BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1996/1997

REPORT #:

PAP 96-16

NAME:

AL DOIRON

Final Report

ALLANA GROUP

(Also known as the Big G, Gilke Mine and The Dome Group)

OWNER: ALBERT DOIRON - prospector.

951 Aspen Road R.R.#1, Site 38, C-32 Comox, BC V9N 5N1

Phone/Fax: (250) 339-2173

ASSESSMENT REPORT

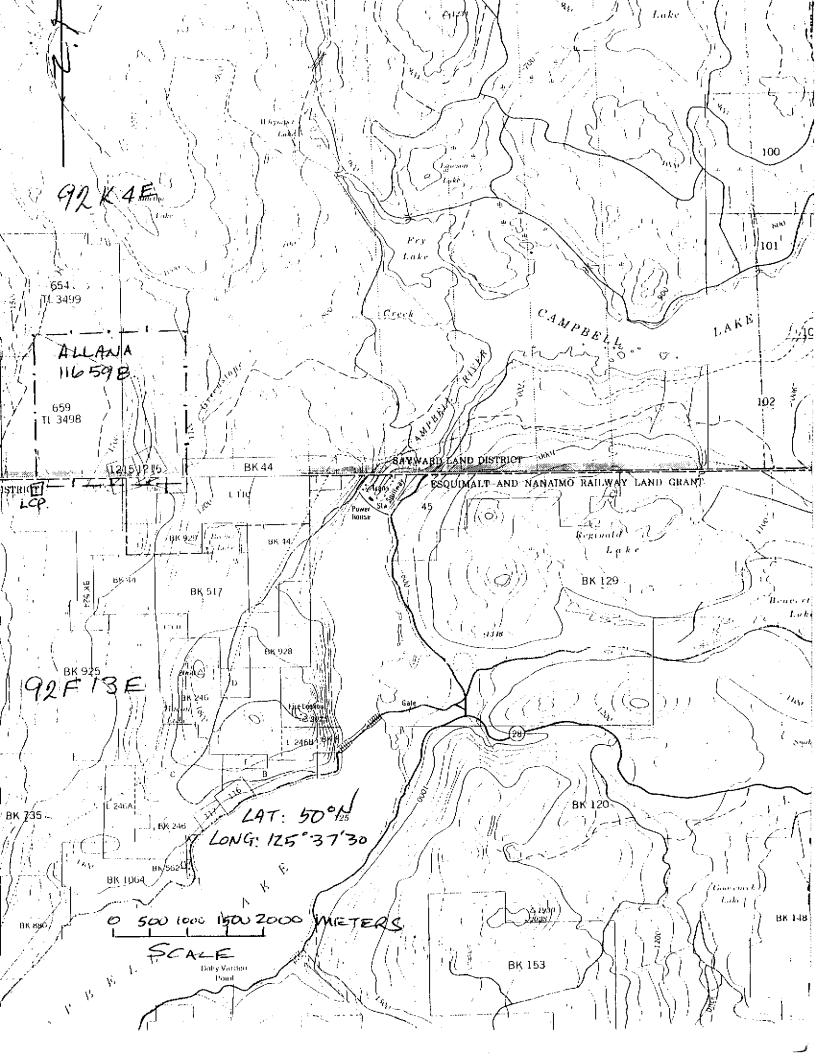
Map: 92F 13E, 92K 4E

Latitude: 50 North Longitude: 125 37 30 West

Area: Greenstone Creek, Campbell River, British Columbia.

Mining Division: Naniamo

Original Property:


Mineral Lease M-14 Lots: 1215 and 1216 the Thundercloud and Rainbow Claims. Area covered by the Thundercloud and Rainbow consists of: 85.75 Acres.

Recently Staked Claims (Oct. 1995): 16 units (four post) Allana. Tag No. 116598. These units partially overlap the Mineral Leases of the Thundercloud and Rainbow.

Date: December 1995.

Report by: Will Thompson 857 Fern Rd. East Qualicum Beach B.C. V9K 1M3

Phone: (604) 752-9373

ALLANA GROUP

(Also known as the Big G, Gilke Mine and The Dome Group)

OWNER: ALBERT DOIRON - prospector.

951 Aspen Road R.R.#1, Site 38, C-32 Comox, BC V9N 5N1

Phone/Fax: (250) 339-2173

	IERAL TITLES BRANCH	ì
L. I.	#	
Fle	VANCOUVER, B,C.	

ASSESSMENT REPORT

Map: 92F 13E, 92K 4E

Latitude: 50 North Longitude: 125 37 30 West

Area: Greenstone Creek, Campbell River, British Columbia.

Mining Division: Naniamo

Original Property:

Mineral Lease M-14 Lots: 1215 and 1216 the Thundercloud and Rainbow Claims. Area covered by the Thundercloud and Rainbow consists of: 85,75 Acres.

Recently Staked Claims (Oct. 1995): 16 units (four post) Allana. Tag No. 116598. These units partially overlap the Mineral Leases of the Thundercloud and Rainbow.

Date: December 1995.

Report by: Will Thompson 857 Fern Rd. East Qualicum Beach B.C. V9K 1M3

Phone: (604) 752-9373

Allana Group

Owner: Albert Doiron Address: 951 Aspen Road RR - 1 Site 38 C-32 Comox, BC V9N 5N1

Phone/Fax: (250) 339 - 2173

Map: 92F 13E, 92K 4E

Latitude: 50 North Longitude: 125 37 30 West Area: Greenstone Creek, Campbell River, BC

Mining Division: Nanaimo

Mineral Leases: M-14, Lots 1215 and 1216. The

Thundercloud and Rainbow Claims.

Allana Claims: Staked October 1995, 16 Units (four

post)

Table of Contents

Page

l.	Title Page
2	Introduction
3	Summary of work done in 1996 prospecting and sampling program
4	Prospecting report & Assay Values
5	Geochemistry
5	Breakdown of expenditures

Introduction:

This report is written as an apendment to the report prepared by W. Thompson in December, 1995. The 1995 report was prepared for the application of a prospectors grant with available documentation at that time. No research was done by W. Thompson, other than examining reports provided by Mr. Doiron. A summary and proposed expenditures were included in that report.

The Allana Group has also been called other names by different owners. These names include the Big G, Gilke Mine, and the Dome Group.

The property has been worked since 1917 when 83 tons were mined that contained 131 ounces of silver, 1 ounce of gold, and 30,904 pounds of copper. Various other people and companies have prospected sampled, mapped and drilled the property, but not ever again actually worked the deposit. The property was acquired by Mr. Darrein, to see if he could develop it to a point where a larger company would be interested in doing an extensive development program.

The Doiron work consisted mainly of prospecting, and soil sampling. The soil sampling initially was concentrated on roads. Trying to repeat old work to confirm high values found by others on a road sampling program. The second phase included flagging lines on which soil samples were collected. All the results of these samples are appended and a map showing the grid and roads sampled is enclosed. The location of each sample is the number assigned beside the assay.

Summary of work done in 1996 prospecting and sampling program.

The property has not been worked since about 1969 so a significant amount of time was spent re-locating roads, trails and excavations.

Previous work done in 1969 by Weymark Engineering Ltd. included an aerial magnetometer survey. This was conducted by Geo-X Surveys Ltd. There were some magnetic highs and low that were not followed up on the ground. Previous soil sampling on old roads indicated that there were some high copper values that should be followed up as well.

The 1996 program was designed to follow up the 1969 work. Soil Sampling was conducted along some roads to re-expose any potential ground anomalies that were indicated by previous work.

Some soil samples indicated fairly high Vanadium, Gold and Copper in the North West part of the property. A small grid was put in along flagged lines. Soil samples were taken at 25 meter intervals on lines 25 meters apart. The samples were analyzed by Chemex Labs for 32 elements by I.C.P. The main elements included: Au, Ag, Cu, As, Pb, Zn, and V. Sampling outlined significant high values in Gold, Copper, and Vanadium.

Between the period from November 1, 1996 to September 15, 1996 a total of \$22,718.79 was spent. This included \$4,641 in the cost of assaying.

Prospecting Report:

Initial prospecting consisted of locating and sampling the old adits on the Thundercloud and Rainbow Mineral Leases (M-14, Lots 1215 and 1216).

Four Adits were located and grab samples from the veins were taken. The results of the samples indicated significant copper, zinc, silver, gold, arsenic, cobalt, and cadmium. The high values are as follows over a vein width of about 2 feet. The vein is up to about 8 feet in width, but seems to thin to a few inches in the main adit. Are as follows: 25,300 ppm Cu, >50,000 ppm Zn, 4 ppm Ag, 160 ppb Au, 410 ppm As, 460 ppm Co, and 465 ppm Cd. The veins occur in andesite tuffs and flows. The veins are gently dipping at 15 to 20 degrees to the north. Mineralization in the veins consists of chalcopyrite, pyrite, pyrrohtite, sphalerite, with minor silver and gold.

Prospecting on the rest of the property revealed little outcrop in a generally flat lying area. Some small outcrops of limestone, andesite and argillacious shales were encountered. The argillacious shales found in the north western part of the property had numerous poorly preserved clam shells. All of the old roads were walked and some cross-country traverses were made with little finds between the roads.

Geochemistry:

Soil sampling: Procedure:

Soil Samples were taken on roads at 50 meter and 25 meter intervals. Samples on the grid were taken at 25 meter intervals on lines 25 meters apart. The samples were taken from the "C" or oxidized horizon of the soil which was usually less than a foot from the surface. The samples were collected and stored in 3" x 8" craft paper bags that were then dried and shipped to the assayer.

Assaying was done by Chemex Labs Ltd. of North Vancouver using standard ICP. Some elements required nitric-aqua regia digestion. Dry Sieve to -80 mesh.

Gold Values Range from 10 ppb to 160 ppb.
Vanadium Values Range from 4 ppm to 586 ppm.
If 215 samples, 180 showed above background.
A good correlation appears to exist with Vanadium.

Zn Values Range from 2 ppm to 405 ppm.
Cu Values Range from 3 ppm to 227 ppm.

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

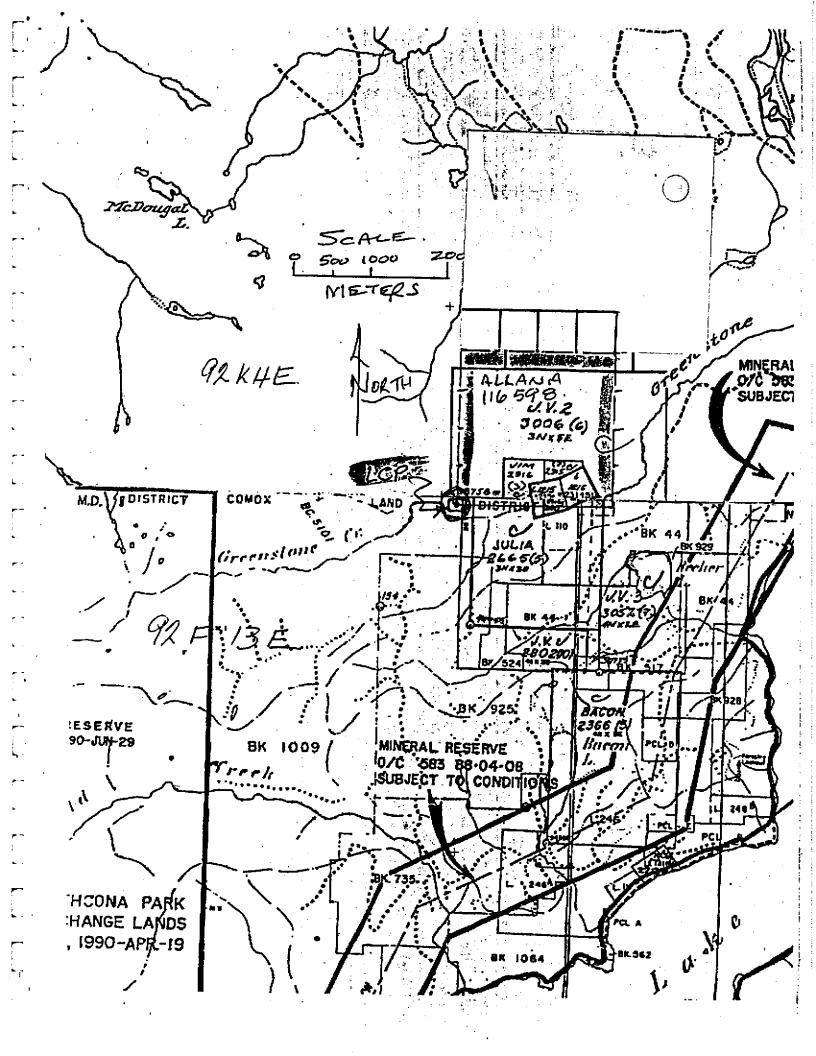
A9622805

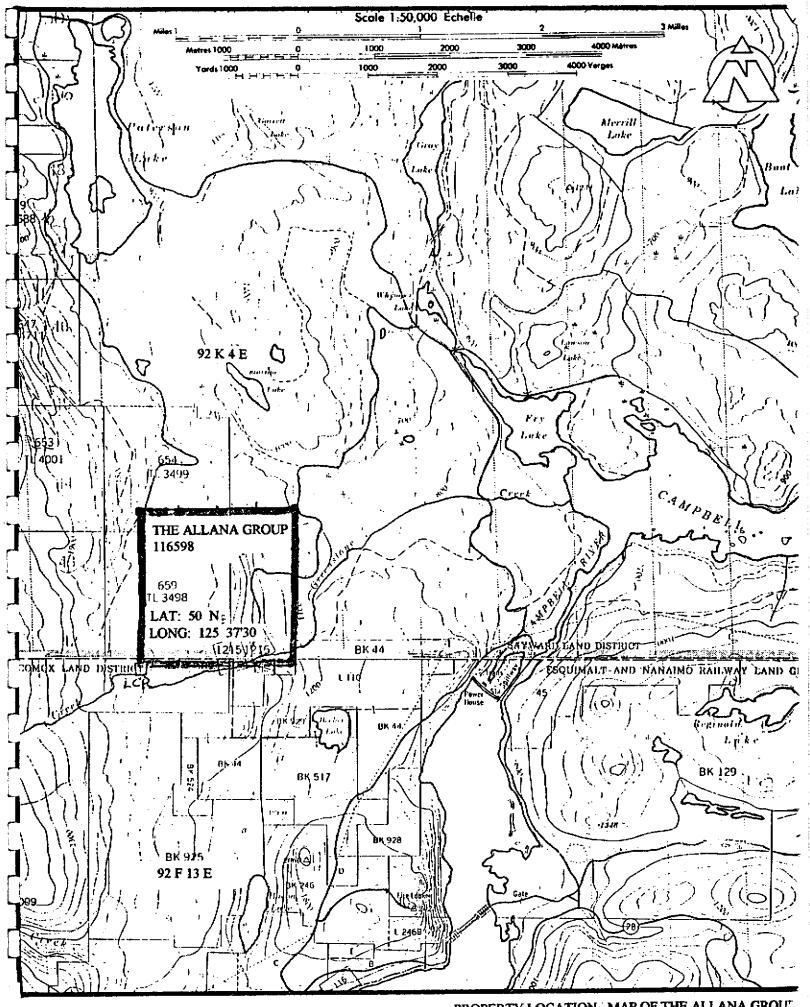
Comments: ATTN:AL DOIRON

CERTIFICATE

A9622805

(LOL) - DOIRON, ALBERT


Project: P.O. #:


samples submitted to our lab in Vancouver, BC. This report was printed on 12-JUL-96.

	SAM	PLE PREPARATION	
CHEMEX		DESCRIPTION	
201 202 229	32 32 32 32	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge	
* NOTE	1:		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Hg, Na, Sr, Ti, Tl, W.

	NUMBER Samples	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	32	Au ppb: Fuse 30 g sample	Γλ-λλ8	5	10000
2118	31	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	31	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	31	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	31	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	31	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	31	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	31	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	31	Cd ppm: 32 element, soil & rock	ICP-ARS	0.5	100.0
2126	31	Co ppm: 32 element, soil & rock	ICP-ARS	1	10000
2127	31	Cr ppm: 32 element, soil & rock	ICP-AKS	1	10000
2128	31	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150	31	Fe %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2130	31	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131 2132	31 31	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2151	31	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2134	31	He ppm: 32 element, soil & rock Hg %: 32 element, soil & rock	ICP-AES	10	10000
2135	31	Mn ppm: 32 element, soil & rock	ICP-ABS ICP-ABS	0.01 5	15.00
2136	31	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	31	Na %: 32 element, soil & rock	ICP-ARS	0.01	5.00
2138	31	Ni ppm: 32 element, soil & rock	ICP-ARS	1	10000
2139	31	P ppm: 32 element, soil & rock	ICP-ARS	10	10000
2140	31	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	31	Sb ppm: 32 element, soil & rock	ICP-AES	ž	10000
2142	31	sc ppm: 32 elements, soil & rock	ICP-AES	ī	10000
2143	31	Sr ppm: 32 element, soil & rock	ICP-ARS	ī	10000
2144	31	Ti %: 32 element, soil & rock	ICP-AKS	0.01	5.00
2145	31	Ti ppm: 32 element, soil & rock	ICP-AKS	10	10000
2146	31	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	31	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	31	W ppm: 32 element, soil & rock	ICP- AES	10	10000
2149	31	Zn ppm: 32 element, soil & rock	ICP-ARS	2	10000

PROPERTY LOCATION MAP OF THE ALLANA GROUT

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ava., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Page Number : 1-A Total Pages :1 Certificate Date: 07-MAY-96 Invoice No. : 19617350

P.O. Number Account :LOL

Project : Comments: ATTN; A. DOIRON

	·	-							CERTIFICATE OF ANALYSI			YSIS	A9617	7350					
SAMPLE	PREP CODE	Au pph FA+AA		A1	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Pe	Ga ppm	Hg K	La ppm	Mg %	Min Dom
A-LINE NORTH 1 A-LINE NORTH 2 A-LINE 025M A-LINE 050M A-LINE 075M	201 22 201 22 201 22 201 22 201 22	9 < 5 9 < 5 9 < 5	0.2 < 0.2 < 0.2	3.71 3.25 4.70 3.61 4.81	2 2 < 2 < 2 < 2	20 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.19 1.96 1.16 0.89 1.64	0.5 < 0.5 < 0.5 < 0.5 0.5	12 9 11 15 20	83 86 80 113 66	48 34 57 45 98	7.72 6.26 6.63 9.91 6.40	10 10 10 10	<pre>< 1 < 0.01 < 1 < 0.01 1 < 0.01 2 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 < 0.01</pre>	< 10 < 10 < 10 < 10 < 10	0.41 0.21 0.44 0.24 0.76	1505 555 645 940 1670
A-LINE 100M A-LINE 125M A-LINE 150M A-LINE 175M B-LINE 000	201 22 201 22 201 22 201 22 201 22 201 22	9 < 5 9 < 5 9 < 5	0.2 0.4 0.2	2.57 4.27 5.94 5.67 6.66	8 < 2 6 6	10 20 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.50 1.10 1.36 1.74 1.41	< 0.5 1.0 1.5 1.0 0.5	10 15 17 19 17	76 91 93 80 72	31 54 69 227	8.34 7.43 6.95 5.98 5.03	10 10 10 10 < 10	< 1 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 < 0.01	< 10 < 10 < 10 < 10 < 10	0.27 0.39 0.59 0.97 0.63	485 600 435 440 565
9-LINE 025 9-LINE 050 8-LINE 075 8-LINE 100 8-LINE 125	201 22 201 22 201 22 201 22 201 22	9 5 9 < 5 9 < 5	0.2 < 0.2 0.2	4.69 5.25 5.07 6.32 5.53	< 2 12 < 2 8 6	20 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.45 1.72 2.00 1.27 1.72	1.0 0.5 0.5 3.5 3.5	17 20 22 27 20	76 68 68 94 80	72 100 172 72 83	5.97 5.87 5.89 7.47 6.45	10 10 10 10	< 1 < 0.01 < 1 < 0.01 < 1 0.01 < 1 0.01 < 1 0.01	< 10 < 10 < 10 < 10 < 10	0.61 0.73 0.94 0.51 0.66	\$30 635 595 1165 555
8-LINE 150 8-LINE 175 3-LINE 200 8-LINE 225 9-LINE 250	201 22 201 22 201 22 201 22 201 22 201 22	9 < 5 9 5 9 < 5	< 0.2	6.42 5.11 4.63 3.53 3.46	< 2 < 2 2 14 18	60 60 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.59 1.02 2.33 4.62 4.59	1.5 1.5 1.0 1.5 0.5	25 18 19 16 20	84 85 51 33 38	95 51 120 76 113	6.24 6.72 5.04 4.33 4.13	10 10 < 10 < 10 < 10	< 1 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 0.01 < 1 0.03	< 10 < 10 < 10 10 < 10	0.62 0.43 0.93 0.50 0.76	605 765 660 1325 910
3-LINE 275 3-LINE 300 3-LINE 325 3-LINE 350 3-LINE 375	201 22 201 22 201 22 201 22 201 22	9 < 5 9 < 5 9 < 5	< 0.2	0.78 2.97 0.96 3.10 4.38	6 36 12 14 < 2	30 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.00 2.78 4.34 4.18 1.51	0.5 2.5 7.0 0.5 0.5	6 14 5 14 18	13 58 21 30 71	29 99 87 48 77	0.93 3.96 1.14 4.48 6.22	< 10 < 10 < 10 < 10	<pre>< 1 < 0.01 < 1 0.01 < 1 0.03 < 1 0.02 < 1 < 0.01</pre>	< 10 < 10 < 10 < 10 < 10	0.16 0.63 0.22 0.65 0.62	280 1585 1640 1110 765
3-LINE 400 3-LINE 425 3-LINE 450 3-LINE 475 3-LINE 500	201 22 201 22 201 22 201 22 201 22	9 < 5 9 < 5 9 5		4.27 4.40 5.37 5.12 4.80	2 6 10 < 2 2	30 40 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.04 2.35 2.00 2.02 1.77	< 0.5 0.5 0.5 < 0.5 0.5	18 19 21 22 20	54 65 64 73 84	101 82 144 151 82	5.12 5.83 5.31 5.76 6.70	< 10 10 10 10 10	< 1 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 < 0.01 < 1 0.01	< 10 < 10 < 10 < 10 < 10	0.81 0.71 1.01 1.09 0.74	735 1270 585 505 765
												•							

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: A. DOIRON

Page Number : 1-8 Total Pages : 1 Certificate Date: 07-MAY-96 Invoice No. : 19617350 P.O. Number :

Account :LOL

									CERTIFICATE OF ANALY						'SIS	A9617350
SAMPLE	PREP CODE	Mo Mo	Na %	Ni ppm	P PPM	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U PPM	y ppm	M ppm	Zn ppm	
-LINE NORTH 1 -LINE NORTH 2 -LINE 025M -LINE 050M -LINE 075M	201 229 201 229 201 229 201 229 201 229	4 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	19 34 20 17 34	780 680 610 630 670	2 8 2 2 10	< 2 < 2 < 2 < 2 < 2	7 6 10 10	23 21 21 15 23	0.70 0.52 0.58 0.73 0.61	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	337 419 292 420 293	< 10 < 10 < 10 < 10 < 10	64 64 42 58 70	
LINE 100M LINE 125M LINE 150M LINE 175M LINE 000	201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	24 24 34 51 29	690 870 770 280 990	4 6 4 < 2 < 2	< 2 < 2 < 2 < 2 < 2	5 10 12 21 14	14 19 21 36 22	0.64 0.72 0.58 0.51 0.46	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	362 345 272 243 217	< 10 < 10 < 10 < 10 < 10	56 68 130 64 62	
LINE 025 LINE 050 LINE 075 LINE 100 LINE 125	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	30 32 41 33 48	720 690 450 1200 520	6 < 2 2 4 2	< 2 < 2 < 2 < 2	14 14 18 17 15	28 27 50 22 30	0.53 0.53 0.45 0.53 0.41	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	280 264 261 410 366	< 10 < 10 < 10 < 10 < 10	76 70 86 162 174	
LINE 150 LINE 175 LINE 200 LINE 225 LINE 250	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 0.01	47 31 47 34 35	780 950 700 2340 1820	2 4 2 8 6	< 2 < 2 < 2 < 2 < 2	15 9 13 10	27 42 39 93 125	0.41 0.45 0.46 0.24 0.26	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	294 344 252 133 142	< 10 < 10 < 10 < 10 < 10	166 120 88 100 84	
LINE 275 LINE 300 LINE 325 LINE 350 LINE 375	201 229 201 229 201 229 201 229 201 229 201 229	3 3 < 1	< 0.01 < 0.01 0.02 < 0.01 < 0.01	58 32 19 20 29	360 620 1040 1200 1010	2 10 20 24 6	< 2 < 2 < 2 < 2 < 2	2 11 3 6 11	7 76 128 112 28	0.05 0.40 0.11 0.27 0.58	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	95 191 83 130 286	< 10 < 10 < 10 < 10 < 10	106 204 232 140 76	
LINE 400 LINE 425 LINE 450 LINE 475 LINE 500	201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	31 30 40 45 39	890 1710 630 430 580	4 10 < 2 < 2 4	< 2 < 2 < 2 < 2 < 2	13 13 14 20 13	46 78 37 40 38	0.48 0.50 0.46 0.35 0.42	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	228 243 227 215 251	< 10 < 10 < 10 < 10 < 10	70 94 78 72 96	
			·													

PAGE

002

CHEMEX USX FAX1

Chemex Labs Ltd.

Analytical Chemists "Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 804-984-0221 FAX: 804-984-0218

Ta: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: ALBERT DOIRON

Page Number 1-A
Total Pegeu 1
Certificate Date12-MAY-96
Invoice No. I-9617614
P.O. Number :
Account :

	···									CE	RTIFI	ITIFICATE OF ANAL			YSI\$	Α	9617	614		
SAMPLE DESCRIPTION	PREP	Au ppb FA+AA	PPm Ag	Al 1	As PPM	Ba Ppu	Be ppm	Bi PPm	Ca 1	cđ ppm	Co	Cr ppm	Cn. ppu	Te t	Ga ppm	Hg PPM	K	Ia Pa	Hg 1	Min Min
-L1800M 0000M -L1800M 0050M -L1800M 0100M -L1800M 0150M -L1800M 0200M	202 201 202 201 202 201 202 201 202 201	< 5 < 5 10	<pre>0.2 0.2 0.2 0.2 0.2 0.2 0.2</pre>	5.28 4.47 0.46 5.10 3.68	6 4 4 2 8 2	30	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 < 2	1.01 1.57	0.5 < 0.5 < 0.5 < 0.5 < 0.5	24 21 2 18 16	86 88 9 70 73	87 78 14 101 49	6.97 6.46 0.68 5.30 6.84	10 10 < 10 10	3 (1 (0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	0.73 0.61 0.09 0.65 0.47	425 490 120 740 585
L1800M 0250H -L1800M 0300H -L1800M 0350M -L1800M 0400M -L1800M 0450M	202 201 202 201 202 201 202 201 202 201	< 5 10 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.02 4.19 3.07 4.94 3.09	8 10 < 2 8 8	20 20 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 2	1.19 1.38 1.24 1.39 1.51	0.5 < 0.5 < 0.5 0.5 < 0.5	15 17 14 14 13	79 80 66 73 57	49 56 43 58 53	6.45 6.09 6.23 5.75 4.89	10 10 10 10 10	(1 (0.01	< 10 < 10 < 10 < 10 < 10	0.46 0.53 0.39 0.54 0.51	510 500 420 485 345
L1800M 0500N L1800M 0550N L1800M 0600N L1800M 0650N L1800M 0700M	202 201 202 201 202 201 202 201 202 201	√5 √5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.52 4.00 4.36 4.92 6.23	10 6 14 6 10	20 20 10 20 20	0.5 0.5 < 0.5 < 0.5 0.5	2 2 4	1.68 1.63 1.49 1.47 1.06	0.5 0.5 0.5 2.0 < 0.5	23 22 16 16 18	54 70 64 78 69	79 58 66 57 75	6.44 6.10 5.75 6.74 5.28	10 10 10 10 10	3 (3 (1 (0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10	0.76 0.52 0.69 0.53 0.64	320 41: 410 360 42:
-L1800M 0750M -L1800M 0800M -L1800M 0850M -L1800M 0900M -L1800M 0950M	202 201 202 201 202 201 202 201 202 201	(5 (5	< 0.2 0.2 < 0.2 < 0.2 0.2	5.37 3.66 4.67 3.36 3.46	16 10 6 8 2	30 30 30	< 0.5 < 0.5 0.5 0.5 < 0.5	<pre>< 2 < 2 4 < 2 < 2 < 2</pre>	1.17 1.17 1.62 1.42 1.31	0.5 0.5 1.0 1.0	16 14 21 22 12	82 80 63 70 57	74 44 126 67 58	7.00 7.51 5.64 6.10 5.21	10 10 10 10 4	3 < 1 < 1 < < 1 < < 1 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10	0.61 0.46 0.92 0.46 0.53	41: 30: 51: 130: 450
-L1800M 1000M -L1800M 1050M -L1800M 1100M -L1800M 1150M	202 201 202 201 202 201 202 201	10 < 5 15 5	0.2 0.2 0.2 0.2	3.62 4.03 5.17 4.27	2 < 2 < 2 2	20 20	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.23 1.34 0.97 0.77	1.0 1.5 1.5 1.0	12 12 11 10	68 76 71 80	56 64 69 80	6.17 6.57 6.44 6.92	10 10 10	<1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < > < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01	< 10 < 10 < 10 < 10	0.47 0.49 0.52 0.33	320 305 325 180
									V											

PAGE 003

CHEMEX UPX FAX1

Chemex Labs Ltd.

Analytical Chemists * Georgiernists * Registered Assayers

212 Brookebank Ave., North Vancouver British Columbia, Cenada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN; ALBERT DOIRON

Page Number 1-B
Total Pages 1
Certificate Date12-MAY-98
Invoice No. I-9617614
P.O. Number : Account

			·							CE	RTIF	CATE	OF #	NALY	'SIS	A9617614
RAMPLE DESCRIPTION	PREP	Mo ppm	Ta t	ni mqq	P ppm	Pb ppm	Sb PP#	Sc ppm	sr ppm	Ti 1	TI. PPM	U PPR	PPM V	ppa.	žn ppa	
C-L1800M 0000M C-L1800M 0050M C-L1800M 0100M C-L1800M 0150M C-L1800M 0200M	202 201 202 201 202 201 202 201 202 201 202 201	(·1 1 (0.01 0.01 0.01 0.01 0.01	41 34 5 38 25	540 420 370 620 850	4 2 2 6 4	< 2 < 2 < 2 < 2 < 2	13 12 1 15 9	30 37 30 30 22	0.46 0.54 0.07 0.47 0.61	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	278 334 30 240 321	< 10 < 10 < 10 < 10 < 10	130 74 14 62 66	
C-L1800H 0250M C-L1800H 0300M C-L1800H 0350M C-L1800H 0400M C-L1800H 0450M	202 201 202 201 202 201 202 201 202 201	< 1 <	0.01 0.01	25 28 23 27 22	580 550 390 520 430	2 4 2 6 8	2 (2 2 (2 (2	10 11 7 10 9	22 25 26 25 29	0.56 0.54 0.57 0.54 0.51	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	307 285 315 271 257	< 10 < 10 < 10 < 10 < 10	64 60 48 60 54	
C-L1800M 0500M C-L1800M 0550M C-L1800M 0600M C-L1800M 0650M C-L1800M 0700M	202 201 202 201 202 201 202 201 202 201	2 <	0.01 0.01 0.01	36 29 31 34 29	360 460 440 350 690	(2 2 (2 (2 2	(2 (2 (2 (2 (2	14 10 11 12 14	34 32 26 26 23	0.51 0.59 0.51 0.42 0.39	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	268 324 278 374 237	< 10 < 10 < 10 < 10 < 10	100 88 86 222 60	
C-L1800M 0750M C-L1800M 0800M C-L1800M 0850M C-L1800M 0900M C-L1800M 0950M	202 201 202 201 202 201 202 201 202 201	<1 < 1 < 1 < 1 < 1 < 2 < < 1 <	0.01 0.01 0.01	32 26 43 29 23	480 560 700 510 580	2 2 2 2 6	< 2 < 2 < 2 < 2	10 8 16 11 9	25 25 28 27 26	0.48 0.49 0.52 0.57 0.49	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	301 323 286 340 257	< 10 < 10 < 10 < 10 < 10	78 106 98 92 74	
C-L1800H 1050H C-L1800H 1050H C-L1800H 1150H	202 201 202 201 202 201 202 201 202 201	2 <	0.01 0.01 0.01 0.01	24 26 25 27	480 440 720 440	8 6 6	< 2 < 2 < 2 < 2	10 9 11 9	24 31 23 22	0.56 0.60 0.52 0.58	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	311 366 327 337	< 10 < 10 < 10 < 10	92 106 72 66	
					V											
! 																

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3AO

Project:

Comments: ATTN: AL DOIRON

Page Number : 1-A Total Pages : 3 Certificate Date: 07-JUN-96

Invoice No. : 19619445 P.O. Number :

Account LOL

D-LINE 150A D-LINE 150B	PREP CODE 201 22 201 22 201 22	29 F	ppb A+AA	Ag ppm	A1					CERTIFICATE OF ANALY											
D-LINE 150A D-LINE 150B	201 2			• • •	%	ppm As	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm	8g ppm	K %	La ppm	Mg	Mn ppm
D-LINE 250	201 22	29 29 29	< 5 < 5 < 5 < 5	0.2 < 0.2 0.2 < 0.2 < 0.2	2.37 5.12 5.15 6.11 4.38	2 < 2 2 < 2 < 2 < 2 < 2	20 20 20 40 10	< 0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.13 1.64 1.41 1.49 1.65	0.5 < 0.5 < 0.5 0.5 0.5	10 23 21 22 16	72 83 74 92 79	32 71 60 106 61	6.89 6.33 5.79 6.58 6.65	10 10 10 10 10	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01	< 10 < 10 < 10 < 10 < 10 < 10	0.43 0.64 0.58 0.65 0.63	720 710 600 425 310
D-LINE 300B D-LINE 350 D-LINE 400 D-LINE 450CR	201 22 201 22	29 29 29 29	< 5 < 5 < 5 < 5	< 0.2 0.2 0.2 0.2 < 0.2	5.70 4.62 7.52 7.47 4.90	< 2 < 2 < 2 < 2 < 2	30 10 10 20 30	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	1.64 1.54 1.12 0.94 2.09	< 0.5 < 0.5 0.5 0.5 0.5	20 17 14 13 16	68 75 80 76 65	78 73 71 71 95	4.96 6.76 6.02 6.34 5.78	10 10 10 10 10	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01	< 10 < 10 < 10 < 10 < 10 < 10	0.70 0.61 0.73 0.53 0.84	540 415 305 380 465
D-LINE 600 D-LINE 650CR D-LINE 700CR	201 22 201 22 201 22 201 22 201 22	29 29 29	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.30 4.85 4.11 4.76 5.29	< 2 < 2 8 < 2 8	30 20 10 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	2.02 1.52 1.40 2.28 1.85	0.5 0.5 2.0 0.5 1.5	15 17 13 15	52 78 112 87 87	106 79 55 61 56	5.03 6.18 10.15 6.48 6.03	< 10 10 20 10 < 10	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01 .01 .01	< 10 < 10 < 10 < 10 < 10	0.83 0.63 0.54 0.54	480 970 290 425 815
D-LINE 850 D-LINE 900 D-LINE 950	201 22 201 22 201 22 201 22 201 22	29 29 29	< 5 < 5 < 5 < 5	0.2 0.2 0.2 0.2 < 0.2	5.11 6.02 5.15 4.65 4.76	< 2 < 2 < 2 < 2 B	20 30 20 30 40	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.55 1.66 1.52 1.23 1.71	1.5 1.0 2.0 1.5 2.0	17 17 13 13	82 90 100 75 80	72 74 51 42 77	6.97 7.54 8.29 7.72 6.14	10 10 10 10 10	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01 .03 .01	< 10 < 10 < 10 < 10 < 10	0.58 0.79 0.63 0.41 0.63	460 515 350 290 395
D-LINE 1100 D-LINE 1150 D-LINE 1200	201 22 201 22 201 22 201 22 201 22	29 29 29	< 5 < 5 < 5 20 50	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.32 5.17 5.09 5.29 3.56	< 2 < 2 < 2 < 2 < 2	30 30 30 20 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.26 1.43 1.88 1.42 1.52	1.0 1.0 0.5 1.5	19 18 16 20 11	90 82 71 87 100	85 54 80 59 36	7.01 7.42 6.53 6.91 10.40	10 10 10 10 20	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01 .01 .01	< 10 < 10 < 10 < 10 < 10	0.63 0.50 0.78 0.64 0.53	400 695 895 810 600
LINE 1N 000 LINE 1N 025E LINE 1N 050E	201 22 201 22 201 22 201 22 201 22	29 29 29	< 5 10 20 20 < 5	< 0.2 0.2 < 0.2 < 0.2 < 0.2	4.45 4.48 4.56 3.67 4.82	< 2 < 2 < 2 6 < 2	20 20 20 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.29 1.32 1.46 2.22 1.51	0.5 1.5 1.5 1.0	16 13 15 15	88 89 92 59 86	46 39 39 56 45	6.87 6.62 5.85 5.06 6.43	10 10 10 < 10	< 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0 < 1 < 0	.01 .01 .01	< 10 < 10 < 10 < 10 < 10	0.51 0.43 0.39 0.51 0.55	635 640 790 1880 850
LINE 1N 125E LINE 1N 150E LINE 1N 175E	201 22 201 22 201 22 201 22 201 22	19 19 19	15 < 5 < 5 < 5	< 0.2 0.2 < 0.2 0.2 0.2	4.36 4.87 3.14 4.75 4.80	18 < 2 < 2 8 < 2	30 20 50 50 60	< 0.5 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2	2.09 1.59 1.42 1.60 1.89	2.5 1.0 < 0.5 0.5 0.5	18 22 14 16 17	76 82 50 82 75	73 86 33 66 52	6.63 6.48 5.55 6.65 6.76	10 10 10 10		.01 .03 .03	< 10 < 10 < 10 < 10 < 10	0.65 0.70 0.61 0.60 0.55	2210 520 1280 1265 1345
LINE 1N 250E LINE 1N 275E LINE 1N 300E	201 22 201 22 201 22 201 22 201 22	19 19	20 10 < 5 < 5 < 5	0.6 < 0.2 < 0.2 < 0.2 0.2	8.36 2.45 4.99 4.53 6.61	2 < 2 < 2 2 < 2	120 10 20 40 30	1.0 < 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2	3.13 1.34 1.32 1.12 1.34	1.5 < 0.5 0.5 < 0.5 0.5	17 9 20 17 23	25 89 94 58 98	65 43 50 58 59	4.94 9.93 7.67 6.86 6.23	10 30 10 10	<pre></pre>	.01 .01	10 < 10 < 10 < 10 < 10	0.43 0.55 0.63 0.30 0.68	8230 425 1010 1810 2250

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

Page Number :1-B Total Pages :3 Certificate Date: 07-JUN-96 Invoice No. : 19619445 P.O. Number :

Account :LOL

		q	···						CERTIFICATE OF ANALYS					'SIS	A9619445	
SAMPLE	PREP CODE	ърш Мо	Na %	Ni ppm	pbm b	ppm d9	ppm Sp	Sc ppm	Sr ppm	Ti %	Tl ppm	ppm U	V ppm	M M	Zn ppm	
-LINE 0508 -LINE 150A -LINE 150B -LINE 200 -LINE 250	201 229 201 229 201 229 201 229 201 229	2 3 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	23 33 26 45 32	1000 690 1090 460 520	2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2	6 11 9 13 9	17 27 21 22 24	0.68 0.47 0.55 0.38 0.47	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	367 299 268 240 289	< 10 < 10 < 10 < 10 < 10	62 86 54 88 96	
-LINE 300A -LINE 300B -LINE 350 -LINE 400 -LINE 450CR	201 229 201 229 201 229 201 229 201 229	1 4 3	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	34 31 32 29 34	750 440 770 650 470	< 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2	12 11 14 10 13	28 27 25 25 36	0.45 0.57 0.46 0.35 0.45	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	238 332 248 204 273	< 10 < 10 < 10 < 10 < 10	74 64 70 90 88	
-LINE 500 -LINE 600 -LINE 650CR -LINE 700CR -LINE 750	201 229 201 229 201 229 201 229 201 229	3 1 4	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	29 30 24 27 29	540 460 380 410 370	< 2 < 2 < 2 < 2 < 2	2 < 2 < 2 2 2	13 15 8 11 9	39 29 29 47 46	0.45 0.44 0.53 0.52 0.42	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	254 281 462 397 239	< 10 < 10 < 10 < 10 < 10	66 60 90 108 128	
-LINE 800 -LINE 850 -LINE 900 -LINE 950 -LINE 1000	201 229 201 229 201 229 201 229 201 229	3 · 3 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	34 38 30 27 41	370 740 560 380 280	< 2 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 6,	10 13 11 9	30 30 30 25 40	0.45 0.48 0.48 0.56 0.38	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	300 313 320 352 238	< 10 < 10 < 10 < 10 < 10	78 112 126 154 162	-
LINE 1050 LINE 1100 LINE 1150 LINE 1200 LINE 1250	201 229 201 229 201 229 201 229 201 229	4 · 2 · 3 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	43 32 36 33 21	680 550 550 1180 660	< 2 < 2 < 2 < 2 < 2	< 2 2 < 2 < 2 < 2	14 10 13 12 8	25 33 33 27 27	0.46 0.49 0.44 0.52 0.55	10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	329 328 294 317 445	< 10 < 10 < 10 < 10 < 10	102 84 84 108 58	
LINE 1300 ME IN 000 ME IN 025E ME IN 050E ME IN 075E	201 229 201 229 201 229 201 229 201 229	3 · 2 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	25 27 27 27 27 33	690 930 1590 1130 1300	< 2 < 2 < 2 < 2 < 2	2 < 2 < 2 < 2 < 2	10 8 8 10 8	27 27 28 64 41	0.56 0.50 0.46 0.47 0.51	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	316 357 331 234 282	< 10 < 10 < 10 < 10 < 10	88 110 108 80 106	
NE 1N 100E NE 1N 125E NE 1N 150E NE 1N 175E NE 1N 200EH-R	201 229 201 229 201 229 201 229 201 229 201 229	6 · 2 · 1 ·	0.01 0.01 0.01 0.01 0.01	31 38 22 31 34	950 660 790 1210 1390	2 < 2 18 2 < 2	< 2 < 2 < 2 < 2 < 2	11 14 6 10	50 28 59 50 72	0.62 0.60 0.48 0.55 0.59	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	306 323 260 288 280	< 10 < 10 < 10 < 10 < 10	150 122 50 90 110	
INE 1N 225E INE 1N 250E INE 1N 275E INE 1N 300E INE 1N 325E	201 229 201 229 201 229 201 229 201 229	1 4	0.02 0.01 0.01 0.01 0.01	36 22 32 32 22 37	7450 550 700 910 1270	8 < 2 < 2 4 2	< 2 < 2 < 2 6 < 2	7 6 10 9	145 33 29 56 28	0.12 0.66 0.58 0.51 0.51	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	57 489 323 260 247	< 10 < 10 < 10 < 10 < 10	330 48 . 68 . 48 . 92	

CÉRTIFICATION: How

CHEMEX LABS

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ava. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: AL DOIRON

CEDTIEICATE DE ANALVEIS

Page Number : 1-A Total Pages : 2 Certificate Data: 18-JUN-96 Invoice No : 19620606 P.O. Number :

Account LOL

AGEGGER

		Ī							ÇE	RTIF	CAIL	OF A	NAL	YSIS		19620	606		
SAMPLE	Prep Code	Au ppb fusion FA+AA wt. gm	y g	al K	Às pph	Ba pps	Be ppm	Bi PP	Ca %	cd ppe	Co ppm	Cr pps	Cu ppm	7s %	Ga ppm	Hg ppa	K %	ppm La	Mg %
E-LYME 000m	201 202	< 5 30.00	0.2	4,52	2	20	< 0.5	< 2	1.69	1.5	19	113	60	7,00	10	< 1	0.02	< 10	0.69
E-LIDER 050M	201 202	< 5 15.00	0.2	4.42	6	20	< 0.5	< 2	1.40	0.5	16	83	52	6.75	10	< 1	0.01	< 10	0.87
B-LIME 100M B-LIME 150M	201 202 201 202	< 5 30.00	0.2	2.87	< 2	10	< 0.5	< 2	1.59	1.0	13	102	30	8.68	20		0.01	< 10	0.43
R-LINE 200M	201 202	< 5 15.00 < 5 15.00	0.2	4.14	12	10 10	< 0.5 < 0.5	< 2 < 2	1.97 1.67	2.0 0,5	1 B 1 4	7 B 64	65 46	5.74 5.33	10 10	< 1 < 1	0.01	< 10 < 10	0.83 0.51
E-LINE 250M	201 202	₹ 5 15,00	0.2	5.61	2	20	< 0.5	< 2	1.61	0.5	17	88	79	6,21	10	< 1	0.01	< 10	0.72
E-LINE 300N E-LINE 350N	201 202		0.2	3.16	2	10	< 0.5	< 2	1.51	< 0.5	11	55	50	4.66	< 10	< 1	0.01	< 10	0,69
E-LINE 050s	201 202	< 5 30.00 < 5 10.00	0.2	3.29 4.66	2 38	10 10	< 0.5 < 0.5	< 2 < 2	1.99	0.5 1.5	15 1 5	69 143	49 105	5.97 6.22	10 10	< 1	0,01	< 10 < 10	0.76
E-LINE 1758	201 202	< 5 10.00	0.2	3.49	< 2	10	< 0.5	₹ 2	1.91	< 0.5	8	125	52	11.05	30		0.01	₹ 10	0.41
E-LINE 2254 E-LINE 2758	201 202	< 5 10.00	0.8	5.57	8	30	< 0.5	< 2	2.72	1.5	26	103	247	5,38	10	< 1	0.01	10	0.83
E-LINE 325s	201 202 201 202	< 5 15.00 not/es	< 0.2 0.4	5,21 1,22	2 < 2	50 10	< 0.5 < 0.5	< 2 < 2	3.33 3.81	< 0.5 0.5	22 6	141 50	163	5.33	10	4 1	0.01	10	1.01
E-LIME 3758	201 202	< 5 15.00	< 0.2	5.63	` ;	10	₹ 0.5	₹ 2	2.25	0.5	16	90	129 93	0.89 6.69	< 10 10	< 1 <	0.01	10 < 10	0.13 0.68
B-LINE 4256	201 202	< 5 30.00	0.6	4.68	6	20	< 0.5	2	2.91	1.5	18	72	98	5.69	10	₹1	0.01	< 10	0.76
E-LIME 4758 B-LIME 5258	201 202 201 202	< 5 30.00	0.2	4.67	6	10	< 0.5	< 2	2.09	0.5	15	64	72	5.76	10	< 1	0.01	< 10	0.66
E-LIER 5758	201 202	< 5 15.00 < 5 15.00	0.2 0.2	6.26 5.54	< 2	20 30	< 0.5 < 0.5	< 2 < 2	1.65	< 0.5 0.5	17 30	75 68	58 76	6.31 6.51	10 10	< 1 < 1	0.51	< 10 < 10	0.6B
E-LINE 6255	201 202	< 5 15.00	0.2	4.96	₹ 2	10	< 0.5	2 2	1.44	< 0.5	14	85	51	7.53	10		0.01	< 10	0.58
B-LIME 6758	201 202	< 5 15.00	0.2	4.04	2	10	< 0.5	< 2	1.25	< 0.5	10	8.5	44	7.75	10		0.01	< 10	0.42
F-LINE R77 F-LINE R211	201 202 201 202	< 5 15.00 < 5 30.00	0.2	6.41	6 < 2	10 10	< 0.5 < 0.5	< 2	1.43	0.5	22	102	59 51	7.13	10	< 1	0.01	< 10	0.60
F-LINE DOOM	201 202	< 5 30.00	0.2	4.06	1	20	< 0.5	< 2	1.11	< 0.5	11	117 117	42	10.60 9.93	30 30	< 1 < 1	0.01 0.01	< 10 < 10	0.52 0.50
F-LINE 025M	201, 202	< 5 30.00	0.2	4.71	2	10	₹ 0.5	< 2	1.22	< 0.5	12	138	59	10.40	30	< 1	0.01	< 10	0.58
F-LINE 050N	201 202	< 5 30,00	0,2	2.46	2	10	< 0.5	< 2	1.06	< 0.5	7	97	35	9.10	30		0.D1	< 10	0.33
F-LINE 075N F-LINE 100N	201 202 201 202	< 5 15.00 < 5 15.00	D.4	3.83	4		< 0.5	< 2	2.94	< 0.5	14	65	59	5.49	10	< 1	0.01	< 10	D.68
F-LIME 125N	201 202	< 5 15.00	< 0.2 0.2	4.13 4.33	44		< 0,5 < 0.5	< 2 < 2	2.54	0.5 1.5	11 18	76 96	63 92	5.82 6.70	< 10 10	< 1	D.01 D.01	< 10 10	D.64 D.58
F-LIRE 150N	201 202	< 5 15.00	0.2	3.86	2		< 0.5	₹ 2	2.21	0.5	21	74	87	8.15	20	₹ 1	0.01	< 10	1.03
F-LIME 175N	201 202	< 5 15.00	< 0.2	5.38	14	30	< 0.5	< 2	1.77	7.5	22	121	92	7.82	20	< 1	0.01	10	0.64
7-LIMR 2008 7-Link 2258	201 202 201 202	< 5 30.00 < 5 15.00	0.2	4.35 3.68	2	30 20	< 0.5	< 2	1.80	2.0	15	87	71	7.46	10	< <u>1</u>	0.01	< 10	0.75
7-LINE 250M	201 202	< 5 15.00	0.2	J. 66 5. 45	6 4	20	< 0.5 < 0.5	< 2 < 2	1.53	0.5	16 22	92 78	41 57	6.69 6.64	20 10	< 1 < 1	0.01 0.01	< 10 < 10	0.62
P-LINE 275M	201 202	< 5 30.00	0.2	6.13	i	20	₹ 0.5	₹ 2	1.38	< 0.5	17	108	64	7.66	10	₹1	0.01	₹ 10	0.61
7-LINE 300M	201 202	< 5 15.00	0.2	4.26	< 2	30	< 0.5	< 2	1.24	0.5	14	95	39	6.16	ĨD	< 1	0.01	< 10	0.45
F-LINE 325N F-LINE 350N	201 202 201 202	< 5 15.00 < 5 15.00	0.2	1.76	3	10	< 0.5	4 2	1.03	0.5	5	76	28	B.00	20	< 1	0.01	< 10	0.27
F-LINE 375N	201 202	< 5 15.00	0.2	2.54 3.59	4	30 30	< 0.5 < 0.5	< 2	1.65	0.5 4.0	11 17	8.6 8.8	4 0 6 0	8.54 8.08	20 10	< 1 < 1	0.01 0.01	< 10 < 10	0.55 0.57
F-LIRE 400N	201 202	₹ 5 15.00	0.2	4.77	2	10	₹ 0.5	₹ 2	1.20	0.5	1,	106	43	8.84	10	< 1	0.01	< 10	0.42
F-LINE 625M	201 202	< 5 15.00	0.2	7.33	В	30	< 0.5	< 2	1.64	1.5	21	99	154	6.94	10	< 1	0.01	< 10	0.71
	1																		

CERTIFICATION:		

Analytical Chemists * Geochemists * Registered Asseyers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-964-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Page Number :1-B
Total Pages :2
Certificate Date: 17-JUN-96
Invoice No. :19620606
P.O. Number :
Account :LOL

Project: Comments: ATTN: AL DOIRON

		·				٠				CE	RTIFI	CATE	OF A	NALY	'SIS	A9	620606	r semes a marine	
SAIPLE	PREP CODE	pp Mr	No ppm	Na.	Ni ppa	P P P	Pb ppm	add Ag	Sc ppm	8r ppa	Ti %	T1 ppn	U ppm	V ppm	Ppm M	In ppm			
-1.33NE 000W	201 202	555	2	0.01	39	250	2	< 2	9	41	0.46	< 10	< 10	335	< 10	108			
LINE OFON	201 202	385		0.01	34	540	2	< 2		31	0.56	< 10	< 10	305	< 10	62 96			
LIME 100M	201 202	565		0.01	22	440	4	< 2	•	36	0.74 0.50	< 10 < 10	< 10 < 10	→ 306 355	< 10 < 10	116			
LINE 15CM	201 202	990		0.01	35	420	4	< 2	R	41 40	0.55	< 10	< 10	379	< 10	90			
LINE 200M	201 202	460	12 <	0.01	26	470	< 2												
LINE 250M	201 202	415	2 <	0.01	36	410	2	< 3	14	30	0.51	< 10	< 10	279 257	< 10 < 10	66 52			
1.13mk 300M	201 202	420	_	0.01	25	440	< 2	< 2	7	31 43	0.46 0.60	< 10 < 10	< 10 < 10	387	< 10	94			
LIME 350M	201 202	435		0.01	30 27	350 520	3 6	< 2	22	59	0.55	< 10	20	361	₹ 10	66			
LIME 050s	201 202	800 235		0.01	19	260	2	₹ 2	Î	49	0.67	< 10		∽ 523	< 10	54			
LIME 1758	201 202	233											- 44			94			
LIME 2258	201 202	2010		0.01	38	950	2	2	39	63	0.44	< 10 < 10	< 10 < 10	299 220	< 10 < 10	42			
LINE 2758	201 202	545		0.01	47 -	330	< 2	< 2	37 10	103 101	0.26	< 10	< 10	60	< 10	10			
LINE 3258	201 202	1635		0.01	10 3 4	810 370	6 < 2	< 2 < 2	15	56	0.35	₹ 10	< 10	234	< 10	60	•		
LIME 3758	201 202 201 202	355 860		0.01	36	210	` 2	₹ 2	17	63	0.44	< 10	< 10	224	< 10	98			
Line 425s	201 202	664		V.03									- 40	0.53	- 10	56			
LIME 4758	201 202	505		0.01	26	370	< 2	< 2	12 11	46 29	0.47	< 10 < 10	< 10 < 10	253 286	< 10 < 10	54			
LIME 5258	201 202	1045		< 0.01	33	900	< 2	< 2 < 2	14	37	D. 62	< 10	< 10	303	< 10	70			
LINE 5758	201 202	2570		< 0.01 < 0.01	36 27	530 610	2	< 2	11	28	0.70	< 10	< 10	334	< 10	58			
-LINE 6258	201 202 201 202	370 295		< 0.01	23	370	2	< 2	8	38	0.64	< 10	< 10	328	< 10	62			
-LIME 6758	201 202								<u> </u>			- 40	- 10	261	< 10	60			
LINE R77	201 202	760		< 0.01	26	660	< 2	< 2	13 10	25 20	0.4B 0.59	< 10 < 10	< 10 < 10	440	< 10	58			
LIME R211	201 202	275		< 0.01 < 0.01	21 23	590 520	2	< 2	10	21	0.66	< 10	< 10	414	< 10	52			
-LIME OCOM	201 202 201 202	365 470		< 0.01	25	520	2	< 2	9	21	0.74	< 10	< 10	425	< 10	46			
-LIME 025N -LIME 050N	201 202	185		0.01	19	180	2	< 2	5	17	0.62	< 10	< 10	451	< 10	46			
-fitter gam			<u>:</u>								0.58	< 10	< 10	244	< 10	72			
-LINE 075N	201 202	850		< 0.01	24 .	490	< 2 2	< 2	14 10	59 64	0.54	< 10	< 10	218	₹ 10	110			
-LINE 100N	201 202	360		< 0.01 < 0.01	23 27	400 350	< 2	< 2 2	21	58	0.54	₹ 10	< 10	329	< 10	52			
-LINE 125N	201 202 201 202	480 565		< 0.01	35	390	` 2	< 2	10	42	0.46	< 10	< 10	312	< 10	80			
-LIME 150N -LIME 175N	201 202	520		< 0.01	40	330	2	< 2	19	39	0.49	< 10	< 10	374	< 10	250 🙈			
Ditte 1.28										36	0.57	< 10	< 10	348	< 10	92			
LINE 200N	201 202	495		< 0.01	35	460 400	6 2	< 2 < 2	11 7	35 28	0.62	< 10	< 10	384	₹ 10	80			
-LINE 225N	201 102	1015		< 0.01 < 0.01	28 28	1010	2	< 2	12	22	0.61	₹ 10	< 10	268	< 10	60			
-LIME 250N	201 202	815 840		< 0.01	30	1230	2	₹ 2	13	22	0.67	< 10	< 10	333	< 10	70	•		
-LINE 275N -LINE 300N	201 202	910		< 0.01	20	1360	6	< 2	9	24	0.67	< 10	< 10	357	< 10	66			
									5	33	0.91	< 10	< 10	503	< 10	44			
-LIBE 325N	201 202	280		< 0.01	16	560 580	6	< 2 < 2	8	35	D. 82	< 10	< 10	459	< 10	50			
-LIME 350M	201 202	490		< 0.01 < 0.01	21 28	380	•	< 2	10	32	0.64	₹ 10	< 10	389	< 10	140			
-LINE 375N	201 202	2160 370		< 0.01	20	550	i i	. ` 2	8	23	0.57	< 10	< 10	399	< 10	54			
-Line 400N -Line 425N	201 202	755		< 0.01	43	680	< 2	< 2	27	33	0.55	< 10	< 10	279	< 10	82			
			-																

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

Page Number : 1-B
Total Pages :2
Certificate Date: 18-JUN-96
Invoice No. : 19820806
P.O. Number :

Account LOL

" <u>, , , , , , , , , , , , , , , , , , ,</u>							····	· ·		CE	RTIF	CATE	OF A	NAL	YSIS	A	9620606	 -
SAMPLE	PREP CODE	Ma PP	Mo ppm	¥a *	Wi Dym	ppm P	Pb Ppm	8b oqq	Sc ppn	ppu Sr	Ti \$	T1 ppm	Ppm U	V mqq	¥ mqq	Zn ppn		
-LIME DOOM	201 202	555	2	0.01	39	250	2	₹ 2	9	41	0.46	c 10	< 10	335	< 10	100		
-LINE OSCH -Line 100m	201 202 201 202	385 565		< 0.01	34	540	3	< 2		31	0.56	< 10	< 10	305	< 10	12		
-Link 150m	201 202	990		< 0.01 < 0.01	22 35	440 420	4	< 2 < 2	9	36 41	0.74 0.50	< 10 < 10	< 10 < 10	54€ 355	< 10 < 10	96		
LINE 2000	201 202	480		< 0.01	26	470	< 2	₹ 2	i	40	0.55	< 10	< 10	37 9	< 10	116 90		
LINE 250M	201 202	415		< 0.01	36	410	2	< 2	14	30	0.51	< 10	< 10	279	< 10	66		
LINE JOON Line 350m	201 202	420		< 0.01	75	440	< 2	< 2	?	31	0.45	< 10	< 10	257	< 10	52		
LINE 0508	201 202 201 202	435 800		< 0.01 < 0.01	30 27	350 520	2 6	< 2	7	42	0.60	< 10	< 10	367	< 10	94		
LINE 1758	201 202	235		< 0.01	19	260	2	< 2 < 2	22 8	59 49	0.55 0.67	< 10 < 10	30 < 10	361 523	< 10 < 10	66 54		
LIME 2258	201 202	2010		< 0.01	31	950	7	2	39	53	0.44	< 10	< 10	299	< 10	94		
LUNCE 2758	201 202	545		< 0.01	47	330	< 2	< 3	37	103	0.26	< 10	< 10	220	< 10	42		
LINE 1258 LINE 3758	201 202	1635 355		< 0.01	10 34	810 370	6 < 2	< 2	10	101	0.04	< 10	< 10	60	< 10	10		
LDFE 4758	201 202	960	∢ î	0.03	36	210	2	< 2	15 17	56 63	0.35 0.44	< 10 < 10	< 10 < 10	234 224	< 10 < 10	60 98		
LENE 4758	201 202	505		< 0.01	26	370	< 2	< 2	12	4.6	0.47	< 10	< 10	253	< 10	56		
LINE 525S	201 202	1045		< 0.01	33	900	< 2	< 2	11	23	0.58	< 10	< 10	286	< 10	64		
LINE 5758 LINE 6258	201 202	2570 370		< 0.01	36	530	2	< 2	14	37	0.62	< 10	< 10	303	< 10	70		
LINE 6758	201 202	295		< 0.01 < 0.01	27 23	610 370	2 2	< 2 < 2	11 8	28 28	0.70 0. 6 4	< 10 < 10	< 10 < 10	334 328	< 10 < 10	58 62		
LINE R77	201 202	760		< 0.01	28	660	< 2	∢ 2	13	25	0.48	< 10	< 10	261	< 10	60		
LINE RILL	201 202	275		< 0.01	21	590	2	< 2	10	20	0.59	< 10	< 10	440	< 10	5 8		
LINE ODON LINE OZSN	201 202	365		< 0.01	23	520	2	< 2	10	71	0.66	< 10	< 10	414	< 10	52		
LINE OSON	201 202	470 185		< 0.01 < 0.01	25 19	520 180	2	< 2 < 2	9 5	71 17	0.74 0.62	< 10 < 10	< 10 < 10	425 451	< 10 < 10	46 46		
LINE 075M	201 202	950		< 0.01	24	690	< 2	< 2	14	59	0.51	< 10	< 10	246	< 10	72		
LINE 100M	201 202	360		< 0.01	23	400	2	< 2	10	64	0.54	< 10	< 10	218	< 10	110		
Line 125# Line 150#	301 302 301 202	480 565		< 0.01 < 0.01	27 35	350 390	< 2		21 10	5 B	0.54	< 10	< 10	329	< 10	52		
LINE 175h	201 202	520		< 0.DI	40	330	ź	< 2	19	42 39	0.46	< 10 < 10	< 10 < 10	312 374	< 10 < 10	80 250		
LIME 200M	201 202	495		< 0.01	35	460	6	< 1	11	35	0.57	< 10	< 10	348	< 1D	92		
LIME 225N	201 202	1013		< 0.01	28	400	2	< 2	7	28	0.62	< 10	< 10	384	< 10	BO		
LINE 250N LINE 275N	201 202	815 840	_	< 0.01 < 0.01	22 30	1010 1230	2	< 2	12 13	22 22	0.61	< 10	< 10	288	< 10	60		
LINE 300M	201 202	910		< 0.01	20	1360	6	< 2 < 2	9	24	0.67 0.67	< 10 < 10	< 10 < 10	333 357	< 10 < 10	70 66		
UINE 325F	201 202	280		< 0.01	16	560	6	< 2	5	33	0.91	< 10	< 10	503	< 10	41		
LINE 350M	201 202	490		< 0.01	21	580	4	< 2	I.	35	0.82	< 1.0	< 10	459	< 10	50		
LINE 375N LINE 400N	201 202 201 202	2160 370		< 0.01	28	380	2	< 2	10	33	0.66	< 10	< 10	389	< 10	140		
LINE 425N	201 202	755		< 0.01 < 0.01	20 43	550 680	<.2	7 < 7	8 27	23 33	0.67 0.55	< 10 < 10	< 10 < 10	399 279	. < 10 < 10	54 82		
20541			•	- 0.04	4.5	080	3.4	` *	• •	43	9.30		- 10	417	4 10	••		
<u> </u>																		

CERTIFICATION:	
----------------	--

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

Page Number :2-A
Total Pages :2
Certificate Date: 18-JUN-96
Invoice No. :19620606
P.O. Number :
Account :LOL

,										CE	RTIF	CATE	OF A	NAL	/SIS	,	19620	0606		
				Ag ppm	A 1) Dpm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Po	Ge ppm	Hg ppm	K %	La ppm	Mg
201 201 201	202 202 202	< 5 10 < 5	15.00 30.00 30.00 15.00 30.00	0.2 0.4 0.2 0.2	4.12 6.41 5.65 6.67 4.11	8 48 10 6	20 50 20 40 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	2.06 3.04 1.21 1.72 1.48	0.5 0.5 0.5 1.5 0.5	16 20 18 26 20	66 63 69 86 103	78 65 90 65 38	6.43 7.51 5.24 6.59 5.71	10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.03 < 0.01 0.01	< 10 10 < 10 < 10 < 10	0.72 0.39 0.67 0.75
201	202	< 5	30.00 30.00 15.00	0.6 0.4 0.2	4.17 6.11 5.24	10 6 2	40 30 30	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	2.53 1.59 1.38	1.5 1.5 < 0.5	18 19 14	60 103 92	26 56 56	5.14 7.39 6.51	10 10 10	< 1 < 1 < 1	0.01 0.01 0.01	< 10 < 10 < 10	0.24 0.71 0.56
	201 201 201 201 201 201 201 201	201 202 201 202 201 202 201 202 201 202 201 202	CODE FA+AA 201 202 < 5 201 202 < 5 201 202 < 5 201 202 < 5 201 202 < 5 201 202 < 5 201 202 < 5 201 202 < 5	CODE FA+AA wt. gm 201 202 < 5 15.00 201 202 < 5 30.00 201 202 10 30.00 201 202 < 5 15.00 201 202 < 5 30.00 201 202 < 5 30.00 201 202 < 5 30.00 201 202 < 5 30.00	CODE FA+AA wt. gm ppm 201 202 < 5 15.00 0.2 201 202 < 5 30.00 0.4 201 202 10 30.00 0.2 201 202 < 5 15.00 0.2 201 202 < 5 30.00 0.2 201 202 < 5 30.00 0.2 201 202 < 5 30.00 0.6 201 202 < 5 30.00 0.6	CODE FA+AA wt. gm ppm % 201 202 < 5 15.00 0.2 4.12 201 202 < 5 30.00 0.4 6.41 201 202 10 30.00 0.2 5.65 201 202 < 5 15.00 0.2 6.67 201 202 < 5 30.00 0.2 4.11 201 202 55 30.00 0.6 4.17 201 202 < 5 30.00 0.4 6.11	CODE FA+AA wt. gm ppm % ppm 201 202 < 5	CODE FA+AA wt. gm ppm % ppm ppm 201 202 < 5	CODE FA+AA wt. gm ppm % ppm 0.5 201 2	CODE FA+AA wt. gm ppm % ppm Qu Qu Qu Qu	PREP Au ppb fusion Ag Al As Ba Be Bi Ca CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm % 201 202 < 5 15.00 0.2 4.12 B 20 < 0.5 < 2 2.06 201 202 < 5 30.00 0.4 6.41 48 50 < 0.5 < 2 3.04 201 202 10 30.00 0.2 5.65 10 20 < 0.5 < 2 1.21 201 202 < 5 15.00 0.2 6.67 6 40 < 0.5 < 2 1.21 201 202 < 5 30.00 0.2 4.11 10 100 < 0.5 < 2 1.48 201 202 < 5 30.00 0.2 4.11 10 100 < 0.5 < 2 1.48 201 202 < 5 30.00 0.4 6.11 6 30 < 0.5 < 2 1.59	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm % ppm % ppm 201 202 < 5 15.00 0.2 4.12 8 20 < 0.5 < 2 2.06 0.5 201 202 < 5 30.00 0.4 6.41 48 50 < 0.5 < 2 3.04 0.5 201 202 10 30.00 0.2 5.65 10 20 < 0.5 < 2 1.21 0.5 201 202 < 5 15.00 0.2 6.67 6 40 < 0.5 < 2 1.21 0.5 201 202 < 5 30.00 0.2 6.67 6 40 < 0.5 < 2 1.72 1.5 201 202 < 5 30.00 0.2 4.11 10 100 < 0.5 < 2 1.48 0.5 201 202 < 5 30.00 0.4 6.11 6 30 < 0.5 < 2 1.59 1.5	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm % ppm ppm pp	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm % ppm ppm pp	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr Cu CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm ppm ppm % ppm ppm	CODE FA+AA wt. gm ppm % ppm ppm ppm ppm % ppm ppm ppm pp	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga CDDE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm ppm ppm ppm	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm ppm ppm ppm	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr Cu Pe Ga Hg K CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm ppm ppm ppm	PREP Au ppb fusion Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga Hg K La CODE FA+AA wt. gm ppm % ppm ppm ppm ppm ppm ppm ppm ppm

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

CERTIFICATION:

Page Number :2-B
Total Pages :2
Certificate Date: 18-JUN-96
Invoice No. : 19620606
P.O. Number :

Account :LOL

												CE	RTIF	CATE	OF A	NAL	YSIS	<i>p</i>	19620606	
SAMPLE	PRI		Mn ppm	Mo ppm		Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	ppm W	Zn ppm		
-LINE 450N -LINE 475N -LINE 500N -LINE 525N -LINE 550N	201 201 201	202 202 202 202 202 202	630 570 330 1400 605	2 1 1	< (0.01 0.01 0.01 0.01	30 35 53 58 111	660 3240 1420 840 2310	< 2 18 2 < 2 12	< 2 < 2 < 2 < 2 < 2	10 14 21 11 5	38 43 18 28 42	0.55 0.31 0.36 0.55 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	298 193 190 249 515	< 10 < 10 < 10 < 10 < 10	50 92 52 104 134		
-LINE 575N -LINE 600N REE LINE 489E	201	202 202 202	2790 1170 450	5	< (0.01	72 43 28	1320 810 680	18 2 < 2	2 < 2 < 2	5 10 12	38 31 30	0.28 0.62 0.63	< 10 < 10 < 10	< 10 < 10 < 10	336 405 294	< 10 < 10 < 10	216 90 62		
																	•			
									,				-							

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

Page Number : 2-A Total Pages :3 Certificate Date: 07-JUN-96

Invoice No. : 19619445 P.O. Number :

Account :LOL

						······································				CE	RTIF	CATE	OF A	NAL'	YSIS	A96	19445		₹:
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppm		K La % ppm	Mg %	Mn ppm
LINE 1N 350E LINE 1N 375E	201 229 201 229		0.2	4.02	6	30	< 0.5	< 2	1.25	0.5	13	75	46	6.49	10	1 < 0.0		0.42	1165
LINE IN 400E	201 229		< 0.2	5.09	8 6	30 40	< 0.5 < 0.5	< 2 < 2	1.29 2.14	< 0.5 0.5	15 17	92 59	34 128	9.16 5.64	10 10	< 1 < 0.0 < 1 < 0.0		0.40 0.86	1255
LINE IN 425E	201 229		< 0.2	6.24	6	_	< 0.5	₹ 2	1.75	1.0	18	71	86	5.45	10	< 1 < 0.0		0.74	755 835
LINE IN 450E	201 229		0.2	4.29	< 2	30	< 0.5	< 2	1.40	0.5	18	84	72	6.99	10	< 1 < 0.0		0.52	1220
LINE 1N 475E	201 229	< 5	0.2	4.84	< 2		< 0.5	< 2	1.20	0.5	15	87	45	7.92	10	< 1 < 0.0		0.47	540
LINE 1N 500E LINE 1S 000	201 229	< 5 < 5	< 0.3	5.49	. 6	20	< 0.5	< 2	1.62	0.5	17	82	67	6.09	10	< 1 < 0.0		0.68	560
LINE 18 025E	201 229		< 0.2 < 0.2	4.72	14 < 2	30 30	< 0.5 < 0.5	< 2 < 2	1.71 1.60	2.0	15	68	35	6.24	10	1 < 0.0	_	0.52	640
LINE 18 050E	201 229		0.2	5.56	10		< 0.5	< 2	2.40	1.0 0.5	16 21	86 63	51 187	7.04 5.09	10 10	< 1 < 0.0 < 1 0.0		0.55 1.03	1435 680
LINE 18 075E	201 229	45	0.2	3.66	14	30	< 0.5	< 2	4.29	1.0	16	28	104	4.08	< 10	< 1 0.0	4 10	0.72	735
LINE 18 1258	201 229	15	0.4	4.71	50	60	< 0.5	< 2	2.89	10.0	20	75	136	5.35	10	< 1 < 0.0	1 < 10	0.76	5120
LINE 18 150E	201 229		< 0.2	4.75	В		< 0.5	< 2	1.55	< 0.5	16	71	55	6.71	10	< 1 < 0.0		0.56	500
LINE 18 175E LINE 18 200E	201 229 201 229		< 0.2	3.86	2		< 0.5	< 2	1.44	0.5	16	110	37	8.66	10	< 1 < 0.0		0.48	915
				4.08	. 6	30	< 0.5	< 2	1.48	0.5	16	91	58	6.61	10	< 1 < 0.0	1 < 10	0.59	640
LINE 18 225E	201 229		< 0.2	4.39	< 2		< 0.5	< 2	1.34	< 0.5	17	89	44	6.70	10	1 < 0.0	1 < 10	0.43	1035
LINE 1S 250E LINE 1S 275E	201 229		0.2	4.61	2	30	< 0.5	< 2	1.35	0.5	19	84	80	5.89	10	< 1 < 0.0		0.61	820
LINE 18 300E	201 229		< 0.2	3.09 5.09	2 2	30 30	< 0.5 < 0.5	< 2 < 2	1.74	< 0.5 0.5	25 17	81 80	44 102	8.00 6.16	10	1 < 0.0		0.67	2090
LINE 18 325E	201 229		< 0.3	3.46	6	50	< 0.5	< 2	1.15	0.5	15	80	38	7.06	10 10	1 < 0.0		0.90 0.39	705 2730
LINE 1S 350E	201 229	< 5	< 0.2	5.43	10	40	€ 0.5	< 2	1.91	0.5	22	86	99	6.01	10	< 1 < 0.0	1 < 10	0.75	615
LINE 1S 400E	201 229		0.2	4.03	2	40	< 0.5	< 2	1.23	0.5	16	75	46	6.68	10	< 1 < 0.0		0.42	1015
LINE 18 425E LINE 18 450E	201 229		< 0.2 < 0.2	5.13 5.34	6	30	< 0.5	< 2	1.67	0.5	19	89	55	6.62	10	< 1 < 0.0		0.61	1040
LINE 18 475E	201 229		< 0.2	2.91	8 4	40 10	< 0.5 < 0.5	< 2	1.53 1.38	1.0 0.5	20 12	83 94	66 30	6.63 9.45	10 20	1 < 0.0		0.66 0.43	1390 740
LINE 1S 500E	201 229		< 0.2	4.34	. 2	30	< 0.5	₹ 2	1.81	0.5									
LINE 2N 0+50N	201 229		< 0.2	4.75	É	40	< 0.5	₹ 2	1.53	1.5	16 16	71 79	63 91	6.51 5.17	10 10	1 < 0.0		0.65 0.70	1020 505
LINE 2N 025E	201 229		< 0.2	3.27	4		< 0.5	₹ 2	0.98	1.0	10	95	38	B.30	10	< 1 < 0.0		0.38	415
LINE 2N 050E	201 229		< 0.2	3.08	6	30	< 0.5	< 2	1.56	0.5	12	58	62	5.23	10	< 1 < 0.0		0.51	875
LINE 2N 075E	201 229	< 5	< 0.2	3.65	14	30	< 0.5	< 2	1.73	1.5	14	59	62	5.52	10	< 1 < 0.0		0.61	1210
LINE 2N 100E	201 229		< 0.2	3.03	< 2		< 0.5	< 2	1.16	0.5	9	68	40	5.95	10	< 1 < 0.0		0.37	680
LINE 2N 125E LINE 2N 150E	201 229 201 229		< 0.2 < 0.2	5.61 4.07	6 2	50 30	< 0.5	< 2	1.81	0.5	21	68	150	5.68	10	1 < 0.0		0.96	820
LINE 2N 175E	201 229	4 5	< 0.2	1.72	2	10	< 0.5 < 0.5	< 2 < 2	1.06 0.89	0.5 < 0.5	11 6	91 96	32 27	8.01 10.00	10 30	1 < 0.0		0.33	655 425
LINE 2N 200E	201 229		0.2	4.88	10	30	< 0.5	₹ 2	1.14	0.5	13	97	49	7.29	10	< 1 < 0.0 < 1 < 0.0		0.27 0.45	900
LINE 2N 225E	201 229	- < 5	< 0.2	4.13	< 2	30	< 0.5	< 2	1.46	< 0.5	14	99	59	7.72	10	< 1 < 0.0	1 < 10	0.51	675
LINE 2N 250E	201 229	1	< 0.2	3.64	< 2	40	< 0.5	< 2	1.41	< 0.5	15	60	59	6.25	10	< 1 < 0.0		0.48	1180
LINE 2N 275E	201 229		< 0.2	5.42	10		< 0.5	< 2	1.24	< 0.5	16	71	54	6.36	10	< 1 < 0.0		0.40	1025
LINE 2N 300EA LINE 2N 300EB	201 229		< 0.2	5.59	2	40	< 0.5	< 2	1.24	0.5	18	93	69	7.72	10	< 1 < 0.0		0.55	520
] *** ***	``	< 0.2	4.59	10	30	< 0.5	< 2	1.34	< 0.5	15	79	48	7.63	10	< 1 < 0.0	1 < 10	0.50	735
		L																	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project: Comments: ATTN: AL DOIRON Page Number :2-B Total Pages :3 Certificate Date: 07-JUN-96 Invoice No. P.O. Number 19619445

Account :LOL

		• • • • • • • • • • • • • • • • • • • •		,						CE	RTIFI	CATE	OF A	NALY	'SIS	A9619445
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	₽P M	Zn ppm	
LINE 1N 350E LINE 1N 375E LINE 1N 400E LINE 1N 425E LINE 1N 450E	201 229 201 229 201 229 201 229 201 229	< 1 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	23 18 31 36 26	1260 1120 640 620 580	8 8 2 < 2 8	< 2 < 2 < 2 < 2 < 2	8 7 15 14 10	28 29 37 29 27	0.60 0.72 0.53 0.40 0.41	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	307 408 282 247 290	< 10 < 10 < 10 < 10 < 10	108 68 68 84 82	
LINE 1N 475E LINE 1N 500E LINE 1S 000 LINE 1S 025E LINE 1S 050E	201 229 201 229 201 229 201 229 201 229	< 1 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	21 29 27 25 47	590 630 1260 580 1090	2 2 6 2 2	< 2 < 2 < 2 < 2 < 2 < 2	10 11 10 13 18	25 30 35 32 78	0.40 0.40 0.50 0.55 0.48	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	311 248 254 320 256	< 10 < 10 < 10 < 10 < 10	60 64 118 60 80	
LINE 18 075E LINE 18 125E LINE 18 150E LINE 18 175E LINE 18 200E	201 229 201 229 201 229 201 229 201 229	8 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	30 41 26 21 27	1670 1030 1250 1890 1170	12 4 6 6 2	< 2 < 2 < 2 < 2 < 2	9 27 10 7	53 86 35 24 29	0.24 0.49 0.54 0.64 0.63	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	170 261 288 391 311	< 10 < 10 < 10 < 10 < 10	104 380 88 82 94	
LINE 18 225E LINE 18 250E LINE 18 275E LINE 18 300E LINE 18 325E	201 229 201 229 201 229 201 229 201 229	1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	23 32 23 36 21	1030 940 1170 530 680	4 2 4 2 6	< 2 < 2 < 2 < 2 < 2	9 14 8 13 6	27 29 27 33 23	0.62 0.54 0.69 0.44 0.56	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	319 274 385 256 325	< 10 < 10 < 10 < 10 < 10	76 88 64 70 108	
LINE 18 350E LINE 18 400E LINE 18 425E LINE 18 450E LINE 18 475E	201 229 201 229 201 229 201 229 201 229	< 1 · < 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	40 19 30 33 18	590 640 730 950 510	2 6 2 8 8	< 2 < 2 < 2 < 2 < 2	15 8 10 10	34 28 34 30 29	0.42 0.50 0.44 0.49 0.56	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	250 309 278 275 396	< 10 < 10 < 10 < 10 < 10	96 64 94 122 54	
LINE 1S 500E . LINE 2N 0+50N LINE 2N 025E LINE 2N 050E LINE 2N 075E	201 229 201 229 201 229 201 229 201 229	3 · 1 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	25 38 20 21 23	490 760 880 1490 1040	6 6 8 2 8	< 2 < 2 < 2 < 2 < 2	10 14 6 9	38 30 19 27 33	0.45 0.46 0.61 0.50 0.47	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	291 365 414 236 264	< 10 < 10 < 10 < 10 < 10	64 140 68 52 68	
LINE 2N 100E LINE 2N 125E LINE 2N 150E LINE 2N 175E LINE 2N 200E	201 229 201 229 201 229 201 229 201 229 201 229	< 1 · · · · · · · · · · · · · · · · · ·	<pre>0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	14 38 23 17 26	930 800 760 790 810	4 8 6 18 8	< 2 < 2 < 2 < 2 < 2	6 14 7 4 9	27 40 25 19 25	0.60 0.47 0.61 0.76 0.51	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	306 252 376 583 313	< 10 < 10 < 10 < 10 < 10	48 74 76 50 74	
LINE 2N 225E LINE 2N 250E LINE 2N 275E LINE 2N 300EA LINE 2N 300EB	201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	28 20 22 29 23	570 670 1300 1200 810	6 4 4 2 4	< 2 < 2 < 2 < 2 < 2	13 8 9 14 9	27 35 26 38 29	0.51 0.50 0.49 0.52 0.52	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	325 263 256 336 318	< 10 < 10 < 10 < 10 < 10	62 54 92 100 66	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN:AL DOIRON

Page Number :1-A
Total Pages :1
Certificate Date: 12-JUL-96
Invoice No. :19622805
P.O. Number :

:LOL Account

			-								CE	RTIF	CATE	OF A	NAL	/SIS		19622	805		
Sample	PR	EP DE	Au ppb FA+AA		A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ce %	Cđ ppm	Co ppm	Cr ppm	БЪи Сл	Fo x	Ga ppm	Hg ppm	X %	Da ppm	Hg %	Mn ppa
LINE-3NOO	201	202	< 5	0.8	3.77	< 2	20	0.5	< 2	1.35	1.0	17	84	43	7.37	10	< 1	0.01	< 10	0.50	1085
LINE-3N 025E		202			3.42	2	20	< 0.5	2	1.32	1.5	13	77	45	7.30	10	< 1	0.01	< 10	0.52	445
LINE-3N 050E		202			3.61	2	30	< 0.5	< 2	1.31	1.0	18	79	48	6.B1	10	< 1	0.01	< 10	0.45	965
LINE-3N 075E		202			4.92	< 2	30	0.5	< 2	1.83	1.0	20	62	103	5.97	10	< 1	0.01	< 10	0.73	805
LINE-3N 100E	201	202	< 5	0.8	5.01	6	40	0.5	< 2	1.51	0.5	23	78	98	6.40	10	< 1	0.02	< 10	0.80	785
INE-3N 125E		202			2.85	< 2	30	< 0.5	< 2	0.79	< 0.5	13	90	30	8,92	10	< 1	0.01	< 10	0.31	395
LINE-3N 175E		202			not/ss							•	not/## 1			not/ss :	ot/## : < 1	not/## : 0.01	not/ss : < 10	0.65	1770
LINE-3N 200E		202			4.71	3	40	0.5	< 2	1.56	0.5	25	79 54	70 26	6.22 6.11	10 10	< 1	0.01	< 10	0.26	1590
LINE-3N 225E		202			3.90	6 6	40 40	0.5	< 2 < 2	0.98 1.33	0.5 1.0	15 19	58	59	5.55	< 10	₹ 1	0.02	₹ 10	0.45	1500
LINE-3N 250E	201	202	10	0.6	4.74	•	40	0.5		1.33	1.0	17						****			
LINE-3N 275E	201	202	< 5	8.0	6.26	10	50	0.5	< 2	1.28	< 0.5	19	57	57	5.82	10	< 1	0.02	< 10	0.51	455
LINE-3N 300E	201	202	< 5	1.0	6.04	20	30	0.5	2	1.88	1.0	23	74	124	4.94	< 10	< 1	0.01	10	0.63	620
LINE-3N 325E		202			4.52	8	30	0.5	< 2	1.39	1.0	17	72	73	6.67	10	< 1	0.01	< 10	0.46	730
LINE-3N 350E		202			4.19	2	30	0.5	< 2	1.71	0.5	25	70	70	6.74	10	< 1	0.01	< 10 < 10	0.67 0.38	990 340
LIÑE-4N 00	203	202	< 5	0.6	5.26	6	10	· < 0.5	< 2	1.17	1.5	11	100	43	6.95	10	< 1	0.01	< 10	0.36	340
LINE-4N 025E	201	202	< 5	0.2	1.94	< 2	30	< 0.5		0.81	0.5	9	42	26	3.27	< 10	< 1	0.03	< 10	0.27	300
LINE-4N 050E(A)	201	202	< 5		5.59	18	20	0.5	< 2	1.19	1.5	21	78	56	6.33	10	< 1	0.01	< 10	0.45	585
LINE-4N 050E(B)		202			6.44	14	20	0.5	2	0.92	1.5	32	113	48	8.14	10	< 1	0.01	< 10	0.35 0.26	600 550
LINE-4N 075		202			2.58	< 2	20	0.5	< 2	0.94	0.5	12	89 87	23 31	8.59 8.31	10 10	< 1 < 1	0.01 0.01	< 10 < 10	0.39	915
LINE-4N 100E	201	202	. < 5	0.8	3.27	2	10	0.5	< 2	1.59	1.5	19	8/	31	9.31		<u> </u>	0.01	- 10	V.45	
LINE-4N 125E	201	202	< 5	0.8	3.77	12	40	0.5	< 2	1.38	1.0	21	80	41	7.36	10	< 1	0.01	< 10	0.40	2530
LINE-4N 150E(A)	201	202	< 5	0.6	3.13	< 2	30	0.5		1.04	0.5	24	95	36	9.32	20	< 1	0.01	< 10	0.33	1215
LINE-4N 150E(B)		202			3.18	2	20	0.5	3	1.26	0.5	14	80	44	7.34	10	< 1	0.01	< 10	0.40	965
LINE-4N 175E	201	202	< 5		4.00	14	110	< 0.5	< 2	2.34	1.0	17	59	38	6.14	10	< 1	0.01 0.02	< 10 < 10	0.53 0.50	3700 2650
LINE-4N 200E	201	202	5	0.6	5.19	10	30	< 0.5	< 2	1.18	1.5	36	63	67	6.27	< 10	< 1	0.02	~ 10	0.30	2020
LINE-4N 225E	201	202	< 5	0.8	3.77	8	170	< 0.5	2	1.77	0.5	17	58	50	5.07	< 10	< 1	0.03	< 10	0.45	1170
LINE-4N 250E(A)		202		0.8	5.27	4	50	0.5		1.42	0.5	19	71	41	6.27	10	< 1	0.02	< 10	0.51	1190
LINE-4N 2502(B)		202				< 3	40	0.5	< 2	1.50	0.5	26	71	76	5.90	10	< 1	0.03	< 10	0.83	2670 1195
LINE-4N 275E		202			4.83	< 2	40	0.5		1.66	< 0.5	22 26	69 74	69 75	6.62 6.67	10 10	< 1 < 1	0.01 0.02	< 10 < 10	0.61 0.61	1420
LINE-4N 300E	202	202	< 5	0.2	5.98	10	40	0.5	< 2	1.31	ŭ.5	20	/4	75	6.07	10	` ` `	0.02	` 10	0.01	
LINE-4N 325E	201	202			3.22	8	50	0.5		2.12	< 0.5	25	75	39	7.21	10	< 1	0.02	< 10	0.44	2810
LINE-4N 350E	201	202	< 5	< 0.2	5.85	4	10	0.5	< 2	1.26	1.0	24	93	61	7.31	10	< 1	0.02	< 10	0.45	800

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN:AL DOIRON

Page Number : 1-B
Total Pages : 1
Certificate Date: 12-JUL-96
Invoice No. : I 9622805
P.O. Number :

:LOL Account

											CE	RTIF	CATE	OF A	NALY	'SIS	A9622805
SAMPLE	PREP CODE		Mo ppm	Na *		P ppm	Pb ppm	Sp Sp	Sc ppm	Sr ppm	Ti %	T1 ppm	U pp a	bba A	ppm W	Zn ppm	
LINE-3N00 LINE-3N 025E LINE-3N 050E LINE-3N 075E LINE-3N 100E	201 20: 201 20: 201 20: 201 20: 201 20:	2 2 2	1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	23 26 27	770 910 1670 850 680	4 8 14 2 2	< 2 < 2 < 2 < 2 < 2	8 7 8 12 12	23 27 26 31 30	0.64 0.63 0.55 0.54	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	372 392 340 285 273	< 10 < 10 < 10 < 10 < 10	76 72 74 72 66	
Line-3n 125E Line-3n 175E Line-3n 200E Line-3n 225E Line-3n 250E	201 20: 201 20: 201 20: 201 20: 201 20:	2 n 2 2	ot/ss < 1 < 1	< 0.01 not/ss < 0.01 < 0.01 < 0.01	not/ss 30 18	660 not/ss: 1150 1100 2550	8 not/ms : 8 10 6	< 2 not/ss : < 2 < 2 < 2	6 not/## n 9 5	19 ot/ss 1 26 28 41	0.73 not/ss 1 0.61 0.47 0.42	< 10 not/## 1 < 10 < 10 < 10	< 10 not/ss n < 10 < 10 < 10	458 lot/ss 1 282 229 218	< 10 not/## r < 10 < 10 < 10	82 80 72	
LINE-3N 275E LINE-3N 300E LINE-3N 325E LINE-3N 350E LINE-4N 00	201 20 201 20 201 20 201 20 201 20	2 2 2	1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	54 22 29	1500 900 1660 800 720	14 10 6 4 8	< 2 < 2 < 2 < 2 < 2	11 31 9 9	47 32 32 32 32 23	0.41 0.44 0.60 0.61 0.52	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	189 221 286 320 334	< 10 < 10 < 10 < 10 < 10	84 60 64 80 74	
LINE-4N 025E LINE-4N 050E(A) LINE-4N 050E(B) LINE-4N 075 LINE-4N 100E	201 20 201 20 201 20 201 20 201 20	2 2 2	< 1 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	28 24 16	920 1200 1070 870 1470	12 6 6 10 10	< 2 < 2 < 2 < 2 < 2	4 8 9 5 7	23 22 16 17 21	0.39 0.52 0.47 0.70 0.73	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	188 272 273 417 435	< 10 < 10 < 10 < 10 < 10	46 86 86 58 74	-
LINE-4N 125E LINE-4N 150E(A) LINE-4N 150E(B) LINE-4N 175E LINE-4N 200E	201 20 201 20 201 20 201 20 201 20	2 2 2	< 1 < 1 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	20 19 26	1980 1180 800 2090 2700	12 12 4 14 2	< 2 < 2 < 2 < 2 < 2	7 6 7 8 7	29 21 25 69 22	0.64 0.74 0.70 0.54 0.46	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	330 438 362 226 218	< 10 < 10 < 10 < 10 < 10	92 92 54 140 52	
LINE-4N 225E LINE-4N 250E(A) LINE-4N 250E(B) LINE-4N 275E LINE-4N 300E	201 20 201 20 201 20 201 20 201 20	2 2 2	< 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	27 35 28	1500 2620 1510 2660 1230	10 6 6 8 < 2	< 2 < 2 < 2 < 2 < 2	8 10 9 13	82 29 33 31 32	0.43 0.47 0.51 0.52 0.45	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	218 257 251 279 264	< 10 < 10 < 10 < 10 < 10	76 100 82 76 98	
LINE-4N 325E LINE-4N 350E	201 20 201 20			< 0.01 < 0.01		1240 1270	4 2	< 2 < 2	7 11	51 25	0.61 0.58	< 10 < 10	< 10 < 10	297 307	< 10 < 10	84 94	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project:

Comments: ATTN: AL DOIRON

Page Number: 3-A Total Pages: 3 Certificate Date: 07-JUN-96 Invoice No.: 19619445 Invoice No. P.O. Number

Account :LOL

SAMPLE CODE FANAL ppm											CE	RTIFI	CATE	OF A	NAL	/SIS		\9619	445	···	
Linke 2 m 375 m 201 229	Sample			_																	Min ppm
LINES 28 M 400E 201 229 < 5 < 0.2																					415
LIMPE 28 M 425 FE 201 229		201 229	< 5																		825 865
LINE 28 4508 201 229		201 229	\ \ \ \ \ \ 5				-														800
LIMPE 28 5005	LINE 2N 450E	201 229	< 5		5.75	< 2	30	< 0.5				20	86	102	6.31	10	< 1	0.01	< 10	0.68	795
LINE 28 DOSS 201 229																					575
LIME 25 025E 201 229 < 5 < 0.2 2.77 10 320 0.5 < 2 0.50 < 0.5 7 20 25 2.33 < 10 < 1 0.47 10 0.63 LIME 25 075E 201 229 < 5 < 0.2 3.21 10 330 0.5 < 2 0.50 < 0.5 7 20 25 2.33 < 10 < 1 0.41 10 0.63 LIME 25 075E 201 229 < 5 < 0.2 2.08 36 400 1.5 < 2 1.49 0.5 11 17 38 2.33 < 10 < 1 0.41 10 0.59 LIME 25 150E 201 229 5 < 0.2 2.08 36 400 1.5 < 2 1.49 0.5 7 19 25 2.23 < 10 < 1 0.49 10 0.67 LIME 25 175E 201 229 5 < 0.2 2.26 16 370 0.5 < 2 0.43 < 0.5 7 19 25 2.23 < 10 < 1 0.61 10 0.67 LIME 25 175E 201 229 < 5 < 0.2 2.26 16 370 0.5 < 2 0.43 < 0.5 7 19 25 2.23 < 10 < 1 0.61 10 0.67 LIME 25 175E 201 229 < 5 < 0.2 2.66 10 320 0.5 < 2 0.49 0.5 10 22 46 2.55 < 0.2 2.66 10 320 0.5 < 2 0.45 0.5 < 0.5 21 229 < 5 < 0.2 2.66 10 320 0.5 < 2 0.45 0.5 < 0.5 < 2 0.45 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0												_									450 420
LINE 28 075E 201 229												-									465
LINE 28 100E 201 229																					360
LINE 28 150E 201 229									-				_				_				355
LINE 28 20 75E 20 20 229																					490 640
TIME 28 200E 201 229 < 5 < 0.2 2.46 10 320 0.5 < 2 0.44 < 0.5 9 21 27 2.32 < 10 < 1 0.47 10 0.61 1. TIME 28 2150E 201 229 < 5 < 0.2 2.65 8 310 0.5 < 2 0.50 < 0.5 7 19 28 2.33 < 10 < 1 0.47 10 0.61 1. TIME 28 250E 201 229 < 5 < 0.2 2.65 8 310 0.5 < 2 0.50 < 0.5 7 19 28 2.33 < 10 < 1 0.53 10 0.60 1. TIME 28 275E 201 229 < 5 < 0.2 2.89 12 320 0.5 < 2 0.51 < 0.5 6 20 26 2.36 < 10 < 1 0.47 10 0.62 1. TIME 28 275E 201 229 < 5 < 0.2 2.73 10 550 0.5 < 2 0.58 < 0.5 8 23 34 2.74 < 10 < 1 0.73 10 0.92 1. TIME 28 300E 201 229 < 5 < 0.2 2.73 12 550 0.5 < 2 0.58 < 0.5 8 23 34 2.74 < 10 < 1 0.74 10 0.92 1. TIME 38 100E 201 229 < 5 < 0.2 2.81 82 940 0.5 < 2 0.50 0.5 11 21 41 2.48 < 10 < 1 0.74 10 0.79 1. TIME 38 150E 201 229 < 5 < 0.2 3.02 14 360 0.5 < 2 0.56 0.5 10 23 60 3.00 < 10 < 1 0.74 10 0.71 1. TIME 38 150E 201 229 < 5 < 0.2 3.02 14 360 0.5 < 2 0.58 < 0.5 8 21 32 2.51 < 10 < 1 0.75 10 0.71 1. TIME 38 150E 201 229 < 5 < 0.2 3.14 26 750 0.5 < 2 0.58 0.5 9 23 47 2.83 < 10 < 1 0.55 10 0.68 1. TIME 38 200E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.57 < 0.5 9 23 47 2.83 < 10 < 1 0.51 10 0.73 10 0.86 1. TIME 38 275E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.57 < 0.5 9 23 40 2.81 < 10 < 1 0.80 10 0.86 1. TIME 38 275E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.57 < 0.5 9 23 40 2.81 < 10 < 1 0.80 10 0.86 1. TIME 38 275E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.63 < 0.5 9 23 47 2.83 < 10 < 1 0.80 10 0.96 1. TIME 48 100E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.63 < 0.5 9 23 47 2.83 < 10 < 1 0.80 10 0.96 1. TIME 48 100E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.66 < 0.5 9 23 40 2.81 < 10 < 1 0.66 10 0.85 1. TIME 48 100E 201 229 < 5 < 0.2 2.64 < 2 2.0 0.5 < 2 0.67 < 0.5 9 23 50 2.2 2.5 10 < 1 0.4 1 0.60 10 0.85 1. TIME 48 100E 201 229 < 5 < 0.2 2.64 < 2 2.0 0.5 < 2 0.67 < 0.5 9 23 50 2.2 2.5 10 < 1 0.4 1 0.60 10 0.85 1. TIME 48 100E 201 229 < 5 < 0.2 2.64 < 2 2.0 0.5 < 2 0.65 < 0.5 9 23 50 2.2 2.5 10 < 1 0.60 10 0.85 1. TIME 48 100E 201 229 < 5 < 0.2 2.64 < 2 2.0 0.5 < 2 0.65 < 0.5 9 2.0 0.5 9 2.0 10 < 1 0.4 1 0.60 10 0.85 1																					475
LINE 28 250E 201 229																					575
INNE 38 75E 201 229						_						_									485
INNE 38 005E												-					_		_	-	400 470
CINE 38 005												-									730
TINE 38 125E 201 229												11									770
INE 38 150E 201 229 < 5 < 0.2 2.82 6 330 0.5 < 2 0.51 < 0.5 7 19 27 2.31 < 10 < 1 0.51 10 0.64 INE 38 175E 201 229 < 5 < 0.2 3.14 26 750 0.5 < 2 0.68 0.5 9 23 47 2.83 < 10 < 1 0.73 10 0.86 INE 38 20E 201 229 < 5 < 0.2 3.02 12 980 0.5 < 2 0.57 < 0.5 9 23 40 2.81 < 10 < 1 0.73 10 0.86 INE 38 275E 201 229 < 5 < 0.2 2.59 16 570 0.5 < 2 0.57 < 0.5 9 23 40 2.81 < 10 < 1 0.80 10 0.96 INE 38 275E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.63 < 0.5 8 21 49 2.59 < 10 < 1 0.66 10 0.85 INE 38 300E 201 229 < 5 < 0.2 3.05 36 1230 1.0 < 2 0.66 < 0.5 9 23 52 2.90 < 10 < 1 0.66 10 0.85 INE 42 225E 201 229 < 5 < 0.2 2.48 46 1020 0.5 < 2 0.62 0.5 9 23 52 2.90 < 10 < 1 0.72 10 0.86 INE 48 075E 201 229 < 5 < 0.2 2.78 50 1130 0.5 < 2 0.61 < 0.5 9 23 61 2.83 < 10 < 1 0.72 10 0.88 INE 48 100E 201 229 < 5 < 0.2 3.07 48 1220 1.0 < 2 0.67 < 0.5 9 23 61 2.83 < 10 < 1 0.74 10 0.88 INE 48 125E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 0.61 < 0.5 9 23 51 15 10 < 1 0.74 10 0.88 INE 48 125E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 0.61 < 0.5 9 23 51 15 10 < 1 0.74 10 0.88 INE 48 125E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 4.30 0.5 13 23 23 23 5.15 10 < 1 0.01 < 10 0.31 INE 48 150E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 1.88 < 0.5 13 23 23 23 5.15 10 < 1 0.01 < 10 0.41 INE 48 150E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.88 < 0.5 13 75 42 7.00 10 < 1 < 0.01 < 10 0.41 INE 48 200E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.88 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.49 1 INE 48 200E 201 229 < 5 < 0.2 4.44 < 2 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.55																					750
INE 38 175E 201 229									-			•					_				500 490
INE 3S 200E 201 229 < 5 < 0.2 3.02 12 980 0.5 < 2 0.57 < 0.5 9 23 40 2.81 < 10 < 1 0.87 10 1.01 INE 3S 225E 201 229 < 5 < 0.2 2.59 16 570 0.5 < 2 0.57 < 0.5 9 21 34 2.58 < 10 < 1 0.80 10 0.96 INE 3S 275E 201 229 < 5 < 0.2 2.60 26 810 0.5 < 2 0.63 < 0.5 8 21 49 2.59 < 10 < 1 0.66 10 0.85 INE 3S 300E 201 229 < 5 < 0.2 3.05 36 1230 1.0 < 2 0.66 < 0.5 9 23 52 2.90 < 10 < 1 0.72 10 0.86 INE 4E 225E 201 229 < 5 < 0.2 2.48 46 1020 0.5 < 2 0.62 0.5 9 19 43 2.52 < 10 < 1 0.62 10 0.76 INE 4S 100E 201 229 < 5 < 0.2 2.78 50 1130 0.5 < 2 0.61 < 0.5 9 23 61 2.83 < 10 < 1 0.72 10 0.88 INE 4S 100E 201 229 < 5 < 0.2 3.07 48 1220 1.0 < 2 0.67 < 0.5 8 22 44 2.76 < 10 < 1 0.74 10 0.88 INE 4S 150E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 4.30 0.5 13 23 23 5.15 10 < 1 0.01 < 10 0.31 INE 4S 150E 201 229 < 5 0.4 3.15 < 2 30 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.41 INE 4S 200E 201 229 < 5 < 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.41 INE 4S 250E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.45 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.45 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.45 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.45 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.45 INE 4S 250E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.55 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55												-									520
INE 38 275E 201 229												_									560
INE 38 300E 201 229 < 5 < 0.2 3.05 36 1230 1.0 < 2 0.66 < 0.5 9 23 52 2.90 < 10 < 1 0.72 10 0.86 INE 42 25E 201 229 < 5 < 0.2 2.48 46 1020 0.5 < 2 0.62 0.5 9 19 43 2.52 < 10 < 1 0.62 10 0.76 INE 48 075E 201 229 < 5 < 0.2 2.78 50 1130 0.5 < 2 0.61 < 0.5 9 23 61 2.83 < 10 < 1 0.72 10 0.88 INE 48 100E 201 229 < 5 < 0.2 3.07 48 1220 1.0 < 2 0.67 < 0.5 8 22 44 2.76 < 10 < 1 0.74 10 0.88 INE 48 15E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 4.30 0.5 13 23 23 5.15 10 < 1 0.01 < 10 0.31 INE 48 150E 201 229 < 5 0.4 3.15 < 2 30 < 0.5 2 1.88 < 0.5 13 75 42 7.00 10 < 1 < 0.01 < 10 0.41 INE 48 175E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.49 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 0.55 1 < 0.55 1 < 0.55 1 < 0.55 1 < 0.55 1 <												_									675
INE 48 25E 201 229									_			_									525 555
INE 48 075E 201 229 < 5 < 0.2 2.78 50 1130 0.5 < 2 0.61 < 0.5 9 23 61 2.83 < 10 < 1 0.72 10 0.88 INE 48 100E 201 229 < 5 < 0.2 3.07 48 1220 1.0 < 2 0.67 < 0.5 8 22 44 2.76 < 10 < 1 0.74 10 0.88 INE 48 125E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 4.30 0.5 13 23 23 5.15 10 < 1 0.01 < 10 0.31 INE 48 150E 201 229 < 5 0.4 3.15 < 2 30 < 0.5 2 1.88 < 0.5 13 75 42 7.00 10 < 1 < 0.01 < 10 0.41 INE 48 175E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 48 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.49 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55												-									550
INE 48 125E 201 229 < 5 0.2 2.66 < 2 20 < 0.5 < 2 4.30 0.5 13 23 23 5.15 10 < 1 0.01 < 10 0.31 INE 48 150E 201 229 < 5 0.4 3.15 < 2 30 < 0.5 2 1.88 < 0.5 13 75 42 7.00 10 < 1 < 0.01 < 10 0.41 INE 48 175E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 48 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.49 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55												9					_				640
INE 48 150E 201 229 < 5 0.4 3.15 < 2 30 < 0.5 2 1.88 < 0.5 13 75 42 7.00 10 < 1 < 0.01 < 10 0.41 INE 48 175E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 48 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.49 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55												_									460
INE 48 175E 201 229 < 5 0.2 4.44 < 2 20 < 0.5 < 2 1.79 1.0 18 69 66 6.66 10 < 1 < 0.01 < 10 0.64 1 INE 48 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 48 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.49 1 INE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55																	_				660 435
INE 4S 200E 201 229 < 5 < 0.2 4.71 6 20 < 0.5 < 2 1.31 < 0.5 13 90 54 6.86 10 < 1 < 0.01 < 10 0.50 INE 4S 250E 201 229 < 5 < 0.2 2.64 < 2 30 < 0.5 < 2 1.59 0.5 12 79 33 7.36 10 < 1 < 0.01 < 10 0.49 1 INE 4S 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55									_												1050
JNE 48 275E 201 229 < 5 < 0.2 2.53 6 10 < 0.5 < 2 1.45 0.5 11 77 38 6.56 10 < 1 < 0.01 < 10 0.55																	_				630
																					1015
DIME TO SOUR AU AU AU AU AU AU AU							-														320 760
	22.2 40 3005		\ ` ` '		4.10	~ 4	•0	- 0.3	~ 4	1.33	1.0	15	0.0	31	3.03	10	~ 1	~ 0.01	- 10	V.33	,

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: AL DOIRON

Page Number :3-B
Total Pages :3
Certificate Date: 07-JUN-96
Invoice No. : I 9619445
P.O. Number :

Account LOL

SAMPLE CODE Mo Na Ni P pb Sb Sc St Ti Ti Ti U V M 2n	A9619445	'SIS	NALY	OF A	CATE	RTIF	CE												<u>.</u>
LINE 2N 975E 201 229 < 1 0.01 24 610 6 < 2 8 28 0.61 < 10 < 10 324 < 10 50 LINE 2N 402E 201 229 < 1 0.01 22 850 6 < 2 7 25 0.64 < 10 < 10 322 < 10 108 LINE 2N 425E 201 229 < 1 0.01 33 790 2 < 2 11 31 LINE 2N 425E 201 229 3 0.01 39 620 2 < 2 11 31 LINE 2N 475E 201 229 1 0.05 13 400 112 < 2 4 68 0.08 < 10 < 10 282 < 10 108 LINE 2N 475E 201 229 1 0.03 13 520 12 < 2 5 73 0.06 < 10 < 10 45 < 10 66 LINE 2N 475E 201 229 1 0.03 13 520 12 < 2 5 73 0.06 < 10 < 10 45 < 10 66 LINE 2N 475E 201 229 1 0.03 13 520 11 < 2 5 73 0.06 < 10 < 10 45 < 10 66 LINE 2N 600 201 229 < 1 0.03 13 520 11 < 2 5 73 0.06 < 10 < 10 45 < 10 66 LINE 2N 600 201 229 < 1 0.03 13 540 11 < 2 5 73 0.06 < 10 < 10 48 < 10 64 LINE 2N 605E 201 229 < 1 0.04 13 540 11 < 2 5 80 0.10 < 10 < 10 48 < 10 64 LINE 2N 605E 201 229 < 1 0.05 13 610 10 < 2 5 73 0.06 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.05 13 560 11 < 2 5 80 0.10 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.05 13 560 11 < 2 5 80 0.10 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.05 13 560 11 < 2 5 80 0.10 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.05 13 560 11 < 2 5 80 0.10 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.05 13 560 11 < 2 5 80 0.10 < 10 < 10 48 < 10 68 LINE 2N 605E 201 229 < 1 0.07 21 580 11 < 2 5 5 80 0.10 < 10 < 10 48 < 10 66 LINE 2N 605E 201 229 1 0.07 21 580 11 < 2 5 5 80 0.10 < 10 < 10 48 < 10 66 LINE 2N 605E 201 229 1 0.06 12 380 11 < 2 5 5 74 0.09 < 10 < 10 48 < 10 52 < 10 94 LINE 2N 605E 201 229 1 0.04 13 500 11 < 2 5 74 0.09 < 10 < 10 48 < 10 52 < 10 66 LINE 2N 605E 201 229 1 0.04 11 76 70 11 < 2 5 76 0.09 < 10 < 10 48 < 10 66 LINE 2N 605E 201 229 1 0.04 11 76 70 11 < 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			•															MPLE	s
JENE 28 050E 201 229 < 1 0.03 13 520 12 < 2 5 73 0.06 < 10 < 10 < 10 45 < 10 65		60 78 108	< 10 < 10 < 10	324 360 282	< 10 < 10 < 10	< 10 < 10 < 10	0.61 0.64 0.54	28 25 28	8 7 11	< 2 < 2 < 2	6 6 2	610 850 790	24 22 33	0.01 0.01 0.01	< 1 < 1 1	229 229 229	201 201 201	1 375± 1 400± 1 425±	LINE 21 LINE 21 LINE 21
ZINE 28 100E		66 64 64	< 10 < 10 < 10	45 46 48	< 10 < 10 < 10	< 10 < 10 < 10	0.06 0.07 0.10	73 77 80	5 5 5	< 2 < 2 < 2	12 10 12	520 530 540	13 14 13	0.03 0.03 0.04	< 1 < 1 < 1	229 229 229	201 201 201	7 500E 3 000 3 025E	INE 2: INE 2: INE 2:
INE 28 250E 201 229		66 94 52	< 10 < 10 < 10	48 52 48	< 10 < 10 < 10	< 10 < 10 < 10	0.10 0.08 0.09	75 88 65	4 5 3	< 2 < 2 < 2	10 12 12	440 580 380	13 21 12	0.09 0.07 0.06	< 1 1 1	229 229 229	201 201 201	100E 150E 175E	INE 2. INE 2. INE 2.
INE 3S 125E		68 82 88	< 10 < 10 < 10	46 50 56	< 10 < 10 < 10	< 10 < 10 < 10	0.09 0.10 0.11	76 86 87	5 6 6	< 2 < 2 < 2	10 10 12	580 480 670	12 17 17	0.04 0.04 0.14	1 < 1 < 1	229 229 229	201 201 201	3 250E 3 275E 3 300E	INE 2: INE 2: INE 2:
INE 3S 275E 201 229 1 0.03 20 720 12 < 2 5 95 0.08 < 10 < 10 50 < 10 94 INE 3S 300E 201 229 1 0.03 23 620 14 2 6 94 0.06 < 10 < 10 50 < 10 102 INE 4E 225E 201 229 1 0.02 19 680 12 6 5 92 0.06 < 10 < 10 47 < 10 96 INE 4S 075E 201 229 < 1 0.03 24 640 14 2 7 95 0.05 < 10 < 10 52 < 10 108 INE 4S 100E 201 229 1 0.03 24 640 14 2 7 95 0.05 < 10 < 10 51 < 10 108 INE 4S 125E 201 229 < 1 < 0.01 13 330 2 < 2 5 29 0.29 < 10 < 10 168 < 10 54		70 64 94	< 10 < 10 < 10	51 48 54	< 10 < 10 < 10	< 10 < 10 < 10	0.09 0.10 0.09	90 78 92	5 5 6	< 2 < 2 < 2	10 10 12	610 560 640	14 12 21	0.04 0.04 0.03	1 < 1 1	229 229 229	201 201 201	125E 150E 175E	INE 3: INE 3: INE 3:
INE 45 125E 201 229 < 1 < 0.01 13 330 2 < 2 5 29 0.29 < 10 < 10 168 < 10 54		94 102 96	< 10 < 10 < 10	50 50 47	< 10 < 10 < 10	< 10 < 10 < 10	0.08 0.06 0.06	95 94 92	5 6 5	< 2 2 6	12 14 12	720 620 680	20 23 19	0.03 0.03 0.02	1 1 1	229 229 229	201 201 201	3 275E 3 300E 2 225E	INE 3. INE 3.
INE 4S 150E 201 229 1 < 0.01 26 440 2 < 2 7 24 0.64 < 10 < 10 362 < 10 70 INE 4S 175E 201 229 1 < 0.01 27 1010 < 2 < 2 10 27 0.62 < 10 < 10 312 < 10 72 INE 4S 200E 201 229 1 < 0.01 22 1040 < 2 < 2 9 20 0.59 < 10 < 10 306 < 10 78		54 70 72	< 10 < 10 < 10	168 362 312	< 10 < 10 < 10	< 10 < 10 < 10	0.29 0.64 0.62	29 24 27	5 7 10	< 2 < 2 < 2	2 2 < 2	330 440 1010	13 26 27	0.01 0.01 0.01	< 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	229 229 229	201 201 201	5 125E 5 150E 5 175E	INE 4 INE 4 INE 4
LINE 4S 250E 201 229 2 < 0.01 21 1180 < 2 < 2 6 23 0.61 < 10 < 10 405 < 10 62 LINE 4S 275E 201 229 1 < 0.01 26 880 < 2 < 2 6 19 0.70 < 10 < 10 385 < 10 46 LINE 4S 300E 201 229 3 < 0.01 39 990 2 < 2 7 27 0.50 < 10 < 10 339 < 10 252		46	< 10	385	< 10	< 10	0.70	19	6	< 2	< 2	880	26	0.01	1	229	201	275E	LINE 4

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN:AL DOIRON

Page Number : 1-A
Total Pages : 1
Certificate Date: 12-JUL-96
Invoice No. : I 9622808
P,O. Number :
Account : LOL

										ĊE	RTIF	CATE	OF A	NAL.	YSIS		19622	808		
Sample	PREP CODE	Au g/t FA+AA) g	A1 %) As	Ba ppm	Be ppm	Bi ppm	Ca *	ppm Cd	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Ng %	Mr ppi
LINE 2N 275E BMI 7/10K SCUTHMAIN 1/10K D-LINE 1250 DLINE1250LEACHED	205 226	0.015 0.010 < 0.005	< 0.2 < 0.2 < 0.2	0.16 1.51 2.45 0.03 0.14	2 6 44 < 2 < 2	80 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 >1! < 2 1 < 2 1 < 2 >1! < 2 >1!	L.42 L.22 5.00	< 0.5 < 0.5 < 0.5	< 1 23 20 < 1 < 1	5 21 27 < 1 3	71 116 35 < 1 3	0.17 4.77 6.88 0.07 0.15	< 10 < 10 < 10 < 10 < 10		0.03 0.08 0.04 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	0,12 1,10 2,16 0,07 0,10	10! 19! 97! 8! 43!
			/																	
-			25	1/2/2	/ 4															
				**************************************			00%	7007												
)	2/2/	7	,	<i>Y</i>												
					ر'	/5 %	15/0				·									
			3,7		3	\int_{0}	~ },	25												
			2	76 6 1/0	, V	dos	1/0	50	0											

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN:AL DOIRON

Page Number :1-B
Total Pages :1
Certificate Date: 12-JUL-96
Invoice No. :19622808
P.O. Number :

Account LOL

	PREP											CE	RTIFI	CATE	OF A	NALY	'SIS	A9622808
Sample	PRI COI			Mo pm	Na %	ni ppm	Dhar B	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	pp a	W ppm	Zn ppm	
NE 2N 275E I 7/10K UTHMAIN 1/10K LINE 1250 INE1250LEACHED	205 205 205	226		1 : 1 : 1 <	0.01 0.19 0.03 0.01 0.01	< 1 2 1 < 1 < 1	660 600 580 100 130	< 2 8 2 2	< 2 2 2 2 6	< 1 6 14 < 1 < 1	670 < 0 66 0 17 0 719 < 0 863 < 0	.16 .30 .01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	4 88 190 4 5	< 10 < 10 < 10 < 10 < 10	16 18 44 < 2 2	
			-															·

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Page Number: 1-A
Total Pages: 1
Certificate Date: 13-MAY-96
Invoice No.: 19617615
P.O. Number:
Account: LOL

Project : Comments: ATTN: ALBERT DOIRON

	· <u>·</u>									CE	RTIFI	CATE	OF A	/NAL	YSIS	A961	7615		
SAMPLE) hg	A1	ya Ya	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu Ppm	Fe %	Ga ppm		K La	Mg %	Mn mqq
ROCK SAMPLE #1 ROCK SAMPLE #2 3-MAIN PIT	205 22 205 22 205 22	16 < 5	< 0.2 < 0.2 < 0.2	1.86 0.08 6.43	2 < 2 6	40	< 0.5 < 0.5 < 0.5	2 >	1.35 15.00 5.12	< 0.5 3.5 3.5	6 < 1 19	71 18 80	29 9 40	3.31 0.15 5.54	< 10 < 10 10	< 1 0.1 < 1 0.0 < 1 < 0.0	L < 10	0.36 0.33 0.95	150 145 475
										•									
		:																•	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: ALBERT DOIRON

CERTIFICATE OF ANALY

SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	þþm Þ	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %			ppm V	ppm M
ROCK SAMPLE #1 ROCK SAMPLE #2 S-MAIN PIT	205 226 205 226 205 226	8	0.22 0.01 0.01	1 11 38	930 140 580	< 2 2	< 2 < 2 < 2	1 < 1 13	101 955 < 21	0.11 0.01 0.42	< 10 < 10 < 10	< 10 < 10 < 10	61 117 210	< 10 < 10 < 10
·														
												,		
												7		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: AL DOIRON

Page Number: 1-B
Total Pages: 1
Certificate Date: 03-JUN-96
Invoice No.: 19619444
P.O. Number:
Account: LOL

PREP																		
SAMPLE CODE ppm ppm ppm ppm ppm ppm ppm ppm ppm pp		<u>.</u>	en yi								CE	RTIF	CATE	OF ANALYSIS	>	A9619444	9-9-15-1-1-1-1	
	SAMPLE									Ti *								
	Main-#1	205	226	< 5	700	15	< 10	20	15	0.50	< 20	< 20	240	< 20	65			
			ı															
	-																	
			`															
		1																

PAGE

002

CHEMEX UAX FAX

Chemex Labs Ltd.

Analytical Chemista * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: AL DOIRON

Page Number 1-A
Total Pages 1
Certificate Date 03-JUN-96
Invoice No. I-9619444
P.O. Number Account :

SAMPLE PREP An ppb Ag Al As Ba Be Bi Ca Cd Co Cr Cu DESCRIPTION CODE FA+AA ppm % ppm ppm ppm ppm ppm ppm ppm ppm		K	Ng Ma		
	IE-	1	t ppm	ppm Mo	Ta t
S-MAIN-F1 205 226 < 5 < 1 3.20 60 < 20 < 5 < 10 1.08 < 5 25 30 40	9.22 < 10			< 5	

CHEMEX UAX FAX1

Chemex Labs Ltd.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project :

Comments: Altn: Albert Doiron

Page Number 1-A
Total Pages 1
Certificate Date08-JUN-98
Invoice No. I-9620155
P.O. Number Account ;

CERTIFICATE OF ANALYSIS A9620155 PREP Βi SAMPLE A1 Cd Au ppb As DESCRIPTION CODE RUSH 1 ppm ppm ppm ppm ppm ppm ppm ppm ppm ppn ppm S.M. 1/10K 255 295 6:10 0.6 3.17 12 180 (0.5 2.75 1.5 12 29 84 4.34 10 < 1

CHEMEX UAX FAX1

PAGE

Chemex Labs Ltd.

Analytical Cherrists * Geochernists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7.J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: Attn: Afbert Dolron

CERTIFICATION:

Page Number 1-8
Total Pages 1
Certificate Date08-JUN-96
Invoice No. I-9620155
P.O. Number Account :

							•			ÇE	RTIF	CATE	OF A	MAL	/ SIS	A9620155	
Sample Description	PREP	Mo ppm	Ya 1	Wi ppm	P ppa	Pb ppm	Sb ppm	Sc ppm	SI ppm	Ti 1	T1 ppm	ppen ppen	P Pm	ppu.	žn PPM		
S.M. 1/10K	255 295	3	0.15	3	890	30	₹ 2	12	259	0.11	(10	< 10	106	< 10	104		
										· ·							

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BÓX 759 UCLUELET, BC VOR 3A0

Page Number: 1-A
Total Pages: 1
Certificate Date: 02-JUN-96
Invoice No.: 19619443
P.O. Number:

Account LOL

Project : Comments: ATTN: AL DOIRON

										<u></u>		CE	RTIFI	CATE	OF A	NAL	/SIS		A9619	443		
Sample							Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Pe %	Ga ppu	Hg ppm	K %	La ppm	Mg %	Mn ppn			
OUTE MAIN 1 OUTE MAIN 2 OUTE MAIN 1	1/10K 268/ 1726	201 201 201	202 202 202	65 < 5 10	1.0 < 0.2 0.2	4.97 5.96 6.21	52 4 4	30 20 20	0.5 0.5 0.5	< 2 < 2 < 2	0.09 0.81 1.23	2.5 0.5 0.5	35 12 17	37 88 121	72	14.65 6.76 8.44	< 10 10 10	< 1	0.04 < 0.01 < 0.01	< 10 < 10 < 10	0.33 0.52 0.64	2750 255 295
-																						
															<u>~</u> ;	سند . ارست						

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project: Comments: ATTN: AL DOIRON

Page Number :1-B Total Pages :1 Certificate Date: 02-JUN-96 Invoice No. : 19619443 P.O. Number :

LOL Account

								<u> </u>			CE	RTIF	CATE	OF A	NAL	/SIS	A9619443
SAMPLE	PREP		Mo ppm	Na %	Ni ppm	bbar 5	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	pp m	ppm V	M M	Zn ppm	
OUTH MAIN 1/10 OUTH MAIN 268 OUTH MAIN 1726	X 201 20 201 20 201 20	02 02 02	< 1	< 0.01 < 0.01 < 0.01	6 23 37	1530 750 450	38 6 4	6 2 2	18 12 19	8 14 24	0.20 0.52 0.45	< 10 < 10 < 10	< 10 < 10 < 10	131 239 284	< 10 < 10 < 10	142 54 64	
			•														
	4																

CHEMEN USE FRY

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0

Project : Comments: ATTN: AL DOIRON

Page Number 1-B Total Pages 1 Certificate Date03-JUN-96 Invoice No. I-9619444 P.O. Number : Account

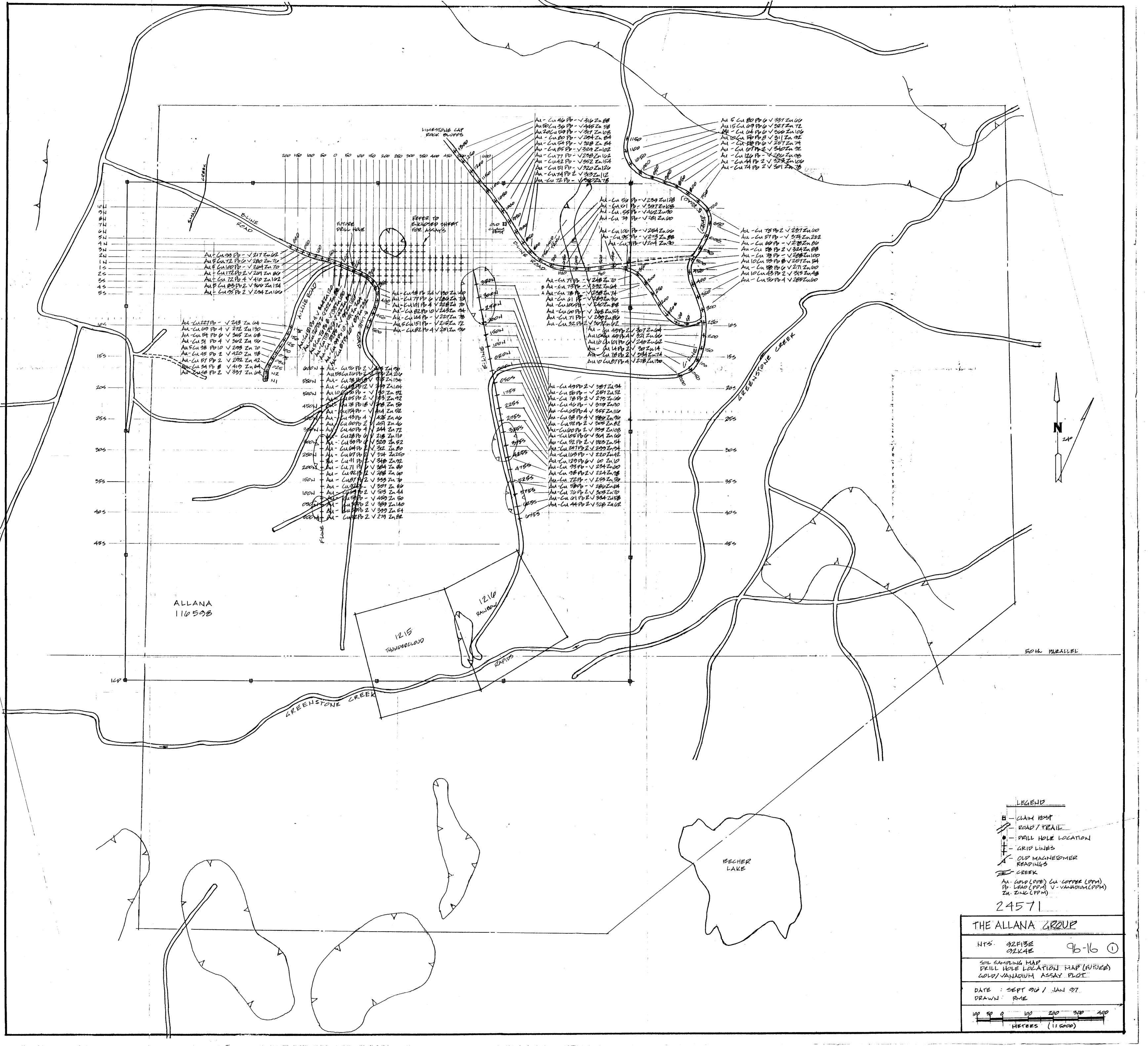
										101110.						
										CE	RTIFI	CATE	OF AN	ALYSIS	A9619444	
PREP		T1 ppm	bbar b	Pp Pb	Sb ppu	Sc ppm	Sr PPm	Ti 1	Tl ppm	D D	V PPm	PPM W	ZD. PPM			
205 22	26	< 5	700	15	< 10	20	15	0.50	< 20	< 20	240	₹ 20	65			
-																
																-
				·												
											-					
	205 22	205 226	CODE ppm 205 226 < 5	CODE ppm ppm 205 226 < 5 700	CODE ppm ppm ppm ppm 205 226 < 5 700 15	CODE ppm ppm ppm ppm ppm 205 226 < 5 700 15 < 10	CODE ppm ppm	CODE ppm ppm	CODE ppm ppm ppm ppm ppm ppm \$ 205 226 < 5 700 15 < 10 20 15 0.50	PREP N1 P Pb Sb Sc Sr Ti Tl CODE ppm ppm ppm ppm ppm t ppm 205 226 < 5 700 15 < 10 20 15 0.50 < 20	PREP N1 P Pb Sb Sc Sr Ti Tl U CODE ppm ppm ppm ppm ppm ppm t ppm ppm t ppm ppm	PREP F1 P Pb Sb Sc Sr Ti Tl U V	PREP	PREP CODE Hi P Pb Sb Sc Sr Ti Tl U V W En CODE ppm <	PREP N1 P Ph Sh Sc Sr Ti Tl U V W ZD. CODE ppm ppm ppm ppm ppm ppm t ppm ppm ppm p	PREP E1 P Ph Sh Sc Sr Ti Tl U V W ZD Ppm

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: DOIRON, ALBERT

BOX 759 UCLUELET, BC VOR 3A0


Project : Comments: ATTN: AL DOIRON

CERTIFICATION:

Page Number: 1-A
Total Pages: 1
Certificate Date: 03-JUN-96
Invoice No.: 19619444
P.O. Number:

Account :LOL

		1					.			CE	RTIF	CATE	OF A	NAL'	YSIS		A9619	444		
SAMPLE	PREP CODE	Au ppb FA+AA) ppm	A1	λs ppm	Ba. ppm	P e	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo mqq	Na %
S-MAIN-#1	205 226	< 5	< 1	3.20	60	< 20	< 5	< 10	1.08	< 5	25	30	40	9.22	< 10		2.86		< 5	
																			-	

-::' (?	251	<u> </u>	PE	76	5 E	16	00 E	- 12	55 E	- =	DE	17	5 E	_ 2	oo	E 2	25	E2	50	E 2	75E	- 37	<i>a</i> 01	: 3	25:	£ 34	50¢	2 37	r Se	46	20e	4	25E	-4	50e	- 47	75E	5a	クビ
414												,							<u> </u>				ļ						:			50	(B)	150	18)	2 5 2	α 6	<u>.</u>		
			1 26									A.			- 20.	λu	5	λυ	-	Αų	_ ا ا	Ay	-	ΑJ	- اميريد	A	- 20	Δu	- /i			- 1	- 14:			Àυ	-//-			
	100 1	8 P	b 12	10	6	12	0	10	10	PO	12	96	12	Pb	14	Po	2	100	10	190	6	Pb	8	Pb	-	Pd	4	Pb!	2						44					
1	Y 2.	34 V 24 Z	188	7	72.	VA	17	√ × 710	135	ソフム	33C 00	7.4	00	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	226	マス	218	V 7.4	26	V	257	Y	279 76	V	2004	V 2	97	Y	201						562 54					
<i>5</i> ₩	Au -	- A	U.25	Àυ	-],	Αu	- 1	Αu	-]	λu	- `	,	-/_	<u> </u>		(Au	-	W	100	紌	-		_	Au Au		<u> Au</u>	-	<u></u>		zn,		41	~7	27	24	· 	1	-
	Pb.										30					Lu	10	2	200	24	6	Lu a	57	Cu	24	4	73	Cu	70		,									3
	13	\mathbf{Z}_{\vee}	392	V 3	40	\checkmark 2	20	y 2	273	V	158					V :	2 <i>8</i> 2	'	<i>220,</i>	 	218	ソ	29	V	221	$\vee \not \mid z$	26		520		•	!								
24	Zn 7		n 72										-	A J		Zn Au	22	Zu	80	Zn	72	Zn.	84	Zn	0	Zy.	64	ZΛ	80	, 				-		1 1		<u> </u>	4	100
	Zug		136	Lu,	62	Lu	62	Au Lu	40	Lu	150	Lu	32	Lil	27	4	49	4	59	20	59	24	4	Lu	6	4	48	Cul	83	AU.	47	24	48	4	20	24	1020	AU - Cu 2	5/1	U 20
,	Pb 6	6 P	0 6	170	2	90	8	PO	4	10	8	10	6	10	18	Pb	8	10	6	Pb	4	Po	4	Pb	2	16	4	Pb	0	Pd	6	Ρď	6	00	2	Pd	2	Dej 1:	219	b 12
14	KNK	101	166	44	2Z	<u>(n</u>	10	<u> </u>	48	Z_N	74	Zη	16	Zn	50	<u>Zn</u>	74	Zn	02	Z_{N}	54	Zη	92	ZΛ	100	ZNO	100	Žn	80	Z	60	Z_{I_1}	18	Zn	08	Ž	90	ZN 5		n 600
	AU 16	11 .	u 20. U 39	1	- 1		т.	T				Au Zu									10								آ مـ م⁄4				120			A		Au -	_ A	W -
	P6 -	· P	7 -	Pb	2	Pb	-	Po	-	10	- ;	Pb	18	Pb	2	Po	-	Po	8	P0	_	Pb	-	Po	4	9	2	Pol	8	Pd	8	90	2	PD	_	P6	8	Pa 2	20	w 67
	V 3:	97 V 0 Z	331 n 108	Y 2 Zu 2	34 80	Y 2	82	Y Zn	06 50	Y Zu	12 5 122	V /	U00 50	y ; 7n	2 8 (74	280	Z	57	1	100	74	123	\ Z\/	40	74	47	74	100	Y/	00	¥.	161	V 74	247 24	V .	200	V3	17	1248 N 64
()	Au -	- JÀ	4 = 1	Au	- 1	Au .	45]			AU	15	Au	_ `	A	-]	Aυ	20	Αu	_	λų	-	Αú	-]	Au	-]	AU	-]	Aυ	-			A.				Au		AJ -	- Ā	
	Ku 3	6 P	A 日 フ 2	44 (1		Po		Lu Do		WA							20				2		38	00	99	i		14	46	4	55	4	1000	CU 3 Pa 8	0 C	4/4
_	V 25	뙈∨	1 320	V 2	256	√ i	10			V	201	>	48	V	201	\	311	\vee	319	$ \vee $	274	Y	165	Y	510	V :	325	V	50		ŀ	y i	300	V	278		275	1/30	74 V	120
25	Zn II	- X				Zn Au			15	Zn	300	21 Au	<i>88</i>	71	<i>6</i> 2	<u>Z1</u> A1	94	Z _N	74	Z_{Λ}	88	ZY A	64	Z1	70	ZN	08	Zu	96	<u> </u>		24	64	74	94	Z	22	<u>Zd 5</u>	44	n cod
	Lu 2	8	1 25	$\mathbf{Z}_{\mathbf{A}}$:	20	Lu;	38	Lu	25	ı		Lu	46	4	27	Lu	21	4	23	4	26	Zu	34	4	34		İ				j			·			1			1
	Pb 1. √ 4		48	V .	48	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12- 38	V	45												0 40						İ				8									
35	ZNE									<u> </u>	•	Z/	94	Zn	52	<u>Z</u> ^	64	Zı	10	Zη	60	ZΛ	82	Zn	88											,			\perp	
			1			Lu.	- 41	Lu	w	AU Lu		~ ~	- 27	21	- 47	Au Lu	40	Zu	- 34			24	- 40)	Au	- 52		ł		ļ											
,	}	-				Po	14	10	10	Pb	10	96	10	10	12	80	12	176	12			Pb	12	Pb	14												•			
45							51 38	Zn	22	Žη	10	Zn	40	Z	94	2	95 92	Zn	51 86			Zn	50	24		•					1						1		:	
7	r	ļ				Aц,	- [Au	-]	Au	-	Aυ	,	λ4		Àω		Αu	. –	Au	-	Au	- 20	Au	-					Ä	Ü-	PP	8-	ζ U-	78	V	ZW	- <i>pp</i> }	1	
					ľ		12	Ph	14	P	2	Po	2	Ph	-	Pb		Po	43 12	Pb	- -	20	-	PD	2				į		46				5 4		1			-
	:					Ý.	52	\forall	51	マ	100	$ \mathbf{V} $	362	\checkmark	32	\checkmark	306	V	47	V	405	ソ	4/2	V	79 797					-	<u></u>	121	ويمرا	ال	بم	<u> </u>				
į)	F	A1.					1				• •	m	-	1		الاسلام	سفامت		199		~4		1													
1																																								