BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1996/1997

REPORT #:

PAP 96-14

NAME:

ROBIN DAY

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- · One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name POBINC, DAY	Reference Number 96 97 P30
LOCATION/COMMODITIES	
	3 CLAIMS MINFILE No. if applicable NEAR #304
Location of Project Area NTS 93-L-13	
	KILDMETERS WEST OF SMITHERS ON A CREEK NORTH
OF RED CANYON CREEK LOCALLY NAME	ED MULWAIN CREEK, OR ABOUT 1000 METERS SOUTH-
WEST OF MINEILE # 304 (RED)	
Main Commodities Searched For Au, Ag, Cu,	
Known Mineral Occurrences in Project Area MIN	FILE #304 ('RED')
WORK PERFORMED	3-0 11
1. Conventional Prospecting (area) ROUT	200 HECLUKES
2. Geological Mapping (hectares/scale)	ROCK, 2 ORGANIC, 3 HEAVY MINERAL, 6 SILT
4. Geophysical (type and line km)	1
5. Physical Work (type and amount)	
6. Drilling (no., holes, size, depth in m, total m	
7. Other (specify)	
Description of mineralization, host rocks, anomalies MAXIMUM of 5.5 g/mt Au; Anomal IN CARBONATE - SERICITE - PYRITI	Claim Name ZYMO # 1-8 CLAIMS Long 121°56' Elevation (075 METERS 2 1664 g/mt, Au 1.77 g/mt, 2n,4.2%, Pb 88(3p.pm 26 p.p.m. Cu. 32 of 73 Rocks Have > 200 p.p.b. Au to A ous Au, Ag, Cu, Pb, En, Sb, As, BitMn E ALTERATION BONE WITHIN INTRUSIVE ; NEW HIEM LEVEL PORPHYRY SYSTEM
	BECEIVED
Supporting data must be submitted with this TECHN Information on this form is confidential for one year	
Information Act.	PROSPECTORS PROGRAM MEMPR

ZYMO # 1 - 8 CLAIMS

RECONNAISSANCE PROSPECTING REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-L-13

Latitude 54 degrees 50 minutes north Longitude 127 degrees 56 minutes west

Annual Work Approval No. SMI-96-0200371-70

And For

B.C. Prospectors Assistance Program Reference No. 96/97 P30

By

Robin C. Day B.Sc., F.G.A.C.

December 01, 1996

TABLE OF CONTENTS

Executive Sur	mmary	P.2
Project Locat	tion	P.2
NTS Map		P.2
Access		P.2
Commodities		P.2
Deposit Type	§	P.2
Geology		P.2
Claim Owner	ship	P.3
Claim Record	l Data	P.3
Work Under	eaken	P.4
Exploration I	History	P.4
Rock & Silt (Geochemistry Results	P.4
Summary		P.4
Recommenda	tions	P.4
Acknowledge	ments	P.5
References		P.5
Statement of	Qualifications	P.5
Statement of	Expenditures-	P.5
	Claim Map (1:33,000 scale) Regional Geology Map (Legend Fig. 2a) Claim Location Map-Regional Rock and Silt Sample Location Map (1:5,000 scale-in pocket) Certificates of Analysis Rock Sample Descriptions	

ZYMO PROJECT

EXECUTIVE SUMMARY

Prospecting was undertaken on the Zymo #1-8 claims to follow up a confidential communication on 'interesting' alteration in this area, and to investigate the likely source area of highly anomalous Au-Ag-Cu-Pb-Zn silt geochemistry reported in assessment report #21,723. A previously unrecognized porphyry system has been identified. The size of this system is inferred to be about 1500 x 2000 meteres. Alteration is intense in that original mineral textures have been completely destroyed. The two main types of alteration are: carbonate-sericite-pyrite and quartz-sericite-pyrite. Copper in silts from a creek cutting this porphyry range from 572 p.p.m. to 1697 p.p.m. 32 of 74 rock samples contain gold values ranging from greater than 200 p.p.b. to 6900 p.p.b. High silver values from 117 p.p.m. to 1664 p.p.m. occur with peripheral semi-massive to massive Zn-Pb-Cu viens. Alteration and multi-element geochemistry infer potential for a high level Cu-Au-Ag zone within this porphyry system. Also, Au-Ag-Pb-Zn-Cu mineralization in structures within and beyond the carbonate alteration halo surrounding this porphyry, suggests potential for 'secondary' porphyry related epithermal and or replacement style exploration targets. More work is recommended.

PROJECT LOCATION

West-central B.C. about 48 kilometers west of Smithers on a creek north of Red Canyon Creek, locally known as Mulwain Creek; or about 1000 meters south-west of N.T.S. 93-L (Smithers map sheet) minfile #304 (Red), or about 10 kilometers west of minfile #78 (Lefty).

N.T.S. MAP

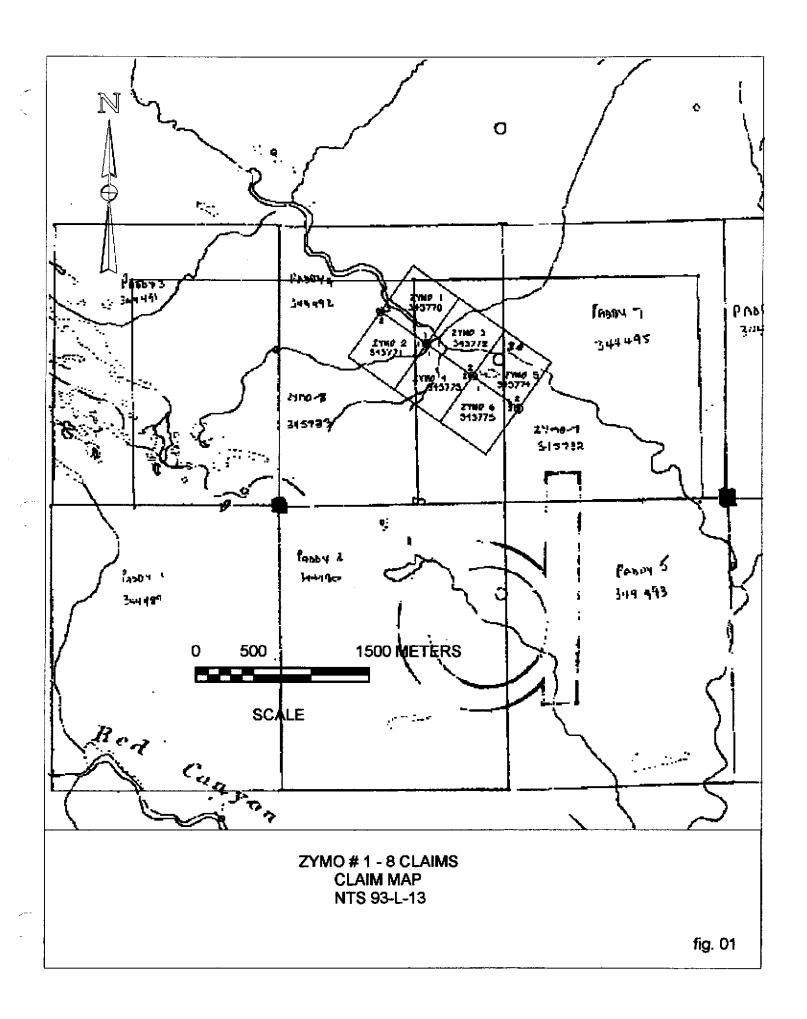
93-L-13 at about lat. 54 degrees 50 minutes north and long. 127 degrees 56 minutes west.

ACCESS

By helicopter from Smithers, B.C. however, the 'McDonald Main' logging haul road is scheduled to be extended through the Zymo claims during the next two years.

COMMODITIES

Gold, silver, Copper


DEPOSIT TYPES

Early Tertiary to late Cretaceous age ('Nanika' or 'Bulkley' age) high level Cu-Au-Ag porphyry system; porphyry related epithermal and or replacement Au-Ag.

GEOLOGY AND PHYSIOGRAPHY

The prospecting area, within the Zymo #1 - 8 claim block, is underlain by Lower to Middle Jurassic age intermediate to felsic volcanic and volcanoclastic rocks (Stikine terrane). These rocks are unconformably overlain by Lower Cretaceous Skeena Group arenites and conglomerates(see attached map and legend). Intrusive into these rocks is an Upper Cretaceous or Lower Tertiary age 'porphyry'. Alteration is intense and has totally destroyed original mineral textures; no mafic minerals have been observed. Alteration types include: carbonate-sericite-pyrite and quartz-sericite-pyrite. This intrusive was referred to in field terms as dacite, in order to reflect a likely high level, high temperature moderate pressure environment. The size of this porphyry system is inferred to be about 1500 meters wide and about 2000 meters long.

Much agglomerate float occurs peripheral to this porphyry system. Although this agglomerate has not yet been identified in outcrop, these agglomerates suggest this porphyry system intruded to a high level within a volcanic complex (ie. porphyry system 'telescoped' up into a volcanic pile).

A 400 to 500 meter wide carbonate and quartz-carbonate alteration halo occurs in the adjacent Skeena Group sediments. Within this halo and beyond, shear zones from 5 cm. to 10 meters wide with variable Au-Ag-Zn-Pb-Cu mineralization have been noted. Peripheral 'dacitic' aplite dikes and lamprophyre dikes have also been noted. The lamprophyre dikes suggest a deep seated structure associated with the 'Zymo' porphyry system.

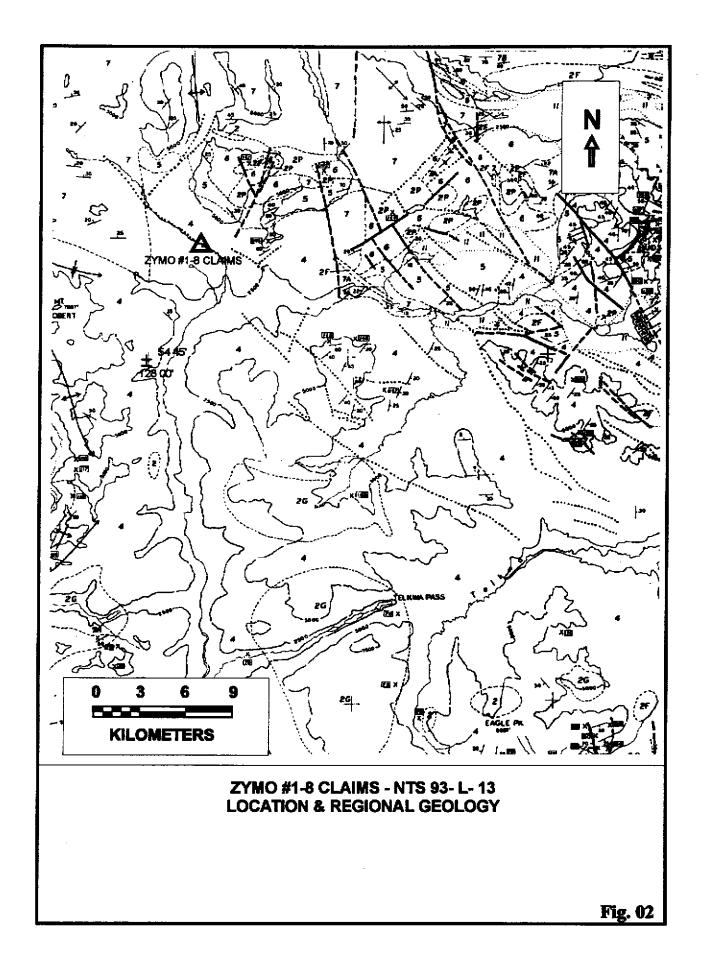
Rock and silt geochemistry suggests Au-Ag-Zn-Pb-Cu-As-Sb-Bi zonation peripheral to a Cu-Au-Ag 'core' within this porphyry system (see fig. 04 and Appendix A).

Magnetite was not observed or detected in rock samples. Very minor amounts of magnetite reported to heavy mineral sample no.'s RS-96-01 & 03. This suggests destruction of secondary magnetite one might expect to be associated with a potassic Cu-Au-Ag zone.

'Endogene' (within the intrusive) polymetalic veins (usually in the footwall or hanging wall of pebble breccia dikes) exhibit near vertical dips with strikes ranging from 60 - 80 degrees. It is noteworthy that this trend is parallel to the strike of the Skeena Arch (the Zymo porphyry is situated on the north flank of the Skeena Arch).

Rock types, geological setting, alteration and multi-element geochemistry appear to exhibit similarities with Andre Panteleyev's 'subvolcanic telescoped Cu-Au-Ag (As-Sb) porphyry' ore deposit model.

Topography in the prospecting area is gentle. The area prospected is below treeline. Vegetation consists of coastal balsam and grass swamps. Outcrop is restricted to isolated exposures in the Mulwain Creek valley bottom and incised stream channels cutting the Zymo claims from south to north. Narrow deep gorges occur on the west creek cutting the Zymo porphyry. Maximum relief is about 325 meters, ranging from about 975 meters to 1300 meters elevation.


Many small springs were observed. These springs often cement stream gravels with ferricrete, promote dark orange to 'beer bottle brown' limonite gossans, and cause solution weathering of carbonate altered porphyry.

CLAIM OWNERSHIP

The Zymo #1-8 claims were staked during February and May, 1996 and are owned by Robin Day (50%) and Larry Hewitt (50%).

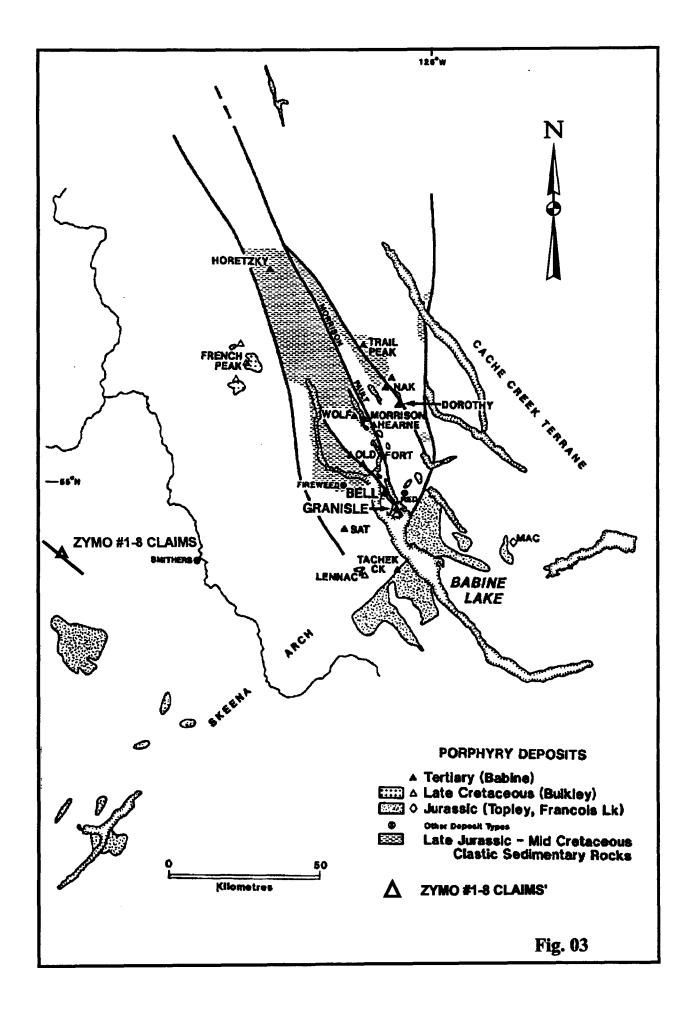
CLAIM RECORD DATA

Claim Name	Tenure No	Record Date
Zymo-1	343770	Feb. 22, 1996
Zymo-2	343771	Feb. 22, 1996
Zymo-3	343772	Feb. 22, 1996
Zymo-4	343773	Feb. 22, 1996
Zymo-5	343774	Feb. 22, 1996
Zymo-6	343775	Feb. 22, 1996
Zymo-7	345732	May 03, 1996
Zymo-8	345733	May 03, 1996

LEGEND SEDIMENTARY AND VOLCANIC ROCKS QUATERNARY Pleistocene and Recent [11] Drift and alluvium TERTIARY 10 Andesitic and basaltic valcanic racks CRETACEOUS AND TERTIARY Upper Cretaceous to Eccene Sustut Group (in part) 9 Sandstone, conglomerate, mudstone, minor coat JURASSIC AND CRETACEOUS Lower Cretaceous 8 Brian Bory Formation - predominantly perphyritic andesite flows Upper Jurassic and Lower Cretaceous 7 Greywacke, siltstane, mudatone, conglomerate, and minor coal. 7A. John Brown sedimentary member-quartz and chert pebble conglamerate, sandstone, and siltstone; 78, Racky Ridge sedimentary member - greywacke, siltstone, mudstone, minor conglamerate and cool. 17A and 7B may be Middle Jurassic) **JURASSIC** Middle Jurassic or Younger 6 Predominantly baseltic and andesitic flows, tuffs and breccias Middle Jurassic and (?) Lower Jurassic 5 Greywacke, sittstone, mudstone, tulfaceous greywacke, and minor conglomerate Lower Jurassic and (?) Middle Jurassic 4 Predominantly red, purple, grey, and green undesitic to rhyolitic tuffs, breccias, and flows. Minor intercatated sedimentary rocks TRIASSIC AND OLDER? 3 Predominantly matic valcanic rocks with some limestone. limestone conglomerate, greywacke, and chert INTRUSIVE ROCKS UPPER CRETACEOUS AND EARLY TERTIARY 2 Quartz monzonite, granodiorite, quartz diorite, and porphyritic and fine-grained equivalents. Predominant textures-- 2G-granitic: 2P-parphyritic; 2F-felsitic; 28- gabbro. JURASSIC AND (?) CRETACEOUS Quartz monzonite, granodiorite, quartz diorite, porphyritic in part. Minor diorite and monzonite

Bedding, inclined, horizontal, vertical

Cleavage and schistosity Fault, defined, assumed


Lineament

Mineral occurrence Outcrop boundary

Thrust fault; defined, assumed

Anticline: upright, overturned Synclyne: upright, overturned

Geological boundary, defined, approximate, assumed ----..... -!-- --- TO EX

WORK UNDERTAKEN

Field work was performed during the period from August 12 - 22, 1996, by the author and Mr. Lawrence Hewitt of Telkwa, B.C., and the project area was visited again on October 10, 1996, by the author and Mr. Ron Britton of Vancouver, for a total of 20 man days comprised of 6 man days equipment preparation, mobilization, camp set up and egress and 14 man days prospecting, rock and silt sampling. This work was undertaken to follow up a confidential and private communication regarding 'noteworthy' alteration within the prospecting area, and highly anomalous multi-element silt geochemistry reported in assessment report # 21,723.

EXPLORATION HISTORY

One day of silt sampling and prospecting was undertaken by Skeena Resources Ltd. and Leeward Capitol Corp. in each of 1990 and 1991. This work was performed by Taiga Consultants Ltd. of Calgary, Alberta. Anomalous Au, Ag, Cu, Pb and Zn silt geochemistry was noted in streams draining the project area. A few rock samples from narrow calcite veins within the surrounding carbonate alteration halo in the Skeena Group sediments reported anomalous Au-Ag-Cu-Pb-Zn values. These occurrences constituted a new minfile occurrence named 'Red' and was assigned minfile #304 on the Smithers map sheet, N.T.S. 93-L. No further exploration work was undertaken until the summer of 1996, as reported herein.

SILT AND ROCK GEOCHEMISTRY RESULTS

Copper in silts, from the easterly creek cutting the Zymo porphyry system, range from a low of 572 p.p.m. at the mouth of the creek to a high of 1697 p.p.m. about 860 meters up stream and to the south. Lead and Zinc in silts (see Appendix A, Fig #4 and assessment report #21,723) reflect peripheral Pb-Zn mineralization and zonation, and exhibit a general inverse relationship to copper in silts. Gold in silts suggests that precious metal mineralization is associated with both peripheral Zn-Pb-Cu mineralization and an inferred Cu zone within this porphyry system

Ashed organic samples (sample #'s RS-96-10,11), collected from a clearing above silt sample #RS-96-09(1697 p.p.m. Cu), yielded up to 64 p.p.b. Au and 826 p.p.m. Cu. Springs issuing forth from this clearing are cementing stream gravels with ferricrete and solution weathering carbonate altered porphyry. Sedges on this clearing appear stunted and the surrounding trees are dead or dying. This clearing is interpreted as a kill zone.

Analysis of rocks sampled from the area of carbonate-sericite-pyrite alteration show elevated Au-Ag-Cu-Pb-Zn-As-Sb-Bi-Mn (see Appendix A & B; fig. 4).

SUMMARY

A new porphyry system in B.C. has been identified. Geology, alteration and rock and silt geochemistry infer potential for a Cu-Au-Ag zone within this porphyry. Poly-metallic veins within the intrusive and within and beyond the carbonate alteration halo surrounding the Zymo porphyry infer potential for 'secondary' exploration targets such as porphyry related epithermal and or replacement deposits.

RECOMMENDATIONS

- 1. Additional claims should be staked to the south and perhaps to the west.
- 2. A grid should be established south of Mulwain Creek, with line cutting to follow. The base line should be East-west to facilitate north-south cross lines cutting the predominant structural trend.
- 3. Bedrock and alteration mapping should follow in conjunction with additional prospecting and orientation soil sampling.
- 4. Soil geochemistry survey and ground magnetics-VLF survey.
- 5. Contingent upon results, trenching and or drilling may follow.

ACKNOWLEDGMENT

Funding for the prospecting program on the Zymo claims was in part provided by the B.C. Prospectors Assistance program, analytical costs were courtesy of First Point Capitol Corp., and valuable insights and comments were provided by the Smither's District Geologist, Mr. Paul Wojdak and by Ron Britton, V.P. of First Point Capitol Corp.

REFERENCES

- 1. Assessment Report #21,723
- 2. New Mineral Deposit Models of The Cordillera-1996 Cordilleran Roundup Short Course
- 3. Topographic Map N.T.S. 93-L-13
- 4. B.C.D.M. geology map #69-1

STATEMENT OF QUALIFICATIONS

I, Robin C. Day, graduated from the University of Alberta in 1976 with a B.Sc. (Concentration in Geology), have been active as a prospector and geologist in western and northern Canada since 1972, and am a Fellow of the Geological Association of Canada.

STATEMENT OF EXPENDITURES

Travel: By Helicopter from Smithers; 2 hours	mobe/egress	\$ 1,646.52
Travel: by helicopter from Smithers; (Oct 10)	; 1.5 hours	\$ 1,234.91
Analyses/assay costs		\$ 2,131.39
Equipment rentals/camp supplies		\$ 139.40
Food and Accommodation: 14 man days @ \$	60.00/day	\$ 333.03
Wages: 20 man days deemed @ \$200.00/ day	,	\$ 4,000.00
Vehicle rental/operation; gas @ \$193.44; ren		\$ 693.44
Other Expenses	_	
Report preparation		\$ 400.00
• • •	Total	\$10,178.69

CERTIFIC E OF ANALYSIS iPL 9610839

2036 C ha Street Vancouver, 8.C. Canada V5Y 3E1 Phone (604) 879-7878/1

Fax (604) 879-789

Intermategnal plasma Laboratery Led

Client: First Point Capital Corporation

iPL: 9610839

Out: Sep 10, 1996 In: Sep 03, 1996

[083915:12:36:69091096]

Page 1 of 2 Section 1 of 2 9091096] Contified BC Assayer: David Chiu

Project: None Given	43 Rock	In: Sep 03, 1996	[083915:12:36:69091096]	Certified BC Assayer: David Chiu
Sample Name Au ppb	Au Ag Cu Pb Zn As g/mt ppm ppm ppm ppm ppm	Sh Hg Mo T1 81 Cd Co 3	•	La Sr Zr Sc Ti Al Ca Fe Mg K ppm ppm ppm ppm X X X X X X
R896 01	4.3 24 172 50 432 1.4 40 328 1418 95 1.6 10 80 69 107 41.0 67 6339 5022 293 14.5 125 2.3516330 168	5 < 2 < < 8.2 22	10 12 <	2 14 5 3
R896 11	- 1.0 34 1494 1729 43 - 0.2 7 21 102 < 2.70 0.1m 3.7% 4974 11%2756 - 0.2m 22% 6813 4.2%3998 - 97.0 3264 2503 14% 624	< 4 < < 12.8 10 < 2 < < 0.9 5 98 11	5 64 < 61 16 7972 4 28 < 96 6 478 < 2 < 60 17 1.17 1 3 < 28 22 3697 3 < 75 8 1.17	26 95 5 3 < 0.41 3.18 3.40 0.57 0.24 2 52 6 1 < 0.32 1.16 2.11 0.35 0.21 < 28 4 1 < 0.11 2.33 220.91 0.05 < 17 4 2 < 0.03 1.46 620.53 < 2 71 3 1 < 0.18 4.03 5.61 1.32 0.10
RB96 18	1.90 48.5 1172 5978 117 499 — 1.7 495 330 852 32 — 0.1 261 129 258 < — 4.0 990 1254 2350 108 — 2.9 330 566 626 145	27 61	3	4 15 4 4 0.08 2.41 9.27 0.57 0.05 8 242 6 3 0.61 2.51 3.55 0.56 0.22 9 333 7 4 0.42 11% 2.25 0.74 0.73 6 25 13 1 0.41 0.95 4.97 0.21 0.27 10 23 11 2 0.37 1.76 2.48 0.40 0.22
R896 25	3.4 125 890 1227 17 2.2 225 188 476 65 0.4 257 24 63 < 0.5 225 51 140 14 9.2 593 2002 2561 302	5	\$ 36 < 100 5 803	4 20 7 1 3 0.36 0.98 4.98 0.22 0.25 6 20 12 1 3 0.37 0.74 7.18 0.12 0.24 20 16 9 1 3 0.72 0.46 3.69 0.23 0.41 18 21 10 1 3 0.50 1.15 3.35 0.50 0.30 5 49 9 5 3 0.37 4.15 5.13 1.35 0.15
RR96 14	6.75 0.2m 1198 2.2x 197 581 2.96 0.1m 337 8945 5.77 591 2.32 0.1m 2201 4051 4.47 243 2.08 0.2m 6557 10938 4.57 509 — 2.8 180 5501 2582 29	1992 45 12 0.3m 2	9 < 73 7 3 32 11 < 47 4 4 42 18 < 203 3 4739	 31 1 2 < 0.03 3.00 6.48 1.02 0.01 21 15 2 < 0.18 0.37 1220.06 0.13 36 < 1 < 0.07 4.69 1021.69 0.02 59 2 < 0.08 0.57 4.60 0.13 0.05 53 2 < 0.10 4.68 8.79 1.80 0.06
RR96 32	- 0.2m 2978 16686 197 277 1.65 0.2m 2520 7676 5.1% 117 61.7 711 7773 7856 250 3.2 32 2633 845 235 0.2 55 91 197 280	44 < 8 < 768.2 9	12 < < 125 7 2304 6 13 < 182 5 8640 7 27 < 142 11 4147	 31 1 < 0.07 2.76 5.01 1.02 0.04 30 3 < 0.05 0.20 1120.07 0.02 5 35 5 1 0.21 1.90 3.72 0.54 0.14 22 36 10 2 < 0.34 2.21 3.68 0.68 0.22 3 180 2 8 < 0.50 5.99 3.42 2.02 0.14
96R48 73	< 20 45 111 22 < 31 25 122 62 2.6 556 305 1055 24 0.9 128 16 530 16 0.1 33 35 182 14	< < 11 < < 3.8 32 7 4 5 < < 1.5 19	7 67 < 18 27 637 9 37 < 29 72 1082 24 14 < 250 235 1953 22 33 < 201 93 1179 23 409 < 125 268 1067	5 1893 1 3 4 0.28 25% 1.67 1.13 0.04 4 580 2 7 4 0.47 11% 4.18 4.32 0.04 3 50 9 5 0.13 1.61 0.47 12% 0.39 7 54 4 5 0.03 1.02 0.34 6.22 0.25 0.24 11 61 11 8 0.26 1.75 0.94 7.56 0.74 0.16
RS96 02	1.1 572 178 669 58 0.7 174 177 536 21 < 26 14 108 21 1.0 1298 61 486 57	< < 16 < < 1.5 22 < < 14 < < 14	21 267 < 22 52 2781 17 134 < 19 99 898	14 52 2 5 0.01 0.89 0.39 6.28 0.23 0.07 11 42 1 6 2 0.69 0.32 5.41 0.22 0.09 9 68 5 7 0.11 1.57 1.32 4.11 0.72 0.04 19 50 2 6 3 1.16 0.38 6.98 0.23 0.07

International Plasma Lab Ltd. 2036 Columbia St. Vancouver 8C V5Y 3E1 Ph: 604/879-7878 Fax: 604/879-7898

CERTIFIC' E OF ANALYSIS iPL 96I0839

2036 C Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

Client: First Point Capital Corporation 1PL: 9610839 Out: Sep 10, 1996 Page 1 of 2 Section 2 of 2

Project: None Given 43 Rock In: Sep 03, 1996 [083915:12:48:69091096] Certified BC Assayer: David Chiu Sample Name 24. D

Samp1	e Nam	e	Na Z	P		0
R896	01	ŔO	.01	0.04		
	04	ŘΩ	.02	0.04		
	96	Ř C	.01	0.05	S	
R896	07	ŖO	. 01	0.11		
R896	10	ķo	1.01	0.04		
RB96	11		.01			•
	12	RO	.01	0.12		
	13	K U	.01	0.12		
	15 16	R ∪ ₹ 0	.01	D.04		
RB96	18	μ̈́O	.01	n n2	•	
	19	ŔΟ	.02	D. 16		
	21	Ŕο	.02	D. 14		
	23	Ř O	.01	0.17	•	
RB96	24	ĝ o	.01	0.13		
RB96	25	Ŕ'n	.01	0.14		
RB96	26		.01			
R896	29		.05			
	30	ŘΟ	.02	D. 12		
	06	₹ o	.02 (0.06		
RR96	14		.01 (
	17		.01			
	23	ŘΟ	.01	0.01		
RR96	26	Ŗ O	.01			
RR96	28	<u>ķ</u> o	.01	∢		
RR96	32	ŘΟ	.01 (0.02		
RR96	36	Ķο	.01 1	0.02		
RR96	42		.01 (
RR96	43	ŘΟ	.04 (0.13		
96RMB	72	ķ o	-02 (0,06		
96RM8		K 0	.01	0.03		
96RMB			.03 (
K396	UT (H	I.M.)(0	.06 ().11		
100AC	U3 (H	I.M.)E 0	.05 !	7.05		
		ł.M.)Œ D				
RS96			.02 (
RS96	04	Æ O.	.02 (0.13		
RS96		Æ D.	.04 (3.07		
RS96	07	<u>ķ</u> o	.01 (3.11		

Min Limit 0.01 0.01 Max Reported* 5.00 5.00 Method IOP IOP

--- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 Z=Estimate Z Maso-No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICAT OF ANALYSIS iPL 9610839

2036 Colum' Street Vancouver, b... Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7398

Client: First Point Capital Corporation iPL: 9610839 Out: Sep 10, 1996 Page 2 of 2
Project: None Given 43 Rock In: Sep 03, 1996 [083915:12:52:69091096] Certi

Section 1 of 2 Certified BC Assayer: David Chiu

											 													<i>f</i>	<u> </u>
Sample Name	Au ppb	Au g/mt	Ag ppin	Cu ppn	Pb ppn	Zn	As ppn	Sb	-	o T1 B Deprint pipi	Co #			Cr ppm	V ppm	Mri ppm	La ppm	Sr ppm	Z:r ppm	Sc 1	Ti A	1 Ca	fe Z	Mg X	K Z
RS96 D8	135 57 14 62		1.5 0.8 0.5 0.4	1059 1697 826 543	147 52 76 55	882 510 364 213	99 210 50 7	\$ 8 <	<	6	 24 63 21	244 2 22	« « «	6 7 12 11	42 33 25 9	5833 5193 199 240	20 25 17 11		1 5 8 4	5 4 0,0 3 0.0 2	ŋ 3. 2	9 0.67	8.00 6.19	0.12 0.05	0.04 0.02

OF ANALYSIS CERTIFICAT iPL 96I0839

treet 2036 Colum Vancouver, b.v. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

Client: First Point Capital Comporation

iPL: 9610839

Out: Sep 10, 1996

Page 2 of 2

Section 2 of 2

Project: None Given In: Sep 03, 1996 [083915:12:57:69091096] Certified BC Assayer: David Chiu Р Sample Name Z Z R 0.01 0.11 RS96 08 RS96 09 ₹ 0.01 0.1¢ RS96 10 (ASH) ₹ 0.02 0.07 RS96 11 (ASH) # 0.02 0.05

Min Limit 0.01 0.01 Max Reported* 5.00 5.60 Method ICP ICP

-----No Test ins-Insufficient Sample S-Soil R-Rock C-Core L-Silt P-Pulp U-Undefined m-Estimate/1000 X-Estimate X Maxwello Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver SC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE or ANALYSIS iPL 9610923

2036 Columbia & A Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 (

INTERNATIONAL PLASMA LABORATORY LIG.

Client: First Point Capital Corporation Project: None Given 8 Pulp iPL: 9610923

Out: Sep 24, 1996 In: Sep 24, 1996 Page 1 of 1 [092310:36:13:69092496] Section 1 of 1

Certified BC Assayer: David Chiu

Sample Name	Ag g/mt	
R8 96 13 R8 96 15 RR 96 14 RR 96 17 RR 96 23	P 685.3 P 1664.7 P 468.2 P 117.2 P 150.7	
RR 96 26 RR 96 32 RR 96 36	P 332-5 F 166-0 P 221-6	

Min Limit Max Reported® Mathral 0.3 2000.0 FAGrav

COLD DUDGO ILLINOISTAND - muFettmete/1000 ZeEstimate Z Maso-No Estimate

CERTIFICAT' OF ANALYSIS iPL 9610929

2036 Columb Treet Vancouver, B. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD.

Client: First Point Capital Corporation

iPL: 9610929

Out: Oct 04, 1996

Page 1 of 2 092919:14:52:691004961 Cer

Section 1 of 2

Project: None (Given	42 Roc	ck						In:	Sep	24,	1996		[09	2919:1	4:5	2:6910	0496	5]	Ce	rtifi	ed E	3C A	ssaye	r: D	avid	Chiu	_ys	1
Sample Name	Au ppb	Au g/mt	Λg g/mt	Лд ррт	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm					bbu t		Ba ppm p	W	Cr ppm pp					Zr ppm p		Ti %	A1	Ca 7	Fe %
RB-96- 03 RB-96- 06 RB-96- 09 RB-96- 14 RB-96- 17	Ř 2 Ř 11 Ř 34 Ř 990 Ř 44	1.03	 254.0 	e 161	36 35 22 2.5 % 233	192 352 622 2714 271	766 464 1480 3089 485	53 224 71 2924 33	20 6 242 6	V V V V V	3 5 7 7 5	< < < <	< < 17	3.9 2.2 9.8 25.9 2.0	15 10		256 6 20 7 11	< < < < < <	39 1	1 336 9 1. 6 326	5 3 % 2 8	4 2 <	34 20 40 37 17	1 5 5 8 9	4 5 1	< < <	0.42 0.54 0.24	1.52 1.42 1.61 1.36 0.76	9.08 3.19 13%
RB-96- 22 RB-96- 27 RB-96- 28 RR-96- 1 RR-96- 2	R 271 R 10 R 14 R 304			1.0 0.6 0.1	200 276 183 39 178	127 37 45 8 1408	459 113 117 46 6064	37 10 12 60 207	< ,,,,	V V V V	4 4 4	< < < < <	< < <	2.0 1.2 0.4 < 29.3	8 10 8	6 6 5 7 4	9 20 15 24 7	< < < < < < <	48 4		9 2 6 2 2	8 8 5 1	10 87 31 128 80	13 6 4 20 7	5 5 12 0 2	.23	0.80 1.07 3.70	0.21 3.44 1.40 2.19 4.58	2.54 3.29 5.08
RR-96- 3 RR-96- 4 RR-96- 5 RR-96- 7 RR-96- 8	Ř 32 Ř 269 Ř 25 Ř 178 Ř 55	 	; 	20,000	774	54 9086 490 1420 116	121 14805 540 8374 169	323 741 340	64 18 17 <	V V V V V	5 14 6 10 5	< < < < < < <	8 < <	0.4 0.1 5.8 51.9 0.4	n 12 216 13	6 5 22 6 6	20 < 20 9 6	< < < < <	65 1 24 4 58 1	0 37 8 5. 4 115 0 393 9 19	1 % 1 0 2	5 1 < 2	11 109 68 26 27	2 8 5	1 1 5 2	< < <	0.17 0.29 0.51	0.41 5.52 0.27 0.54 0.27	6.59 20% 3.54
RR-96- 9 RR-96- 10 RR-96- 11 RR-96- 12 RR-96- 13	R 21 Ř 4 Ř 14 Ř 338 Ř 261	 	;	0.6	September 2014	343 15 94 3154 2035	283 25 132 8587 5870	38 < 13 204 128	< < 6 37		51 5 6 10 9	< < < < < < < <	< < 8	1.5 < 1.7 40.3 28.2	10 11 1	5 6 6 2 7	15 22 25 55 7	< < < < < <	60 64	5 278 0 54 9 472 3 4. 4 291	3 2 8 1 0 %	1 3 4 1	37 27 39 131 41		1	< < <	0.55 0.49 0.24	1.40 1.50 1.65 9.98 1.23	4.05 3.42 2.64
RR-96- 15 RR-96- 16 RR-96- 18 RR-96- 19 RR-96- 20	R 3167 R 49 R 35 R 281 R 187	3.40 		2.1 14.2	417 29 1562	5308 315 245 2554 2061	1941	572 52 165 127 99	< < 10	V V V V	9 6 35 10	< < < < < <	< < <	0.13 10.9 2.0 26.4 16.3	7 9 9	2 6 6 6 5	< 17 5 10 15	< <	56 1 74 1 100		0 1 6 8	2 5	9 31 46 47 25		2	< < <	0.43 0.39 0.34	0.36 1.99 2.65 3.19 1.45	4.40 7.01 4.26
RR-96- 21 RR-96- 22 RR-96- 24 RR-96- 25 RR-96- 27	Ř 22 Ř 1800 Ř 1790 Ř 2030 Ř 3660	1.53 1.57 2.23 3.37	151.5 213.6 143.5 168.2	0.1m 0.1m	3.2 7 5.8 7 3612	2392 5058		482 241	20 36	< 5 43 89	8 4 5 4 2	< 2	226 154 62	1.7 11.5 67.0 0.1	16 m 13	6 3 2 4 4	45 9 14 <	< < < < < <	79 53 76		0% 1% 2%		21 17 16 26 33	6 6 4 <	<	< < <	0.08 0.05 0.10	1.23 0.86 1.85 1.34 3.35	14% 15% 11%
RR-96- 29 RR-96- 30 RR-96- 31 RR-96- 33 RR-96- 34	Ř 2020 Ř 1310 Ř 580 Ř 208 Ř 178	1.90 1.27 	131.8	24.5 9.7	2202 1 1629	6752 2534 1043	127		80 37 10	67 4 < <	< 27 41 27	<	13 11 9	0.5 0.6 55.5 12.5 13.6	m 1 9 13	4 3 6 11 7	< 5 10 2	< < < < <	64	< 4. 21 2. 29 35! 23 514	3 % 1	< < 3 8 3	32 27 52 47 53	5 ੈ	< 4 6 5	< < <	0.07 0.37 0.48	1.07 2.30 4.11 2.87 3.01	4.81 6.01 5.12
RR-96- 35 RR-96- 37 RR-96- 38 RR-96- 39	R 226 R 23 R 21 R 37	 			5744 73 773 773 397	8881 127 130 154	7711 197 290 310	440 < < 148	<	V: V: V	6 7 6 3	< < < <	< <	0.1 3.5	8	24 4 4 4	13 38 22	< < < <	50 44	9 72 10 64 16 186 5 42	8 4 1	4 7 7 7	50 39 51 35	7 8 8 10	1 2	< <	0.40 0.41	0.99 1.89 2.86 2.04	4.39 2.87

CERTIFICATE OF ANALYSIS iPL 9610929

2036 Columb³ reet Vancouver, B.c Canada V5Y 3E1 Phone (604) 879 -7878

Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD.

Client: First Point Capital Corporation iPL: 96I0929 Out: Oct 04, 1996 Page 1 of 2 Section 2 of 2

Project: None Given 42 Rock In: Sep 24, 1996 [092919:14:53:69100496] Certified BC Assayer: David Chiu

Project: None	Given		42 KG	эск	In: Sep 24, 19:	[092919:14:55:09100490] Cer CTI Ted BC ASSAYET. David CITI
Sample Name	Mg %	K Z	Na %	P 7		
RB-96- 03	R 0.22					
RB-96- 06	Ř 0.21 (0.18	0.01	0.07		
RB-96- 09	Ř 0.21 (
RB-96- 14	Ř 0.29 (
RB-96- 17	Ŕ 0.11 (0.32	0.02	0.14		
RB-96- 22	R 0.03					
RB-96- 27	Ř 0.56 (
RB-96- 28	Ŗ 0.92 (
RR-96- 1	R 0.48					
RR-96- 2	R 1.08	0.20	0.02	0.10		
RR-96- 3	Ř 0.09					
RR-96- 4	Ř 1.40 (
RR-96- 5	ĝ 0.06 (
RR-96- 7	<u> я</u> 0.06 (
RR-96- 8	Ř 0.03	0.27	0.01	0.11		
RR-96- 9	Ř 0.17	0.24	0.02	0.10		
RR-96- 10	Ř 0.66 □	0.26	0.05	0.17	•	
RR-96- 11	Ř 0.47 □					
RR-96- 12	Ř 3.32 □					
RR-96- 13	Ř 0.31	0.17	0.01	0.09		
RR-96- 15	à 0.09	0.04	0.02	0.01		
RR-96- 16	Ŕ 0.48	0.27	0.02	0.17		
RR-96- 18	Ŕ 0.87	0.23	0.02	0.12		
RR-96- 19	à 0.64					
RR-96- 20	Ŕ 0.23	0.28	0.02	0.12		
RR-96- 21	Ŕ 0.32	0.36	0.02	0.17		
RR-96- 22	Ŕ 0.25	0.03	0.01	0.11		
RR-96- 24	Ŕ 0.74	<	0.01	0.15		
RR-96- 25	à 0.46					
RR-96- 27	Ř 1.55	0.03	0.02	0.03		
RR-96- 29	R 0.33	0.04	0.02	0.01		
RR-96- 30	Ŕ 0.87					
RR-96- 31	Ŕ 1.38	0.12	0.02	0.04		
RR-96- 33	à 0.80					
RR-96- 34	≝ 1.00	0.12	0.02	0.05		
RR-96- 35	à 0.23	0.27	0.02	0.15		
RR-96- 37	Ŕ 0.59					
RR-96~ 38	Ŕ 0.41	0.19	0.02	0.16		
RR-96- 39	Ã 0.24	0.23	0.02	0.12		

Min Limit
Max Reported*

0.01 0.01 0.01 0.01 9.99 9.99 5.00 5.00 ICP ICP ICP ICP

-- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICAT OF ANALYSIS iPL 9610929

2036 Colum Treet Vancouver, B.o. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879 -7898

INTERNATIONAL PLASMA LABORATORY LTD.

Client: First Point Capital Corporation iPL: 96I0929 Out: Oct 04, 1996 Page 2 of 2 Section 1 of 2
Project: None Given 42 Rock In: Sep 24, 1996 [092919:14:53:69100496] Certified BC Assayer: David Chiu

Sample Name	Λu ppb	∆u g/ml	Λg g/ml	Лg ppm	Cu ppm	Pb ppm	Zn ppm	Λs ppm		Flg ppm	Мо ррт			d Co m ppm			W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm p	Sc ppm	Ti %	۸1 %	Ca 7	Fe %
RR-96- 40 RR-96- 40A RR-96- 41	Ř 5670 Ř 106 Ř 52	5.50	308.4	0.2m 1.5 8.2	18754 571 363	4487 245 1407	3.97 481 2487	8234 253 41	878 15 5	× × ×	8 3 6	< 61 < < 1	3 0. 2 2. 7 14.	8 9	4 5 5	< 28 11	< < <	54 45 73	9 7 4	1.9 % 3350 321	2 10 3	34 26 41	6 12 12	1 1	< < <	0.14 0.37 0.33	2.68 1.45 0.46	11 % 3.01 2.85

CERTIFICAT: OF ANALYSIS iPL 96I0929

2036 Colum! reet Vancouver, B.U. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-789

INTERNATIONAL PLASMA LABORATORY LTD.

Client: First Point Capital Corporation Project: None Given

42 Rock

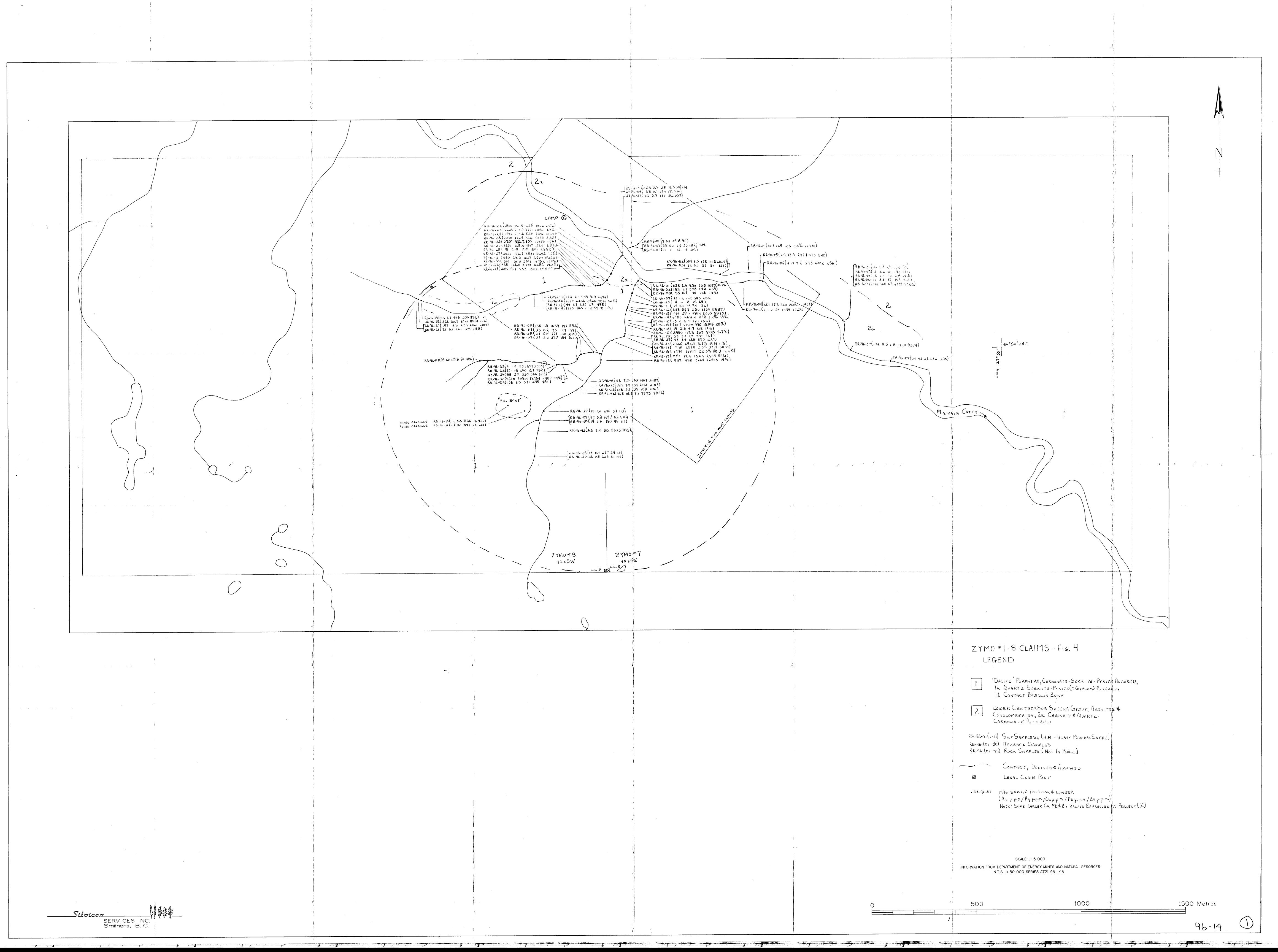
iPL: 9610929

Out: Oct 04, 1996 In: Sep 24, 1996

Page 2 of 2 [092919:14:53:69100496]

Section 2 of 2 Certified BC Assayer: David Chiu

Sample Name	Mg K Na P X X X X
RR-96- 40	R 0.45 0.07 0.01 0.09
RR-96- 40A	R 0.45 0.24 0.02 0.13
RR-96- 41	R 0.03 0.20 0.02 0.13


Min Limit Max Reported* 0.01 0.01 0.01 0.01 9.99 9.99 5.00 5.00

ICP ICP ICP ICP --=No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

APPENDIX B

OUTCROP R	OCK SAMPLES
RB-96-01	semi massive to massive py, from 10 meter wide silicified fault breccia zone in carb. alt.
	Skeena Fm. s.s. and congl., strike at 080 dip 84E
RB-96-02	semi massive to massive py, from zone above
RB-96-03	strong sil, dissem py, trace gn from zone above
RB-96-04	strong silicification, py, minor gn from zone above
RB-96-05	silicification, semi massive py from zone above
RB-96-06	1 meter chip sample, sil. with py stringers from zone above
RB-96-07	Sil, dissem gn, py from zone above
RB-96-08	Sil, dissem gn, py from zone above
RB-96-09	qtz carb zone, 1 meter wide, covered on both sides, disem py, trace gn, sil, alt dacite?
RB-96-10	qtz carb vienlet, 1-10cm wide,, sph, gn, py, strike 070 dip 90
RB-96-11	dacite dyke, 2-3% dissem py, trace gn, 1 meter exposed
RB-96-12	1-4 cm qtz vienlet, py in feldspar porphyry? strike 056 dip56N
RB-96-13	shear in dacite, carb alt, dissem py, semi massive gn, py, cpy, 20 cm wide
RB-96-14	carb alt dacite, wallrock to RB-96-13
RB-96-15	Massive cpy, gn, from shear/vien at RB-96-13
RB-96-16	Semi massive,gn, sph, py vienlet, 2-10cm wide, strike 078 dip 75N
RB-96-17	Carb. alt. dacite, dissem. and fracture controlled py, some shearing, closed spaced
	fractures at 10 - 20 per meter
RB-96-18	Semi massive gn, sph, py, sulphosalts?, 120-20cm thick, 10-20 cm of dissem
	mineralization in breccia above, strike 080 dip 68N
RB-96-19	Fault gangue in argillic alt. zone, grey clay, py, minor gn, sph
RB-96-20	Fault gangue, argillic alt.,next to argillic alt breccia zone
RB-96-21	Argillic alt breccia zone, py, ~5 meters wide, breccia zone in contact with weakly altered
	sandstones and conglomerates
RB-96-22	Dacite, dissem and stringer py
RB-96-23	Dacite, dissem py
RB-96-24	Dacite, dissem py, weak purple tinge to alteration
RB-96-25	Silicified dacite, stringer and disem py
RB-96-26	Sil stockwork zone in dacite, py stringers
RB-96-27	Well jointed carb alt dacite, 5% dissem py, joints with py every 2-10 cm
RB-96-28	Carb alt dacite, 3-5% dissem py
RB-96-29	Carb alt dacite, 2-3% dissem py
RB-96-30	Carb alt dacite, stringer and dissem py, gn: fine gn on fractures with py
FI OAT ROC	K SAMPLES
RR-96-01	Carb alt congl, py, gn
RR-96-02	Otz-carb, py, minor gn, cpy
RR-96-03	Dacite, dissem py
RR-96-04	Otz-carb vien, 3-5% gn, py
RR-96-05	Semi massive py cobble
RR-96-06	Otz-carb breccia,,py, bn, gn
RR-96-07	Sil dacite, py, trace gn
RR-96-08	Dacite, dissem py
RR-96-09	Otz-py vienlets in biotite granodiorite? 2-3%dissem py
RR-96-10	Dacite, dissem py
	Carb alt dacite, dissem and stringer py
RR-96-11	Carb alt breccia, black weathering, dissem py, gn
RR-96-12	
RR-96-13	Qtz, gn, sph, py vienlets in carb alt dacite
RR-96-14	Massive gn, some sph, py
RR-96-15	Massive gn, some py, sph, dacite wallrock

	RR-96-16	Dacite, carb alt, dissem py, minor disem gn
	RR-96-17	Vienlets and stringers of gn, py in dacite
	RR-96-18	Carb alt dacite with py stringers
	RR-96-19	Dacite breccia with gn, py
	RR-96-20	Dacite, carb alt, dissem py, trace gn
	RR-96-21	Dacite, carb alt, dissem py, minor malachite
	RR-96-22	Qtz-carb vienlet, 20% py, trace gn
	RR-96-23	Qtz-carb vienlet, 20% py, 2% sph, 2%gn
•	RR-96-24	Py, gn, sph, adularia? vien material
	RR-96-25	Py, gn, qtz, adularia? cobble
	RR-96-26	Gn, sph, py, sulphosalts? in qtz, adularia?
	RR-96-27	Sulphooosalts?, gn, sph, py, qtz, adularia?
	RR-96-28	Py, sulphosalts?, gn, sph, qtz, adularia? vien float
	RR-96-29	Gn, sph, py, sulphosalts? qtz, adularia? cobble
	RR-96-30	Gn, sph, py, suphosalts? qtz, adularia?
	RR-96-31	Silicified breccia, angular to well rounded clasts, dissem py, gn
	RR-96-32	Dacite cobble with gn, sph, py vienlet
	RR-96-33	Breccia boulder, angular and rounded clasts, sil, dissem gn, py
	RR-96-34	Carb alt breccia, angular clasts, sil, py, trace gn
	RR-96-35	Dacite breccia, py, gn vienlets
	RR-96-36	15 cm thick slab, massive gn, sph, py
	RR-96-37	Dacite, dissem py, fracture py with trace cpy
	RR-96-38	Dacite, dissem py, minor malachite
	RR-96-39	Pyritic dacite, minor cpy
	RR-96-40	Massive py vienlet in dacite, some cpy?
	RR-96-40A	3-5%py in dacite
	RR-96-41	Dacite, sil, stringer py, minor gn, sph
,	RR-96-42	Qtz-carb alt dacite breccia, py, gn on fractures
	RR-96-43	Carb alt dacite with dissem py, gn

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- · Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Robin C. DAY Reference Number 96/97 P30
LOCATION/COMMODITIES
Project Area (as listed in Part A) NETALZUL MINFILE No. if applicable NONE
Location of Project Area NTS 93-M-2 Lat 55°13′ Long 126°49′
Description of Location and Access AROUT 5 KILOMETERS BY HELICOPTER FROM HAROLD
PRICE CREEK LOGGING ROAD AT PAASK CREEK LANDING AT AZIMUTH 060°
Main Commodities Searched For Au, Ag
Known Mineral Occurrences in Project Area None PREVIOUSLY DOCUMENTED
WORK PERFORMED 1. Conventional Prospecting (area) AROUT 600 HECTARES
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) 5 Rock SAMPLES
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6,. Drilling (no,. holes, size, depth in m, total m) 7. Other (specify)
SIGNIFICANT RESULTS Commodities Au, Aq, Pb Claim Name N/A
Location (show on map) Lat 55° 13' Long 126° 49' Elevation 5400'
Best assay/sample type Rock: 6.56g/t Au, >200 p.p.m. Ag > 10,000 p.p.m. Pb
Description of mineralization, host rocks, anomalies ASSAY AROVE IS FROM A .5- CM WIDE
VIENLET IN QUARTZITE PERIPHERAL TO A FELSITE INTRUSIVE;
MINERALIZATION ARE OCCURRENCES ONLY
Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.
PROSESSED 1945

NETALZUL PROJECT

RECONNAISSANCE PROSPECTING REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-M-2

Latitude 55 degrees 13 minutes north Longitude 126 degrees 04 minutes west

For

B.C. PROSPECTORS ASSISTANCE PROGRAM Reference No. 96/97 P30

By

Robin C. Day, B.Sc., F.G.A.C.

December 01, 1996

TABLE OF CONTENTS

Executive Summary	P.2
Project Location	P.2
NTS Map	P.2
Access	P.2
Commodities	P.2
Deposit Types	P.2
Geology	P.2
Work Undertaken	P.2
Rock Geochemistry Results	P.3
Exploration History	P.3
Conclusions	P.3
Recommendations	P.3
Statement of Expenditures	P.3

Fig. #1: Location map-Regional (legend-fig. 1a)

Fig. #2 Geology, Sample Location, Prospecting Traverse Map (in pocket)

Appendix: Certificates of Analysis

NETALZUL PROJECT

EXECUTIVE SUMMARY

Reconnaissance prospecting and rock sampling was performed in the project area, located about 9 kilometers south-east from Netalzul Peak. This work established that Tertiary felsite plugs, dykes and sills intrude Middle Jurassic andesites, argillites, and minor quartzites and conglomerates. A large north-south trending fault transects the eastern portion of the area prospected. Sulphide mineralization observed and sampled was characterized by: pyritic hornfels adjacent to felsites and rare, narrow (1-10cm) vienlets with pyrite, galena, sphalerite and sulphosalts. These vienlets occur near the contact of felsite plugs. The best assay was obtained from a .5-1 cm wide vienlet in quartzite peripheral to a felsite plug as follows: >200 ppm Ag, >10,000 ppm Pb and 6.56 gm/tonne An. Mineralization identified are occurances only and no further work is recommended.

PROJECT LOCATION

West-central B.C. about 9 kilometers south-east from Netalzul Peak or about 54 kilometers north-west from Smithers by helicopter.

N.T.S. MAP

93-M-2 at about lat, 55 degrees 13 minutes north and long, 126 degrees 04 minutes west.

ACCESS

By helicopter from Smithers or by helicopter from Harold Price Creek logging road at the Paask Creek landing for 5 kilometers at about azimuth 060.

COMMODITIES

Aц, Ag

DEPOSIT TYPE

Structurally controlled mesothermal to epithermal precious metals.

GEOLOGY

The prospecting area is underlain by Middle Jurassic andesitic volcanics, argillites, minor quartzites and conglomerates. These rocks are intruded by Tertiary felsite plugs, dykes and sills. Sulphides observed and sampled are: pyritic hornfels adjacent to felsites and rare, narrow (.5-1cm) vienlets with pyrite, galena, sphalerite and sulphosalts. These vienlets appear to be restricted to the contacts of felsite plugs and are at best classified as mineral occurances. A large north-south trending fault system was observed and prospected on the eastern portion of the prospecting area. No sulphide mineralization was found associated with this structure.

WORK UNDERTAKEN

Field work was performed during the period August 01-10, 1996, by Robin Day and Lawrence Hewitt. This work was comprised of 5 days, travel, mobilization and demobilization and 10 man days prospecting and rock sampling. 5 rock samples were collected (see Fig. # 2 for sample locations). Sample descriptions are as follows:

RR-96-01	talus, .5-1 cm vienlet in quartz-eye felsite with pyrite and minor galena, shalerite
RR-96-02	outcrop, .5-1 cm vienlet in quartzite, vienlet with pyrite, galena, shpalerite, sulphosalts
RR-96-03	outcrop, 1-10 cm vienlet in felsite, vienlet with pyrite, minor galena and sphalerite
RR-96-04	outcrop, weak pyrite stockwork in hornfels adjacent to felsite dyke
RR-96-05	outcrop, weak pyrite stockwork in hornfels near felsite dyke

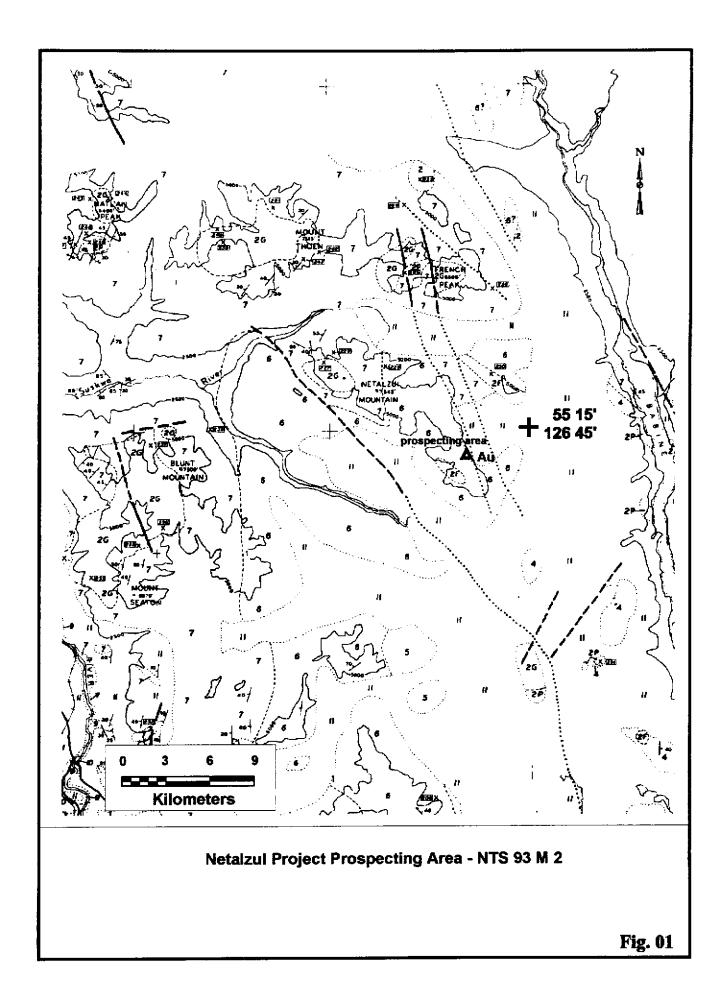
ROCK GEOCHEMISTRY RESULTS

30 element ICP analysis plus gold fire assay analysis was performed on five rock samples. Analytical data are in the appendix and sample locations are shown on Fig. #2. The best assay was obtained from sample RR-96-02: >200 ppm Ag, >10,000 ppm Pb and 6.56 gm/tonne Au.

EXPLORATION HISTORY

There are no minfile occurrences or assessment reports for the area prospected, however, some old topofil was noted in the field and an undocumented gold occurrence was brought to my attention by way of confidential and personal communication.

CONCLUSIONS


Sulfide mineralization within the prospecting area is very sparse. Rock samples collected and analyzed which yielded interesting assay results can at best be described as mineral occurrences.

RECOMMENDATIONS

No further work is recommended for this area.

STATEMENT OF EXPENDITURES

Travel by helicopter from Paask Creek: ~1 hour mobe/demobe	\$ 823.26
Analyses/Assays	\$ 120.00
Equipment rentals/camp supplies	\$ 200.00
Food and accommodation: 15 man days @ \$60.00/day	\$ 900.00
Vehicle rental/operation	\$ 270.47
Wages for grantee or hired help; 10 days @ \$100.00/day	\$1,000.00
Report preparation	\$ 400.00
Total	\$3,713.73

LEGEND SEDIMENTARY AND VOLCANIC ROCKS QUATERNARY Plaistocene and Recent fu Drift and plieveem TERTIARY 10 Andesitic and basellic volcanic racks CRETACEOUS AND TERTIARY Upper Crataceaus to Eocene Sustut Group (in part) 9 Sandstone, conglumerate, mudistane, minor cont. JURASSIC AND CRETACEOUS Lower Cretaceous == Brian Baru Farmation - predominantly porphyritic andesite flows Upper Jurassic and Lower Cretaceaus 7 Greywacke, siltstone, mudstone, canglomerate, and minor caal 7A. John Brown sedimentary member-quartz and chert pebble conglomerate, sandstone, and sitistione; 78, Rocky Ridge sedimentary member - greywacke, siltstane, mudstane, minor conglamerate and coal, 174 and 78 may be Middle Jurassici. JURASSIC Middle Jurassic or Younger 6 Predominantly baseltic and andesitic flows, tuffs and precolar Middle Jurassic and (?) Lower Jurassic 5 i Greywacke, siltstone, mudstare, tulfaceous greywacke, and minor conglomerate Lower Jurassic and [?] Middle Jurassic 4 Predominantly red, purple, grey, and green andesitic to rhyolitic tuffs, breccias, and flows. Minor intercolated sedimentary racks TRIASSIC AND OLDER? Predominantly mafic volcanic rocks with some timestone, limestone conglomerate, greywacke, and chert INTRUSIVE ROCKS UPPER CRETACEOUS AND EARLY TERTIARY Quartz monzonite, granodionite, quartz distrite, and parphyritic and fine-grained equivalents. Predominant textures - 26-granitic; 29-parphyritic; 25-felsitic; 28-gabbro. JURASSIC AND 131 CRETACEOUS J Quartz monzonite, granodiarile, quartz diorite, perphyritic in park Minar distrile and managinite Geological boundary, defined, approximate, assumed -----

Bedding, inclined, horizontal, vertical

Cleavage and schistopity
Fault, defined, assumed

Lincoment

Mineral occurrence
Outcrap boundary

Thrust foull; defined, assumed

Anticlme: upright, overturned Synclyne: upright, overturned COMP: MR. ROBIN DAY

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

ATTN: Robin Day

PROJ:

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0083-RJ1 DATE: 96/08/22

* ROCK * (ACT:F31)

IN: KODIN Day										(604)			7 7 7 7 7 7	(004)											-	ROC	. "	(ACT:F
SAMPLE NUMBER	AG PPM	AL A	S BA M PPM	BE PPM	BI PPM	CA %	CD PP M	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	NI P	PPN	1 PPM	PPM	SR PPM	TH PPM	TI % PP	U M PF	V W	J Z
RR-96-01 RR-96-02 RR-96-03 RR-96-04 RR-96-05	65.7 >200.0 4.7 .7 .1	.15 502 .15 640 .21 530 .27 6	3 10 5 64	.1 .1 .1 .1	1 1 1 1	1 82	>100.0 .1 >100.0 .1 .1	4 13	40	203 3	7 0	1 1 1 1	.19 .13 .23 .19	1 2 3 2 7	ΠЗ	801 4203 303 161 153	9 15 6 11	.01 .01 .01 .01	12 130 44 650 8 110 18 380 16 460	>10000 >10000 1833 209 42) 84) 267 3 12) 6 ! 1	2 3 1 2 2	5 28 1	1 . 7 . 1 . 1 .	01 01 01 01	1 5.	1 43 9 6 1 12 2 1	>1000 215 407
		<u> </u>																									·	
																												-
																				·							, ,	
		*****				•														· · · · · · · · · · · · · · · · · · ·								
-		···																				<u></u> _						
										· · · · · · · · · · · · · · · · · · ·												•·-···································						
_		 													•••				<u></u>				·············					
							of skills Wilderswickers block	TPMS 11 (/ dode a soci																				
																									-			
														<u></u>														

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE:

VANCOUVER OFFICE. 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB:

3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Assay Certificate

6S-0083-RA1

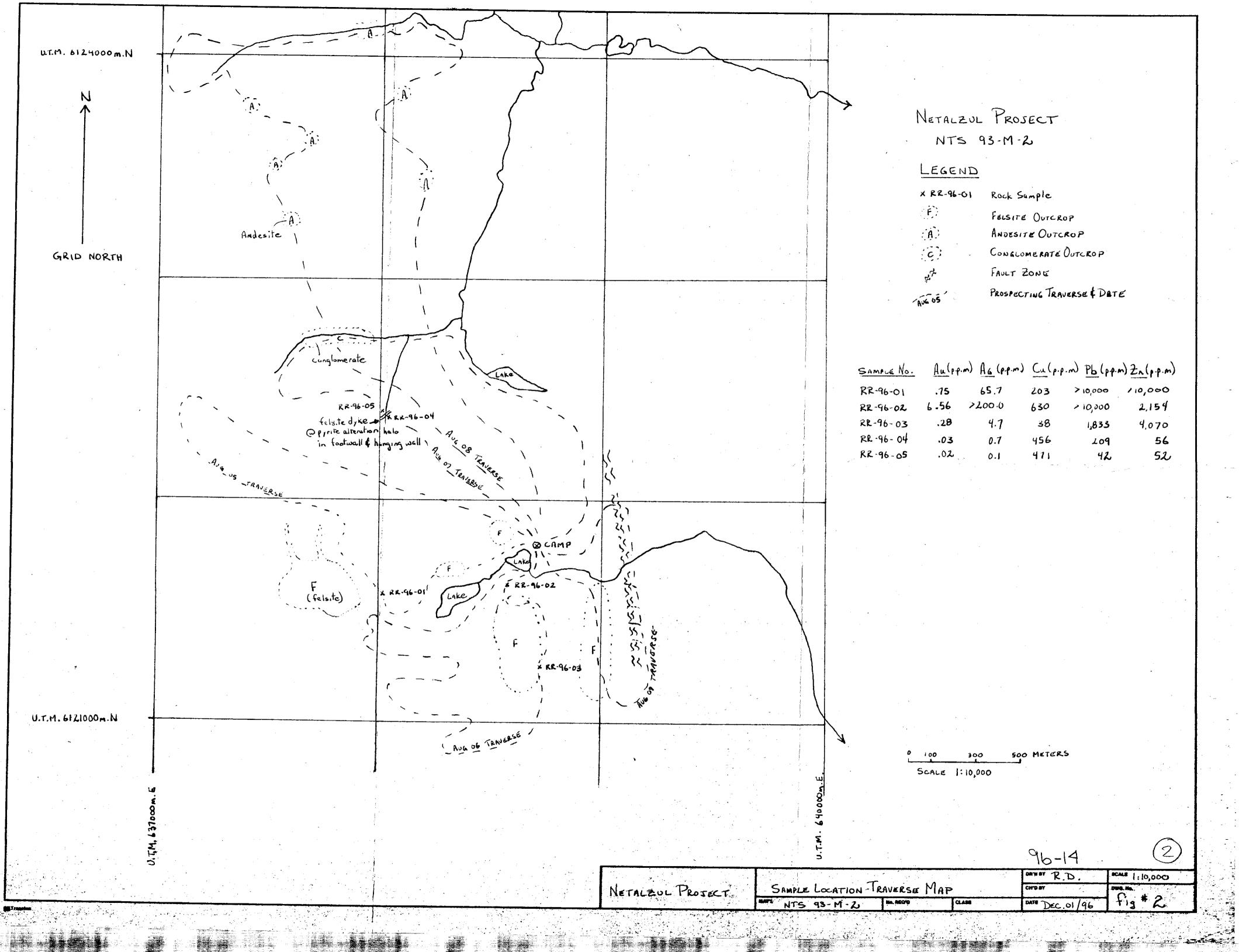
Date: AUG-22-96

Company:

MR. ROBIN DAY

Project:

Attn:


Robin Day

We hereby certify the following Assay of 5 ROCK samples submitted AUG-12-96 by ROBIN DAY.

Sample Number	Au-fire g/tonne	Au-fire oz/ton	
RR-96-01	.75	.022	
RR-96-02	6.56	.191	
RR-96-03	.28	.008	
RR-96-04	.03	.001	
RR-96-05	.02	.001	

Certified by

MIN-EN LABORATORIES

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

D	THE CASE	TD	TO DAY	AD TO
D.	TECH	L	ъr	JR.I

- One technical report to be completed for each project area.
- · Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ROBIN C. DAY R	escrence Number 96/97 P30
LOCATION/COMMODITIES	•
Project Area (as listed in Part A) HORN# 1-12 CLAIM	AS MINFILE No. if anolicable NO. N.F.
Location of Project Area NTS 93-M- IW \$ 2 E	
Description of Location and Access BABINE LAKE AR	
SMITHERS LANDING : ACCESS BY FOOT SOUT	
MAIN' LOGGING ROAD OR NORTH FROM CUT	
Main Commodities Searched For Au, Cu	DOCKTON OFF K BOTH KORD
water Conditionates Sesicised For His CA	
Known Mineral Occurrences in Project Area None	
WORK PERFORMED 1. Conventional Prospecting (area) Rout 300	HECTARES
2. Geological Mapping (hectares/scale)	
3. Geochemical (type and no. of samples) 10 Rock	5 SUT, 24 SOIL
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no., holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS - NONE	
Commodities Au, Cu	Claim Name HORN #6
Location (show on map) Lat 55°09′ Long	
Best assay/sample type SILT: 9 p.p.b. Au , 26 p.p.m	Cu - Rock: 14 a.a.b. Au 42 a.a.m. Ch :
The second of the second secon	
Description of mineralization, host rocks, anomalies CHER	To CAD CEDONIC SUICIEICATION
OF FAULT BRECCIA WITH 1-4% PYR	ATT BARRES CALLERY OF SYSTEMA
OF THOSE BREACH WITH 1-4 10 TH	TIE OARREN EPITHERMAL STSTEET
	<u> </u>
	110V 42 - 222
Supporting data must be submitted with this TECHNICAL RE	
Information on this form is confidential for one year from the Information Act.	
tryomasson act.	PROSPECTORS PROGRAM
	MEMPR

HORN #1-12 CLAIMS

RECONNAISSANCE PROSPECTING REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-M-1W & 2E

Latitude 55 degrees 09 minutes north Longitude 126 degrees 30 minutes west

For

B.C. PROSPECTORS ASSISTANCE PROGRAM Reference No. 96/97 P30

By

Robin C. Day, B.Sc., F.G.A.C.

December 01, 1996

TABLE OF CONTENTS

Executive Su	ımmary	P.2
Project Loca	tion	P.2
NTS Map		P.2
Access		P.2
Commoditie	s	P.2
Deposit Type	es	P.2
Geology		P.2
Work Under	taken	P.3
Claim Recor	d Data	P,3
Claim Owne	rship	P.3
Rock, Soil &	Silt Geochemistry Results	P.3
Exploration	History	P.3
Conclusions		P.3
Recommend	ations	P.3
Statement of	Expenditures	P.4
References		P.4
Fig. #1 Fig. #2 Fig. #3	Claim Map Prospecting Area - District Geology (legend fig. 2a) Sample Location Map (in pocket) Certificates of Analysis	

'HORN' PROSPECT

EXECUTIVE SUMMARY

Reconnaissance prospecting, rock, silt and soil sampling was performed on and around the Horn #1-12 claims, located in the Babine Lake area, B.C., about 10 kilometers north of Smithers Landing or about 60 kilometers north-west of Smithers. This work was performed to investigate unpublished reports of hornfels and argillic alteration associated with rhyolite flow domes. Such alteration was deemed prospective for epithermal gold or coeval copper-gold biotite feldspar porphyry systems. A new epithermal system was discovered. This system exhibits moderate to intense silicification and pyritization, and is located on a north trending district scale fault which transects the Horn #1-12 claims. A review of ICP analytical data for rock, silt and soil samples shows no elevated gold and no anomalous multi-element geochemistry. No further work is recommended as this epithermal system is interpreted as 'barren' with low potential for gold-silver mineralization at depth or on trend.

PROJECT LOCATION

Babine Lake area, B.C. about 10 kilometers north of Smithers Landing or about 60 kilometers north-west of Smithers.

N.T.S. MAP

93-M-1W & 2E at about lat. 55 degrees 09 minutes north and long, 126 degrees 30 minutes west.

ACCESS

By helicopter from Smithers or by vehicle to about kilometer 18 on the West Main logging road and to the south by foot.

COMMODITIES

Au. Cu

DEPOSIT TYPES

'Bulk tonnage' auriferous rhyo-dacite flow dome; structurally controlled auriferous epithermal system.

GEOLOGY

The project area is underlain by fault bounded blocks of Middle Jurassic Hazelton Group volcanics and sediments and early Tertiary rhyolites, dacites and intrusive equivalents. Within the prospecting area, the felsites exhibit variable silicification (see fig. #2, #3).

A new epithermal system was discovered within the Horn #1-12 claim block on a north trending district scale fault which transects Tertiary age felsites. These rocks are brecciated and exhibit moderate to intense silicification characterized by cherty to chalcedonic replacement with 1% to 4% pyrite (see Fig. #3 and ICP analysis for rock sample HR-96-05 for gold plus multi-element geochemistry).

Rock sample descriptions are as follows (see Fig. #3 for locations):

HR-96-01:	Float on old skid road ~100 meters south of claim line, cherty silicitied rhyolite with
-----------	---

minor pyrite

HR-96-02: Float on old skid road ~ 10 meters south of claim line, silicified rhyolite with hematite

and manganese stain

HR-96-03: Talus, at ~20 meters south of Baseline at 3320 East, vuggy silicified rhyolite with quartz

needles in vugs

HR-96-04: Colluvium, angular boulders, fault breccia, rhyolite, angular clasts from 5mm-4cm in

size, clasts and matrix silicified, no sulphide, at ~150 meters at azimuth 310 from

Baseline 4000 east

HR-96-05: Silicified rhyolite breecia, cherty to chalcedonic silicification with 1-4% pyrite, about 25

meters east of HR-96-01

BL 2300E: silicified rhyolite

BL 2400E:

silicifled rhyolite

BL 2900E:

silicified rhyolite, minor kaolinite

BL 3000E:

silicified rhyolite, trace pyrite, manganese stain

BL 3100E:

silicified rhyolite, manganese stain

WORK UNDERTAKEN

Field work was performed during the period June 12-18, 1996 by the author and Mr. Larry Hewitt of Telkwa, B.C. This work was comprised of five man days equipment and supplies preparation, travel, camp mobilization and demobilization, and nine man days prospecting, rock, soil and silt sampling. 10 rock samples, 5 silt samples and 24 soil samples were collected. Soil sampling was performed along the claim lines in a general east-west and north-south orientation in order to test intersecting north-south and east-west trending faults. Prospecting did not reveal any sulphide bearing alteration other than sample HR-96-05.

CLAIM RECORD DATA

CEMINI ICECOND DATA		
CLAIM NAME	RECORD NUMBER	<u>DATE</u>
Horn-1	343962	March 09, 1996
Horn-2	343963	44
Horn-3	343964	66
Horn-4	343965	"
Horn-5	343966	44
Horn-6	343967	44
Horn-7	343968	March 10, 1996
Horn-8	343969	66
Horn-9	343970	44
Horn-10	343971	44
Horn-11	343972	"
Horn-12	343973	44

CLAIM OWNERSHIP

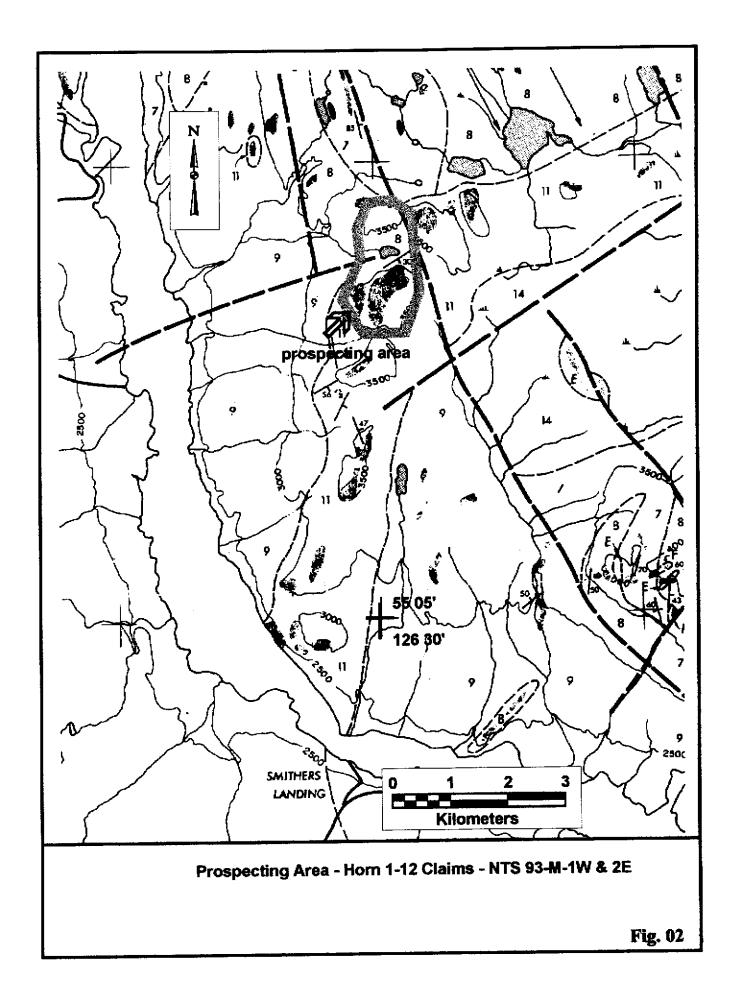
Robin Day (50%) and Lawrence Hewitt (50%)

ROCK, SOIL & SILT GEOCHEMISTRY RESULTS

30 element ICP plus geochemical gold analysis was performed on 10 rock samples, 5 silt samples and 24 soil samples. Multi-element geochemistry for all sample types is uniformly low. No anomalous values are reported (See Fig. #3 and Appendix).

EXPLORATION HISTORY

1996- Horn #1-12 claims staked during March 1996; prospecting, rock, silt and soil sampling undertaken during June 12-18, 1996.


CONCLUSIONS

Although no mineralization of economic interest was identified, the project is viewed as a technical success as a new, albeit barren, epithermal system was discovered as a direct result of focussing "grass roots" exploration on "alteration and structure".

RECOMMENDATIONS

No further work is recommended.

LEGEND

INTRUSIVE ROCKS

SEDIMENTARY AND VOLCANIC ROCKS

QUATERNARY	TERTIARY
PLEISTOCENE AND RECENT	EOCENE
14 DRIFT AND ALLUVIUM	F BIOTITE FE DEAR PORMYRY AND ALTERED
TERTIARY	EQUIVALENTS
ECCENE - OLIGOCENE (?)	E PORPHYRITIC DIORITE, QUARTZ MONZONITE, FINE-
13 BASALT, ANDESITE	GRAINED QUARTZ DIORITE
ECCENE	CRETACEOUS AND TERTIARY
12 HORNBLENDE FELDSPAR PORPHYRY, EXTRUSIVE	UPPER CRETACEOUS - PALEOCENE
EQUIVALENT OF 'F'	D RHYOLITE AND QUARTZ LATITE PORPHYRY, QUARTZ FELDSPAR PORPHYRY
CRETACEOUS AND TERTIARY	donine recoons rowning
UPPER CRETACEOUS - EARLY TERTIARY	UPPER CRETACEOUS
RHYOLITE AND DACITE FLOWS AND PYROCLASTIC ROCKS, EXTRUSIVE EQUIVALENTS OF 'D'	C QUARTZ-HORNBLENDE-BIOTITE FELDSPAR PORPHYRY, MEDIUM TO COARSE GRAINED
SUSTUT GROUP (?)	JURASSIC AND CRETACEOUS
10 PEBBLE CONGOMERATE, SANOSTONE, SHALE	OMINECA INTRUSIONS
CRETACEOUS	B DIORITE, MONZONITE, GABBRO
LOWER CRETACEOUS	TRIASSIC AND JURASSIC
9 SILTSTONE, SHALE, SANDSTONE, CONGLOMERATE;	TOPLEY INTRUSIONS
SOME VOLCANIC ROCKS	UPPER TRIASSIC - LOWER JURASSIC
JURASSIC	AS QUARTZ-HORNBLENDE-BIOTITE FELDSPAR PORPHYRY
HAZELTON GROUP	A RHYOLITE PORPHYRY
MIDDLE JURASSIC	A INTOLITE FORTINT
ANDESITE AND BASALT FRAGMENTAL VOLCANIC ROCKS	A3 PINK MONZONITE, SYENITE
7 SILTSTONE, GREYWACKE	A2 PORPHYRITIC QUARTZ MONZONITE, GRANITE
dicisione, dicinione	AT GRANGOIGRITE, PORPHYRITIC, FOLIATED
LOWER JURASSIC	
6 GREYWACKE, SILTSTONE, MINOR LIMESTONE	
ANDESITE AND BASALT FLOWS AND PYROCLASTIC ROCKS; SOME RHYOLITE FLOWS, TUFFS, AND BRECCIAS	
TACHEK GROUP - ANDESITE BRECCIAS WITH FRAGMENTS OF TOPLEY GRANITIC ROCKS; SOME RHYOLITES	
TRIASSIC AND OLDER	
(May include some Permian)	
3 ANDESITE, BASALT, GREENSTONE	
2 LIMESTONE, ARGILLITE, CHERT	
1 CHLORITE AND SERICITE SCHIST	
•	

COMP: MR ROBIN DAY

ATTN: ROBIN DAY

PROJ:

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0036-SJ1 DATE: 96/06/26

* soil * (ACT:F31)

TTN: ROBIN DAY									TEL:(604)	327-34	+36	FAX:(604)3	27-3	423											- s	501L "	(AL	1:131
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	B I PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM		GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM		NI PPM	P PPM	PB PPM F	PM P	PM P		M %	6 PPM	PPM	W ZI PPM PPI	<u>M</u>	fire PPB
BL 2000E BL 2100E BL 2200E BL 2500E BL 2600E	.1 1.52 .3 1.49 .2 1.58 .4 1.78 .3 1.95	1 1 1 1	155 213 197 235 329	.1 .1 .1 .1	1	.46 .42 .43 .49 .63	.1 .1 .1 .1	10 9 11 11 11	20 14 21 20 18	23 21 33	2.98 2.82 3.33 3.29 3.33	1 1 1 1	.06 .06 .06 .07	12 16 18 17		613 642 703 829 1342	9 10 10	.01	27 20 27 33 27	660 610 650 630 730	20 23 20 26 31	9 10 10 12 13	1 2 2 2	83 88	1 .02 1 .02 1 .02 1 .01 1 .01	2 1 2 1 1 1 1 1	39.6 44.0 43.8 45.4	1 74 1 8 1 11 1 11 1 14	0 6 6 8	1 3 2 2 1
BL 2700E BL 2800E BL 3200E BL 3300E BL 3400E	.2 1.53 .4 1.45 .1 1.37 .2 1.41 .1 1.70	1 1 1 1	208 128 107 137 155	.1 .1 .9	1	.57 .63 .31 .30 .19	.1 .1 .1 .1	11 10 9 12 9	15 18 16 16 16	19 21 23	3.21 3.39 3.57 3.39 3.21	1 1 1 1	.07 .06 .05 .10	38 13 21 15	.34 .34 .38 .33 .39	712	9 10 12 9	.01	20 21 32 20	1180 640 950 620 690	25	10 11 10 11 12	2 1 1 2	69 97 33 37 38	1 .02 1 .02 1 .02 1 .01 1 .01	2 1 2 1 1 1 1 1	44.2 47.3 45.5 33.1 44.0	1 13 1 14 1 11 1 15 1 28	5 9 3 9	9 3 1 3
L 3500E L 3600E L 3700E L 3800E L 3900E	.3 1.62 .1 2.04 .3 1.28 .1 1.91 .3 1.34	1 1 1 1	214 321 214 298 196	.1 1.0 .1 .1	1 1 1 1 1	.70 .09 .44 .48 .39	.1 .1 .1 .1	9 12 7 13 8	16 21 15 23 15	21 17 26 18	3.23 4.20 2.50 3.92 2.79	1 1 1 1	.08 .09 .04 .06 .04	15 15	.41 .34 .42 .31	632 5866 370 1673 345	14 8 11 8	.01	21 43 20 29 19	710 930 400 550 340	28 23	10 28 8 19 9	2 1 2 1	79 47	1 .02 1 .01 1 .02 1 .01 1 .02	1 1 2 1 1 1 2 1	44.3 37.9 49.4 41.5	1 14 1 25 1 7 1 11 1 6	2 3 0 9	1 6 2 3 1
BL 4000E _ 3500E 3050N _ 3500E 3150N _ 3500E 3250N _ 3500E 3350N	.8 .62 .8 .86 .5 1.46 .5 1.35 .4 1.32	1	69 290 265 193 256	.4 .4 .1 .1	1 1 1 1	3.99 1.13 .80 .82 .46	.1 .1 .1 .1	2 4 12 8 9	7 10 18 16 16	26 15 17	1.50 3.60 2.70 3.04	1 1 1 1	.01 .02 .05 .04 .04	13 16 12	.19 .35 .30 .37	252 179 586 280 556	5 10 9	.01 .01	11 15 26 18 22	500 590 800 300 480	15 71 26 26 21	3 6 12 10 10	1 1 2 1 1 2	03 92 60	1 .01 1 .01 1 .02 1 .01 1 .01	1 1 2 1 1 1 1 1	40.9 39.0 38.8	1 3 1 11 1 7 1 5 1 6	8 2 9 5	2 3 2 10 2
L 3500E 3450N L 3500E 3550N L 3500E 3650N L 3500E 3750N	.6 1.86 .4 1.57 .2 1.52 .2 2.50	1 1 1	203 190 193 323	.1 .1 .1	1 1 1 1	.74 .36 .66	.1 .1 .1	13 10 9 12	23 20 15 21	15 16	3.31 2.92 2.83 3.59	1 1 1	.06 .07 .05 .07	20	.62 .39 .37 .46	750 282 592 1029	9	.02 .01 .01 .01	24 21	1000 380 340 660	21 23 29 32	10 11 10 29	2 1 1 2 1 2 1	81 45	1 .02 1 .02 1 .02 1 .01	2 1 2 1	70.0	1 11 1 12 1 11 1 13	3 6	1 3 1 2
						 -																								
					· · · · · · · · · · · · · · · · · · ·							***		*	<u>. </u>															
										-																				
									·																					

COMP: MR ROBIN DAY

PROJ:

MIN-EN LABS — ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 6S-0036-RJ1

DATE: 96/06/26 * rock * (ACT:F31)

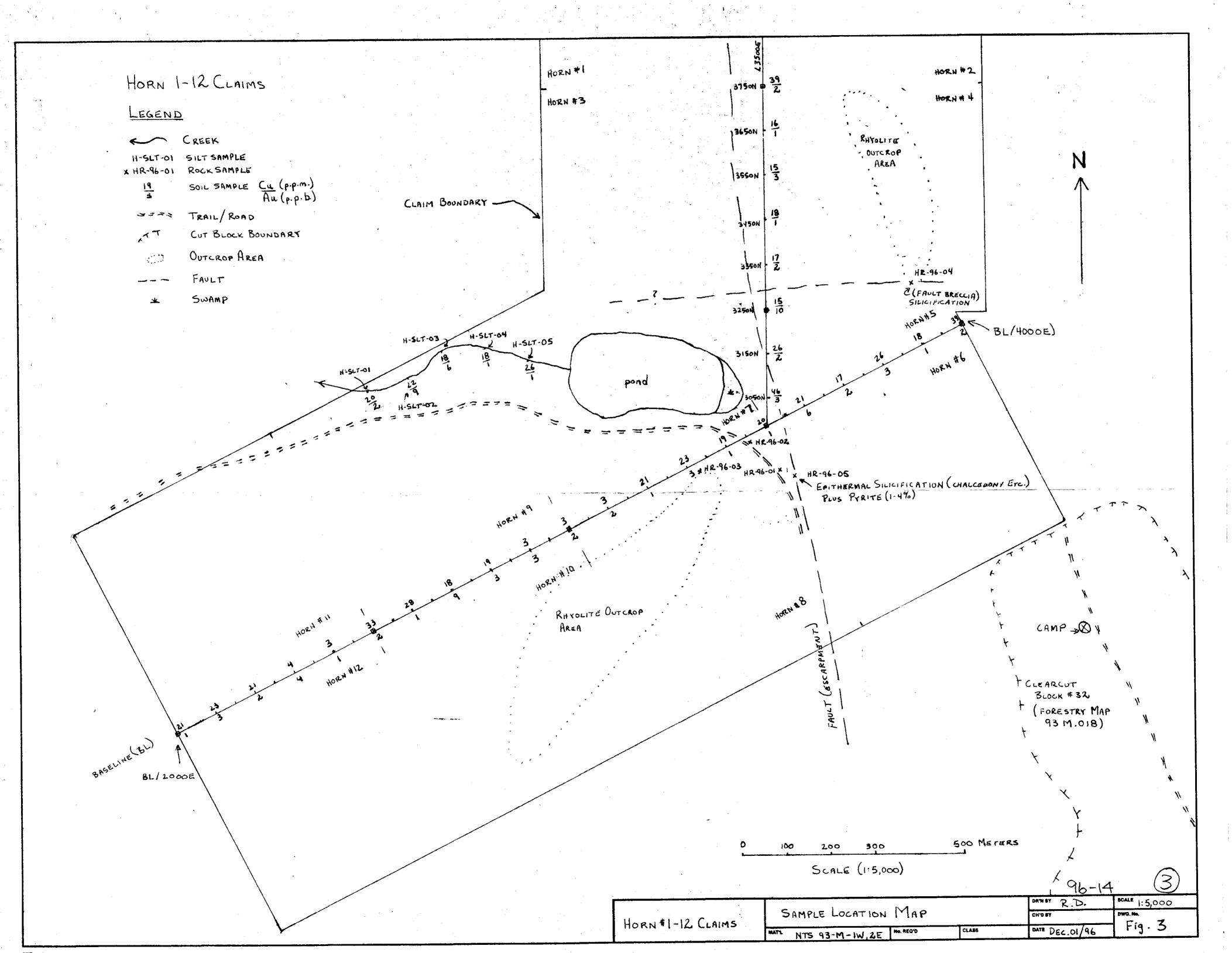
N: ROBIN DAY														36	FAX:(27-34	23										rock *	
AMPLE JUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	B I PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L1 PPM	MG %	MN PPM	MO PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM 1	SN S PPM PF	SR T	H TI	U V PPM PPM	W ZN PPM PPN	l Au-fir I PP
IR-96-01 IR-96-02 IR-96-03 IR-96-04 IR-96-05	.7 .4 .4 .7	.14 .15 .15 .18	1 1 1 1	11 7 13 113 30	.1 .1 .6 .1	5 1 1 1	.06 .03 .01 .05	.1 .1 .1 .1	3 4 3 3 2	95 47 41 55 90	42 8 6 4 5	2.08 4.33 3.93 2.00 1.60	1 1 1 1 7	.07 .10 .12 .17	1 1 1 2	.04 .01 .01 .02	636 1023 808 1476 202	5 14 10 7 7	.05 .03 .01 .01	7 7 6 8 5	40 130 20 210 20	6 1 1 8 7	5 8 7 6 6	1 1 2 2 1 1	10 1 10 6	1 .01 1 .01 1 .01 1 .01 1 .01	1 .8 1 .1 1 .1 1 1.0 1 .8	6 101 2 150 2 490 2 72 7 116)) <u>}</u> 5 1
L 2300E L 2400E L 2900E L 3000E L 3100E	.9 1.0 .2 .2	.52 .61 .15 .14 .13	1 1 1 1	40 46 7 9 14	.9 .6 .1 .1	1 1 1 1	.04	.1 .1 .1 .1	2 2 4 4 3	38 34 39 61 51	3 3 3 3	1.54 1.67 4.04 4.24 3.55	2 1 1 1		5 5 1 1	.09 .13 .01 .03	949 1742 1229 1333 2153	6 7 14 9 12	.04 .04 .02 .03 .02	5 7 7 9 10	90 90 130 20 20	12 14 1 1 5	6 8 8 7	2	1	1 .01 1 .01 1 .01 1 .01 1 .01	1 .9 1 1.3 1 .2 1 .1 1 .6	1 97 1 94 2 122 3 159 3 156))
															···-				· · · ·										
																		, <u>.</u>											
		·				·						. .																	
																										<u>.</u> .			
	į																												
								· · · · · · · · · · · · · · · · · · ·																					

COMP: MR ROBIN DAY

ATTN: ROBIN DAY

PROJ:

MIN-EN LABS - ICP REPORT


8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 6S-0036-LJ1 DATE: 96/06/26

* silt * (ACT:F31)

ATTN: ROBIN DAY																															
SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PPM	PPM F	SN S PPM PP	M PPM	† I % (PPM	PPM P	W ZN	PF	B
H-SLT-01 H-SLT-02 H-SLT-03 H-SLT-04 H-SLT-05	.1	1.52 1.77 1.49 1.49 1.49	1 1 1 1	258 266 255 227 240	.1 .1 .1 .1	1 1 1 1	.93 .78 1.04 .74 .59	.1 .1 .1 .1	13 14 11 8 12	12 14 11 11 17	22] 18	3.31 3.43 3.20 2.19 3.45	1 1 1 1	.06 .06 .05 .04	10 13 9 9	.34 .36 .29 .29 .40	2205 942 1780 395 429	9 8 7 10	.01 .01 .01 .01 .01	23 22 21 16 24	990 1030 1050 850 760	30 30 35 9 26	9 11 11 9 11	2 11 2 10 2 12 1 9 2 8	4 1 2 1 2 1 6 1 4 1	.01 .01 .01 .01	1 1	37.6 42.8 32.7 30.5 43.3	1 123 1 139 1 122 1 109 1 114		2 9 6 1
																															_
																				_											

																															_
																				·		· · · · · · · · · · · · · · · · · · ·									
																			· · · · · · · · · · · · · · · · · · ·	-			<u>.</u>								
																·															
																															
							<u></u> -																							-	
	_																														

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ROBIN C. DAY	Reference Number 96/97 P30
LOCATION/COMMODITIES	• • • • • • • • • • • • • • • • • • • •
	#23-30CLAIMS MINFILE No. if applicable NONE
	\$93-K-16 Lat 55° 0' Long 124° 08'
	1500 METERS SOUTH OF COMMON HEADWATERS OF
RAINBOW & WITTSICHICA CORE	EKS OR ABOUT 8 MILES SOUTH of Mt. Milligan deposits.
ACCESS BY HELICOPTER FROM	Et St James &C
Main Commodities Searched For Au Cu	
man continuents scattered to 118, 50	
Known Mineral Occurrences in Project Area	NOME
WORK PERFORMED	/aa //
I. Conventional Prospecting (area) ABo	
Geological Mapping (hectares/scale) Geochemical (type and no. of samples)	De Tur : 18 Rock
Geochemical (type and no. or samples) Geochemical (type and line (m))	128 htt 10 Rock
· · · · · · · · · · · · · · · · · ·	
	(m lax
7. Other (specify)	74111)
SIGNIFICANT RESULTS	
Commodities Cu, Au	Claim Name ROOSTER#23-30 CLAIMS
Location (show on map) Lat 55° 01	Long (24°08' Elevation
Best assay/sample type Rock: 516 p.p.	Claim Name KOOSTER#23-30CLAIMS Long 124°08' Elevation .m. Cu, .06g/mt Au Soll: 349 p.p.m Cu
Description of mineralization, host rocks, aport	nation ALTERED PORPHYRITIC WITCH LAKE FM- VOLCANICS
	ILL ANOMALY (CONTOURED AT 790 p.p.m. \$ 7200 p.p.m.C.
	by 100 To 400 METERS WIDE. ALTERATION TYPES of
	HORNFELS, DIOTITE & CARRONATE - SERICITE - PYRITE.
	Dege WED!
Supporting data must be submitted with this TE Information on this form is confidential for one Information Act.	e year from the date of receipt subject to the ptogs ons of the Freedom of
	PROSEBUTORS FINE CAM MEMPR

ROOSTER #23 - 30 CLAIMS

RECONNAISSANCE PROSPECTING

AND

SOIL GEOCHEMISTRY REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-N-1 & 93-K-16

Latitude 55 degrees 0 minutes north Longitude 124 degrees 08 minutes west

Annual Work Approval No. 1996-1300424-7582

And For

B.C. Prospectors Assistance Program Reference No. 96/97 P30

By

Robin C. Day, B.Sc., F.G.A.C.

December 01, 1996

TABLE OF CONTENTS

Executive Su	mmary	P.2
Project Loca	tion	P.2
NTS Map		P.2
Access		P.2
Commodities	ı	P.2
Deposit Type	rs	P.2
Geology		P.2
Claim Owner	rship	P.3
Claim Record	d Data	P.3
Work Under	taken	P.3
Till and Rock	Geochemistry Results	P.3
Exploration l	History	P.3
Summary		P.3
Recommenda	ations	P.3
References		P.3
Statement of	Qualifications	P.4
Statement of	Expenditures	P.4
Fig. 1 Figl 2 Fig. 3 Fig. 4 Appendix A Appendix B	Claim map (1:50,000 scale) Compilation/Magnetics Map (1:63,000 scale) Claim Location Map (regional) Soil and Rock Geochemistry Resusts (in pocket-1:5,000 Certicicates of Analysis Rock Sample Descriptions	0 scale)

ROOSTER PROJECT

EXECUTIVE SUMMARY

Reconnaissance prospecting, soil sampling and claim staking was performed at the common headwaters of Rainbow and Wittsichica creeks, located about eight miles south of Mt. Milligan. This work was done to follow up a copper in till anomaly identified during field work performed during 1995. This season's field work has defined the Cu in till anomaly as a linear feature about 1,500 meters long by 100 to over 400 meters in width. The anomaly is contoured at > 90 P.P.M. and > 200 P.P.M. Cu. Coincident and adjacent sub-angular rock samples (deemed to be sub-crop or proximal to source)also exhibit elevated Cu (100 to 516 P.P.M.). Alteration types observed include: hornfels, biotite, carbonate-sericite-pyrite and chlorite-pyrite. Interpretation suggests the possibility of a hypabyssal intrusive thermal source as being responsible for alteration types observed and elevated copper in sub-crop. The linear nature of the Cu in till anomaly suggests structural control of alteration and anomalous Cu lithogeochemistry. Further work, (including line cutting, and magnetics, VLF and IP surveys) is recommended.

PROJECT LOCATION

Central B.C. about 4 miles east of the Germansen highway at the headwaters of Rainbow and Wittsichica Creeks and about eight miles south of Mt. Milligan.

N.T.S. MAP

Wittsichica Creek, N.T.S. 93-N-1 and 93-K-16 at about lat. 55 degrees 0 minutes north and long. 124 degrees 08 minutes west(see attached maps).

ACCESS

By road from Ft. St. James, however, helicopter support was used to mobe/demobe fly camp.

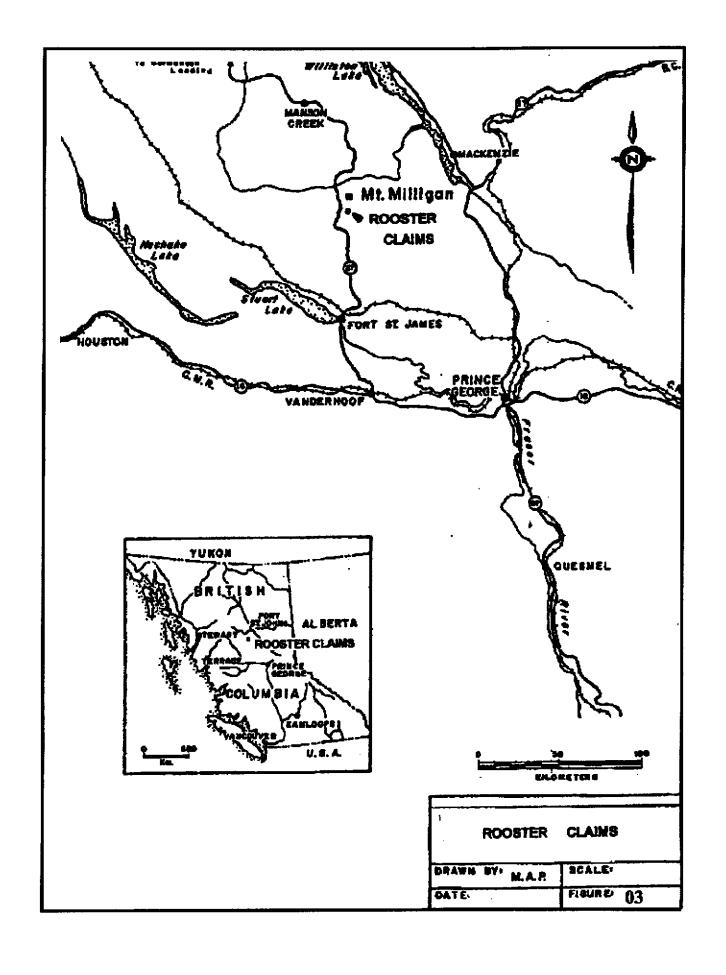
COMMODITIES

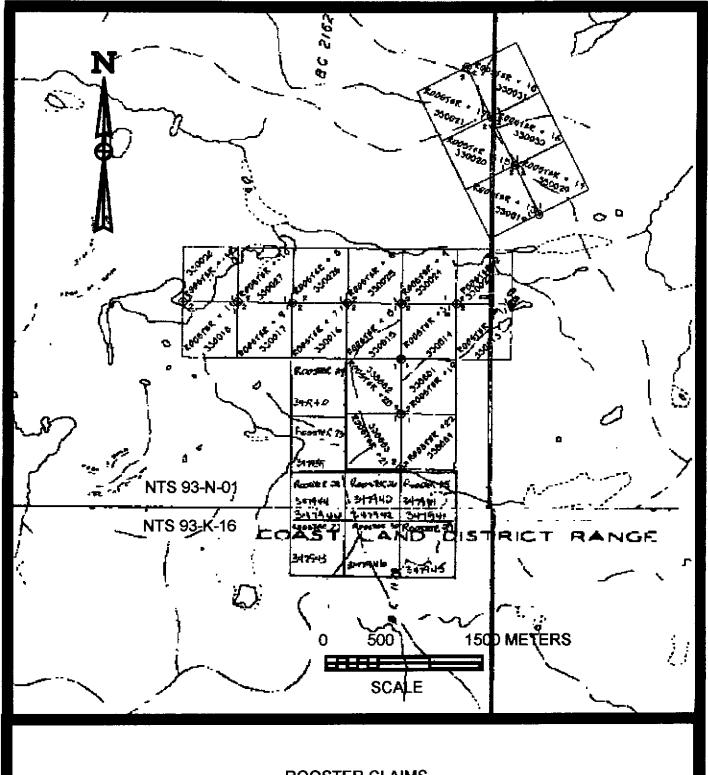
Copper, gold

DEPOSIT TYPES

Porphyry copper-gold, transitional 'QR' type or structurally controlled-intrusion related precious metals.

GEOLOGY

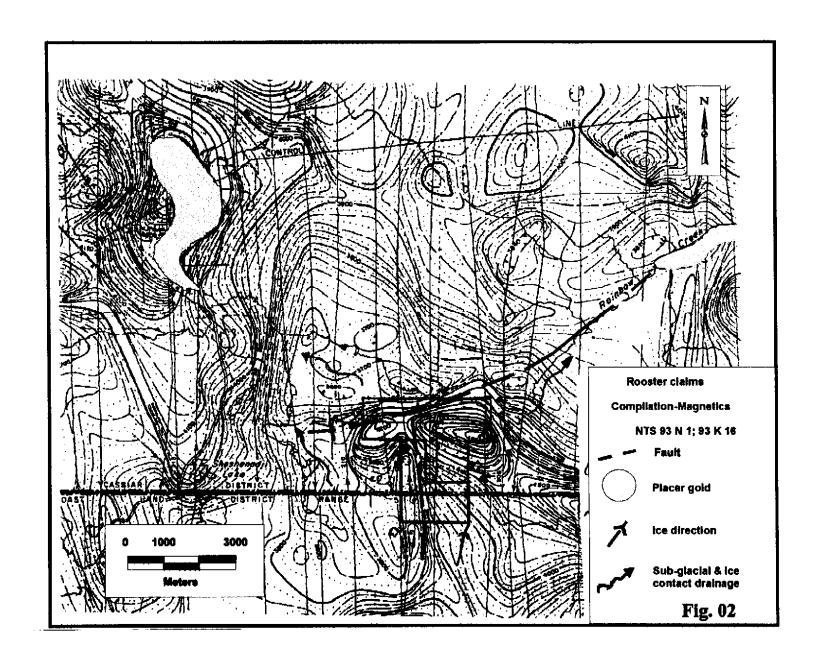

The project area is underlain by variably altered Witch Lake Formation porphyritic volcanics intruded by crowded feldspar porphyry dikes. This area was targeted for exploration to investigate the possible source area for known alluvial gold and copper occurrences downstream in Rainbow and Wittsichica Creeks. Reconnaissance prospecting and soil sampling performed during 1995 (funded in part by a Prospectors Assistance Grant) identified coincident lithogeochemical (Cu) and multi-element (Cu-Au-Mo) till geochemical anomalies at the south end of a 1000 meter by 1000 meter grid located on the Rooster #1 claim group (see attached maps).


CLAIM OWNERSHIP

The Rooster claims are owned by Robin Day (50%) and Larry Hewitt (50%).

CLAIM RECORD DATA

Claim Name	Tenure No.	Record Date
Rooster #23	347939	July 06, 1996
Rooster #24	347940	July 06, 1996
Rooster #25	347941	July 10, 1996
Rooster #26	347942	July 10. 1996
Rooster #27	347943	July 10, 1996
Rooster #28	347944	July 10, 1996
Rooster #29	347945	July 12, 1996
Rooster #30	347946	July 12, 1996



ROOSTER CLAIMS

CLAIM MAP

NTS 93-N-01 & 93-K-16

WORK UNDERTAKEN

Field work was performed during the period July 04 - 16, 1996 by the author and Mr. Larry Hewitt of Telkwa, B.C. This work was comprised of eight man days equipment and supplies preparation, travel, camp mobilization and egress and eighteen man days engaged in prospecting, soil sampling and locating eight-two post mineral claims. Approximately 128 till samples and 18 rock samples were collected and analyzed.

TILL AND ROCK GEOCHEMISTRY RESULTS

Sample analysis was performed at the Placer Dome Research Centre, courtesy of Placer Dome Inc. Multielement geochemistry data plus gold assay data are attached in the appendix and are plotted on fig. #4.

Till sampling procedure was to 'core' through strata with a tulip bulb auger. This facilitated recognition of the oxidization boundary in till. Till samples were collected at the top of the unoxidized horizon, usually at a depth of .5 to 1.2 meters. All 'soil' samples were clay rich till except as follows:

Line 4000N (3000E, 3050E, 3100E) glaciofluvial

Line 3750N (3200-3600E) glaciofluvial

Line 3000N (4400E) organics

Line 2500N (3000E) glaciofluvial

The Cu anomaly identified at the south end of the 1995 grid has been extended to over 1500 meters in length and over 100 to 400 meters wide. Copper values in till greater than 90 P.P.M. are deemed anomalous. Copper values in till greater than 200 P.P.M. are deemed highly anomalous

Copper in rock samples above 100 and 200 P.P.M. are deemed anomalous and highly anomalous respectively.

EXPLORATION HISTORY

The general area underwent intensive recent exploration for porphyry Cu-Au as it is about eight miles south of Mt. Milligan. No prior exploration work was reported and no evidence of exploration was observed on the ground covered by the Rooster claims.

During August 1994, Mr. Larry Hewitt and the author prospected and performed preliminary soil sampling on the north edge of the airborne magnetic high covered by the Rooster #1 Claim group. This work helped determine soil types and identified a 400 meter long stretch of anomalous copper in till. Follow up sampling during 1995 was therefore directed 'up-ice' and restricted to clay rich till cover. This work identified a coincident till geochemical and lithogeochemical copper anomaly.

SUMMARY

A significant copper geochemical anomaly has been identified. Elevated copper in till and underlying rock types suggests proximity to a hypabyssal intrusive thermal source. The linear nature of the anomaly also suggests structural control.

RECOMMENDATIONS

One or perhaps two years assessment work should be applied to the Rooster #23-30 claims. Should development of the Mt. Milligan deposits proceed in the near future, this would perhaps facilitate a more aggressive exploration posture in the district. At that time, ground geophysics such as magnetics, VLF and I.P surveys could be performed in order to delineate drill targets if present.

REFERENCES

- Geophysics paper #1584
- 2. B.C.D.M. Bulletin #70
- 3. G.S.C. Memoir-Ft. St. James area
- 4. B.C.D.M. Open File 1991-3

PLACER DOME REULARCH CENTRE Geochemical Analysis

V279

Submitted by:

D SKETCHLEY

Sample Type: SOIL

Date Received:

JULY 23, 1996

Page of Attn: D SKETCHLEY

R DAY

Project/Venture: Area:

MT MILLIGAN

Lab Project No.:

D6211

NTS:

Date Completed:

AUGUST 28, 1996

Remarks: SEE LAB FILE A6220 FOR AU RESULTS Au - 10.0 g sample digested with Aqua Regia and determined by Graphite Furnace A.A. (D.L. 1 PPB)

ICP - 0.5 g sample digested with 4 ml Aqua Regia at 100 Deg. C for 2 hours.

	3000E 3100E 3200E	9pm 0.2	ppm	ppm				DOM:	B 5 5 5 5								W	Be	La	Sr	Ti	Al	Ca	Fe	Mg	K	Na	P
2500N 2500N 2500N 2500N	3100E	I .				ppm	ppm 7	ppm	ppm	ppm	ppm 47	ppm	ppm	_ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	% '	_%	%	%	%	_%	_%
2500N 2500N 2500N			2	L.	5.7	73	, , , , , , , , , , , , , , , , , , ,	<5	<0.1	34	17	483	<2	50	114	121	<5	0.8	13	45	0.17	3.30	0.55	4.36	0.91	0.17	0.02	0.18
2500N 2500N	3200E	0,1	2	- 1	6 3	56	<5	<5	0.1	25	12	508	<2	40	91	103	<5	0.5	12	54	0.16	2.04	0.71	3.22	0.79	0.17	0.02	0.11
2500N		0.1	1		2 3.	42	<5	<5	<0.1	22	9	425	<2	33	78	91	<5	0.4	12	55	0.15	1.61	0.73	2.68	0.62	0.09	0.02	0.11
	3300E	0.4	1	_	6 <1	72	12	<5	0.1	21	6	231	<2	28	39	106	<5	0.5	10	33	0.02	1.32	0.37	1.55	0.30	0.08	0.02	0.10
	3300EA	0.3	1	5	1 <1	65	7	<5	<0.1	25	10	384	<2	39	87	93	<5	0.6	11	47	0.14	2.20	0.59	3,27	0.69	0.11	0.02	0.13
					10000										n sever na vrti vota va vota vrti vota vrti vrti va va vota vota				ŀ		.				11240.00			•
2500N	3400E	0.1	2	2 3	6 41	57	<5	<5	<0.1	27	9	346	<2	41	84	93	<5	0.5	11	42	0.14	2.03	0.52	3.26	0.66	0.08	0.02	0.10
2500N	3500E	0.2	1 1	4	3 <1	54	<5	<5	<0.1	24	10	379	<2	39	85	92	<5	0.5	12	49	0.14	2.06	0.64	3.31	0.72	0.10	0.02	0.12
2500N	3600E	0.2	1	: 4	4 1	53	<5	<5	<0.1	25	10	412	<2	39	. 88	100	<5	0.5	12	54	0.16	2.17	0.66	3.21	0.67	0.10	0.02	4
2500N	3700E	0.3	2	2 6	0 2	63	6	<5	0.1	34	12	460	<2	45	82	93	<5	0.5	11	40	0.13	2.10	0.44	3.58	100000000000000000000000000000000000000			0.11
	3700E	0.2	2		Programme and program	64	9	< 5	<0.1	34	12	462	<2	45	82	93	<5	0.5	12	41					0.67	0.09	0.01	0.09
•		•	-	- ["	١		-0.1		'~'	702	7.2	7.5		53	~•	0.5	12		0.13	2.11	0.44	3.59	0.67	0.09	0.01	0.09
2500N	3800E	0.2	2	ء ا	4 7	62	< ₅	<5	0.2	30	13	403	<2		oα													
2500N	3900E	0.2	2	1	E 4. 11. 11. 11. 11. 11. 11. 11. 11. 11.	58	<5	<5		and supplied a			_	44	88	88	<5 	0.6	13	36	0.12	2.09	0.45	3.69	0.70	0.09	0.01	0.11
		1	1 1	-	100.00	l f	- 1	_	0.1	30	12	463	<2	43	90	112	<5	0.6	12	42	0.15	2.37	0.54	3.54	0.75	0.11	0.02	0.10
2500N	4100E	0.1	'		_ :: :: :: -	52	<5	<5	<0.1	28	13	547	<2	42	87	160	<5	0.5	13	62	0.16	2.15	0.76	3.24	0.72	0.13	0.02	0.11
2500N	4200E	0.1	1 1		9 3	59	7	<5	0.1	29	13	582	<2	43	93	141	<5	0.6	13	66	0.17	2.08	0.82	3.44	0.74	0.15	0.03	0.12
2500N	4400E	0.1	1	e	5 4	55	6	<5	<0.1	27	10	391	<2	41	83	127	<5	0.6	11	55	0.16	2.43	0.69	3.25	0.74	0.14	0.02	0.11
					123.44										200	•		ļ		9949	1	Ì	1	- 1				, l
2500N	4500E	0,1	1	7 וי	7 5	63	<5	<5	0.2	31	12	496	<2	46	95	151	<5	0.6	13	65	0.16	2.45	0.72	3.63	0.83	0.16	0.02	0.10
2750N	3000E	0.2	2		6 6	68	<5	<5	0.1	25	11	377	<2	41	92	93	<5	0.7	13	49	0.19	2.49	0.62	3,51	0.83	0.18	0.02	0.11
2750N	3100E	0.2	2	2 5	7 5	55	<5	<5	0.2	25	10	385	<2	40	91	86	<5	0.5	11	48	0.17	2.14	0.62	3.51	0.75	0.13	0.02	0.12
2750N	3200E	0.4	2	2 4	6 6	90	<5	<5	0.1	26	12	471	<2	44	96	102	<5	0.6	13	47	0.15	2.26	0.52	4.34	0.72	0.15	0.02	0.12
UP :	3200E	0.4	2	2 4	4 4	88	8	<5	0.1	25	11	457	<2	43	92	99	<5	0.6	13	45	0.15	2.18	0.50	4.22	0.70	0.14	0.02	0.10
							1										- 1				٠.,٠	2.10	0.00	7.22	0.10	0.14	0,02	0.10
2750N	3300E	0.4	2	2 5	8 4	64	7	<5	0.2	29	12	404	<2	42	94	138	<5	0.6	12	48	0.12	2.55	0.61	2.00	0.20		0.00	
2750N	3400E	0.1	2		8 4	59	<5	<5	0.2	29	11	440	<2	41	94	110	<5	0.5	12	25 21 2 CH				3.89	0.70	0.12	0.02	0.17
2750N	3500E	0.1	2		6 5	44	5	< 5	0.2	27	10	332	<2	42	79	90	<5			53	0.16	2.24	0.67	3.61	0.80	0.13	0.02	0.12
2750N	3600E	0.2	1 2	- 1 -	5 4	56	< 5	<5	0.2	38	14	397	<2	51			- 1	0.4	11	40	0.11	1.89	0,50	3.23	0.56	0.06	0.02	0.10
2750N	3700E	0.3	2		5 4	84	<5	<5							86	107	<5	0.6	13	39	0.14	2.41	0.41	3.55	0.73	0.07	0.02	0.09
213014	31002	0.3		ר ו־		04	-5	\ 0	0.2	22	11	474	<2	36	92	96	<5	0.5	8	43	0.15	2.55	0.43	4.01	0.70	0.14	0.01	0.17
070011	5550 5		۔ ا		20000000 S S								_	1					Ė					!	11, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15			
2750N	3800E	0.2	2		Professional Section	70	<5	<5	<0.1	32	16	571	<2	47	99	125	<5	0.8	15	48	0.17	2.66	0.55	3.97	1.00	0.26	0.02	0.10
2750N	3900E	0.2	2	- I	The Section 2011	50	<5	<5	0.1	29	14	494	<2	42	91	106	<5	0.5	12	58	0.17	2.22	0.66	3.48	0.75	0.13	0.02	0.10
2750N	4100E	0.1	1		9 4	50	<5	<5	<0.1	25	11	433	<2	39	81	116	<5	0.5	13	53	0.17	2.07	0.68	3.12	0.79	0.15	0.02	0.11
2750N	4200E	0.1	1	-	11 3334	60	<5	<5	0.1	31	14	573	<2	46	93	145	<5	0.6	13	67	0.18	2.28	0.78	3.50	0.78	0.19	0.02	0.12
UP 4	4200E	0.1	1	8	3 6	62	6	<5	0.2	32	14	584	<2	47	96	148	<5	0.6	15	68	0.18	2.31	0.79	3.57	0.79	0.19	0.02	0.12
					And a glave bed and a control															3 1000	ļ				30.53			
2750N	4300E	0.1	1	۱ (The second second	54	10	<5	0.1	26	11	455	<2	39	82	127	<5	0.6	13	57	0.15	2.04	0.71	3.00	0.69	0.14	0.02	0.11
2750N	4400E	0.2	2	2 €	6 3	71	7	<5	0.1	32	13	441	<2	45	83	127	<5	0.6	13	39	0.12	2.31	0.48	3.35	0.71	0.07	0.02	0.10
2750N	4500E	0,1	1	i 4	5 2	47	<5	<5	<0.1	24	10	379	<2	39	79	105	<5	0.5	13	54	0.16	1.77	0.62	2.81	0.65	0.07	0.02	0.08
3000N	3000E	0.2	2	2 9	4 3	66	6	<5	0.1	27	12	463	<2	44	108	95	<5	0.7	12	61	0.20	2.31	0.74	4.00	0.93	0.25		
3000N	3100E	0.2	1 2	≥l e	6 1	63	<5	<5	<0.1	27	12	422	<2	44	109	99	<5	0.7	12	55	0.19		0.64			4	0.02	0.14
-						11	-	-		[::::3d	-		-	ا′: ا		0.5		J.,	12		0.15	2.49	0.04	4.15	0.87	0.18	0.02	0.13
3000N	3200E	0.2	2	2 7	1 2	63	<5	<5	<0.1	27	15	594	<2	43	96	88	<5	0.6	12	55	0.18	2 24	0.00	اء و	0.70	0.40		انمما
3000N	3300E	0.1	-		2 2	55	<5	<5	0.1	25	10	392	<2	39	87		<5				0.16	2.21	0.69	3.85	0.72	0.16	0.02	0.11
3000N	3400E	0.2	2		4 3	52	<5	<5	0.1	25	11	462		38		88 96	<5	0,5	12	55	0.16	2.02	0.67	3.28	0.72	0.14	0.02	0.10
3000N	3500E	1	3	- 1	4 2	57	-5	<5			[. –	<2		87	86		0.4	12	58	0.16	1.90	0.71	3,15	0.65	0.12	0.02	0.11
TD ICP	3000E	0.1	1 -	- 1		1			<0.1	29	12	388	<2	46	105.	92	<5	0.5	11	43	0.18	2.56	0.53	4.22	0.73	0.20	0.02	0.11
ייייייי		1.5	8 ا	' ⁴	7 6	49	29	<5	0.3	12	10	386	<2	64	83	111	<5	0.5	15	162	0.13	1.87	1.24	3.19	0.45	0.21	0.18	0.08

PLACER DOME REV. ARCH CENTRE Geochemical Analysis

Project/Venture:

V279

Submitted by:

D SKETCHLEY

Sample Type: SOIL

Date Received:

JULY 23, 1996 AUGUST 28, 1996 Page 2 of Attn: D SKETCHLEY

Area:

MT MILLIGAN

Lab Project No.:

D6211 NTS: Date Completed:

R DAY

Remarks:

SEE LAB FILE A6220 FOR AU RESULTS

Au - 10.0 g sample digested with Aqua Regia and determined by Graphite Furnace A.A. (D.L. 1 PPB) ICP - 0.5 g sample digested with 4 ml Aqua Regia at 100 Deg. C for 2 hours.

SAMPLE	Ag	Мо	Cu	Pb	Zn	As	Sb	Cd	Ni	Ço	Мп	Bi	Cr	V	Ва	w	Be	La	Sr	Ti	Al	Са	Fe	Mg	<u>к</u> ;	Na ¦	P
No.	ppm	ppm	ррт	ppm	ppm	ppin	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%
L3000N 3600E	0.2	2	1 1	5	52	7	<5	0.3	26	13	383	<2	40	87	88	<5	0.7	15	43	0.13	2.35	0.53	3.31	0.59	0.10	0.02	0.14
L3000N 3700E	0.2	3	288	. 3	141	<5	<5	<0.1	47	30	842	<2	65	159	118	<5	0.9	8	25	0.28	4.30	0.45	6.95	1.91	1.45	0.01	0.17
L3000N 3800E	0.4	4	273	<1	136	<5	<5	<0.1	36	28	1271	<2	58	192	91	<5	1.3	8	31	0.26	4.37	0.61	7.58	2.16	0.94	0.01	0.28
L3000N 3900E	0.3	2	71	. 2	51	5	<5	<0.1	27	14	438	<2	37	84	90	<5	0.5	9	45	0.14	2.23	0.53	3.41	0,74	0.14	0.02	0.10
L3000N 4100E	0.1	2	45	3	53	<5	<5	0.1	25	11	382	<2	38	83	97	<5	0.4	10	41	0.14	1.99	0.55	3.30	0.66	0.09	0.02	0.12
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								į		250000	İ						-,	V. 12
L3000N 4200E	0.3	2	60	. 4	74	<5	<5	0.2	40	14	363	<2	47	81	124	<5	0.6	13	35	0.12	2.31	0.37	3.47	0.77	0.07	0.01	0.08
L3000N 4300E	0.4	2	87	3	103	<5	<5	<0.1	40	14	409	<2	50	95	151	<5	0.8	12	35	0.13	3.31	0.38	4.46	0.90	0.19	0.01	0.09
L3000N 4400E	1.6	2	118	5	58	15	<5	0.2	- 6	3	70	<2	7	10	104	<5	0.3	7	99	<0.01	0.55	1.37	0.62	0.13	0.02	0.01	0.09
L3000N 4500E	0.1	1	62	3	52	<5	<5	<0.1	24	11	414	<2	37	76	109	<5	0.5	12	53	0.14	1,93	0.69	2.86	0.66	0.12	0.02	0.11
DUP 4500E	0.1	1	61	2	52	<5	<5	0,1	25	11	430	<2	38	78	110	<5	0.5	12	53	0.15	1.99	0.68	2.96	0.68	0.12	0.02	0.11
	}			120000					833299				[3.37.7	*****	,	0.00	2.00		0.12	0.02	9.11
L3250N 3000E	0.2	2	57	3	64	<5	<5	0.2	22	10	354	<2	37	83	67	<5	0.6	12	34	0.14	2.06	0.46	3.34	0.68	0.13	0.02	0.11
L3250N 3100E	0.2	2	87	3	79	<5	<5	0.1	27	13	504	<2	47	109	87	<5	0.6	12	46	0.16	2.40	0.61					0.11
L3250N 3200E	0.2	2	65	10.4	59	< 5	<5	<0.1	21	11	404	<2	38	90	85	<5	0.6	10	48	0.15			4.32	0.93	0.22	0.02	0.16
L3250N 3300E	0.2	2	64	<1	58	<5	<5	0.1	26	11	414	<2	39	94	89	<5	0.5		0.00		2.18	0.61	3.52	0.73	0.12	0.02	0.16
L3250N 3400E	0.3	2	77	4	54	5	<5	<0.1	27	14	558	<2	40	94	- 1	<5		12	46	0.16	2.17	0.63	3.61	0.60	0,15	0.02	0.14
L525014 5400E	0.0		''		34	,	ן "י	-0.1	• • •	1-4	330	~2	**	54	129	,2	0.6	12	47	0.16	2.14	0.65	3.80	0.76	0.19	0.02	0.11
L3250N 3500E	0.2	3	185	41	201	<5	<5	<0.1	40	30	1460	<2	71	220	200	ا عر		أمما					[
L3250N 3600E	0.2	2	163	<1	181	<5	<5	<0.1	48				1 1	230	298	<5	0.9	11	33	0.34	5.20	0.66	8.31	2.45	1.86	0.02	0.19
L3250N 3700E	0.1	2	53	3	57	<5	<5	<0.1	22	32	1058	<2 <2	58	162	262	<5	0.8	5	28	0.32	5.07	0.80	8.27	2.64	1.74	0.01	0.35
L3250N 3800E	1	2	96	3			, ,			13	477		36	82	80	<5	0.5	9	39	0.13	2.09	0.55	3.28	0.68	0.19	0.02	0.10
DUP 3800E	0.4	2	95		108	<5 -=	<5	0.2	26	14	463	<2	44	100	111	<5	0.6	9	40	0.16	2.71	0.45	4.47	1.09	0.31	0.01	0.13
DUP 3600E	0.4	_	90	on and Classical Communication of the Communication	110	<5	<5	0.1	26	14	464	<2	45	101	112	<5	0.6	9	40	0.16	2.73	0.45	4,51	1.10	0.32	0.01	0.14
L3250N 3900E	0.2	2	ا دما	0.000.00	79	- E			20	40	245	-0	ا مما											11/19/11			
–		2 2	93			<5 ~=	<5	0.1	25	12	415	<2	43	96	87	<5	0.7	11	35	0.15	2.54	0.39	3.93	0,96	0.22	0.01	0.09
L3250N 4100E	0.2			:::1	67	<5 - f	<5	0.1	23	12	400	<2	37	88	94	<5	0.6	10	46	0.18	2.45	0.48	3.71	0.90	0.16	0.02	0.08
L3250N 4200E	0.2	1	15	3	46	<5	<5	0.1	10	5	291	<2	21	63	102	<5	0.2	8	34	0.14	1.61	0.37	2.24	0.41	0.08	0.01	0.09
L3250N 4300E	0.1	1	74	<1	55	<5	<5	<0.1	27	11	465	<2	38	81	132	<5	0.5	12	55	0.15	2.03	0.69	3.04	0.72	0.14	0.02	0.11
L3250N 4400E	0.1	1	60	3	50	8	 < 5	<0.1	22	10	428	<2	36	71	108	<5	0.4	12	53	0.14	1.80	0.66	2.66	0.62	0.12	0.02	0.10
	١					_	_							and the first of t				į	.:::::::::::::::::::::::::::::::::::::			1		1999		1	
L3250N 4500E	0.1	1	54	4	49	<5	<5	<0.1	21	11	420	<2	35	76	93	<5	0.5	12	49	0.16	1.81	0.64	2.85	0.65	0.12	0.02	0.11
L3500N 3000E	0.4	2	82	3	130	<5	<5	0.2	29	17	1543	<2	50	98	126	<5	0.7	12	37	0.14	2.54	0.43	4.65	0.94	0.28	0.01	0.16
L3500N 3100E	0.2	2	28	3	68	<5	<5	0.2	18	8	301	<2	36	87	92	<5	0.4	10	36	0.15	2.03	0.43	3.48	0.55	0.10	0.01	0.10
L3500N 3200E	0.1	1	40	2	49	<5	<5	0.2	22	11	557	<2	39	75	83	<5	0.4	13	41	0.13	1.46	0.54	2.82	0.56	0.08	0.02	0.10
STD ICP	1.4	8	45	6	47	22	<5	0.2	100	10	381	<2	60	80	107	<5	0.5	14	155	0.13	1.78	1.18	3.07	0.43	0.20	0.17	0.08
1 00001 00		_	<u>.</u> _			_	_		1000		_			1000				:			l				-		{
L3500N 3300E	0.1	1	43	6	55	6	<5	0.3	1	15	344	<2	42	85	92	<5	0.7	16	39	0.12	1.95	0.44	3.19	0.60	0.07	0.02	0.12
L3500N 3400E	0.1	2	62	4.	60	<5	<5	0.1	32	13	488	<2	46	87	104	<5	0.4	11	44	0.12	1.81	0.60	3.50	0.69	0.11	0.02	0.10
L3500N 3500E	0.2	1	58	4	93	<5	<5	0.2	24	13	519	<2	45	95	108	<5	0.7	11	51	0.14	2.22	0.69	3.77	0.75	0.16	0.02	0.22
L3500N 3600E	0.1	2	62	1	62	<5	<5	0.2	24	12	437	<2	39	98	88	<5	0.6	12	45	0.16	2.55	0.62	3.89	0.81	0.21	0.02	0.12
L3500N 3700E	0.2	2	63	3	66	<5	<5	<0.1	27	12	400	<2	42	101	86	<5	0.6	12	48	0.17	2.47	0.62	3.91	0.79	0.16	0.02	0.14
														an shiil				ŀ								-,	. 1 . 1
L3500N 3800E	0.2	2	78	4	77	<5	<5	<0.1	25	12	446	<2	41	102	109	<5	0.6	11	49	0.19	2.52	0.66	3.99	0.98	0.27	0.02	0.15
L3500N 3900E	0.3	2	104	<1	130	<5	<5	<0.1	35	22	599	<2	49	126	184	<5	0.8	8	34	0.22	3.65	0.44	5.39	1.56	0.73	0.01	0.13
L3500N 4100E	0.2	2	112	3	76	<5	<5	<0.1	34	18	639	<2	51	120	132	<5	0.7	11	48	0.21	2.71	0.69	4.63	1.21	0.73	0.01	0.13
L3500N 4200E	0.1	1	53	. 1	50	<5	<5	<0.1	22	10	441	<2	36	. 80	87	<5	0.5	11	50	0.15	1.83	0.67	3.00	0.68	0.16	0.02	
DUP 4200E	0.1	1	52	3	49	<5	<5	<0.1	23	10	446	<2	36	. 82	88	<5	0.5	12	54	0.16	1.86	0.70	3.03	0.69	0.15	0.02	0.11 0.11
				<u>: :</u> :				İ		·		_					••••		1			0.10	2.03	V.03	U. 13	0.02	0.11
																	·			L				1	1	. ل	

PLACER DOME RESEARCH CENTRE

Geochemical Analysis

Project/Venture:

V279

Submitted by:

D SKETCHLEY

Sample Type: SOIL

Date Received:

JULY 23, 1996

Page 3 of

Attn: D SKETCHLEY

Area: Remarks: MT MILLIGAN

Lab Project No.: D6211 NTS:

Date Completed:

AUGUST 28, 1996

R DAY

SEE LAB FILE A6220 FOR AU RESULTS

Au - 10.0 g sample digested with Aqua Regia and determined by Graphite Furnace A.A. (D.L. 1 PPB)

ICP - 0.5 g sample digested with 4 ml Aqua Regla at 100 Deg. C for 2 hours.

SAMPLE No.	Ag	Мо	Cu	Pb	Zn	As	Sb	Cd	Ni	Co	Mn	Bi	Cr	٧	Ba	w	Вe	La	Sr	Τi	Al	Ca	Fe	Mg	K	Na	Р -
L3500N 4300E	ррт 0.2	ppm	ppm	ppm <1	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	_ppm_,	ppm	ppm	ppm	ppm	%	%	%	%	%	%	%	%
L3500N 4400E	0.2	1	68 69		56	<5 :	<5	<0.1	25	13	527	<2	40	92	106	<5	0.5	12	58	0.17	1.83	0.77	3.37	0,79	0.16	0.02	0.12
L3500N 4500E			,	- 2	67	<5	<5	0.2	26	9	268	<2	39	63	126	<5	0.7	14	43	0.14	2.52	0.54	2.28	0.67	0.14	0.01	0.09
	0.1	1	62	<1	58	<5 7	<5	<0.1	26	10	492	<2	41	83	130	<5	0.5	11	59	0.16	1.98	0.70	3,14	0.71	0.13	0.02	0.11
L3750N 3000E L3750N 3100E	0.2 0.2	2	1	<1	124		<5 	0.2	33	13	529	<2	48	94	148	<5	0.6	10	44	0.12	2.51	0.61	4.40	0.77	0,14	0.01	0.15
L3750N 3100E	0.2	2	40	<1	52	<5	<5	<0.1	24	11	320	<2	38	83	100	<5	0.5	8	36	0.16	2,33	0.42	3.40	0.68	0.13	0.01	0.11
L3750N 3200E	0.3	2	25	<1	99	<5	<5	<0.1			202	-0			400			_				J					f
L3750N 3300E	0.2	- 1	46	2	70	<5	<5	<0.1	20 28	8	302	<2	37	87	106	<5	0.4	7	29	0.12	2.29	0.38	4.13	0,55	0.08	0.01	0.33
L3750N 3400E	0.2	2		<1	59	<5	<5	<0.1	26 28	13	618	<2	41	86	128	<5	0.4	7	48	0.11	2.02	0.63	3.47	0.63	0.11	0.02	0.24
L3750N 3500E	0.3	2	t	100000000000000000000000000000000000000	103	<5	<5		to the contract of the contrac	10	259	<2	46	102	90	<5	0.5	8	33	0.11	2.27	0.49	4.06	0.54	0.06	0.01	0.25
DUP 3500E		2		41				0.2	24	12	725	<2	40	84	136	<5	0.4	7	39	0.12	1.95	0.45	3.46	0.52	0.07	0.01	0.16
DOF 3300E	0.4	2	21	<1	105	<5	<5	0.2	24	12	744	<2	40	83	139	<5	0.4	7	38	0.12	1.94	0.44	3.48	0,53	0.07	0.01	0.16
L3750N 3600E	0.3	•	20		70	.E	٠.		^^		220				1	_		İ							ŀ		
L3750N 3700E	0.3	2		3	78	<5	<5 -c	0.2	20	11	286	<2	38	91	94	<5	0.6	12	36	0.13	2.21	0.43	3.89	0.56	0.10	0.01	0.22
L3750N 3800E	0.4	2		I i 5.1	56	<5 <5	<5	0.2	20	8	297	<2	37	82	83	<5	0,5	11	43	0.15	2.07	0.45	3.15	0.59	0.14	0.01	0.08
L3750N 3900E	0.5	3			65 95	<5	<5 <5	0.1	27	15	620	<2	45	111	70	<5	0.6	10	45	0.19	2.34	0.68	4.08	1.06	0.54	0.02	0.13
L3750N 4100E	0.0	2	,	<1	72	<5	<5	0.2	28	14	486	<2	45	108	140	<5	0.8	12	42	0.17	2.79	0.49	4.64	1.00	0.29	0.02	0.17
2073014 41000	0.2	-	/3		12	~5	``	0.2	26	12	474	<2	41	94	107	<5	0.6	11	50	0.17	2.38	0.64	3.78	0.89	0.26	0.02	0.12
L3750N 4200E	0.3	2	67	2	74	<5	<5	<0.1	24	10	374	<2	10	no.	ΛF.						[]	ļ	A CONTRACTOR	İ		į
L3750N 4300E	0.1	2		<1	66	<5	<5	<0.1	28	11	380	<2	45	96	95	<5	0.6	10	41	0.17	2.75	0.51	3.89	0.88	0.18	0.02	0.11
L3750N 4400E	0.1	1	56	≮1	49	<5	<5	<0.1	23	11	423	<2	44	94	117	<5	0.6	11	47	0.17	2.73	0.58	3.77	0.79	0.17	0.02	0.12
L3750N 4500E	0.3	2			64	<5	<5	0.1	22	9	366		36	77	113	<5	0.5	13	57	0.17	2.04	0.69	2.89	0.69	0.14	0.02	0.11
STD ICP	1.4	B		6	47	29	<5	0.3	11	10	373	<2	39	88	95	<5	0.5	10	46	0.15	2.57	0.55	3.76	0,67	0.12	0.02	0.15
0.0101	14	·	"	· · · •	7'	20	7.5	0.3		10	3/3	<2	61	80	111	<5	0.5	14	158	0.13	1.84	1.20	3.11	0.43	0.20	0.17	80.0
L4000N 3000E	0.2	2	50	4	61	12	<5	<0.1	31	13	310	<2	44	00	100		0.5						ſ]	
L4000N 3050E	0.7	2		6	127	<5	<5	0.2	24	10	327	<2	44	85	109	<5	0.5	11	40	0.13	2.19	0.56	3.51	0.59	0.08	0.02	0.11
L4000N 3100E	0.3	2	51	a	104	<5	<5	0.1	23	11	556	<2	45	98	133	<5	0.7	12!	29	0.12	2.58	0.38	4.54	0.62	0.08	0.01	0.31
L4000N 3150E	0.2	1	64	7	61	<5	<5	0.1	24	11	434	<2	41	101	120 93	<5	0.7	10	28	0.15	2.71	0.37	4.45	0.72	0.14	0.01	0.26
L4000N 3200E	0.2	2		5	70	<5	<5	0.1	26	11	465	<2	43	92	99	<5 i	0.5	13	54	0.18	2.04	0.67	3.25	0.87	0.28	0.02	0.13
	•	_	•	00000				-,,			400	~~	73		99	<5	0.6	13	52	0.18	2.27	0.64	3.58	0.89	0.22	0.02	0.11
L4000N 3250E	0.3	2	74	4	83	<5	<5	<0.1	29	13	523	<2	48	97	130	<5	ם ס	42		0.40	0.00					[
L4000N 3300E	0.2	1	67	3	64	7	<5	<0.1	25	11	447	<2	44	90	103	<5	0.7 0.5	13	51	0.18	2.66	0,60	3.94	0.94	0.20	0.02	0.12
L4000N 3400E	0.1	2		3	64	<5	<5	<0.1	26	11	452	<2	43	90	107	<5		1 1	50	0.18	2.13	0.65	3.51	0.86	0.24	0.02	0.12
BL4000E 2500N	0.1	2	1	2	57	<5	<5	<0.1	27	11	425	<2	41	88	114	<5	0.5 0.5	11	48	0.17	2.43	0.59	3.67	0.96	0.24	0.02	0.11
DUP 2500N	0.1	2	63	3	60	<5	<5	0.2	28	11	445	<2	43	93	120	<5	0.5	11	54 57	0.17	2.39	0.67	3.33	0,72	0.14	0.02	0.11
					- 1	•			F 751		110		73	30	120	~	0.5	11	3/	0.18	2.53	0,71	3.48	0.75	0.15	0.02	0.12
BL4000E 2550N	0.1	2	91	4	66	<5	<5	<0.1	33	15	598	<2	47	98	140	<5	0.6	44	50	0.40	0.07						
BL4000E 2600N	0.1	1	58	5	49	5	<5	<0.1	26	11	474	<2	40	87	100	<5	0.5	14	52 57	0.16	2.37	0.68	3.87	0.94	0.25	0.02	0.11
BL4000E 2650N	0.1	2	51	3	51	<5	< 5 i	<0.1	25	11	435	<2	39	87	87	<5	0.5	11	and the street of the	0.16	2.02	0.73	3.20	0.72	0.14	0.02	0.12
BL4000E 2700N	0.1	2	75	4	57	6	<5	0.1	25	14	593	<2	41	94	102	<5			51	0.16	2.05	0.64	3.20	0.74	0.14	0.02	0.11
BL4000E 2750N	0.3	2	, ,	4	71	<5	<5	0.1	31	12	473	₹2	45	88	120	<5	0.5	13	52	0.18	1.99	0.69	3.61	0.92	0.24	0.02	0.13
		_		1.000		-	_			- '-	1,0		7.	- 00	120	~	0.0	12	41	0.15	2.70	0.49	3.82	0.86	0.16	0.02	0.10
BL4000E 2800N	0.2	2	64	2	68	<5	<5	<0.1	29	13	413	<2	42	92	108	<5	0.6	42	47	0.10	2 52	0.55	0.00				
BL4000E 2850N	0,1	2	65	2	60	<5	<5	<0.1	28	12	488	<2	43	89	119	₹ 5	0.5	12	43	0.16	2.52	0.52	3.93	0.85	0.14	0.02	0.13
BL4000E 2900N	0.2	2	54	5	79	<5	<5	0.2	28	13	472	<2	41	91	107	<5	0.5	11	53	0.16	2.25	0.60	3.48	0.77	0.13	0.02	0.10
BL4000E 2950N	0.2	2	63	4	58	<5	< 5	0.1	26	11	362	₹2	40	88	104	<5			43	0.13	2.50	0.57	4.04	0.74	0.13	0.02	0.16
DUP 2950N	0.3	2	63	2	58	<5	< 5	0.1	26	11	358	<2	40	87	103	<5	0.6	11	47 47	0.15	2.60	0.57	3.50	0.72	0.12	0.02	0.11
		-			[-	- 1	•			333		70	~"]	,03	-0	0.0	11	4/	0.15	2.58	0.57	3,47	0.72	0.12	0.02	0.11
											. — — - 1			. ادمینی								!]

PLACER DOME REL RCH CENTRE

Geochemical Analysis

Project/Venture:

V279

Submitted by:

D SKETCHLEY

Sample Type: SOIL

Date Received:

JULY 23, 1996

Page

of

R DAY

Attn: D SKETCHLEY

Агеа:

MT MILLIGAN

Lab Project No.:

D6211

NTS:

Date Completed:

AUGUST 28, 1996

Remarks:

SEE LAB FILE A6220 FOR AU RESULTS

Au - 10.0 g sample digested with Aqua Regia and determined by Graphite Furnace A.A. (D.L. 1 PPB)

ICP - 0.5 g sample digested with 4 ml Aqua Regia at 100 Deg. C for 2 hours. N.B. The major oxide elements, Ba, Be, Cr, La and W are rarely dissolved completely with this acid dissolution method.

SAMPLE	Ag	Мо	Cu Pb	Zn	As	Sb	Cd	Ni	Со	Mn	Bi	Cr	V	Ba	w	Ве	La Sr	Ti	Al	Ca ·	Fe Mg	K	Na	Р
No	ppm	ppm	ppm ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm.	ppm	ppm	ppm	ррт ррт	%	%	%	% %	%	%	%
BL4000E 3000N	0.2	2	76 5	58	9	<5	0.1	31	15	455	<2	44	95	103	<5	0.6	11 5	0.17	2.48	0.57	3.73 0.8	0.17	0.02	0.09
BL4000E 3050N	0.1	2	73	58	<5	<5	0.1	30	15	522	<2	43	92	119	<5	0.6	10 5	0.15	2.44	0.62	3.70 0.79	0.18	0.02	0.11
BL4000E 3100N	0.2	. 2	56 3	53	6	<5	<0.1	23	10	343	<2	35	83	89	<5	0.5	9 4	0.15	2.24	0.57	3.55 0.73	0.13	0.02	0.11
BL4000E 3150N	0.2	2	51 5	53	<5	<5	0.1	21	11	370	<2	34	82	71	<5	0.6	11 4	0.15	2.05	0,53	3.31 0.6	0.12	0.02	0.11
BL4000E 3200N	0.2	3	82 3	75	<5	<5	<0.1	29	13	435	<2	42	94	125	<5	0.6	10 4	0.15	2.76	0.56	4.18 0.8	0.19	0.02	0.13
			handryner fan on mage	ļ.													30,000				Control of Control Control of Control Control of Control Control of Control			
BL4000E 3250N	0.1	2	67 4	58	· <5	<5	<0.1	25	12	499	<2	37	84	115	<5	0.5	12 5	0.16	1.94	0.75	3.33 0.83	0.17	0.02	0.11
BL4000E 3300N	0.2	2	51 5	66	<5	<5	0.1	. 25	12	533	<2	39	87	101	<5	0.5	11 4	0.13	2.02	0.65	3.49 0.73	0.15	0.02	0.10
BL4000E 3350N	0.2	2	78 4	77	<5	<5	<0.1	28	13	535	<2	44	97	104	<5	0.6	10 4	0.15	2.55	0.62	4.00 1.0	0.19	0.02	0.10
BL4000E 3400N	0.2	2	83 6	88	<5	<5	<0.1	28	15	669	<2	44	97	134	<5	0.7	12 5	0.17	2.58	0.72	4.10 0.94	0.19	0.02	0.08
STD ICP	1.5	8	48 6	49	29	<5	0.3	11	11	388	<2	61	81	99	<5	0.5	13 15	0.13	1.83	1.23	3.25 0.41	0.21	0.16	0.08
			2000000		- 1		1	69056	1								1946 14 664 1944 14 14 14 14 14 14 14 14 14 14 14 14 1				754.5504			
BL4000E 3450N	0.2	2	60 2	63	6	<5	0.1	27	11	397	<2	41	94	96	<5	0.6	14 5	0.17	2.13	0.72	3.55 0.70	0.18	0.02	0.12
BL4000E 3500N	0.2	2	62 3	61	<5	<5	<0.1	29	12	386	<2	43	96	91	<5	0.6	12 4	0.17	2.37	0.62	3.80 0.70		0.02	0.14
BL4000E 3550N	0.2	2	99 2	77	<5	<5	<0.1	31	16	543	<2	47	122	109	<5	0.7	11 4	0.21	2.64	0.57	4.51 1.1	1	0.02	0.11
BL4000E 3600N	0.3	3	129 3	88	7	<5	<0.1	40	21	698	<2	53	123	122	<5	0.7	12 3	0.20	3.18	0.54	5.30 1.1	.4	0.02	0.11
BL4000E 3650N	0.3	3	97 2	77	<5	<5	<0.1	26	14	510	<2	43	114	88	<5	0.7	11 004	1	1	0.64	4.45 1.0		0.02	0.19
İ								100 A00 000 100 000 000 100 000 000		ļ					1		1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						5.52	J. 10
BL4000E 3700N	0.3	2	95 3	91	<5	<5	0.2	29	15	645	<2	49	115	95	<5	0.7	11 4	0.18	2.74	0.56	4.54 1.13	0.42	0.02	0.15
BL4000E 3750N	0.3	2	77 3	84	<5	<5	0.1	28	13	481	<2	46	102	99	<5	0.6	11 4	0 18	2.60	0.56	4.15 1.00		0.02	0.14
BL4000E 3800N	0.7	5	286 2	98	<5	<5	<0.1	49	22	710	<2	63	114	291	<5	1.6	38 6		1	0.74	4.96 1.1	- 1	0.02	0.11
BL4000E 3850N	0.3	3	99	75	<5	<5	0.1	26	14	458	<2	47	115	91	<5	0.7	11 3	0.16	2.98	0.53	4.61 0.8		0.02	0.15
DUP 3850N	0.3	. 3	93	74	5	<5	<0.1	26	13	448	<2	46	1 (5	85	<\$	0.7	11 3	1	1	0.52	4.62 0,8	0.26	0.02	0.15
				1										ļ		i			3.00			3.20		J. 10
BL4000E 3900N	1.0	4	349 4	110	<5	<5	0.2	41	26	1054	<2	54	135	172	<5	1.2	17 4	0.17	3.29	0.77	5.13 1.10	0.36	0.02	0.09
BL4000E 3950N	0.3	2	100 2	80	6	<5	<0.1	31	17	453	<2	46	105	80	<5	0.6	9 3		1		1.000000	-4		
(BE4000E 3820N	0.3	2	100 2	80	- 6	<5	<0.1	[firmp: 33]]	17	453	<2	46	105	80	<5	0.6	9 3	0.18	2.27	0.54	4.07 1.00	0.39	0.02	0.14

PLACER DOME RES. RCH CENTRE Geochemical Analysis

Project/Venture:

V279

Submitted by: Lab Project No.: D SKETCHLEY D6213

Sample Type: ROCK NTS:

Date Received: Date Completed: JULY 23, 1996 AUGUST 28, 1996 Page

of Attn: D SKETCHLEY

R DAY

Area: MT MILLIGAN Remarks: SEE LAB FILE A6219 FOR AU RESULTS

ICP - 0.5 g sample digested with 4 ml Aqua Regia at 100 Deg. C for 2 hours.

SAM	IPLE	 Ag	Мο	Cu	Pb	Zn	As	Sb	Cd	Nj	Со	Mn	Bi	Cr	V	Ва	W	Be	La Sr	Ti	Al	Ca	Fe	Mg	К	Na	P
N	O.	ppm :	ррт	ppm	ppm	ppm_	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	opm	ppm	ppm	ppm	ppm ppm	%	%	%	%	%	%	%	%
RR-96	01	0.3	3	171	•	77	9	<5	0.3	26	27	509	<2	59	101	43	<5	0.8	13 40	0.16	2.16	1,98	5.15	1.67	0.65	0.06	0.18
RR-96	02	0.2	3	323	3	43	8	<5	<0.1	37	20	487	<2	62	120	35	<5	0.7	10 3	0.18	2.20	2.17	4.84	1:28	0.14	0.05	0.18
RR-96	03	0.2	3	125	3	59	14	<5	<0.1	25	12	595	<2	61	5B	147	<5	0.4	8 13	0.18	1.74	2.10	3.10	0.76	0.69	0.05	0.18
RR-96	04	0.1	2	6	1	39	<5	<5	<0.1	18	18	461	<2	65	167	188	<5 ⋅	0.5	11 137	0.22	2.50	1.23	5.95	1.09	1.04	0.31	0.11
RR-96	05	0.1	3	31	: <1	67	<5	<5	<0.1	48	21	332	<2	118	196	76	<5	0.7	14 64	0.19	1.75	1.88	5.72	0,81	0.40	0.09	0.21
RR-96	06	0.2	3	78	6	90	<5	<5	0.1	14	16	975	<2	42	134	89	<5	0.6	10 90	0.20	2.15	2.88	4.40	1.11	0.62	0.19	0.15
RR-96	07	0.3	4	153	4	63	21	<5	0.2	28	20	762	<2	59	113	56	<5	0.5	8 27	0.17	1.58	1.70	4.10	1.54	0.08	0.07	0.15
RR-96	08	0.2	2	516	ં<1	58	5	<5	<0.1	29	20	474	<2	67	217	315	<5	0.5	13 74	0.31	1.81	1.65	4.83	1.44	0.71	0.09	0.18
RR-96	09	0.2	5	153	6	41	<5	<5	<0.1	21	18	293	<2	59	69	64	<5	0.4	10 124	0.24	1.27	1.21	2.80	0.68	0.37	0.05	0.17
DUP	09	0.1	5	153	6	41	6	<5	0.2	25	19	293	<2	59	66	60	<5	0.4	11 118	0.23	1.25	1.17	2.79	0.67	0.37	0.05	0.17
RR-96	10	0.1	3	124	-\$1	32	<5	<5	<0.1	12	10	325	<2	60	82	75	<5	0.8	9 90	0.18	1.08	1.30	2.43	0.53	0.48	0.07	0.18
RR-96	11	0.2	5	183		29	<5	<5	<0.1	134	29	145	<2	118	63	43	<5	0.4	9 7.	0.13	1.12	1.33	4.36	0.22	0.12	0.14	0.16
RR-96	12	0.2	5	242		30	<5	<5	<0.1	25	19	306	<2	46	119	74	<5	0.5	10 5	0.22	2.16	2.03	3.78	0.81	0.16	0.11	0.14
RR-96	13	0.2	3	154	- 1	68	<5	<5	<0.1	19	13	920	<2	73	119	97	<5	0.5	7 144	0.20	1.91	3.44	3.62	1311	1.22	0.04	0.17
RR-96	14	0.1	1	18	*1	61	<5	<5	<0.1	19	19	747	<2	37	89	409	<5	0.4	3 84		2.73	0.96	3.99	1:84	1.74	0.05	0.13
RR-96	15	0.1	3	110	×1.	31	<5	<5	<0.1	17	9	405	<2	58	58	95	<5	0.3	9 99	0.18	1.24	1.13	2.15	0.52	0.23	0.05	0.17
RR-96	16	0.2	3	220	2	37	<5	<5	<0.1	20	16	324	<2	82	78	62	<5	0.5	7 11	0.24	0.99	1.43	2.93	0.50	0.40	0.04	0.16
RR-96	17	0.1	1	84	<1	54	<5	<5	<0.1	51	22	626	<2	68	70	41	<5	0.2	2 3;	0.28	2.20	1.14	4.14	1.84	0.04	0.05	0.06
RR-96	18	0.2	3	100	<1	19	<5	<5	<0.1	15	19	144	<2	. 35	37	88	<5	0.3	6 7	0.25	0.91	1.00	2.83	0.29	0.30	0.04	0.13
DUP	18	0.1	3	95	<1	17	<5	< 5	<0.1	13	18	126	<2	33	34	83	<5	0.2	6 6	0.23	0.81	0.93	2.69	0.25	0.29	0.04	0,13
STD ICP		 1.5	8	47	e	51	30	<5	0.3	16	15	395	<2	66	89	101	< 5	0.9	22 164	0.13	1.85	1.27	3.16	0,43	0.21	0.18	0.08

PLACER DOME INC

Project Development Division (Research Centre)

ASSAY DATA LISTING: V279 MT MILLIGAN

1996:07:31

PDI lab data file: A6219

AREA:

MT MILLIGAN

MAPSHEET NO:

VENTURE:

V279

GEOLOGIST:

D SKETCHLEY

LAB PROJECT NO: 6219

PLEASE DISTRIBUTE RESULTS TO: DS RD LAB

REMARKS:

"See lab file D6213 for ICP results"

"Results to: Robin Day; 13416 - 103 Ave; Edmonton, Alta; T5N 0S4"

STANDARD ANALYSIS METHODS USED BY PDI ASSAY LAB ARE LISTED BELOW: ALL RESULTS EXPRESSED AS INDICATED IN UNITS COLUMN BELOW ANY EXCEPTIONS FOR THIS PROJECT ARE NOTED ABOVE

UNITS WT.G EXTRACTION AU

DET.LMT. METHOD

0.01

A.A.

G/T 25 FIRE ASSAY

GRID	DESCRIPTION	P	ROJECT	Au g/t
	RR-96 RR-96 RR-96 RR-96 RR-96 RR-96 RR-96 DUP	01 02 03 04 05 06 07	6219 6219 6219 6219 6219 6219 6219 6219	0.02 0.02 0.01 0.01 0.01 0.02 0.01
	RR-96 RR-96 RR-96 RR-96 RR-96 RR-96	08 09 10 11 12	6219 6219 6219 6219 6219 6219	0.06 0.01 -0.01 0.01 0.01
	RR-96 STD MA-2B RR-96 RR-96 RR-96 BLANK RR-96	14 15 16 17	6219 6219 6219 6219 6219 6219 6219	-0.01 2.26 -0.01 0.01 -0.01 -0.01 0.02

L.D OF LISTING - 21 RECORDS PRINTED Run on: 96:07:31 at 14:47:21

PLACER DOME INC: ASSAY DATA SYSTEM

Following elements needed some values adjusted:

ELEMENT NSS LOW HI % BLNK NVAL AU 0 5 0 0 18

SUMMARY OF ASSAY DATA: V279 MT MILLIGAN

ITEM	# VALUES	MISSING	MINIMUM	MUMIXAM	AVERAGE	STD. DEV.
GRID	0	18				
SAMP	18	0	RR-96	RR-96		
PROJ	18	0	6219	6219		
AU	18	0	0.00	0.06	0.01	0.01

End of Scan: 96:07:31 14:47:21 18 RECORDS PROCESSED

PLACER DOME INC

Project Development Division (Research Centre)

ASSAY DATA LISTING: V279 MT MILLIGAN

1996:07:31

PDI lab data file:

A6220

AREA:

MT MILLIGAN

MAPSHEET NO:

VENTURE:

V279

GEOLOGIST:

D SKETCHLEY

LAB PROJECT NO:

6220

PLEASE DISTRIBUTE RESULTS TO: DS RD LAB

REMARKS:

"See lab file D6211 for ICP results"

"Results to: Robin Day; 13406 - 103 Ave; Edmonton, Alta; T5N 0S4"

STANDARD ANALYSIS METHODS USED BY PDI ASSAY LAB ARE LISTED BELOW: ALL RESULTS EXPRESSED AS INDICATED IN UNITS COLUMN BELOW ANY EXCEPTIONS FOR THIS PROJECT ARE NOTED ABOVE

UNITS WT.G EXTRACTION ΑU G/T 25 FIRE ASSAY DET.LMT. METHOD

0.01 A.A.

GRID	DESCRIF	TION	PROJECT	Au g/t
	L2500N L2500N BLANK	3000E 31 00 E		0.01 0.01 -0.01
	L2500N	3200E		0.01
	L2500N	3300E		-0.01
	L2500N	3300EA	6220	0.03
	L2500N	3400E	6220	-0.01
	L2500 N	3500E		0.01
	L2500N	3600E		0.03
	L2500N	3700E		0.02
	L2500N	3800E		-0.01
	L2500N L2500 N	3900E 4100E		0.02
	L2500N	4100E 4200E		0.01 0.02
	DUP	4200E		0.01
	L2500N	4400E		0.01
	L2500N	4500E		0.01
	L2750N	3000E		0.01
	STD IH2		6220	1.70
	L2750N	3100E		0.02
	L2750N	3200E		0.01
	L2750N	3300E		0.02
	L2750N	3400E	6220	0.02
	L2750N	3500E		0.02
	L2750N L2750N	3600E 3700E		-0.01 0.01
	L2750N	3800E	6220	0.01
	L2750N	3900E	6220	0.01
	L2750N	4100E	6220	0.01
	L2750N	4200E	6220	0.01
	L2750N	4300E	6220	0.01
	L2750N	4400E	6220	0.01
	L2750 N	4500E	6220	0.01
	T3000M	3000E	6220	-0.01
	L3000N	3100E	6220	0.01
	L3000N	3200E		0.01
	L3000N	3300E	6220	0.01
	L3000N	3400E 3500E	6220 6220	0.02 0.01
	L3000N	3600E	6220	0.01
	L3000N	3700E	6220	0.01
	BLANK		6220	-0.01
	L3000N	3800E	6220	0.01
	DUP	3800E	6220	0.01
	STD NP3		6220	0.59
	L3000N	3900E	6220	0.01
	L3000N	4100E	6220	0.01
	L3000N	4200E	6220	0.01
	T3000N	4300E 4400E	6220 6220	0.03 0.01
	L3000N L3000N	4400E 4500E	6220	-0.01
	L3250N	3000E	6220	-0.01
	L3250N	3100E	6220	0.03
	BLANK		6220	-0.01
	L3250N	3200E	6220	0.03
	L3250N	33 00E	6220	-0.01
	L3250N	3400 E	6220	0.06

GRID	DESCRIPT	ION	PROJECT	Au g/t
GRID	L3250N L3250N L3250N STD IH2 L3250N L3250N L3250N L3250N L3250N L3250N L3250N L3250N L3500N L3750N	3500E 3600E 3700E 3800E 3800E 41000E 4200E 44000E 44000E 31000E	6220 6220 6220 6220 6220 6220 6220 6220	g/t 0.01 0.01 0.01 1.72 0.01 -0.01 0.02 0.04 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01
	L4000N L4000N L4000N STD L4000N L4000N L4000N	3050E 3100E 3150E 3200E 3250E 3300E	6220 6220 6220 6220 6220 6220 6220	-0.01 -0.01 0.01 2.52 -0.01 0.02 0.01
	BLANK L4000N BL4000E	3400E 3400E 2500N	6220 6220	-0.01 -0.01 -0.01

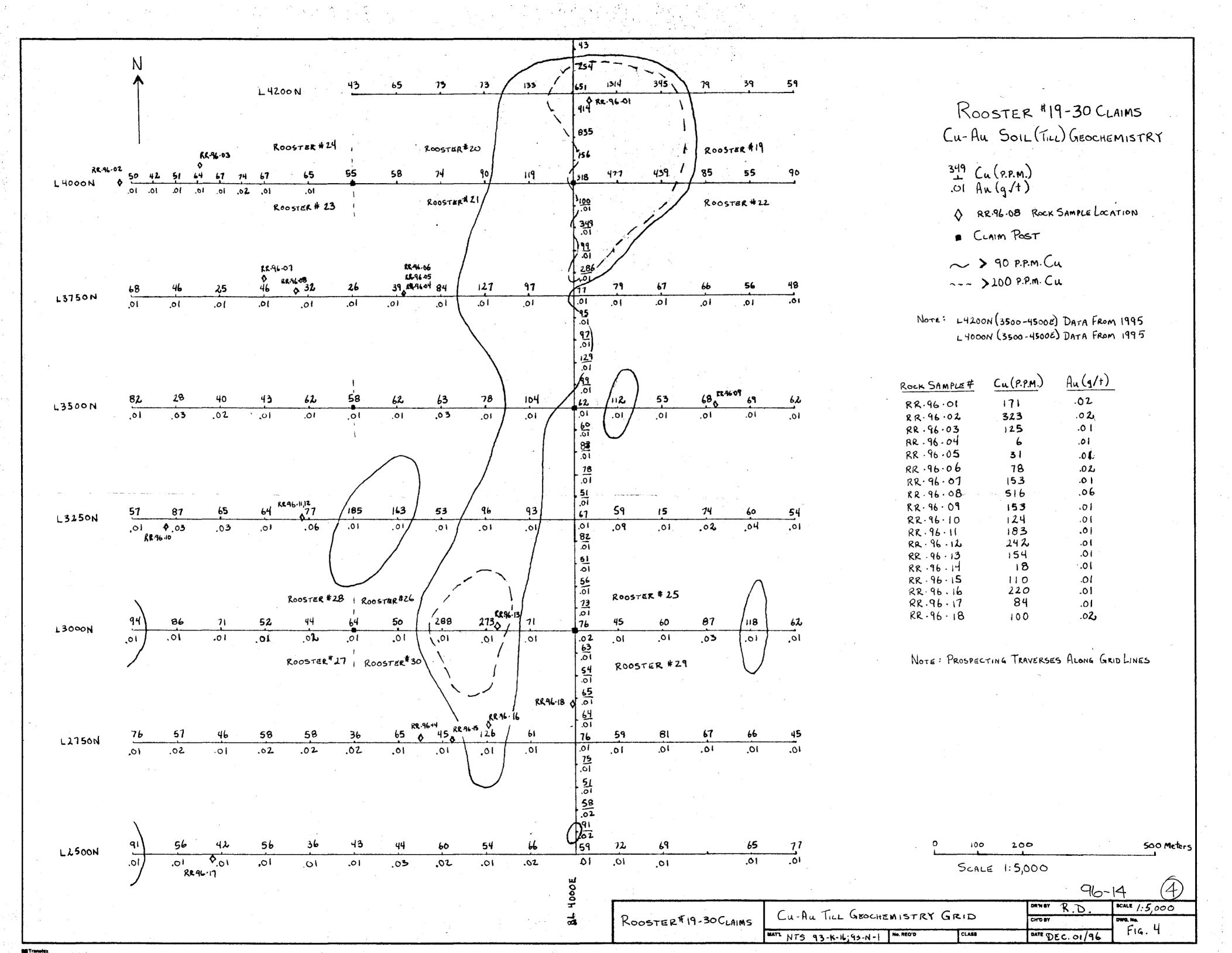
GRID	DESCRIPTI	ON	PROJECT	Au g/t
	BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E BLANK	2550N 2600N 2650N 2700N 2750N 2800N	6220 6220 6220 6220 6220 6220 6220	0.02 0.02 0.01 0.01 0.01 -0.01
	BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E	2900N 2950N 3000N 3050N 3150N 3200N 3200N	6220 6220 6220 6220 6220 6220 6220	-0.01 -0.01 0.02 -0.01 -0.01 0.01 0.01 0.01
	BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E BL4000E	3250N 3300N 3350N 3400N 3450N 3500N 3550N	6220 6220 6220 6220 6220 6220 6220	0.01 0.01 -0.01 0.01 0.01 0.01
	BL4000E BL4000E BL4000E BL4000E STD IH2 BL4000E BL4000E BL4000E	3650N 3700N 3750N 3800N 3850N 3900N 3950N		0.01 0.01 0.01 0.01 1.70 0.01 -0.01

END OF LISTING - 146 RECORDS PRINTED Run on: 96:07:31 at 15:39:09

PLACER DOME INC: ASSAY DATA SYSTEM

Following elements needed some values adjusted:

_LEMENT	NSS	LOM	HI	8	BLNK	NVAL
AU	0	35	0	0	0	128


SUMMARY OF ASSAY DATA: V279 MT MILLIGAN

ITEM	# VALUES	MISSING	MUMINIM	MUMIXAM	AVERAGE	STD. DEV.
GRID	0	128				
SAMP	128	0	BL4000E	L4000N		
PROJ	128	0	6220	6220		
AU	128	0	0.00	0.09	0.01	0.01

End of Scan: 96:07:31 15:39:09 128 RECORDS PROCESSED

APPENDIX B

RR-96-01	py, po in hornfelsed volcanic?, sub-angular, 20 cm cobble in blow down at 4190N 4030E
RR-96-02	20 cm sub-angular boulder, hornfelsed volcanic?, ~5% py, po with trace cpy, mag at 4000N 2980E
RR-96-03	crowded feldspar porphyry, trachitic texture, sub-angular, 30 cm boulder, strong biotite alt, minor py at 4010N 3150E
RR-96-04	Biotite alt. F.P., dissem mag, angular boulder, ast 3750N 3610E
RR-96-05	Angular boulder, lornfelsed volcanic?, minor py, dissem mag at 3750N 3610E
RR-96-06	Angular boulder, hornfelsed volc?, 3-5% py at 3750N 3610E
RR-96-07	Sub-angular boulder, weak ser. & carb. alt., 10%py, 3750N 3300E
RR-96-08	Sub-angular boulder, biotite alt. Diorite, dissem. Py, minor clusters of cpy, mag on hairline fractures at 3750N 3380E
RR-96-09	Sub-angular boulder, porphyritic andesite?, .5-1%py, chlorite-biotite alt., 3500N 4325E
RR-96-10	Angular boulder, hornblende feldspar porphyry, weak biotite alt., .5-1%py at 3240N 3090E
RR-96-11	sub-angular bouler, hornfelsed volc?, 3-5% dissem. Py, po, mag at 3250N 3395E
RR-96-12	sub-angular boulder, normfelsed voic?, 3-5%dissem py, po, mag, trace cpy at 3250N 3395E
RR-96-13	Sub-crop, biotite-carb alt, megacrystic feldspar porphyry at 3000N 3800E
RR-96-14	Biotite alt volc?, at 2750N 3650E
RR-96-15	boulder, silicified H.F.P., minor py at 2750N 3725E
RR-96-16	boulder, biotite-carb alt megacrystic H.F.P., 1% py, po at 2750N 3800E
RR-96-17	40 cm sub-angular boulder, silicified, chloritized breccia (Inzana Fm.), 3190E 2490N
RR-96-18	angular, 30 cm boulder, chlorite alt volc?, 2-3% py, po at BL4000E 2845N

