# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1996/1997REPORT #:PAP 96-15NAME:ANDREW MOLNAR

# ASSESSMENT REPORT

# **ON THE**

# **GREENSTONE PROPERTY**

# **STUMP LAKE AREA**

# NICOLA MINING DIVISION, B.C.



PROPERTY

PREPARED BY

DATED

WORK PERMIT NO.

- To the immediate south and east of Stump Lake
  50° 20' N Latitude
- : 120° 22' W Longitude
- : N.T.S. 92I/8W
- : Andrew Molnar RIO MINERALS LIMITED Vancouver, B.C.
- : January, 1997
- : Kam 96 1500534-182

**Assessment Report** 

On the

**Greenstone Claims** 

**Nicola Mining Division** 

Latitude 50 20' North Longitude 120 22' West

NTS: 92I/8W

Prepared by: Andrew W. Molnar Rio Minerals Limited

.

Date of Report: January, 1997 Work Permit No: Kam 96 1500534-182

# Table of Contents:

| Location and Access      | 1     |
|--------------------------|-------|
| Topography and Climate   | 1     |
| Claim Information        | 1     |
| History                  | 2,3   |
| Production Records       | 2     |
| Regional Geology         | 3,4   |
| Property Geology         | 4,5   |
| Discussion               | 5,6   |
| Summary                  | 6     |
| References               | 7     |
| Statement of Costs       | 8     |
| Qualifications           | 9-11  |
| Rock Sample Descriptions | 12-17 |
| Assay Reports            | 18-38 |

# Table of Illustrations

-

| Figure 1 | Compilation Map (1:50,000)               |
|----------|------------------------------------------|
| Figure 2 | Property Location Map (1:50,000)         |
| Figure 3 | Claim Map (1:50,000)                     |
| Figure 4 | Regional Geology (1:200,000)             |
| Figure 5 | Geophysical Map (in pocket)              |
| Figure 6 | Grid and Sample Location Map (in pocket) |

.

÷.

1

-

-

\_

-

.

5

.

**P** 1

۰.

#### Location, Access, and Topography:

The Greenstone claim group is located equidistant between Kamloops and Merritt on the East side of Highway 5a. Secondary range roads provide access to most of the property with Peter Hope Lake road running through the center. The property occurs on the southern portion of the interior plateau of British Columbia and covers an area extending 5.0 km. south and 3.0km east from the southeast shores of Stump Lake. Elevations vary from 720 to 900 meters. Vegetation is grassland with pine groves and thickets of fir at higher elevations.

The Greenstone Group consists of three modified grid and five two-post claims for a total of 55 contiguous units.

Claim Information:

| <u>Claim</u> | Units | Record Date    | Expiry Date    |
|--------------|-------|----------------|----------------|
|              |       |                |                |
| Greenstone   | 20    | April 12, 1995 | April 12, 1997 |
| Greenstone 2 | 12    | April 14, 1996 | April 14, 1997 |
| Greenstone 3 | 18    | April 14, 1996 | April 14, 1997 |
| Stumpy 7     | 01    | June 1 2, 1995 | June 12, 1997  |
| Stumpy 9     | 01    | June 12, 1995  | June 12, 1997  |
| G - 10       | 01    | Sept 30, 1996  | Sept 30, 1997  |
| G - 12       | 01    | Sept 30, 1996  | Sept 30, 1997  |
| G - 20       | 01    | Oct 02, 1996   | Oct 02, 1997   |











British Columbia Geological Survey Branch

122

1.11

| LITHOLOGIC UNITS                                                                                                                                                            |                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUATERNARY                                                                                                                                                                  | LATE TRIASSIC                                                                                                                                                                                                                            |
| Glacial, fluvioglacial, fluvial and lacustrine deposits; colluvium,                                                                                                         | NICOLA GROUP                                                                                                                                                                                                                             |
| PR Olivine basatt, typically vesicular ("Valley basalt")                                                                                                                    | IN Mafic and intermediate volcanic and volcaniclastic rocks,<br>undivided; m:upper greenschist-tow amphibolite facies meta-<br>volcanic rocks, mainty in Nicola horst: hornblende and biolite-                                           |
| TERTIARY                                                                                                                                                                    | hornblende schist, amphibolite                                                                                                                                                                                                           |
| T, Small intrusions of mainly intermediate composition                                                                                                                      | TN-<br>Western volcanic facies: mafic to felsic, plagioclase-phyric<br>flows, pyroclastic and epiclastic brecclas, fuff, wacke,<br>minor timestone and limestone conglomerate                                                            |
|                                                                                                                                                                             | f: predominantly felsic flows, luff, welded luff                                                                                                                                                                                         |
|                                                                                                                                                                             | TNc Central valcanic facies: matic and intermediate plagioclase-                                                                                                                                                                         |
| ECCENE                                                                                                                                                                      | augite-phyric flows, locally pillowed, and breccia;                                                                                                                                                                                      |
| KANLOOPS CROUP                                                                                                                                                              | Subordinate juit, limestane, wacke and suitstone                                                                                                                                                                                         |
| Ex Mainly basalt and andesite; local rhyolite, breccia, luft and sandslone                                                                                                  | TN= Eastern volcanic facies: malic hornblende- and augite-phyric,<br>predominantly epiclastic breccia, turbidite wacke, local<br>siltstone                                                                                               |
| Intermediate, locally matic or felsic flows, characterized by                                                                                                               | $TN_{1}$ Sedimentary facies; volcanic sandstone, sillstone, argillite,                                                                                                                                                                   |
| p acicular hornblende phenocrysts                                                                                                                                           | tuff: local polymict conglomerate                                                                                                                                                                                                        |
| Sandstone, conglamerate, argillite, coal ("Coldwater beds")                                                                                                                 | PALEOZOIC(?) or MESOZOIC                                                                                                                                                                                                                 |
|                                                                                                                                                                             | PMm Quartzite metacongiomerate, black staurolite-andalusite-                                                                                                                                                                             |
| Granodiorite, Ionalile and granite with K-feldspar megacrysts,                                                                                                              | micq schist                                                                                                                                                                                                                              |
| of ROCKY GULCH batholith and possibly REY LAKE pluton                                                                                                                       | SYMBOLS                                                                                                                                                                                                                                  |
| MID AND LATE CRETACEOUS                                                                                                                                                     | Lithologic contact (broken where speculative)                                                                                                                                                                                            |
| SPENCES BRIDGE GROUP                                                                                                                                                        | Boundary of unconsolidated deposits                                                                                                                                                                                                      |
| 58 rocks; sandstane, shale, congiamerate                                                                                                                                    |                                                                                                                                                                                                                                          |
| SPUIS CREEK FORMATION (SPENCES BRIDGE GROUP)                                                                                                                                |                                                                                                                                                                                                                                          |
|                                                                                                                                                                             | Base and/or precious metal occurrence (Table 1)                                                                                                                                                                                          |
| 35                                                                                                                                                                          | LITHOPROBE transect route                                                                                                                                                                                                                |
| EARLY AND MIDDLE JURASSIC                                                                                                                                                   | + Uranium-lead zircon date locality *                                                                                                                                                                                                    |
|                                                                                                                                                                             | the Patractice cannot excite activity data locality                                                                                                                                                                                      |
| Polymiclic conglomerate, pyritic sandstane and siltstane,<br>mudstone, bioclastic calcarenite                                                                               |                                                                                                                                                                                                                                          |
|                                                                                                                                                                             | (F) Fossil locality*                                                                                                                                                                                                                     |
| LATE TRIASSIC and/or OLDER                                                                                                                                                  | <ul> <li>Supplementary to Nonger and McWillan (1984)</li> </ul>                                                                                                                                                                          |
| J <sub>gd</sub> Hornblende-biotite and biolite granodiorite and quartz                                                                                                      | SOURCES OF DATA                                                                                                                                                                                                                          |
| diorite (qd) of GUICHON CREEK, WILD HONSE and PENNASK<br>batholiths, JESSE CREEK and DOUGLAS LAKE stacks<br>and unnamed badies                                              | Wonger, J.W.H. and McKillan, W.J., 1934: Bedrack gealogy of Ashcroft map crea<br>(921), scale 1:125,000. Geological Survey of Canada, Open File 980.<br>Wonger, J.W.H. and McKillon, W.J., 1989: Geology, Ashcroft, British Columbia.    |
| J <sub>gam</sub> Netamorphosed hornblende-bicitie and biolite quartz diorite,<br>granodiarile and granite (g1) of Nicola horst;<br>6. Granomere wrights 1. Le lunge wrights | Geological Survey of Canada, Wap 42-1989, sheet 1, scale 1/290,000.<br>Geological mapping by J.N. Noore (1988) and J.N. Noore and A.R. Pettipas (1989)<br>Base map: Nerritl, B.C., Map 92//SE, scale 1:100,000. Ministry of Environment. |
| J <sub>Inm</sub> Netamorphosed, highly strained biotile leucotonalite and Jonalite porphyry of Nicola horst                                                                 | Brilish Columbia, 1980                                                                                                                                                                                                                   |
| Augite, hornblende diorite, quartz diorite; includes subvolcanic<br>intrusions into NICOLA GROUP, m:biolite-hornblende meta-<br>diorite of Nicola horst                     |                                                                                                                                                                                                                                          |
| Netaperidolite (Nicola horst)                                                                                                                                               |                                                                                                                                                                                                                                          |
| Jy Intermediate and matic, maroon plagioclase- and augite-<br>plagioclase-phyric sills and/or flaws and volcaniclastic                                                      |                                                                                                                                                                                                                                          |

....

.

1

#### History:

:

The property has seen intermittent production and exploration from 1882 to the present. The Nicola Mining and Milling Company performed the first major development on the property beggining in 1890 with the sinking of the Joshua, Tubal Cain, and King William Shafts. During the same time period, the Star Company sank the Star (Enterprise) and Planet shafts. Little work was done until Donahue Mines Company Limited began to develop the Joshua and Tubal Cain veins in 1916, at which time a mill was constructed. Work was suspended in 1920.

In 1925, Planet Mines and Reduction Company began work on the Enterprise vein. The shaft was deepened to 320 feet and the crosscut adit was excavated. A mill was constructed and operated from 1929 to 1931. Nicola Mines and Metals Company acquired the property in 1931 and continued development work and began production on the Enterprise, Joshua, and Tubal Cain veins. Nicola Goldfields Limited acquired the property in 1937, rebuilt the mill and continued development. Operations were suspended in 1942. Between 1935 and 1936 the Kootenay Nevada Company acquired and separately developed the Jenny Long vein.

Various companies have performed work on the property since 1942, including surface work by Stump Lake Mines Limited and Copper Hill Mining and Exploration. In 1974, the property was geologically mapped at a scale of 1:400" by Juniper Mines Limited, and a 100 meter diamond drill hole intersected the Jenny Long vein. Work was halted in 1975 and the drill information is not available.

Production figures from 1916 to 1944 as compiled by the British Columbia Department of Mines are as follows:

77,605 tons of ore yielding:

| 8,494 oz. Au<br>2,205,444 lbs. Pb | 252,939 oz. Ag<br>367,869 lbs. Zn. | 40,822 lbs. Cu |
|-----------------------------------|------------------------------------|----------------|
| Recovery grades:                  |                                    |                |
| 0.109 oz/t. Au<br>1 42% Ph        | 3.26 oz/t. Ag<br>0.24% Zn          | 0.026% Cu      |

Production was exclusively from the Enterprise, King William, Tubal Cain and Joshua Veins. A 35 - ton mill was constructed on the Jenny Long property in the mid - 1930's. No production records are available.

From 1975 to 1983 various companies have controlled the property. In 1984 Celebrity Energy Corp conducted a program of geological mapping, soil sampling, ground electromagnetic, and ground magnetic geophysics. This program covered about 40% of the present property and outlined numerous geophysical and geochemical exploration targets. Many of these targets are open ended and remain untested. (See accompanying compilation map). Follow-up work of the surface program comprised limited bulldozer trenching and diamond drilling. Highlights are: 80cm. of 0.298 oz/t Au in DDH 84-10 near a surface grab sample grading 0.1 oz/t Au, 5.5 oz/t Ag, and 2.3% Pb.; 1m of 0.29oz/t Ag, in DDH 84-05, which underlies a trench reporting up to 2.8 oz/t Ag, 1.02% Cu, and 0.8% Zn.

#### Regional Geology: modified after Cockfield, 1947:

The regional geology of the district has been mapped by W.E. Cockfield of the Geological Survey of Canada on a scale of 1:250,000 and published as GSC Memoir 249 (1947).

In the Stump Lake area the geological framework is basically composed of an underlay of Nicola Volcanic rocks of Upper Triassic age. The Nicola Group is composed of a succession of volcanic flows and pyroclastics with minor sedimentary sections Nicola Volcanics are dominantly of intermediate composition but variations from basalts to rhyolites do occur.

Regionally, the Nicola Group is underlain by the Cache Creek group of Carboniferous to Permian age. The Cache Creek is a sedimentary Group in which argillite predominates. Minor volcanics are interbedded in certain areas and substantial sections of limestone occur in areas to the north. In the Stump Lake area, Cache Creek rocks crop out extensively to the east of the claims and as occasional widows to the south. Extensive intrusive bodies cut the older rocks. These bodies are of batholithic size and are assigned to the Coast Intrusives of Jurassic or later age. Granodiorites and related phases predominate. Structurally, the Stump Lake area lies in a synchial package of Nicola rocks compressed between Cache Creek sediments and the Pennask Batholith on the east and the Nicola Batholith on the west. Miocine flows of the Kamloops Group overlie the older units. Examples of these largely basaltic volcanics are found just to the north of Stump Lake.

#### Local Geology:

Mapping on scale of 1 inch to 200 feet was carried out over the property except for the northern sections by Agilis Engineering for Juniper Mines in 1974. This work shows the area to be almost exclusively underlain by "greenstone" of the Nicola Group. The work delineated some of the main mineralized structures and projected their traces through covered areas.

Controls for vein quartz and mineralization are not at all clear from the data at hand. It would seem from the distribution of stoped area in the northern workings that the structures tended to make ore on the north-northwesterly rather than northerly trending vein segments. Examples of this include the southern Enterprise-King William section where the north-northwesterly trending King William vein was stoped while the northerly trending (western) splay is a largely barren shear while the north-northwesterly trending barnen to the east makes some ore. This ore distribution suggests that the main regional shear structure may have a northerly trend and a sinistral movement causing areas of low pressure and vein formation on related tensional structures.

The hostrock sequence originally interpreted by Cockfield and others has recently been re-interpreted by Moore (1989). The wallrocks and veins are transected in places by hornblende-porphyritic dikes of intermediate to mafic composition (Hedley, 1936). Brittle faulting has broken the succession into a number of rotated blocks. Movement on the faults is variable; historical descriptions of underground workings indicate that most vein off-sets were rarely more than a few meters.

The large ore zone in the northern part of the Enterprise workings would also fit this structural picture. Here the ore is localized on an arcuate section of vein which would tend to open with north-south strike slip movement to form a wider mineralized section.

Attitudes of tuff horizons and sedimentary bedding suggest that a north plunging axis of a syncline passes through Mineral Hill. Both west and northeast of Stump Lake, the Nicola Group volcanics are intruded by Lower Jurassic granitic batholiths; scattered granodiorite outcrops have been mapped in the vicinity of the camp. Secondary to the north-northeast trending Quilchina and Stunp Lake regional faults are numerous smaller faults which form a complex fracture pattern and appear to control alteration and mineralization. Andesitic rocks are bleached, pervasively silicified, pyritic and brecciated. Mineralization occurs in numerous quartz, and less commonly calcite veins which strike generally to the north and dip steeply eastward.

#### Discussion:

In October of 1996 a program was conducted by the present owners. This program consisted of 12 sq. km. of prospecting, re-sampling all known cuts and adits, stream sediment samples, aerial photo-reconnaissance, 18.75km. of grid, and 6.1km. of Mag/VLF over the area of the Jenny Long Camp. This area contains numerous workings, shafts, a headframe, and the remains of a 35 ton mill.

Extensive prospecting carried on outside the grid area discovered numerous old workings consisting of trenches, pits, adits, and shafts. On the southeastern portion of the property, float sediment remnants were found in a consistent trail, pieces were angular and quite numerous. The source was prospected for but not found. At the southern end of the Greenstone 2 claim, quartz veins were observed in numerous outcrops as well as in some existing pits. The veins vary from 2 cm. to 30 cm. and contain varying degrees of mineralization. In one such pit samples of an extremely brecciated and silica flooded wallrock was taken. This sample carried epithermal stockwork characteristics; pods of pyrrhotite, pyrite cubes up to 1 cm., and minor chalcopyrite and bornite. Veins in the pit were vuggy with featherlike characteristics. Significant assay results were achieved from these assays. An intrusive body on the southern end of the Greenstone 2 and 3 claims was extensively prospected. This quartz rich porphyry showed some signs of potassic alteration in minor areas and carried considerable sericite. Samples were colleted without significant results.

Some highlights of this program are: 0.828 oz/t Au, >500 ppm Ag, >1% Pb, >0.4% Zn, and 0.15% Cu from a 1 meter chip of the King William vein located in the north of the property, 0.537 oz/t Au, 8.6 oz/t Ag, .3% Cu, >1%pb, >0.2% antimony from a mineralized quartz vein located on the Jenny Long system in the middle of the property, and 0.588 oz/t Au, 4.1 oz/t Ag, with anomalous lead and molybdenum from a mineralized vein at the southern edge of the property. Grades up to 0.838 oz/t Au in the -150 mesh and up to 4.50 oz/t Au were realized from the +150 mesh of samples AR13, and JR31, respectively.

#### Summary:

....

Exploration targets are deep epithermal precious metal deposits similar to those already mined in the camp: shear hosted bulk tonnage precious-base metal deposits underlying glacial till similar to the Nap occurance 10km to the north, (the Greenstone property hosts several large shear zones); skarn or limestone hosted metal deposits, and at higher elevations, high grade epithermal gold mineralization similar to the Kullagh lake occurrences 8 km to the North.

# References:

\_

- --

| Metallogenic Studies in South-Central British Columbia:<br>Mineral Occurances in the Nicola Lake Region. 1989 | R.E. Meyers, J.M. Moore<br>T.B. Hubner, A.R. Pettipas |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Assessment Report # 13,152                                                                                    | Peter K. Hannigan                                     |
| Mines and Petrolium Resources Report. 1967                                                                    | N.D. McKenchie,<br>G.M. Dawson                        |
| Report: Stump Lake Property. 1983                                                                             | G.H. Raynes                                           |
| G.S.C. Memoir 249. 1947                                                                                       | W.E. Cockfield                                        |
| Minfile Reports 92ISE 108-115                                                                                 | BCGS                                                  |

\_ \_

\_ \_

. .

Statement of Qualifications:

Andrew W. Molnar

of

Vancouver, British Columbia

Certify that:

I have completed the Malispina Advanced Prospecting Course (1991)

I have been employed in various capacities in my profession for the past 11 years.

That the information, and conclusions in the report are based on personal work on the property during 1996, and a review of the pertinent literature.

Dated at Vancouver, British Columbia this 21 day of January, 1997.

Andrew W. Molnar.

DON HAIRSINE Box 1239 Grand Forks, B.C. VOH 1HO

## STATEMENT OF QUALIFICATIONS

1956 - Basic Prospecting Course B.C. Yukon Chamber of Mines

- 1984 Advanced Prospecting Course B.C. Energy, Mines and Petroleum Resources
- 1992 Petrology for Prospectors B.C. Energy, Mines and Petroleum Resources

1995 - Mineral Deposits Workshop, Creston B.C. Energy, Mines and Petroleum Resources

I have been involved in the exploration industry since 1984:

- Prospecting for various companies
- mag and soil sampling
- claim staking
- road building and drill assistance

Don Hairsine

JOHN KEMP Box 866, Grand Forks, B.C. VOH 1H0

#### STATEMENT of QUALIFICATIONS

1989 - Rock and Mineral Course Chamber of Mines of Eastern B.C.

1991 - Advanced Prospecting Course B.C. Energy, Mines and Petroleum Resources

1992 - Petrology for Prospectors B.C. Energy, Mines and Petroleum Resources

1994 - Drift Exploration in Glaciated Terrain B.C. Geological Survey Branch

1994 - Models and Alteration in Base and Precious Metals Northwest Mining Association (Spokane, Washington)

1995 - Mineral Deposits Workshop, Creston B.C. Energy, Mines and Petroleum Resources

I have been employed in the exploration industry for the past 12 years in various capacities;

- responsible for material and fuel transportation into remote areas
- environmental clean-up and reclamation
- placer mining testing, soil sampling, & geophysical surveys
- construction of access roads and drill sites
- placer mining

I have been self-employed as a full time prospector since 1990, as well as offering contract services to the mining industry.

John Kemp

### **Rock Sample Descriptions**

- <u>Planet A:</u> Grab of lode vein material: galena, pyrite, minor chalco. no copper.
- Planet B: tuff w/pyrite, malachite staining. grab
- <u>Planet C:</u> Quartz breccia w/pyrite. grab
- <u>AR1:</u> Tubal Cain. silicified wallrock, limonite/hematite alt. no apparent min. 2m.chip.
- AR2: Tubal Cain: dump material, qtz vein w/1%py, 2% gal. grab
- <u>AR3:</u> 3kg.blaster grab of Raven dump material. Qtz w/ blebs of galena. py., chalco. Bornite in blebs and disseminations in fractures.
- <u>AR4:</u> Big Sandy. chlorite alt. greenstones w/minor py. hornfels, small amount of qtz. stringers. 1m. chip.
- <u>AR5:</u> east of IXL greenstones, 22/20W, minor py.,qtz. stringers.
- <u>AR6:</u> 1 m. chip of vein material in IXL shaft. Qtz. w/galena, pyrite blebs.
- <u>AR7a:</u> grab from Silver King dump. Qtz breccia w/limonite and py. <u>AR7b:</u> same dump with tuff in breccia and traces of galena.
- <u>AR8:</u> grab of dump material from King William. Qtz. breccia veins, blebs of galena and chalco. some py. and pyrrotite.
- <u>AR9:</u> 1m chip from Marion C shaft, steeply dipping qtz veins 1-2" wide, no min.
- <u>AR10:</u> grab of dump material from Enterprize.Qtz veins w/ py., galena, malachite, sheelite, chalco.
- <u>AR11:</u> 1m. chip across blast pit. volc. w/qtz. breccia in contact w/limestone may be a stockwork.
- <u>AR12:</u> 1m. chip in trench south of dry lake. subcrop. Banded qtz. veins w/ chalcedony, slight brecciation.
- <u>AR13:</u> 125m south of 12. 1m. chip of vein material. galena, chalco, py. in blebs and stringers.
- <u>AR14:</u> 160m from 12 at south end of trench. .7m. chip where vein dips under overburden. Vuggy qtz., w/ galena, chalco, py and malachite staining.
- <u>AR15:</u> 1m. chip of brecciated intrusive on east side of southern most trench, Greenstone 2.

OR1: 1 m. chip of highly decomposed qtz material at bottom of southern pit.

JR<u>26:</u> breccia w/ clasts of feldspar/k-spar, py, chalco, malachite staining.

#### 2 Samples

1. JR#1 Chip across vein area in shaft. Area had to be excavated to obtain sample. Sample off foot-wall; 30cm across, very altered and oxidized material between or within quartz veins, malachite, azurite, chalcopyrite, galena, pyrite and pyrrhotite present. L18+00n, sta01+25e.

> Two production shafts at headframe area; southern shaft is 3m X 3m and depth unknown (caved). Strike @ 345\* and dip is 68\* east, with continuity between shafts and cat trenches. Wall rock is chloritized, with epidote stringers, limey (mild reaction to acid), and not very magnetic. Parallel quartz veins or silica flooding on both footwall and hanging wall and interbedded with altered greenstone between footwall and hanging wall. Footwall appears to contain more mineralization and more baron silica on hanging wall. Mineralization present: malachite, azurite, chalcopyrite, galena, tungsten, pyrite, hematite, and pyrrhotite. Zone is 2.1 meters wide.

- JR#2 Very altered material, fractured, oxidizes and decomposed, possibly Greenstone ?, fault gouge? 1.2 meters wide, some material which was not decomposed appeared to be more siliceous, possible hornfelsed and contained prvite, pyrrhotite and minor chalcopyrite.
- 3. JR#3 Sample from hanging wall. 50 cm wide. Quarts veins which grade out from the decomposed area (JR#2) to come in contact with altered greenstone. Pyrite, pyrrhotite, malachite, and minor galena.
- 4. JR#4 2.4 meter chip of greenstone on / above hanging wall, chloritized and with epidote stringer, especially on fractures; pyrite pyrrhotite 2 specimen samples taken (1 of veining) (1 of mineralization)
- 5. JR#5 Blaster sample very altered and oxidized greenstone between hanging wall and foot wall. Same as JR#2.
- 6. JR#6 50 cm foot wall sample, Grudged up greenstone ?, very siliceous, possibly hornfelsed, with small veinlets running in all directions. One vein width up to 5 cm and containing hematite and minor pyrite & pyrrhotite
- 7. JR#7 Exposed vein in cat trench at line 18+50n, sta. 01+25e, on strike with vein in shafts. Grab sample of mineralization; malachite, azurite, chalcopyrite, galena, tungsten (ultraviolet light), pyrite and pyrrhotite.

#### 3 SAMPLES

- JR#8 L18+50n, sta. 01+25e, Sample of wallrock, carbonized greenstone, beside vein. Very altered and oxidized, Possibly a rhyolite?. Multi-phase veining, (3 phases), with the mineralization coming in on the last phase.
- 9. JR#9 L18+50n, sta. 01+50e, parallel quartz vein to veins at the headframe area, but on a different strike. Strike 310\*, dip @ 50\*. Quartz vein contains galena, chalcopyrite, and pyrite. Calcite veining in greenstone (carbonate alteration).
- 10 JR#10 Grab sample of brecciated silica from vein. Carbonate alteration around silica. Containing clast of pyrite. Looks hydrothermal, possibly chalcedony. L18+55n, sta. 01+55e. Specimen sample taken.
- 11 JR#11 Grab sample from same area as JR#10 but containing azurite, malachite, pyrite, pyrite and galena.
- 12 JR#12 L18+00n, sta. 01+50e. Cat trench, with exposed vein, Chip sample (2 meter), east wall of vertical vein. Intensely altered greenstone, with small veinlets containing minor pyrite. Trench #1 .008 AL
   Specimen sample taken.
- 13 JR#13 L18+00n, sta. 01+50e. Continuation of JR#12 sampling vein. Very brecciated quartz vein. Malichite, azurite, pyrite, pyrrhotite. Epithermal characteristics. Millrock. 40 cm chip sample. Trench #1
- 14 JR#14 L18+00n, sta. 01+50e. Continuation of JR#12 and JR#13 on the west side of the vein. 1.8 meter chip, very altered greenstone beside vein and grading away from the vein to a siliceous limey greenstone. Minor pyrite. Trench #1
- 15 JR#15 from ore bin beside the head frame, chalcopyrite, pyrite and pyrrhotite.
- 16 JR#16 L17+80n, sta. 01+65e. Exposed quartz vein in trench #2 and on strike with samples #12, #13, #14, and the decline. Chalcopyrite, galena and pyrite. grab sample.
- 17 JR#17 Trench #2, from beside vein, sample #16. Siliceous ryolite, calcite on fractured chalcopyrite in veinlet cutting sample. Intermittent veins and alteration. Interbeded greenstone, with carbonate alteration, epidote stringers, garnet, and hydrothermal veining. Grab sample.

#### 4 SAMPLES

- 18 JR#18 Trench #2. 2.5 meter chip on the west side of vein; very oxidized and decomposed, hydrothermal veining, consisting of two 8cm quartz veins as well as multiple smaller veins, chalcopyrite, pyrite and pyrrhotite
- 19 JR#19 Trench #2. 1 meter chip of east side of vein; hanging wall. Strike @330\* dip @70\* east, very altered and decomposed ryolite?. Pyrite and pyrrhotite, - multi phase veining.
- 20 JR#20 Grab sample from trench #3, not in place as trench is sloughed in, Galena, chalcopyrite, pyrite and pyrrhotite.
- 21 JR#21 L16+25n, sta01+50e. Quartz vein, Strike @355\*, couldn't measure dip malachite, chalcopyrite, galena and pyrite.
- 22 JR#22 L16+35n, sta. 01+60e. Two pits on strike with quartz vein at L16+25n, sta. 01+25e and in a east/west shear zone, silica flooding in fractures of block faulting. Galena, pyrite, pyrrhotite and chalcedony.
- 23 JR#23 B/L07+75n Trench on southern Greenstone #2, Hornfelsed greenstone, very siliceous, quartz veins (barren), galena and pyrite in greenstone.
- 24 JR#24 L07+75n, sta. 01+25w. Large shaft (3m x 4m x 3m deep), and trench (5m long) Located in E/W shear zone. Greenstone with intruded magnetic basalt, silica flooding with include large clasts; pod of pyrrhotite with minor chalcopyrite, 1 cm pyrite cubes with small quartz vein cutting cube, decomposed sulphur.

From dump, massive pyrrhotite in quartz, very vuggy and feather like appearance.

- 25 JR#25 L07+75n, sta. 01+25w. Chip sample across north/east wall, (2m) Very oxidized, fractured, and brecciated basalt, (mildly magnetic). Pyrite, pyrrhotite, malachite, mariposite and minor epidote, silica flooded, and veined.
- 26 JR#26 Brecciated basalt in silica, and carrying pyrite, chalcopyrite, and minor pyrrhotite. Mildly magnetic, garnets and epidote. L07+75n, sta01+25w
- 27 JR#27 L6+50n, sta02+50w. Quartz porphyry intrusive, k-spar alteration with disseminated pyrite and sericite.

#### 5 SAMPLES

28 JR#28 L06+50n, sta02+25w. Quartz porphyry intrusive, pyrite and quartz veins.

29 JR#29 L06+75n, sta02+25w. Quartz porphyry intrusive, pyrite, pyrrhotite, and sericite.

30 JR#30 L 07+00n, sta02+00w. Intrusive - similar to other intrusive samples.

- 31 JR#31 L04+00n, sta.00+50w Trench with quartz vein in greenstone, mineralization in the greenstone as well as the quartz vein. Strike at 330\*, Dip @65\* east. Many small veins like a dike swarm (barren) chalcopyrite, pyrite, pyrihotite and galena.
- 32 JR#32 Sample of quartz vein from L04+00n, sta02+00w. Galena present, finely disseminated.

ъ

Certificate of Analysis

| •••••                                                  | REPORT: VYC                                                                                                     | 5-01715.4                             | 4 ( COMPLETE ) | REFERENCE:                            |                                  |                                                   |                                        |                                        |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|---------------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------------|--|
|                                                        | CLIENT: RIC<br>PROJECT: NO                                                                                      | D MINERAL                             | LS LTD.<br>N   |                                       |                                  | SUBMITTED BY: A. MOLNAR<br>DATE PRINTED: 3-NOV-96 |                                        |                                        |  |
|                                                        | ORDER                                                                                                           | ELI                                   | EMENT          | NUMBER OF                             | LOWER<br>DETECTION LIMIT         | EXTRACTION                                        | METHOD                                 |                                        |  |
| 1 Fine Pulp Weight Fine<br>2 Heavy Pulp Weight - Heavy |                                                                                                                 |                                       |                | 7<br>7                                | 0.1 g<br>0.01 g                  |                                                   | FIRE ASSAY<br>FIRE ASSAY               |                                        |  |
|                                                        | <ul> <li>3 AuFine Gold in Fines</li> <li>4 Au Hvy Gold in Heavies</li> <li>5 AVG_AU Avg Au in Sample</li> </ul> |                                       |                | 7<br>7<br>7                           | 0.03 PPM<br>0.03 PPM<br>0.03 PPM |                                                   | FIRE ASSAY<br>FIRE ASSAY<br>FIRE ASSAY |                                        |  |
|                                                        | SAMPLE                                                                                                          | TYPES                                 | NUMBER         | SIZE FR                               | RACTIONS                         | NUMBER                                            | SAMPLE PREPARATIONS                    | NUMBER                                 |  |
|                                                        | R ROC                                                                                                           | ск                                    | 7              | : HE <i>f</i>                         | <b>VY/-200</b>                   | 7                                                 | TSP - BLASTER PREP<br>PULVERIZING/KG   | 7<br>34                                |  |
|                                                        |                                                                                                                 |                                       |                |                                       |                                  |                                                   |                                        |                                        |  |
|                                                        |                                                                                                                 | <br>                                  |                | · · · · · · · · · · · · · · · · · · · |                                  |                                                   |                                        |                                        |  |
|                                                        |                                                                                                                 | · · · · · · · · ·                     |                | ·                                     |                                  |                                                   |                                        | ···· · · · · · · · · · · · · · · · · · |  |
|                                                        |                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                |                                       |                                  |                                                   | · · · · · · · · · · · · · · · · · · ·  |                                        |  |
| ······································                 |                                                                                                                 | · · · · · · · · · · · · ·             |                |                                       |                                  |                                                   | · · · · · · · · · · · · · · · · · · ·  |                                        |  |
|                                                        |                                                                                                                 |                                       |                |                                       |                                  |                                                   | · · · · · · · · · · · · · · · · · · ·  |                                        |  |

# Certificate of Analysis

| CLIENT: RIO MI<br>REPORT: V96-01 | NERALS LTD<br>715.4 ( DO | ).<br>OMPLETE )                       | PROJECT: NONE GIVEN<br>DATE PRINTED: 3-NOV-96 PAGE 1 |               |               |                        |                                        |
|----------------------------------|--------------------------|---------------------------------------|------------------------------------------------------|---------------|---------------|------------------------|----------------------------------------|
| SAMPLE<br>Number                 | ELEMENT<br>Units         | Fine<br>g                             | Heavy<br>g                                           | AuFine<br>PPM | Au Hvy<br>PPM | AVG_AU<br>PPM          |                                        |
| ₽+ å                             | ••••••                   | 7160 0                                | 51 16                                                | A 20          | <u>Λ.72</u>   | D 21                   | · · · · · · · · · · · · · · · · · · ·  |
| R: B                             |                          | 2130.0                                | 100.33                                               | 31.26         | 38.67         | 31.59                  |                                        |
| R: AR3                           |                          | 7160.0                                | 68.79                                                | 2.44          | 4.46          | 2,46                   |                                        |
| R: JR22                          |                          | 2730.0                                | 14.11                                                | 0.12          | 2.83          | 0.13                   |                                        |
| R: JR25                          |                          | 4540.0                                | 25.22                                                | 0.13          | 0.99          | 0.13                   |                                        |
| R: 0R1                           |                          | 4510.0                                | 18.98                                                | 0.20          | 2.53          | 0.21                   |                                        |
| R: PLANET C                      |                          | 4350.0                                | 17.39                                                | 3.91          | 23.98         | 3,99                   |                                        |
|                                  |                          |                                       |                                                      |               |               | ·····                  |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  | •••••                    |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       | •                                                    |               |               |                        |                                        |
|                                  |                          |                                       | ·····                                                |               |               |                        | · · · · · · · · · · · · · · · · · · ·  |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  | ·····                    | · · · · · · · · · · · · · · · · · · · | ·····                                                | •••••         | ······        | ·                      |                                        |
|                                  | • • • • • •              |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          | ·····                                 |                                                      |               | ·····         | ·····                  | ······································ |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
| •••••                            | ·····                    | ·····                                 | •                                                    | •••••         | •••••••••••   | •••••                  | · · · · · · · · · · · · · · · · · · ·  |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       |                                                      |               |               |                        |                                        |
|                                  |                          |                                       | ·                                                    |               |               |                        |                                        |
|                                  |                          |                                       |                                                      | Bonda         | r-Clegg & (   | Company L <sup>i</sup> | .td.                                   |
|                                  |                          | 1                                     | 30 Pembert                                           | on Avenue,    | North Vand    | couver, B.C            | C., V7P 2R5, Canada                    |

Tel: (604) 985-0681, Fax: (604) 985-1071

Registered Assayer, Province of British Cohundia

# Certificate of Analysis

| CLIENT: RIO<br>REPORT: V96- | MINERALS LTD.<br>01715.4 ( COM | PLETE ) |       | PROJECT: NONE GIVEN<br>DATE PRINTED: 3-NOV-96 PAGE 2 | 2      |        |                                        |  |
|-----------------------------|--------------------------------|---------|-------|------------------------------------------------------|--------|--------|----------------------------------------|--|
| STANDARD                    | ELEMENŤ                        | Fine    | Heavy | Aufine                                               | Au Hvy | AVG_AU |                                        |  |
| NAME                        | UNITS                          | 9       | g     | PPM                                                  | PPM    | PPM    |                                        |  |
| ANALYTICAL B                | LANK                           | -       | -     | <0.03                                                | -      | -      |                                        |  |
| Number of An                | nalyses                        | -       | -     | 1                                                    | -      | -      |                                        |  |
| Mean Value                  |                                | -       | -     | 0.015                                                | -      | -      |                                        |  |
| Standard Dev                | viation                        | •       | -     | -                                                    | -      | -      |                                        |  |
| Accepted Val                | ue                             | <0.1    | <0.01 | <0.01                                                | <0.01  | <0.01  | ······································ |  |
| Gannet Stand                | iard                           | -       | •     | 0.21                                                 | •      | *      |                                        |  |
| Number of An                | nalyses                        | -       | -     | 1                                                    | -      | -      |                                        |  |
| Mean Value                  |                                | -       | -     | 0.206                                                | -      | -      |                                        |  |
| Standard Dev                | /iation                        | -       | -     | -                                                    | •      | -      |                                        |  |
| Accepted Val                | ue                             | -       | -     | 0.21                                                 | -      | -      |                                        |  |
| AU 0.05                     |                                | -       | -     |                                                      | 1.80   | -      |                                        |  |
| Number of An                | alyses                         | -       | -     | -                                                    | 1      | -      |                                        |  |
| Mean Value                  |                                | -       | -     | -                                                    | 1.800  | -      |                                        |  |
| Standard Dev                | riation                        | -       | -     | -                                                    | -      | -      |                                        |  |
| Accented Val                | ue.                            | -       | -     | 1.71                                                 | 1.70   | -      |                                        |  |

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

. . . . . . . . . . . . . . . .

.

.

# Certificate of Analysis

| CLIENT: RIO P<br>REPORT: V96-0        | MINERALS LTD<br>01715.4 ( COM | Aplete )  | PROJECT:<br>Date prin | PROJECT: NONE GIVEN<br>DATE PRINTED: 3-NOV-96 PAGE 3 |                           |                                      |                     |                                       |                                       |
|---------------------------------------|-------------------------------|-----------|-----------------------|------------------------------------------------------|---------------------------|--------------------------------------|---------------------|---------------------------------------|---------------------------------------|
| SAMPLE<br>NUMBER                      | ELEMENT<br>UNITS              | Fine<br>g | Heavy<br>9            | Aufine<br>PPM                                        | Au H∨y<br>PPM             | AVG_AU<br>PPM                        |                     |                                       |                                       |
| OR1<br>Duplicate                      |                               | 4510.0    | 18.98                 | 0.20<br>0.18                                         | 2.53                      | 0.21                                 |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       | ······                                |
|                                       |                               |           | -                     |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     | ·                                     | · · · · · · · · · · · · · · · · · · · |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      | ····· · ·                 |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     | · · ·· ·· ·                           |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
| · · · · · · · · · · · · · · · · · · · |                               |           |                       |                                                      |                           |                                      |                     | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       |                                                      |                           |                                      |                     |                                       |                                       |
|                                       |                               |           |                       | Bood-                                                | r-Clegg & f               | Company I td                         |                     | 0                                     |                                       |
|                                       |                               | 13        | 30 Pembert            | on Avenue,<br>Tel: (604) 9                           | North Vanc<br>85-0681, F. | couver, B.C., V7<br>ax: (604) 985-10 | P 2R5, Canada<br>71 | Aczillered Assave                     | r, Province of British Columbia       |

Certificate of Analysis

| CLIENT- RIO                           |         |                                       |                       | 1                        | ·····                                 |                                                                               |                                       |
|---------------------------------------|---------|---------------------------------------|-----------------------|--------------------------|---------------------------------------|-------------------------------------------------------------------------------|---------------------------------------|
| PROJECT: NO                           | MINERAL | .S LTD.<br>I                          |                       |                          | :                                     |                                                                               |                                       |
| ORDER                                 | ELE     | MENT                                  | NUMBER OF<br>ANALYSES | LOWER<br>DETECTION LIMIT | EXTRACTION                            | METHOD                                                                        |                                       |
| 1                                     | Wt-150  | Pulp Weight +15                       | 0 44                  | 0.1 GM                   |                                       | FIRE ASSAY                                                                    |                                       |
| 2                                     | WT+150  | +150 Pulp Weigh                       | t 44                  | 0.01 g                   |                                       | FIRE ASSAY                                                                    |                                       |
|                                       | Au-150  | Gold -150 mesh                        |                       | 0.001 OPT                |                                       | FIRE ASSAY                                                                    |                                       |
| 4                                     | Au+150  | Gold +150 mesh                        | 44                    | 0.01 OPT                 |                                       | FIRE ASSAY                                                                    |                                       |
| 5                                     | Au Tot  | Gold in total s                       | ample 44              | 0.001 OPT                |                                       | FIRE ASSAY                                                                    |                                       |
| SAMPLE                                | TYPES   | NUMBE                                 | R SIZE FI             | RACTIONS                 | NUMBER                                | SAMPLE PREPARATIONS                                                           | NUMBER                                |
| R ROC                                 | ĸ       | 44                                    | <br>W +1!             | 50/-150                  | 44                                    | DRY, SIEVE -80<br>CRUSH/SPLIT & PULV.<br>OVERWEIGHT/KG<br>METALLICS SCREENING | 5<br>44<br>39<br>44                   |
| REPORT                                | COPIES  | TO: MR. ANDREW                        | MOLNAR                |                          | 1 <b>N</b> AOTO                       | JE IU: MK. ANDKEW MULNAK                                                      |                                       |
|                                       |         | ······                                | •••••                 |                          | · · · · · · · · · · · · · · · · · · · | · • • • • • • • • • • • • • • • • • • •                                       |                                       |
|                                       |         |                                       |                       |                          |                                       |                                                                               |                                       |
|                                       |         | · · · · · · · · · · · · · · · · · · · |                       |                          |                                       | · · · · · · · · · · · · · · · · · · ·                                         |                                       |
| · · · · · · · · · · · · · · · · · · · |         |                                       |                       |                          |                                       | · · · · · · · · · · · · · · · · · · ·                                         | · · · · · · · · · · · · · · · · · · · |
| · · · · · · · · · · · · · · · · · · · |         |                                       |                       |                          |                                       |                                                                               |                                       |
| · · · · · · · · · · · · · · · · · · · |         |                                       |                       |                          |                                       |                                                                               |                                       |
| · · · · · · · · · · · · · · · · · · · |         |                                       |                       |                          |                                       |                                                                               |                                       |
|                                       |         |                                       | Bond                  | ar-Clegg & Company 1     | Ltd.                                  |                                                                               |                                       |

Registered Assayer, Province of British Columbia



Certificate of Analysis

|       | CLIENT: RIO<br>REPORT: V96-           | MINERALS LTD.<br>01714.4 ( COMPLETE ) |        |                 |               |                                       | PROJECT: NONE GIVEN<br>DATE PRINTED: 24-OCT-96 PAGE 1 |  |
|-------|---------------------------------------|---------------------------------------|--------|-----------------|---------------|---------------------------------------|-------------------------------------------------------|--|
| -     | SAMPLE                                | ELEMENT Wt-150                        | WT+150 | Au-150          | Au+150        | Au Tot                                |                                                       |  |
|       | NUMBER                                | UNITS GM                              | 9      | OPT             | OPT           | OPT                                   |                                                       |  |
|       | RW AR1                                | 252.6                                 | 20.58  | 0.002           | D. 13         | 0.012                                 |                                                       |  |
| •     | RW ARZ                                | 253 1                                 | 7 55   | 0.002           | <0.01         | 0.009                                 |                                                       |  |
|       | RU ARA                                | 254.0                                 | 50.33  | 0.002           | <0.01         | 0.002                                 |                                                       |  |
|       | RW AR5                                | 300.2                                 | 49.38  | 0.002           | <0.01         | 0.002                                 |                                                       |  |
|       | RV AR6                                | 232.9                                 | 25.21  | 0.024           | <0.01         | 0.022                                 |                                                       |  |
|       |                                       | · · · · · · · · · · · · · · · · · · · |        |                 | ···· ····     |                                       |                                                       |  |
| •     | RV AR7A                               | 251.1                                 | 24.44  | 0.031           | 0.03          | 0.031                                 |                                                       |  |
|       | RW AR7B                               | 251.4                                 | 7.16   | 0,003           | <0.01         | 0.003                                 |                                                       |  |
|       | RW ARB                                | 275.2                                 | 13.85  | 0.132           | 0,68          | 0.158                                 |                                                       |  |
| -     | RW AR9                                | 239.2                                 | 21.50  | 0.001           | <0.01         | 0.001                                 |                                                       |  |
|       | RW AR10                               | 297.9                                 | 6.75   | 0.189           | 0.46          | 0.195                                 |                                                       |  |
|       | DU 4011                               |                                       | 8 28   | <0 001          | <0.01         | <∩ ∩∩1                                |                                                       |  |
|       | RW AR12                               | 243.4                                 | 30.58  | <0.001          | <0.01         | <0.001                                |                                                       |  |
| _     | RW AR13                               | 288.9                                 | 5.39   | 0.838           | 0.82          | 0.838                                 |                                                       |  |
|       | RW AR14                               | 272.9                                 | 1.72   | 0.136           | 3.53          | 0.157                                 |                                                       |  |
|       | RW AR15                               | 223.7                                 | 0.68   | 0.002           | <0.01         | 0.002                                 |                                                       |  |
| •     | · · · · · · · · · · · · · · · · · · · | ·····                                 |        | ·····           | · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                 |  |
| -     | RW JR1                                | 258.7                                 | 1.12   | 0.073           | <0.01         | 0.073                                 |                                                       |  |
|       | RW JR2                                | 273.0                                 | 26,96  | 0.012           | 0.01          | 0.012                                 |                                                       |  |
|       | RW JR3                                | 280.0                                 | 2.06   | 0.119           | 2.73          | 0.138                                 |                                                       |  |
| -     | RW JR4                                | 303.5                                 | 9.18   | <0.001          | <0.01         | <0.001                                |                                                       |  |
|       | RW JR6                                | 257.3                                 | 32.35  | 0.008           | 0.04          | 0.012                                 | ······································                |  |
|       |                                       | 280.2                                 | 25.46  | 0.003           | <0.01         | 0.003                                 |                                                       |  |
|       | RH JR9                                | 293 5                                 | 6.20   | 0.540           | 0.40          | 0.537                                 |                                                       |  |
|       |                                       | 290.0                                 | 6.74   | 0.047           | <0.01         | 0.046                                 |                                                       |  |
|       | RW JR11                               | 234.4                                 | 1.17   | 0.392           | 0.82          | 0.394                                 |                                                       |  |
| -     | RW JR12                               | 201.6                                 | 3.40   | 0.008           | <0.01         | 0.008                                 |                                                       |  |
|       |                                       |                                       |        |                 |               | · · · · · · · · · · · · · · · · · · · |                                                       |  |
|       | RW JR13                               | 290.2                                 | 1.09   | 0.064           | <0.01         | 0.064                                 |                                                       |  |
| -     | RW JR14                               | 251.6                                 | 37.95  | 0.001           | <0.01         | 0.001                                 |                                                       |  |
|       | RW JR15                               | 338.2                                 | 0.81   | 0.074           | <0.01         | 0.073                                 |                                                       |  |
|       | RW JR16                               | 239.6                                 | 7.22   | 0.074           | 80.0          | 0.074                                 |                                                       |  |
| -     | RW JR17                               | 232.9                                 | 0.43   | 0.001           | <0.01         | 0.001                                 |                                                       |  |
|       |                                       |                                       | 7 47   | 0.005           | -0.01         | 0.005                                 |                                                       |  |
|       | RW JR18                               | 237.5                                 | 3.14   | 0.005           | <0.01         | 0.005                                 |                                                       |  |
| -     | RW JR19                               | 200.5                                 | 17.0/  | <0.001          | <0.01<br>0.00 | <0.001<br>0.057                       |                                                       |  |
|       | RW JRZU                               | 309.5                                 | 13.00  | 0.059           | 0.02          | 0.057                                 |                                                       |  |
| -     | RW JR21                               | 240.5                                 | 5 75   | 0.001<br>∠n nn1 | U,12<br>∢0 01 | 0.002<br><0.001                       |                                                       |  |
|       | RW JKZS                               | 271.2                                 | 2.73   | <b>NU.UU</b> I  | NU.UI         | •0,001                                |                                                       |  |
| ••••• | RW JR24                               | 281.5                                 | 7.09   | 0.598           | 0.21          | 0.588                                 |                                                       |  |
| -     | RW JR26                               | 210.3                                 | 8.90   | 0.002           | <0.01         | 0.002                                 |                                                       |  |
|       | RW JR27                               | 207.4                                 | 2.00   | 0.005           | <0.01         | 0.005                                 |                                                       |  |
|       | RW JR29                               | 276.1                                 | 10.47  | <0.001          | <0.01         | <0.001                                |                                                       |  |
| -     | RW JR30                               | 263.2                                 | 4.14   | 0.001           | <0.01         | <0.001                                |                                                       |  |
|       |                                       |                                       |        |                 |               |                                       |                                                       |  |

Bondar-Clegg & Company Ltd.

130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071



|          |                                                  | onda<br>chcap                                  | a <b>r (</b><br>e Te             | C <b>le</b>                  | gg<br>g Sei                      | rvice                           | 28                               |                                       | Certificate<br>of<br>Analysis |
|----------|--------------------------------------------------|------------------------------------------------|----------------------------------|------------------------------|----------------------------------|---------------------------------|----------------------------------|---------------------------------------|-------------------------------|
|          | CLIENT: RIO M<br>REPORT: V96-0                   | PROJECT: NONE GIVEN<br>DATE PRINTED: 24-OCT-96 | PAGE 2                           |                              |                                  |                                 |                                  |                                       |                               |
| <b>p</b> | SAMPLE<br>NUMBER                                 |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
|          | RW JR31<br>RW JR32<br>RW PLANET A<br>RW PLANET B |                                                | 256.5<br>238.1<br>234.7<br>221.3 | 0.90<br>4.75<br>1.62<br>4.59 | 0.238<br>0.002<br>0.005<br>0.006 | 4.50<br><0.01<br><0.01<br><0.01 | 0.253<br>0.002<br>0.005<br>0.006 |                                       |                               |
|          |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
| -        |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
| •        |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
| •        |                                                  |                                                |                                  |                              |                                  |                                 | ····· · · · · ·                  | · · · · · · · · · · · · · · · · · · · |                               |
| •        |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
| •        |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
|          |                                                  |                                                |                                  |                              |                                  |                                 |                                  |                                       |                               |
|          |                                                  |                                                |                                  |                              |                                  | · · · · · · · · · ·             |                                  |                                       |                               |
|          |                                                  |                                                |                                  |                              | Bonda                            | ar-Clegg &                      | Company Ltd                      | . 7                                   | 5-2                           |

130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Registered Assayer, Province of British Columbia



# Certificate of Analysis

| CLIENT: RID MIN<br>REPORT: V96-017     | NERALS LTD<br>714.4 ( CO               | MPIETE )                                |        |              |                 |                | PROJECT: NONE GIVEN                    | DACE 7                                 |
|----------------------------------------|----------------------------------------|-----------------------------------------|--------|--------------|-----------------|----------------|----------------------------------------|----------------------------------------|
|                                        |                                        |                                         |        |              |                 |                | DATE FRINTLD. 24-001-70                | FAUC 3                                 |
| STANDARD                               | ELEMENT                                | Wt-150                                  | WT+150 | Au~150       | Au+150          | Au Tot         |                                        |                                        |
| NAME                                   | UNITS                                  | GM                                      | 9      | OPT          | OPŤ             | OPT            |                                        |                                        |
|                                        | ······································ |                                         |        |              |                 | ·····          | ······                                 | ······································ |
| ANALYTICAL BLAN                        | IK                                     | -                                       | -      | <0.001       | -               | -              |                                        |                                        |
| ANALYTICAL BLAN                        | IK                                     | -                                       | -      | <0.001       | -               | -              |                                        |                                        |
| Number of Analy                        | /ses                                   | -                                       | -      | 2            | -               | -              |                                        |                                        |
| Mean Value                             |                                        | -                                       | -      | 0.0004       | -               | -              |                                        |                                        |
| Standard Deviat                        | :10N                                   | -<br>                                   | -<br>  | 0.00000      | •               | •              |                                        |                                        |
| Accepted Value                         |                                        | <∩ 1                                    | -<∩ ∩1 | <0.001       | <0.01           | <0.001         | · ·· · · · · · · · · · · · · · · · · · | •••••                                  |
| Accepted Parac                         |                                        | -0.1                                    | -0.01  | -01001       | -0.01           | V0.001         |                                        |                                        |
|                                        |                                        |                                         |        |              |                 |                |                                        |                                        |
|                                        |                                        |                                         |        |              |                 |                |                                        |                                        |
|                                        |                                        |                                         |        |              |                 |                |                                        |                                        |
| •••••••••••••••••••••••••••••••••••••• | ···· ··· · · · · · · · · · · · · · · · | ····· · · · · · · · · · · · · · · · ·   |        |              |                 |                |                                        |                                        |
| AU 0.1                                 |                                        | -                                       | -      | -            | 0.10            | -              |                                        |                                        |
| Number of Analy                        | ses                                    | -                                       | -      | -            | 1               | -              |                                        |                                        |
| Mean Value                             |                                        | -                                       | -      | -            | 0.098           | -              |                                        |                                        |
| Standard Deviat                        | ion                                    | -                                       | -      | •            | -               | -              |                                        |                                        |
| Accepted Value                         |                                        | -                                       | -      | 0.100        | 0.10            | -              |                                        |                                        |
| ·····                                  | ·····                                  | • • • • • • • • • • • • • • • • • • • • |        | ······       | • •••••         | · · · · · ·    | · · · · · · · · · · · · · · · · · · ·  |                                        |
| Gannet Standard                        |                                        | -                                       | -      | 0.031        | -               | -              |                                        |                                        |
| Number of Analy                        | ses                                    | -                                       | -      | 1            | -               | <del>•</del> . |                                        |                                        |
| Mean Value                             |                                        | •                                       | -      | 0.0313       | -               | -              |                                        |                                        |
| Standard Deviat                        | ion                                    | •                                       | -      | -            | -               | -              |                                        |                                        |
| Accepted Value                         |                                        | •                                       | -      | 0.031        | -               | -              |                                        |                                        |
|                                        |                                        |                                         |        |              | · ·····         |                | ······································ |                                        |
| AU 0.05                                |                                        | -                                       | -      | -            | 0.05            | -              |                                        |                                        |
| Number of Analy                        | ses                                    | -                                       | -      | -            |                 | -              |                                        |                                        |
| Mean Value                             |                                        | •                                       | -      | -            | 0.047           | -              |                                        |                                        |
| Standard Deviat                        | 100                                    | •                                       | -      | -<br>6 656   | -               | -              |                                        |                                        |
| Accepted value                         |                                        | · · · · ·                               |        | 0.050        | 0.05            |                | ······································ |                                        |
| Connet Cturd-od                        |                                        | · ··· · ··· ·                           |        | <u>β δυξ</u> | · ··· · · · · · | _              | ······································ |                                        |
| Wumber of Acoly                        | <b>60</b> 0                            | -                                       | -      | 0.000        | -               | -              |                                        |                                        |
| Mean Value                             | 363                                    | -                                       | -      | 1<br>0 0050  | -               | -              |                                        |                                        |
| rican Value<br>Standard Doviat         | ion                                    | -                                       | -      | 0.0039       | -               |                |                                        |                                        |
| Accented Value                         |                                        | -                                       | -      | A00.0        | _               | -              |                                        |                                        |
| Nochrea Larac                          | • •• •• •• •• •• •                     |                                         |        |              |                 |                | · · · · · · · · · · · · · · · · · · ·  |                                        |

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Revis

# Certificate of Analysis

| CLIENT: RIO M<br>REPORT: V96-0 | IINERALS LTD<br>11714.4 ( CC | MPLETE )     |             |                |               |               | PROJECT: NONE GIVEN<br>Date Printed: 24-oct-96 Page 4 |
|--------------------------------|------------------------------|--------------|-------------|----------------|---------------|---------------|-------------------------------------------------------|
| SAMPLE<br>NUMBER               | ELEMENT<br>UNITS             | Wt-150<br>GM | WT+150<br>9 | Au-150<br>OPT  | Au+150<br>OPT | Au Tot<br>Opt |                                                       |
| AR7A<br>Duplicate              |                              | 251.1        | 24.44       | 0.031<br>0.027 | 0.03          | 0.031         |                                                       |
| JR3<br>Duplicate               |                              | 280.0        | 2.06        | 0.119<br>0.109 | 2.73          | 0.138         |                                                       |
| JR15<br>Duplicate              | • • • • • • • • •            | 338.2        | 0.81        | 0.074<br>0.078 | <0.01         | 0.073         |                                                       |
| JR30<br>Duplicate              |                              | 263.2        | 4.14        | 0.001<br>0.002 | <0.0 <b>1</b> | <0.001        |                                                       |

Bondar-Clegg & Company Ltd. 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, Canada Tel: (604) 985-0681, Fax: (604) 985-1071

Registered Assayer, Province of British Columbia

. . . . . . . . .

|                                                              | ت «                  | RGENT           | 4 CONFID                 | ENTIA              | L <sup>7</sup>                                                          |               |
|--------------------------------------------------------------|----------------------|-----------------|--------------------------|--------------------|-------------------------------------------------------------------------|---------------|
| To: RIO M<br>Attention :<br>Reference :<br>Submitter : A, MO | INERALS LTD.<br>LNAR |                 |                          | Ou<br>Yo<br>Number | r Fax No: (604) 985-1071<br>ur Fax No: 871-0231<br>of Pages : 2 includi | ng this page. |
| Report : V96-0171                                            | 5.4 Status           | : COMPLETE      |                          | Total              | number of samples: 7                                                    |               |
| Element Method                                               | Totl                 | Element         | Method                   | Totl               | Element Nethod                                                          | Totl          |
| Fine FIRE A33A)<br>Au Evy FIRE ASSA)                         | 2 7<br>2 7           | Beavy<br>AVG_AU | FIRE ASSAY<br>FIRE ASSAY | 77                 | Aufine FIRE ASSAY                                                       | 7             |
|                                                              |                      |                 |                          |                    |                                                                         |               |
| mple Preparations Totl                                       | Sample Type          | Totl            | Size Fraction<br>        | Totl   Re:         | marks<br>                                                               |               |
| P - BLASTER PREP 7  <br>PLVERIZING/KG 34                     | ROCK                 | 7               | BEAVY/-200<br>           | 7 (<br>1           |                                                                         |               |
| 1                                                            |                      |                 |                          |                    |                                                                         |               |
|                                                              |                      |                 |                          | l<br>I             |                                                                         |               |
| l                                                            |                      |                 |                          |                    |                                                                         |               |
|                                                              |                      |                 |                          |                    |                                                                         |               |
| I                                                            |                      |                 |                          | I                  |                                                                         |               |
| <br> <br>                                                    |                      |                 |                          |                    |                                                                         |               |

FAXSR: 604-985-1071 At 5-NOV-1996 14:44 Page 2

# Bondar Clegg Inchcape Testing Services

CLIENT: RIO MINERALS LTD. REPORT: V96-01715.4 ( COMPLETE )

Ē

Υ.

÷ ---

ъ 

| <b>L</b> |          |         |        |        |        |        |        |
|----------|----------|---------|--------|--------|--------|--------|--------|
| s,       | mple     | ELEMENT | Fine   | leavy  | AuFine | Au Hvy | AVG_AU |
| Π.       | mber     | UNITS   | ç      | g      | OPT    | opt    | OPT    |
| R:       | A        |         | 7160.0 | 51.16  | 0.006  | 0.02   | 0.006  |
| R 3      | в        |         | 2130.0 | 100.33 | 0,912  | 1,13   | 0.921  |
| R:       | AR3      |         | 7160.0 | 68.79  | 0.071  | 0.13   | 0.072  |
| R        | JR22     |         | 2730.0 | 14.11  | 0.003  | 0.08   | 0.004  |
| R :      | JR25     |         | 4540.0 | 25.22  | 0.004  | 0.03   | 0.004  |
| - R:     | OR1      |         | 4510,0 | 18,98  | 0,006  | 0,07   | 0,006  |
| R ;      | PLANET C |         | 4350.0 | 17,39  | 0,114  | 0,70   | 0,116  |

PROJECT: NONE GIVEN DATE PRINTED: 5-NOV-96 PAGE 1

# REPORT: V96-01714.0 ( COMPLETE )

REFERENCE:

SUBMITTED BY: UNKNOWN

CLIENT: RID MINERALS LTD. PROJECT: NONE GIVEN

| 1 AL3D         Gold         5         5 PPB         Fire Assay of 303         306 Fire Assay of A37         7 Zr         Z inconium         49         1 PMH         NULLHNOS (3:1)         INDUC. COUP. PLASM           3 AgD         Silver, semiguant.         6         1 PMH         RCLHNOS (3:1)         INDUC. COUP. PLASM         SAMPE TYPES         NUMBER         SIZE FRACTIONS         NUMBER         SAMPE TYPES         NUME TALLES SCREENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ELÊ  | MENT              | NUMBER OF<br>ANALYSES | LOWER<br>DETECTION | EXTRACTION        | METHOD              | ELE       | MENT          | NU <del>I</del><br>AN <i>i</i> | IBER OF | LOWER<br>DETECTION | EXTRACTION  | METHOD                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-------------------|-----------------------|--------------------|-------------------|---------------------|-----------|---------------|--------------------------------|---------|--------------------|-------------|---------------------------|
| 2 Ag Silver 49 0.2 PMH Htt:H03 (3:1) INDUE. COUP. PLASMA<br>AGOU Silver, sentiquant 6 I PMH Htt:H03 (3:1) INDUE. COUP. PLASMA<br>5 CD Capper 49 1 PMH Htt:H03 (3:1) INDUE. COUP. PLASMA<br>5 CD Capper 49 1 PMH Htt:H03 (3:1) INDUE. COUP. PLASMA<br>5 Zinc, sentiquant 1 0.1 PM Htt:H03 (3:1) INDUE. COUP. PLASMA<br>5 PM Cathol (3:1) INDUE. COUP. PLASMA<br>6 Court (3:1) INDUE. COUP. PLASMA<br>7 Court (3 | 1        | AU30 | Gold              | 5                     | 5 PPB              | Fire Assay of 30g | 30g Fire Assay - AA | 37 Zr     | Zirconium     |                                | 49      | 1 P <b>PM</b>      | HCL:HNO3 (3 | :1) INDUC. COUP. PLAS     |
| 3 AgoL         Silver_semiquant,         6         1 PPM         Htt:H03 (3:1)         INDUC. COUP. PLASMA<br>INDUC COUP. PLASMA         SAPPLE TYPES         INMEER         SIZE FRACTIONS         INDUE SUPPLIASMA           5 Pb         Lead         69         2 PPM         Htt:H03 (3:1)         INDUC. COUP. PLASMA<br>INDUC COUP. PLASMA         SaPPLE TYPES         INMEER         SIZE FRACTIONS         INMEER         SAPPLE TYPES         INMEER         SAPPLE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        | Ag   | Silver            | 49                    | 0.2 PPM            | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 4 Cut         Copper         49         1 PPM         HCL:HN03 (3:1)         HNDLC CUP, PLASMA<br>INDUC CUP, PLASMA<br>STORE         MAMER SIZE FRACTIONS         NAMER SUPLE TREPARTIONS         NAME SUPLE TREPARTIONS         NAME SUPLE TREPARTIONS         NAME SUPLE TREPARTIONS         NAME SUPLE TREPARTION         NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3        | AgOL | Silver.semiquant. | 6                     | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 5 Pb         Lead         49         2 PPH         HCL:HN03 (3:1)         HADLC, COUP, PLASMA         S SOL         5         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        | Cu   | Соррег            | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA | SAMPLE TY | PES           | NUMBER                         | \$1ZE   | FRACTIONS          | NUMBER      | SAMPLE PREPARATIONS NUMBE |
| 6         2 Tric         49         1 PPM         HCL:HN03 (3:1)         INDUC. CUP. PLASMA<br>R         S SOL         5         1 -80         5         DRY, SIENC -80         5           7         ZrOL         Zirc, semiquant         1         0.1 PCT         HCL:HN03 (3:1)         INDUC. CUP. PLASMA<br>NICK 44         2         -150         44         CRSN/SPLIT. PLUV. 44<br>OVERRETONTYCG         39           9         Ni Nicket         49         1 PPM         HCL:HN03 (3:1)         INDUC. CUP. PLASMA<br>INDUC. CUP. PLASMA<br>NUCL 200P. PLASMA         9         METALLICS SCREENING         39           0         Co Cobalt         49         1 PPM         HCL:HN03 (3:1)         INDUC. CUP. PLASMA<br>INDUC. CUP. PLASMA         Results. THEREFORE, TUNSTER CONCENTRATION >1% WILL ENHANCE TUNSTERN<br>RESULTS. THEREFORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5        | Pb   | Lead              | 49                    | 2 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| Trodu         Circ, semiguant         1         0.1 PCT         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         PROCK         44         2         -150         44         CRUSK/SIG117, R PULV.         44           8         Mol ybdehum         49         1 PPH         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         WETALLICS         SCREENING         39           0         Cobalt         49         1 PPH         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         REARTS         21MC CoNCENTRATION >1% WILL ENHANCE TUNESTEN         WETALLICS         SCREENING         39           1         Cd         Cadhim         49         5 PPH         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         REMARCS: 21MC CONCENTRATION >1% WILL ENHANCE TUNESTEN CONCENTRATION           3         As         Arsenic         49         5 PPH         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         REARTS: 21MC CONCENTRATION >1% WILL ENHANCE TUNESTEN CONCENTRATION           4         Sb Antimory         49         5 PPH         H0L1HN03         (3:1)         INDUC. COUP. PLASMA         REARTS: 21MC CONCENTRATION >1% WILL ENHANCE         INVOICE TO: MR. ANDREW MOLARE         INVOICE TO: MR. ANDREW MOLARE           5         For         Tron         60         0.01 PCT<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6        | Zn   | Zinc              | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA | S SOIL    |               | 5                              | 1 -     | 80                 | 5           | DRY, SIEVE -80 5          |
| 7       ZOC, Zinc, semiquent       1       0.1 PCT       HOL HN03 (3:1)       INDUC. COUP. PLASM.       OVERAEIGHTXKG       39         9       Nicket       49       1 PPM       HOL:HN03 (3:1)       INDUC. COUP. PLASM.       METALLICS SCREENING       39         0       Co. Cobalt       49       1 PPM       HOL:HN03 (3:1)       INDUC. COUP. PLASM.       METALLICS SCREENING       39         1       Cd. Cadmiun       49       0.2 PPM       HOL:HN03 (3:1)       INDUC. COUP. PLASM.       REMARKS: ZINC CONCENTRATION >1% WILL ENHANCE TURGSTEN       METALLICS SCREENING       39         2       Bi Bismuth       49       5 PPM       HOL:HN03 (3:1)       INDUC. COUP. PLASM.       REMARKS: ZINC CONCENTRATION >1% WILL ENHANCE TURGSTEN CONCENTRATION       WOLDE       MULD BE GREATER THAN TRUE VALUE.       THANK YOU, RED         3       As Arsenic       49       5 PPM       HOL:HN03 (3:1)       INDUC. COUP. PLASM.       THANK YOU, RED       T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |                   |                       |                    |                   |                     | r rock    |               | 44                             | 2 -     | 150                | 44          | CRUSH/SPLIT & PULV, 44    |
| B Mo         Molybderum         49         1 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         METALLICS SCREENING         39           9 Ni         Nickeli         49         1 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         METALLICS SCREENING         39           10 Co         Cobalt         49         1 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARKS: ZINC CONCENTRATION >1%, WILL EMAANCE TUNGSTEN           2 Bi Bismuth         49         5 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARKS: ZINC CONCENTRATION >1%, WILL EMAANCE TUNGSTEN           3 As Arsenic         49         5 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARKS: ZINC CONCENTRATION         WOULD BE CREATER THAN TRUE VALUE.           3 As Arsenic         49         5 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARK YCLUP, REPARKA         NOULD BE CREATER THAN TRUE VALUE.           4 Ba Barium         49         1 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARK YCLUP, REPARKA         NOULD BE CREATER THAN TRUE VALUE.           7 Te Tellurian         49         1 PPM         HCL:HN03 (3:1)         INDUC. CDUP. PLASMA         REPARK YCLUP, REPARKA         NOULD BE CREATER THAN TRUE VALUE.           8 Ba Barium         49         1 PPM </td <td>7</td> <td>ZhOL</td> <td>Zinc, semiquant</td> <td>1</td> <td>0.1 PCT</td> <td>HCL:HN03 (3:1)</td> <td>INDUC. COUP. PLASMA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>OVERWEIGHT/KG 39</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7        | ZhOL | Zinc, semiquant   | 1                     | 0.1 PCT            | HCL:HN03 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             | OVERWEIGHT/KG 39          |
| 9 Ni Nickel 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>10 CC Cobolt 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>2 Bi Bismuth 49 0.2 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>2 Bi Bismuth 49 5 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>4 Sb Antimony 49 5 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>5 Fe Iron 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>7 Te Telturium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>9 Cr Chromium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>7 Te Telturium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>9 Cr Chromium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M Marganese 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 M CL:N03 (3:1) INDUC. CCUP. PLASMA<br>7 Te Telturium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>9 Cr Chromium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 A L Aluminum 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>6 A L Aluminum 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>7 Na Scrium 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>7 Ma Scrium 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 0.01 PCT NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>9 Sr Strontium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K Potassium 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K So Stabulin 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K So Stabulin 49 1 PPM NCL:N03 (3:1) INDUC. CCUP. PLASMA<br>8 K So Stabulin 49                                                                                             | 8        | Мо   | Molybdenum        | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             | METALLICS SCREENING 39    |
| 0 Co         Cobait         49         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >12; WILL ENHANCE TUNGSTEN           2 Bi Bismuth         49         5 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >12; WILL ENHANCE TUNGSTEN           3 As Arsenic         49         5 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >12; WILL ENHANCE TUNGSTEN           4 Sb Antimony         49         5 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >12; WILL ENHANCE TUNGSTEN           5 Fe Tron         49         0.01 PCT         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >12; WILL ENHANCE TUNGSTEN           6 Mm Marganese         49         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>FMARKS: ZINC CONCENTRATION >10; WOLCE TO: MR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           7 Te Tellurium         49         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>10; Woradium         REPART COPIES TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           2 W Tungsten         49         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>10; Woradium         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>10; Woradium         1 PPM         HCL:MNOS (3:1)         INDUC. COUP. PLASMA<br>10; Woradium         1 PPM         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9        | Ni   | Nickel            | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 1 Cd       Cadmium       49       0.2 PPM       MCL:HMOS (3:1)       JNDUC, COUP, PLASMA,<br>REMARCS: 2INC CONCENTRATION / X JILL ENHANCE TUNESTEN         2 Bi       Bismuth       49       5 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,<br>RESULTS: THEREFORE, TUNESTIC CONCENTRATION<br>WOULD BE GREATER THAN TRUE VALUE.         3 As       Arsenic       49       5 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,<br>HOUC, COUP, PLASMA,         4 Sb       Antimony       49       5 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         6 Mn       Marganese       49       1 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         6 Mn       Marganese       49       1 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         7 Te       Tellurium       49       1 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         8 Barlium       49       1 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         0 V       Vanadium       49       1 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         2 W       Turgsten       49       20 PPM       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         3 La       Lahanunu       49       0.01 PCT       HCL:HMOS (3:1)       INDUC, COUP, PLASMA,         4 Al       Aluminum <td>Ō</td> <td>Co</td> <td>Cobalt</td> <td>49</td> <td>1 PPM</td> <td>HCL:HNO3 (3:1)</td> <td>INDUC. COUP. PLASMA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ō        | Co   | Cobalt            | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 2         Bismuth         49         5         PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA         RESULTS. THEREFORE, TWASTEN CONCENTRATION<br>WOULD BE GREATER THAN THUE VALUE.           3         As         Arsenic         49         5         PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA         THANK YOU, RRD           5         Fe         1ron         69         0.01 PCT         HCL:HNOS (3:1)         INDUC. COUP. PLASMA         THANK YOU, RRD           6         Mn         Marganese         49         1 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           6         Mn         Marganese         49         1 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           7         Te         Telluriun         49         1 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           9         Cr         Chromian         49         1 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           15         Trin         49         20 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           2         V         Turgisten         49         20 PPM         HCL:HNOS (3:1)         INDUC. COUP. PLASMA           3         La         Lantharum         49         0.01 PCT         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | Cđ   | Cadmium           | 49                    | 0.2 PPM            | HCL:HNO3 (3:1)    | INDUC, COUP, PLASMA | REMARKS:  | ZINC CONCENTR | ATION >1%                      | WILL E  | NHANCE TUNGSTEN    | ł           |                           |
| Ass         Arsenic         49         5 PPM         HCL:HN03 (3:1)         INDUC. OUP. PLASMA         MOUL BE GREATER THAN TRUE VALUE.           4 Sb         Antimony         49         5 PPM         HCL:HN03 (3:1)         INDUC. OUP. PLASMA         THANK YOU, RRD           6 Mn         Marganese         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA         REPORT COPIES TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           6 Mn         Marganese         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA         REPORT COPIES TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           7 Te         Teilurium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA         INVOICE TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           9 Cr         Chromium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           2 W         Tungsten         49         20 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           3 La         Lanthanum         49         0.01 PCT         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           4 A L         Aluminam         49         0.01 PCT         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           5 Mg Magnesium         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2        | Bi   | Bismuth           | 49                    | 5 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           | RESULTS. THE  | REFORE, TU                     | INGSTEN | CONCENTRATION      |             |                           |
| 3 As       Arsenic       49       5 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA       THANK YOU, RRD         4 Sb       Antimory       49       5 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         5 Fe       Iron       49       0.01 PCT       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         6 Mr       Manganese       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         7 Te       Telturium       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         8 Ba       Barium       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         9 Cr       Chronium       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         9 Cr       Chronium       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         1 Sn       Tin       49       20 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         3 La       Lantharum       49       1 PPM       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         5 Mg       Magnesium       49       0.01 PCT       H0L:HN03 (3:1)       INDUC. COUP. PLASMA         6 Ca       Calcium       49       0.01 PCT       H0L:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |                   |                       |                    |                   |                     |           | WOULD BE GREA | TER THAN 1                     | IRUE VA | LUE.               |             |                           |
| 4 Sb         Antimony         49         5 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           6 Mn         Manganese         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA         REPORT COPIES TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           7 Te         Tellunium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA         REPORT COPIES TO: NR. ANDREW MOLNAR         INVOICE TO: MR. ANDREW MOLNAR           8 Ba         Barium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           9 Cr         Chromium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           0 V         Vanadium         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           2 W         Tungsten         49         20 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           3 La         Lanthanum         49         1 PPM         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           4 L         Aluminum         49         0.01 PCT         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           5 Mg         Magnesium         49         0.01 PCT         HCL:HN03 (3:1)         INDUC. COUP. PLASMA           6 Ca         Calci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3        | As   | Arsenic           | 49                    | 5 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           | THANK YOU, RR | D                              |         |                    |             |                           |
| 5 Fe         Iron         49         0.01 PCT         H0L:HNO3 (3:1)         INDUC. COUP. PLASMA<br>(F)         REPORT COPIES TD: HR. ANDREW MOLNAR         INVOICE TD: HR. ANDREW MOLNAR           7 Te         Tellurium         49         10 PPH         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA         REPORT COPIES TD: HR. ANDREW MOLNAR         INVOICE TD: HR. ANDREW MOLNAR           8 Ba         Barium         49         1 PPH         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA         INVOICE TD: HR. ANDREW MOLNAR           9 Cr         Chromium         49         1 PPH         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           1 Sn         Tin         49         20 PPM         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           2 W         Tungsten         49         20 PPM         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           3 La         Lathanum         49         1 PPH         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           4 Al uminum         49         0.01 PCT         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           5 Mg         Magnesium         49         0.01 PCT         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           6 Ca         Calcium         49         0.01 PCT         HCL:HNO3 (3:1)         INDUC. COUP. PLASMA           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4        | Sb   | Antimony          | 49                    | 5 PPM              | HCL:HNOS (S:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 6 Mm Manganese 49 7 PPM HCL:HNO3 (3:1) INDUC. DUP. PLASMA<br>7 Te Tellurium 49 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>8 Ba Barium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>9 Cr Chromium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>1 Sn Tin 49 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>2 W Tungsten 49 20 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>3 La Lantharum 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>4 Al Aluminum 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>5 Mg Magnesium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>5 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>8 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>8 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>8 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>18 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>19 S Tstrontium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>10 K Potassium 49 0.01 PCT HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>10 Ga Gallium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>11 Ga Gallium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>12 Li Lithium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>13 BA Gallium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>14 Ga Gallium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>15 Mg Magnesium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>16 Ga Calcium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>17 A Sodium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>18 K Potassium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>19 Sr Strontium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>19 A Se Scandium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>10 A Niobium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>13 Nb Niobium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>14 Se Scandium 49 1 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA<br>15 Ta Tantalum 49 10 PPM HCL:HNO3 (3:1) INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                  | 5        | Fe   | Iron              | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 7 Te       Tellurium       49       10 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         8 Ba       Barium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9 Cr       Chromium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         0 V       Vanadium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         1 Sn       Tin       49       20 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         3 La       Lanthanun       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         3 La       Lanthanum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         4 Al       Aluminum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         5 Mg       Magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         6 Ca       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         8 K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9 Sr       Strontium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6        | Mri  | Manganese         | 49                    | 1 PPM              | HCL:HNO5 (3:1)    | INDUC. LOUP. PLASMA | REPORT CO | PIES ID: MR.  | ANDREW MOL                     | .NAR    |                    | INVOICE 1   | O: MR. ANDREW MOLNAR      |
| 8       Barium       49       1 PPM       RUL:RNO3 (3:1)       INDUC. COUP. PLASMA         9       Cr       Chromium       49       1 PPM       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         0       V       Vanadium       49       1 PPM       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         1       Sn       Tin       49       20 PPM       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         2       W       Tungsten       49       20 PPM       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         3       La       Lanthanum       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         45       Al       Aluminum       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         15       Mgnesium       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         16       Ga       Calcium       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         17       Na Sodium       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         18       K       Potassium       49       0.01 PCT       HCL:RNO3 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>/</u> | Te   | Tellurium         | 49                    | 10 PPM             | HCL:HNO5 (5:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 9       Cr       Chromium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         0       V       Vanadium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         1       Sn       Tin       49       20 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         2       W       Tungsten       49       20 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         3       La       Lanthanum       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         4       Al minum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         5       Mg magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         6       Ca Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         7       Na Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         8       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9       Sr Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1 PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8        | Ba   | Bartum            | 49                    | 1 PPM              | HCL;HNU3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 0       V       Vanadium       49       1       PPM       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         1       Sn       Tin       49       20       PPM       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         2       W       Tungsten       49       1       PPM       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         3       La       Lanthanum       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         4       Al       Aluminum       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         5       Mg       Magnesium       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         6       Ca       Calcium       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         7       Na       Sodium       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         8       K       Potassium       49       0.01       PCT       HCL:HN03       (3:1)       INDUC. COUP. PLASMA         9       Sr       Strontium       49       1       P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9        | Сr   | Chromium          | 49                    | 1 PPM              | HCL:HN03 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 1       Sn       Tin       49       20       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         2       W       Tungsten       49       20       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         3       La       Lanthanum       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         45       Al       Aluminum       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Mg       Magnesium       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         16       Ca       Calcium       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         16       Ca       Calcium       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         17       Na       Sodium       49       0.01       PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium       49       1.PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Ga       Gallium       49       2.PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Nb       Niobium       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Û        | V    | Vanadium          | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 2 W       Tungsten       49       20 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         3 La       Lanthanum       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         4 Al       Aluminum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15 Mg       Magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         6 Ga       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         7 Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         8 K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9 Sr       Strontium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9 Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         9 Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12 Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12 Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11       | \$n  | Tin               | 49                    | 20 PPM             | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 3       La       Lanthanum       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         4       Al       Aluminum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Mg       Magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         16       Ca       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         16       Ca       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         17       Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         18       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         11       Ga       Gallium       49       2 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2        | W    | Tungsten          | 49                    | 20 PPM             | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 4       Al       Aluminum       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         55       Mg       Magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         16       Ca       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         17       Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         17       Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         18       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         11       Ga       Gallium       49       2 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         13       Nb       Niobium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23       | La   | Lanthanum         | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 55       Mg       Magnesium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         66       Ca       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         77       Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         78       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         78       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         78       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         79       Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         70       Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         72       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         73       Nb       Niobium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         74       Sc       Scandium       49       5 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         74       Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4        | AL   | Aluminum          | 49                    | 0.01 PCT           | HCL:HN03 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 16       Calcium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         17       Na       Sodium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         18       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         18       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         13       Nb       Niobium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         14       Sc       Scandium       49       5 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15 <t< td=""><td>25</td><td>Mg</td><td>Magnesium</td><td>49</td><td>0.01 PCT</td><td>HCL:HNO3 (3:1)</td><td>INDUC. COUP. PLASMA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25       | Mg   | Magnesium         | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 17NaSodium490.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA18KPotassium490.01 PCTHCL:HN03 (3:1)INDUC. COUP. PLASMA19SrStrontium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA10YYttrium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA16Galtium492 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA17GaGaltium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA18KNicbium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA19KKScandium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA13NbNicbium491 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA14ScScandium495 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum4910 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum4910 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum4910 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum490.0 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum490.0 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum490.0 PPMHCL:HN03 (3:1)INDUC. COUP. PLASMA15TaTantalum49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26       | Ca   | Calcium           | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 18       K       Potassium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         19       Sr       Strontium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         11       Ga       Gallium       49       2 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         13       Nb       Niobium       49       1 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         14       Sc       Scandium       49       5 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       10 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       10 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       0.0 PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27       | Na   | Sodium            | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 19       Sr       Strontium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         10       Y       Yttrium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         11       Ga       Gallium       49       2       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         12       Li       Lithium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         13       Nb       Niobium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         14       Sc       Scandium       49       5       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       10       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       0.01       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       Tantalum       49       0.01       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         15       Ta       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28       | κ    | Potassium         | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| K0YYttrium491PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK1GaGaltium492PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK2LiLithium491PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK3NbNicbium491PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK3NbNicbium491PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK4ScScandium495PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK5TaTantalum4910PPMHCL:HNO3 (3:1)INDUC. COUP. PLASMAK5TaTantalum490.01PCTHCL:HNO3 (3:1)INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9        | Sr   | Strontium         | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| i1       Ga       Galtium       49       2       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i2       Li       Lithium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i3       Nb       Niobium       49       1       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i4       Sc       Scandium       49       5       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i5       Ta       Tantalum       49       5       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i5       Ta       Tantalum       49       10       PPM       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i5       Ta       Tantalum       49       0.01       PCH       HCL:HN03 (3:1)       INDUC. COUP. PLASMA         i5       Ta       Tantalum       49       0.01       PCH       HCL:HN03 (3:1)       INDUC. COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0      | Y    | Yttrium           | 49                    | 1 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 12       Li       Lithium       49       1       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         13       Nb       Niobium       49       1       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         14       Sc       Scandium       49       5       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         15       Ta       Tentalum       49       10       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         15       Ta       Tentalum       49       10       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         15       Ta       Tentalum       49       10       PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         15       Ta       Tentalum       49       0.01       PCT       HCL:HN03 (3:1)       INDUC, COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51       | Ga   | Gallium           | 49                    | 2 PPM              | HCL:HNO3 (3:1)    | INDUC, COUP, PLASMA |           |               |                                |         |                    |             |                           |
| 33       Nb       Niobium       49       1 PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         34       Sc       Scandium       49       5 PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         35       Ta       Tentalum       49       10 PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         35       Ta       Tentalum       49       10 PPM       HCL:HN03 (3:1)       INDUC, COUP. PLASMA         36       Ti       Titapium       49       0.01 PCT       HCL:HN03 (3:1)       INDUC, COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32       | Li   | Lithium           | 49                    | 1 PPM              | HCL: HNO3 (3:1)   | INDUC, COUP, PLASMA |           |               |                                |         |                    |             |                           |
| 44 Sc Scandium 49 5 PPM HCL:HN03 (3:1) INDUC, COUP. PLASMA<br>55 Ta Tentalum 49 10 PPM HCL:HN03 (3:1) INDUC, COUP. PLASMA<br>56 Ti Titapium 49 0.01 PCT HCL:HN03 (3:1) INDUC, COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33       | Nb   | Niobium           | 49                    | 1 PPM              | HCL:HN03 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 55 Ta Tentalum 49 10 PPM HCL:HN03 (3:1) INDUC, COUP. PLASMA<br>56 Ti Titanium 49 D.D1 PCT HCL:HN03 (3:1) INDUC, COUP. PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34       | Sc   | Scandium          | 49                    | 5 PPM              | HCL:HNO3 (3:1)    | INDUC. COUP. PLASMA |           |               |                                |         |                    |             |                           |
| 36 TI TITADIUM 49 D.DJ PCT HCL:HNO3 (3;1) INDUC, COUP, PLASMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35       | Ta . | Tantalum          | 49                    | 10 PPM             | HCL:HNO3 (3:1)    | INDUC, COUP, PLASMA |           |               |                                |         |                    |             |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36       | τi   | Titanium          | 49                    | 0.01 PCT           | HCL:HNO3 (3:1)    | INDUC, COUP, PLASMA |           |               |                                |         |                    |             |                           |

# Géochemical Lab Report

DATE PRINTED: 24-OCT-96

CLIENT: RIO MINERALS LTD.



PROJECT: NONE GIVEN

| REPORT: V9  | 6-01714.0 ( | COMP | PLETE 🕽 |                  |        |      | • •       |       |     |       |                 |       |      |      |       |              |                 |                  |                |      |       |        |          | DA     | TE PR | INTED        | 1: 24- | - OCT | -96   |      | PAGE   | 1A |
|-------------|-------------|------|---------|------------------|--------|------|-----------|-------|-----|-------|-----------------|-------|------|------|-------|--------------|-----------------|------------------|----------------|------|-------|--------|----------|--------|-------|--------------|--------|-------|-------|------|--------|----|
| SAMPLE      | ELEMENT     | Au30 | Ag A    | lgOL Cu          | ନ୍ଦ    | Zn Z | InOL Mo   | Nī    | Co  | Cd    | Bi As           | Sb    | Fe   | Mn   | Тe    | Ba           | Сr              | v s              | in W           | La   | A     | Mg     | E E      | a Na   | к     | Sr           | ۲      | Ga    | Li    | ΝЬ   | Sc 1   | ſa |
| NUMBER      | UNITS       | PPB  | PPM     | PPM PPM          | PPM    | PPM  | PCT PPM F | PPM F | PM  | PPM F | PM PPM          | PPM   | PCT  | PPM  | PPM   | PPM P        | PM P            | PPM PP           | m ppm          | PPM  | PCI   | Г РСТ  | PCI      | PCT    | PCT   | PPM          | PPM (  | PPM ( | PPM F | PM F | PPM PF | M  |
| S1 8+50N 1  | +00W        | 7    | <0.2    | 79               | 6      | 78   | 2         | 21    | 12  | 0.3   | <5 <5           | <5    | 2.33 | 845  | <10   | 116          | 31              | 48 <2            | 20 <20         | 5    | 1.77  | 2 1.02 | 0.93     | 5 0.04 | 0.43  | 132          | 6      | 2     | 9     | 2    | <5 <1  | 10 |
| S1 11+DON   | 1+00W       | <5   | <0.2    | 73               | 5      | 61   | 2         | 26    | 11  | <0.2  | <5 <5           | <5    | 2.79 | 619  | <10   | 82           | 48              | 68 <2            | 20 <20         | 5    | 1.39  | 9 1.43 | 1.38     | 3 0.05 | 0.34  | 100          | 5      | z     | 7     | 2    | <5 <   | 10 |
| s1 15+90N   | 0+40W       | 9    | <0.2    | 53               | z      | 52   | z         | 22    | 12  | <0.2  | <5 <5           | <5    | 3.60 | 702  | <10   | 107          | 43              | 86 <2            | 20 <20         | 4    | 1.32  | 2 0.86 | 0.55     | 5 0.03 | 0.33  | 47           | 5      | <2    | 6     | 1    | <5 <1  | 10 |
| \$1 BLO 17+ | -60N        | <5   | <0.2    | 68               | 8      | 98   | 3         | 19    | 12  | 0.4   | <5 <5           | <5    | 2.53 | 872  | <10   | 121          | 31              | 47 <2            | 20 <20         | 6    | 2.0   | 3 0.91 | 0.59     | 0.03   | 0.43  | 61           | 6      | 4     | 10    | 1    | <5 <   | 10 |
| S1 BL21+60  | <b>1</b>    | <5   | <0.2    | 36               | <2     | 52   | 1         | 17    | 8   | <0.2  | <5 <5           | <5    | 2.35 | 409  | <10   | 80           | 40              | 62 <2            | 20 <20         | 4    | 0.89  | 0.95   | 2.32     | 2 0.04 | 0.16  | , 78         | 4      | <2    | 5     | <1   | <5 <1  | 10 |
| AR1         |             |      | <0.2    | 1 <b>771</b>     | 7      | 1415 | 3         | 10    | 19  | 0.5   | 10 40           | <5    | 4.62 | 1379 | <10   | 126          | 27              | 75 < <i>i</i>    | 20 <20         | 5    | 1.80  | 0 1.22 | 8,4      | 0.01   | 0.69  | · 75         | 8      | 4     | 6     | <1   | 9 <'   | 10 |
| ARZ         |             |      | 7.9     | 1387             | 369    | 1379 | 5         | 8     | 6   | 24.5  | <5 127          | <5    | 1.64 | 1202 | <10   | 33 1         | 115             | 11 <2            | 20 <20         | <1   | 0.18  | 3 1.54 | 3.6      | 3 <.01 | 0.10  | 50           | 2      | 2     | <1    | <1   | <5 <'  | 10 |
| AR4         |             |      | <0.2    | 561              | <2     | 458  | 2         | 24    | 21  | <0.2  | <5 39           | <5    | 3.46 | 764  | <10   | 232          | 66 <sup>-</sup> | 101 <2           | 20 <20         | I Z  | 2.19  | 2.02   | 2.64     | 4 0.05 | 0.09  | 149          | 5      | 5     | 12    | <1   | 7 <    | 10 |
| AR5         |             |      | <0.2    | 538              | <2     | 462  | 2         | 22    | 18  | <0.2  | 5 <5            | <5    | 3.97 | 953  | <10   | 143          | 63 '            | 121 <2           | 20 <20         | 3    | 2.4   | 3 2.16 | 3.2      | 5 0.04 | 0.61  | 167          | 6      | 5     | 10    | <1   | 10 <'  | 10 |
| AR6         |             |      | 126.4   | 896              | 5819   | 3818 | 4         | 6     | 2   | 90.7  | 66 106          | <5    | 3.49 | 392  | 32    | 15 1         | 126             | 5 <2             | 20 <20         | 1    | 0.14  | 4 0.20 | 0.5      | 7 < 01 | 0.09  | 26           | <1     | <2    | <1    | <1   | <5 <   | 10 |
| AR7A        |             |      | 59.8    | 302              | 538    | 521  | 4         | 8     | 16  | 12.4  | <5 78           | <5    | 4.22 | 1903 | 31    | 47           | 31              | 27 <2            | 20 <20         | 2    | 0,5   | 5 1.90 | ) 5.73   | 3 <.01 | 0.39  | 262          | 4      | 4     | <1    | <1   | <5 <'  | 10 |
| AR7B        |             |      | 1.3     | 69               | 45     | 196  | 2         | 8     | 9   | 2.6   | <5 26           | <5    | 2.79 | 1873 | <10   | 24           | 90              | 17 <2            | 20 <20         | <1   | 0.2   | 4 2.0Z | 5.5      | 5 <.01 | 0.17  | 279          | 3      | 6     | <1    | <1   | <5 <   | 10 |
| AR8         |             |      | 93.5    | 952              | >10000 | 8043 | 9         | 14    | 4 2 | 212.9 | <5 134          | 35    | 4.08 | 515  | 37    | <b>1</b> 5 1 | 180             | 5 <2             | 20 51          | <1   | 0.13  | 2 0.40 | 0.76     | 5 <.01 | 0.09  | 36           | <1     | <2    | <1    | <1   | <5 <   | 10 |
| AR9         |             |      | 0.5     | 91               | 205    | 320  | <1        | 280   | 24  | 8.5   | <5 <5           | <5    | 2.68 | 1947 | <10   | 12 4         | 422             | 45 <2            | 20 <20         | ) 3  | 1.4   | 2 3.87 | ' >10.0  | ) <.01 | 0.03  | 346          | 2      | 7     | 8     | <1   | 7 <1   | 10 |
| AR10        |             |      | >200.0  | >500 8190        | >10000 | 6624 | <1        | 63    | 67  | 224.4 | <5 502          | >2000 | 0.91 | 442  | 149   | 19 1         | 192             | 5 <2             | 20 <20         | ) <1 | 0.1   | 3 0.92 | 2 1.00   | 5 <.01 | 0.04  | , <b>S</b> O | <1     | <2    | <1    | <1   | <5 <1  | 10 |
| AR11        |             |      | 1.5     | 56               | 36     | 86   | 2         | 10    | 11  | 0.7   | <5 <5           | 7     | 2.81 | 859  | <10   | .89          | 76              | 30 <2            | 20 <20         | 2    | 0.39  | 9 1.59 | 5.63     | 3 0.01 | 0.28  | 3 161        | 2      | <2    | <1    | <1   | <\$ <1 | 10 |
| AR12        |             |      | <0.2    | 49               | 70     | 220  | <1        | 32    | 12  | 4.5   | <5 <5           | <5    | 3.61 | 1565 | <10   | 67           | 12              | 88 <2            | 20 <20         | 5    | 0.7   | 2 3.27 | / >10.00 | ) < 01 | 0.30  | 323          | 5      | 2     | 5     | <1   | 9 <1   | 10 |
| AR13        |             |      | >200.0  | >500 <b>1499</b> | >10000 | 4260 | 2         | 16    | 21  | 38.1  | <5 94           | 58    | 1.56 | 70   | 199   | 10 2         | 238             | 2 <2             | 20 <20         | <1   | 0.03  | 3 0.01 | 0.1      | 1 <.01 | 0.04  | , 33         | <1     | <2    | <1    | <1   | <5 <1  | 10 |
| AR14        |             |      | >200.0  | 386 1174         | >10000 | 1202 | 4         | 17    | 2   | 36.6  | 6 9Z            | 33    | 1.35 | 155  | 113   | 92           | 218             | 4 <              | 20 <20         | ) <1 | 0.0   | 2 0.46 | 0.6      | 8 <.01 | 0.03  | i <b>3</b> 0 | <1     | <2    | <1    | <1   | <5 <1  | 10 |
| AR15        |             |      | 3.7     | 1498             | 46     | 114  | 62        | 19    | 13  | 0,6   | <b>&lt;5</b> <5 | <5    | 2.85 | 835  | <10   | 120 1        | 119             | 65 <;            | 20 <20         | ) 2  | 2 1.1 | 8 1.42 | 2 2.10   | 5 0.06 | 0.72  | : 49         | 5      | <2    | 11    | <1   | 7 <1   | łD |
| JR1         |             |      | 177.1   | 3775             | >10000 | 2719 | 67        | 8     | 4   | 91.7  | 12 584          | 1558  | 1.63 | 457  | 29    | 97           | 266             | 7 <              | 20 251         | <1   | 0.1   | 4 0.12 | 2 0.40   | ) <.01 | 0.05  | 23           | 1      | <2    | <1    | <1   | <5 <   | 10 |
| JR2         |             |      | 10.8    | 2406             | 730    | 3496 | 75        | 15    | 17  | 69.4  | 954             | 191   | 4.28 | 1629 | <10   | 31           | 57              | 91 <2            | 20 117         | r 1  | 1.7   | B 1.79 | 5.8      | 5 0.01 | 0.24  | 108          | 6      | 5     | 14    | <1   | 11 <1  | 10 |
| JR3         |             |      | 109.6   | 2613             | >10000 | 4712 | 116       | 7     | 6 ' | 167.5 | 32 227          | 1344  | 4.34 | 1988 | 19    | 125 1        | 115             | 22 <             | 20 <b>38</b> 0 | ) <1 | 0.4   | 1 1.23 | 2.8      | 7 0.02 | 0.28  | 3 69         | 3      | 4     | 1     | <1   | <5 <   | 10 |
| JR4         |             |      | 1.0     | 305              | 129    | 167  | 5         | 12    | 15  | 2.9   | <5 <5           | 5     | 2.63 | 744  | <10   | 21           | 53              | 81 <             | 20 28          | 3 <1 | 1.9   | 5 1.56 | 6.6      | 4 0.08 | 0.06  | 5 138        | 3      | <2    | . 9   | <1   | -5 <   | 10 |
| JR6         |             |      | 4.0     | 340              | 96     | 2190 | 12        | 13    | 15  | 24.0  | <5 40           | 57    | 4.35 | 1841 | <10   | 59           | 35              | <b>7</b> 5 <     | 20 <20         | ) 2  | 2 1.6 | 6 1.85 | 5 9.4    | 5 0.02 | 0.45  | ; 131        | 9      | 3     | 12    | <1   | 13 <1  | 10 |
| JR8         |             |      | 1.4     | 236              | 27     | 179  | 5         | 20    | 23  | 1.0   | 8 <5            | 70    | 5.47 | 1253 | <10   | 68           | 23              | 47 <             | 20 <20         | ) <1 | 0.7   | 2 2,54 | 7.8      | 0 <.01 | 0.5/  | \$ 225       | 6      | <2    | <1    | <}   | 15 <   | 10 |
| JR9         |             |      | >200.0  | 246 3290         | >10000 | 932  | . 107     | 5     | 2   | 56.5  | 27 333          | >2000 | 1.71 | 86   | 56    | 11 a         | 227             | <sup>3</sup> 3 < | 20 249         | > <1 | 0.0   | 5 0.02 | 2 0.1    | 8 <.01 | 0.0   | 3 21         | <1     | <2    | <1    | <1   | <5 <′  | 10 |
| JR10        |             |      | 89.0    | 2800             | 2057   | 2894 | 126       | 11    | 8   | 78.1  | 5 240           | 1590  | 3.22 | 1394 | <10   | 35 ·         | 140             | 16 <             | 20 33          | 5 <1 | 0.1   | 7 2.40 | 5.8      | 9 <.01 | 0.11  | 1 72         | 3      | <2    | <1    | <1   | <5 <'  | 10 |
| JR11        |             |      | >200.0  | 263 8529         | >10000 | 4476 | 917       | 8     | 5   | 216.7 | 18 774          | >2000 | 1.86 | 741  | 45    | 124          | 204             | 6 <              | 20 <20         | ) <1 | 0.1   | 9 1.35 | 5 2.6    | 0 <.01 | 0.12  | 2 50         | 3      | <2    | <1    | <1   | <5 <   | 10 |
| JR12        |             |      | 6.4     | <b>3</b> 44      | 151    | 380  | 70        | 15    | 21  | 5.1   | <5 40           | . 152 | 4.60 | 1227 | ' <10 | 61           | 36              | 85 <             | 20 <20         | ) <1 | 1.4   | 7 2.52 | 2 6.7    | 0 0.01 | 0.7   | \$ 116       | 7      | <2    | 6     | <1   | 13 <   | 10 |

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

CLIENT: RIO MINERALS LTD.

Geochemicar 1 Lab Report

PROJECT: NONE GIVEN

۲

| REPORT: V96-01714.0 | ( COMPLETE )                                                                                                   |      | DATE PRINTED: 24-OCT-96 | PAGE 1B |
|---------------------|----------------------------------------------------------------------------------------------------------------|------|-------------------------|---------|
|                     | · · · · · · · · · · · · · · · · · · ·                                                                          | <br> |                         |         |
| SAMPLE ELEMEN       | t ti Zr                                                                                                        |      |                         |         |
| NUMBER UNIT         | S PCT PPM                                                                                                      |      |                         |         |
|                     |                                                                                                                |      |                         |         |
| S1 8+50N 1+00W      | 0.08 5                                                                                                         |      |                         |         |
| \$1 11+DON 1+OOW    | 0.09 2                                                                                                         |      |                         |         |
| s1 15+90N 0+40W     | 0.11 5                                                                                                         |      |                         |         |
| \$1 BLO 17+60N      | 0.09 7                                                                                                         |      |                         |         |
| S1 BL21+60W         | 0.10 2                                                                                                         |      |                         |         |
|                     |                                                                                                                |      |                         |         |
| ARI                 | 0.04 <1                                                                                                        |      |                         |         |
| AR2                 | <.01 <1                                                                                                        |      |                         |         |
| AR4                 | 0.18 2.3                                                                                                       |      |                         |         |
| AR5                 | 0.20 2                                                                                                         |      |                         |         |
| AR6                 | <.01 <1.                                                                                                       |      |                         |         |
|                     | and a second |      |                         |         |
| AR7A                | <.01 <1                                                                                                        |      |                         |         |
| AR7B                | <.U1 <1                                                                                                        |      |                         |         |
| AR8                 | <.U1 <1                                                                                                        |      |                         |         |
| ARY                 |                                                                                                                |      |                         |         |
| AKTU                | <.01 <1                                                                                                        |      |                         |         |
| 4544                | - 01 - 41                                                                                                      |      |                         |         |
| ARTI                | <.01 NF                                                                                                        |      |                         |         |
| AR 12               | < 01 ×1                                                                                                        |      |                         |         |
| AK 12               | < 01 < 1                                                                                                       |      |                         |         |
| AR 19               | 0.00 4                                                                                                         |      |                         |         |
|                     | 0.09                                                                                                           |      |                         |         |
| .IR1                | <.01 1                                                                                                         |      |                         |         |
| .182                | 0.07 3                                                                                                         |      |                         |         |
| .183                | <_D1 1                                                                                                         |      |                         |         |
| .IR4                | 0.20 3                                                                                                         |      |                         |         |
| JR6                 | 0.03 2                                                                                                         |      |                         |         |
|                     |                                                                                                                |      |                         |         |
| JR8                 | <.01 Tel:                                                                                                      |      |                         |         |
| .100                | < 01 (\$1)                                                                                                     |      |                         |         |
| .1910               | < 01 <1                                                                                                        |      |                         |         |
| JR11                | < 01 <1                                                                                                        |      |                         |         |
| .1812               | 0.02 <1                                                                                                        |      |                         |         |
|                     |                                                                                                                |      |                         |         |



CLIENT: RIO MINERALS LTD.

REPORT: V96-01714.0 ( COMPLETE )

|          |               |        |          |              |        |      |     |            |     |       |     |            |       |        |        |            |     | • • • • |     |     |      |     |      |        |             |          |      |                  |            |         |     |       |        |                  |     |
|----------|---------------|--------|----------|--------------|--------|------|-----|------------|-----|-------|-----|------------|-------|--------|--------|------------|-----|---------|-----|-----|------|-----|------|--------|-------------|----------|------|------------------|------------|---------|-----|-------|--------|------------------|-----|
| SAMPLE   | ELEMENT ALL30 | Ag A   | igol Cu  | РЬ           | Zn     | Znûl | Ma  | Ni         | Co  | Cd    | Bi  | As         | SÞ    | Fe     | Мп     | Te         | ßa  | Cr      | ۷   | Sn  | W    | La  | Al   | Mg     |             | Ca       | Na   | ĸ                | Sr.        | Y       | Ga  | Li    | Nb     | Sc 1             | Īa  |
| NUMBER   | UNITS PPB     | PPM    | PPM PPM  | PPM          | PPM    | PCT  | PPM | PPM 1      | PPM | PPM   | PPM | PPM        | PPM   | PCT    | PPM    | PPM        | PPM | PPM     | PPM | PPM | PPM  | PPM | PCT  | PCT    | p           | ÇT       | РСТ  | PCT              | PPM        | PPM     | PPM | PPM : | PPM F  | PM PP            | PM  |
| .IR13    |               | 63.7   | 1530     | 837          | 1018   |      | 116 | 10         | 6   | 37.6  | <5  | 132        | 932   | 2.20   | 1775   | <10        | 59  | 124     | 21  | <20 | 33   | <1  | 0.25 | 2.28   | ; >10.      | 00       | <.01 | 0.13             | 118        | 4       | 2   | <1    | <1     | <5 <1            | 10  |
| .IR14    |               | 1.5    | 317      | 80           | 307    |      | 26  | 9          | 14  | 3.6   | 37  | <5         | - 29  | 3.32   | 2318   | <10        | 71  | 41      | 116 | <20 | 125  | 4   | 2.70 | 2.05   | >10.        | 00       | 0.13 | 0.2 <del>6</del> | 168        | 9       | 10  | 22    | <1     | 12 <1            | 10  |
| JR15     |               | 55.3   | 1478     | 4139         | >10000 | 1.5  | 27  | 16         | 12  | 276.8 | 37  | 112        | 961   | 4.20   | 1986   | <10        | 15  | 240     | .12 | <20 | <58  | <1  | 0.30 | 0.94   | 1.          | 94       | <.01 | 0.18             | i 35       | 1.      | 3   | <1    | <1     | <5 <1            | 10  |
| JR16     |               | 79.2   | 4737     | >10000       | 1591   |      | 35  | 13         | 35  | 45.9  | 31  | 301        | 508   | 4.72   | 1997   | 28         | 18  | 111     | 16  | <20 | 239  | <1  | 0.22 | 2.39   | 6.          | 82       | <.01 | 0.12             | ! 74       | 4       | 4   | <1    | <1     | ~5 <1            | 10  |
| JR17     |               | 4.3    | 1531     | 204          | 731    |      | 20  | 22         | 137 | 7.1   | 14  | <b>4</b> 4 | 63    | >10.00 | 3359   | <10        | 35  | 62      | 52  | 23  | 160  | <1  | 0.68 | 3.06   | >10.        | 00       | <.01 | 0.36             | <b>106</b> | 5       | 5   | . 4   | 3      | 11 <1            | 10  |
|          |               |        |          |              |        |      |     |            |     |       |     |            |       |        |        |            |     |         |     |     |      |     |      |        |             |          |      |                  |            |         |     | •     |        |                  |     |
| JR18     |               | 14.7   | .770     | 289          | 442    |      | 27  | 13         | 13  | 8.0   | 24  | <5         | 108   | 4.34   | 2030   | <10        | 35  | 69      | 112 | <20 | - 91 | <1  | 1:40 | 1.80   | 9           | 42       | 0.01 | 0.30             | J 149      | 6       | 4   | 10    | <1     | 11 <'            | 10  |
| JR19     |               | 0.3    | 816      | 5            | 99     |      | -15 | 10         | 41  | <0.2  | <5  | <5         | 33    | 5.57   | 1687   | <10        | 45  | 33      | 93  | <20 | <20  | 1   | 1.07 | 1.60   | ) 5.        | .86      | 0.01 | 0.38             | 1 124      | 8       | 7   | 20    | 1      | 14 <             | 10  |
| JR20     |               | 90.9   | 4000     | 1313         | 992    |      | 15  | 6          | 4   | 25.9  | 54  | 401        | >2000 | 3.28   | 643    | 22         | 8   | 164     | . 9 | <20 | 238  | <1  | 0.06 | 5 0.22 | 2 0.        | 62       | <.01 | 0.03             | ; 16       | 1       | <2  | <1    | 1      | <b>&lt;</b> 5 <′ | 10  |
| JR21     |               | 38.4   | 1388     | 1278         | 575    |      | 90  | 10         | ÷ 2 | 14.8  | <5  | 143        | 746   | 0.89   | 1366   | <10        | 75  | 205     | 10  | <20 | 38   | <1  | 0.15 | 1.28   | 3 2.        | .74      | <.01 | 0.10             | ) 53       | 2       | 3   | <1    | <1     | <5 <′            | 10  |
| JR23     |               | 0.3    | 197      | 10           | 104    |      | 124 | 18         | 7   | <0.2  | 24  | <5         | -<5   | 3.15   | 882    | <10        | 123 | 151     | 117 | <20 | 502  | <1  | 1.57 | 1.87   | 2.          | .77      | 0.10 | 0.98             | 3 105      | 5       | 4   | 31    | 1      | 13 <             | 10  |
|          |               |        |          |              |        |      |     | _          |     |       |     | _          |       |        |        |            | -   |         |     | -   |      |     |      |        |             |          |      |                  |            |         |     |       | -      | -                |     |
| JRZ4     |               | 141.9  | 64       | 1084         | 75     |      | 19  | 5          | <1  | 1.2   | 121 | <>         | 36    | >10.00 | 54     | 44         |     | 106     | 6   | <20 | - 21 | 16  | <.0° |        | I ⊡U.       | 02<br>02 | <.01 | 0.01             | • 4        | <1<br>, | <2  | <1    | د<br>• | <5 <<br>-        | 10  |
| JR26     |               | 6.2    | 688      | 30           | 88     |      | 30  | 14         | 11  | 0,8   | 43  | <5         | <5    | 2.60   | 1601   | <10        | 66  | 64      | 40  | <20 | <20  | <1  | 0,94 | 1.2    | 2 Z.        | .99      | 0.04 | 0.35             | 188        | 4       | 6   | 8     | 1      | `<5 <'           | 10  |
| JR27     |               | 2.1    | 187      | ' <b>2</b> 1 | 46     |      | 45  | 10         | 4   | 0.4   | <5  | <5         | · <5  | 1.69   | 1235   | <10        | .69 | 172     | 19  | <20 | <20  | 14  | 0.49 | 0.33   | 5 1         | .27      | 0.05 | 0.31             | 1 - 54     | - 4     | 5   | 3     | <1     | ·<\$ <           | .10 |
| JR29     |               | 1.0    | 142      | 2 15         | 82     |      | 4   | 5          | 3   | 1.2   | <5  | <5         | -5    | 0.97   | 524    | <10        | 216 | 113     | 6   | <20 | <20  | 12  | 0.30 | 3 0.02 | 2 Q.        | .22      | 0.05 | 0.26             | 19 ذ       | 2       | <2  | 2     | <1     | <5 <             | 10  |
| JR30     |               | 2.0    | 526      | 21           | 31     |      | 299 | 14         | 6   | <0.2  | 13  | <5         | <     | 1.75   | 802    | <10        | 146 | 99      | 7   | <20 | <20  | 6   | 0.39 | 0.1    | 10.         | .67      | 0.04 | 0.28             | 3 33       | 3       | <2  | 2     | <1     | <5 <'            | 10  |
| JR31     |               | >200.0 | 247 1067 | 7 5441       | 322    |      | 56  | 1 <b>1</b> | <1  | 11.6  | 115 | 524        | >2000 | 0.75   | > 57   | <b>5</b> 1 | 7   | 334     | 2   | <20 | <20  | <1  | 0.0  | ۱ <.0  | 1 0.        | .01      | <.01 | 0.0              | 5 10       | <1      | <2  | <1    | <1     | <5 <             | :10 |
| JR32     |               | 4.0    | 1276     | 5 70         | 171    |      | 190 | 60         | 16  | 0.9   | 213 | <5         | 43    | 4.66   | 5 1076 | <10        | 39  | 230     | 159 | <20 | 54   | <1  | 2.2  | 2 2.6  | 4 3.        | .06      | 0.07 | 1.60             | ງ 59       | 6       | 4   | 31    | 1      | 19 <             | :10 |
| PLANET A |               | 2.4    | 58       | 3 79         | . 58   |      | 9   | 12         | 8   | 0.8   | <5  | 54         | 28    | 2.32   | 2 1110 | <10        | 27  | 122     | 18  | <20 | <20  | <1  | 0.3  | 1.1.75 | <b>7</b> 4. | .68      | <.01 | 0.27             | 2 247      | 2       | <2  | <1    | <1     | <5 <             | :10 |
| PLANET B |               | 3.6    | 12       | 129          | 158    | i    | 3   | 11         | 13  | 2.9   | <5  | 85         | . <5  | 3.22   | 2 1495 | <10        | 36  | 30      | 21  | <20 | <20  | <1  | 0.5  | 2 1.9  | 5 5.        | .79      | <.01 | 0.39             | 243        | 4       | 6   | <1    | <1     | <5 <             | :10 |

Geochemical

PAGE 2A

Lab

PROJECT: NONE GIVEN

DATE PRINTED: 24-OCT-96

Report

. . . . . .

CLIENT: RIG MINERALS LTD. REPORT: V96-01714.0 ( COMPLETE ) . . . . . . . . . . . . . . . .

÷

|        | **** |  |
|--------|------|--|
| Lab    |      |  |
| Report |      |  |
|        |      |  |

PROJECT: NONE GIVEN DATE PRINTED: 24-OCT-96 PAGE 2B

| SAMPLE       | ELEMENT TI   | Zr        |            |
|--------------|--------------|-----------|------------|
| NUMBER       | UNITS PCT    | PPM       |            |
|              |              |           |            |
| JR13         | <.01         | <1        |            |
| JR14         | 0.10         | 2         |            |
| JR15         | <.01         | <1        |            |
| JR16         | <.01         | <1        |            |
| JR17         | <.01         | . <1      | . •        |
|              |              | 2         |            |
| JR18         | 0.04         | 3         |            |
| JR19         | <.01         | 1         | •••        |
| JR20         | <.01         | <1        |            |
| JR21         | <.01         | <1        |            |
| JR23         | 0.13         | 3         |            |
|              |              |           |            |
| JR24         | <_01         | <1        |            |
| JRZ6         | 0.05         | .1        | ,          |
| JR27         | <.01         | . 2       | ,          |
| JRZY<br>JRZO | <.01         | 2         |            |
| 7820         | <.01         | <b>د</b>  | J          |
| 1071         | < 01         | -1        | 1          |
| JK31<br>1073 | 0.16         | יי<br>ד'  | e .        |
|              | 0.1B<br>< 01 | ر .<br>اغ | / .<br>  . |
| PLANET R     | <.01         | <1        | I          |
|              |              |           | ·          |
|              |              |           |            |
|              |              |           |            |
|              |              | 12        |            |
|              |              |           |            |
|              |              | •         |            |
|              |              |           |            |
|              |              |           |            |
|              |              |           |            |
|              |              |           |            |
|              |              | 11        |            |
|              |              |           |            |

. .....

CLIENT: RIO MINERALS LTD.

REPORT: V96-01714.0 ( COMPLETE )

1

| STANDARD ELEMENT   | Au30 | Ag   | Agol  | Cu             | ₽Ь  | Zn  | ZnOL | Mo    | Ni    | Co     | Cd    | Bi  | As  | Sb         | Fe    | . Mn     | Te         | Ba    | Cr  | ۷   | \$n | W   | La  | Al   | Mg     | . (        | Ca      | Na    | ĸ    | \$r   | Y     | Ga l       | .i N  | b s   | c Ta            |   |
|--------------------|------|------|-------|----------------|-----|-----|------|-------|-------|--------|-------|-----|-----|------------|-------|----------|------------|-------|-----|-----|-----|-----|-----|------|--------|------------|---------|-------|------|-------|-------|------------|-------|-------|-----------------|---|
| NAME UNITS         | PPB  | PPM  | PPM   | PPM            | PPM | PPM | РСТ  | PPM I | PPM F | PM     | PPM I | PP₩ | PPM | PPM        | PCT   | PPM      | PPM        | PPM   | PPM | PPM | PPM | PPM | PPM | PCT  | PCT    | P          | CT P    | CT    | PCT  | 2PM P | PPM P | PM PF      | ₩ PP  | м рр  | M PPM           |   |
| BCC GEOCHEM STD 6  | -    | 0.4  | -     | 145            | 18  | 127 | -    | 3     | 122   | 30     | <0.2  | <5  | 116 | <5         | 6.48  | 1509     | <10        | 6     | 167 | 42  | <20 | <20 | <1  | 1_81 | 2.41   | 3.1        | 790.    | .01 ( | 0.04 | 79    | 3     | 6          | 20    | 1     | <b>8</b> <10    |   |
| Number of Analyses | -    | 1    | -     | 1              | 1   | 1   | -    | 1     | 1     | 1      | 1     | 1   | 1   | 1          | 1     | 1        | 1          | 1     | 1   | 1   | 1   | 1   | 1   | 1    | 1      |            | 1       | 1     | 1    | 1     | 1     | 1          | 1     | 1     | 1 1             |   |
| Mean Value         | -    | 0.4  | -     | 145            | 18  | 127 | -    | 3     | 122   | 30     | 0.1   | 3   | 116 | 3          | 6.48  | 1509     | 5          | 6     | 167 | 42  | 10  | 10  | 0.5 | 1.81 | 2.41   | 3.         | 790.    | .01 ( | 0.04 | 79    | 3     | 6 1        | 20    | 1     | 85              |   |
| Standard Deviation | -    | -    | -     | -              | -   | -   | •    | •     | -     | -      | -     | -   | -   | -          | -     | · · -    | -          | -     | -   | -   | -   | -   | -   | -    | -      |            | -       | -     | -    | -     | -     | -          | -     | -     |                 |   |
| Accepted Value     | •    | 0.2  | 0.2   | 140            | 13  | 140 | 0.01 | 4     | 135   | 35     | 0.1   | 1   | 145 | <b>1</b> · | 6.50  | 1450     | ) -        | 6     | 170 | 50  | 5   | 1Z  | -   | 1.80 | 2.70   | ) 4.1      | DO 0.   | .01   | 0.04 | 70    | 3     | -          | 24    | 2     | 6 1             |   |
| ANALYTICAL BLANK   | <5   | <0.2 | -     | <1             | <2  | <1  | -    | <1    | <1    | <1     | <0.2  | <5  | <5  | <5         | <0.01 | <1       | <10        | <1    | <1  | <1  | <20 | <20 | <1  | <.01 | <.01   | <0.        | 01 <.   | .01   | <.01 | <1    | <1    | 2          | ¢1 -  | 1 <   | <b>/</b> 5 <10  | I |
| ANALYTICAL BLANK   | -    | <0.2 | -     | <1             | <2  | <1  | -    | <1    | <1    | <1     | <0.2  | <5  | <5  | <5         | <0.01 | 17       | ′ <10      | <1    | <1  | <1  | <20 | <20 | <1  | <.01 | <.01   | <0.        | 01 <.   | .01   | <.01 | <1    | <1    | <2         | <1 <  | (1 ×  | 5 <10           | I |
| Number of Analyses | 1    | 2    | : -   | 2              | 2   | 2   | -    | 2     | 2     | 2      | 2     | 2   | 2   | 2          | 2     | 2        | ; 2        | 2     | 2   | 2   | 2   | 2   | 2   | Ž    | 2      | :          | 2       | 2     | 2    | 2 :   | 2     | 2 :        | 2     | 2     | 2 2             | : |
| Mean Value         | 3    | 0.1  | -     | 0.5            | 1   | 0.5 |      | 0.5   | 0.5   | 0.5    | 0.1   | 3   | 3   | 3.         | 0.005 | 5 . 4    | 5          | 0.5   | 0.5 | 0.5 | 10  | 10  | 0.5 | .005 | .005   | 6 0.0      | 05.0    | 105   | .005 | 0.5 ( | 0.5   | 10         | .5 0. | 5     | 3 5             | , |
| Standard Deviation | -    |      | -     |                | -   | -   | -    | -     | -     | · · '- | -     | ÷   | -   | •          | -     | - 4      | •          | -     | •   | -   | -   |     | -   |      | · -    |            | ••;     | -     |      | -     | -     |            | -     | -     |                 |   |
| Accepted Value     | 5    | 0.2  | .005  | 1              | 2   | 1   | <.01 | 1     | 1     | 1      | 0.1   | 2   | 5   | . 5        | 0.05  | 5 - 1    | 01         | .01   | 1   | 1   | .01 | .01 | .01 | <.01 | <.01   | < 00       | 01 <    | .01 · | <_01 | .01   | .01   | 01 .       | 11.0  | 01 .0 | 1 .01           |   |
|                    |      |      |       |                |     |     |      |       |       |        |       |     |     |            |       |          |            |       |     |     |     |     |     |      |        | ÷.,        |         |       |      |       |       | ÷          |       |       |                 |   |
| Counce Desudand    | 1.31 | _    |       |                | -   | -   | -    |       |       |        | -     |     | -   | _          | -     |          |            |       | _   | _   | _   | _   | _   |      |        |            |         | -     | -    |       | -     | -          |       |       |                 |   |
|                    | 464  |      |       |                | _   | · · | -    | -     | _     | -      | _     | -   | -   | · _        |       |          |            |       | -   |     |     | •   |     |      |        | •          | -       | -     | -    | _     | · _   | _          | -     | _     |                 |   |
| Number of Analyses | 1.7/ |      |       | _              | -   |     | -    | -     | -     | -      | -     | -   |     | -          | -     |          |            |       |     | -   | -   | -   | -   |      |        |            | -       | -     |      | -     |       | <b>.</b> . | -     | _     |                 |   |
| Standard Deviation | 424  |      |       | 1. 1. <b>_</b> |     | : - | -    | -     | -     | -      | -     | •   | -   |            |       | <b>_</b> |            | · · - |     | -   | -   | -   | -   | -    |        | <b>.</b> . | • • _ • | -     | -    | -     | • 1   | -          | •     | -     | <b>.</b> .      |   |
| Accepted Value     | 410  | -    |       |                | -   | · - | -    | -     | -     | -      | -     | -   | -   | -          | -     |          |            | • •   | -   | -   | -   | -   | -   |      |        | -          |         | -     | -    | -     | -     | -          | •     | •     |                 |   |
| BCC GEOCHEM STD 5  | -    | 0.9  | 5-    | 83             | 9   | 70  | -    | 3     | 32    | 15     | <0.2  | <5  | <5  | <5         | 4.19  | 9 73     | ) <10      | ) 164 | 45  | 111 | <20 | <20 | 3   | 2.93 | 9 1.92 | 2 0.       | 94 0.   | .06   | 0.30 | 38    | 6     | 6          | 25 -  | <1 1  | 10 < <b>1</b> 0 | ļ |
| Number of Analyses | -    |      | 1 -   | 1              | 1   | 1   | -    | 1     | 1     | 1      | 1     | 1   | 1   | 1          |       | 1 .      | 1 '        | 1 . 1 | 1   | 1   | 1   | 1   | . 1 |      | 1 3    | 1          | 1       | 1     | 1    | 1     | 1     | 1          | 1     | 1     | 1 1             |   |
| Mean Value         | -    | 0.5  | 5 -   | 83             | 9   | 70  | -    | 3     | 32    | 15     | 0.1   | 3   | 3   | 3          | 4.19  | 9 73     | ָ ל        | 5 164 | 45  | 111 | 10  | 10  | 3   | 2.9  | 9 1.92 | 2 Q.       | 94 0.   | .06   | 0.30 | 38    | 6     | 6          | 25 0  | .5 1  | 10 5            | , |
| Standard Deviation | -    |      |       | -              | -   | -   | -    | •     | -     |        | -     | -   | -   | -          |       |          | <b>.</b> . | • •   | -   | -   | •   |     | -   |      | · ·    | <b>.</b> . | -       | -     | · -  | -     | -     | •          | -     | •     |                 |   |
| Accepted Value     | -    | 0.   | 7 0.7 | 90             | 11  | 80  | .008 | 2     | 40    | 18     | 0.1   | 1   | 8   | 1          | 4.74  | 4 72     | 0 0.2      | 2 200 | 54  | 133 | 4   | 2   | 5   | 3.0  | 7 1.83 | 3 1.       | 08 0    | .06   | 0.32 | 39    | 9     | 4.         | -     | 1 1   | 8 1             |   |
|                    |      |      |       |                |     |     |      |       |       |        |       |     |     |            |       |          |            |       |     |     |     |     |     |      |        |            |         |       |      |       |       |            |       |       |                 |   |

r y 2° 3 r

1

· · · ]

Geochemical

PAGE 3A

Lab

PROJECT: NONE GIVEN

DATE PRINTED: 24-OCT-96

Report

1

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

. . .

1

\* 7 \*

. . . . .

1

٦

1

. .....

CLIENT: RIO MINERALS LTD. REPORT: V96-01714.0 ( COMPLETE )

ł.

| STANDARD ELEMENT   | r Ti  | Zr        |
|--------------------|-------|-----------|
| NAME UNITS         | S PCT | РРМ       |
| BCC GEOCHEM STD 6  | <.01  | 4         |
| Number of Analyses | 1     | -1        |
| Mean Val⊔e         | .005  | 4         |
| Standard Deviation | -     | -         |
| Accepted Value     | .003  | .5        |
| ANALYTICAL BLANK   | <.01  | <1        |
| ANALYTICAL BLANK   | <.01  | <1        |
| Number of Analyses | 2     | 2         |
| Mean Value         | .005  | 0.5       |
| Standard Deviation | -     | <b>-</b>  |
|                    |       | . •       |
| Accepted Value     | <.01  | .01       |
|                    |       |           |
|                    |       |           |
|                    |       | 11        |
|                    |       |           |
|                    |       | 1         |
| Gannet Standard    | -     | · -       |
| Number of Analyses | -     |           |
| Mean Value         | •     | -         |
| Standard Deviation | -     | -         |
| Accepted value     | -     | -         |
| BCC GEOCHEM STD 5  | 0, 19 | 9         |
| Number of Analyses | 1     | 1         |
| Mean Value         | 0.19  | t<br>) √g |
| Standard Deviation | •     | -         |
| Accepted Value     | -     | . 0       |
| Accepted value     |       |           |
|                    |       |           |
|                    |       |           |
|                    |       |           |

1 10 A

٠

1

Geochemicar

PAGE 3B

Lab

PROJECT: NONE GIVEN

DATE PRINTED: 24-OCT-96

Report

7

Geochemicar Lab Report

1

| CLIENT: RIO<br>REPORT: V96- | MINERALS L<br>-D1714.0 ( | .TD.<br>Compi | LETE )           |                |              |              |                  |                |              |              |            |           |            |                  |              |            |           |            |          |            |            |           |              |              |              | PR<br>D/     | ≀OJEC<br>ATE P | T: NC<br>RINTE    | NE G1<br>D: 24 | IVEN<br>4-OC' | <b>T</b> -96 |             | PAGE           | 4A       |
|-----------------------------|--------------------------|---------------|------------------|----------------|--------------|--------------|------------------|----------------|--------------|--------------|------------|-----------|------------|------------------|--------------|------------|-----------|------------|----------|------------|------------|-----------|--------------|--------------|--------------|--------------|----------------|-------------------|----------------|---------------|--------------|-------------|----------------|----------|
| Sample<br>Number            | ELEMENT /<br>UNITS       | Nu30<br>PPB   | Ag Ago<br>PPM PP | IL CU<br>M PPM | РЬ<br>РРМ    | Zn Z<br>PPM  | lnül M<br>PCT PF | io N<br>M PPI  | i Co<br>1PPM | Cd<br>PPM    | Bi<br>PPM  | As<br>PPM | Sb<br>PPM  | Fe<br>PCT        | Mn<br>PPM    | Te<br>PPM  | Ba<br>PPM | Cr<br>PPM  | V<br>PPM | Sn<br>PPM  | W<br>PPM   | La<br>PPM | AL<br>PCT    | Mg<br>PCT    | Ca<br>PC1    | Na<br>PC1    | a<br>r pc      | K Sr<br>TPPN      | Y<br>PPM       | Ga<br>PPM     | Li<br>PPM    | Nb<br>PPM I | SC T<br>PPM PF | ſa<br>PM |
| S1 BL21+60W<br>Duplicate    |                          | <5<br><5      | <0.2<br><0.2     | 36<br>33       | <2<br><2     | 52<br>50     |                  | 1 1<br>1 1     | 78<br>47     | <0.2<br>0.2  | ≺5<br>≺5   | <5<br><5  | <5<br><5   | 2.35<br>2.16     | 409<br>373   | <10<br><10 | 80<br>67  | 40<br>36   | 62<br>59 | <20<br><20 | <20<br><20 | 4<br>3    | 0.89<br>0.83 | 0.95<br>0.84 | 2.32<br>2.09 | 0.04<br>0.04 | 4 0.1<br>4 0.1 | 6 78<br>5 72      | 4              | <2<br><2      | 5<br>5       | <1<br>1     | ও ব<br>ব্য ব   | 10<br>10 |
| JRZ<br>Duplicate            |                          |               | 10.8<br>9.3      | 2406<br>2225   | 730<br>592   | 3496<br>3257 | i<br>e           | 75 15<br>59 14 | 5 17<br>4 15 | 69.4<br>62.0 | 9<br>12    | 54<br>56  | 191<br>177 | 4.28<br>3.74     | 1629<br>1426 | <10<br><10 | 31<br>28  | 57<br>49   | 91<br>83 | <20<br><20 | 117<br>92  | 1<br><1   | 1.78<br>1.60 | 1.79<br>1.55 | 5.85<br>5.13 | 0.01<br>0.0  | I 0.2<br>1 0.2 | .4 .108<br>2 : 97 | 6              | 5<br>5        | 14<br>15     | <1<br><1    | 11 <1<br>10 <  | 10<br>10 |
| JR24<br>Duplicate           |                          |               | 141.9<br>134.9   | 64<br>54       | 1084<br>1082 | 75<br>68     | ,                | 19<br>18 !     | 5 <1<br>5 <1 | 1.2<br>0.8   | 121<br>119 | <5<br><5  | 36<br>32   | >10.00<br>>10.00 | 34<br>35     | 44<br>40   | 3         | 106<br>102 | 6<br>4   | <20<br>23  | 21<br><20  | 16<br>13  | <.01<br><.01 | <.01<br><.01 | 0.02         | <.01<br><.0  | 1 0.0<br>1 0.0 | 3 4<br>3 4        | <1<br><1       | <2<br><2      | <1<br>≤1     | 3<br>3      | ওঁ <<br>ও <    | 10<br>10 |
|                             |                          |               |                  |                |              |              |                  |                |              |              |            |           |            |                  | •            | ·          |           |            |          |            |            |           |              |              |              |              |                | * .<br>           |                |               |              |             |                |          |



Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

|                                     | <b>Bondar Clegg</b><br>Inchcape Testing Services | Lab<br>Report                                          |
|-------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| CLIENT: RIO MINE<br>REPORT: V96-017 | ERALS LTD.<br>14.0 ( COMPLETE )                  | PROJECT: NONE GIVEN<br>DATE PRINTED: 24-OCT-96 PAGE 48 |
| SAMPLE ELI<br>NUMBER I              | EMENT TI Zr<br>JNITS PCT PPM                     |                                                        |
| S1 BL21+60W<br>Duplicate            | 0.10 2<br>0.10 2                                 |                                                        |
| JR2<br>Duplicate                    | 0.07 <u>3</u><br>0.06 2                          |                                                        |
| JR24<br>Duplicate                   | <.01 <1<br><.01 <1                               |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |
|                                     |                                                  |                                                        |

į.



3.

# **GEOPHYSICAL REPORT**

ON

# VLF-EM AND MAGNETIC SURVEYS

## **OVER THE**

# **GREENSTONE CLAIMS**

# **STUMP LAKE AREA**

# NICOLA MINING DISTRICT, BRITISH COLUMBIA

SURVEY PERIOD WRITTEN FOR

WRITTEN BY

: October, 1996

: RIO MINERALS LIMITED Vancouver, British Columbia V6C 2T6

 David G. Mark, P.Geo., Geophysicist GEOTRONICS SURVEYS LTD.
 405 - 535 Howe Street Vancouver, British Columbia
 V6C 2Z6

DATED

: January 27, 1997



# **TABLE OF CONTENTS**

-

÷.

ŝ.

\*

.....

.

۰

.

.

| SUMMARY                          | 1 |
|----------------------------------|---|
| INTRODUCTION AND GENERAL REMARKS | 2 |
| INSTRUMENTATION                  | 2 |
| (1) VLF-EM Receiver              | 2 |
| (2) Magnetometer                 | 3 |
| THEORY                           | 3 |
| (1) Magnetics                    | 3 |
| (2) Electromagnetics             | 3 |
| SURVEY PROCEDURE                 | 4 |
| COMPILATION OF DATA              | 4 |
| DISCUSSION OF RESULTS            | 4 |
| GEOPHYSICIST'S CERTIFICATE       | 6 |

| MAPS IN POCKET                           | <u>Scale</u> | <u> Map #</u> |
|------------------------------------------|--------------|---------------|
| Magnetic Survey                          |              |               |
| Contour Plan                             | 2000         | GP-1          |
| Profile Plan                             | 2000         | GP-2          |
| VLF-EM Survey                            |              |               |
| Profile Plan (Tilt Angle and Quadrature) | 2000         | GP-3          |
| Contour Plan (Fraser-filter)             | 2000         | GP-4          |

# **SUMMARY**

VLF-EM and magnetic surveys were carried out on 3 different grids over a portion of the Greenstone Claims belonging to Rio Minerals Limited.

The magnetic survey was carried out with a proton precession magnetometer by taking readings every 12.5 m on 50-m separated lines. The readings were in put into a computer, plotted and contoured at a 50-gamma interval on a 1:2,000 base map as well as profiled on a second base map.

The VLF-EM survey was carried out with a VLF-EM receiver also, by taking tilt angle and quadrature readings every 12.5 m on the same 50-m separated lines. The raw data was profiled on one 1:2,000 base map, and also Fraser-filtered and profiled on a second 1:2,000 base map.

The purpose of the work was to determine the extent of the known geophysical mineralized zones as well as to locate other possible mineralized zones. An additional purpose was to map geology especially in how it related to the known mineralization.



# **GEOPHYSICAL REPORT**

### **ON**

# VLF-EM AND MAGNETIC SURVEYS

# **OVER THE**

## **GREENSTONE CLAIMS**

# STUMP LAKE AREA

# NICOLA MINING DISTRICT, BRITISH COLUMBIA

## **INTRODUCTION AND GENERAL REMARKS**

This report discusses the instrumentation, theory, field procedure and results of VLF-EM, and magnetic surveys carried out over the Greenstone Claims belonging to Rio Minerals Limited.

The magnetic survey was carried out by Andrew Molnar, and the VLF-EM survey was carried out by Otto Paesler, both experienced field technicians.

The main purpose of the geophysics was: (1) to determine the response of the magnetic and VLF-EM surveys over the known mineralized zones. (2) to determine whether the known mineralization has any strike extension, and (3) to locate other mineralized zones.

An additional purpose of the magnetic and VLF-EM surveys was to assist in the mapping of the bedrock geology especially as to how it related to the known mineralization. The magnetic survey was expected to map lithology as well as possibly structure. The VLF-EM survey was expected to map geological structure as conductors.

## **INSTRUMENTATION**

### (1) VLF-EM Receiver

The VLF-EM survey was carried out with a VLF-EM receiver, Model EM-16, manufactured by Geonics Ltd. of Toronto, Ontario. This instrument is designed to measure the electromagnetic component of the very low frequency field (VLF-EM),

which for this survey is transmitted at 24.8 kHz from Jim Creek, Washington, which is east of Arlington.

### (2) Magnetometer

The magnetic survey was carried out with a model G-816 proton precession magnetometer, manufactured by Geometrics Inc. of Sunnyvale, California. This instrument reads out directly in gammas to an accuracy of  $\pm 1$  gammas, over a range of 20,000 - 100,000 gammas. The operating temperature range is -40° to +50° C, and its gradient tolerance is up to 3,000 gammas per meter.

# **THEORY**

## (1) Magnetics

Only two commonly occurring minerals are strongly magnetic -- magnetite and pyrrhotite. Magnetic surveys are therefore used to detect the presence of these minerals in varying concentrations. Therefore, if magnetite or pyrrhotite occurs with economic mineralization, magnetic surveys are used to locate this type of mineralization. Magnetic surveys are also useful as a reconnaissance tool for mapping geologic lithology and structure since different rock types have different background amounts of magnetite and/or pyrrhotite.

## (2) Electromagnetics

In all electromagnetic prospecting, a transmitter produces an alternating magnetic field (primary) by a strong alternating current usually through a coil of wire. If a conductive mass such as a sulphide body is within this magnetic field, a secondary alternating current is induced within it which in turn induces a secondary magnetic field that distorts the primary magnetic field. It is this distortion that the EM receiver measures. The VLF-EM uses a frequency range from 15 to 30 kHz, whereas most EM instruments use frequencies ranging from a few hundred to a few thousand Hz. Because of its relatively high frequency, the VLF-EM can pick up bodies of a much lower conductivity and therefore is more susceptible to clay beds, electrolyte-filled fault or shear zones and porous horizons, graphite, carbonaceous sediments, lithological contacts as well as sulphide bodies of too low a conductivity for other EM methods to pick up. Consequently, the VLF-EM has additional uses in mapping structure and in picking up sulphide bodies of too low a conductivity for conventional EM methods and too small for induced polarization. (In places it can be used instead of IP). However, its susceptibility to lower conductive bodies results in a number of anomalies, many of them difficult to explain and, thus, VLF-EM preferably should not



be interpreted without a good geological knowledge of the property and/or other geophysical and geochemical surveys.

# SURVEY PROCEDURE

The survey lines were placed in an east-west direction 50 m apart with stations marked every 25 m.

For the *magnetic survey*, readings of the earth's total magnetic field were taken every 12.5 m along the survey lines for a total survey length of 6,050 meters.

The diurnal variation was monitored in the field by the closed loop method to enable the variation to be removed from the raw data prior to plotting.

For the *VLF-EM survey*, the tilt angle and quadrature readings of the electromagnetic field from the transmitter station, Seattle (Jim Creek) at 24.8 kHz, were also taken at the 12.5 m stations. The survey length was also 6,050 meters.

# **COMPILATION OF DATA**

The magnetic data were input into a computer, and then plotted, with 56,000 nT (gammas) subtracted, and contoured onto a plan map, GP-1. The contour interval chosen was 50 nT. The data were also profiled onto a plan map of the same scale, numbered GP-2, but with a vertical scale of 1 cm = 100 nT using a base of 56,850 nT.

The Seattle VLF-EM data were also input into a computer, 4-point Fraser-filtered, and then plotted and contoured at an interval of 5 degrees onto a plan map and numbered GP-3. In addition, the tilt angle and the quadrature were each profiled at a vertical scale of 1 cm =  $20^{\circ}$  onto a plan map numbered GP-4.

All of the above data reduction was carried out using software produced by Geosoft of Toronto, Ontario.

## **DISCUSSION OF RESULTS**

The VLF-EM survey has revealed four main conductors each trending in a northerly direction across the survey area. For ease of discussion purposes, they have been labeled by the lower case letters, 'a' to 'd', respectively. As mentioned above, the probable causative source of each of them is geological structure such as faults, shear zones and/or contact zones.

The northern part of *conductor 'a'* correlates directly with the Jenny Long workings. Therefore, the two main possible causes of 'a' is either the mineralization itself or geological structure associated with the mineralization with the greater likelihood being the latter.



Either way, the suggestion is that the mineralization extends to the north and to the south along conductor 'a'. Its strike length is at least 400 m long and thus there is potential for mineralization along the 400-m length.

**Conductor 'b'** occurs to the immediate west of conductor 'a' and has a minimum strike length of 500 meters with it being open to both the north and to the south. It is possible that 'b' is also associated with mineralization.

**Conductor** 'c,' which occurs to the west of 'b' also has a minimum strike length of 500 meters being open to both the north and to the south. It could also be reflecting mineralization. However, this conductor is more complex in that it appears to be reflecting structure that crosses each other. Where structure crosses is always of exploration interest since these areas are more likely places of mineral deposition.

**Conductor 'd'** has similar characteristics as conductor 'c' except it occurs on the eastern edge of the survey area. Thus it also is of exploration interest.

The magnetic survey indicates a magnetic field that is relatively flat ranging in values from 56,672 nT to 57,016 nT which is a range of only 344 nT. This shows the underlying greenstones are magnetically quiet.

The center of the survey area has a magnetic field that is relatively low with it being higher on both east and west edges. This is probably just a reflection of magnetic variation within the greenstones. However, there is a small high that correlates with the Jenny Long workings that indicates that magnetite or pyrrhotite may be associated with the mineralization.

Two lineal-shaped magnetic lows occur within the survey area that may reflect faulting or shearing. One trends northerly and occurs at about 90W. The other trends northeasterly and occurs at about 1550N, 150E to 1750N, 225E and thence to 2000N, 225E.

Respectfully submitted,

**GEOTRONICS SURVEYS LTD.** OFESSIO PROVINCE D.G. MARK David G Mark, PGeo. FRIT SH COLUMBIA Geophysicist SCIEN

# **GEOPHYSICIST'S CERTIFICATE**

I, DAVID G. MARK, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

I am a Consulting Geophysicist of Geotronics Surveys Ltd., with offices at #405 - 535 Howe Street, Vancouver, British Columbia.

I further certify that:

- 1. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- I am a graduate of the University of British Columbia (1968) and hold a B.Sc. degree in Geophysics.
- 3. I have been practicing my profession for the past 29 years, and have been active in the mining industry for the past 32 years.
- 4. This report is compiled from data obtained from magnetic and VLF-EM surveys carried out over the Greenstone Claims during October, 1996. The two surveys were done by Andrew Molnar and Otto Paesler, respectively, and the data brought to me to reduce, to interpret, and to write a report on.
- 5. I do not hold any interest in Rio Minerals Limited, nor in the property discussed in this report, nor do I expect to receive any interest as a result of writing this report.

COVINCE D.G. MARH

January 27, 1997

DAVID G. MARK, P.Geo., Geophysicist



### BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

| Name                                                                                                                                    | ANDREW                                                                                                                                               | MOLNAR                                                                                                                                                | Reference N                                                                                                                                      | umber                                                | 96/97 P3                                                                                            | 1                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| LOCATIO<br>Project Are<br>Location of<br>Description<br>$\underbrace{ \{ \omega, S + \\ \alpha, \alpha \in \end{bmatrix}}$<br>Main Comr | N/COMMODI<br>a (as listed in Pa<br>Project Area<br>of Location and<br>Side of<br>Decision                                                            | ries<br>rt A) <u>Stum</u><br>NTS <u>GZI</u><br>Access <u>On</u> the<br>thung <u>SA</u><br>d For <u>Av</u> , Ag                                        | p hake<br>1800<br>2 South ad<br>pyvidistant                                                                                                      | _ MINF<br>_ Lat_S<br>_ East<br>_ b.etus              | ILE No. if applicable<br><u> o<sup>e</sup> 20' 2</u> Lor<br><u> Side</u> <del>ef</del><br>een Konto | <u>4215 E 108</u> -115<br>18 120-22-1 W<br>5 tunp Lake,<br>195                     |
| Known Mir<br>راد آ                                                                                                                      | neral Occurrence                                                                                                                                     | s in Project Area<br>Planet white                                                                                                                     | several past<br>, Jennyhone                                                                                                                      | - fead<br>3                                          | icros: King                                                                                         | William,                                                                           |
| WORK 1. Conv<br>2. Geol<br>3. Geog<br>4. Geog<br>5. Phys<br>6, Dril<br>7. Othe                                                          | PERFORMED<br>ventional Prospe<br>logical Mapping<br>chemical (type an<br>physical (type an<br>ical Work (type<br>ling (no,. holes, ser<br>(specify)A | cting (area) ک<br>(hectares/scale)<br>nd no. of samples)<br>d line km) M م<br>and amount) <u>C م</u><br>size, depth in m, total<br>مربي الالم ج في وي | 1.0 cquare<br>102 Na 1<br>51 ruck som<br>g/VLF (0)<br>staking (Tre<br>m)<br>chom, recey                                                          | Km.<br>: 2,000<br>ps.<br>Km.<br>-ch. se<br>. rock    | i<br>1 stream sec<br>(2.5 m spa<br>hab, prespirman<br>samps :                                       | <u>s</u><br><u>cian</u><br><u>pingarid</u> 18.77Km                                 |
| SIGNIFICA<br>Commoditie<br>Location (sł<br>Best assay/s                                                                                 | ANT RESULTS<br>es <u>Au</u> Ag<br>now on map) Lat<br>cample type <u></u>                                                                             | . 26, 2n, (u<br>19' N<br>.50 02(+ AU.                                                                                                                 | Long <u>120°</u><br>Im Chip a                                                                                                                    | . Claim I<br>•                                       | Name <u>Greenston</u><br><u> D</u> Elevation<br>trunch.                                             | e 1-3<br>800 m                                                                     |
| Description<br><u>CISSON</u><br><u>Shake</u><br><u>Pyrrhe</u><br><u>Dupus</u><br><u>Mus</u>                                             | of mineralizatio<br>blages, w<br>when tetan<br>white, and<br>its under<br>we depos                                                                   | n, host rocks, anomali<br>ve so thermout<br>hedrite, tesse<br>nextive gold.<br>ying glacin<br>its many g                                              | ies Polypethal<br>c spitternal<br>r amounts of<br>Showr host<br>Showr host<br>Showr host<br>Showr host<br>Showr host<br>Showr host<br>Showr host | Lie q.<br>in chy<br>E born<br>ed but<br>Karn<br>ant. | inste-sulph<br>inster. Dyr<br>te, scheelite<br>K tonnage p<br>or linestar                           | ide<br>te, chalcu,<br><u>arsenopy</u> te,<br><u>recious mutul</u><br><u>hostro</u> |

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.









LAT TRENCHES QUAATZ VEINT.

077 6410 650 m 740m **x**/L1+08

| , |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

• • • • •



. ..





neiers

1

. . . .



× . . .

× .