BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1996/1997REPORT #:PAP 96-23NAME:GARY LEE

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

× 4

٢.

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name <u>GARY LEE</u> Reference Number <u>96/97-P52</u>
LOCATION/COMMODITIES
Project Area (as listed in Part A) NINA -FIEVER CLAIM SMINFILE No. if applicable
Location of Project Area NTS 93N/15W Lat 55' 57' Long 124' 48'
Description of Location and Access 10 Km. NORTHWEST OF GERMANSEN LANDING
ON AN ALL WEATER ROAD AND THENCE TURNING RIGHT (NORTH)
ON A 4X & ROAD AN ADDITIONAL 17 KM. TO PROPERTY
Main Commodities Searched For GOLD, COPPIER & SILVIER
Known Mineral Occurrences in Project Area 2 MSHOWINGS ON NINA CLAIMS
OF GOLD, COPPER 954VER
1. Conventional Prospecting (area) APPROX 3 Km × 3 km
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) <u>ICP</u> <u>353</u> <u>samples</u>
4. Geophysical (type and line km) I & Km OFVLF_ 4 MAG.
5. Physical Work (type and amount)
6,. Drilling (no,. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS
Commodities <u>COPPER, COLD, SILVER</u> Claim Name <u>NINA 1-96</u>
Location (show on map) Lat 55° 57' Long 124° 48' Elevation 1680m
Best assay/sample type ROCK SAMPLES MAINSHOWING 1.22% Cu. 7.42mlt. Ag
and 0.052 of 1 An I ASSAY COMPLIMENTS OF HOMESTAKE CANADA ENC.
Description of mineralization, host rocks, anomalies <u>SEE ENCLOSED</u> <u>TECHNCAL</u>
REPORT LOCATON MAIN SHOWING - MAP Page 5)

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Dec. 9'96 7:50

.

BLUE OX SERVICES

FAX **60484**65828

Р. З

3

CERTIFICATE OF ASSAY AS 96-5308

HOMESTAKE CANADA INC.

1000-700 West Pender St. VANCOUVER, B.C. V6C 1G8

ATTENTION:D. KURAN/C.EDMUNDS

÷

No. of samples: 16 Sample type: ROCK PROJECT #: NOT GIVEN SHIPMENT #: 90621-20 Samples submitted by: RBA

		Au	Au	Ag	Ag	Сл	
ET #.	Tag #	<u>(g/t)</u>	(oz/t)	<u>(g/t)</u>	(oz/t)	(%)	
2	06472	1.78	0.052	254.4	7.42	1,22	
5	06732	1.50	0.044	37.3	1.09	. •	
13	06684	3.64	0.106	114.6	3.34	-	

QC/DATA:					-
Mp1a	-	. •	-	-	1.44
CPb-1	-	-	631.0	18.40	-

1-Oct-96

 $\frac{1}{2}$

1-oid-96

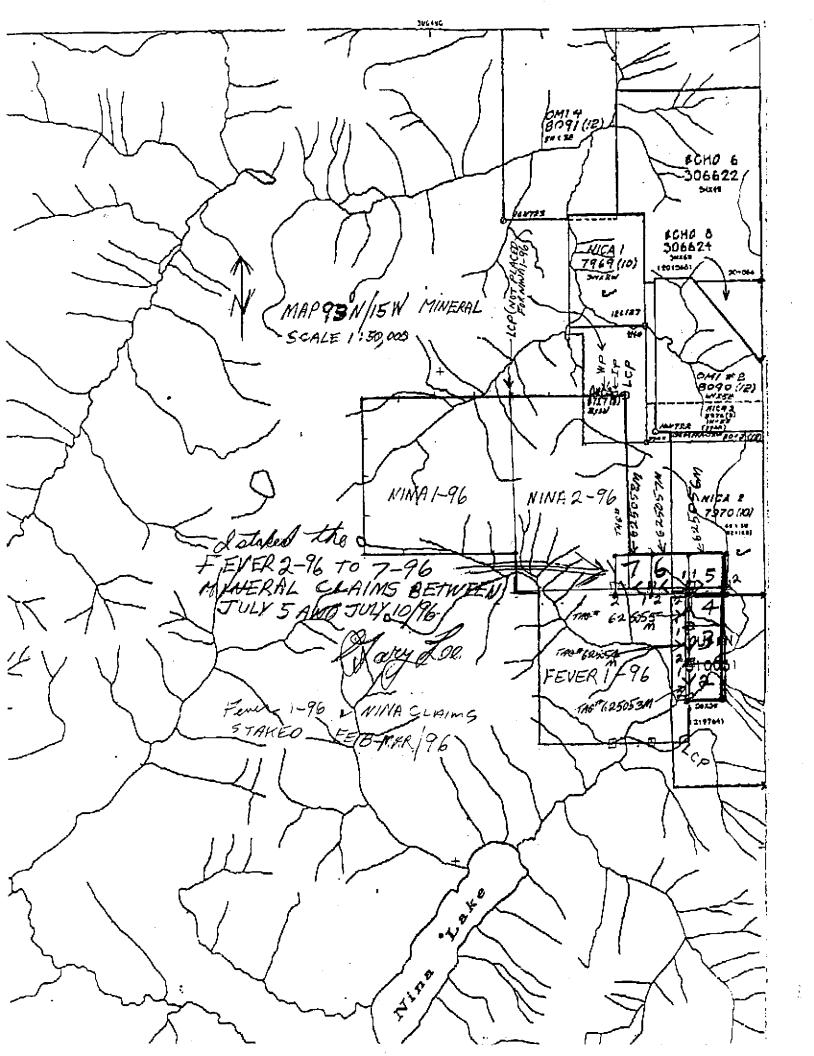
ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 614

771

. .

Values in ppm unless otherwise reported

HÖNESTAKE CANADA INC. 1000-700 West Pender St VANCOLIVER, B.C. V&C 106


ATTENTION: D. KURAN/C.EDMUNDS

 \mathcal{N}

SHIPMENT # 90621-20 Samples submitted by, RBA

....

Et #	T <u>ag</u> #	Au(ppb)	Ag	AI %	As	Be	8 4	Ca %.	Cd	Co	Cr	Cu	Fe %	La	Mg X.	Mn_	Ma	Na %	Ma	P	Pb	Sib Sit	Sr	<u>Ti %</u>	u	V.	W	Y	Zn
1	06471	- 5	-02	1.37	4	345	ن ې	0.61	<1	10	74	57	2.50	20	0.96	712	<1	<0.01	27	710	-2	<5 <20	31	0.23	< 10	20	<10	12	¢\$
2	06472	>1000	>30	0.64	515	120	4	0.26	<1	39	- 59 >	10000	>10	50	0.50	127	17	<0.01	16	<10	202	<5 <20	5	0.21	30	52	<10	<1	250
3	06473	115	≪0.2	<001	-5	<5	<5	<d 01<="" th=""><th><1</th><th>< 1</th><th><1</th><th>1</th><th>0.03</th><th><10</th><th><0.01</th><th>3</th><th><1</th><th><0.01</th><th><1</th><th><10</th><th><2</th><th><5 <20</th><th><1</th><th><0.01</th><th><10</th><th><1</th><th>20</th><th><1</th><th><1</th></d>	<1	< 1	<1	1	0.03	<10	<0.01	3	<1	<0.01	<1	<10	<2	<5 <20	<1	<0.01	<10	<1	20	<1	<1
4	06474	20	5.0	4.43	<5	55	<5	2.45	2	25	40	262	6.61	20	2.76	883	<1	0.01	35	530	<2	<5 <20	13	0.47	< 10	132	<10	<1	- 69
5	06732	> \$000	>30	0.73	145	85	< 5	0.37	1	26	113	2257	>10	40	0.47	173	9	<0.01	12	<10	30	<5 <20	4	0.20	20	49	<10	<1	11
6	05733	255	5.2	3.36	45	70	<5	0.78	3	36	170	362	9.63	30	2.52	1326	<1	0.04	49	430	208	-5 -20	2	043	<10	171	<10	<1	368
7	06678	5	<0.2	3.68	<5	105	<5	2.53	1	35	45	31	6.30	20	2.03	872	<1	0.03	41	690	<2	<5 <20	8	0.59	<10	181	< 10	6	<u>55</u>
8	06679	5	<02	3.18	<5	145	<5	1 86	1	.31	88	14	5.77	10	2 12	645	<1	0.03	49	810	<2	<5 <20	9	0.33	<10	157	<to< th=""><th>2</th><th>44</th></to<>	2	44
9	06660	10-	<0.2	1.04	-5	75	<5	0.44	<1	30	82	45	2.60	10	0.68	531	<1	0.01	25	420	<2	<5 <20	6	0.24	<1D	28	10	6	16
10	05581	15	<0.2	0 85	-5	<5	<5	1.02	<1	4	156	39	0.77	<10	Q 11	168	c 1	⊲0.01	7	60	<2	<5 <20	356	0.04	<10	42	<10	<1	4
11	06682	5	0.6	0.68	-5	210	<5	0.67	<1	8	165	47	1.36	20	030	1220	2	0.01	25	1450	4	<5 <20	13	0.15	<10	17	≼1 0	16	59
12	06683	5	<0 Z	C. 78	-5	190	<5	0.36	<1	11	69	117	1.93	<10	0 37	662	<1	<0.91	9	350	6	<5 <20	10	025	<10	19	<10	4	31
13	06684	>1000	>30	0 15	500	85	S	0.19	<1	16	90	585	>10	20	0.04	36	12	<0.01	6	<10	114	<5 <20	3	0.10	20	45	<10	<1	128
14	06685	175	12.4	3.63	<5	105	<5	11,66	2	18	157	884	>10	40	3 00	1180	-1	0.04	20	70	:4	-5 - 20	5		<10	292	<10	-11	265
15	066386	10	08	J 92	5	20	<5	>10	1	22	155	783	149	<10	0.47	938	<1	<0.01	29	70	<2	10 <20	91		<10		<10	6	250
16	06587	40	<0.2	2 80	শ	50	<5	1.40	<1	35	53	65	7.42	20	2.19	999	<1	9,04	52	560	<2	<5 <20	5	0.61		172	. –	5	101

NINA and FEVER MINERAL CLAIMS

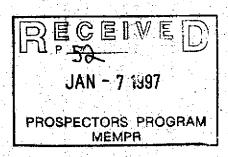
Ľ

C

C

Ľ

GEOPHYSICAL AND GEOCHEMICAL SURVEY


by '

Gary C. Lee, P.Eng.

December, 1996

Grant Numbers: NINA 1-96: 343848 NINA 2-96: 343850 FEVER 1-96: 343849 FEVER 2-96 to 7-96: 347694 to 347699, incl.

> Omineca Mining Division, B.C. Map NTS 93N/15W Latitude 55° 57', Longitude 124° 48'

NINA and FEVER MINERAL CLAIMS

GEOPHYSICAL AND GEOCHEMICAL SURVEY

by

Gary C. Lee, P.Eng.

Report: December, 1996 Fieldwork: June/September 1996

Grant	Numbers:	NINA 1-96:	343848
		NINA 2-96:	343850
		FEVER 1-96:	343849
		FEVER 2-96 to 7-96:	: 347694 to 347699, incl.

Omineca Mining Division, B.C. Map NTS 93N/15W Latitude 55° 57', Longitude 124° 48' UTM 6,200,000N, 388,500E

Owners: Gary C. Lee and Dave Hayward Work done by: Gary C. Lee, Dave Hayward and Dave McCurdy

Date submitted:

TABLE OF CONTENTS

SUMMARY

<u>Paqe</u>

Topograph Location Forest Di History	Map strict Map Field Procedure Topo Map		1 1 2 3 4 4 5 6
ECONOMIC GEOLO Geology m			7 8
PURPOSE			10
RESULTS			10
INTERPRETATION	AND CONCLUSIONS		11
RECOMMENDATION	S		11
VALUE OF ASSES	SMENT WORK		12
STATEMENT OF Q	UALIFICATIONS		13
APPENDIX:	Table 1 (Watkins, fragments Colour Contoured G - antimony, arseni silver, zinc (8 pa LAB-ICP Reports (1	eochemistry Mar c, barium, coba ges)	s:

DIAGRAM #1: VLF and Magnetometer Plan	In pocket
---------------------------------------	-----------

SUMMARY

The original discovery of copper and precious metals (Au, Ag) was made on the NINA 1-96 claim as anomalous concentrations in а gossan-stained bedrock by Anaconda Canada in 1982. The discovery of another anomalous gossan was made by Rio Algom Exploration Inc. and JAM Geological Services on July 23, 1985. Following this work, in the Report of Evaluation (Watkins, 1985) it was stated that the favourable contact extended to the southeast into the FEVER mineral claims. A program of ground geophysics and soil geochemistry was recommended at this time. This recommended program was finally, at least partially, carried out during the summer of 1996. Some interesting geophysical anomalies (VLF) were encountered. Also, the geochem soil sampling yielded some unexplained anomalies. Some of the longer geophysical lines, when extended grid east (Brg. 48°) yielded complex conductor systems (multiple conductors) which may host economic mineralization (massive sulphides).

A program of further gridding, geophysics and soil geochemistry is recommended, with emphasis on extending the coverage to at least station 1000 east.

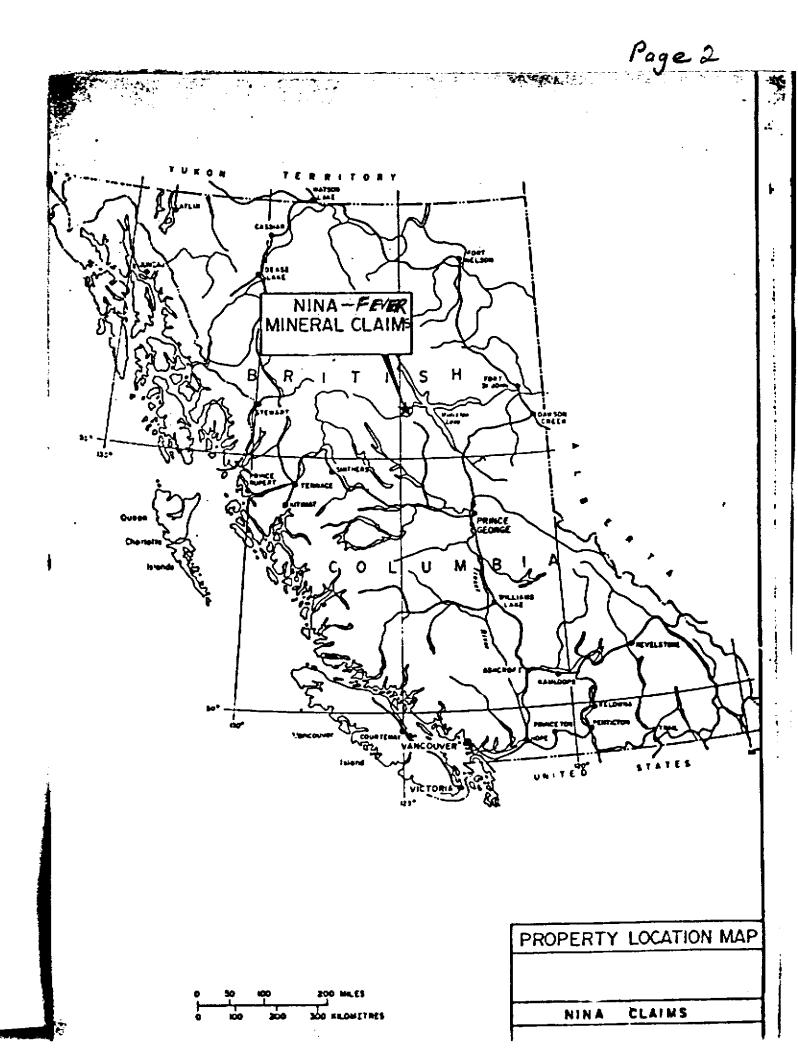
INTRODUCTION

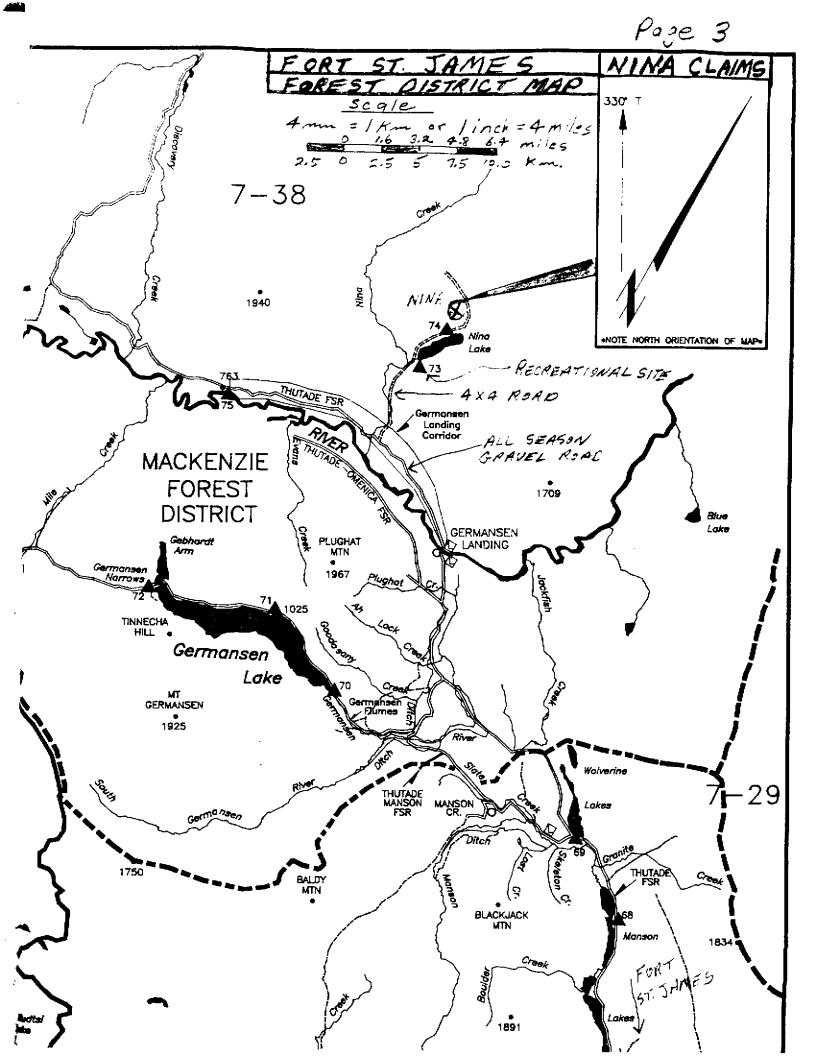
<u>General</u>

From June 18 to July 17 and from September 5 to 9, 1996 a two or three man crew conducted a VLF, mag. and geochem survey on the NINA-FEVER claim group. Dave Hayward and Dave McCurdy, both from near Smithers, B.C., and this author, of Whitehorse, Y.T., comprised the crew.

The claims consist of NINA 1-96 (16 units), NINA 2-96 (15 units), FEVER 1-96 (16 units) and six two-post claims - FEVER 2-96 to 7-96 (six units), for a total of 53 units. The claim boundaries can be seen on the 1:20,000 topo map on page 5 and the 1:2,000 VLF and magnetometer plan contained in the pocket.

The claims are jointly owned by myself and Mr. Dave Hayward.


Location and Access


The property is located ϕ n north-central British Columbia, 260 km northwest of Prince George at the south end of the Swannell Range in the Omineca Mountains (see map, page 2). The property is 17 km north by northwest of Germansen Landing. Germansen Landing is slightly less than 200 road km north of Fort St. James (see map, page 3). Road access is achieved by proceeding 10 km northwest of Germansen Landing on an all-weather gravel road and thence turning right (north) on an unmaintained 4x4 road for an additional 14 km to the property. The road cuts through the southeast portion of the property (see map, page 5).

Topography

The property ranges in elevation from 940 metres to 1800 metres. Vegetation is typical of a relatively mature evergreen forest common to north-central B.C. with trees thinning out above the 1600 metre elevation. Most of the FEVER claims are easily traversed by foot; however, parts of the NINA claims such as the area of the main showing have steep valley walls and are traversed with difficulty.

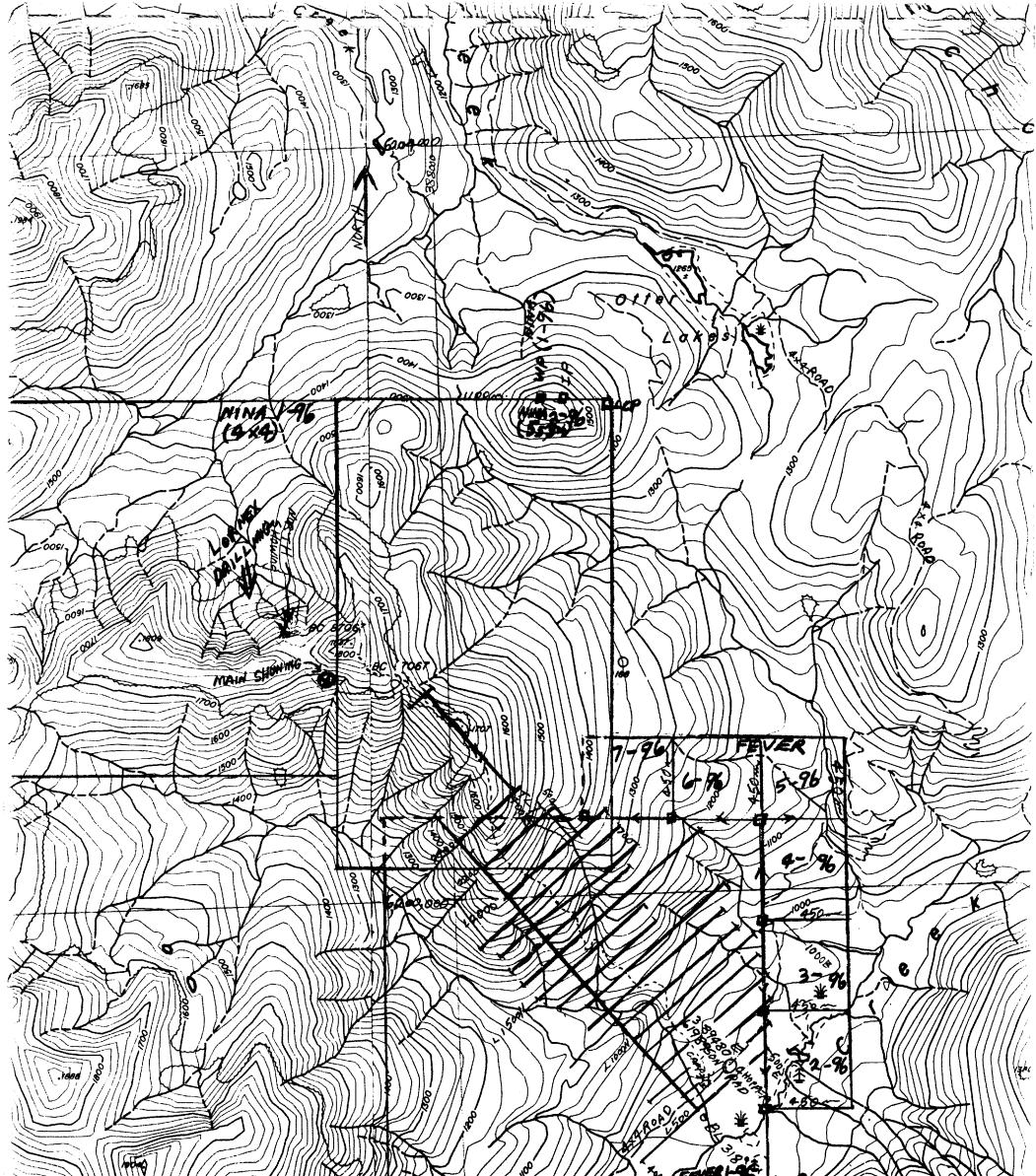
The colour photos on page 6 show the steep topography (lower two photos) versus the more easily traversed country (top two photos) of the FEVER claims.

<u>History</u>

(From: Watkins, 1985 B.C. Assessment Report no. 13,977 and from Cope, 1988 B.C. Assessment Report no. 17,940)

Anomalous concentrations of copper and precious metals from gossanstained bedrock were reported by Anaconda Canada Ltd. in 1982. Another anomalous gossan was discovered by Rio Algom Exploration Inc. and JAM Geological Services in 1985. These were both in the NINA claims at high elevations. Geological mapping in 1985 by JAM Geological Services showed these gossans to contain massive sulphide fragments containing copper, gold and silver (Watkins, 1985). Also at this time, two strataform EM anomalies were detected in a VLF survey.

In 1986 Lornex Mining Corporation Ltd. took over the property, conducting geological mapping, rock sampling and soil geochemistry in the 1986 field season.


In 1987, 6 km of induced polarization survey was performed. In 1988, 224 metres of BGK wireline diamond drilling in three holes from three set-ups was performed. This was conducted in the north half of the NINA 1-96 claim (see map, page 5) in a separate valley to the northwest of the FEVER claims. Not all holes reached their targets as drilling problems were reported. There was no work done in the valley of the FEVER claims by Lornex.

Grid and Field Procedure

All lines were flagged with orange and blue flagging at 20 metre stations. Four-foot pickets with metal tags were used on most of the baseline. Lines, for the most part, were run-in at 100 metre intervals. The grid layout can be seen on the 1:20,000 map on page 5 and the 1:2,000 map contained in the pocket. Roughly 18 km of baseline and lines were flagged-in.

A Geonics EM-16 was employed for the VLF survey, with readings being taken at 10 metre intervals. Both the in-phase and quadrature were read. All stations were read by facing the direction of the transmitting station and thence turning clockwise 90° before taking the readings. Most lines were read on Cuttler, Maine, since Seattle, Washington, was off the air for a major refit until July 11, 1996. At this time, as many lines as possible in the time remaining were read on Seattle, Wa.

Magnetometer readings were taken at 10 metre intervals with a Scintrex MF-2 fluxgate magnetometer. The instrument reads the vertical component of earth's magnetic field. Readings were taken to the nearest 10 gammas in short loops and corrected for diurnal. Each loop was subsequently corrected to adjacent loops throughout the survey.

FENER (947 n Poge 5 NINA-FEVER PROPERTY ୖୄୄୄୄୄୄୄୄୄ TOPO MAP SHOWING Ċ GRIDAND CLAIM LOCATIONS DIGITAL MAP # 93N.097 .. 096 峹 100 Scale i 1:20,000 INA ^{± ege} AKE 8000 500 m. L ŝ

NINA MINERAL PROPERTY

Page 6

LUCKING NOE. TO ROAD (OFF WHICH IS SUPPOSED TO TERMINATE AT COMMICO FLATS TO THE NORTH

LOOKING S.E. FROM L2400N SHOWS APPROX LOCATION OF FART OF GRID, ROAD, CAMP AND BASELINE

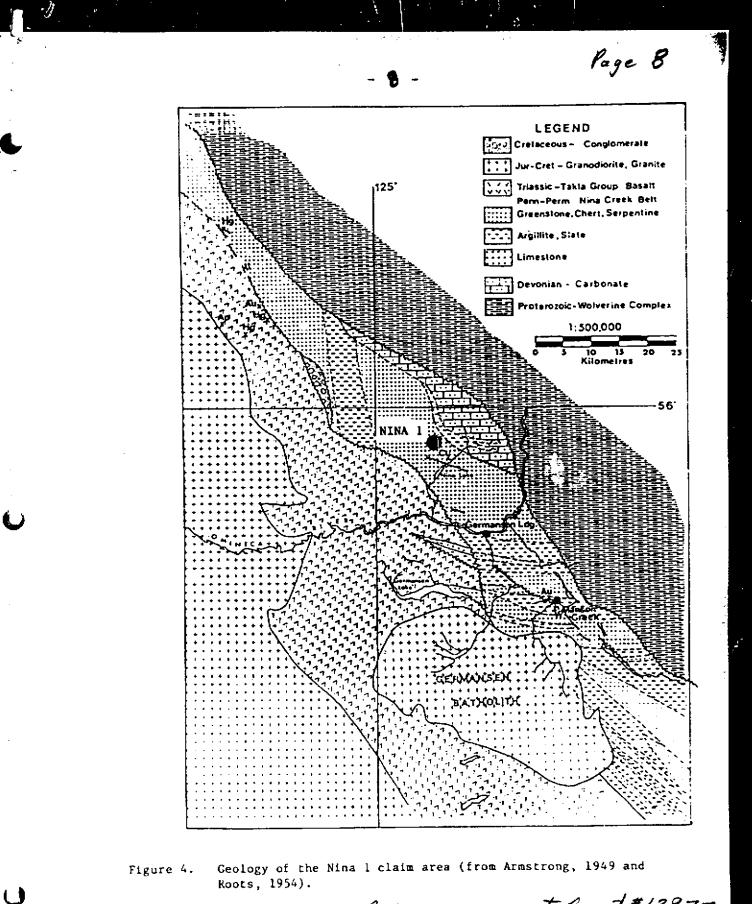
LOOKING N.W. CLOSE UP OF GOSSAN (RED-BROWN)

LOOKING N.W. TO GOSSAN MAIN SHOWING (WATKINS, 1985)

Geochemical sampling was begun by soil sampling the 'B' horizon (where possible) with a split spoon auger at 20 metre intervals. It was soon realized that sampling the complete grid would be too costly, especially regarding limited resources and high cost of the lab analysis. Consequently, sampling was limited to areas of mag. and especially VLF anomalies in the hope that it might indicate the location of buried massive sulphides. These can be seen on the 8colour contoured geochemistry maps contained in the Appendix.

ECONOMIC GEOLOGY

The following was taken from B.C. Assessment Report no. 13,977 by Watkins and Atkinson, 1985:


" Property Geology

"Stratigraphic and structural relationships within the Nina Creek belt are not known. Stratigraphy in the property area appears to be part of a homoclinal succession topping and dipping westerly.

The property is underlain predominantly by weakly metamorphosed massive, green to brownish green weathered, fine grained, altered basalt. The metabasalt is locally variolitic, brecciated or pillowed. Intracalated with metabasalt is a metasedimentary unit with an apparent thickness of up to 150 metres that flexes in trend from 100° to 140°, and thins markedly towards the north side of the property. The metasediments are predominantly dark brown, weakly foliated, fine grained mafic tuffs, locally argillaceous. Near the basalt contact, the sediments are distinctly layered with siliceous, cherty bands to 1 cm wide, which locally grade to massive chert. No stratigraphic top indicators were recognized.

Hydrothermal Breccia

On lines east of the main showing, within massive and pillowed metabasalt, a 50 x 150 m area is underlain by a mixed basalt and cherty breccia. Here, massive basalt and chert have been shattered to angular fragments of millimetre to 10 centimetre size to form a matrix supported breccia. The matrix is either a dense, creamy grey siliceous groundmass, or mixed lamellae of fine basalt and chert shards in a siliceous groundmass. No sulphide minerals were seen within this breccia body. The contact between mixed breccia and host massive basalt is not sharp, but grades from an insitu shattered basalt.

Í.

1. . . .

Taken from BC. assessment Report # 13977 Wathing - atkinson, 1985

Structure

On the property, basalt flow rocks have little or no penetrative deformation. Pillowed and brecciated basalt have retained their primary textures. However, within the sedimentary unit, a vertical foliation is developed. North of the main showing, chert bands in tuff define an open, upright synform with small amplitude shallow, north-plunging drag folds well developed. Bedding plane mullions have a shallow north plunge. It is interpreted that these small folds are geometrically similar to larger folds developed in the west dipping homoclinal succession of Nina Creek belt rocks. No major disruption of the stratigraphic package by faults is recognized.

Sulphide Mineralization

Localized areas of sulphide mineralization occur within a 100 metre interval in metabasalt on the east side of the Two styles of mineralization sedimentary unit. are assays on first page of appendix recognized:

- clastic sulphide mineralizaion 1.
- disseminated sulphide mineralization 2.

Fragments of massive sulphide are mixed with monolithic, fragment supported, conglomerate-like, unmineralized basalt. This style of mineralization is identified in two areas 300 metres apart at the same stratigraphic position relative to the sediment-basalt contact. The larger of the two areas (photo, page 6) is lens-shaped in plan view, measures 25 x 130 metres, and is elongated parallel to the sediment contact. The smaller zone is less defined; it measures 5 x 60 metres with its long axis conformable to the sediment contact. Sulphide fragments are composed of fine grained, granular textured pyrite with grey quartz. The chalcopyrite content of individual fragments is variable - see Appendix. P.) The total sulphide content of the two zones does not exceed 15%.

Localized areas of disseminated pyrite with varying amounts of fine grained chalcopyrite and minor sphalerite are intracalated with metabasalt. These mineralized areas are small, not exceeding three metres in width and 20 metres in length. They tend to occur at a stratigraphic interval 100 metres from the sediment contact.

<u>Alteration</u>

Metamorphism in the NINA claim area appears to be of the lower greenschist facies. Metabasalt is commonly a fine grained assemblage of suspected plagioclase, amphibole and chlorite. Fine leucoxene is ubiquitous in the metabasalt. Silica replacement of basalt is widespread, occurring as distinct fracture controlled linear zones and as large strataform replacement zones. Cherty bands in sediment may be silica replacement. Fracture related siliceous zones are texturally similar to the matrix of the hydrothermal breccia, consisting of fine lamellae of creamy grey chert.

Metabasalt is crosscut by a wide-spaced northeast-trending set of steeply dipping quartz-epidote veins that postdates silica alteration.

On the FEVER claim to the southeast, bedrock exposures are poor. The claim appears to be underlain by predominantly massive basalt flows and tuffs, and intercalated argillites striking northnorthwest and dipping moderately west. The favourable basalt and argillite can be traced southeasterly across the northeast half of the FEVER claim (Watkins, 1985)."

PURPOSE

Attempt to detect a buried sulphide deposit to the southeast of the main showing in the FEVER and/or south end of NINA 2-96 mineral claims. This is the basic recommendation contained in the Report of Evaluation of Fever Mineral Claims by Watkins, 1985. Since there is very little outcrop, ground geophysics and a soil geochemistry program were recommended.

RESULTS

The VLF results can be seen as profiles on the map contained in the pocket. The location of the VLF conductor axis has been marked on this map as well as on the geochem maps in the Appendix. This could help to determine whether any interesting correlations develop between the geochemical anomalies and the VLF conductor axis. Any interesting magnetic results have been contoured on the VLF and Magnetometer plan.

INTERPRETATION AND CONCLUSIONS

As can be seen on the VLF and Magnetometer plan, two conductors (A and B) were detected, having a strike length of 600 metres or more each. Also, on the east end of the grid, complex multiple conductors striking north by northwest need to be defined accurately with more geophysical lines.

Correlation of the conductor axis and geochemical contouring (Appendix) do not result in any obvious patterns. An area partially on and below conductor A resulted in a lot of barium highs and some very high arsenic values east of the baseline. Conductor A was very strong (in phase values up to 142%) west of the baseline and also had some high copper values associated with it. Prospecting is difficult here due to the absence of outcrops. Anomaly A has curved around line 1700N, almost making it appear as a nose of a fold. The cause of this anomaly should be determined.

Anomaly B has quite a few copper, lead and antimony 'kicks' immediately to the east or downslope and should be investigated further.

Some very high zinc anomalies (over 400 ppm) began to appear on the east side of the grid in the area of the multiple conductors. This whole area should be filled in with more geophysical lines and followed with geochemical sampling. A mag. anomaly began to develop on lines 700N and 800N between 500E and 600E, the cause of which is unknown.

Gold was not tested for, due to lack of funds.

RECOMMENDATIONS

- 1. Sample some of the obvious gaps as seen on the geochem maps and run for ICP plus gold. Also re-run all pulps for gold.
- 2. Extend all lines between L 1000N and L 2200N to at least 1000E and conduct a geophysical and geochemical survey.
- 3. All new anomalies should be prospected and any outcrops should be geologically mapped.
- 4. Depending on the foregoing, any multiple conductor axis could be surveyed with a lower frequency EM system in order to ascertain its quality.
- Depending on the foregoing, any one or a combination of trenching and drilling could commence.

Page 13

STATEMENT OF QUALIFICATION

I, GARY C. LEE, of the City of Whitehorse, Yukon Territory, HEREBY CERTIFY that:

- 1. I am a self-employed Geological Engineer.
- I am a graduate of the University of Toronto, Toronto, Ontario, with a degree in Applied Science - Geological Engineering (Mineral Exploration option).
- 3. I am a member of the Professional Engineering Associations of the Yukon, British Columbia, and Ontario.
- 4. I supervised and carried out the work described in this report.

Harry Lee

Gary C. Lee, P.Eng.

Date: Dec 20/96

APPENDIX

.

.

FROM BC ASSESSMENT REPORT# 13,977 Wathing - athinson 1985

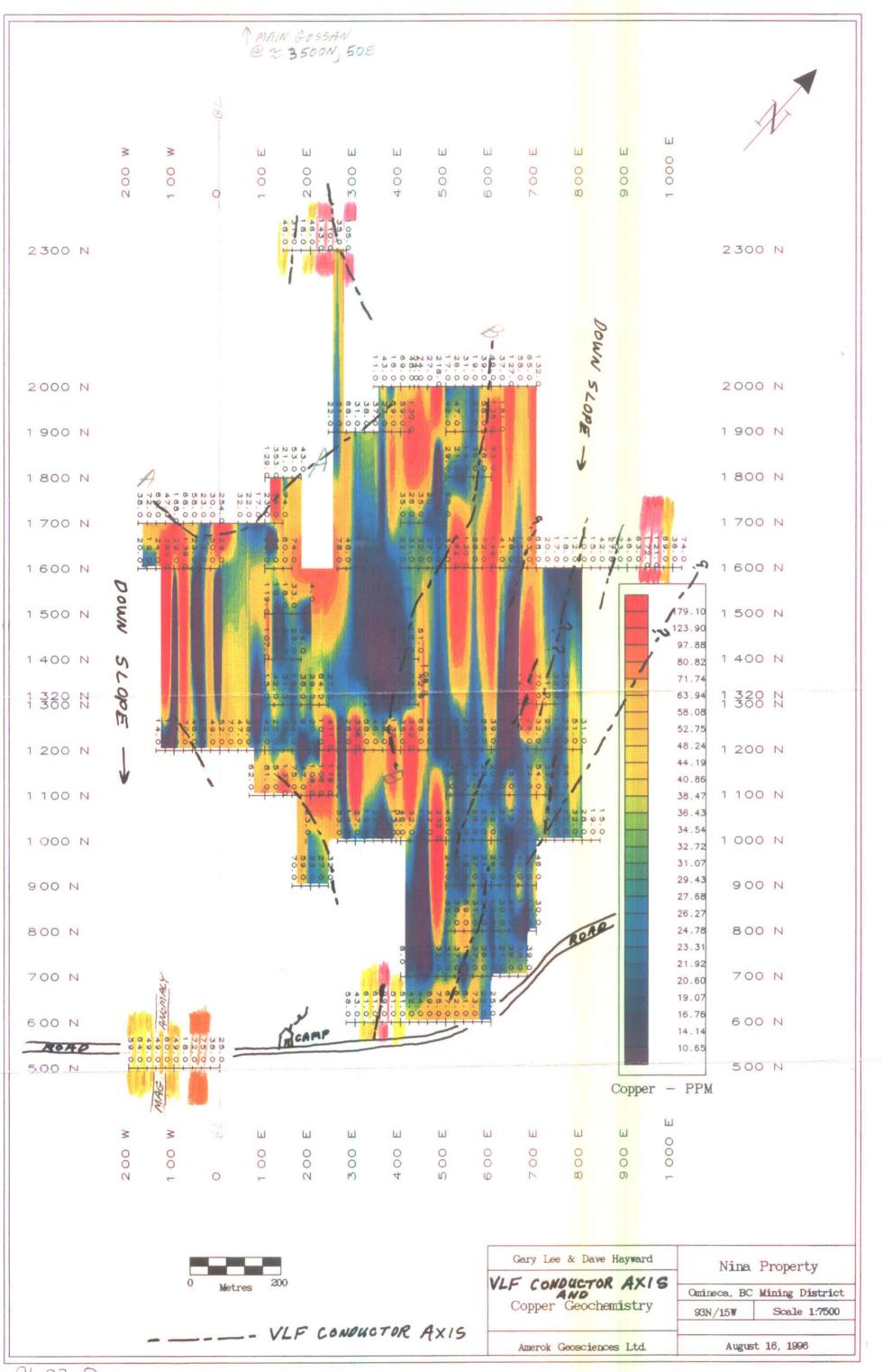
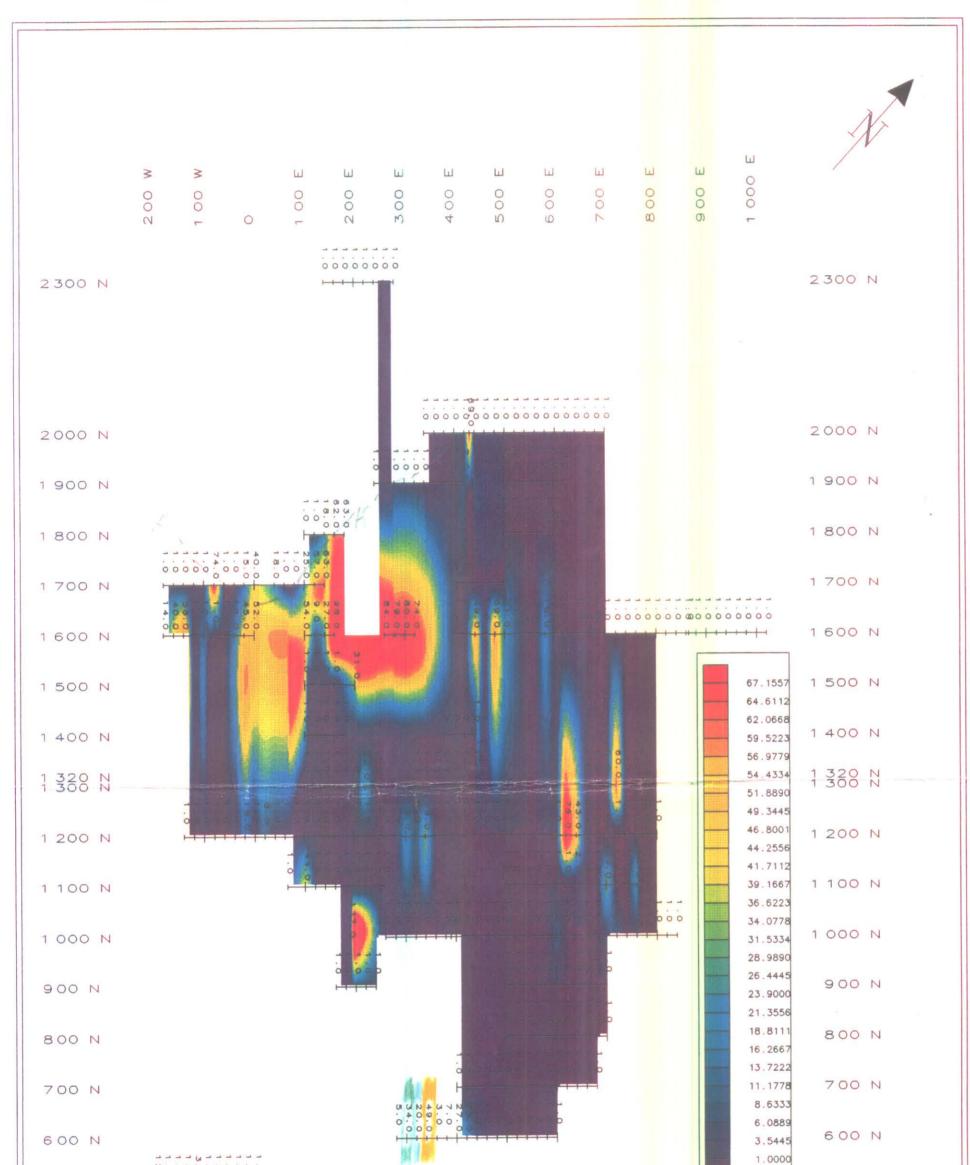

SEE 1: 20,000 TOPO MAP Pg 5 FOR LOCATION OF SHOWINGS Analytical results of individual sulphide-rich fragments from clastic sulphide zones PÞ Sample Za λ£ Ωı Au Co Mo X X X. gu/T gn/T PPH DDW 000 ססס (ppm) (ppm) **D**3001 0.10 0.01 0.04 75.5 3.00 🕤 11 1.74 < -D3002 0.01 0.05 84.5 0.00 21 3.15 < D3003 0.02 0.05 226.5 0.90 32 D3004 0.41 0.01 0.01 26.0 0.60 18 D3005 0.36 0.01 0.06 146.5 6.90 8 D3006 0.17 0.01 0.01 9.5 0.05 186 1.20 **b3007** 0.09 0.01 0.51 10.0 19 D3008 0.46 0.01 0.01 3.5 0.05 10 D3009 0.17 0.01 0.01 7.0 0.40 18 D3013 0.80 🧹 1.90 🦟 0.01 0.02 38.0 10 D3014 0.21 0.01 10.0 <--0.01 4.70 3 *D5439 0.19 (129) (193)96.8 1.80 238 3 *D5460 0.07 (27) (48) 9.8 0.15 7 67 *D5461 0.31 (35) (53) 7.6 0.05 12 131 *05462 0.41 (63) (157) 23.7 0.40 117 *D5464 14.91 - (47) (1167) 20.2 0.60 164

Table 1

131

and

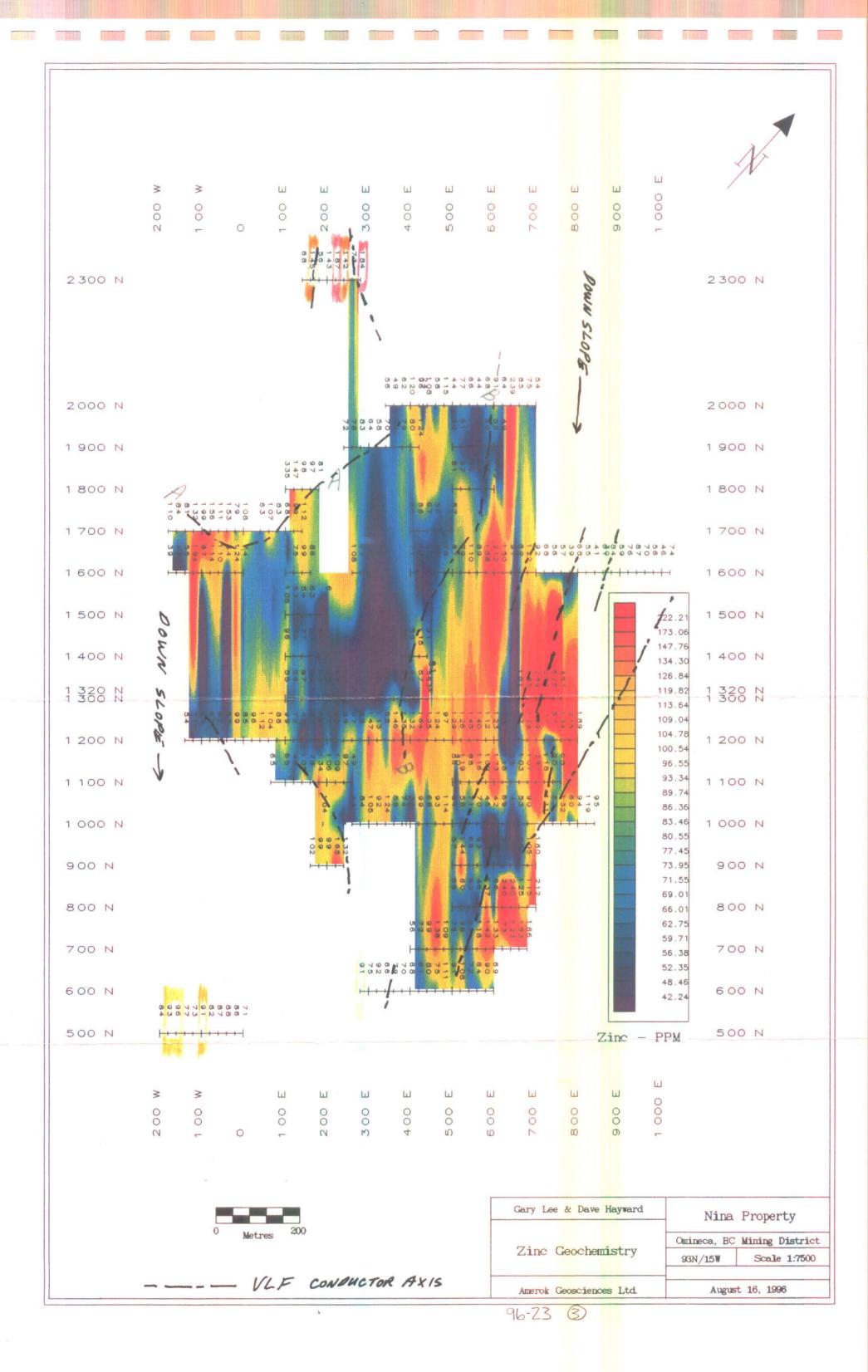
* Sample collected on July 23 during initial property examination

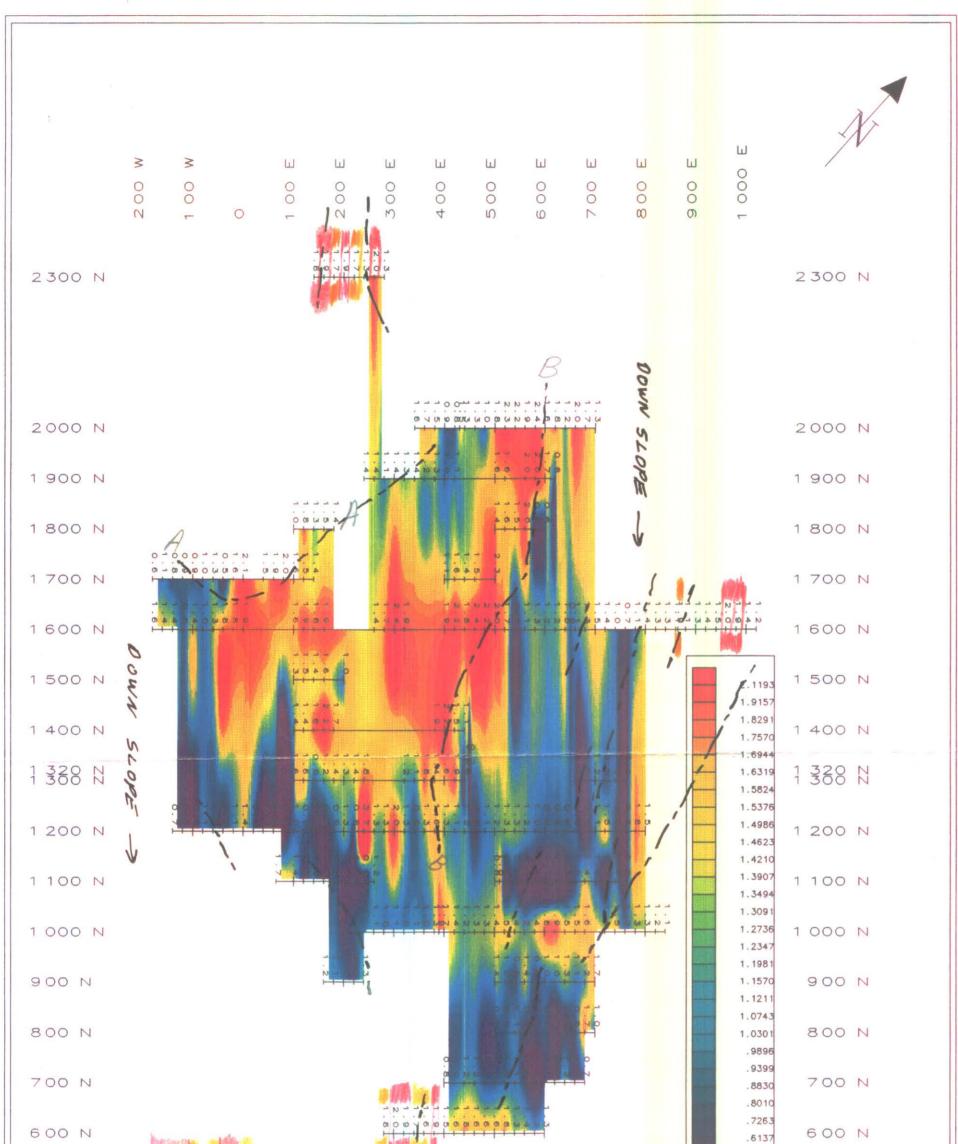


96-23 D

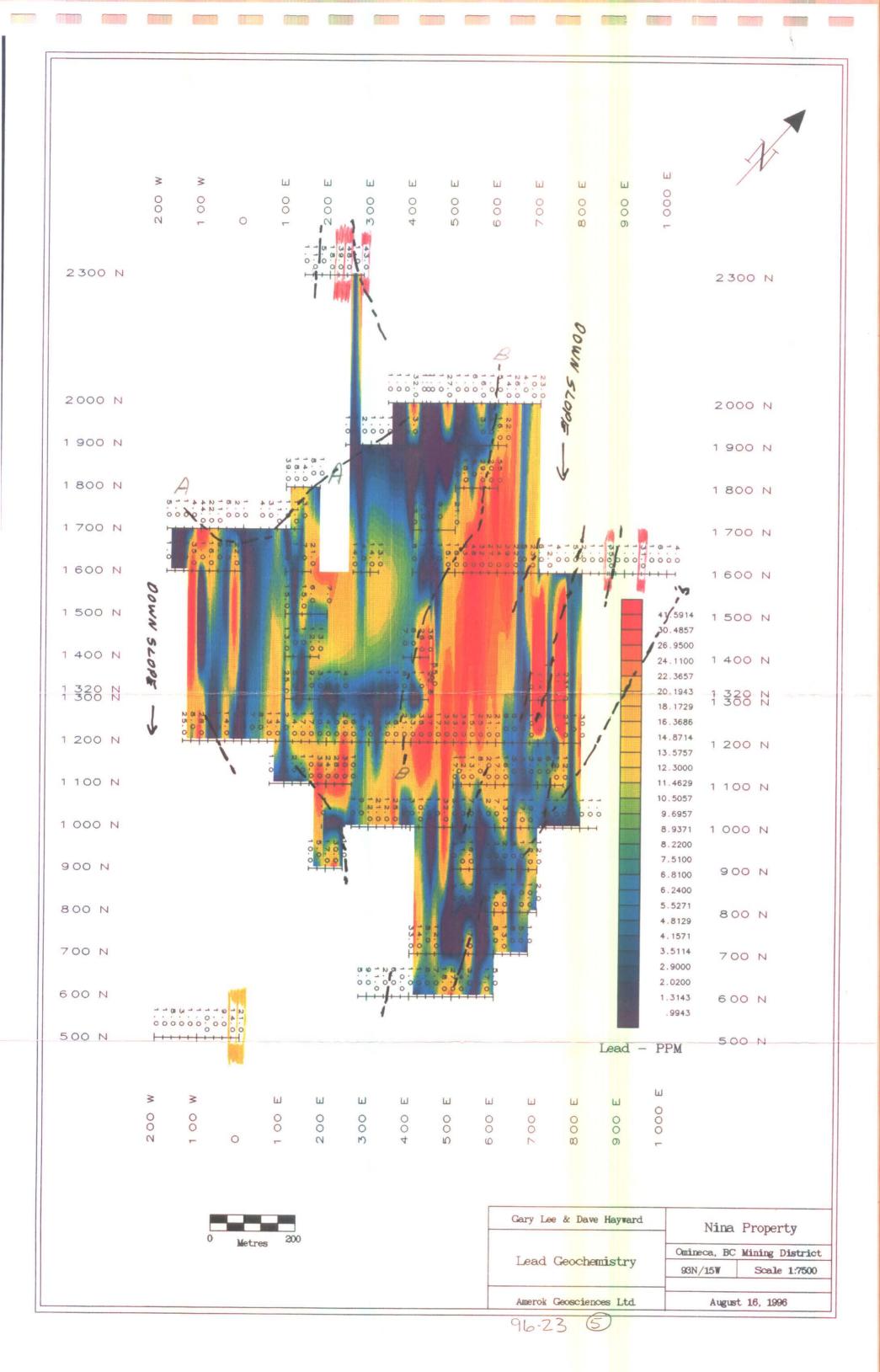
harden

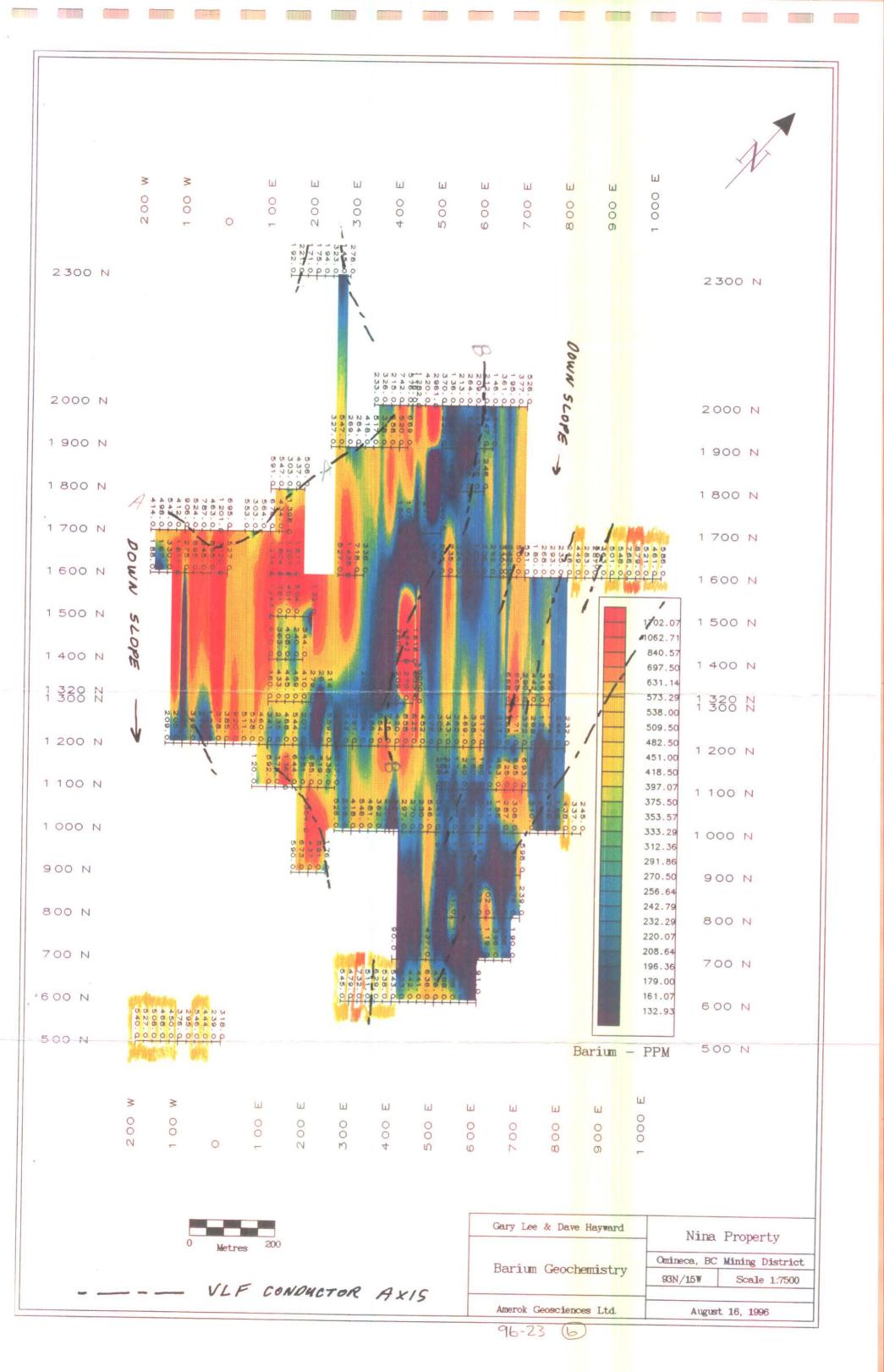
FIER

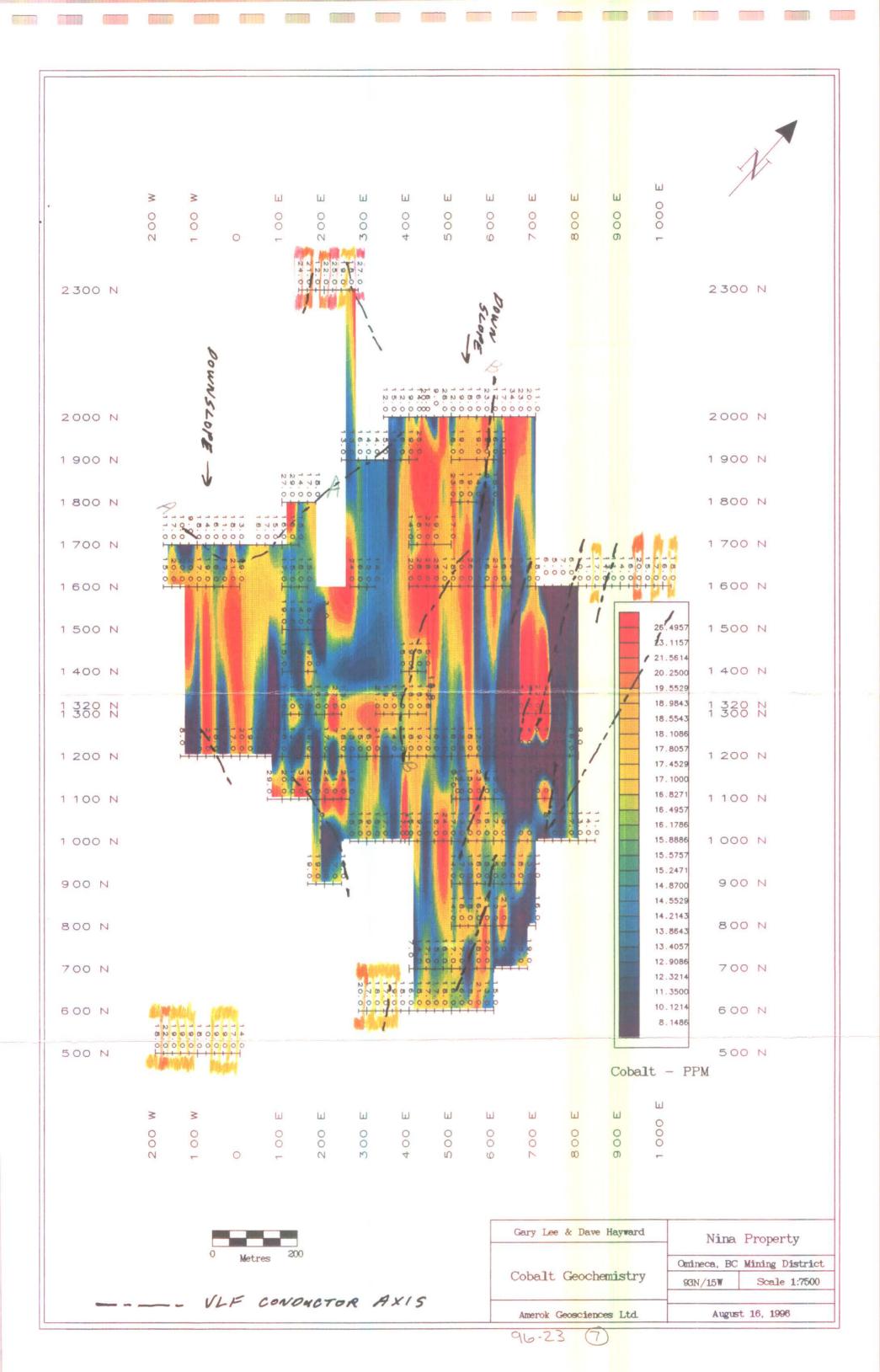

The sector

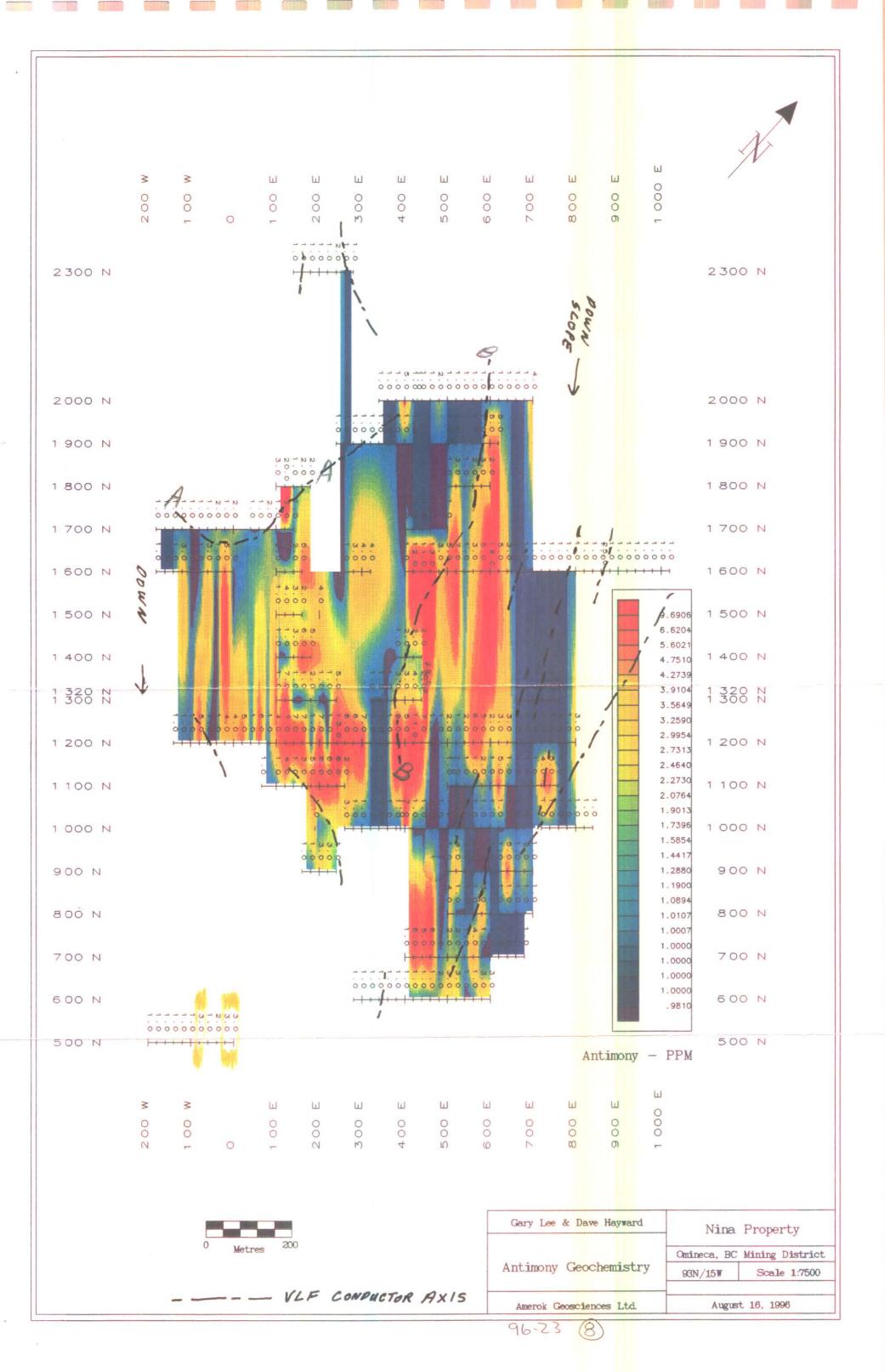


The second second


in nu


500 N	0														0 N
	200 W	1 00 W	0	1 00 E	200 E	300 E	400 E	500 E	600 E	700 E	800 E	Arseni u o o	1 000 E	PPM	
				20	0					Gary Lee	& Day	ze Haywar	rd		Property
) Met	res						Arsenic	Geo	chemist	cry	Omineca, BC 93N/15W	Scale 1:7500





							1							5137	
500 N											20	Silver	– PF	PM 50	0 N
1	200 W	1 00 W	0	1 00 E	200 E	3 00 E	400 E	500 E	6 00 E	700 E	800 E	900 E	1 000 E		
) Met	res 20	0					Gary Le Silver	e & Dav				Property Mining Distric
-			- V	LF	CONC	ристо	RA.	X15			Geoscie			93N/15W	Scale 1:7500 rt 16, 1996

PROJ:

-

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 65-0050-SJ1+2

DATE: 96/07/30 * soil * (ACT:F31)

ATTN: Dave Hayward / Gary Lee AG AL AS BA BE BI PPM % PPM PPM PPM PPM SAMPLE NUMBER PPM

	т	EL:(6	04)32	7-343	6 FA	X:(6	04)32	7-342	3			
CD PPM	(CO PPM		CU PPM	FE %	GA PPM	К %	LI PPM	MG %	MN PPM	MQ PPM	NA %	N PF

		,		·				-	<u> </u>												\sim					30,0		AUTIFSID
SAMPLE NUMBER	AG AL PPM %	AS PPM	PPM	8E PPM	BI PPM	ĊA %	CD PPM	{ĆO PPM	CR PPM	CU PPM	FE %	ĠA PPM	K %	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB	SB S PPR PP			TI %P	U PM F		W ZN PM PPM
96NL 500 200W 96NL 500 180W 96NL 500 160W 96NL 500 160W 96NL 500 140W 96NL 500 120W	1.5 1.76 1.9 2.29 1.9 1.82 1.9 2.06 1.9 2.06 1.9 2.06	12 1 1 3	540 527 508 468 450	.1 .1 .1 .1 .1	6	.83 1.09 .95 1.19 .94	.1 .1 .1 .1 .1	18 22 19 19 19	38 51 39 44 48	59 64 49 49	3.11 3.73 3.16 3.18 3.32	1 1 1 1	.04 .03 .03 .03 .04	11 10 8	1.19 1.42 1.16 1.18 1.19	1326 1036 1208	13 16 14 13 15	.01 .01 .01 .01 .01	38 44 34 38 37	800 710 610 890 570	1 1 8 3 1	1	2 21 2 24 2 22 2 22 2 19 2 25	1 1 2 1 2 1	.10 .15 .14 .13 .14	1 62 1 91 1 76 1 80	.8 .3 .3 .8 .3	1 84 1 93 1 96 1 77 1 73
96NL 500 100W 96NL 500 080W 96NL 500 060W 96NL 500 040W 96NL 500 020W	1.8 1.98 1.5 1.11 1.8 2.00 1.9 2.33 1.9 2.01	1 1 1	376 295 546 444 239	.1 .1 .1 .1	2 4 5 6 5	-86 -68 -99 -79 -72	.1 .1 .1 .1	18 10 19 19 17	48 28 48 63 52	18 72 75	3.64 2.24 3.39 3.58 3.49	1 1 1 1	.03 .04 .03 .02 .02	10 5 10 10	1.14 .51 1.29 1.18 .91	1183 1995 1224 1126	16 10 15 15 14	.01 .01 .01 .01 .01	21 43 43	1330 910 570 580 1520	1 10 1 9 14	1 3	2 21 1 30 2 23 2 20 2 19	1 1 1 1	.11 .08 .12 .14 .13	1 84 1 59 1 81 1 95	.1 .9 .3	1 91 2 82 1 87 1 88 2 86
96NL 500 000 96NL 600 280E 96NL 600 300E 96NL 600 320E 96NL 600 340E	1.7 1.85 1.8 1.68 2.0 1.62 1.9 1.62 1.7 1.69	1 5 34 20 49	318 545 479 732 511	-1 -1 -1 -1	4 3 2 1	.82 1.01 .88 .81 .82	.1 .1 .1	14 20 17 18 17	48 39 38 38 37	58 43 61	3.49 3.13 2.98 2.96 2.97	1 1 1 1	.03 .04 .04 .04 .02	10 9 10	.75 1.10 1.05 1.03 1.13	1921 1091 1881	14 13 14 13 13	.01 .01 .01 .01 .01	26 37 32 40 38	1400 850 810 790 500	21 5 9 11 2	3 1	2 16 2 27 2 25 2 27 2 25 2 27 2 22		.13 .11 .12 .09 .10	1 62	.5 .7 .5 .1	2 71 1 91 1 75 1 92 1 66
96NL 600 360E 96NL 600 380E 96NL 600 400E 96NL 600 420E 96NL 600 440E	1.6 1.82 1.9 1.62 1.5 1.60 1.6 1.59 1.8 1.68	3 7 27 23 5	333 442	.1 .1 .1 .1 .1	2 1 2 2 2	.74 .79 .84 .82 .81	.1 .1 .1 .1 .1	19 18 16 18 17	42 40 36 35 39	51 51 42	3.13 3.02 2.94 2.90 3.00	1 1 1 1	.02 .03 .03 .02 .03	9 9 8	1.13 1.07 1.09 1.07 1.04	1400 1034 1031	14 14 12 12 13	.01 .01 .01 .01 .01	44 36 33 32 32	550 830 740 710 930	6 10 1 1 6	1 1 1	2 29 2 25 2 23 2 21 2 26	1	.09 .10 .10 .11 .11	1 61 1 62 1 69	.7 .5 .4 .7	1 79 1 70 1 68 1 61 1 80
96NL 600 460E 96NL 600 480E 96NL 600 500E 96NL 600 520E 96NL 600 540E	1.6 1.82 1.6 1.90 1.6 1.82 1.8 1.96 1.3 1.88	1 1 1 1	441 636 476 488 456	.1 .1 .1 .1	2 3 2 3 4	.77 .75 .66 .69 .92	.1 .1 .1 .1 .1	17 18 16 16 18	44 47 53 42	75 67 62	3.11 3.29 3.32 3.25 3.04	1 1 1 1	.02 .03 .03 .03 .03	9 9 10	.80	2286 1811 1668	14 14 15 1 3	.01 .01 .01 .01 .01		720 1020 1010 810 680	7 18 27 14 3	23	2 23 2 33 2 24 2 27 2 25	1	.10 .10 .09 .11 .12	1 78 1 88 1 82	.4 .7 .7 .2 .5	1 75 1 111 2 91 2 108 1 72
96NL 600 560E 96NL 600 580E 96NL 600 600E 96NL 1400 100E 96NL 1400 120E	1.4 2.31 1.2 2.01 1.3 2.08 1.4 1.66 1.4 1.75	1 1 1 1	292 178 91 910 363	-1 -1 -1 -1 -1	1	1.14 .87 .86 1.04 .70	.1 .1 .1 .1	21 13 15 15 13	67 41 44 49 47	22 25 107	4.00 3.76 3.22 2.75 3.57	1 1 1 1	.05 .03 .03 .05 .04	12 10 11 10 14	1.28 .69 .92 .89 .78	853 494 379 1166 446	15 13 13 12 13	.01 .01 .01 .01 .01	41 24 24 39 26	690 2300 930 520 850	1 17 5 13 7	1	3 38 2 29 2 28 2 35 2 16	· 1 · 1	.15 .12 .12 .09 .15		.6	1 64 1 90 1 69 2 96 2 70
96NL 1400 140E 96NL 1400 160E 96NL 1400 180E 96NL 1400 380E 96NL 1400 400E	1.8 1.56 2.2 2.25 1.7 2.06 1.9 1.52 2.2 2.15	1 1 1 1	408 240 544 84 260	.1 .1 .1 .1	79	.60 1.10 .94 .85 1.07	.1 .1 .1 .1	10 19 15 15 19	37 53 53 74 56	23 36 9	3.05 3.18 3.20 3.23 3.84	1 1 1 1	.03 .02 .03 .03 .02	12 10 13 9 8	.61 .86 .76 .86 .88	380 451 462 272 376	11 12 13 13 14	.01 .01 .01 .01	22 31 28 28 31	1620 480 410 360 210	1 12 13 7 6		2 18 2 15 2 17 2 12 2 13	1 1 1	.11 .21 .16 .19 .27	1 76 1 97 1 107 1 121 1 147	.7 .7 .3	2 77 2 55 3 51 4 32 2 59
96NL 1400 420E 96NL 1400 440E 96NL 1500 100E 96NL 1500 120E 96NL 1500 140E	1.5 1.25 1.1 1.35 1.3 1.92 1.5 1.37 1.4 1.75	1	4642 1616 1243 381 401	.1 .1 .1 .1	7 3 1 8 4	.55 .75 .57 .82 .91	.1 .1 .1 .1 .1	16 15 19 12 14	39 41 60 34 45	51 119 18	3.44 3.12 3.38 2.34 3.03	1 1 1 1	.02 .06 .03 .03 .03	7 9 16 7 11	.31 .50 1.02 .55 .76	477 2083 1716 493 594	13 11 14 9 12	.01 .01 .01 .01 .01	18 31 54 20 26	300 350 400 420 590	28 36 15 1 15	1	2 12 2 24 2 40 1 14 2 16	1 1 1 1	.17 .10 .06 .14 .14	1 117 1 86 1 61 1 78 1 90	.4 .8 .8 .0	3 115 3 91 1 106 2 53 2 54
96NL 1500 160E 96NL 1600 180W 96NL 1600 160W 96NL 1600 140W 96NL 1600 120W	1.6 1.85 1.6 1.61 1.4 1.96 1.4 1.83 .9 1.50	1 14 40 58 1	504 188 167 330 1811	.1 .1 .1 .1	5 6 1 3 1	.80 .86 .71 1.00 .56	.1 .1 .1 .1	15 15 20 20 20	46 71 95 81 40	20 19	3.12 2.78 3.09 2.80 3.16	1 1 1 1	.03 .01 .01 .02 .03	9	.94 .99 1.37 1.34 .78	678 340 387 841 4639	12 11 13 13 16	.01 .01 .01 .01 .01	31 33 48 45 85	580 370 320 490 910	6 1 1 1 35	1	2 18 2 23 2 16 2 19 2 65	1	.14 .15 .12 .13 .02	1 81 1 85 1 79 1 74 1 42	.3 .9 .8 .5	1 63 3 39 3 43 2 55 1 194
96NL 1600 100W 96NL 1600 080W 96NL 1600 060W	1.4 1.90 1.0 1.81 1.3 1.19	12 1 1	275 895 845	.1 .2 .1	1 1 8	.74 .85 .59	.1 .1 .1	17 19 16	85 49 41	139	3.46 3.26 2.99	1 1 1	.03 .04 .06	13 15 8		459 1890 1464	13 15 13	.01 .01 .01	49 52 23	370 450 470	1 16 9	1 1 3	2 23 2 45 1 22	1	.11 .06 .15	1 86 1 59 1 92	.1 .0	1 87 1 114 3 110
																		- -										
																							<u></u>					

PROJ:

MIN-EN LABS --- ICP REPORT

FILE NO: 65-0050-\$J3+4

ATTN: Dave Hayward / Gary Lee

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

DATE: 96/07/30
* * (ACT:F31)

. . .

SAMPLE NUMBER	AG AL PPM %		A BE		A CD % PPM	CO PPM	CR PPM	CU FE PPM %	GA PPM	K X	L1 PPM	MG %	MN PPM	MO	NA %	N] PPM	P PPM		SB PPM P	SN SR PM PPM		TI U % PPM	-	W ZN PPM PPM
96NL 1600 040W 96NL 1600 020W 96NL 1600 000 96NL 1600 100E 96NL 1600 120E	1.8 2.11 1.8 2.12 1.9 2.25 1.6 2.15 1.9 1.54	16 89 45 377 52 52 54 123 9 180	0.1 7.1 4.1	7 1.0 3 .9 7 1.0 1 .6 5 .8	1 .1 5 .1 9 .1	17 21 19 17 15	58 63 77 68 52	19 3.88 50 3.34 29 3.79 39 3.55 38 2.72	1 1 1 1	.03 .04 .03 .02 .04		.92 .81 1.17 1.00 .78	381 1446 466 453 838	14 14 14 14 11	.01 .01 .01 .01 .01	27 41 44 40 32	440 430 360 500 410	2 22 1 7 1	1 5 1 2 2	2 17 2 29 2 18 2 25 2 39	1.	19 1 14 1	134.8 92.5 112.0 89.1 75.3	3 54 3 124 2 74 2 70 3 75
96NL 1600 140E 96NL 1600 160E 96NL 1600 260E 96NL 1600 280E 96NL 1600 300E	1.8 1.64 1.9 1.75 1.4 1.80 1.7 2.03 2.4 1.85	27 120 98 181 84 52 79 143 80 71	1 .2 7 .2 5 .1	1 .6 2 1.0 1 .6 3 .5 11 1.0	6 .1 5 .1 9 .1		57 52 53 59 55	60 2.74 74 2.93 78 3.45 48 3.34 16 3.25	1 1 1 1	.06 .04 .06 .03 .03	12 11 10 12 8	.80 .71 .97 1.05 .81		13 13 15 14 11	.01 .01 .01 .01 .01	46 43 38 39 26	490 510 790 320 320	7 21 14 4 14	2 5 1 3 4	2 46 2 43 2 55 2 24 2 13	1 . 1 . 1 .	07 1 08 1 10 1 13 1 23 1	55.8 71.9 87.0 81.7 118.8	3 99 3 86 2 108 2 65 4 42
96NL 1600 320E 96NL 1600 400E 96NL 1600 420E 96NL 1600 440E 96NL 1600 460E	1.9 1.85 1.9 2.08 2.2 3.28 1.8 2.82 2.4 3.03	74 33 1 12 1 10 49 10 1 11	1 _1 6 _1 8 _1	9 .8 7 1.0 6 1.4 1 1.1 6 1.4	5 .1 0 .1 0 .1	14 20 28 25	55 38 85 90 96	15 3.12 22 5.27 31 5.55 32 4.79 37 5.97	1 1 1 1	.02 .03 .02 .02 .02	12	.83 .78 1.97 1.91 1.68	385 388 559 598 586	12 17 18 16 21	.01 .01 .01 .02 .01	26 26 56 53 48	300 720 280 190 360	13 8 1 1 1	4 1 12 11 13	2 14 3 18 4 21 3 16 4 16	1.1	19 1	102.4 195.3 173.9 129.5 176.4	3 41 3 71 2 46 2 50 3 55
96NL 1600 480E 96NL 1600 500E 96NL 1600 520E 96NL 1600 540E 96NL 1600 560E	2.2 1.83 2.0 2.20 1.7 2.57 .5 1.66 1.1 1.47	59 18 21 20 11 73 1 32 1 16	5.1 5.4 4.1	10 .9 6 .7 2 .8 1 .6 1 .4	8.1 3.1 0.1 2.1	17 18 20 26 10	59 64 71 36 31	23 3.33 32 3.86 162 4.07 120 4.65 29 3.96	1 1 1 1	.03 .03 .05 .07 .04	10 13 17 14 12	.91 .81 .41	4704 751	13 15 16 17 12	.01 .01 .01 .01 .01		250 350 380 1600 570	15 18 23 48 32	3 5 7 1 3	2 11 2 13 3 27 3 26 2 16	1 . 1 . 1 . 1 . 1 .	22 1 17 1 11 1 04 1	126.3 119.6 114.2	4 78 3 87 3 79 1 110 3 89
96NL 1600 580E 96NL 1600 600E 96NL 1600 620E 96NL 1600 640E 96NL 1600 660E	1.3 1.97 1.2 2.60 1.2 2.07 1.5 2.02 1.1 1.34	18 18 1 20 1 29 1 23 1 24	6 .1 2 .1 0 .1 2 .1	1 .5 1 .5 1 .6 2 .5 6 .7	1.1 8.1 3.1 1.1	16 21 16 16 9	50 58 48 50 32	72 3.87 149 4.96 41 4.17 28 4.55 15 3.07	1 1 1 1	.06 .05 .05 .04 .05	19 21 14 19 8	.72 1.02 .74 .79 .39		14 18 15 16 9	.01 .01 .01 .01 .01	37 77 30 27 15	410 720 490 550 400	27 24 29 22 5	5 19 5 3	2 17 3 17 2 17 3 15 2 16	1 .1 1 . 1 . 1 . 1 .	11 1 12 1 16 1	95.2 97.8 114.2 126.4 126.8	2 168 1 212 2 150 2 91 3 69
96NL 1600 680E 96NL 1600 700E 96NL 1600 72DE 96NL 1600 740E 96NL 1600 760E	1.3 2.22 1.5 2.28 1.4 .81 1.0 .96 .7 1.19	1 50 1 55 1 18 1 26 1 29	1 .4 0 .1 8 .1 3 .2	3 .7 2 .6 1 .2 1 .3 1 .4	7 .1 4 .1 4 1 3 .1	15 18 5 7	51 50 20 22 26	63 3.93 68 3.33 20 2.24 17 1.91 18 2.49	1 1 1 1	.05 .04 .04 .03 .04	17 13 5 6 9	.83 1.19 .19 .35 .46	644 906 167 190 441	15 13 10 8 10	.01 .01 .01 .01 .01	32 54 14 14 18	350 280 270 140 350	23 6 12 4 1	1 1 1 1	2 18 2 14 1 8 1 8 1 10	1 . 1 . 1 .(1 .(12 1 07 1 06 1	127.3 84.2 67.8 60.4 65.8	1 122 1 92 1 68 2 56 2 57
96NL 1600 780E 96NL 1600 800E 96NL 1600 820E 96NL 1600 840E 96NL 1600 860E	1.1 .93 1.4 1.30 1.3 1.40 1.3 2.00 1.1 1.63	1 23 1 24 1 44 1 28 1 28	8 _1 9 _1 3 .2	5 .4 10 .6 5 .5 4 .8 1 .5	6 .1 4 .1 8 .1	6 10 11 17 11	25 33 39 35 37	12 1.99 10 3.02 15 3.39 42 3.64 27 3.19	1 1 1	.03 .03 .03 .03 .03	4 6 7 9 11	.26 .32 .48 .97 .65	211 369 330 596 369	7 11 12 13 12	.01 .01 .01 .01 .01	10 13 18 30 21	230 490 430 500 540	5 2 1 1 1	1 1 1 1	1 10 1 9 2 8 2 15 2 10		20 1 18 1 16 1	88.3 127.3 115.7 95.7 84.0	3 39 3 68 2 55 1 41 1 61
96NL 1600 880E 96NL 1600 900E 96NL 1600 920E 96NL 1600 940E 96NL 1600 960E	1.1 1.54 1.3 1.91 1.4 1.80 1.5 2.17 2.0 1.77	1 36 1 50 1 54 1 76 1 87	1 .3 8 .3 6 .5	1 .7 3 .9 5 1.0 2 1.2 6 1.5	3 .1 7 .1 3 .1	11 14 16 20 15	38 50 51 87 53	23 3.02 46 3.02 63 3.09 172 3.82 121 2.98	1 1 1	.04 .03 .04 .03 .03	11 11 10 11 8	.57 .93 .73 .88 .76		11 12 11 14 12	.01 .01 .01 .01 .01	21 32 34 47 41	950 330 460 830 590	1 1 31 1	1 1 1 1	2 18 2 17 2 24 2 31 2 34	1 .1 1 .1 1 .1 1 .1	13 1 10 1	92.5 85.5 91.1 100.8 87.6	2 84 1 59 2 76 3 87 2 70
96NL 1600 980E 96NL 1600 1000E 96NL 1600 1020E 96NL 1700 180W 96NL 1700 160W	1.9 1.82 1.4 1.70 1.2 2.07 .6 1.11 1.1 1.97	1 52 1 46 1 58 1 41 1 49	1.3 6.4 4.2	7 1.1 6 .9 2 .9 1 .2 1 .4	5.1 0.1 8.1	17 16 18 11 17	50 41 51 30 56	69 3.08 36 2.83 74 3.50 38 2.55 72 3.41	1 1 1 1 1	.03 .02 .03 .05 .03	12	.89 .91 1.05 .46 1.13		13 11 14 10 15	.01 .01 .01 .01 .01	33 26 40 28 48	470 380 350 480 320	6 1 4 5 1	1 1 1 1	2 22 2 15 2 27 1 21 2 49	1 .1 1 .1 1 .1 1 .0	16 1 15 1 12 1 04 1	96.5 89.0 84.0 51.3 70.9	2 56 1 46 1 74 2 110 1 84
96NL 1700 140W 96NL 1700 120W 96NL 1700 100W	.8 1.29 .9 .98 .9 1.47	1 54 1 41 1 90	2 .2	1 .2 1 .5 1 .4	0,1	10 9 18	31 26 42	69 2.43 47 2.24 168 3.11	1 1 1	.04 .07 .03	17 12 15	.66 .45 .79	639 743 4553	12 10 18	.01 .01 .01	28 33 83	230 640 740	1 4 44	1 1 1	1 164 1 52 2 60	1 .0 1 .0 1 .0	01 1	42.2 38.6 42.2	1 81 2 132 1 199
											·					<u>+</u>								
														•				····· ·· -						
																······································								

96NL 1700 080W

96NL 1700 060W

96NL 1700 040W

96NL 1700 020W

96NL 1700 000

96NL 1700 040E

96NL 1700 060E

96NL 1700 080E

96NL 1700 100E

96NL 1700 120E

96NL 1700 140E

96NL 1700 400E

96NL 1700 420E

96NL 1700 440E

96NL 1700 460E

96NL 1700 500E

96NL 1800 100E

96NL 1800 120E

96NL 1800 140E

96NL 1800 160E

96NL 1800 180E

96NL 1800 500E

96NL 1800 520E

96NL 1800 540E

96NL 1800 560E

96NL 1800 580E

96NL 1800 600E

96NL 1900 240E

96NL 1900 260E

96NL 1900 280E

96NL 1900 300E

96NL 1900 320E

96NL 1900 340E

96NL 1900 360E

96NL 1900 38DE

96NL 1900 400E

96NL 1900 420E

96NL 1900 500E

96NL 1900 52DE

96NL 1900 560E

96NL 1900 580E

96NL 1900 600E

96NL 1900 620E

96NL 2000 340E

96NL 2000 360E

96NL 2000 380E

96NL 2000 400E

96NL 2000 420E

PROJ:

SAMPLE

NUMBER

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

FILE NO: 65-0050-\$J5+6

DATE: 96/07/30 * * (ACT+F31)

ATTN: Dave Hayward / Gary Lee

AG

1.0 1.44

1.3 1.46

.5 1.32

1.6 2.18

2.1 1.47

1.5 1.98

1.9 2.09

2.0 1.90

1.6 2.01

1.5 1.96

1.4 1.85

1.1 1.77

1.6 1.92

1.4 2.30

1.5 1.71

2.3 1.64

1.0 1.93

1.8 3.01

1.3 1.54

1.5 1.94

1.4 2.17

1.4 2.36

1.5 2.11

2.0 1.65

.6 .82

6 2.20

1.4 1.65

1.4 1.27

1.1 1.72

1.4 1.76

1.3 1.64

1.4 1.57

1.2 1.32

1.3 1.92

1.0 1.84

1.1 2.45

1.6 2.43

1.6 2.16

2.0 2.32

2.0 2.28

1.7 1.64

1.6 1.46

1.7 2.15

1.5 1.75

.9 2.40 .8 1.58

.8 1.66

PPM

AL AS

74

1

1 463

40 695

18 553

1 303

1

25 676

57 434

1

1

1

1 217

1 591

1

18 303

62 437

63 506

1

1

1

1

1

1 264

1 418

1 517

1 658

1

7 669

1

1

1 120

1 186

1 347

1

1

1

1 215

1 742

1

63 1398

15 1201

% PPM

BE

₽PM

.1

.1

.1

.1

.2

.1

.1

.1

.1

.1

.2

.1

.1

_1

.1

.1

.2

.4

.1

.1

.1

.1

.1

. 1

.2

.1

.3

2

.2

.2

.4

.2

.2

.3

.6

.3

.2

.4

.5

.6

.1

.3

.2

.4 .2

BA.

PPM

524

787

564

150

107

110

240

547

206

162

189

268

276

246

327

547

269

338

520

220

223

341

233

326

576

Bĭ

1 .34

1 .35

6

7 .92

5 .69

7

4 .85

7 .94

19 .94

4 .92

5

5

3 .97

7 .77

-5 .84

12 .64

> 3 .27

1

8 .73

5

Z .58

6 .72

7 .79

6

5 .68

6

2 .76

11 .86

10 .84

5 1.00

3 1.34

11 .77

13

9 .69

9 .64

11 1.00

13 .90

2 1.13

3 1.56

4 1.10

7 1.01

7 .91

5 1.02

2 1.17

.56 1

.72

.72

.47

.70

.81

.73

.96

.32

1.19

1.01

6 1.12

.88

PPM

CA

%

.1

.1

.1

.1

.1

.1

- 1

.1

. 1

.1

. 1

.1

.1

.1

. 1

.1

.1

. 1

.1

.1

.1

.1

.1

.1

.1

. 1

.1

.1

.1

.1

14

17

18

23

16

19

14

9

15

13

13

16

14

14

15

11

16

19

25

18

19

19

19

16

10

12

15

12

19

14

54

67

71

41

41

27

36

19

39

48 37

50

45

43

44

34

47

51

56

54

41

44

42

31

32

36

49

43

58

52

21 3.57

53 3.31

43 3.45

29 5.06

21 4.62

19 5.45

36 4.28

26 2.04

53 5.34

22 3.45 21 2.96

68 3.58

31 3.49

38 2.77

37 2.96

23 2.56

69 2.90

59 3.27

130 3.70

42 4 37

21 5.37

58 4.83

135 2.96

181 2.88

11 2.84

43 3.12

16 3.09

69 3.64

48 3.21

.04

.02

.03

.05

.04

.06

.04

.05

.04

1

1 .03

1

1

1 .02

1 .03

1 .03

1

1 .06

1

- 1

1 .05

1

1 .04

1 .05

1

1 .05

1 .05

1 .04

1 .03

1 .02

1 .03

1 .03

1 .03

1 .04

1 .03

1 .04

1 .04

1 .05 10 .64 466

560

578

648

451

438

723

893

773

475

893

673

491

404

609

436

.33 2849

.17 1395

.50 1731

.89

.98

.75

.98 545

.65

12 1.07 1587

18 1.41 1015

12 1.05

11

11

11 .72

> 8 .82 721

10 .58 293

3

17

11

7 .47

12

10 .88 631

10 .82

8

9 .88

9 .84 432

8 .36 1173

16

8 .62 401

13 .77

14 1.15

15 1.04 7492

12 .64 1661

10 1.06

15 1.20

14 1.11

12 .90

TEL: (604)327-3436 FAX: (604)327-3423

	•		04736		v ,		04736															(AC	11121
CD PP M	CO PPM	CR PPM	CU PPM	FE %	GA PPM	K %	L I PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	Р РР М	P8 PPM	SB PPM		SR PPM	TH PPM	TI %	U PPM	V PPM	W PPM	ZN PPM
. 1	14	39	68	2.89	1	.03	12	.74	924	11	.01	32	560	22	1	2	21	1	.08	1	59.2	2	156
.1	16	44	58	2.96	1	.06	11	.62	1328	13	.01	34	420	11	1	Ž	- 37	1	.10	1	74.3	- 3	111
. 1	11	42		3.13	1	.04	17	. 38	784	13	.01	30	440	6	2	1	13	1	.03	1	59.4	2	153
.1	18	55		3.85	1	.04		1.05	534	15	.01	35	320	2	1	2	- 27	1	.21	1	113.7	2	79
. 1	13	52	254	2.42	1	.02	14	.77	1099	12	.01	69	590	1	2	1	- 47	1	.05	1	47.9	2	108
.1	18	61	32	4.00	1	.02	13	.92	554	14	.01	33	350	4	1	3	36	1	. 18	1	125.0	3	63
.1	17	64	22	4.22	1	.03	14	.91	420	15	.01	28	450	3	1	ž	18	1	.22	1	135.3	Š	107
.1	15	55		3.63	1	.02	11	.75	370	13	.01	26	330	11	2	2	16	1	. 19	1	125.8	3	83
- 1	16	59		3.62	1	- 02	11	.93	572	13	.01	30	520	1	1	2	22	1	. 19	1	113.8	3	68
1	16	67	54	3.29	1	.03	11	. 89	557	12	.01	33	410	11	2	2	- 19	1	, 15	1	97.6	- 3	99
. 1	15	54	74	3.18	1	.03	13	.99	1146	13	.01	48	510	3	1	2	51	1	.08	1	57.9	1	112
- 1	14	44	35	3.67	1	.03	12	.64	366	13	.01	22	300	13	2	2	14	1	.16	1	107.0	2	60
- 1	18	25	26	4.96	1	.03	10	.77	409	15	.01	18	620	7	1	3	11	1	.24	1	131.5	1	66
-1	55	19		5.20	1	.03	8	1.06	578	15	.01	19	660	1	1	3	-21	1	.23	1	100.9	1	67
. 1	19	27	20	4.49	1	.02	6	. 68	629	13	.01	20	660	9	1	3	11	1	.23	1	130.8	2	56
.1	17	45	20	4.46	1	.03	9	.56	658	14	.01	21	540	21	1	3	13	1	.36	1	173.6	4	57
.1	27	62		4.26	1	.03	12	.57	1016	16	.01	42	460	39	3	ž	23	i	.11	1	91.1	- 3	335
.1	29	89	353	5.12	1	.03	17	1.04	1360	20	.01	99	550	18	20	3	32	1	.13	1	94.5	ž	147

25

34

39 330

27 710

22 930

20

25

14 470

32

26

20

36

29 580

25 28 22

38 410

36

47 430

32 440

25 23

31 500

37 430

37

20

30 370

21 950

69 960

31 870

460

420

1350

460

760

710

980

610

390

850

640

640

380

780

710

920

14

8

1

1

18

29

20

55

1

1

2

1

1

1

3

1

1

3

3

6

16 22

1

1

1

32

1

6

13 .01

12

13 .01

17 .01

13 .01

17

15

7 .01

17 .01

13

12 15 .01

13 .01

12 .01

12 11

13 .01

15 .01

14 .01

16 .01

16 .01

17 .01

17 .01

11 .01

11 .01

11 .01

14 .01

12 .01

18

15 .01

.0i

.01

.01

.01

-01

.01

.01

.01

22 13

Ž

1 10

Ž

1 27

2 26

222 26

2222

ż

222

19

-14

16

32

21

Ξí

29

82

19

15

15

18

16

-34

31

3 14

2 15

1.16

1.14

1.18

1 .21 1 .23

1.25

1.24

1.05

1.12

1.16

1.14

1.09

1 14

1.15

1.12

1.10

1.24

1.31

1.25

1.10

1.02

1.20

1.17

1.13

1.06

.18

.13

27

1

1 .12

1

1

1

.17

1 108.7

1 97.6

1 108.8

1 107.5

1 114.7

1 96.5

1 132.8

1 142.6

1

1 96.8

1

1

1

1

1 69.4

1

1 83.5

1

1

1

1

1

74.0

98.0

71.5

90.9

80.8

83.4

62.2

1 97.3

1 156.9

1 161.3

1 83.6

110.7

132.3

91.9

94.4

92.8 1

88.6

93.1

1 75.6

3 - 98

3 97

1 81

2

3 81

2 66

3 54

1 113

2 72

3

1 83

1 64

1 58

22 70

1

1 80

1

1 60

ž.

1 49

Z 62

2 120

3 96

1 124

78

64

79

-79

61 1

48 1

59 22

49

56

- 97

86 1

1

2

2 2 19

1 3 17

3

1 3 18

2

3 2

1

1

1

1 1

1 Ź -34

1

1

1

1

1 3 9

1 2 16

5 1 27

5 1 40

1

1

1

5

•

PROJ:

MIN-EN LABS - ICP REPORT

FILE NO: 65-0050-SJ7

ATTN: Dave Hayward / Gary Lee

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

DATE: 96/07/30 * * (ACT:F31)

Alln: Dave Rayward / L									04)327-343	· ·		22(404	1-342												(AC1:F31
SAMPLE NUMBER	AG AL PPM %		BA PPM		BI CA		CO PPM	CR PPM	CU FE PPM %	GA PPM	K X	LI PPM	MG %	MN PPM	MO PPM	NA %	N I PPM	P PPM	PB PPM		SN SPM PI	SR TH PM PPM		U PPM PPI	/ W ZN 1 PPM PPM
96NL 2000 440E 96NL 2000 460E 96NL 2000 480E 96NL 2000 500E 96NL 2000 500E 96NL 2000 520E	1.3 1.83 1.3 1.70 1.0 2.23 1.8 1.65 2.3 2.26	1 2	282 420 2961 370 136	.2 .1 .4 .1 .2	3 .69 4 .58 1 .25 14 .79 12 .93	.1 .1 .1	16 9 28 12 19	48 51 31 40 65	74 3.24 27 2.89 218 3.62 17 3.10 26 4.61	1 1 1 1	.09 .03 .06 .04 .04	14 14 13 10 16	.87 .82 .84 .56 1.09	955 321 990 271 455	15 12 15 14 17	.01 .01 .01 .01 .01	33 27 55 18 32	620 360 310 210 680	1 1 27 1 1	1 2 1 1	2 2 2	36 1 20 1 49 1 23 1 20 1	.11 .11 .04 .21 .28	1 87. 1 93. 1 45. 1 121. 1 138.	5 1 108 5 2 58 9 1 115 5 3 44
96NL 2000 540E 96NL 2000 560E 96NL 2000 580E 96NL 2000 600E 96NL 2000 620E	2.2 2.22 1.9 1.90 2.4 2.90 1.6 1.96 1.8 2.22	1	213 264 209 212 146	.2 .1	19 1.01 15 1.10 13 1.17 7 .60 12 .78	-1	18 16 23 17 17	45 64 62 47 50	31 4.60 19 3.93 39 4.90 46 4.59 37 4.87	1 1 1 1	.04 .04 .03 .04 .04	13 12	.97 .80 1.25 .87 .85	478 349 545 415 784	17 15 18 16 17	.01 .01 .01 .01 .01	28 27 39 37 29	710 400 390 480 440	6 16 1 5 14	1 1 1 1 1	3 2	22 1 15 1 20 1 13 1 17 1	.31 .26 .26 .19 .24	1 152 1 172. 1 131. 1 105. 1 141.	5 3 44 7 1 68 5 1 91
96NL 2000 640E 96NL 2000 660E 96NL 2000 680E 96NL 2000 700E 96NL 2300 140E	1.2 2.60 2.0 2.31 1.7 2.20 1.3 1.71 1.8 3.03	1 1 1	361 195 377 526 192	.5 .1 .2 .5	9 1.46 13 1.01 11 1.35 9 .88 9 1.74	.1 .1 .1	34 23 20 11 24	59 62 52 29 68	127 4.30 58 5.64 65 4.56 132 3.25 48 4.63	1 1 1 1	.04 .04 .04 .06 .05	13 17 9 17	.88 .38 1.54	680 1009 426 1217	18 19 16 12 16	.01 .01 .01 .01 .01	72 33 32 23 37	750 670 850 380 890	26 4 10 23 1	1 1 4 1	3 2 2	45 1 18 1 34 1 64 1 38 1	.14 .29 .21 .12 .21	1 130. 1 221. 1 149. 1 108. 1 129.	5 2 85 1 75 9 2 54 3 1 68
96NL 2300 160E 96NL 2300 180E 96NL 2300 200E 96NL 2300 220E 96NL 2300 220E 96NL 2300 240E	1.9 2.51 1.7 1.50 1.9 2.56 1.7 3.08 1.3 2.15	1 1 1	221 171 175 194 323	.1 .4 .5 .3	15 .94 14 .48 13 .59 16 .48 9 .46	.1 .1 _1	21 12 22 25 19	54 30 53 64 40	31 3.85 18 3.21 46 4.28 143 4.67 110 3.85	1 1 1 1	.07 .06 .05 .06 .10	6 17 18 11	1.03 _47 1.11 1.34 _73	619 1138 1463 2146	17 15	.01 .01 .01 .01 .01	18 36 54 36	960 1210 1080 1050 1650	11 5 18 39 48	1 1 1 2	232	38 1 26 1	.25 .21 .24 .26 .17	1 100. 1 90. 1 131. 1 170. 1 80.) 2 56 1 143 1 187 1 187 1 142
96NL 23DO 260E 96NL 23DO 280E	2.0 2.40 1.3 2.38		145 278	.3 .6	12 .84 7 .43	.1	18 27	50 47	35 4.42 105 4.38	1	.04 .06	15 15	1.16 .89	626 2356	16 16	.01 .01		1550 1480	1 43	1	2		.23 .15	1 108.4 1 84.4	
······																									
																	·····							· ·	
									-	,				·							<u></u>				
																								<u> </u>	
			<u></u>																-					·	

COMP: DAVE HAYWARD PROJ: ATTN: Dave Hayward / Gary Lee	MIN-EN LABS ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423	FILE NO: 65-0050-RJ1 DATE: 96/07/30 * ROCK * (ACT:F31)
NUMBER PPM % PPM PPM % 96NL 1840 295E 1,5 2,11 162 12 .5 9 1.56	0 1 16 170 383 3.08 1.01 8 1.39 685 15 02 24	P PB SB SN SR TH TI U V W ZN Au-fire PPM PPM PPM PPM PPM PPM PPM PPM PPB 830 1 2 2 5 1 11 1 57.3 7 103 5 460 1 14 5 1 1.19 1 100.3 1 69 1
96NL 3400 150E PYS 28.8 3.15 410 60 .4 51 1.00 96NL 350D 050E MS 53.8 .06 1 18 .8 1 .00	B .1 .22 12 .94 .7.25 1 .01 16 2.08 1071 .23 .02 16 1 6 .1 .36 109 .3260 11.05 1 .02 8 2.50 1171 .36 .03 .62 8 .1 .1 .1 .04 .3 .64 .01 .64 8 .1 .1 .74 1108 >15.00 1 .01 1 .04 .3 .64 .01 .64 4 .1 17 .88 1568 .83 1 .01 6 .31 .557 .02 16	460 1 14 5 1 1.19 1 100.3 1 69 1 550 643 5 7 1 1.20 1 105.2 7 4796 1255 10 19 1 13 1 .01 1 12.6 1 568 547 260 9 8 1 48 1 .17 1 41.0 7 175 3
		· · · · · · · · · · · · · · · · ·
·····	· · · · · · · · · · · · · · · · · · ·	

-

· ·

× 1

CONP: HR DAVE HAYWARD

PROJ:

ATTN: Dave Nayward

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOLIVER, 8.C. V5X 4E8 FEL: (604)327-3436 FAV. (604)327-74-23

ب FILE NO: 65-0045-5J1+2

DATE: 96/07/16 F

HE DAVE HAYWALD	• • • • • • •		<u> </u>					¥	EL:(6	04)327	7-3436	6 (FAX:(6	64)32	7-342	3									4	VAIE:	96/07/
SAMPLE IUMBER	AG AL PPW X	AS PPN	PPM	BE PPM	BI PPM	CA X	CO PPH	CO) PPH	CR PPN	(CU) PPM	FIE X	GA PPM	ĸ	LI	NG	MN	HO	WA	NJ P	PB)/58)	SH	SR	и ті	<u>soil</u> U	<u> </u>	(ACT:F3
6NL 700 400E 6NL 700 420E 6NL 700 440E 6NL 700 460E 6NL 700 480E	.8 1.56 1.0 2.30 1.2 2.29 1.2 2.05 .9 2.43	1 1 1	90 105 216 189 437	.1	6 1 7 1. 2	.56 .86 .16 .93 .85	.1	7 14 17 15 16	28 45 53 39 53	8 2 23 3 19 3 17 3	-40 -48 -62 -26	1	x .03 .02 .03 .03	PPM 7 13 10 12	.69	PPM 552 450 1142 484	PPH 8 13 13 13 11	201 .01 .02 .01	PPN PPN 10 1530 22 1170 27 1170 20 1350 33 1760	РРИ 33 14 8 12	1 6 5 6	РРМ 1 2 7	PPN PI 18 31 32	<u>74</u> 1 .12 1 .12 1 .17 1 .11	РРМ 1 1		2 56 3 72 3 99
6NL 700 500E 6NL 700 520E 6NL 700 540E 6NL 700 560E 6NL 700 580E	.9 2.17 1.0 2.57 1.1 1.63 .8 2.62 .4 2.05	1 1 1 1	217 216 108 114 162	.1 .1 .1 .1	3 1 1. 8 1. 1	.91 .04	.1 .1 .1 .1 .1	17 17 9 18 20	51 57 31 52 43	32 4 31 3 37 3 10 2 37 3 36 4	.86 .97 .27 .69	1 1 1 1	.03 .03 .03 .03 .03 .03		.96 .94 1.25 .47 1.04 .88	448 490 549 282 486 1401	16 15 15 8 12 12	.01 .01 .01 .01 .01 .01	33 1110 36 1020 14 840 34 960	12 2 1 17 1	1 2 2 1 4	2312	37 28 27 36 27 29	1 .13 1 .15 1 .13 1 .13 1 .13 1 .11	1 1 1 1	118.5 114.9 116.0 87.5 101.2	1 138 2 109 2 76 2 98 2 61 2 118
6NL 700 600E 6NL 700 620E 6NL 700 640E 6NL 700 660E 6NL 700 680E 6NL 700 680E	.7 2.02 .5 1.65 1.3 1.42 .6 2.47 .7 2.36	1	107 119 396 256 190	.1 .1 .1 .1	11.	.96 .01	1 .1 .1 .1	13 10 12 18 19	35 35 39 45 45	24 3	.52 .66 .33 .39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 02 03 05 04	12 11 8 13	.66 .45 .71 .89 1.04	428 287 758 714 732	10 10 11 14 13	.01 .01 .01 .01	33 2130 21 1590 17 1350 35 400 32 1420 36 1680	1 8 13 8 5 1	1	2223	31 26 24 39 32 33	1 .11 1 .12 1 .12 1 .09 1 .14	1 1 1 1 1 1 1 1	104.4 104.5 116.0 67.6 120.1	2 142 1 133 1 73 2 123 2 163
6NL 800 520E 6NL 800 540E 6NL 800 560E 6NL 800 580E 6NL 800 580E	.8 2.13 .9 1.96 1.1 2.26 .7 2.09 .7 2.39 .9 1.46	1	169 116 421 103 165 222	.1 .1 .1 .1 .1	1 .	. 19 . 25 . 81 . 95	.1	14 18 18 16 21	41 51 64 44 48	30 3	.40 .83 .44 .47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.03 .04 .04 .02 .03	14 13	.93 1.21 1.32 1.05 1.08	428 599 913 398 530	11 11 13 12 13	.01 .02 .02 .01 .01	26 790 32 720 39 300 29 300 33 1110			2232	62 46 63 30	1 .13 1 .13 1 .16 1 .15 1 .12 1 .12	1 1 1 1 1 1 1	97.7 97.7 104.2 105.5 102.0 94.6	1 166 1 66 2 60 2 63 2 46
6NL 800 620E 6NL 800 640E 6NL 800 660E 6NL 800 680E 6NL 800 700E	.4 1.83 .7 2.19 .8 1.33 1.7 1.65 1.0 1.95	1 1 1 1	702 263 170 276 239	.1 .1 .1 .1	11. 12. 6.	.84 .00 .60 .57 .91	.1	12 21 13 8 10 16	35 41 52 35 39 49	17 2 30 3 25 3 17 2 16 2	.81 .72 .09 .30	1	.03 .05 .03 .03 .04	9 12 19 8	.95 .62 .67	317 2963 396 292 319	10 13 15 10 11	.01 .01 .01 .01 .01	18 580 33 2650 43 2290 27 390 30 350	14 18 1 10 10	1 1 1 1 1	222	26 40 32 13	1 .15 1 .10 1 .07 1 .08 1 .14	1 1 1 1 1	00.3 91.1 85.5 59.3 88.4	2 137 2 66 1 240 2 240 2 125 2 115
6NL 900 160E 6NL 900 180E 6NL 900 200E 6NL 900 220E 6NL 900 220E 6NL 900 240E	1.2 1.54 1.1 1.78 1.0 1.90 .6 1.92 1.3 2.52	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	590 673 437 591 176	.1 .1 .1	6 1. 2 1. 8 1. 9 1. 3 1.	.07 .01 .21 .09	.1	19 19 14 17 18	32 33 41 43 62	30 3 70 2 59 3 23 5 27 3 32 4	.83 .12 .35 .71	1	.04 .06 .05 .04 .05	8 10	.91 .97 1.04 .65 .63	1104 1378 1590	13 12 13 10 12	.01 .01 .01 .01 .01	51 1060 39 650 37 680 27 1530 31 2440	2 10 5 17 30	1 1 3 3	2222	21 32 29 29	1 .13 1 .13 1 .12	1	87.6 61.9 68.3 99.1 01.6	2 212 1 102 1 99 2 99 2 165
GNL 900 500E GNL 900 520E GNL 900 540E GNL 900 560E GNL 900 560E	1.4 2.02 1.0 2.35 .8 1.77 1.4 2.57 .8 2.35 1.0 2.18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	97 180 136 219 146	.1 .1 .1 .1 .1	4 3 3 8	96 77 79 99	.1 .1 .1 .1	14 17 12 18	43 51 38 57 48	24 3 22 3 18 3 37 4 21 3	.81 .65 .88 .67	1	.02 .03 .03 .03 .04	11 13 10 16	.83 .73 .57 .98	651 404 543 435 570	15 12 12 11 15	.01 .01 .01 .01 .01	34 2180 25 660 27 1360 22 1540 37 1040	1 3 11 16 1	7 1 4 1	22	21 31 28	19 16 14 .14 .14	1 1 1 1 1 1 1 1 1 1	16.6 26.7 01.3 18.7 36.1	2 132 3 57 3 144 1 66 2 93
6NL 900 6000 6NL 900 6200 6NL 900 6400 6NL 900 6600 6NL 900 6600	1_0 1.98 1.3 1.98 1.1 2.30 1.2 2.04	1 1 1 1	197 154 109 135 136	.1 .1 .1 .1	21. 31. 31. 31.	. 15 . 20 . 92	.1 .1 .1 .1	15 15 14 18 13	47 41 40 45 44	26 3. 26 3. 20 3. 40 3. 20 3.	.92 .37 .17 .66	1 1	.03 .04 .03 .03 .02		.76	344 557 559 398 522	13 12 12 11 13	.01 .02 .01 .01 .01	27 970 28 1240 26 650 23 630 34 520	4 2 8 1	1 1 5 1	322	27 35 41 30 34	.13	1 12	22.8 25.1 06.5 02.3 14.1	2 56 2 63 1 60 1 68 2 55
KAL 900 700E KAL 1000 260E KAL 1000 280E KAL 1000 300E KAL 1000 320E	1.7 1.59 1.1 2.10 1.0 1.76 1.1 2.06 1.0 1.51	1 1 1 1	598 526 219 418 546	-1 -1 -1 -1 -1	7 1 5 5 1. 11 1	.88 .04 .18	.1	11 15 16 19 15	55 49 41 48 38	46 2. 53 3. 14 3. 27 3. 19 2.	.52 .05 .59 .96	† 1 1	.03 .02 .03 .05	13 14 9 12 13	.99 .60 .75 1		12 13 11 12 13	-01 -01 -01 -01 -01	22 930 44 690 39 280 23 640 31 1010	12 12 1 9 12	2 1 3 1	2 2 2	25 1 89 1 17 1 15 1 24 1	.15 .10 .16 .16 .16	1 1 1 1 1 1	15.8 70.2 93.6 15.2 22.5	3 105 3 160 3 44 2 84 3 105
641 1000 340E 641 1000 360E	1.1 1.79 1.0 1.11	1	481 362	.1	10	88 89	.1	17 12	44 33	22 3. 14 2.	.73	1	.06 .05 .06	7 13 6		686 982 855	10 12 9	.01 .01 .01	28 860 27 970 20 490	21 12 25	1 1 1	222	22 1 23 1 24 1	- 18 - 16 - 16	1 9	94.9	2 92 1 124 3 59
	<u></u>		•					•																			•

IP: MR DAVE HAYWARD NJ:								6282	SHER	BROOK	E ST.	, VAI		1, 18.1	:. VS)	(488					•				FIL	E NO: 6S- DATE	0045-SJ3 2 96/07/ (ACT:F3
W: Dave Hayward		45	12.4	8 E	81	CA	C0	TE CO	CR	04)32 CU	7-343 FE	16 1 GA	FAX:(60	14)327 L1	-342) MG	5 	MO	NA	NI	P	PB	58	SN	SR	TH TE	v	
ANPLE	AG AL PPN %	AS PPN	HA PPH	PPN	PPM	2	PPN	<u>РРМ</u> 17	901 45	PPM	<u> </u>	PPM	.05	<u>рри</u> 10	<u>x</u> .53	PPN 580	PPH 1Z	.01	<u>ррн</u> 23	PPM 980	PPN 1	<u>РРМ</u> 1	PPH Z	<u>ерн е</u> 15	2PM X 1.17	PPN PPP 1 131.5	PPH PPH
KAL 1000 380E KAL 1000 400E KAL 1000 420E KAL 1000 440E KAL 1000 440E	1.3 1.53 1.5 1.78 1.4 2.05 1.2 1.20 1.3 1.83	1	235 245 297 270 230	-1 -1 -1 -1	8 10 5 4	.74 .69 .93 .88 .82	.1 .1 .1	15 19 11 18	49 55 34 46	20 32 14	3.75	111111	.03 .04 .07 .03	12 12 7 10		453 844 518 624	13 15 9 13	.02 .02 .01 .02	27 33 17 26	480 590 450 420	10 10 1	1	2322	16 23 26 23	1 .18 1 .22 1 .12 1 .16	1 125.1 1 142.4 1 105.4 1 125.9	3 99 4 68
X6NL 1000 460E X6NL 1000 480E X6NL 1000 500E X6NL 1000 520E X6NL 1000 540E X6NL 1000 560E	1.3 2.47 1.4 1.96 1.5 1.21 1.4 1.67 1.2 1.20	1	546 341 198 277 194	.1 .1 .1	32655		.1 .1 .1	24 17 13 17 18	100 64 38 47 39	232 45 17 24	4.31 3.32 3.10 4.18 3.13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.04 .04 .08 .04 .05	16 19 5 9 6		4660 1445 357 606 658	16 12 9 13 10	.02 .01 .01 .02 .02	82 38 16 29 24	450 280 380 590 580	32 5 1 7) 1 1 1	32222	78 40 29 20 27	1 .11 1 .10 1 .17 1 .17 1 .17 1 .12	1 105. 1 99.0 1 127. 1 128. 1 101.9	5 3 84 2 4 58 7 3 71 9 4 70
XXL 1000 580E XXL 1000 580E 26NL 1000 600E 26NL 1000 620E 96NL 1000 640E 96NL 1000 660E	1.4 1.28 1.8 2.19 1.9 1.90 1.5 1.10 1.5 2.02	1 8 1 1	236 300 211 155 287	1 1 1 1	11 5 12 12 8	.95	.1	16 17 18 11 17	42 91 49 35 46	42 23 15	3.37 3.37 4.14 2.89 3,86	1 1 1	.05 .02 .03 .03 .02	6 14 11 3 13	.37 .90 .71 .38 .73	988 517 424 258 383	10 13 14 10 13	.02 .01 .02 .01 .01	22 41 28 17 28	360 330 270 290 340	2 7 13 1 17	1 1 1 1	22222		1 .19 1 .12 1 .25 1 .23 1 .20	1 132. 1 90.1 1 141. 1 132. 1 124.	B 4 42 B 3 69 S 4 4 D 3 5
96NL 1000 680E 96NL 1000 720E 96NL 1000 720E 96NL 1000 740E 96NL 1000 760E 96NL 1000 780E	1.6 1.87 1.4 .83 1.5 1.56 1.0 1.67 1.3 1.99	1 10 1 1	308 510 144 248 188	.1 .1 .1 .1		1.94 1.04 .64	.1 .1 .1 .1	18 8 14 13 17	49 38 45 46 51	34 25 22	4.14 1.60 2.93 3.76 3.28		.03 .02 .03 .03 .02	10 6 12 8	-81 -46 -86 -68 1.01	591 622 543 308 507	14 9 13 17 12	.01 .01 .02 .01 .02	33	540 440 400 1020 520	10 1 1 1	1 1 1 1	2 1 2 2 2	65 27 28 25	1,20 1,05 1,16 1,09 1,13	1 128. 1 39. 1 102. 1 107. 1 100.	4 4 11 7 2 5 9 3 13 9 2 6
96NL 1000 BODE 96NL 1000 B2DE 96NL 1000 B2DE 96NL 1000 B4DE 96NL 1100 100E 96NL 1100 12DE	1.3 1.54 1.2 1.60 1.1 1.40 1.4 1.87 .6 1.73	44	438 337 245 592 375	.1 .1 .1 .1	3	1.03 .69 .62 1.12 .93	.1 .1 .1 .1	13 14 11 20 16	47 53 47 43 36	19 15 81	2.70 2.81 2.66 3.45 2.88		.03 .04 .04 .04 .04	9 10 7 8 7	.79 .78 .64 1.17 .93	402	15 16 18 14 10	.01 .01 .01 .02 .01	38 34 27 47 33	_	1 1 1 2	1 1 1 1 4	22222	20 17 29 16	1 .09 1 .10 1 .11 1 .13 1 .14	1 80- 1 85- 1 99- 1 86- 1 78-	9 3 119 2 4 99 2 1 69 5 1 40
96NL 1100 140E 96NL 1100 160E 96NL 1100 180E 96NL 1100 200E 96NL 1100 220E	1.0 2.84 .3 2.21 .9 1.55 .5 1.99 .5 1.90	1	1362 644 351 685 519	.1 .1 .1 .1	1	1.36 .95 .34 1.17 1.05	.1 .1 .1 .1	31 20 13 24 21	56 50 28 48 45	75 47 105	4.50 3.88 3.19 3.38 3.38 3.27	5	.05 .04 .08 .07 .06	11 11 14 10 9	.68 .87	2627 524	16 13 15 13 12		63 41 33 46 38	560 760 1100 520 580	1 10 33 24 28	1 3 5 6	2	22 46 35	1 .21 1 .15 1 .03 1 .12 1 .11	1 109. 1 100. 1 46. 1 93. 1 95.	8 3 7 8 1 13 4 3 10 2 4 10
96NL 1100 240E 96NL 1100 260E 96NL 1100 260E 96NL 1100 500E 96NL 1100 520E 96NL 1100 540E	.5 1.76 1.2 1.66 .8 .93 .4 1.95 .8 1.66		338 517 238 224 174	.1 .1 .1 .1	1	5 1.00 7 1.07 3 .57 1 .54 6 .78	.1	24 15 9 14 15	45 44 28 50 49	32 10 19	3.21 2.65 2.26 2.26 2.26 2.26 2.26 2.26 2.26	5	1 .06 1 .04 1 .05 1 .03 1 .04	9 6 3 15 10	.77 .24 .67	667 650	11 10 6 13 12	.01 .01	47 29 11 23 23	600 250 730 1750 1390	30 10 17 12 13	6 2 1 1	22	i 13 i 17	1 .12 1 .15 1 .15 1 .16 1 .19	1 125.	5 2 4 8 3 5 3 3 11
96NL 1100 560E 96NL 1100 580E 96NL 1100 600E 96NL 1100 62DE 96NL 1100 640E	.4 2.11 .4 2.02 .1 1.93 .1 1.89 .5 .86	, ,	240 180 180 244 2 463			1 .81 1 .58 1 .37 1 .38 1 .24	.1 .1 .1 .1	18 15 14	47	8 2 7 2 7 2	5 5.00 6 4.40 0 5.8 1 3.7 5 1.9	6 1 5	1 .02 1 .04 1 .03 1 .02 1 .03	10 12 14	.59 .45 .61	699	15 14 14 11 8	.01 .01 .01	27 26	2950 1860	8 20 17 16 5			13	1 .16 1 .14 1 .10 1 .08 1 .02	1 122. 1 127. 1 96.	5 4 10 7 2 17 0 2 11
96NL 1100 660E 96NL 1100 680E 96NL 1100 700E 96NL 1100 720E 96NL 1100 760E	.8 .73 1.4 .50 1.0 1.29 .5 2.40 1.1 2.00	3) 7 Z	1 725 1 695		I	1 .30 1 .31 1 1.36 1 .69 4 .77	.1 .1 .1	6 5 14 21	22 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1.5 4 1.3 4 2.5 3 4.4 1 3.7	9 9 9 7	1 .03 1 .03 1 .03 1 .02 1 .02 1 .02	10 5 8 16	.33 .31 .78 .93	695 598 937 477	17 15	.01 .01 .01	- 33	120 400 560	9 6	1		1 15 1 12 2 46 3 21 3 17	1.07	1 11. 7 1 54. 6 1 126. 5 1 113.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
96NL 1100 740E 96NL 1200 760E 96NL 1200 140W 96NL 1200 120W	.5 1.1	5 2	4 247 1 209 1 205		<u> </u>	1 .42 7 .42 7 .38					6 2.1 4 2.4 0 2.3		1 .04 1 .03 1 .03	2			97	01	24 13 12	600 650 870				1 13 2 13 1 11	1 .0/ 1 .1/ 1 .1/	1 43 1 101 1 91	.3 1 6 .8 3 5 .9 3 5

604 327 3423

P.05

1.11

FILE NO: 65-0045-515+6 DATE: 96/07/16

COMP: NR DAVE HAYWARD

MIN-EN LABS TCP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 468 FOR A CONTRACT AND CONTRACT

* * (ACT:F31)

PRÐJ:							TE	1:(60	14 132	7-3436	- FF	X:(60	X)327	-3423	5				· .							V	
ATTN: Dave Hayward		AS	BA I	3E 8	I CA	CD	<u>C0</u>	CR	CIJ	FE	GA	Ķ	LI.	NG	NN PPN	HO PPH	NA X	NI PPH	P	рв РРИ	S8 PPN I	SN PPH I	SR TH PPN PPP			PPK P	
SAMPLE NUMBER		PPH	PPH P	W PP	<u>4 X</u>	PPH	<u>рри</u> 11	<u>PPM</u> 32	11	<u>*</u> 3.07	<u>рри</u> 1	.04	<u>PPH</u> 9	.37	627	9	.01	14	600	28	1	23	12 23	.13 .21	1 112.2	=	64 63
96NL 1200 100M 96NL 1200 80M 96NL 1200 60W 96NL 1200 60W	.4 1.55 1.1 2.42 .9 2.26 .7 1.01 1.1 1.70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	349 219 121	.1	4 .47 10 1.28 5 .85 6 .68 10 1.20	-1 -1 -1 -1 -1 -1	23 18 9 17	57 64 38 36	70 46 17 49	3.67 5.47 2.45 2.82	1	.03 .03 .03 .03 .03	9 3 7	1.03 .27 1.04	615 1 <u>33</u> 7	13 16 6 11 13	-02 -02 -01 -01		1110 1120 630	3 1 14 2	1 4 4	122	18 9 22 21	1 .24 1 .14 1 .18 1 .20	1 153.3 1 115.4 1 79.3 1 94.9	1 2	62 57 99 85
96NL 1200 200 BL 96NL 1200 96NL 1200 20E 96NL 1200 40E 96NL 1200 60E	1.4 2.09 .9 1.71 .2 1.85 .5 1.99	1 8 1 1	385 920 511 528 460	.1 .1 .1 .1	12 1.18 3 .68 1 .34 1 .32 1 .60	.1 .1 .1 .1	20 19 12 10 9	43 42 44 45 34	70 47 38	3.27 3.05 4.34 3.94 3.50	1 1 1 1 1	.02 .03 .03 .02 .03	12 16 17 6	1.24 .98 .81 .69 .59	824 724 435 700	12 14 12 11	.01 .01 .01 .01	34 30 25 22	460 1300 1540 2320	7 8 13 14 2	5 1 6 1 4	2332	26 25	1 12 1 07 1 08 1 09	1 70.1 1 71.2 1 67.3 <u>1 92.9</u> 1 115.3	21	96 12 104 88 99
96NL 1200 8DE 96NL 1200 100E 96NL 1200 120E 96NL 1200 140E 96NL 1200 160E	.4 1.36 1.0 2.46 .9 1.73 .7 1.65 .5 1.55	1 1 1 1	341 235 468 544	.1 .1 .1 .1 .1	1 1.02 5 .69 1 .66 6 .85 10 .65	.1	16 12 10 18 7	62 43 43 42 22	25 33 34	4-47 3.20 3.31 2.99 1.57	11111	.04 .04 .04 .04 .04	10	-56 -65		15 11 11 11 5	.01 .01 .01 .01 .01	25 21 27 9	410 480 540	14 17 17 10	7 7 7 1	2221	14 16 20	1 .12 1 .10 1 .13 1 .12 1 .22	1 98.3 1 112.9 1 90.3 1 70.0 1 70.0	3	72 46 60 37 67
96HL 1200 1805 96HL 1200 2005 96HL 1200 2205 96HL 1200 2405 96HL 1200 2605	.9 .96 1.3 2.11 .8 .89 3.7 2.80 1.3 1.59	1 1 1 1	207 249 157 559 155	.1 .1 .1	12 1.03 9 .53 14 2.09 11 1.06	.1	17 7 18 13	48 24 122 51 60	10 411 15	3.74 1.89 3.89 3.18 3.18	1 1 1 1	.06 .03 .03 .02 .02	10 5 9 10	.21 .71 .60		13 7 14 10 11		84 22 30	440 710 440 430	14 10 29 16 5	6	1 3 2 2	15 92 14 32	1 .12 1 .17 1 .20 1 .18	1 88. 1 125. 1 123. 1 102. 1 70.	5 3 5 7 1 5 9 5	49 88 97 69 147
96NL 1200 280E 96NL 1200 300E 96NL 1200 320E 96NL 1200 340E 96NL 1200 360E	1.3 1.69 2.0 1.76 1.3 2.14 .8 1.08 1.3 1.48	18 6 29	274 286 654	_1 _1 _1 _1 _1	10 1.37 11 1.59 2 .92 2 .44 1 .92	.1	16 21 11 14	76 72 34 45	336 58 46 38	2.91 4.15 2.34 2.84 2.75	1	.03 .03 .03 .04 .04	9 14	1.31	1092 635 508 1434 1867	15 10	.01 .01 .01	47 34 31	7 250 4 200 8 250 7 540		1 1 9	Ż	42 55 73 77	1 .12 1 .15 1 .06 1 .07 1 .11	1 122. 1 45. 1 70. 1 79. 1 120.	6 3 2 1 5 3 2 5	113 68 146 135 132
96NL 1200 380F 96NL 1200 400E 96NL 1200 420E 96NL 1200 420E 96NL 1200 440E 96NL 1200 460E	1.6 1.80 1.3 1.82 1.1 2.14 1.2 1.72 .7 2.02		420 858 625 452	.1 .1 .1 .1	5 1.68 8 1.00 15 1.44 11 1.27 1 .82	1	18 19 17 16	54 67 56 55	39 34 61 3	5 3.78 2 3.26 3 3.54 4 4.79 5 3.00		-04 -03 -04 -04	i 15 , 8 , 16		1079 4006 1860 872 5 1240	5 13 1 13	.0 .0 .0	9 1 2 1 2	4 430 6 460	17 32			29 70 60 24 20	1 .17 1 .14 1 .19 1 .15 1 .11	1 99 1 131 1 111 1 91	9 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	164 125 124 97
96HL 1200 480E 96HL 1200 500E 96HL 1200 520E 96HL 1200 540E 96HL 1200 540E	1.1 1.22 1.2 1.6 1.3 .99 1.3 1.84 1.2 1.7	1 9 8 5	276 305 343 262 469	_1 _1 _1 _1	6 .62 5 .88 8 .71 8 .71 5 .66		1 16 1 12 1 18 1 18	48 31 54	B 1 B 1 4 2 B 1	9 4.06 1 2.61 3 4.51 7 3.74 5 3.50		-04 -04 -04 -04	5 1	· .55	5 60° 5 1177 9 77 5 95	1 12 2 9 7 10 2 13	0.0° 5.0° 5.0°	1 1 1 2 1 2	1 1280 3 800 6 710 3 640 9 800	1 34 1 15 1 25			2 23 1 21 3 19 2 22 2 20	1 .17 1 .13 1 .19 1 .14 1 .11	1 124 1 91 1 129 1 108 1 94	2 3 6 3 0 2 1	126 145 140 112 123
96HL 1200 580E 96HL 1200 600E 96HL 1200 620E 96HL 1200 640E 96HL 1200 660E	1.0 1.4 .9 1.5 .9 .2 .9 .3 1.0 .3	2 5 7 2 4	1 338 1 517 6 158 3 217 4 265		1 .55 2 .40 1 .05 1 .01 1 .01		1 13		5 3 8 8 9 1	9 3.95 8 .57 9 .61 16 1.00 6 2.30	57	1 .0 7 .0 9 .0 1 .0	4 3 3 4	9.6 1.0 2.1 4.Z 5.3	8 19 1 3	4 · 8 5	4.0	81 91 17 1	24 790 7 170 7 200 10 330 19 810		6 6 3	3	2 19 1 6 1 7 1 7 1 7	1 .11 3 .01 3 .01 1 .01 1 .01	1 95 3 11 3 12 2 13 1 18	8 2 6 2 9 1	38 47 57
96NL 1200 680E 96NL 1200 700E 96NL 1200 720E 96NL 1200 740E 96NL 1200 760E	.5 .5 1,1 .5 1,5 .4 .8 .1 .5 .6	7 5	1 171 1 372 1 269 1 129 1 179		1 .1 1 .1 1 .0 1 .0	7.1	1	6 1 5 1 2 5 1	4 1 2 2 8	52 1.8 27 1.4 19 1.1 22 2.1 51 4.2	5 4 2 5	1 .0 1 .0 1 .0 1 .0 1 .0	13 13 12 16 1	6 .3 5 .2 4 .2 0 .4 5 1.2	7 61 2 8 4 14	0 15 15	9.0 8.0 7.0 1.0	21 21 21	27 441 17 32 11 36 18 127 70 205	0 0 2		1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 .01 1 .01 1 .01 1 .01 1 .01 1 .09	1 11 1 25 1 84	.4 .3 2.0	1 77 1 67 1 134 3 215
96NL 1200 780E 96NL 1200 800E 96NL 1300 100E 96NL 1300 100E 96NL 1300 120E	1.6 1.6 1.5 1.9 1.6 1. 1.6 2.	53 52	1 244 1 232 1 360 1 433		1 .7 1 .3 18 .8 12 1.2	6 8	i 1	9 é 1 3	56 59	31 3.7 15 2.7 42 3.3	53	1.0	16 1)4	and the local division of the local division	8 27 0 43	24 2	22 .0	01 - C	41 119 15 70 34 49	ō Z	10 15 5	3 1 7	2 31 2 18 2 26	1 .06 1 .22 1 .21	1 12	7	4 189 3 55 3 59
							,57										<u> </u>						<u></u>			<u>.</u> .	
(. <u> </u>	<u>+ i</u>												.						_ ,		· · · ·			
													•								••			· · · ·	• •.		

The second se and the second second second .

€÷‡ $\mathcal{D}_{\mathcal{T}}$ 49.³ Bury ы; , 2.6 1 MIN-EN LABS - ICP REPORT COMP: HR DAVE NATHARD 8282 SHERGROOKE ST., VANCOUVER, B.C. V5X 4E8

PROJ :

明望

FAX: (604)327-3423 - 🗰 .(ACT:F31) TEL:(604)327-3436 ATTN: Dave Hayward FE X SB SN SR ¥ v AS MG MO NA X NE P P8 TH 11 U ZN BA 81 CA CR CU GA 11 NH SAMPLE AĞ AL 0E CD CO рен орм ери рен X PPN PPN PPH ž PPN PP# PPH PPN PPH X PPH PPN.PPH PPH PPM PPH PPH PPH PPH X PPN **PPH** PPH * NUMBER 32 19 27 29 28 31 3.60 17 .97 22 . 18 1 105.1 3 87 96NL 1300 140E .9 2.24 7 8A, 17 59 . 04 549 13 .01 610 1 Z 445 .1 .25 .26 12 1.30 14 1.51 10 1.37 03 .58 .01 .02 450 460 ž 20 123.7 Ż 42 19 2.71 7 298 9 9 1 54 96NL 1300 160E 1.2 1.73 459 12 1 . 1 .1 Ż 222 1.4 2.20 36 3.23 29 3.52 Ĵ, 20 1 126.1 60 96WL 1300 180E 410 53 11 1 .1 16 .03 8 444 1 .23 .24 .02 22 1 119.9 2 3 52 39 46 .88 462 12 750 1 1 279 .03 1 96WL 1300 200E 1 .ł 16 8 1.7 2.24 16 1.52 .88 484 11 .02 330 7 17 1 108.2 96ML 1300 220E 283 52 25 2.85 .02 6 16 1 . 1 1 28 54 39 32 .26 123.9 18 .04 7 .91 453 13 .01 410 4 18 1 3 4 48 1.8 2.19 214 17 1.37 48 27 3.39 5 23332 96ML 1300 240E .1 123 .0Z 17 1.44 14 15 240 650 22 1 140.7 43 96WL 1300 320E 203 6 1.18 21 30 3.94 410 .02 1 1.2 2.61 .1 .1 1 18 .23 1 152.6 184 19 99 16 4.43 -03 443 .02 1 4 61 96NL 1300 340E 1.1 2.26 .1 .1 1 13 8 .90 .77 .25 .20 10 19 8Ż .0Z 14 .õī 330 19 1 153.0 4 65 133 84 18 4.34 96NL 1300 360E 1.8 2.15 .1 1 -1 469 ΞŤ .02 27 270 12 1 117.1 4 96NL 1300 380E 10 1.00 11 3.02 -02 8 3 1 61 1.4 1.79 184 .1 16 67 1 .1 -1 120.4 1.6 2.13 209 14 1.33 18 66 18 3.18 .03 9 .92 449 11 -02 32 250 1 3 2225 17 .24 4 48 96NL 1300 400E .1 .1 1 22 3.20 42 4.01 143 7.01 445 1.9 2.14 15 1.42 18 73 .04 9 .96 .47 12 -02 34 32 250 18 .26 120.1 4 57 270 1 4 96NL 1300 420E .1 .1 1 1 ٩. 96HL 1300 44DE 1194 22 19 . 12 105.3 .5 1.73 835 .66 19 49 1 .05 15 .01 420 2 3 363 .1 1 .1 .82 54 57 303 37 3.05 5127 24 178 400 ï 42 . 10 121.4 7 161 668 -1 1 .07 .01 1 96NL 1300 660E .1 4.05 1 .1 1 1 1 868 1 1.43 347 177 6.47 .07 32 3.55 3783 21 .01 184 730 5 73 1.12 1 129.4 8 185 96WL 1300 680E .5 3.59 .1 1 1 1 ٦ .1 2 .48 .53 55 25 .01 31.6 289 96HL 1300 700E 1.2 1.32 1 290 .1 1 .1 22 48 70 3.13 1 .13 12 -83 857 14 .01 440 214 1 1 1 1 29 2.72 1653 .01 96 28 4 25 21 -12 96HL 1300 720E .9 2.71 442 47 194 41 4.77 1 .06 .10 19 520 1 1 106.4 4 262 60 -1 1 -1 1 625 26.0 968L 1300 740E 1.0 1.06 1 319 -1 .24 .1 10 19 32 2.56 14 .01 1030 51 1 1 1 -01 1 1 1 1 .34 .32 1093 27 20.9 467 96NL 1300 760E .3 1.12 595 12 16 20 2.42 .13 8 10 .01 18 860 231 1 1 1 .01 1 .1 1 .1 1 **JACKAROO** 1.0 2.24 57 1 1 1.07 -1 21 51 51 4.07 1 .03 15 1.27 590 14 .01 37 580 1 1 3 28 1.15 1 122.5 1 43

A REAL PROPERTY AND INCOME.

A DE LA STAN AND A THE THE REAL OF A DESCRIPTION OF A DES

٦ Q

Ń

FILE NO: 65-0045-517

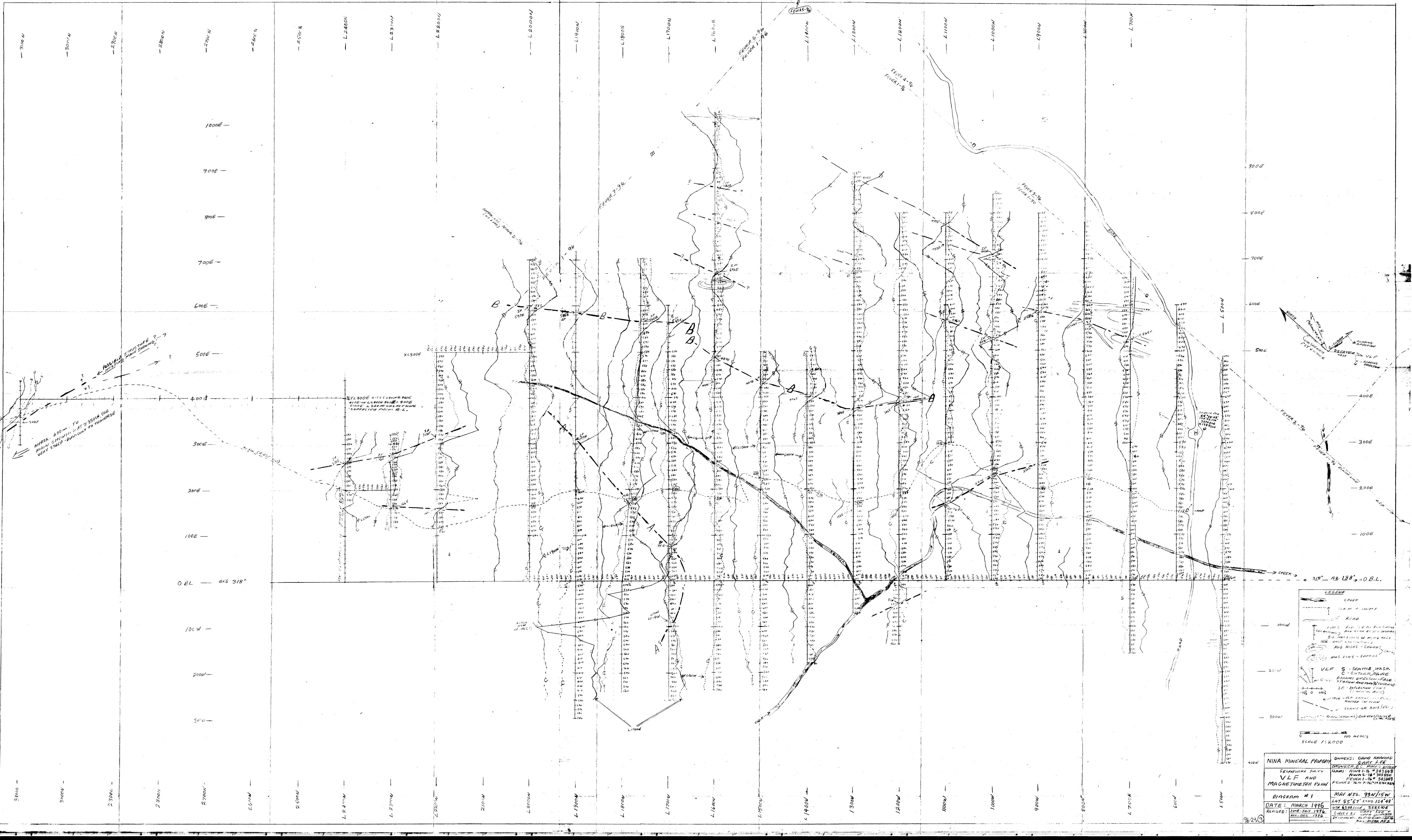
DATE: 96/07/16

Rock.

٢,

MIN-EN LABS - ICP REPORT

.


8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 65-0045-RJ1 DATE: 96/07/16

PROJ:

i

ATTN: Dave Hayward			(604)327-3436 FAX:(604)327-3423		/07/16 [:#31)
SAMPLE NUMBER	AG AL AS UA PPW X PPN PP+		CR CU FE GA K LE NG PPM PPM X PPM X PPM X F	HN HO NA NI P PE SE SN SR TH 71 U V W	ZN
96NL 850 62DE 96NL 1000 190E 96NL 1000 390E 96NL 1000 400E 96NL 1075 180E	2.8 3.87 1 109 .6 1.07 117 1354 1.9 3.24 1 95 1.7 2.09 1 31 .8 .09 41 82	-1 17 1.85 _1 31 .1 1 .10 _1 6 .1 7 3.76 _1 41 .1 9 2.54 _1 15	40 799 9.29 1 .06 7 3.10 15 63 23 1.85 1 .10 12 .80 1 50 52 6.67 1 .02 18 2.97 12 67 46 2.49 1 .02 2 .95 4	1574 25 .02 31 900 1 1 7 23 1 40 1 224.1 1 199 8 .01 25 390 1 1 1 49 1 .01 1 10.7 2 1213 20 .03 37 710 1 1 5 2 1 .34 1 220.0 1 417 12 .08 21 400 3 7 2 8 1 .18 1 79.2 4	149 104 54 34
96NL 1100 0165E 96NL 1100 510E 96NL 1200 1004 96NL 1300 200E 96NL 1300 220E	1.7 2.63 1 120 1.8 2.52 1 183 2.1 2.75 30 86 1.7 3.02 1 60 1.4 3.46 22 26	.1 12 2.43 .1 22 .1 15 3.26 .1 12 .1 7 3.04 .1 26 .1 1 1.99 .1 27	27 62 5.04 1 .01 4 1.91 7 80 46 3.38 1 .01 2 1.51 5 76 84 2.10 1 .01 7 1.04 3 22 59 5.30 1 .01 3 1.33 7 150 64 4.74 1 .04 12 3.06 8	27 3 .01 7 10 1 1 2 1 .01 1 8.4 10 772 16 .03 47 640 1 1 4 18 1 .26 1 99.3 1 517 12 .07 40 460 1 1 2 6 1 .26 1 99.3 1 517 12 .07 40 450 1 1 2 6 1 .26 1 .99.3 1 346 11 .03 18 780 3 15 2 9 1 .17 1 100.2 5 759 18 .03 28 640 1 1 4 1 1 .21 1 124.0 1 867 17 .04 52 400 1 1 4 10 1 16 1 96.7	65 40
9611 1320 445F 9681 1320 451E 9681 1500 200E 9681 1600 650E 9681 1600 865E	.2 1.55 1 229 .2 2.76 1 >10000 1.0 .72 31 132 .9 .41 1 477 1.9 2.*1 50	.2 2 .35 .1 15 .1 5 1.07 .1 3 .1 2 .06 .1 3 .1 11 5.25 .1 13	135 117 3.88 1 .60 15 1.31 3 75 105 1.98 1 .04 2 .15 4 179 4 .67 4 .01 2 .12 4 183 21 1.49 1 .12 4 .19 1 86 17 2.31 1 .01 3 .50 2	381 14 .01 33 330 1 1 3 31 1 .05 1 179.3 6 478 9 .01 35 410 55 29 1 94 1 .01 1 38.1 4 126 4 .01 7 100 7 4 1 29 1 .03 1 19.9 10 131 8 .01 11 200 5 1 1 33 1 .02 1 12.2 5	54
96NL 2000 430E 96NL 2020 430E JACKAROO	1.5 1.7 ' 67 116 2.4 2.24 1 208 .9 .97 1 39	.1 8 .49 .1 20 .1 24 1.34 .1 41 .1 8 .72 .1 13	100 54 2.79 1 .06 7 1.03 6 105 393 4.73 1 .11 10 1.74 14 151 143 2.95 1 .12 5 .30		24 49
				· • • • • • • • • • • • • • • • • • • •	
1					
					
}					

