
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

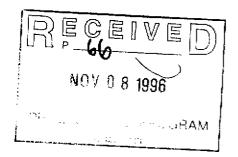
PROGRAM YEAR:1996/1997REPORT #:PAP 96-30NAME:EDWARD ALIONIS

GEOCHEMICAL SURVEY REPORT GRAND FORTUNE NICKEL PROSPECT GREENWOOD MINING DIVISION, B.C.

N.T.S. 82E/1E

ΒY

Edward Alionis B.A.


AUGUST, 1996

CLAIMS WORKED

CLAIM NAMES UNITS RECORD NUMBERS ANNIVERSARIES

GRAND-1 to 8	8	334631 - 334638	MARCH 18
GRAND-10 to 15	6	338897 - 338902	AUGUST 7
FORTUNE -3 to 6	4	335264 - 335627	APRIL 22
FORTUNE 8	1	335269	APRIL 22

LOCATION:	49°01' North Latitude
	118°10' West Longitude
OWNER:	E. ALIONIS
OPERATOR:	E. ALIONIS

GEOCHEMICAL SURVEY REPORT ON THE GRAND FORTUNE NICKEL PROSPECT GREENWOOD MINING DIVISION, B.C.

SUMMARY:

The Mastadon Property is a nickel prospect located in south central British Columbia approximately 18 km east of the town of Grand Forks and 5 km southeast of the community of Christina Lake. The property, situated at an elevation of 1,300 metres on the southwest shoulder of Castle Mountain, is comprised of 25 two post mineral claims.

In June 1996, Geochemical sampling involved taking a total of 117 basal till samples, and 74 rock chip samples over the property. Field work was carried out from June 16th to July 6th by a two person crew working out of Christina Lake. The soil sample results showed nickel and chrome concentrations to be typical of soil development over ultramafic rocks. Rock chip samples taken over 19 claims from 60 of the ultramafic exposures showed concentrations of approximately 0.22 % nickel in the dunite body consistent with results of the 1995 reconnaissance program.

Partial extraction's for nickel were carried out on 74 rock samples and 117 soil samples over the ultramafic body. Results of this study suggest that between 33% and up to 81% of the contained nickel may be present as sulfides.

The 1996 program succeeded in defining the extent of the ultramafic exposure and confirmed that nickel concentrations are consistent with previous exploration of the property.

GEOPHYSICAL AND GEOCHEMICAL REPORT ON THE GRAND FORTUNE NICKEL PROSPECT GREENWOOD MINING DIVISION, B.C.

TABLE OF CONTENTS:

SUMMARY:	ii
TABLE OF CONTENTS:	ili
FIGURES AND TABLES:	iv
1.0 INTRODUCTION:	1
1.1 LOCATION AND ACCESS:	1
1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE:	1
1.3 PROPERTY INFORMATION:	2
1.4 HISTORY:	5
1.5 WORK DONE IN 1996.:	6
2.0 GEOLOGY:	7
3.0 GEOCHEMISTRY:	9
3.1 GEOCHEMICAL PROCEDURES:	9
3.2 GEOCHEMICAL RESULTS:	17
4.0 CONCLUSIONS:	18
5.0 REFERENCES:	19
6.0 STATEMENT OF QUALIFICATIONS	20
7.0 COST STATEMENT:	21
FIGURES:	
	Page
FIGURE 1: LOCATION MAP:	3
FIGURE 2: CLAIM MAP:	4
FIGURE 3: REGIONAL GEOLOGY MAP:	8
FIGURE 4: SOIL RESULTS & GRID LOCATION	Pocket

Page

FIGURE 5:	GRID- SOIL SAMPLE RESULTS:	Pocket
FIGURE 6:	SAMPLE LOCATION :	Pocket
FIGURE 7:	ROCK CHIP SAMPLE RESULTS	Pocket
FIGURE 8:	GEOLOGY MAP	Pocket

TABLES:

TABLE 1:	LIST OF CLAIMS:	2
TABLE 2:	ROCK SAMPLE DESCRIPTIONS:	11

APPENDIX 1

GEOCHEMICAL RESULTS CERTIFICATES:

APPENDIX 2

ANALYTICAL TECHNIQUES:

GEOCHEMICAL SURVEY REPORT ON THE GRAND FORTUNE NICKEL PROSPECT GREENWOOD MINING DIVISION, B.C.

1.0 INTRODUCTION:

In June 1996, a reconnaissance exploration program was carried out over the Grand Fortune nickel property in southern British Columbia. The primary purpose of the program was to determine if a geochemical survey of the ultramafic body could verfy nickel concentrations reported by previous operators of the property. The program involved carrying out geological mapping, reconnaissance rock chip sampling and soil sampling of a grid in the centre of the property. The soil grid was established to cover an area of anomalous gold values reported by Shangri - La Minerals Ltd. in 1987 for Nitro Resources Inc. (assessment report 16,358).

The present program was carried out from June16 to July6th, by a two person crew working out of the Christina Lake Motor Inn in the nearby community of Christina Lake, B.C.

1.1 LOCATION AND ACCESS:

The Mastadon Property is located in south central British Columbia approximately 18 km east of the town of Grand Forks and 5 km southeast of the community of Christina Lake. The claims overlie an area of gently rolling relief with maximum elevation changes across the property on the order of about 200 metres.

Good access to the south end of the property is provided by a gravel, B.C. Hydro, service road that intersects Highway No.3 at the south end of Christina Lake, just 22 km east of Grand Forks. Additional access is provided by a network of abandoned but negotiable logging roads that cross the property.

1.2 PHYSIOGRAPHY, VEGETATION AND CLIMATE:

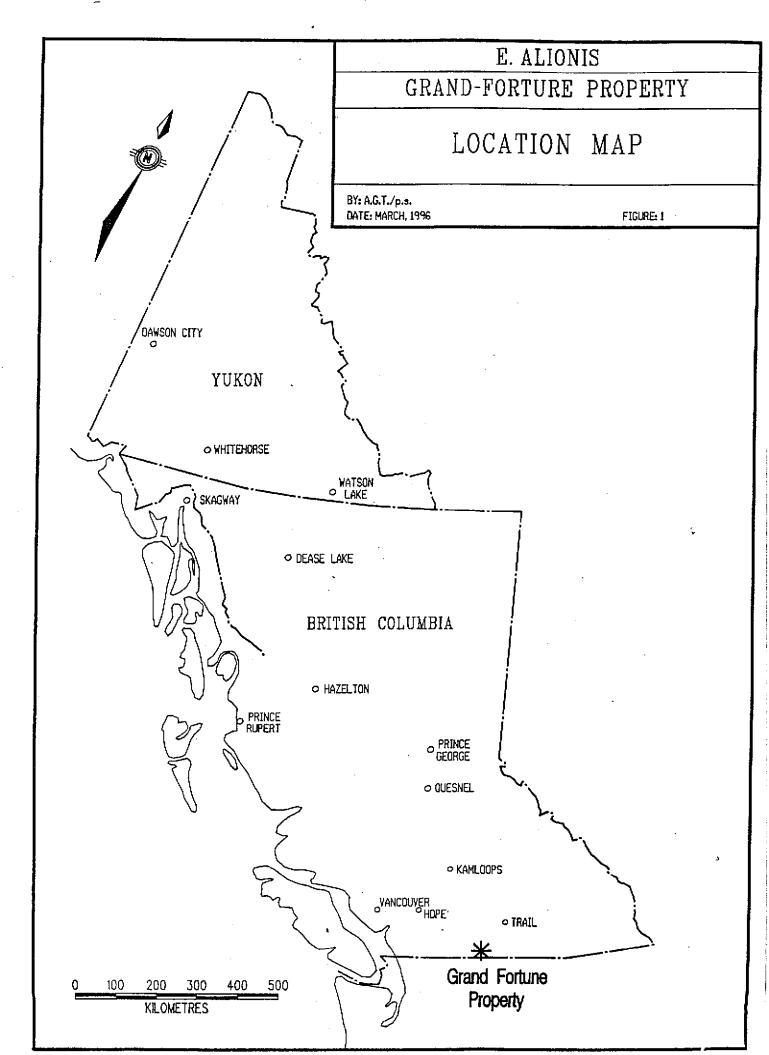
The claims encompass an area of gently rolling relief on a plateau like area in south central British Columbia. The property is situated at an elevation of 1,300 metres on the southeast shoulder of Castle Mountain. Maximum elevation changes across the property are on the order of 200 metres.

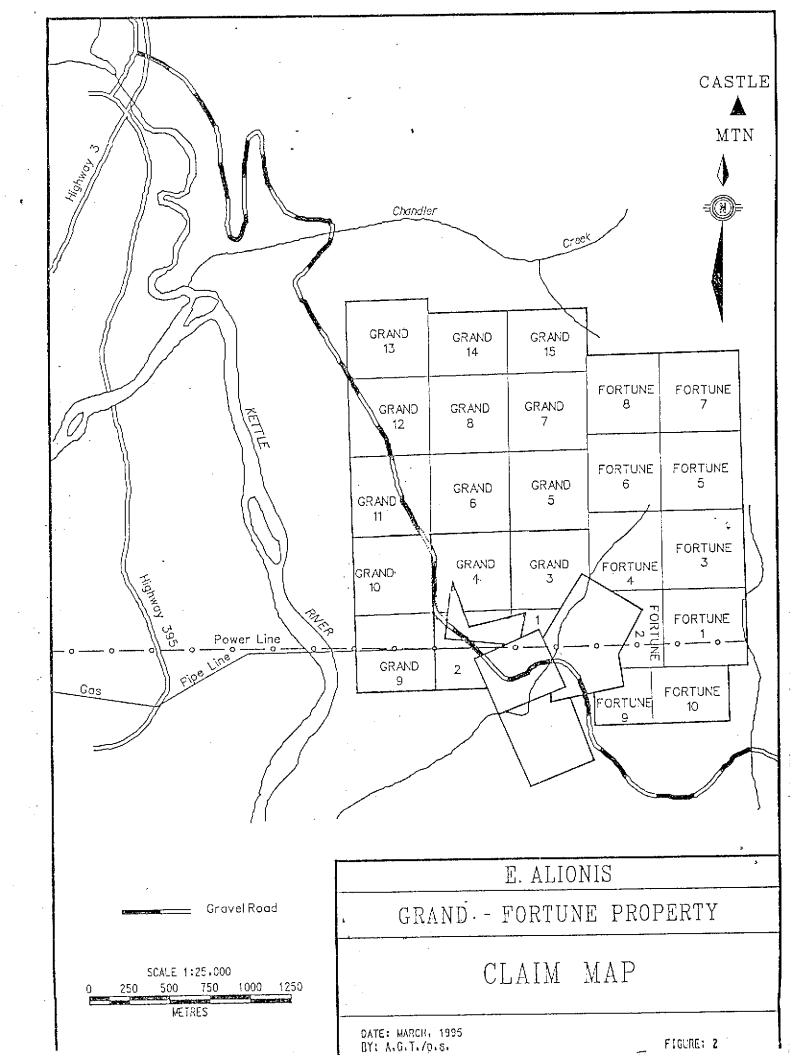
An extensive but thin blanket of glacial ground moraine covers most of the property. Rock exposures account for less than 10% of the property and are confined to creek beds and the flanks and crests of hills.

Timber is predominantly pine and spruce which is well spaced allowing easy movement through the forest. Scattered patches of aspen and birch occur on south and west facing slopes, and mountain alder grows in damp areas along streams.

The climate is typical of the southern interior, with hot, dry, summers and moderately long, cold, winters. Temperatures range from in excess of 30°C in August to minus 25°C in January. The average annual precipitation is 30 cm with most of this falling as snow in late fall, winter and early spring. The snow free period lasts from late April to mid-November, but due to the light snowfall geophysics and drilling can be carried out throughout the winter.

1.3 PROPERTY INFORMATION:


The property is located in the Greenwood Mining Division and is comprised of 25 two post mineral claims. All claims were staked in 1995. Pertinent claim information is given in Table 1 below.


TABLE 1

LIST OF CLAIMS

CLAIM NAMES UNITS RECORD NUMBERS EXPIRY DATES

GRAND 1 to 8	8	334631 - 334638	March 18, 2001
GRAND 9 TO 15	7	338896 - 338902	August 7, 2001
FORTUNE 1 to 8	8	335262 - 335269	April 22, 2001
FORTUNE 9 to 10	2	341762 - 341763	October 30,2001

1.4 HISTORY:

In 1917, chromite mineralization occurring as dissemination's, streaks and lenses within the Castle Mountain dunite body was discovered on the Mastadon Crown Grant (Lot 2384) just 100 metres south of the current property. In 1918, the Stewart-Calvert Company of Oroville, Washington acquired and developed the deposit. Government records show that in 1918 the company mined and shipped 670 tons of ore averaging 39% chromium. The ore was reported to carry up to 0.015 oz/ton platinum associated with the massive chromite mineralization.

In 1968, the property was acquired by Hunter Point Exploration Ltd. of Vancouver, who tested the former chromite deposit with 1,300 metres of diamond drilling in 11 holes. The drilling encountered a large body of low-grade nickel mineralization, in altered dunite, at depths of up to 140 metres below the former chromite workings. In 1970, the property was acquired by Chromex Nickel Mines Ltd. of Vancouver who explored the property until 1973 with 6,500 metres of diamond drilling in 59 holes. In 1974, Chromex reported a drill indicated reserve of 408,000,000 tons grading 0.24% Ni. Nickel minerals are reported to be nickeliferous magnetite, fine grained millerite and pentlandite. The mineralized zone is not exposed at surface but is reported to be amenable to open pit mining methods. Because of low grade and complex metallurgy the deposit has not been developed.

In 1987, the area of the present property was staked by Nitro Resources Inc. of Vancouver. Nitro explored the property for platinum group minerals with a two year program of geological mapping, soil geochemical sampling and a magnetometer survey. No significant platinum geochemical anomalies were discovered by this work program and the property was allowed to lapse.

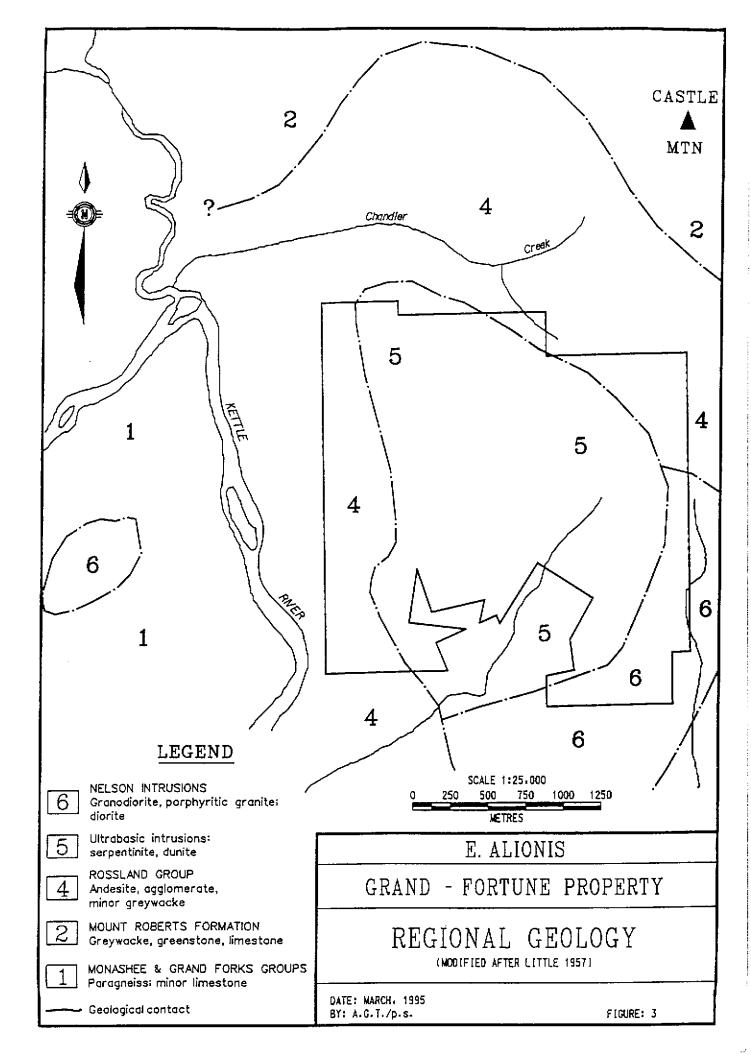
The Nitro mapping program showed the ultramafic body to extend two kilometres north of the area previously explored. Over this north extension geochemical results revealed a 3.0 km2 nickel and chrome soil anomaly that extends 1.5 km north of the former Mastadon workings. Anomalous gold values, up to 800ppb or greater, define several smaller anomalies scattered across the large nickel-chrome soil anomaly. Locally the higher gold values show an association with higher nickel values.

In 1995, the Grand and Fortune claims were staked to cover this nickel, chrome and gold geochemical anomaly.

1.5 WORK DONE IN 1996:

The following field work was completed during the period from June 16 to July 6th, 1996:

- (a) A total of 105 soil samples were taken at 25 metre intervals over a 250 metre X 400 metre flagged grid established over the Grand 6 and 11 mineral claims.
- (b) A total of 7 soil samples were taken at 50 metre intervals along a 300metre flagged line run over a anomalous gold area on the Fortune 3 mineral claim.
- (c) Five reconnaissance soil samples were taken over several areas of former trenching.
- (d) Reconnaissance rock chip sampling was carried out over 74 outcrop areas covering the ultramafic body.
- (e) Reconnaissance mapping of the property.


2.0 GEOLOGY

The property is underlain by the Castle Mountain, alpine, ultramafic body. This unit is a sill like body that is believed to have been tectonically emplaced into the surrounding Jurassic age, Rossland Group volcano-sedimentary unit. The ultramafic body consists predominantly of massive dunite, composed of olivine with disseminated grains of chromite. Later alteration has resulted in replacement of much if the olivine by anthophyllite and fine grained antigorite. The ultramafic appears tan, brown and gray on weathered surfaces and outcrop exposures appear uniform throughout the area worked. On fresh surfaces the rock is black or dark green in colour and is typically aphanitic to fine grained. Magnetite is a common accessory mineral. Outcropings of ultramafic composition are generally devoid of vegetation.

The ultramafic body is intruded by a number of feldspar porphyry dykes and sills of variable composition. These bodies are probably associated with the nearby Coryell Intrusions of Eocene age. The dykes are more recessive than the surrounding dunite body and are only seen locally as small outcrops and boulder patches. Disseminated pyrite is commonly associated with these rocks.

To the east and northeast the ultramafic rocks are in contact with a sequence of silicious mudstones and siltstones. The sedimentary rocks are characterized by dark brown, to pale tan, thinly bedded units that occasionally exhibit graded bedding. These rocks all exhibit greenschist facies metamorphism.

To the north and west the ultramafic body is bounded by a sequence of andesite and andesite-agglomerates interbedded with thin argillite horizons. The rocks have undergone greenschist metamorphism and chlorite and epidote are commonly seen filling fractures and vesicles. Pyrite is often present as fine dissemination's and fracture fillings.

3.0 GEOCHEMISTRY:

A flagged grid, 250 metres X 400 metres with a 500 metre baseline, was established over the Grand 6 and Grand 11 mineral claims. The lines were oriented East - West using a North - South baseline. The lines were spaced 50 metres apart with stations located at 25 metre intervals.

A total of 105 soil samples were taken at 25 metre intervals. The sampling program was intended to determine if the previously reported soil geochemestry, with anomoulous values of Ni - 1,075 p.p.m. to 1,299 p.p.m. and anomoulous Au up to 490 p.p.b. carried out by Shangri - La Minerals for Nitro Resources Inc . (assessment report 16,358) in 1987, could be repeated. See Figure 4 for grid location and Figure 5 for soil grid and results.

A total of 7 soil samples were taken at 50 metre intervals along a 300 metre flagged line established over the Fortune 3 mineral claim. The sampling was intended to determine if previously reported soil geochemistry with anomolous Au values of 1007 p.p.b and 1327 p.p.b. could be repeated. Work reported by Shangri - La Minerals in 1987 (assessment 16,358). See Figure 6 for location and Figure 4 for results.

A total of 5 soil samples were taken in 2 old trenching areas that were relocated on the Grand 3 and the Grand 11 mineral claims. See Figure 6 for locations and Figure 4 for results.

Reconnaissance rock chip sampling was carried out over several outcrop areas covering the ultra mafic body. The sampling was carried out to confirm and establish the extent of the ultramafic exposures and determine the nickel, chrome and gold concentrations. A total of 74 rock chip samples were taken.

This program resulted in the collection of 117 soil samples and 74 rock chip samples. Rock chip sample locations are shown on Figure 6 and sample results on Figure 7. Outcrop locations shown on geology map Figure 8.

3.1 GEOCHEMICAL PROCEDURES:

Soil samples were taken from the base of the B soil horizon across an established flagged grid 250 metres X 400metres over Grand 6 and 11 claims. Samples were taken at 25 metre intervalsalong 50 metre spaced lines. Soil samples were also taken on a flagged 300metre line at 50 metre intervals over the Fortune 3 mineral claim and over former trenches on the Grand 6 and the Grand 11 mineral claims. The soil samples were placed in numbered kraft envelopes and sent to Chemex Labs Ltd. in North Vancouver for analysis. In the laboratory the samples were dried at 80oC then sieved to minus 80 mesh and the coarse fraction discarded. The fine fraction was analysed for 32 elements including nickel and chrome by routine ICP methods.

A total of 74 reconnaissance rock chip samples were taken from outcrops. Wherever possible the samples were taken perpendicular to the strike of the mineralized zones. Samples were taken by hand using hammers and chisels. On exposed faces weathered rock was removed in an attempt to minimize the affect of surface leaching. The sample locations and descriptions are given in Table 2:

۰.

TABLE 2

ROCK SAMPLE DESCRIPTIONS

Sample

Description

٠

Total Ni/ Aqua Regia Soluable Ni -Cr (ppm)

96-01	2450/1555-638	Chip sample across dunite outcrop- with magnetite veinlets. Magnetic.
96-02	2300/1550-276	Chip sample across dunite outcrop - with magnetite veinlets. Magnetic.
96-03	2600/1715-789	Chip sample across dunite outcrop- with magnetite veinlets.Magnetic.
96-04	2500/1555-1190	Chip sample across serpentinized dunite with magnetite veinlets. Strongly magnetic.
96-05	2100/1235-646	Chip sample across dunite outcrop- with magnetite veinlets.
96-06	2050/1375-634	Chip sample across dunite outcrop- with magnetite veinlets. Magnetic.
96-07	2200/1500-2030	Chip sample across dunite outcrop- with magnetite veinlets and disseminated chromite. Strongly magnetic.
96-08	1900/1240-52	Chip sample across dunite outcrop- with magnetite veinlets. Magnetic .
96-09	1850/1200-409	Chip sample across dunite outcrop- with magnetite veinlets.
96-10	2400/1675-545	Chip sample across dunite outcrop- with magnetite veinlets.
96-11	2300/1535-1400	Chip sample across dunite with magnetite

Total	Ni/Aqua Regia SoluableNi-Cr (ppm)	
96-12	2100/1445-1235	Chip sample across dunite with magnetite veinlets.
96-13	2100/824-525	Chip sample across dunite with magnetite veinlets.
96-14	2400/1580-656	Chip sample across dunite with magnitite veinlets.
96-15	2000/1345-397	Chip sample across dunite with magnetite veinlets.
96-16	2750/1865-476	Chip sample across dunite with magnetite veinlets.
96-17	2050/1265-425	Chip sample across serpentinized dunite with magnetite veinlets.
96-18	2400/1620-586	Chip sample across dunite with magnetite.
96-19	2200/1490-524	Chip sample across dunite with magnetite
96-20	2300/1645-583	Chip sample across carbonitized dunite with magnetite.
96-21	2200/1570-703	Chip sample across serpentinized dunite with magnetite.
96-22	2450/1670-47	Chip sample across dunite with magnetite.
96-23	2100/748-877	Chip sample across carbonatized dunite with magnetite
96-24	2100/940-835	Chip sample across carbonitized dunite with magnetite.
96-25	2100/1375-1420	Chip sample across serpentinized dunite with magnetite.

Description

12

Sample		Description
Totai	Ni/Aqua Regia SoluableNi-Cr (ppm)	
96-26	2400/1610-1020	Chip sample across serpentinized dunite with magnetite veinlets.
96-27	2100/1420-1445	Chip sample across serpentinized dunite with magnetite veinlets.
96-28	18/19-57	Chip sample across porphry dyke.
96-29	2350/1445-392	Chip sample across serpentinized dunite with magnetite veinlets.
96-30	1950 1145-297	Chip sample across dunite with magnetite veinlets.
96-31	2300/1385-769	Chip sample across serpentinized dunite with magnetite veinlets.
96-32	2200/1540-1090	Chip sample across dunite with magnetite.
96-33	1950/1250-877	Chip sample across dunite with magnetite
96-34	2400/1560-545	Chip sample across dunite with magnetite.
96-35	2200/1435-610	Chip sample across serpentinized dunite with magnetite.
96-36	2400/1585-793	Chip sample across dunite with magnetite.
96-37	2250/1645-265	Chip sample across serpentinized dunite with magnetite.
96-38	1950/1370-1535	Chip sample across serpentinized dunite with magnetite.

.

Description

Total Ni/Aqua Regia SoluableNi-Cr (ppm)

96-39	2300/1545-705	Chip sample across serpentinized dunite with magnetite veinlets.
96-40	2200/1540-873	Chip sample across serpentinized dunite with magnetite veinlets.
96-41	2300/1545-688	Chip sample across serpentinized dunite with magnetite veinlets.
96-42	2300/1685-1450	Chip sample across serpentinized dunite with magnetite veinlets.
96-43	2400/1535-1090	Chip sample across dunite with magnetite veinlets.
96-44	2200/1435-827	Chip sample across serpentinized dunite with magnetite veinlets.
96-45	2000/1320-885	Chip sample across dunite with magnetite.
96-46	22/23-90	Chip sample across porphry dyke.
96-47	7/7-57	Chip sample across porphry dyke.
96-48	4/4-80	Chip sample across porphry dyke.
96-49	2150/1505-697	Chip sample across serpentinized dunite with magnetite.
96-50	2200/1500-484	Chip sample across serpentinized dunite with magnetite. Altered ,orange color, magnetic
96-51	2200/1610-503	Chip sample across serpentinized dunite with magnetite.

.....

_'

i .

Description

Total Ni/Aqua Regia SoluableNi-Cr (ppm)

96-52	52/54-89	Chip sample across siliceous siltstone.
96-53	14/15-41	Chip sample across siliceous siltstone.
96-54	2100/1010-431	Chip sample across serpentinized dunite with magnetite veinlets. Altered, orange color, magnetic.
96-55	12/12-44	Chip sample across siliceous siltstone.
96-56	2300/1635-628	Chip sample across dunite with magnetite veinlets.
96-57	1950/1570 - 676	Chip sample across serpentinized dunite with magnetite veinlets.
96-58	2100/1520-381	Chip sample across serpentinized dunite with magnetite veinlets.
96-59	2450 /1785-508	Chip sample across serpentinized dunite with magnetite veinlets.
96-60	1900/1445-527	Chip sample across serpentinized dunite with magnetite veinlets.
96 - 61	2250/1545-437	Chip sample across serpentinized dunite with magnetite veinlets.
96-62	98/160-53	Chip sample across porphry dyke.
96-63	198/223-81	Chip sample across porphry dyke.
96-64	2000/1445-781	Chip sample across serpentinized dunite with magnetite.

ŝ

, **

-

Description

Total Ni/Aqua Regia SoluableNi-Cr (ppm)

96-65	6/7 -34	Chip sample across porphry dyke
96-66	1400/808-382	Chip sample across serpentinized dunite with magnetite veinlets.
96-67	1900/1370-717	Chip sample across serpentinized dunite with magnetiteveinlet.magnetic.
96-68	2500/1720-112	Chip sample across serpentinized dunite with magnetite veinlets.
96-69	44/47-35	Chip sample across andesite, magnetic.
96-70	18/17-45	Chip sample across silcious siltstone, 5%. disseminated pyrites on fractures.
96-71	84/77-75	Chip sample across silcious siltstone, 5%. disseminated pyrites on fractures.
96-72	1500 /824-452	Chip sample across serpentinized dunite with magnetite veinlets.
96-73	16/17-76	Chip sample across silcious siltstone, 5%. disseminated pyrites on fractures. iron stained
96-74	24/25-72	Chip sample across silcious siltstone, 5%. disseminated pyrites on fractures. iron stained

Rock samples were placed in numbered plastic bags and sent to Chemex Laboratories Ltd. in North Vancouver. In the laboratory the samples were crushed and pulverized to minus 150 mesh, then analysed for 24 elements including nickel and chrome. Analysis was by routine ICP methods after digestion in aqua-regia and hydrofluoric acid. The samples were also assayed for gold by atomic absorption after fire assay fusion of a 30g sample.

A partial nickel determination was carried out on a seperate 1.0 gram sample after digestion for 2 hours in nitric - aqua regia acids. This partial extraction is believed to dissolve sulfide held nickel but not silicate or oxide nickel (Appendix 2).

3.2 GEOCHEMICAL RESULTS:

Soil and roch chip sample results are given in Appendix 1 and nickel, chrome and gold values are plotted on figure 5. The results show elevated nickel and chrome values in most of the samples. Nickel values from soil sampling ranged from 43 ppm to 1750 ppm total Ni and 40ppm to 1405 ppm aqua regia soluable Ni. Chrome values range from 17 ppm to 1325 ppm. and gold values range from 5ppb. to 150 ppb. Nickel values from rock chip samples ranged from 4ppm to 2750 ppm for total nickel and 4 ppm to 1865 ppm for aqua regia soluable Ni. Chrome values range from 5ppb. to 150 ppb. Nickel values from rock chip samples ranged from 4ppm to 2750 ppm for total nickel and 4 ppm to 1865 ppm for aqua regia soluable Ni. Chrome values ranged from 34 ppm to 2030 ppm. and gold up 150 ppb.

Soil and rock sample results are given in Appendix 1. Total nickel / aqua reigia soluable - chrome values are given in Table 2.

Nickel concentrations as determined by aqua-regia extraction suggest that between 33% and 81% of the nickel content of the ultramafic samples may be present as sulfides with an average recovery of 66% by simple acid digestion.

4.0 CONCLUSIONS:

The results of work completed over the Grand Fortune Property during the present program may be summarized as follows:

(a) Soil sample results showed nickel and chrome concentrations to be typical of soil development over ultramafic rocks. The results confirm that soil sampling may be effective in tracing the ultramafic body beneath overburden covered areas.

(b) Rock chip sample results showed concentrations of approximately .22% nickel and 0.08% chrome in the ultramafic body. These concentration levels are consistent with values obtained during previous exploration of the property.

(c) Partial extraction studies for nickel, carried out on 60 dunite samples from widely separated locations, show that 66% of the contained nickel can be extracted with a simple aqua-regia leach. These results suggest that the metal is probably held in fine grained sulfides.

(d) Soil sample results failed to confirm the highly anomoulous gold values reported previously by Nitro Resources 1987.

Submitted at Vancouver, B.C. this 17th day of October, 1996.

Edward Alionis B.A.

5.0 REFERENCES:

Dispirito, F., 1987: Geological, Geophysical and Geochemical Report on the Castle Project for Nitro Resources Inc.: Assessment Report No. 16,358 dated March 31, 1987.

Groves, E.W., and Johnson, W.M., 1975: Report on Chromex Nickel Mines Ltd. Proposal for Beneficiation of the Castle Mountain Nickel Deposit.: Unpublished government report dated March 1975.

Hancock, K.D., 1991: Ultramafic Associated Chromite and Nickel Occurrences in British Columbia.: B.C. Ministry of Energy Mines and Petroleum Resources, Mineral Resources Division., Open File 1990-27.

Little, H.W. 1982: Geology of the Rossland-Trail Map Area, B.C.: Geological Survey of Canada, Paper 79-26.

Little, H.W. 1957: Geology of the Kettle River Map Area, B.C.: Geological Survey of Canada, Map 6-1957.

Minfile 1991: Minfile Number 82ESE091: B.C. Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Minfile Master Report 1991.

Peatfield, G.R., 1978: Geologic History and Metallogeny of the Boundary District, Southern British Columbia and Northern Washington.: Ph.D. Thesis, Queen's University, June 1978.

Rublee, V.J., 1986: Occurrence and Distribution of Platinum Group Elements in British Columbia.: B.C. Ministry of Energy Mines and Petroleum Resources, Mineral Resources Division., Open File 1986-7.

Shank, R.J. 1986:, Canadian Mineral Deposits Not Being Mined in 1986. Mineral Deposit B.C.-2, Mastadon Deposit of Chromex Nickel ML.: Energy Mines and Resources Canada, Mineral Bulletin MR-213, p248.

Steiner, R. 1977: Geological Report on Holdings of Chromex Nickel Mines Record of Work on Crown Granted and Located Claims Christina Lake, B.C.: Assessment Report No. 6457 dated March 14, 1977.

Steiner, R. 1978: Diamond Drill Logs for DDH No. 58 and 58(A). Unpublished Report Prepared for Chromex Nickel Mines Ltd., Christina Lake Property, B.C.: Assessment Report No. 7067 dated June 15, 1978.

STATEMENT OF QUALIFICATIONS

Edward Alionis

Academic

1979	I am a graduate of the University of Concordia, Montreal Quebec, with a B.A. major in Physical Geography and minor in Geology.
Practical	
1978 June - September	Lornex Mines, Logan Lake B.C Summer employment on survey crew.
1979 June - 1982-August	Riocanex Inc, Vancouver, B.C Geological Technician, involved in all aspects of exploration in B.C., Yukon and N.W.T.
1982 July - Present	Prospector and Geological contracting in B.C, Yukon and N.W.T.

APPENDIX 1

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver

V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. 3

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

CERTIFICATE

A9625248

(NWK) - ALIONIS, ED

Project: P.O. # : EDWARD ALIONIS

Samples submitted to our lab in Vancouver, BC. This report was printed on 10-AUG-96.

	SAMPLE PREPARATION														
0	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION												
	201 202 229 232	117 117 117 117 117	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge Ferchloric-nitric-HF digestion												
*	NOTE	1.													

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

ì

1					
	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	
8	117	Ni ppm: HNO3-aqua regia digest	AAS-BKGD CORR	1	10000
2118	117	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
2119	117	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	117	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	117	Ba ppm: 32 element, soil & rock	ICP- AES	10	10000
2122	117	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	117	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	117	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	117	Cá ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	117	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	117	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	117	Cu ppm: 32 element, soil & rock	ICP-ARS	1	10000
2150	117	Fe %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2130	117	Ga ppm: 32 element, soil & rock	ICP-XES	10	10000
2131	117	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	117	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	117	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	117	Mg %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2135	117	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	117	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	117	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
2138	117	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	117	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	117	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141 2142	117 117	Sb ppm: 32 element, soil & rock	ICP-AES	2 1	10000 10000
2142	117	Sc ppm: 32 elements, soil & rock	ICP-AES	_	
2143	117	Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock	ICP-AES ICP-AES	1 0.01	10000
2145	117				
2145	117	Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	icp-aes icp-aes	10 10	10000 10000
2145	117	V ppm: 32 element, soil & rock			10000
2148	117	W ppm: 32 element, soil & rock	ICP-AES	1 10	
2149	117	Zn ppm: 32 element, soil & rock	ICP- AES ICP-AES	2	10 000 100 00

ì

4

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

1.1

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Page ^{Mu}mber: 1-A Tot: jes: 3 Cert. ..e Date: 31-JUL-96 Invoice No. : 19625248 P.O. Number: Account: NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

F						·			CE	RTIFI	CATE	OF A	NAL	YSIS		49625	248			
SAMPLE	PREP CODE	Ni ppm	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Ng %	Mn ppm
1950N+1900E	201 202	300	< 0.2	2.13	8	280	< 0.5	< 2	0.26	< 0.5	15	74	8	1.82	< 10	< 1	0.07	< 10	0.77	710
1950N+1925E	201 202	350	< 0.2	2.76	10	270	< 0.5	< 2	0133	< 0.5	25	104	10	2.26	< 10	< 1	0.11	< 10	1.70	585
1950N+1950E 1950N+1975E	201 202	425	< 0.2	2.23	12	250	< 0.5	< 2	0.27	< 0.5	25	149	8	2.29	< 10	< 1	0.07	< 10	1.47	670
1950N+2000E	201 202 201 202	340 320	< 0.2 < 0.2	1.96 1.87	14 14	250 290	< 0.5 < 0.5	< 2 < 2	0.22 0.29	< 0.5 < 0.5	19 21	125 149	9 6	1.95 1.99	< 10	< 1	0.06	< 10	1.32	425
1950N+2025E	201 202											143		1.33	< 10	< 1	0.06	< 10	1.24	705
1950N+2050E	201 202	365 345	< 0.2	1.59	10	150	< 0.5	< 2	0.24	< 0.5	24	280	7	2.42	< 10	< 1	0.06	< 10	2.15	\$00
1950N+2075E	201 202	630	< 0.2 < 0.2	1.43 2.18	8	160	< 0.5	< 2	0.30	< 0.5	28	258	8	2.44	< 10	< 1	0.06	< 10	1.99	605
1950N+2100E	201 202	230	< 0.2	2.17	10 8	190 220	< 0.5 < 0.5	< 2	0.27	< 0.5	28	220	7	2.37	< 10	< 1	0.07	< 10	2.20	425
1950N+2125E	201 202	172	< 0.2	0.87	6	150	< 0.5	< 2	0.16 0.14	< 0.5 < 0.5	12 10	97 114	6 5	1.50	< 10 < 10	< 1 < 1	0.07 0.08 .	< 10 < 10	0.77 0.72	155 390
1950N+2150E	201 202	360	< 0.2					_										• *		·
1950N+2175E	201 202	835	< 0.2	1.99	10 14	190 220	< 0.5 < 0.5	< 2 < 2	0.28	< D.5	21	156	6	2.04	< 10	< 1	0.13	< 10	1.23	405
1950N+2200E	201 202	415	< 0.2	1.57	10	250	< 0.5	< 2	0.29	< 0.5	30	386 320	7	2.26	< 10 < 10	< 1	0.07	< 10	3.31	275
1950N+2225E	201 202	245	< 0.2	1.82	14	220	< 0.5	22	0.28	< 0.5	17	120	2	1.91	< 10	< 1 < 1	0.06	< <u>1</u> 0 < 10	3.28 1.04	595 310
1950N+2250E	201 202	300	< 0.2	0.92	6	100	< 0.5	< 2	0.26	< 0.5	24	261.	6	2.46	< 10	< 1	0.08	< 10	1.70	390
1950N+2275E	201 202	230	< 0.2	2.01	10	260	< 0.5	2	0.26	< 0.5	15	103		1.84	< 10	< 1	0.07	< 10	1.00	345
1950N+2300E	201 202	250	< 0.2	1.38	10	160	< 0.5	· < 2	0.25	< 0.5	13	144	6	2.13	< 10	< 1	0.12	< 10	1.10	290
2000N+1900E	201 202	380	< 0.2	2.25	В	280	< 0.5	< 2	0.27	< 0.5	19	119	7	1.74	< 10	< 1	0.09	< 10	1.15	370
2000N+1925E	201 202	172	< 0.2	2.85	14	220	0.5	< 2	0.13	< 0.5	10	48	7	1.54	< 10	< 1	0.05	< 10	0.38	335
2000N+1950E	201 202	270	< 0.2	3.06	14	220	0.5	< 2	0.25	< 0.5	16	101	9	2.03	< 10	< 1	0.06	<10	0.94	380
2000N+1975E	201 202	310	< 0.2	2.49	10	200	< 0.5	< 2	0.25	< 0.5	18	100	9	1.89	< 10	< 1	0.08	< 10	1.08	390
2000N+2000E	201 202	380	< 0.2	1.66	12	350	< 0.5	< 2	0.50	< 0.5	21	198	12	1.82	< 10	< 1	0,12	< 10	1.58	1240
2000N+2025E 2000N+2050E	201 202 201 202	380 1100	< 0.2	2.14	12	310	< 0.5	< 2	0.35	< 0.5	19	183	7	1.74	< 10	< 1	0.10	< 10	1.17	1010
2000N+2075E	201 202	440	< 0.2	2.29 2.60	24 10	100 250	0.5	< 2	0.29	< 0.5	62	567	11.	3.59	< 10	< 1	0.08	< 10	4.85	675
		***	· · · · ·	4.60		250	< 0.5	< 2	0.20	< 0.5	17	174	5	1.79	< 10	< 1	0.09	< 10	1.15	195
2000N+2100E	201 202	370	< 0.2	1.90	12	180	< 0.5	< 2	0.27	< 0.5	21	210	9	2.25	< 10	< 1	0,09	< 10	1.92	320
2000N+2125E	201 202	600	< 0.2	1.26	10	130	< 0.5	< 2	0.32	< 0.5	58	408	8	3.27	< 10	< 1	0.10	< 10	3.40	780
2000N+2150E 2000N+2175E	201 202	300	< 0.2	1.10	4	210	< 0.5	< 2	0.30	< 0.5	19	188	6	2.15	< 10	< 1	0.09	< 10	1.33	525
2000N+2200E	201 202 201 202	196 280	< 0.2	1.92	12	210	< 0.5	< 2	0.39	< 0.5	14	87	9	1.95	< 10	< 1	0.11	< 10	0.80	320
		*40	< 0.2	1.98	12	230	< 0.5	< 2	0.30	< 0.5	16	117	9	2.06	< 10	< 1	0.11	< 10	1.03	250
2000N+2225E	201 202	119	< 0.2	1.68	8	250	< 0.5	< 2	0.28	< 0.5	9	55	8	1.35	< 10	< 1	0.09	< 10	0.51	235
2000N+2250E	201 202	104	< 0.2	1.47	8	260	< 0.5	< 2	0.29	< 0.5	8	49	8	1.24	< 10	< 1	0.09	< 10	0.44	250
2000N+2275E	201 202	590	< 0.2	2.13	10	100	< 0.5	< 2	0.33	< 0.5	38	259	8	3.33	< 10	< 1	0.15	< 10	2.43	520
2000N+2300E 2050N+1900E	201 202 201 202	192	< 0.2	2.40	10	170	0.5	< 2	0.36	< 0.5	16	149	10	3.04	< 10	< 1	0.07	< 10	1.20	210
	┠┉┉┥┈┈┠	91	< 0.2	2.77	16	370	< 0.5	< 2	0.25	< 0.5	7	41	8	1.39	< 10	< 1	0.06	< 10	0.28	350
2050N+1925E	201 202	610	< 0.2	2.13	12	250	< 0.5	< 2	0.32	< 0.5	27	232	6	1.95	< 10	< 1	0.10	< 10	2.15	340
2050N+1950E	201 202	220	< 0.2	1.03	8	270	< 0.5	< 2	0.41	0.5	16	107	10	1.26	< 10	< 1	0.09	< 10	0,81	450
2050N+1975g	201 202	810	< 0.2	0.74	14	210	< 0.5	< 2	0.33	0.5	99	481	12	3.21	< 10	< 1	0.08	< 10	5.52	1250
2050N+2000E 2050N+2025E	201 202	1300	< 0.2	2.02	22	180	0.5	< 2	0.20	< 0.5	92	658	11	3.19	< 10	< 1	0.09	< 10	6.73	975
	201 202	1200	< 0.2	1.22	22	130	< 0.5	< 2	0.19	0.5	101	631	13	3.17	< 10	< 1	0.08	< 10	9,25	1285
		•							·											

CERTIFICATION: COLORS

١

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

.....

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Paç mber :1-B Tota, ages :3 Certificate Date; 31-JU**L-96** Invoice No, :1962524**8** P.O. Number : Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

	CERTIFICATE OF ANALYS									'SIS	A9625248					
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	Y ppm	W	Zn ppm	
1950N+1900E 1950N+1925E 1950N+1950E 1950N+1975E 1950N+2000E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.02 0.01 0.01 0.01 0.01 0.02	276 323 379 302 302	580 290 310 450 970	12 6 8 12 8	2 2 2 2 4 2	2 3 3 1 1	, 31 37 31 24 38	0.09 0.12 0.09 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 29 34 28 30	< 10 < 10 < 10 < 10 < 10 < 10	36 42 38 42 46	
1950N+2025E 1950N+2050E 1950N+2075E 1950N+2075E 1950N+2100E 1950N+2125E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.03 0.03 0.02	335 310 555 221 164	140 200 370 1270 340	6 12 8 6 10	2 2 2 2 2 2	4 3 3 1 1	29 29 32 23 20	0.09 0.09 0.09 0.08 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	37 40 36 21 20	< 10 < 10 < 10 < 10 < 10 < 10	28 32 42 28 34	•
1950N+2150E 1950N+2175E 1950N+2200E 1950N+2225E 1950N+2250E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.02 0.02 0.01 0.01 0.01	336 699 406 227 285	320 410 320 700 230	6 8 10 6 8	< 2 < 2 2 2	3 4 2 3	30 37 36 32 24	0.10 0.08 0.07 0.08 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 23 34 35 47	< 10 < 10 < 10 < 10 < 10 < 10	30 26 46 32 24	
1950N+2275E 1950N+2300E 2000N+1900E 2000N+1925E 2000N+1950E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.03 0.01 0.03 0.02 0.03	208 208 380 154 250	960 280 540 1930 820	6 4 8 6	2 2 2 2 < 2	3 3 2 2 3	37 26 39 19 29	0.08 0.11 0.09 0.11 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 43 24 23 35	< 10 < 10 < 10 < 10 < 10 < 10	30 28 32 42 36	*
2000N+1975E 2000N+2000E 2000N+2025E 2000N+2050E 2000N+2075E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.03 0.03 0.01 0.07	279 332 317 878 440	580 1340 520 380 660	8 12 8 6 6	2 2 2 2 2	2 3 3 8 2	34 56 44 35 37	0.11 0.07 0.08 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	29 28 21 44 21	< 10 < 10 < 10 < 10 < 10 < 10	34 34 28 32 28	· · · · · · · · · · · · · · · · · · ·
2000N+2100E 2000N+2125E 2000N+2150E 2000N+2150E 2000N+2175E 2000N+2200E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.02 0.04 0.04 0.04	366 580 270 205 268	610 230 270 1480 820	10 8 6 4	2 2 < 2 2 2	4 6 3 2 3	33 26 29 42 37	0.10 0.09 0.08 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	39 46 35 40 36	< 10 < 10 < 10 < 10 < 10 < 10	30 30 26 34 30	
2000N+2225E 2000N+2250E 2000N+2275E 2000N+2275E 2000N+2300E 2050N+1900E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 1 < 1	0.05 0.05 0.03 0.03 0.03 0.06	119 99 535 217 99	1670 1440 220 270 2600	4 2 2 6 6	2 2 2 2 2	2 1 6 4 2	42 41 31 36 35	0.07 0.06 0.13 0.16 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 21 46 70 19	< 10 < 10 < 10 < 10 < 10 < 10	26 28 32 32 38	
050N+1925E 050N+1950E 050N+1975E 050N+2000E 050N+2025E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.04 0.02 0.01 0.01	620 227 780 1070 1030	590 360 370 280 350	10 28 24 12 14	< 2 2 2 2 4	3 1 5 8 8	42 39 34 28 23	0.08 0.05 0.04 0.07 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 14 18 23 25	< 10 < 10 < 10 < 10 < 10 < 10	28 34 24 26 20	

CERTIFICATION:

N. Con

١

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

يۇ ي

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

Pag mber :2-A Tota jes :3 Certificate Date: 31-JUL-99 Invoice No. :19625248 P.O. Number Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

[·						CE	RTIFI	CATE	OF A	NAL	YSIS	4	\9625	248						
SAMPLE	PREP CODE	Ni ppm	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd mqq `	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	EG mqq	K %	La ppm	Mg %	Мл ppm
2050N+2050E 2050N+2075E 2050N+2100E 2050N+2125E 2050N+2125E	201 202 201 202 201 202 201 202 201 202 201 202	1150 510 300 260 460	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.58 2.30 1.02 2.57 1.29	24 10 4 14 12	150 270 150 230 210	< 0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.28 0.38 0.16 0.36 0.40	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	97 31 17 18 36	872 312 169 141 289	13 8 5 10 8	3.44 2.38 1.72 2.16 2.78	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.11 0.06 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	9.21 2.00 1.22 1.00 2.06	925 350 350 340 630
2050N+2175E 2050N+2200E 2050N+2225E 2050N+2250E 2050N+2250E	201 202 201 202 201 202 201 202 201 202 201 202	230 300 250 360 460	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.04 2.01 1.74 2.18 1.33	6 12 8 12 8	150 210 190 170 250	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.24 0.36 0.35 0.35 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 16 18 26 32	177 161 138 157 248	5 10 8 8 7	2.02 2.56 2.55 2.44 2.66	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.17 0.09 0.12 0.08	< 10 < 10 < 10 < 10 < 10 < 10	1.11 1.47 1.17 1.65 2.06	290 480 565 390 545
2050N+2300E 2100N+1900E 2100N+1925E 2100N+1950E 2100N+1975E	201 202 201 202 201 202 201 202 201 202 201 202	260 710 1600 1600 1750	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	1.81 0.71 0.90 1.10 2.32	10 8 22 22 19	180 190 110 80 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.33 0.41 0.20 0.27 0.23	< 0.5 0.5 < 0.5 0.5 0.5 0.5	18 75 121 121 92	141 557 1000 993 672	9 13 9 11 12	2.62 2.78 4.48 3.83 3.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.08 0.07 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	1.21 5.39 10.25 11.25 7.27	460 740 1080 945 655
2100N+2000E 2100N+2025E 2100N+2050E 2100N+2075E 2100N+2100E	201 202 201 202 201 202 201 202 201 202 201 202	770 890 1000 260 70	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.88 2.56 1.90 0.54 2.03	12 10 16 2 10	220 140 150 180 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.44 0.23 0.29 0.25 0.11	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	62 54 107 19 6	453 463 567 164 27	11 7 9 5 5	2.92 2.99 3.47 1.72 1.28	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.09 0.06 0.08 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	4.65 4.31 6.49 1.24 0.19	850 405 1090 355 240
2100N+2125E 2100N+2150E 2100N+2175E 2100N+2200E 2100N+2225E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	550 250 310 245 180	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.08 1.23 1.99 1.72 1.43	10 8 12 8 10	140 140 340 130 400	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.30 0.32 0.30 0.31 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	30 16 15 15 11	315 184 108 141 65	6 5 7 8 7	2.30 2.23 1.72 2.17 1.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.08 0.14 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	2.84 1.22 0.83 1.25 0.53	315 510 430 290 490
2100N+2250E 2100N+2275E 2100N+2300E 2150N+1900E 2150N+1925E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	310 270 137 350 390	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.81 1.89 2.30 1.03 0.58	10 6 12 10 8	250 310 210 280 360	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.31 0.24 0.38 0.78	< 0.5 < 0.5 < 0.5 0.5 0.5	14 15 9 31 46	127 106 54 211 227	5 7 8 9 16	1.56 1.68 1.72 2.18 1.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.10 0.08 0.07 0.08	< 10 < 10 < 10 < 10 < 10 < 10	1.01 1.03 0.48 1.84 2.09	265 370 170 635 905
2150N+1950E 2150N+1975E 2150N+2000E 2150N+2025E 2150N+2050E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	1700 695 440 690 810	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0,89 3.04 1.23 1.57 2.97	26 12 8 24 18	80 220 150 300 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.17 0.34 0.31 0.68 0.29	0.5 < 0.5 0.5 2.0 < 0.5	135 35 29 79 46	1325 251 264 653 564	11 8 10 18 7	4.13 2.59 2.62 3.08 3.04	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.16 0.12 0.06	< 10 < 10 < 10 < 10 < 10 < 10	14.20 2.33 2.10 4.93 3.86	1050 320 495 1380 305
2150N+2075E 2150N+2100E 2150N+2125E 2150N+2125E 2150N+2150E 2150N+2175E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	490 660 280 310 650	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.37 1.59 1.38 1.11 1.38	8 22 6 8 14	180 130 170 100 260	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5 < 0,5	< 2 < 2 < 2 < 2 < 2 < 2	0.29 0.39 0.17 0.15 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	34 38 13 14 43	485 459 118 161 422	6 16 6 4 6	2.75 3.47 1.53 1.73 2.72	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.09 0.14 0.09 0.07 0.09	< 10 < 10 < 10 < 10 < 10 < 10	2.79 5.55 1.24 1.34 3.05	475 635 330 230 815

CERTIFICATION:_

1.1

٠.

۰,

ì

÷.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. .

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

Pac mber :2-8 Tota .ges :3 Certificate Date: 31-JUL-96 Invoice No. : 19625248 P.O. Number : Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

·		.							CERTIFICATE OF ANALYS							A9625248	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ррд Р	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W mqq	Zn ppm		
2050N+2050E 2050N+2075E 2050N+2100E 2050N+2125E 2050N+2125E 2050N+2150E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < < 1 < 1 < 1 < 1 < 1	<pre>< 0.01 0.04 0.03 0.05 0.02</pre>	1000 504 294 276 417	380 680 190 970 280	8 10 10 6 14	4 2 < 2 2 2	8 3 1 3 4	34 46 23 45 38	0.05 0.09 0.06 0.15 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 19 24 41 34	< 10 < 10 < 10 < 10 < 10 < 10	18 36 32 40 30		
2050N+2175E 2050N+2200E 2050N+2225E 2050N+2250E 2050N+2250E 2050N+2275E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.03 0.03 0.04	207 275 255 323 446	180 530 230 250 240	6 10 8 10 12	2 2 2 2 .2	2 4 3 4 3	23 32 34 38 41	0.10 0.11 0.13 0.10 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	39 45 55 24 23	< 10 < 10 < 10 < 10 < 10 < 10	26 38 30 30 32	•	
2050N+2300E 2100N+1900E 2100N+1925E 2100N+1950E 2100N+1955E	201 202 201 202 201 202 201 202 201 202 201 202		0.02 0.03 0.01 0.01 0.01	265 709 1225 1250 1405	220 340 250 270 310	8 22 10 10 10	2 2 2 . 4 2	3 5 8 8 7	34 42 24 28 29	0.13 0.04 0.04 0.04 0.04 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 19 22 21 30	< 10 < 10 < 10 < 10 < 10 < 10	32 36 20 16 32		
2100N+2000E 2100N+2025E 2100N+2050E 2100N+2050E 2100N+2075E 2100N+2100E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.02 0.04 0.05	762 824 908 253 67	400 260 250 360 1590	22 10 8 6 8	2 2 2 < 2 < 2 < 2	5 6 7 1 1	48 30 28 24 13	0.07 0.10 0.07 0.04 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	23 31 22 14 20	< 10 < 10 < 10 < 10 < 10 < 10	40 30 26 22 46	•	
2100N+2125E 2100N+2150E 2100N+2175E 2100N+2200E 2100N+2200E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.04 0.03 0.04	520 239 288 233 193	290 230 890 200 2050	10 8 8 2 8	2 < 2 2 2 2 2	4 2 3 3 1	37 30 40 32 45	0.09 0.10 0.09 0.12 0.08	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 39 25 43 23	< 10 < 10 < 10 < 10 < 10 < 10	26 28 46 30 92	- of the state of	
2100N+2250E 2100N+2275E 2100N+2300E 2150N+1900E 2150N+1925E	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.06 0.04 0.05 0.05	342 315 145 372 404	1160 880 960 280 490	8 12 8 24 40	2 2 2 2 < 2	2 2 1 2 3	37 44 28 40 75	0.09 0.09 0.11 0.07 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	20 25 33 26 21	< 10 < 10 < 10 < 10 < 10	42 46 32 48 56		
2150N+1950E 2150N+1975E 2150N+2000E 2150N+2025E 2150N+2050E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < < 1 < 1 < 1 < 1 < 1	0.01 0.03 0.02 0.03 0.04	1400 686 481 785 794	290 190 250 700 170	16 10 20 68 8	2 2 2 2 2 2	8 3 4 4	21 43 35 62 38	0.03 0.12 0.10 0.06 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 35 44 24 29	< 10 < 10 < 10 < 10 < 10 < 10	34 48 64 98 40		
2150N+2075E 2150N+2100E 2150N+2125E 2150N+2150E 2150N+2150E 2150N+2175E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.04 0.01 0.02 0.03 0.03	501 575 183 225 620	330 280 220 180 560	8 10 6 4 12	2 6 < 2 < 2 2 2	3 7 1 1 4	36 36 21 18 62	0.06 0.10 0.06 0.06 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 66 20 24 22	< 10 < 10 < 10 < 10 < 10 < 10	38 38 26 20 48		
							<u> </u>					,					

CERTIFICATION:_

tart Bichlo.

ŝ.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Pag mber :3-A Tota jes :3 Certificate Date: 31-JUL-96 Invoice No. :19625248 P.O. Number : Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

[_ 										CE	RTIF	CATE	OF A	NAL	YSIS		49625	248		
SAMPLE	PRI		Ni ppm	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ · ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg	K %	La ppm	Mg %	Мл ррт
2150N+2200E	201		395	< 0.2	1.48	8	300	< 0.5	< 2	0.21	< 0.5	16	143	6	1.53						
2150N+2225E		202	685	< 0.2	1.45	14	540	< 0.5	< 2	0.50	0.5	56	305	14	2.07	< 10 < 10	< 1	0.09	< 10	1.09	250
2150N+2250E 2150N+2275E		202	220	< 0.2	1.18	10	300	< 0.5	< 2	0.19	< 0.5	15	50	5	1.31	< 10	< 1 < 1	0.0B 0.07	< 10 < 10	2.52 0.58	1795
2150N+2300E	201 201		250	< 0.2	2.07	8	170	< 0.5	< 2	0.23	< 0.5	18	127	8	2.43	< 10	< 1	0.07	< 10	1.18	520 395
	101	A04	720	< 0.2	1.92	12	240	< 0.5	< 2	0.46	< 0.5	54	142	10	2.12	< 10	< 1	0.07	< 10	2.23	800
2200N+1900E	201		360	< 0.2	2.48	12	310	< 0.5	< 2	0.17	< 0.5	17	126	5	1.70	< 10	< 1	0.05	. 10		
2200N+1925E 2200N+1950E	201		300	< 0.2	2.15	10	210	< 0.5	< 2	0.21	< 0.5	17	165	6	1.89	< 10	< 1	0.05 0.07	< 10 < 10	$1.11 \\ 1.26$	220
2200N+1975E		202	450	< 0.2	2.21	10	160	< 0.5	< 2	0.25	< 0.5	33	340	6	2.37	< 10	< 1	0.08	< 10	2.18	190 380
2200N+2000E		202	490 360	< 0.2 < 0.2	1.77	10	180	< 0.5	< 2	0.30	< 0.5	30	341	5	2.09	< 10	< 1	0.07	< 10	2.37	430
			300	< 0.2	1.62	10	250	< 0.5	< 2	0.26	< 0.5	26	239	- 5	2.14	< 10	< 1	0.05	< 10	1.71	530
2200N+2025E 2200N+2050E		202 202	170	< 0.2	2.21	6	220	< 0.5	< 2	0.17	< 0.5	10	76	5	1,24	< 10	< 1	0.06	< 10	0.45	190
2200N+2075E		202	43 310	< 0.2 < 0.2	2.58	16	230	< 0.5	< 2	0.18	< 0.5	4	17 .	9	1.05	< 10	< 1	0.05	< 10	0,12	150
2200N+2100E	201		178	< 0.2	1.25	12 4	60 190	< 0.5 < 0.5	< 2	0.38	< 0.5	20	184	18	3.16	< 10	< 1	0.12	< 10	1.88	270
2200N+2125E	201		265	< 0.2	1.90	10	150	< 0.5	< 2 < 2	0.19 0.26	< 0.5 < 0.5	<u>11</u> 20	97 189	5	1.43	< 10 < 10	< 1 < 1	0.08 0.09	< 10 < 10	0.66	410
2200N+2150E	201	202	260	< 0.2	1.39	10	0.00										· ·	0.03	< 10	. 1.56	295
2200N+2175E		202	420	< 0.2	1.66	. 10 10	280 280	< 0.5	< 2	0.32	< 0.5	17	156	8	1.43	< 10	< 1	0.08	< 10	1.33	770
2200N+2200E	1 1	202	300	< 0.2	1.30	8	<u>∡80</u> 80	< 0.5	< 2 < 2	0.45 0.28	< 0.5 < 0.5	26	254	11	2.08	< 10	< 1	0.07	< 10	2.47	670
2200N+2225E		202	290	< 0.2	2.24	16	220	< 0.5	2	0.21	< 0.5	19 13	245 109	5 7	2.24	< 10	< 1	0.10	< 10	1.54	210
2200N+2250E	201	202	132	< 0.2	2.00	16	240	< 0.5	< 2	0.20	< 0.5	9	37	6	$1.73 \\ 1.44$	< 10 < 10	< 1 < 1	0.0B 0.07	<.10 < 10	0.82	300 355
2200N+2275E		202	180	< 0.2	2.16	14	250	< 0.5	< 2	0.22	< 0.5	13	90	8	1 00						
2200N+2300E		202	325	< 0.2	1.52	10	90	< 0.5	< 2	0.39	< 0.5	20	201	10	1,98 2,93	< 10 < 10	< 1	0.07	< 10	0.74	300
2075N+2100		202	106	< 0.2	2.20	14	340	< 0.5	2	0.14	< 0.5	ě	46	8	1.45	< 10	< 1 < 1	0.09 0.06	< 10 < 10	1.79	245
2125N+2100E		202		< 0.2	2.05	14	330	< 0.5	< 2	0.19	< 0.5	9	66	8	1.64	< 10	< 1	0.06	< 10	0.32	435 590
2175N+2100E	201	202	138	< 0.2	1.92	10	190	< 0.5	< 2	0.19	< 0.5	12	69	7	1.89	< 10	< 1	0.06	< 10	0.49	235
S-1 (TRENCH)	201		420	< 0.2	2.09	16	120	< 0.5	< 2	0.41	< 0.5	22	192	20	3.16	< 10	< 1	0.11	< 10		
S-2 (TRENCH)	201		470	< 0.2	1.83	12	110	< 0.5	< 2	0.38	< 0.5	28	202	18	2.91	< 10	< 1	0.09	< 10	2.00 1.80	500 600
S-3 (TRENCH)	201		420	< 0.2	2.30	18	170	< 0.5	< 2	0.43	< 0.5	17	171	17	2.90	< 10	< ĩ	0.09	< 10	1.98	365
S-4 (600-E) S-5 (550-E)		202	124	< 0.2	2.25	16	240	< 0.5	< 2	0.30	< 0.5	13	62	11	2.10	< 10	< 1	0.09	< 10	0.57	535
3 -3 (330-2)	201	202	144	< 0.2	2.00	14	240	< 0.5	< 2	0.35	< 0.5	12	75	12	2.84	< 10	< 1	0.16	< 10	0.69	785
S-6 (500-E)		202	245	< 0.2	2.02	18	140	< 0.5	< 2	0.33	< 0.5	14	64	13	1.82	< 10	< 1	0.09	< 10	0.78	440
S-7 (450-E) S-8 (400-E)		202	365	< 0.2	1.44	10	210	< 0.5	2	0.26	< 0.5	19	73	12	1 87	< 10	< 1	0.09	< 10	0.52	690
9-8 (400-E) 9-9 (350-E)		202 202	138	< 0.2	1.55	10	260	< 0.5	< 2	0.26	< 0.5	11	67	9	2.14	< 10	< 1	0.07	< 10	0.65	B35
S-10 (300-E)		202	160 144	< 0.2	2.34	16	280	0.5	2	0.81	1.0	16	82	19	3 3 2	< 10	< 1	0.24	< 10	0.74	1515
					1.94	14	210	< 0.5	< 2	0.40	< 0.5	12	BO	16	2.52	< 10	< 1	0.22	< 10	0.66	745
S-11 (TRENCH)		202	860	< 0.2	2.59	20	140	0.5	< 2	0.48	< 0.5	37	215	25	4.21	< 10	< 1	0.24	< 10	3.34	815
S-12 (TRENCH)	201	∡ 02	920	< 0.2	2.32	18	140	0.5	< 2	0.42	< 0.5	38	203	26	3.85	< 10	< 1	0.19	< 10	2.86	780
																			_		

1. J.R. Da CERTIFICATION:

ì

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

127 • 1140 CASTLE CRES, PORT COQUITLAM, BC V3C 5M4

Page/* mber :3-B Tota is :3 Certificate Date: 31-JUL-96 Invoice No. 19625248 P.O. Number Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

											CE	RTIFI	CATE	OF A	NALY	'SIS	A9625248
SAMPLE	PRE COD	1	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mqq	W mqq	Zn ppm	
150N+2200E 150N+2225E 150N+2250E 150N+2275E 150N+2275E 150N+2300E	201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.04 0.01 0.03	388 600 202 253 691	1270 710 960 400 630	8 24 14 8 8	2 2 < 2 < 2 2 2	2 3 1 3 4	33 68 24 25 58	0.06 0.05 0.05 0.11 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 20 19 51 31	< 10 < 10 < 10 < 10 < 10 < 10	52 46 58 38 42	
000+1900E 000+1925E 000+1950E 000+1975E 000+2000E	201 201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.04 0.03 0.03 0.03	322 300 515 478 359	200 190 240 570 290	6 5 10 10 6	2 < 2 2 2 2	1 2 3 2 3	26 27 31 35 31	0.08 0.09 0.09 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 29 28 27 31	< 10 < 10 < 10 < 10 < 10 < 10	30 34 38 50 46	······
00000000000000000000000000000000000000	201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.08 0.03 0.04 0.03	176 40 342 170 276	1890 830 470 440 960	6 2 4 2 4	< 2 2 2 < 2 2 2	1 2 5 1 4	27 29 32 23 33	0.08 0.09 0.10 0.07 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	18 15 81 25 42	< 10 < 10 < 10 < 10 < 10 < 10	38 24 32 28 32	
200N+2150E 200N+2175E 200N+2200E 200N+2225E 200N+2250E		202	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.03 0.02 0.02 0.04 0.04	228 358 279 281 123	570 390 190 1100 1590	20 6 4 8 8	2 < 2 2 2 < 2	2 3 3 1 1	45 61 25 27 24	0.06 0.08 0.09 0.09 0.09	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	21 30 39 29 25	< 10 < 10 < 10 < 10 < 10 < 10	32 34 20 42 38	*
200N+2275E 200N+2300E 275N+2100 225N+2100E 175N+2100E	201 201	202 202 202 202 202 202	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.02 0.05 0.03 0.03	190 356 109 80 139	1150 290 2300 2980 1740	6 2 6 6	2 < 2 2 < 2 < 2 < 2	2 4 1 2 1	28 29 21 26 23	0.10 0.15 0.08 0.07 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 72 23 28 38	< 10 < 10 < 10 < 10 < 10 < 10	42 34 42 52 34	
1 (TRENCH) 2 (TRENCH) 3 (TRENCH) 4 (600-E) 5 (550-E)	201 201 201 201 201 201	202 202 202	< 1 < 1 < 1 < 1 < 1 1	0.01 0.02 0.02 0.04 0.02	445 437 443 133 134	1300 1220 1380 2380 670	6 8 2 10 16	2 2 2 2 2 2	6 5 5 2 4	44 39 50 47 47	0.08 0.07 0.09 0.09 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	62 51 55 38 51	< 10 < 10 < 10 < 10 < 10 < 10	44 46 42 76 90	
-6 (500-E) -7 (450-E) -8 (400-E) -9 (350-E) -10 (300-E)	201 201 201	202 202 202 202 202 202 202	< 1 < 1 < 1 1 < 1	0,05 0.04 0.03 0.01 0.03	252 255 131 143 130	920 1030 1100 2380 480	10 12 6 54 16	2 2 < 2 4 2	3 2 2 4 4	50 53 45 116 45	0.08 0.05 0.07 0.09 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	31 26 45 64 53	< 10 < 10 < 10 < 10 < 10 < 10	50 70 70 164 66	
-11 (TRENCH) -12 (TRENCH)	201 201	202 202	< 1 < 1	0.03 0.02	691 724	660 490	14 14	2 2	9 8	44 42	0.14 0.13	< 10 < 10	< 10 < 10	71 67	< 10 < 10	52 48	
															CERTIFIC	CATION:	the fail of the

· · ·

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. .

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

A9633973

Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

С	ERTIFI	CATE A9633973			ANALYTICA	L PROCEDURES		
(NWK) - / Project: P.O. # :	ALIONIS, E EDWAF	D ID ALIONIS	CHEMEX CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
	submitt port was	ed to our lab in Vancouver, BC. printed on 3-OCT-96.	983	116	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
	SAM	PLE PREPARATION				· · ·	•	
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION				н. Талана (1997) Алана (1997)		
244	116	Pulp; prev. prepared at Chemex				•	-	
			L	1		- 		

ì.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

. .

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Pag' mber :1 Tota jes :3 Certificate Date: 03-OCT-96 Invoice No. :19633973 P.O. Number : Account :NWK

Thick Vouh

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

				(CERTIFIC	ATE OF A	NALYSIS	A963	3973	
SAMPLE	PREP CODE	Au ppb FA+AA		<u></u> ,						
1950N+1900E 1950N+1925E 1950N+1950E 1950N+1975E 1950N+1975E 1950N+2000E	244 244 244 244 244	<pre>< 5 < 60</pre>								
1950N+2025E 1950N+2050E 1950N+2075E 1950N+2100E 1950N+2125E	244 244 244 244 244 244	**************************************							• .	
1950N+2150E 1950N+2175E 1950N+2200E 1950N+2225E 1950N+2250E	244 244 244 244 244 244	20 < 5 < 5 < 5 5								
1950N+2275E 1950N+2300E 2000N+1900E 2000N+1925E 2000N+1950E	244 244 244 244 244	<pre></pre>							- -	
2000N+1975E 2000N+2000E 2000N+2025E 2000N+2050E 2000N+2050E 2000N+2075E	244 244 244 244 244 244	<pre>< 5 < 5</pre>								
2000N+2100E 2000N+2125E 2000N+2150E 2000N+2150E 2000N+2175E 2000N+2200E	244 244 244 244 244 244	<pre>< 5 15 10 < 5 < 5 </pre>								
2000N+2225E 2000N+2250E 2000N+2275E 2000N+2300E 2050N+1900E	244 244 244 244 244 244	<pre></pre>		•						
2050N+1925E 2050N+1950E 2050N+1975E 2050N+2000E 2050N+2025E	244 244 244 244 244	<pre></pre>								

CERTIFICATION:_

ì.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

. *

127 - 1140 CASTLE CRES, PORT COQUITLAM, BC V3C 5M4 Pac tumber :2 Tot .ges :3 Certinicate Date: 03-OCT-96 Invoice No. : [19633973 P.O. Number : Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

SAMPLE PREP Au ppb CODE FA+AA	
2050N+2050E 244 < 5 2050N+2075E 244 < 5 2050N+2100E 244 < 5 2050N+2125E 244 < 5 2050N+2150E 244 25 2050N+2150E 244 10	
2050N+2175E 244 < 5 2050N+2200E 244 < 5 2050N+2225E 244 < 5 2050N+2250E 244 < 5 2050N+2250E 244 < 5 2050N+2275E 244 < 5	
2050N+2300E 244 5 2100N+1900E 244 < 5 2100N+1925E 244 < 5 2100N+1950E 244 < 5 2100N+1975E 244 < 5	
2100N+2000E 244 150 2100N+2025E 244 < 5 2100N+2050E 244 60 2100N+2075E 244 < 5 2100N+2100E 244 < 5	
2100N+2125E 244 15 2100N+2150E 244 < 5 2100N+2175E 244 < 5 2100N+2200E 244 < 5 2100N+225E 244 < 5	
2100N+2250E 244 < 5 2100N+2275E 244 < 5 2100N+2300E 244 < 5 2150N+1900E 244 < 5 2150N+1925E 244 < 5	
2150N+1950E 244 < 5 2150N+1975E 244 < 5 2150N+2000E 244 < 5 2150N+2025E 244 < 5 2150N+2050E 244 < 5	
2150N+2075E 244 < 5 2150N+2100E 244 < 5 2150N+2125E 244 < 5 2150N+2150E 244 < 5 2150N+2150E 244 < 5 2150N+2175E 244 < 5	

CERTIFICATION:

Jack Vola

ì

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. .

127 - 1140 CASTLE CRES. PORT COQUITLAM, 8C V3C 5M4

Page mber :3 ies :3 Tota Certinuate Date: 03-OCT-55 Invoice No. :19633972 P.O. Number : Account : NWK

Project : EDWARD ALIONIS Comments: ATTN: EDWARD ALIONIS CC: ART TROUP

	,				CERTIFIC	ATE OF A	NALYSIS	A9633973				
SAMPLE	PREP CODE	Au ppb FA+AA										
2150N+2200E 2150N+2225E 2150N+2250E 2150N+2250E 2150N+2275E 2150N+2300E	244 244 244 244 244 244	<pre> < 5 /pre>										
2200N+1900E 2200N+1925E 2200N+1950E 2200N+1950E 2200N+1975E 2200N+2000E	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>< 5 < 5 </pre>							· .			
2200N+2025E 2200N+2050E 2200N+2075E 2200N+2100E 2200N+2125E	244 244 244 244 244 244	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>		• . <u>.</u>								
2200N+2150E 2200N+2175E 2200N+2200E 2200N+2225E 2200N+2250E	244 244 244 244 244 244	<pre></pre>							*			
2200N+2275E 2200N+2300E 2075N+2100 2125N+2100E 2175N+2100E	244 244 244 244 244 244	<pre></pre>										
S-1 (TRENCH) S-2 (TRENCH) S-3 (TRENCH) S-4 (600-E) S-5 (550-E)	244 244 244 244 244 244	<pre></pre>										
S-6 (500-E) S-7 (450-E) S-8 (400-E) S-9 (350-E) S-10 (300-E)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>										
S-11 (TRENCH) S-12 (TRENCH)	244 244	< 5 < 5										

CERTIFICATION:_

That Val

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9625237

(NWK) - ALIONIS, ED

Project: EDWARD ALIONIS P.O. #: 0

samples submitted to our lab in Vancouver, BC. This report was printed on 31-JUL-96.

	SAMPLE PREPARATION														
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION													
205 226 3202 229 232	74 74 74 74 74 74	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge Perchloric-nitric-RF digestion													
• NOTR	1.														

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

1

To: ALIONIS, ED

1

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

v

Comments: ATTN: ED ALIONIS CC: ART TROUP

ANALYTICAL PROCEDURES CHEMEX. NUMBER DETECTION UPPER CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT 983 Au ppb: Fuse 30 g sample 18 FA-AAS 5 10000 2118 74 Ag ppm: 32 element, soil & rock ICP-AES 0.2 200 2119 74 Al %: 32 element, soil & rock ICP-AES 0.01 15.00 2120 74 As ppm: 32 element, soil & rock ICP-AES 10000 2 10000 2121 74 Ba ppm: 32 element, soil & rock ICP-AES 10 2122 74 Be ppm: 32 element, soil & rock ICP-AES 0.5 100.0 2123 74 Bi ppm: 32 element, soil & rock ICP-AES 2 10000 2124 74 Ca %: 32 element, soil & rock ICP-AES 0.01 15.00 2125 74 Cd ppm: 32 element, soil & rock 0.5 ICP-AES 100.0 Co ppm: 32 element, soil & rock 2126 74 ICP-AES 10000 1 2127 74 Cr ppm: 32 element, soil & rock ICP-AES 1 10000 2128 Cu ppm: 32 element, soil & rock 74 ICP-AES 1 10000 2150 74 Fe %: 32 element, soil & rock ICP-AES 0.01 15.00 2130 74 Ga ppm: 32 element, soil & rock ICP-AES 10 10000 2131 Hg ppm: 32 element, soil & rock 74 ICP-AES 10000 1 2132 74 K %: 32 element, soil & rock ICP-AES 0.01 10.00 2151 74 La ppm: 32 element, soil & rock ICP-AES 10 10000 2134 74 Mg %: 32 element, soil & rock ICP-AES 0.01 15.00 2135 74 Mn ppm: 32 element, soil & rock ICP-AES 10000 5 2136 74 Mo ppm: 32 element, soil & rock ICP-AES 10000 1 2137 Na %: 32 element, soil & rock 74 ICP-AES 0.01 5.00 2138 74 Ni ppm: 32 element, soil & rock ICP-AES 1 10000 2139 74 P ppm: 32 element, soil & rock ICP-AES 10 10000 2140 74 Pb ppm: 32 element, soil & rock ICP-AES 10000 2 2141 74 Sb ppm: 32 element, soil & rock ICP-AES 2 10000 2142 74 Sc ppm: 32 elements, soil & rock ICP-AES 1 10000 Sr ppm: 32 element, soil & rock 2143 74 ICP-AES 1 10000 Ti %: 32 element, soil & rock 2144 74 ICP-AES 0.01 5.00 2145 T1 ppm: 32 element, soil & rock 74 ICP-AES 10 10000 2146 74 U ppm: 32 element, soil & rock ICP-AES 10 10000 2147 74 V ppm: 32 element, soil & rock. ICP-AES 1 10000 2148 74 W ppm: 32 element, soil & rock ICP-AES 10 10000 2149 74 Zn ppm: 32 element, soil & rock ICP-AES 2 10000 74 Ni ppm: HNO3-aqua regia digest 8 AAS-BKGD CORR 1 10000

A9625207

i

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. •

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

Pag ''umber :1-A ges :2 Tor Cerumate Date: 31-JUL-96 Invoice No. : 19625257 P.O. Number :0 :NWK Account

A0625237

Project : EDWARD ALIONIS Comments: ATTN: ED ALIONIS CC: ART TROUP

OCOTICIONTE OF ANALVEIS

* *

								CERTIFICATE OF ANALYSIS A9625237												
SAMPLE	PREP CODE	Au ppb FA+AA	Ag Dom	A1 %	As ppm	Ba ppm	Be ppm	Bi pp n	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
96-01	205 226		< 0.2	0.15	26	< 10	< 0.5	2	0.05	< 0.5	72	638	7	4.18	10		< 0.01	< 10		420
96-02	205 226		< 0.2	0.04	80	< 10	< 0.5	2	0.05	< 0.5	71	276	8	4.39	< 10		< 0.01	< 10	12.85 14.25	540 580 i
96-03	205 226		< 0.2	0.08	28	< 10	< 0.5	2	0.08	< 0.5	74	789	7	3.73	< 10		< 0.01	< 10 < 10	14.45	400
96-04 96-05	205 226		< 0.2 < 0.2	0.15 1.52	30 20	< 10 20	< 0.5 < 0.5	2	$0.05 \\ 1.12$	< 0.5 < 0.5	73 54	1190 646	5 24	3.29 3.08	< 10 10		< 0.01 < 0.01		12.30	600
96-06	205 226		< 0.2	0.08	26	< 10	< 0.5	2	0.16	< 0.5	68	634	6	3.79	10		< 0.01	< 10	13.70	470
96-07	205 226		< 0.2	0.19	14	20	< 0.5	2	0.04	< 0.5	72	2030	1	5.32	10	_	< 0.01	< 10	14.35	400
96-08	205 226		< 0.2	0.09	14	10	< 0.5	2	0.10	< 0.5	64	529	4	3.76	< 10		< 0.01	< 10	12.95	310
96-09	205 226		< 0.2	0.13	6	< 10	< 0.5	< 2	3.10	< 0.5	51	409	1	3.35	< 10		< 0.01		12.25	375 640
96-10	205 226		< 0.2	0.03	32	< 10	< 0.5	2	0.16	< 0.5	76	545	6	4.73	10	< 1	< 0.01	< 10 	>15.00	
96-11	205 226		0.2	0.12	64	< 10	< 0.5	2	0.41	< 0.5	75	1400	6	4.63	10	< 1	0.03	< 10		655
96-12	205 226		< 0.2	0.11	48	< 10	< 0.5	< 2	0.22	< 0.5	68	1235	2	4.11	10	• -	< 0.01	< 10	14.50	545
96-13	205 226		< 0.2	0.10	8	10	< 0.5	3	0.08	< 0.5	46	525	1	3.88	< 10		< 0.01	< 10	10.75	580 [
96-14	205 226		< 0.2	0.08	20	10	< 0.5	2	0.10	< 0.5	66	656	3	4.39	< 10		< 0.01			435
96-15	205 226		< 0.2	0.14	24	< 10	< 0.5	2 -	c 0.01	< 0.5	54	397	< 1	3.38	10	< 1	< 0.01	< 10	14.40	285
96-16	205 226		< 0.2	0.04	26	< 10	< 0.5	2	0.06	< 0.5	77	476	. 3	4.99	< 10		< 0.01	< 10	13.50	625
96-17	205 226		< 0.2	0.20	10	< 10	< 0.5	2 4	c 0.01	< 0.5	59	425	1	3.76	< 10		< 0.01	< 10	13.00	435
96-18	205 226		< 0.2	0.08	12	< 10	< 0.5	· 4	0.01	< 0.5	72	586	2	4.33	10		< 0.01	< 10	14.15	570
96-19	205 226		< 0.2	0.11	16	< 10	< 0.5	2	0.09′	< 0.5	67	524	2.	4.12	10		< 0.01	≤ 10	14.45	485
96-20	205 226		0.2	0.15	10	< 10	< 0.5	2.	< 0.01	< 0.5	74	583	1	4.58	10	< 1	< 0.01	< 10	14.30	600
96-21	205 226		< 0.2	0.13	8	< 10	< 0.5	3	0.02	< 0.5	72	703	4	4.37	10		< 0.01	< 10		570
96-22	205 226	< 5	< 0.2	0.09	14	< 10	< 0.5	6	0.16	< 0.5	76	471	4	3.38	10		< 0.01		>15.00	565
96-23	205 226		< 0.2	0.16	4	20	< 0.5	< 2	0.66	< 0.5	51	877	3	3.61	< 10		< 0.01			490
96-24	205 226		< 0.2	0.13	2	< 10	< 0.5	2	0.12	< 0.5	50	835	5	3.75	< 10		< 0.01	< 10		455
96-25	205 226		< 0.2	0.20	6	< 10	< 0.5	2	0.32	< 0.5	61	1420	13	4.05	10	< 1	< 0.01	< 10	14.35	645
96-26	205 226		< 0.2	0.17	10	< 10	< 0.5	2	0.04	< 0.5	72	1020	6	4.09	10		< 0.01		14,35	470
96-27	205 226	< 5	< 0.2	0.13	24	< 10	< 0.5	2	0.05	< 0.5	67	1445	3	4.43	10	_	< 0.01		>15.00	435 895
96-28	205 226	1	< 0.2	2.99	6	90	< 0.5	4	1.22	< 0.5	14	57	14	4.79	< 10	1	0.19	< 10 < 10	1.55 13.25	365
96-29	205 226		< 0.2	0.13	6	< 10	< 0.5	2	0.16	< 0.5	65	392	2	4.03	< 10		< 0.01 < 0.01		12.45	470
96-30	205 226		< 0.2	0.28	6	20	< 0.5	< 2	0.25	< 0.5	58	297	<u> </u>	3.88	10	< 1	• • • • • •	< 1V		
96-31	205 226		< 0.2	0.08	18	< 10	< 0.5	2	0.05	< 0.5	67	769	4	4.02	10		< 0.01	< 10		490
96-32	205 226		< 0.2	0.14	26	< 10	< 0.5	2	0.19	< 0.5	69	1090	4	3.92	10		< 0.01		>15.00 14.30	490 480
96-33	205 226		< 0.2	0.10	12	< 10	< 0.5	2	0.04	< 0.5	62	877	1	3.85	10		< 0.01			570
96-34	205 226		< 0.2	0.07	14	< 10	< 0.5	3	0.32	< 0.5	68	54.5	4	4.17	10		< 0.01	< 10 < 10		310
96-35	205 226		< 0.2	0.09	16	< 10	< 0.5	2	< 0.01	< 0.5	58	610	1	3.89	10	< T	< 0.01			
96-36	205 226		< 0.2	0.13	46	< 10	< 0.5	< 2	0.07	< 0.5	69	793	4	3.79	10		< 0.01		14.05 >15.00	315 435
96-37	205 226		< 0.2	0.04	16	< 10	< 0.5	2	0.15	< 0.5	66	265	6	3.20	10		< 0.01		>15.00	400
96-38	205 226		< 0.2	0.12	6	10	< 0.5	2	0.12	< 0.5	70	1535	1	3.96	10 10		< 0.01 < 0.01		14.65	375
96-39	205 226		< 0.2	0.10	20	< 10	< 0.5	2	0.01	< 0.5	69 72	705 873	9	3.58 4.29	< 10		< 0.01		13.05	490
96-40	205 226		< 0.2	0.31	36	10	< 0.5	2	0.09	< 0.5	73	9/3	3	3.47	- 10	х т	~ 0.01	- 14		
							<u></u>									,		<u> </u>	*> 0	
																~	L., -	k >-	l.	0,1
													(CERTIFI	CATION:	`	JUN			

ì.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

1.4

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Par imber :1-B Tot, ges :2 Certificate Date: 31-JUL-96 Invoice No. :19625237 P.O. Number :0 Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: ED ALIONIS CC: ART TROUP

**

									C	ERTIF	ICATE	OF A	NALY	'SIS	4		
SAMPLE	PREP CODE	Mo ppm	Na , %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr T ppm S		U ppm	V ppm	W ppm	Zn mqq	Ni ppm		
6-01	205 226	< 1 <	0.01	1555	30	< 2	2	4	1 < 0.0	. 10	< 10	13	< 10	12	2450		
6-02	205 226		0.01	1550	10	2	6	3	1 < 0.03		< 10	8	< 10	10	2300		
6-03	205 226		0.01	1715	30	2	< 2	5	1 < 0.0		< 10	11	< 10	10	2600		
6-04 6-05	205 226 205 226		0.01 0.01	1555 1235	30 150	< 2 < 2	< 2 < 2	5	1 < 0.0 128 < 0.0		< 10 < 10	12 33	< 10 < 10	12 20	2500 2100		
6-06	205 226	< 1 <	0.01	1375	40	< 2	< 2	4	4 < 0.0	. 10	< 10	9	< 10	12	2050		
6-07	205 226		0.01	1500	30	4	2	5	3 < 0.0		< 10	16	< 10	22	2200		
6-08	205 226		0.01	1240	30	< 2	2	4	7 < 0.0		< 10	. 9	< 10	22	1900		
6-09 6-10	205 226 205 226		: 0.01 : 0.01	1200 1675	10 20	< 2 2	. 2 < 2	4	59 < 0.0 4 < 0.0		< 10 < 10	11	< 10 < 10	14 8	1850 2400	• ,	
6-11	205 226		0.01	1535	140	< 2	2	5	19 < 0.0		< 10	-14	< 10	16	2300		
6-12	205 226		0.01	1445	40	4	2	5	14 < 0.0		< 10	13	< 10	18	2100		
6-13	205 226		0.01	824	60 F 0	26	< 2	5	6 < 0.0: 17 < 0.0:		< 10 < 10	11 8	< 10 < 10	16 10	2100 2400		
6-14 6-15	205 226		: 0.01 : 0.01	1580 1345	50 20	2	2 < 2	4 4	< 1 < 0.0		< 10	9	< 10	10	2000		
6-16	205 226		0.01	1865	30	2	2	4	4 < 0.0		< 10	8	< 10	14	2750		
6-17	205 226		0.01	1265	10	2	< 2	4.	< 1 < 0.0		< 10	8	< 10	16	2050		
6-18	205 226		: 0.01	1620 1490	40 20	2	2 < 2	5 5	1 < 0.0		< 10 < 10	8 8	< 10 < 10	16 14	2400 2200	-	
6-19 6-20	205 226		0.01 0.01	1645	50	< 2	< 2	6	< 1 < 0.0		< 10	14	< 10	14	2300		
6-21	205 226		: 0.01	1570	50	2	< 2	£	< 1 < 0.0		< 10	6	< 10	12	2200		1
6-22	205 226		0.01	1670	80	< 2	< 2 < 2	4	4 < 0.0: 23 < 0.0:		< 10 < 10	7 14	< 10 < 10	12 14	2450 2100		
6-23	205 226		: 0.01 : 0.01	748 940	50 30	2	< 2	5	4 < 0.0		< 10	14	< 10	10	2100		
6-24 6-25	205 226		: 0.01	1375	50	< 2	< 2	Ğ	14 < 0.0		< 10	16	< 10	10	2100		
6-26	205 226		: 0.01	1610	40	< 2	< 2	5	< 1 < 0.0		< 10	15 15	< 10 < 10	14 14	2400 2100		
6-27	205 226		0.01	1420	50 1050	2 12	< 2	5	< 1 < 0.0 289 0.2		< 10 < 10	136	< 10	99	18		
6-28 6-29	205 226	< 1	0.04	19 1445	40	2	< 2	4	14 < 0.0		< 10	100	< 10	16	2350		
6-30	205 226		0.01	1145	60	2	< 2	- Ā	11 < 0.0		< 10	8	< 10	26	1950		
6-31	205 226		0.01	1385	40	2	2	4	10 < 0.0 • 7 < 0.0		< 10 < 10	8 10	< 10 < 10	16 14	2300 2200		
6-32	205 226		: 0.01 : 0.01	1540 1260	30 40	22	2 < 2	6 5	< 1 < 0.0	-	< 10	10	< 10	14	1950		
6-33 6-34	205 226		: 0.01	1560	50	< 2	< 2	4	2 < 0.0		< 10	11	< 10	14	2400		
6-35	205 226		0.01	1435	40	2	2	4	< 1 < 0.0		< 10	7	< 10	18	2200		
6-36	205 226		0.01	1585	30	2	2	5	3 < 0.0 13 < 0.0		< 10 < 10	13 5	< 10 < 10	14 10	2400 2250		
6-37	205 226		: 0.01 : 0.01	1645 1370	30 30	< 2 2	< 2 < 2	3	1 < 0.0		< 10	10	< 10	18	1950		
6-38 6-39	205 226	_	: 0.01 : 0.01	1545	50	2	2	5	1 < 0.0		< 10	10	< 10	20	2300		
6-40	205 226		0.01	1450	100	2	2	Ş	6 < 0.0		< 10	19	< 10	14	2200		

CERTIFICATION:

Standard 19

.1

÷.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ALIONIS, ED

. *

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4 Page Number :2-A Tof ges :2 Cer. _te Date: 31-JUL-55 Invoice No. :19625237 P.O. Number :0 Account :NWK

A DEAL STRATEGICS AND

Project : EDWARD ALIONIS Comments: ATTN: ED ALIONIS CC: ART TROUP

**

					•		CE	RTIFI	CATE	OF A	NAL	/SIS	A9	6252	237					
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Вө ррт	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	re %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
96-41 96-42 96-43 96-44 96-45	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.15 0.18 0.12 0.10 0.11	24 60 10 20 16	40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 2 2 2 2	0.01 0.01 0.25 0.12 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	74 80 72 67 67	688 1450 1090 827 895	6 3 4 3 7	4.83 5.44 4.09 4.50 3.65	< 10 10 10 < 10 < 10	<pre>< 1 < 0 < 1 < 1 < 0 < 1 < 1 < 0 < 1 < 1 < 0 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>).01).01).01	< 10 < 10 < 10 < 10 < 10 < 10	13.85 14.55 14.95 13.35 13.75	605 670 620 540 685
96-46 96-47 96-48 96-49 96-50	205 220 205 220 205 220 205 220 205 220		< 0.2 < 0.2 < 0.2 0.4 0.2	2.48 2.18 2.23 0.13 0.12	4 7 8 44 56	140 550 150 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 4 2	1.26 1.79 1.95 0.26 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 76 69	90 57 80 697 484	< 1 < 1 < 1 13 4	2.16 2.09 2.06 3.64 3.88	< 10 < 10 < 10 10 10	1 0			1.00 0.89 0.84 >15.00 14.75	550 715 625 580 685
96-51 96-52 96-53 96-54 96-55	205 220 205 220 205 220 205 220 205 220 205 220	5 < 5 5 50 5 < 5	0.2 < 0.2 < 0.2 0.2 < 0.2	0.08 1.58 1.33 0.05 1.38	56 3 7 4 3	10 110 90 < 10 70	< 0.5 < 0.5 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.08 0.98 1.71 0.30 1.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	74 14 6 58 5	503 89 41 431 44	1 41 5 19 3	4.12 3.15 2.45 3.58 2.81	10 < 10 < 10 < 10 < 10	< 1 (< 1 < (0.15 0.38	< 10 < 10 10 < 10 < 10	14.40 1.10 0.68 12.60 0.83	550 480 995 620 745
96-56 96-57 96-58 96-59 96-60	205 220 205 220 205 220 205 220 205 220 205 220	5	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	0.08 0.10 0.06 0.29 0.18	38 14 24 78 16	< 10 < 10 10 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 < 2 2 - 4	0.07 0.08 0.08 < 0.01 0.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	78 71 73 79 63	628 676 381 508 527	3 7 1 2 5	4.33 4.41 4.02 4.27 4.54	10 10 10 10 10		0.01	< 10 < 10 < 10	>15.00 >15.00 14.85 >15.00 13.30	600 435 400 425 380
96-61 96-62 96-63 96-64 96-65	205 22 205 22 205 22 205 22 205 22 205 22	5 5 5 	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.09 0.76 1.25 0.17 1.45	16 < 2 4 12 < 2	10 140 30 < 10 90	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	\$ < 2 < 2 2 < 2	0.05 0.04 0.65 0.01 0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	73 2 13 63 5	437 53 81 781 34	3 1 44 2 1	4.40 0.28 2.39 3.87 2.05	< 10 < 10 < 10 < 10 < 10 < 10	< 1 (< 1 < (0.35 0.09	< 10 < 10 < 10 < 10 < 10 < 10	13.55 0.43 2.92 14.05 1.17	565 85 320 340 385
96-66 96-67 96-68 96-69 96-70	205 22 205 22 205 22 205 22 205 22 205 22	6 6 6 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.8	2.93 0.18 0.51 2.12 1.96	22 18 32 9 5	< 10 270	< 0.5 < 0.5 < 0.5 0.5 < 0.5	2 2 < 2 < 2 < 2	0.10 0.22 0.18 0.11 1.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	55 62 72 17 12	382 717 112 35 45	4 3 5 38 328	4.58 3.59 3.95 4.21 3.59	10 < 10 10 < 10 < 10	_	0.01	< 10 < 10 < 10 10 < 10	10.70 14.00 14.45 0.84 1.23	875 460 380 530 310
96-71 96-72 96-73 96-7 4	205 22 205 22 205 22 205 22	6 < 5 6 < 5	< 0.2 < 0.2 0.2 0.2	2.45 0.13 2.01 2.59	12 20 13 9	60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2	2.31 0.61 1.84 0.79	1.0 < 0.5 < 0.5 1.0	15 50 12 11	75 452 76 72	56 2 45 77	4.33 3.23 4.99 4.83	< 10 < 10 < 10 < 10 < 10	< 1 < 1	0.24 0.01 0.25 0.55	< 10 < 10 < 10 < 10	2.14 12.60 0.59 1.02	935 835 420 385
															CATION:					

ì

1.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: ALIONIS, ED

. *

127 - 1140 CASTLE CRES. PORT COQUITLAM, BC V3C 5M4

Par l'umber :2-B iges :2 То Cerundate Date: 31-JUL-95 Invoice No. 19625237 P.O, Number :0 Account :NWK

Project : EDWARD ALIONIS Comments: ATTN: ED ALIONIS CC: ART TROUP

**

									ÇE	RTIF	CATE	OF A	NALY	'SIS	A9625237	
SAMPLE	PREP Code	Mo ppm	Na. %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	т1 ррш	U ppm	V mqq	W ppm	Zn mqq	Ni ppm	
96-41 96-42 96-43 96-44 96-45	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01 0.01	1450 1685 1535 1435 1320	90 120 10 50 60	2 2 2 2 2 2	2 6 4 2 < 2	4 6 5 5 5	<pre>< 1 < 0.01 3 < 0.01 5 < 0.01 2 < 0.01 8 < 0.01</pre>	< 10 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 14 12 11 12	< 10 < 10 < 10 < 10 < 10 < 10	20 24 14 18 24	2300 2300 2400 2200 2000	
96-46 96-47 96-48 96-49 96-50	205 226 205 226 205 226 205 226 205 226 205 226 205 226		0.24 0.20 0.21 0.01 0.01	23 7 4 1505 1500	760 720 740 60 100	< 2 2 2 4 10	< 2 < 2 2 2 2 < 2	3 3 1 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 10 < 10 < 10 < 10 < 10 10	< 10 < 10 < 10 < 10 < 10 < 10	30 29 23 6 6	< 10 < 10 < 10 < 10 < 10 < 10	40 42 40 22 16	22 7 4 2150 2200	
96-51 96-52 96-53 96-54 96-55	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1	0.01 0.18 0.11 0.01 0.16	1610 44 15 1010 12	50 860 760 100 960	8 2 4 6 8	2 < 2 < 2 < 2 < 2 < 2 < 2	4 5 2 3	44 < 0.01 43 0.14 139 0.01 57 < 0.01 124 0.12	10 < 10 < 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 96 49 7 71	< 10 < 10 < 10 < 10 < 10 < 10	30 40 55 18 52	2200 52 14 2100 12	
96-56 96-57 96-58 96-59 96-60	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	1635 1570 1520 1785 1445	30 20 30 50 160	< 2 2 2 2 4	< 2 2 < 2 2 2 < 2	; 5 3 4 4	1 < 0.01 2 < 0.01 10 < 0.01 < 1 < 0.01 13 0.01	10 < 10 10 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	8 8 3 5 18	< 10 < 10 < 10 < 10 < 10 < 10	20 12 20 14 18	2300 1950 2100 2450 - 1900	
96-61 96-62 96-63 96-64 96-65	205 226 205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1	: 0.01 0.12 0.10 : 0.01 0.17	1545 32 223 1445 7	70 160 660 10 810	2 8 2 < 2 < 2 < 2	< 2 < 2 < 2 2 < 2 < 2	< 1 4 4 4	9 < 0.01 10 < 0.01 39 0.10 1 < 0.01 19 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 < 1 43 14 40	< 10 < 10 < 10 < 10 < 10 < 10	14 40 32 20 34	2250 98 198 2000 6	
96-66 96-67 96-68 96-69 96-70	205 226 205 226 205 226 205 226 205 226 205 226	< 1 <	0.01 0.01 0.01 0.04 0.11	808 1370 1720 47 17	310 40 590 1090	< 2 4 < 2 6 8	< 2 < 2 2 < 2 2 2 2	10 5 3 3 4	5 < 0.01 13 < 0.01 8 < 0.01 28 0.01 56 0.07	< 10 < 10 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 14 12 56 49	< 10 < 10 < 10 < 10 < 10 < 10	36 14 30 87 46	1400 1900 2500 44 1B	
96-71 96-72 96-73 96-73 96-74	205 226 205 226 205 226 205 226 205 226	< 1 1 < 19 6	0.07 0.01 0.01 0.23	77 824 17 25	1290 10 720 740	18 < 2 18 40	< 2 2 < 2 2	7 4 6 10	94 0.02 68 < 0.01 107 0.13 92 0.15	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	105 8 94 142	< 10 < 10 < 10 < 10	113 10 87 139	84 1500 16 24	
															Harthe	<u>Non</u>

APPENDIX 2

Nickel - Atomic Absorption Spectroscopy (AAS)

A prepared sample (1.00g) is digested with nitric-aqua regia acids for two hours. The digested sample is cooled and diluted to 25 ml with demineralized water. The resulting solution is mixed and the solids allowed to settle. Nickel is then determined using atomic absorption spectroscopy with correction for background absorption.

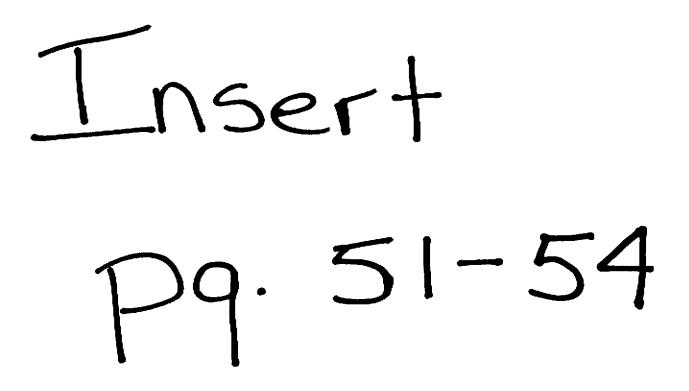
Chemex	Element	Detection	Upper
Çode		Limit	Limit
8	Nickel	1 ppm	1%

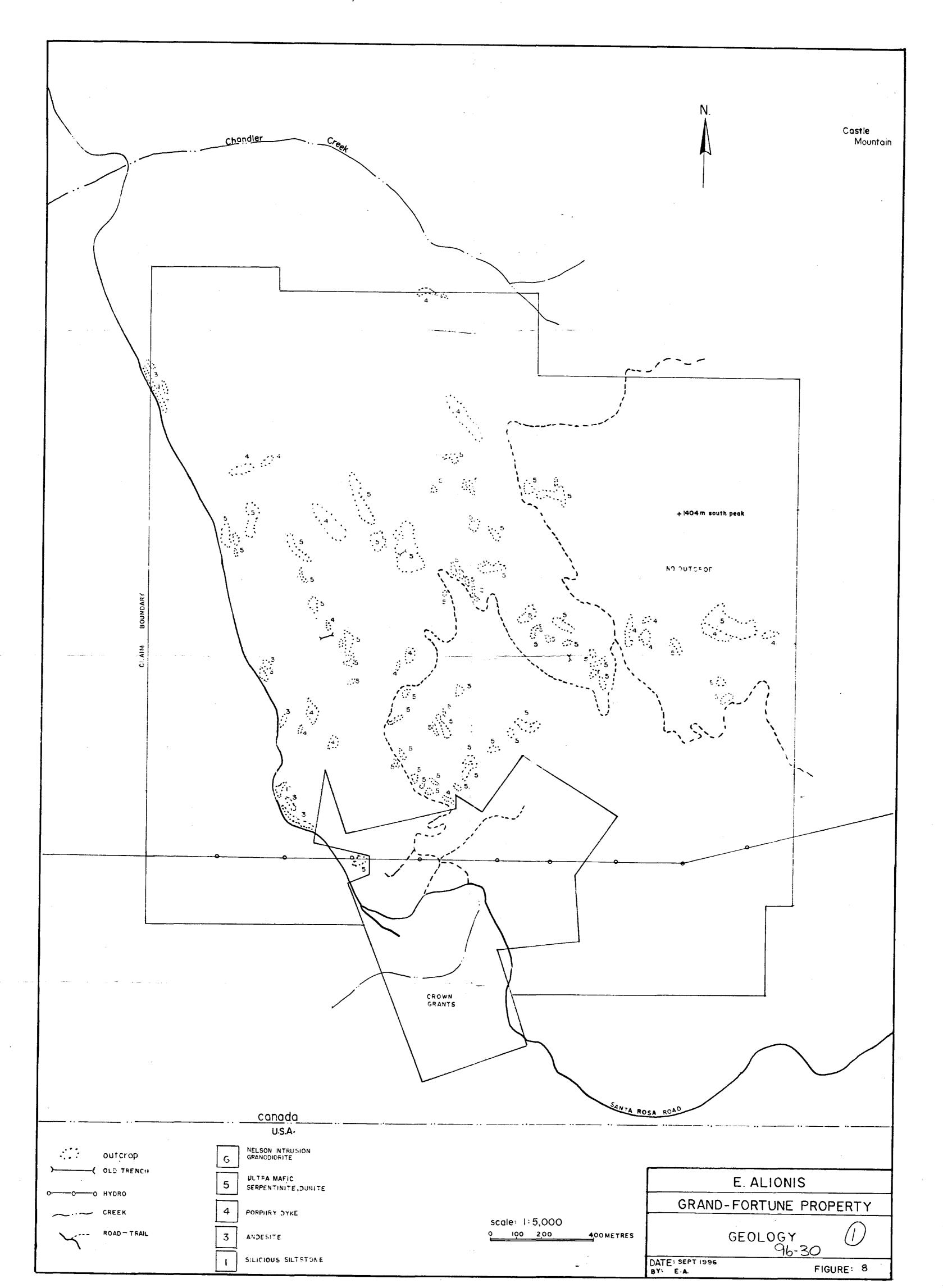
2

)

The nitric-aqua regia digestion dissolves all sulfides, carbonates and most common transition element oxides. Therefore, for all practical means it is a "total" digestion for Cu, Pb, Zn, Ag, Hg, Cd, Co, Mn, etc. However, silicates and resistate oxides and chromites are only leached on the surface of the grains. Nickel silicates are <u>not</u> effectively solubilized. The nickel determined via this digestion procedure is therefore a good approximation of the concentration of the element occurring as a sulfide or arsenide.

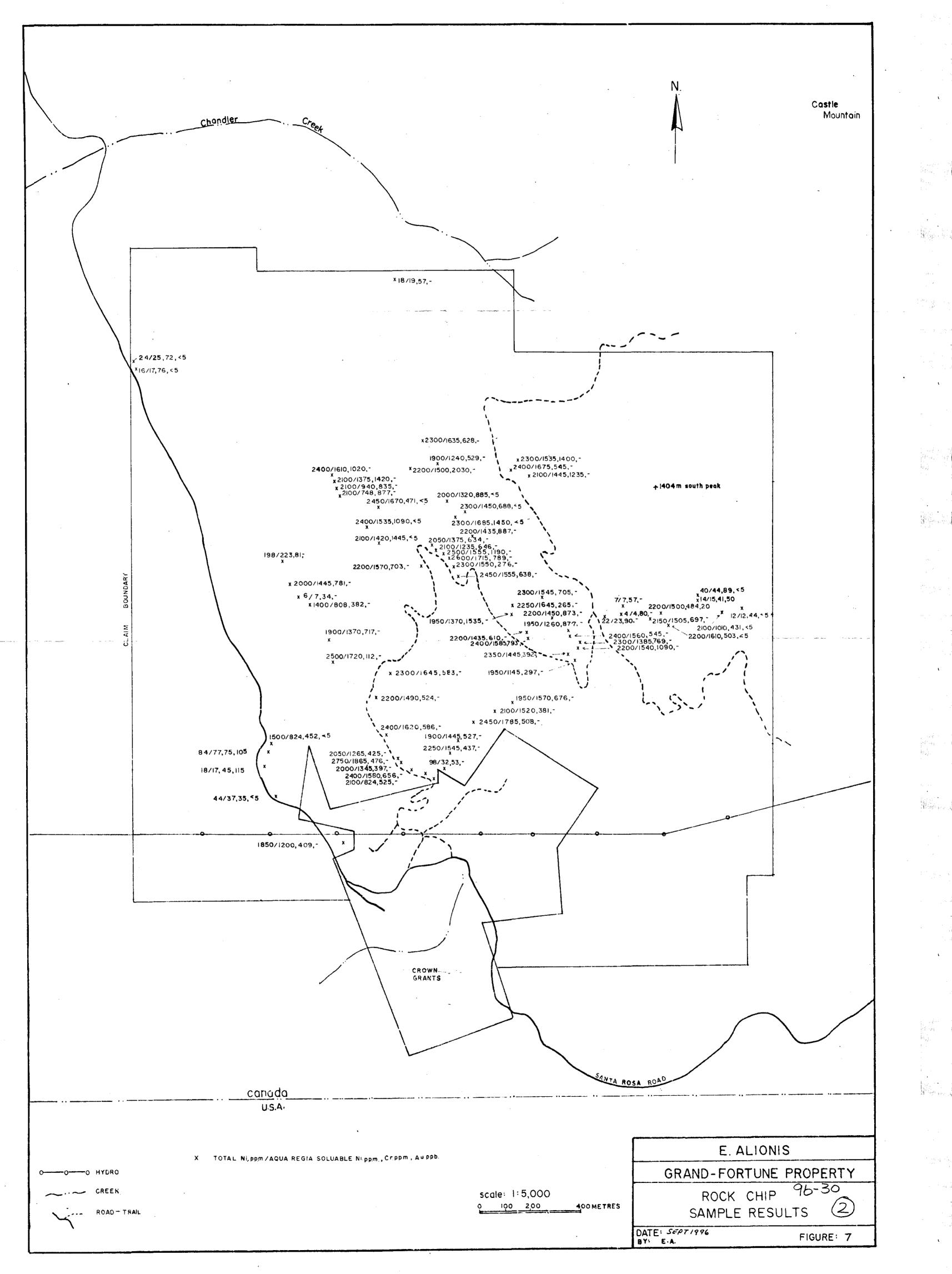
Chromium, Lithium, Rubidium, Strontium, Beryllium, Germanium

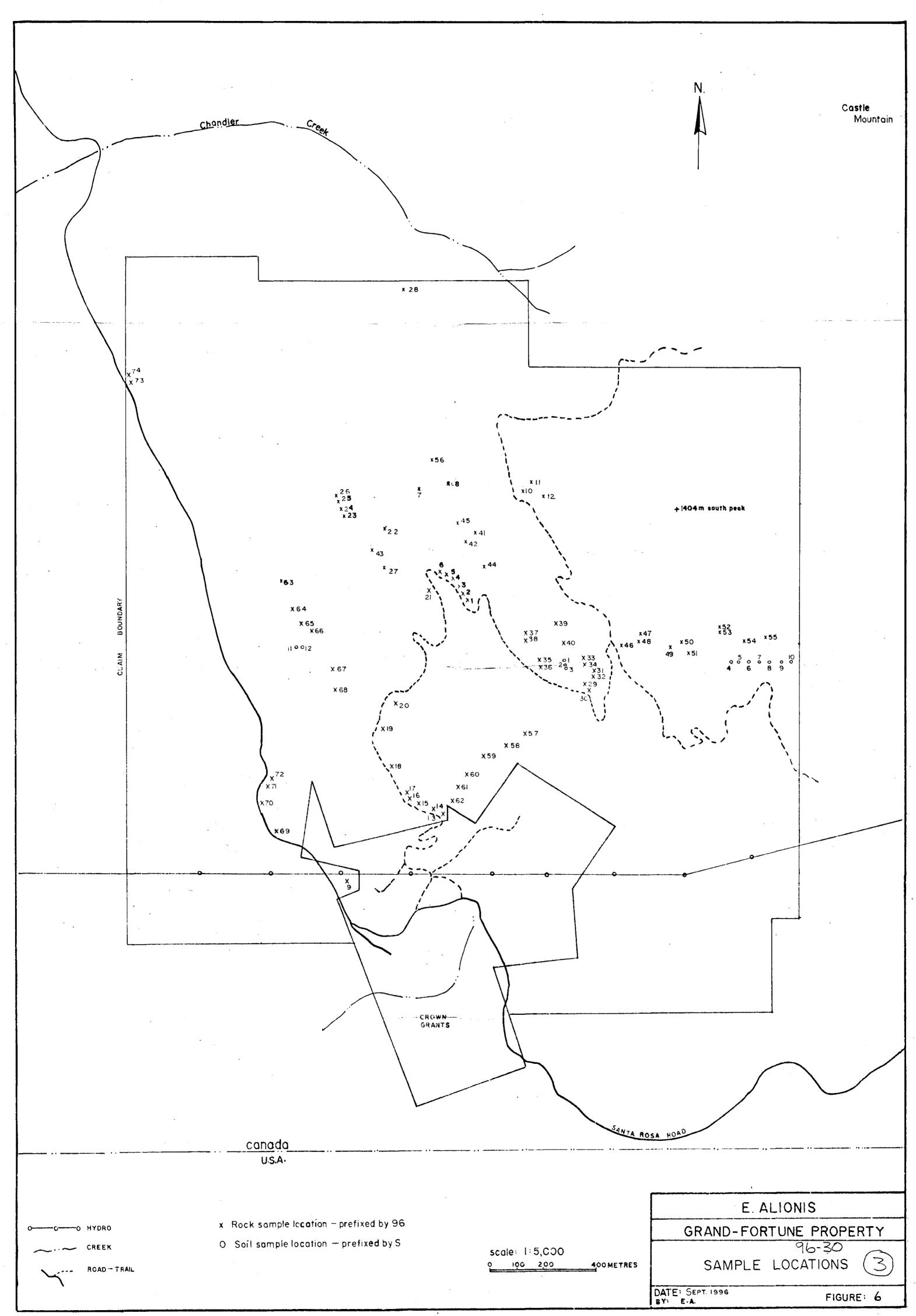

Atomic Absorption Spectroscopy


Chemex Codes: 12, 27, 30, 32, 34, 41

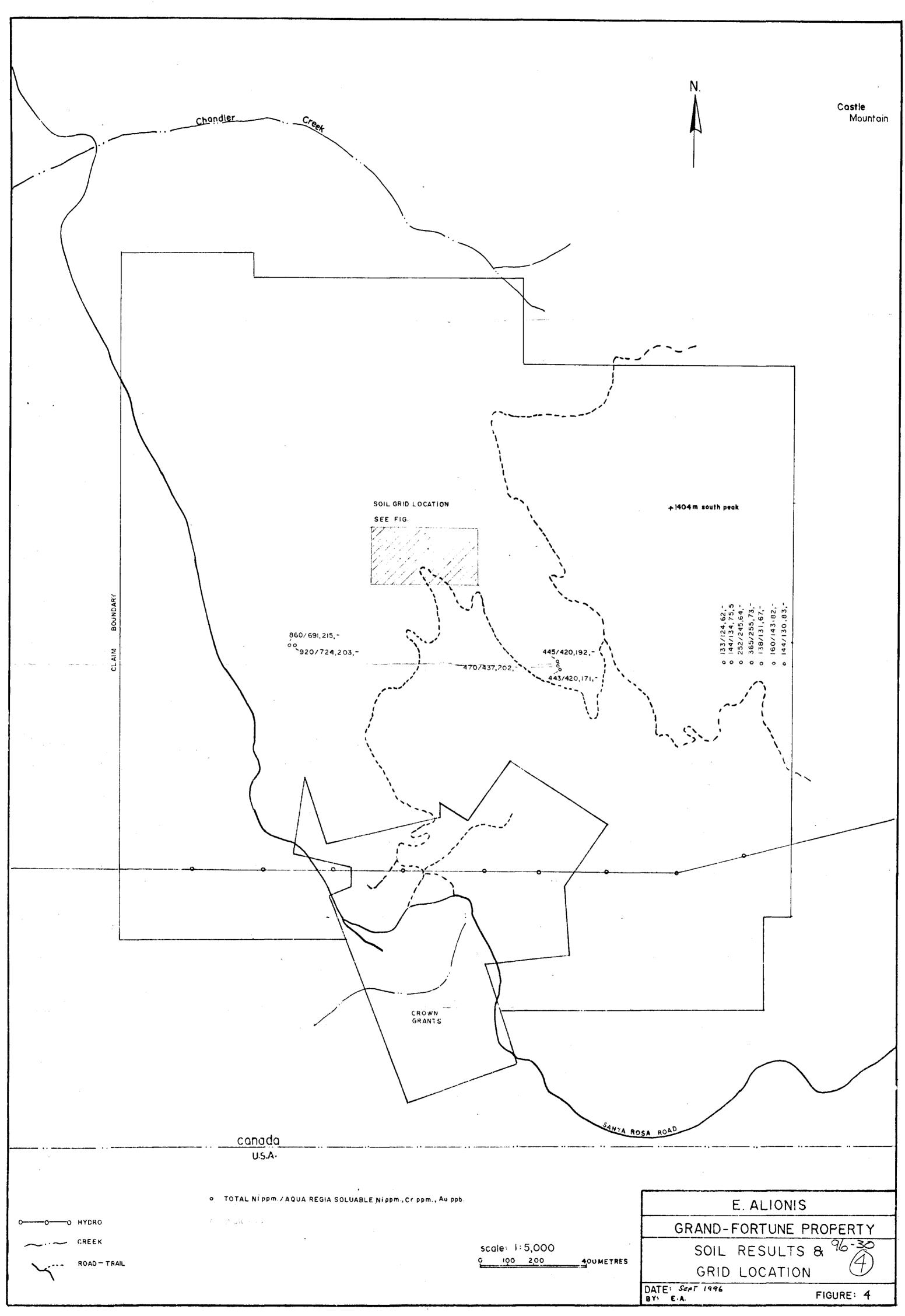
A prepared sample (1.00g) is weighed into a teflon beaker and digested with hydrofluoric, nitric and perchloric acids to dryness. The residue is taken up with 25 ml of 10% hydrochloric acid and the elements are determined by standard atomic absorption spectroscopy.

Chemex Code	Element	Detection Limit	Upper Limit
12	Chromium	2 ppm	1%
27	Lithium	1 ppm	0.1%
-30	Rubidium	1 ppm	1%
32	Strontium	1 ppm	1%
34	Beryllium	0.1 ppm	0.1%
41	Germanium	5 ppm	0.1%
8	Nickel (total)	1 ppm	1%


The tri-acid digestion is a "total" digestion. Only the most resistant minerals - spinels, rutile, tourmaline, topaz, zircons, etc. are not put into solution. All nickel silicates as well as all minerals effectively attacked by the nitric-aqua regia digestion dissolve. The "total" nickel content is determined. Therefore, the difference between the nickel concentration of the total digestion and the nitric-aqua regia is a good approximation of the amount of nickel silicate in the sample.



1 1



.

.

22+00 N	19 00)E			20 0 0	E			21 0	OE				22 00E				23,00E
	360/ 322,126,	300/300,165,	450/515,340,	490/478,341,	360/359,23 9, –	176/170,76,	43/40,17,	342/310,184,-	178/170,97,- 138/139,69,-		. 276/265,189,	- 260/228,156,	- 420/ 350, 254,	- 300/279,245, —	- 290/281,109;-	- 132/123,37,	- 180/190,90,	325/356,201,70
21+50 N 21+00N	350/372,211,	- 390/ 404 ,227,	- 1700/1400, 1325,	- 695/686,251,	440/481,264, -	- 690 /7 85 ,653,	- 810/794,564,~	- 501/490, 485,	166 0/5/5,459,- 84/80,66,-		-280/193,118,-	- 310/225, 161,	- 650/620,422,	- 395/388,143, ~	- 685/600,305,	- 220/202,50,-	- 250/253,127,	720/691,142,
217UUN	1710/703,557,	- 1600/1225,1000,-	- 1600/1250, 993,-	-1730/1405,672,-	- 770/ 76 2,453,150	- 890/824,463,-	- 1000/908,567,60	- 260/253,1 64 ,—	106/109,46,-	N	- 550/ 5 20,315,15	- 250/239,184,	-310/288,108,	_ 245/233,141,-	-190/183,65,-	- 342/310,127,-	-270/315,106, -	137/145,54,-
20+50N	91/99,41,	620/610,232,-	- 220/227, 107,	- 810/ 780, 481,	- 1300/1070,658,	- 1200/1030,631,	- 1150/1000,872, —	- 440/440,174,	300/294,169,-	•	.276/260,141,25	- 460/417, 289, 10	- 280/207,177,	- 300/275,161,	- 250/255,138,	- 360/ 323,157, -	- 460/446,248,55	1 265/260,141,5
20+00N																		
†9+50N	300/276,74 ,-] 380/380, 119,-	350/323,104,- 172/154,48,-	425,379,149,- 270/250,101,-	340/302,125,- 310/279,100,-	- 320/302,149,60 380/332,198,~	365/335,280,- 380/317,183,-	345/310,258, - 1100/878,567,-	630/555,2,20, - 440/440,174, -	230/221,97,- 370/366,210,-		- 172/164,144, - 600/580,408,15	360/366,156,20 300/270,188,10	- 835/699,386,- 205/196, 87,-	- 4 15/406 ,320 - 280/268, 117, -	245,277,120, 119,119,55,-	300/ 285,261,5	- 230/208,103, - 590/535, 259,-	192/217,149,15
N									BASE) 1						E. AL	IONIS	Manaka
	LEG	END												(GRAND		*****	ROPERTY
			RIDLINE - S					SCALE: O	25		0	The local sector of the sector	100	GRI	D-SOII	_ SAM	PLE RE	ESULTS
l	ί 'ου		WUA NE GIA S(JE UABLE NIP	pm,Cr.ppm,A	ли ррв		,		METR	ES			DATE: S BY: E	SEPT,1996			FIGURE: 5