.48 1.59 1.26 1.58 2.34	.01 .01 <.01 .01 <.01	.04 .04 .03 .03 .01	<2 <2 <2 <2 <2 <2 <2											
1 1 <1 1 21	15 60 22 56 64	10 57 12 42 36	46 110 58 121 132	<.3 .5 <.3 .4 6.9	13 45 27 45 69	6 21 11 21 33	228 1161 541 1512 1063	2.53 5.69 4.36 5.10 4.03	8 30 13 23 42	<5 <5 <5 <5 17	< < < < < < < < < < < < < < < < < <> </td <td>3 4 10 6 41</td> <td>10 31 20 23 55</td> <td>.2 .2 <.2 <.2 19.9</td> <td><2 <2 2 <2 17</td> <td><2 <2 <2 <2 <2 21</td> <td>26 31 13 20 57</td> <td>.06 .44 .29 .28 .51</td> <td>.044 .075 .059 .093 .095</td> <td>78 29 49 33 40</td> <td>10 36 24 30 67</td> <td>.07 .38 .58 .48 .93</td> <td>59 89 56 74 187</td> <td><.01 <.01 <.01 <.01 <.01</td> <td><3 <3 <3 <3 26</td> <td>.82 1.64 1.89 1.56 1.94</td> <td>.01 .01 <.01 .01 .06</td> <td>.04 .04 .04 .05 .15</td> <td><2 <2 <2 <2 <2 10</td> <td>1</td>	3 4 10 6 41	10 31 20 23 55	.2 .2 <.2 <.2 19.9	<2 <2 2 <2 17	<2 <2 <2 <2 <2 21	26 31 13 20 57	.06 .44 .29 .28 .51	.044 .075 .059 .093 .095	78 29 49 33 40	10 36 24 30 67	.07 .38 .58 .48 .93	59 89 56 74 187	<.01 <.01 <.01 <.01 <.01	<3 <3 <3 <3 26	.82 1.64 1.89 1.56 1.94	.01 .01 <.01 .01 .06	.04 .04 .04 .05 .15	<2 <2 <2 <2 <2 10	1										
	1CP THIS ASS/ - S/ Sam	5 LEA AY RE MPLE Dles	00 GR CH IS COMME TYPE begin	AM SAI PART: NDED : P1 I ning	IPLE I IAL FO FOR RO ROCK F	IS DI DR MN DCK A PZ TO are R	GESTE FE S ND CO P3 S eruns	D WITH R CA H RE SAN OIL and	H 3ML LA (MPLES AU' 'RRE'	3-1-2 CR MG IF CL - IC are F	2 HCL- BA TI J PB 2 SNITED Reject	HNO3- BW NAS AQU Reru	H20 / AND > 1% JA-REI JA-REI	AT 95 LIMITE , AG > GIA/MI	DEG. ED FOI > 30 I IBK E)	C FOR R NA K PPH & Xtraci	AU >	HOUR AL. 1000	AND 1 PPB INISHE	S DIL	UTED	то 10	D ML	WITH I	WATER			C 455	AYED	5										
	Mo ppm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mo Cu ppm ppm 1 51 -1 28 1 51 1 56 1 42 1 56 1 55 1 56 1 55 1 56 1 55 1 24 1 55 1 24 1 55 1 24 1 55 1 24 1 22 1 56 1 55 1 24 1 22 2 103 1 35 1 37 2 103 1 15 1 60 1 156 1 16 1 15 1 16 <t< td=""><td>Mo Cu Pb ppm ppm ppm 1 51 19 1 51 19 1 51 17 1 51 37 1 56 28 1 42 21 1 48 34 1 56 28 1 42 21 1 48 34 1 56 39 1 56 39 1 35 26 1 56 37 1 64 47 1 65 26 1 55 12 1 22 16 1 31 42 1 22 16 1 31 42 1 274 32 1 83 65 1 71 57</td><td>Mo Cu Pb 2n ppm ppm ppm ppm ppm 1 51 19 83 <1</td> 28 20 59 1 40 27 89 1 51 37 91 1 56 28 85 1 42 21 98 1 48 34 114 1 56 28 97 1 56 39 104 1 55 30 117 1 56 37 105 1 56 37 105 1 56 37 105 1 55 12 77 1 24 12 77 1 24 12 77 1 24 12 77 1 24 12 77 1 25</t<>	Mo Cu Pb ppm ppm ppm 1 51 19 1 51 19 1 51 17 1 51 37 1 56 28 1 42 21 1 48 34 1 56 28 1 42 21 1 48 34 1 56 39 1 56 39 1 35 26 1 56 37 1 64 47 1 65 26 1 55 12 1 22 16 1 31 42 1 22 16 1 31 42 1 274 32 1 83 65 1 71 57	Mo Cu Pb 2n ppm ppm ppm ppm ppm 1 51 19 83 <1	Mo Cu Pb 2n Ag ppm ppm ppm ppm ppm ppm 1 51 19 83 <.3	No Cu Pb 2n Ag Ni ppm ppm ppm ppm ppm ppm ppm 1 51 19 83 <.3	Mo Cu Pb 2n Ag Ni Co ppm fpi 1 5 3 20 1 5 5 1 18 14 24 12 16 5 12 17 13 10 12 16 5 16 17 13 12 16 16 16	Mo Cu Pb Zn Ag Ni Co Mn ppm fddddddddddddddddddddddddddddddddddd	Mo Cu Pb 2n Ag Ni Co Mn Fe ppm ppm ppm ppm ppm ppm ppm ppm z 1 51 19 83 <.3	No Cu Pb 2n Ag Ni Co Mn Fe As ppm ft ft ppm ppm ft ft ft	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Carriboo Mining Bervices File # 95-4367 Page No Cu Pb Zn Ag Ni Co Nn Fe As U Au Th Structured by Structured by <td>Carlboo Mining Bervices Pile 0.95-4367. Page 1 No Cu Pb 2n Ag Ni Co No Fa As U Au Th Stabilited by: Stephen Stephen Coars No Cu Pb 2n Ag Ni Co Nn Fe As U Au Th Stephen Page page Page page</td> <td>Carlboo Mining Bervices File 95-4367. Page 2 301-776 Vaughen St., Quasteal EC V22 213 Submitted by Stophen Koosis Page pape pape page page page page page p</td> <td>Carriboo Mining Gervices File # 95-4367. Frage 2 301 = 776 Vaughan St.; Guesnal BC:V21 275 Submitted by: Steven: Koosis Pan pan pan pan pan pan pan pan pan pan p</td> <td>Carriboo Minitog Equivalent File # 05-4357. Page 2 Bi Cu Pb 2n Ag Ni Co Nn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti pro ppo ppo ppo ppo ppo po Po 2 14.76 13 d5 22 15 23 065 41 18 51 33 01 4 22 20 59 4.3 29 17 7014.76 13 d5 24 14 66 4.2 2 2 15 23 065 41 18 51 33 01 4 22 27 89 4.3 39 17 7014.76 13 d5 24 14 66 4.2 2 2 2 15 23 065 41 18 49 401 1 51 137 91 4.3 38 20 860 5.26 19 45 24 11 12 4.2 2 2 2 15 23 0.05 41 18 49 401 1 55 137 91 4.3 38 20 860 5.26 19 45 21 11 12 4.2 2 2 2 15 23 0.05 41 18 49 33 40 1 40 27 89 4.3 39 21 800 5.30 24 45 2 8 17 4.2 2 4 2 15 .33 081 24 25 23 44 49 4.01 1 55 137 91 4.3 38 20 860 5.26 19 45 21 11 12 4.2 2 2 2 15 23 0.05 41 12 4.58 33 40 1 46 34 114 4.3 44 24 1009 5.77 27 45 2 11 21 4.2 4 2 18 .85 0.00 41 25 .57 43 .00 1 46 34 114 4.3 44 24 1009 5.77 27 45 2 10 6 4.2 2 4 16 .86 0.06 41 25 .57 43 .00 1 55 30 117 .6 52 1358 .20 12 45 2 45 8 9 .3 2 2 41 1.05 31 29 .57 43 .00 1 55 30 117 .6 52 1358 .20 12 45 2 4 8 9 .3 2 2 41 1.105 31 29 .59 38 .01 1 55 30 117 .6 52 1358 .20 12 45 2 45 8 9 .3 2 2 41 1.105 31 29 .59 38 .01 1 55 30 117 .6 53 22 1994 5.28 22 45 2 9 13 2 2 2 2 18 .18 0.06 31 29 .57 33 .01 1 55 31 104 .3 52 119 545 .51 21 77 45 .40 22 4 2 4 2 11 .57 .33 .06 27 25 .49 37 .00 1 55 32 104 .3 52 119 545 .52 1358 .10 12 4 5 2 11 55 .2 2 2 4 11 .05 .03 31 29 .59 38 .01 1 35 26 112 7 .3 22 14 69 1.63 11 24 5 2 4 5 2 11 5 .2 2 2 2 11 .05 .03 32 25 11 39 .01 1 46 27 07 .3 22 14 621 .60 11 24 5 2 1 5 .2 3 2 2 11 .05 .20 64 37 1 29 .59 48 .30 .01 1 22 16 58 .3 11 2 312 81 10 25 .51 2 7 .52 21 .52 .13 12 .23 .50 17 .01 1 35 12 77 .3 20 16 539 6.64 17 45 2 4 6 6 .4 2 2 2 18 .18 .067 19 32 2 .51 39 .01 1 24 12 77 .3 20 16 539 6.64 17 45 2 4 6 2 4 12 .2 2 4 10 .05 .05 31 22 .50 .70 1 55 12 77 .3 20 16 539 6.64 17 45 2 4 6 2 4 2 2 11 .05 .20 49 32 .24 .36 34 .01 1 22 12 27 .13 21 12 33 .61 23 .50 39 .64 17 45 2 4 5 2 .2 3 2 .21 .05 .33 .20 24 .25 .49 .40 .01 1 22 12 77 .3 22 11 531 .20 .33 130 .50 2 4 7 .52 .2 3 .2 2 .2 2 .2 10 .05 .33 12 .20 .23 .51 .90 .01 1 3</td> <td>Claritics of winting File # 95-4367 Page 2 Claritics of winting File # 95-4367 Page 2 Register 10" Claritics of winting File # 95-4367 Page 2 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 <th colspan="10" pag<="" td=""><td>Carlboot Hinley Bernstein Andersteine File # 95-43.67 Page 2 301 - 776 Vaughan St.; Geesmall EC V2; 273 Submitted by: Stephen Konste Part Part Part Part Part Part Part Part</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Cariboo Mining Bervices 71 Ces 71 Le 7 95-4367. Page 2 301 76 Vulphan St.; Buennel BC.V22 215 Subelited by: Stephen: Kocsis 1 51 10 83 (2, 3) 90 17 701 4.76 13 c5 (2, 14 (6, 2, 2, 2, 2) 15 (2, 2, 0, 14) 18 (5, 13) 31 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0</td><td>Carriboo Mining Gervices Pile # 95-4367. Page 2 301 - 776 Vaughan St; Bussnel K V22 275 Stabultted by: Stroken Kocits No Cu PG 2n Ag Ni Co Mn Fe As U Au Th SF Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na X Yen Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop</td></th></td>	Carlboo Mining Bervices Pile 0.95-4367. Page 1 No Cu Pb 2n Ag Ni Co No Fa As U Au Th Stabilited by: Stephen Stephen Coars No Cu Pb 2n Ag Ni Co Nn Fe As U Au Th Stephen Page page Page page	Carlboo Mining Bervices File 95-4367. Page 2 301-776 Vaughen St., Quasteal EC V22 213 Submitted by Stophen Koosis Page pape pape page page page page page p	Carriboo Mining Gervices File # 95-4367. Frage 2 301 = 776 Vaughan St.; Guesnal BC:V21 275 Submitted by: Steven: Koosis Pan pan pan pan pan pan pan pan pan pan p	Carriboo Minitog Equivalent File # 05-4357. Page 2 Bi Cu Pb 2n Ag Ni Co Nn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti pro ppo ppo ppo ppo ppo po Po 2 14.76 13 d5 22 15 23 065 41 18 51 33 01 4 22 20 59 4.3 29 17 7014.76 13 d5 24 14 66 4.2 2 2 15 23 065 41 18 51 33 01 4 22 27 89 4.3 39 17 7014.76 13 d5 24 14 66 4.2 2 2 2 15 23 065 41 18 49 401 1 51 137 91 4.3 38 20 860 5.26 19 45 24 11 12 4.2 2 2 2 15 23 0.05 41 18 49 401 1 55 137 91 4.3 38 20 860 5.26 19 45 21 11 12 4.2 2 2 2 15 23 0.05 41 18 49 33 40 1 40 27 89 4.3 39 21 800 5.30 24 45 2 8 17 4.2 2 4 2 15 .33 081 24 25 23 44 49 4.01 1 55 137 91 4.3 38 20 860 5.26 19 45 21 11 12 4.2 2 2 2 15 23 0.05 41 12 4.58 33 40 1 46 34 114 4.3 44 24 1009 5.77 27 45 2 11 21 4.2 4 2 18 .85 0.00 41 25 .57 43 .00 1 46 34 114 4.3 44 24 1009 5.77 27 45 2 10 6 4.2 2 4 16 .86 0.06 41 25 .57 43 .00 1 55 30 117 .6 52 1358 .20 12 45 2 45 8 9 .3 2 2 41 1.05 31 29 .57 43 .00 1 55 30 117 .6 52 1358 .20 12 45 2 4 8 9 .3 2 2 41 1.105 31 29 .59 38 .01 1 55 30 117 .6 52 1358 .20 12 45 2 45 8 9 .3 2 2 41 1.105 31 29 .59 38 .01 1 55 30 117 .6 53 22 1994 5.28 22 45 2 9 13 2 2 2 2 18 .18 0.06 31 29 .57 33 .01 1 55 31 104 .3 52 119 545 .51 21 77 45 .40 22 4 2 4 2 11 .57 .33 .06 27 25 .49 37 .00 1 55 32 104 .3 52 119 545 .52 1358 .10 12 4 5 2 11 55 .2 2 2 4 11 .05 .03 31 29 .59 38 .01 1 35 26 112 7 .3 22 14 69 1.63 11 24 5 2 4 5 2 11 5 .2 2 2 2 11 .05 .03 32 25 11 39 .01 1 46 27 07 .3 22 14 621 .60 11 24 5 2 1 5 .2 3 2 2 11 .05 .20 64 37 1 29 .59 48 .30 .01 1 22 16 58 .3 11 2 312 81 10 25 .51 2 7 .52 21 .52 .13 12 .23 .50 17 .01 1 35 12 77 .3 20 16 539 6.64 17 45 2 4 6 6 .4 2 2 2 18 .18 .067 19 32 2 .51 39 .01 1 24 12 77 .3 20 16 539 6.64 17 45 2 4 6 2 4 12 .2 2 4 10 .05 .05 31 22 .50 .70 1 55 12 77 .3 20 16 539 6.64 17 45 2 4 6 2 4 2 2 11 .05 .20 49 32 .24 .36 34 .01 1 22 12 27 .13 21 12 33 .61 23 .50 39 .64 17 45 2 4 5 2 .2 3 2 .21 .05 .33 .20 24 .25 .49 .40 .01 1 22 12 77 .3 22 11 531 .20 .33 130 .50 2 4 7 .52 .2 3 .2 2 .2 2 .2 10 .05 .33 12 .20 .23 .51 .90 .01 1 3	Claritics of winting File # 95-4367 Page 2 Claritics of winting File # 95-4367 Page 2 Register 10" Claritics of winting File # 95-4367 Page 2 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 Page 20 <th colspan="10" pag<="" td=""><td>Carlboot Hinley Bernstein Andersteine File # 95-43.67 Page 2 301 - 776 Vaughan St.; Geesmall EC V2; 273 Submitted by: Stephen Konste Part Part Part Part Part Part Part Part</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Cariboo Mining Bervices 71 Ces 71 Le 7 95-4367. Page 2 301 76 Vulphan St.; Buennel BC.V22 215 Subelited by: Stephen: Kocsis 1 51 10 83 (2, 3) 90 17 701 4.76 13 c5 (2, 14 (6, 2, 2, 2, 2) 15 (2, 2, 0, 14) 18 (5, 13) 31 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0</td><td>Carriboo Mining Gervices Pile # 95-4367. Page 2 301 - 776 Vaughan St; Bussnel K V22 275 Stabultted by: Stroken Kocits No Cu PG 2n Ag Ni Co Mn Fe As U Au Th SF Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na X Yen Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop</td></th>	<td>Carlboot Hinley Bernstein Andersteine File # 95-43.67 Page 2 301 - 776 Vaughan St.; Geesmall EC V2; 273 Submitted by: Stephen Konste Part Part Part Part Part Part Part Part</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Cariboo Mining Bervices 71 Ces 71 Le 7 95-4367. Page 2 301 76 Vulphan St.; Buennel BC.V22 215 Subelited by: Stephen: Kocsis 1 51 10 83 (2, 3) 90 17 701 4.76 13 c5 (2, 14 (6, 2, 2, 2, 2) 15 (2, 2, 0, 14) 18 (5, 13) 31 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0</td> <td>Carriboo Mining Gervices Pile # 95-4367. Page 2 301 - 776 Vaughan St; Bussnel K V22 275 Stabultted by: Stroken Kocits No Cu PG 2n Ag Ni Co Mn Fe As U Au Th SF Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na X Yen Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop</td>										Carlboot Hinley Bernstein Andersteine File # 95-43.67 Page 2 301 - 776 Vaughan St.; Geesmall EC V2; 273 Submitted by: Stephen Konste Part Part Part Part Part Part Part Part	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cariboo Mining Bervices 71 Ces 71 Le 7 95-4367. Page 2 301 76 Vulphan St.; Buennel BC.V22 215 Subelited by: Stephen: Kocsis 1 51 10 83 (2, 3) 90 17 701 4.76 13 c5 (2, 14 (6, 2, 2, 2, 2) 15 (2, 2, 0, 14) 18 (5, 13) 31 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 19 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0, 10) 11 (1, 14, 0	Carriboo Mining Gervices Pile # 95-4367. Page 2 301 - 776 Vaughan St; Bussnel K V22 275 Stabultted by: Stroken Kocits No Cu PG 2n Ag Ni Co Mn Fe As U Au Th SF Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na X Yen Pop Pop Pop Pop Pop Pop Pop Pop Pop Pop

Cariboo Mining Services FILE # 95-4367

Page 3

And Market																												· · ·		-]
SAMPLE#	Ho	Cu	Pb pom	Zn	Ag	Ni DOM	Co	Min	Fe X	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	AL X	Na X	к х	¥ ppm	Au* ppb	
A000195 A000295 A000365 A000375 A000385	<1 1 1 2 <1	17 51 51 15 2	9 46 40 9 7	22 104 110 39 8	<.3 <.3 <.3 .6 <.3	20 42 41 11 2	8 27 21 4 1	416 2129 1157 185 37	2.96 8.93 4.90 2.08 _54	11 75 36 107 3	5 <5 5 <5 7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 3 4 5 5	4 9 19 7 5	<.2 <.2 .2 <.2 <.2 <.2	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<2 5 <2 <2 <2	8 8 24 24 24 7	.07 .02 .26 .03 .02	.043 .111 .089 .035 .021	21 29 33 46 42	4 6 25 6 3	.06 .04 .38 .03 .01	25 43 72 25 40	<.01 <.01 .01 .01 <.01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.43 .51 1.22 .53 .65	<.01 <.01 .01 <.01 <.01	.05 .04 .05 .03 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<1 4 23 327 292	
A00039S RE A00037S A00040S A00041S	<1 1 2	3 14 20 7	<3 8 12 15	16 37 31 34	<.3 .6 <.3 <.3	5 10 18 10	2 4 7 4	71 167 157 110	1.01 1.97 3.48 3.10	4 100 55 12	6 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 5 7 8	9 6 5	<.2 <.2 <.2 <.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<2 2 <2 2 2	7 22 9 19	.01 .02 .02 .04	.021 .033 .045 .028	46 41 33 31	4 5 3 15	.02 .03 .03 .23	33 23 33 45	<.01 .01 <.01 <.01	0 0 0 0 0 0 0 0	.60 .50 .56 1.37	<.01 <.01 <.01 <.01	.02 .02 .03 .03	<2 <2 <2 <2	13 218 55 3	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

ACME ANALY	TICA	LL	BOR	ATOR	IES	LTD		8	52 E	. ш	ASTI	NGS	ST.	VAN	ICOUV	/ER	BC	V6A	1R6		PB	ONE	(604) 253	-31:	58	FAX ((604) 253	-17	16
۸A									GE	OCH	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE		· · · ·			: .							A
			<u>Ca</u>	rib	00	Min	ing 301	Se	rvi 6 Vaug	ces ghan	<u>PR</u> St., (OJE Quesne	CT t BC	BAR V2J	<u>KER</u> 215	VIL Subm	<u>.LE</u> itted	Fi by:	le Steph	# 9 en Ko	6-1 csis	928		Pag	ė 2						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Ĉr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Au*
ppm ppm																															
A00046S A00047S STANDARD C2/AU-S	<1 <1 21	174 104 60	370 178 39	320 214 129	1.3 1.0 6.7	39 32 75	33 26 38	2114 2442 1200	9.03 7.02 4.03	616 194 39	<5 5 20	<2 <2 8	7 5 38	12 12 53	.4 .4 21.3	<2 <2 16	6 <2 20	36 35 71	, 19 , 18 , 55	.091 .109 .096	21 20 40	24 23 66	.39 .30 1.06	66 99 211	.01 .01 .08	<3 <3 28	1.39 1.33 2.07	.01 .01 .06	.04 .05 .16	<2 <2 11	599 293 54
DATE RECE	IVED	ICP - THIS ASSAY - SAN <u>Sampl</u>	.500 LEACH RECO IPLE T) GRAN IS F MMENE (YPE: ginni B 1990	1 SAMP PARTIA PED FO P1 RO ing 'R 6 DJ	PLE IS LL FOR DR ROC DCK P2 RE' an ATE	S DIG MN 1 XK ANI 2 SOII re Re REP	ESTED FE SR) CORE <u>runs a</u>	WITH CA P SAMP AU* - and /R MAII	3ML 3 LA CR LES I IGNI RE' 8	And Bare Re	HCL-H A TI PB ZN AQUA- ject	NO3-H B W AS > REGIA Rerur	120 AT IND L1 1%, (/MIBI 15.	95 D MITED AG > (EXTR SI	EG. C FOR 30 PF ACT, GNED	FOR NA K M & A GF/AA BY		IOUR A AL. IOOO F ISHED.		а DILI	JTED 1	G 10 ∴LEON	ML W1	TH WA	CERT	IFIED	8.C.	ASSA	YERS	

		T T A	000		TTQ	- 1590			62 R		цент	NGS	ST.	VAN	COLL	7E.R	BC	V6A	1R6	0.00	PH	ONE	604) 253	-31	58	FAX	604) 253	-17	16
			BOR	<u></u>	rib	.00 	<u>Μίπ</u> 301	. <u>inq</u> - 77	GE Se 6 Vau	OCH <u>rvi</u> ghan	EMI <u>COB</u> St., (CAL <u>PR(</u> Juesne	AN <u>DJE</u> N BC	ALY CT V2J	SIS <u>ANT</u> 275	CE LER Subm	RTI F	FIC ile by: S	ATE # Stephe	96- n Koi	480 csis	7	Pa	ge	2						
SAMPLE#	Mo	Cu ppm	P'b ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	Ų ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Ai %	Na %	к %	W mqq	Au* ppb
A000485 A000495 A00050\$ A000515	4 2 3 2	58 55 81 59	68 62 78 97	217 154 179 158	.3 .4 .3 .3	140 60 95 69	40 26 38 27	2705 1487 2740 1121	8.45 5.45 6.52 5.54	73 27 43 32	6 <5 <5 <5	<2 <2 <2 <2 <2	6 6 15 9	38 41 29 30	.4 <.2 .4 .2	4 ~2 ~2 4	<2 <2 <2 <2 <2	44 37 30 33	.53 .58 .41 .42	100 112 118 107	27 27 42 40	59 38 32 37	.81 .76 .69 .71	86 70 97 60	.01 .01 .01 .01	ଏ ଏ ଏ ଏ ଅ	1.68 1.68 1.31 1.56	<.01 .01 .01 .01	.02 .03 .03 .03	<2 <2 <2 <2 <2	11 2 6 3
A00052S A00053S A00054S A00055S A00056S	2 3 2 2 2 2	76 101 84 72 67	78 77 54 45 58	173 193 171 181 159	<.3 <.3 <.3 <.3 <.3	77 85 56 69 61	33 41 27 29 28	1108 2223 927 760 1196	5.90 8.21 5.97 5.97 5.79	24 31 22 19 24	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	12 11 10 10 6	14 9 7 5 36	<.2 <.2 <.2 <.2 <.2 <.2	<2 <2 4 <2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 3	34 38 41 29 35 35	.14 .07 .04 .53 26	.060 .071 .060 .063 .100	45 39 37 40 28 33	54 35 38 34 30	.79 .76 .82 .76 .72 .84	69 78 68 64 68 76	.01 .01 <.01 <.01 .01 < 01	ত ত ত ত ত ত ত ত ত ত ত ত ত ত ত ত ত ত ত	2.13 2.34 2.20 2.10 1.57 1.92	<.01 .01 <.01 .01 .01	.02 .02 .02 .03 .03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 9 4 4 7

<5

5

<5

<5

<5

7

8

<5

<5

<5

7

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

20

26

22

21

20

28

33

31

26

27

35

76

48

33

73

24

<2

16

15

23

33

28

24

31

26

39

5 <5 <2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

8

Oct 7/96

11

6

8

8 26 <.2

7 34

8 28

5 44

7

4 42

6

4

5

4

7

3

8

8

8

3

6

16

7

13

11

10

24

32

27

31

32

19

18

17

18

4

5 <.2

2 <.2

7 <.2

8

37

25

27

27

25

16 <.2

.4

.4

.5

.2

.4

.2

.2

.2

.4

.2

.4

.2

<.2

<.2

<.2

.4

.2

.2

.3

<.2

<2

<2

2

<2

2 35

2 54

<2

2 26

2 31

<2

<2

<2

<2

<2

<2

2

<2

<2

<2

<2

<2

<2

<2

<2 30

31

39

33

32

46

35

73

45

56

30

19

14

11

9

13

32

33

35

33

31

3

<2

<2

<2

2

<2

<2

<2

<2

<2

<2

3

<2

3

<2

<2

<2

<2

<2

<2

<2

4 <2

<2

<2

3

37 51 19.4 17 17 71 .52 .109

.30 .099

.47 .115

.40 .075

.39 .072

.50 .089

.42 .093

.70 .126

.51 .097

.70 .094

.47 .118

.34 .128

.18 .103

.29 .205

.25 .121

.02 .093

.03 .182

.01 .023

.01 .097

.03 .076

.65 .092

.35 .105

.45 .088

.39 .112

.37 .098

.21 .066

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA / INISHED. - SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE REPORT MAILED SEP 26 1996 DATE RECEIVED:

40 141 7.0

A00057S

A00058S

A000595

A00060S

A00061\$

A00062\$

A00063S

A000645

A00065\$

A000665

A00067S

A00068S

A000695

A00070\$

A00071S

A00072S

A00073S

A000745

A000755

A00076S

A000775

A00078s

A000795

A00080S

A000815

STANDARD C2/AU-S

RE A00060\$

2 76

2

2 65

z

2

2 91

3 108

1 61

1 63

2 68

4 164

2 107

2

z 75

1

1 30

1

1

1

1

2 80

1

1 54

22

64

63

71

96

22

7

20 1

10

67 1

84

58

66

60

70 169

68 179

57 181

54 175

73 195

149

97 173

57 110

64

68 155

45 194

46

52 222

98

14

15

9 11 <.3

17

13

112 179

> 68 172

> 81 204

54 190

85 161

49 139

187

142

174

188

54 <.3

55 <.3

57 <.3

32 <.3

.3

.3

.3

.4

<.3

<.3

.7

.4

.5

.3

.6 89

.5

.3

.6 67

.3

.4

.3

<.3

<.3

<.3

66

50

71

69

67

56

64

61

53

67

87

64

65

16

22

- 3

18

77

68

73

71

67

74

9

32 1421 6.61

34 1800 6.60

31 1282 5.97

30 1212 5.74

32 1322 6.38

54 2167 8.87

35 3631 8.21

39 1097 6.35

26 1700 5.81

29 2436 7.69

52 1608 8.49

36 1388 7.10

32 1876 7.12

32 1637 6.80

19 876 6.95

30 1570 6.57

32 1277 6.52

31 1614 6.51

34 1227 6.38

35 1399 6.15

27 903 5.72

36 1154 3.92

69 1.81

177 3.34

561 2.63

1

6

5

7 396 4.64

34 .79

38 .60

37 .69

35 .67

40

38

34 .68

36 .40

29 .52

28 .66

19

45 .53

44

30 .59

15

11 .17

6

4

6

33 .67

37 .86

39 .77

37

39 .83

43 .80

63 .99

.78

.69

.61

.24

.02

.03

.03

.87

40

27

36

35

31

25

23

21

22

25

19

31

25

30

26

34

29

39

31

25

42

30

38

38

41

39

72 .01

72

61 .01

58 .01

84

57 .01

69 .01

68 .01

71 .01

.41 105 <.01

114 .01

> 70 .01

36

29 .01

72 .01

84 .01

83

125

196

81 <.01

54 <.01

26 <.01

35 <.01

61 <.01

.01

.01

.08

63 < .01

.01

100

.01

.01

.01

<3 1.64 <.01

<3 2.24 <.01

<3 2.17 .01

<3 2.41 <.01

<3 1.67 <.01

<3 2.46 <.01

<3 1.47 <.01

<3 1.97 .01

<3 2.17 <.01

<3 1.37 .01

<3 1.05 <.01

.95 <.01

.45 <.01

.54 <.01

.01

.01

.01

.01

.01

29 1.97 .06 .12

<3

<3

<3

<3 1.53

<3 1.69

<3 2.05

<3 1.87

<3 1.74

<3 2.06 <.01

<3 1.34 <.01 <.01

.01

.01

.01

.01

<3 2.05

<3 1.83

<3 1.48

<3 1.35

.02

.03

.02

.02

.04

.02

.03

.01

.02

.02

.01

.02

.02

.02

.01

.01

.01

.01

.03

.04

.03

.08

.05

.03

2 14

<2

<2

<2

<2

<2

<2

<2

3 20

<2

<2

<2

<2

<2

2

<2

<2

<2

<2

<2

<2 298

<2

<2

<2

<2

11

6

16

7

ġ

11

12

9

15

21

7

7

22

1

<1

<1

1

5

6

17

7

9

5

48

Cariboo Mining Services PROJECT ANTLER FILE # 96-4807

Page 3

B								<u> </u>																				معدد می و مودر به				I
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺i %a	B ppm	Al %	Na %	к %	¥ mqq	Au* ppb
	A00082S A00083S A00084S A00085S A00086S	2 1 1 1	58 54 60 57 47	86 63 35 31 40	153 158 142 1 32 113	.5 <.3 <.3 <.3 <.3	60 51 64 54 42	29 24 32 22 20	1555 1442 1214 607 1044	6.00 5.55 5.79 5.96 6.48	22 19 18 12 17	<5 <5 <5 <5 5	<2 <2 <2 <2 <2 <2 <2	8 5 11 10 6	23 51 12 7 6	.2 .2 .2 ×.2 ×.2	<2 <2 5 <2 5 <2 5 <2 4	<2 <2 <2 <2 <2 <2 <2 <2 <2	29 30 32 32 34	.36 1.00 .16 .06 .08	.098 .103 .061 .058 .116	33 20 39 38 32	33 30 32 35 37	.63 .71 .70 .69 .57	66 71 93 65 46	.01 .01 .02 .01 .01	<3 3 <3 <3 <3	1.46 1.49 1.75 1.90 1.66	.01 .01 .01 <.01 <.01	.03 .04 .03 .03 .02	<2 <2 <2 <2 <2 <2	11 4 35 4 3
	A000875 A000885 A000895 A000905 A000915	1 1 1 2	59 62 78 36 41	21 18 25 28 35	100 102 128 86 99	<.3 .3 <.3 <.3 <.3	77 59 27 31 40	27 35 31 19 16	1624 724 3290 1120 715	5.99 5.86 7.07 5.47 5.95	<2 15 3 5 9	ৎ ১ ৬ ৬ ৬ ৬ ৬ ৬ ৬	< < < < < < < < < < < < < < < < < < <	12 5 4 3 6	7 12 5 5 5	.2 <.2 <.2 <.2 <.2	3 2 2 2 2 2 2 2 2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	24 18 17 37 28	.08 .15 .02 .03 .05	.062 .084 .167 .166 .176	41 25 26 29 27	40 20 17 29 26	.74 .20 .09 .34 .51	92 66 70 50 41	.01 <.01 .01 .02 .01	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	2.04 1.14 1.04 1.43 1.45	<.01 .01 .01 <.01 <.01	.04 .02 .03 .03 .02	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 4 1 32 9
	A00092\$ A00093\$ A00094\$ RE A00095\$ A00095\$	1 <1 2 1	22 421 47 58 58	85 15 53 46 47	177 134 207 148 152	<.3 .3 1.0 <.3 <.3	30 26 70 51 52	22 46 20 28 28	1382 2802 8579 975 997	8.84 13.11 18.16 6.10 6.26	41 <2 32 25 29	<5 5 8 <5 <5	<2 <2 <2 <2 <2 <2	2 4 10 8 9	7 16 50 11 11	<.2 <.2 3.2 <.2 <.2	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	46 41 15 25 25	.06 .29 2.34 .12 .12	.207 .170 .137 .074 .075	15 17 25 27 28	20 5 18 24 25	.08 .15 1.20 .46 .46	34 43 197 45 45	.03 <.01 <.01 .01 .01	3 <3 <3 <3	.93 .56 2.16 1.58 1.61	.01 .01 <.01 <.01 <.01	<.01 .01 .01 .02 .02	<2 <2 2 <2 <2 <2	3 8 4 15 9
	A000965 A000975 A000985 A000995 A001005	2 12 2 2 1	72 107 27 90 40	74 76 61 213 142	156 114 77 186 163	<.3 2.5 .5 .3	61 74 19 67 55	29 43 9 39 28	1165 949 460 2617 2458	6.02 7.43 6.87 8.58 4.57	26 16 10 49 11	ও ও ও ও ও ও ও	<2 3 2 2 2 2 2 2 2 2 2 2 2	12 10 7 13 6	19 9 4 11 11	.2 .3 <.2 .5	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2	25 19 53 17 9	.28 .14 .03 .13 .34	.098 .070 .054 .097 .101	37 21 18 39 19	23 28 24 16 10	.56 . 73 .20 .31 .06	57 45 45 78 46	.01 .01 .02 .01 .01	ব্য ব্য ব্য ব্য ব্য	1.20 1.46 1.29 .86 1.29	<.01 <.01 <.01 .01 <.01	.03 .02 .01 .02 <.01	<2 <2 3 <2 <2	25 8 5 44 18
	A00101S A00102S A00103S A00104S A00105S	3 3 3 2 2	85 157 75 76 76	409 164 50 59 91	482 262 180 162 177	1.3 1.7 <.3 .4 <.3	65 39 72 66 61	30 34 32 32 32	9965 2987 1134 1339 1389	13.07 9.29 6.51 6.70 6.63	50 151 17 16 20	7 11 <5 <5	<2 <2 <2 <2 <2 <2 <2	11 3 13 9 10	26 40 18 18 21	4.9 2.0 .4 .5	<2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16 32 36 39 33	.31 .79 .20 .23 .30	.098 .190 .060 .054 .094	29 15 37 36 34	13 21 42 38 30	.23 .22 .89 .84 .66	177 77 113 92 122	<.01 .01 .01 .01 .01	ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	.99 1.11 1.91 1.88 1.43	.01 .01 .01 .01 <.01	<.01 .03 .07 .04 .02	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 73 6 7 7
	A00106S A00107S A00108S A00109S A00109S	2 2 3 2 2	101 77 73 83 71	43 58 81 87 71	124 141 171 233 153	<.3 <.3 <.3 .5 .4	46 61 59 56 56	30 33 36 32 34	1214 1239 1763 1523 1239	6.13 6.11 6.87 6.50 6.21	15 22 19 12 16	ও ও ও ও ও	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	10 12 6 7	22 13 25 41 20	.4 .3 .7 .8 .4	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2	28 26 44 47 29	.34 .21 .41 .80 .35	.100 .113 .092 .107 .071	32 43 26 20 25	23 27 40 34 32	.64 .54 .78 .76 .53	52 34 65 65 53	.01 .01 .01 .01 .01	3 3 3 3 3	1.50 1.41 1.86 1.75 1.86	<.01 <.01 .01 .01 <.01	.02 .01 .02 .01 .01	<2 <2 <2 <2 <2 <2	10 22 5 5 11
	A00111S A00112S A00113S A00114S A00115S	3 2 7 1 2	70 57 22 43 57	71 79 12 18 49	182 121 63 56 156	.4 .6 <.3 <.3	75 53 20 17 52	37 29 10 9 22	2104 1390 480 426 1979	7.72 5.54 4.15 3.87 5.76	18 11 5 <2 15	<5 <5 <5 <5 <5	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7 5 10 10 4	22 41 6 3 30	.6 .6 <.2 <.2	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	33 29 16 20 32	.34 .84 .05 .02 .49	.072 .113 .032 .055 .111	29 22 31 24 16	33 36 13 16 31	.63 .65 .25 .30 .51	83 68 56 49 84	.01 .01 <.01 <.01 <.01	ଏ ଏ ଏ ଏ ଏ	1.50 2.09 1.20 1.51 1.28	<.01 <.01 <.01 <.01 <.01	.02 .03 .02 .01 .02	<2 <2 <2 <2 <2 <2	7 48 1 1 3
	STANDARD CZ/AU-S	21	60	39	136	6.8	70	35	1135	3.86	33	21	7	36	48	18.4	16	17	69	.50	.105	38	59	.96	190	.07	26	1.88	.06	.12	12	41

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Cariboo Mining Services PROJECT ANTLER FILE # 96-4807

Page 4

ACHE ANALYTICAL																					-										
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co pom	Mn Dom	Fe %	As	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	⊺í %a	B p;pm	Al %	Na %	К %	u ppm	Au* ppb
	P.P.O.	FF	с с	FF	PP		1.1	••						• •																_	
A00116S	<1	12	17	63	<.3	11	3	269	1.35	6	<5	<2	24	12	<.2	2	3	3	.07	.025	74	2	.02	40	<.01	3	.27	<.01	.04	<2	<1
4001175	<1	22	14	59	<.3	20	10	1021	5.47	13	<5	<2	13	13	<.2	2	3	13	.06	.054	45	4	.07	77	<.01	<3	.58	<.01	.03	<2	1
A00118S	l i	59	59	117	.3	45	21	863	4.63	24	<5	<2	6	21	.2	<2	2	24	.26	.124	23	24	.43	71	.01	<3	1.23	<.01	.03	<2	12
A001195	1	8	10	19	.4	6	2	126	.96	4	<5	<2	- 4	- 4	<.2	<2	<2	8	. 04	.062	23	6	.07	26	<.01	<3	.50	<.01	.02	<2	18
RF A001185	2	62	61	121	<.3	47	22	889	4.83	25	<5	<2	6	23	<.2	3	3	25	.28	.141	24	25	.44	81	.01	<3	1.30	<.01	.03	<2	20
	_																													_	
A001205	2	20	23	53	<.3	15	7	318	3.88	15	<5	<2	2	- 7	<.2	<2	2	33	.05	.059	23	15	. 19	46	.02	<3	.91	<.01	.03	5	12
A001215	1	57	38	96	<.3	49	21	560	4.60	26	<5	<2	8	9	<.2	6	2	21	. 09	.048	31	22	.49	45	.01	<3	1.15	<.01	.03	5	6
A001225	1	76	28	119	<.3	43	27	899	5.28	15	<5	<2	6	29	<.2	<2	2	45	.43	.053	19	29	.68	51	.01	<3	1.61	<.01	.03	<2	4
A001235	6	80	48	225	<.3	136	68	3121	10.67	102	9	<2	2	26	.6	<2	3	41	.41	.057	7	54	.45	62	<.01	<3	.93	<.01	.02	<2	1
A001245	7	149	51	167	<.3	44	48	3944	11.99	25	12	<2	5	30	.4	<2	2	48	.39	.078	20	17	.47	76	<.01	<3	.96	<.01	.03	<2	\$
																	_				_					-			~ ~		-
A00125\$	2	106	48	267	<.3	131	75	211	9.22	67	5	<2	- 4	19	<.2	<2	<2	190	.34	.048	_2	218	1.71	27	<.01	. <u>ک</u> >	5.51	.01	.01	~2	5
A001265	2	70	45	180	.4	66	- 31	1175	5.77	32	<5	<2	10	28	.5	2	<2	29	.44	.084	37	33	.85	53	<.01	3	1.81	<.01	.05	<2	7
A001275	4	101	54	177	.4	71	39	1040	8.95	18	<5	<2	- 14	28	- 4	< 2	4	20	.34	.046	32	25	.6Z	58	<.01	< <u>\$</u>	1.25	.01	.05	<2	5
A00128\$	1	84	59	245	<.3	93	55	1203	10.23	43	. 5	<2	5	5	.5	4	3	66	.06	.067	13	- 88	.54	52	-01	<3	2.36	<.01	.02	<2	<1
A00129S	1	60	27	158	<.3	46	23	786	5.99	18	<5	<2	6	4	<.2	<2	<2	41	.04	.076	29	34	.57	69	.01	<3	1.68	<.01	.04	<2	1
												_									-			405	~~				47		
STANDARD CZ/AU-S	21	63	45	143	7.7	72	36	1089	3.78	42	21	7	37	51	19.4	18	19	72	.52	.108	- 59	62	.98	195	.08	28	1.74	.00	دا .	11	40

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Figure 2. 200 Bedrock Geology Map Nugget Mountain Mineral Property NTS Map 93A14W Barkerville Area Cariboo Mining District, B.C. m 300 100 <u>Legend</u> uPHM. Hardscrabble Mountain succession. Dark grey to black phyllite, dark grey micaceous quartzite and siltite. Pittman Downey succession. Olive and grey phyllite, grey micaceous quartzite, dark grey to black graphitic phyllite, light grey to black limestone, micaceous and non micaceous quartz carbonate, and green schist or meta-basaltic tuff. PD. UTM ----- 5872000N Downey Units: Light olive fissile phyllite. Olive ankeritic phyllite and less micaceous quartzite, minor green schist and limestone. Light grey to olive ankeritic phyllite and less micaceous quartzite, dolomitic quartzite, minor green schist and limestone. Olive ankeritic phyllite and less micaceous quartzite, abundent limestone, minor green schist. 1. 2. 3. 4. C schist. Grey phyllite and quartzite. Black graphitic phyllite, in part pyritic. re 5. 5b. 0 T S Quartzite. Limestone. Dolomitic quartzite. Green schist. Quartz carbonate. dq qs qc S'S ille , PHM ୢୄୢୄୢ Geological unit boundary. Bedding. Cleavage. Fault (approximate). \mathbf{O} Scale 1:5,000 2 Drafted by: Stephen Kocsis, P.Geo. S

