BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 1996/1997

REPORT #:

PAP 96-33

NAME:

DON JOHNSON

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

 TAIVED
JAN 2 8 1997
PROSPECTORS THE TRACE OF MEIMAR

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name DON JOHNSON Reference Number 96/97 P 72
LOCATION/COMMODITIES Project Area (as listed in Part A) HATOVONTENL LAKE-SASH MINFILE No. if applicable Location of Project Area NTS M 93 K / 15 E Lat 54° 50' N Long / 24° 30' A
Description of Location and Access MOST' OF THE CLAIM IS IN A CLEAR C. ACLESS CAN BE GAINED FROM FORT ST JAMES,
BY TARVELING ON NONTH ROAD AND THE GEAMANS Main Commodities Searched For GELD, SILVER, LEND, ZINC
Known Mineral Occurrences in Project Area MOUNT MILLIGAN 13 FOURTY KLMS NOATH OF THIS CLAIM.
WORK PERFORMED 1. Conventional Prospecting (area) FOUR SOURAE KMS. 2. Geological Mapping (hectares/scale) SEVENTEEU 3. Geochemical (type and no. of samples) FREEN ROCK SAMPLE E 17 4. Geophysical (type and line km) 5. Physical Work (type and amount) FOUR DAY WORKING WITH SOIL AUGER. 6.: Drilling (no., holes, size, depth in m, total m) 7. Other (specify)
SIGNIFICANT RESULTS Commodities LEAD, 2/NC, Ac Claim Name SAS #/ Location (show on map) Lat 54° 5.3′N Long 124° 36′4 Elevation 1050 m Best assay/sample type A6 - 29 PPm Pb - 6190 2N - 9680 - GRAB
Description of mineralization, host rocks, anomalies THE MINERALIZATION IS MINDR GALENA AND PIRITES. THE HOST ROCK 15 ANDESITE. THE ANDESITE IS CONTACTED WITH MONZONITE. A GRAB SAMPLE IMAD AG-29 PPM ZINC 9680 PPM AND LEAD 6190 PPM.

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

TECHNICAL REPORT

HAT DUDATEHL LAKE, - SAS#/ CLA/M AND SURMOUNDING AREA.

I MADE TWO TRIPS INTO THE AREA FOR A

TOTAL OF TWENTY PROSPECTING DAYS.

THIS THE FIRST FOUR DAYS, ATTEMPTING

I SPENT THE FIRST FOUR DAYS, ATTEMPTING

TO GET THAOURH OVERBURDEN WITH MY HAND

AUGIER. THESE WERE TAKEN OVER A

LARGE AREA. THE PURPOSE WAS TO IDENTIFY

BED ROCK, AND HOPEFULLY FIND THE SPOT

WHERE I FOUND AURIFEROUS CALCITE

ROCK-LAST YEAR. THIS WAS TEDOUS

AND FRUSTERATING. AND UNSUCESSFUL.

THE PLAN WAS TO IDENTIFY CORRECT

BED ROCK AND BRING IN A B PACK SACK

DRILL, AND DO A BRID.

THE NEXT THING I DID, WAS SOME CHANNEL SAMPLES WHERE I TOOK A GRAB SAMPLE LAST YEAR. THE SAMPLE THEEN WAS 4-62, THIS HAD 32.5 PPM A6 AND ANOMOLUS LEAD & ZINC.

THE CHANNEL SAMPLES WERE TAKEN
ACONG A ROAD THAT HAD BEEN CUT DOWN
TO BED ROCK. THAEE SAMPLES WERE
THREN FROM A CONTINOUS CHANNEL SAMPLE
SIXPEEN METRS LONG. THE MAIN ROCK
TYPES WERE ANDESITE AND MONZONITE.

WITH ABUNDANT CALCITE.

HAT DUDATEHL LARE - SAS # 1 SECOND TRIP - OCT 4 - OCT 16. - 96

SAS-87 - I STARTED THIS PROGRAM BY TAKING SAMPLE 87. WHILE STAKING THE CLAIM I NOTICED SOME OUTCROPS THAT SIEEMED HICH IN CALSIZE,

SAS-98- AFTER GETING AN ANOMOLUS, LEAD, ZINCE AND SILVER READING IN SAMPLE . 76, ON LAST TRIP I DECIDED TO CARE FULLY LOOK OVER PREADING THIS WAS IN ANDESITE WITH ABUNDAND CALCINE IN ROCK. BELOW THIS DUT CAOP WAS SOME MONZONITE WITH DEASIONAL PIRITE CRISTALS.

SAS-98 IS FROM THIS DUT CASP.

SAS-89 - THIS IS MONZONITE IN DIRECT CONTACT WITH ANDESITE OUT CROP. THERE WAS SOME ALTERATION IN THE ROCK. THIS PROBABLY ACCOUNTS FOR THE BARITE - 1160 PPM.

SAS 90 - THIS IS ABOUT FOUR METRS NORTH OF SAMPLE 76. SAS 90 ALSO HAS A SMALL AMOUNT OF GALENA AND PIRITES. THIS OUT CAOP OF ANDESITE IS MOSTLY COVERED BY A SHALLOW OVER BURDEN.

SAS 91- THIS IS IN THE NEXT AND ESITE OUT CAOP.

THIS OUT CROP IS A BIT DIFFERENT TYPE OF AMESINE

THERE WAS SEME DUNATE STRINGERS AND CALCIFE

IN THIS ROCK. I WAS HOPING TO GET SOME GOLD READINGS, THATS WAY I SAMPLED THIS OUT CROP.

SAS-91- 15 MOSTLY QUARTZ STRINGERS 100 FT NOATH OF SAS 90. THIS IS IN DIFFERENT ANDESITE.

SAS 92 - 30'NORTH OF SAS 91. QUARTZ STAINKERS FROM TWO SPOTS.

SAS 93. ANDESITE SAMPLE-WITH DUNATZAND CALCITE TAKEN FROM TWO SPOTS.

ShS 94. ANDESITE FROM NORTH END OF ANDESITE
HILL.

SAS 95. - SOME QUARTES CAISTALS (SMALL) IN ANDESITE ROCK,

SAM 96. - THIS ROCK IS SOME SOAT OF ALTERED ANDRESITE.

SAM 97 - ANDESITE WITH CALCITE JUST SOUTH OF ALDERATION AREA WHERE CHANNEL SAMPLES WERE TAKEN. THIS IS (72 73 + 74). NOW THAT I'VE COMPLETED THE
ASSESSMENT REPORT FOR THE SASK!
PROPERTY, I PLANTO GIET A PACK CAK
DRILL AND DOA GAID FITS SUMMER.

I BELIVE ITLS ESSENTUAL THAT I FIND
THE SOACE OF THED GOLD BERING ROLK,
THAT I FOUND LAST YEAR.

I WASNIT ABLE TO DOTHE TENDAYS AT INZANA LAKE.

Don Jahren

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Page Number :1-A Total Pages :1 Certificate Date: 23-JUL-96 Invoice No. : 19624965 P.O. Number : Account

:FCS

Project: Comments: ATTN: DON JOHNSON

											CE	RTIFI	CATE	OF A	NAL	/SIS	/	49624	965		
SAMPLE	PRI		Au ppb FA+AA	Ag ppm	λ1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo pom	Na %
SAS 72 SAS 73 SAS 74 SAS 75 SAS 76	205 205 205 205 205 205	226 226 226 226 226 226	45 35 75 < 5 15	3 9 4 < 1 29	3.21 4.10 3.43 1.88 3.93	660 50 320 < 10 60	340 460 380 80 340	< 5 < 5 < 5 < 5	< 10 10 < 10 < 10 < 10	0.57 0.80 0.72 16.60 8.33	< 5 15 20 < 5 75	35 45 30 20 20	110 180 170 370 80	160 150 105 30 205	8.55 9.89 7.03 2.85 5.79	< 10 < 10 < 10 < 10 < 10	0.21 0.17 0.33 0.02 0.18	1.16 2.59 2.18 3.13 2.60	3060 4570 2590 3480 3820	5 5 < 5 < 5	0.04 0.03 0.03 0.04 0.01
						,															
				,			•														
								•													

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Page Number : 1-B
Total Pages :1
Certificate Date: 23-JUL-96
Invoice No. : 19624965
P.O. Number :

:FCS Account

Project : Comments: ATTN: DON JOHNSON

The second of the second of										CE	RTIFI	CATE	OF AN	IALYSIS	A9624965	
SAMPLE	PREP CODE	Ni ppm	P ppm	Pb mqq	Sp ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	ppm M	Zn ppm			
BAS 72 BAS 73 BAS 74 BAS 75 BAS 76	205 226 205 226 205 226 205 226 205 226	55 100 80 165 25	800 900 1000 400 500	90 415 200 50 6190	< 10 10 10 < 10 10	25 25 15 5 15	40 50 50 495 155	0.03 0.05 0.05 0.03 0.05	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	220 260 180 60 200	< 20 < 20 < 20 < 20 < 20	375 207,0 1875 120 9680			
														•		
		<u>.</u>													_	

CERTIFICATION:____

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., British Columbia, Canada

V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: JOHNSON, MR. DON BOX 93

FRASER LAKE, BC VoJ 180

A9636523

Comments: ATTN: DON JOHNSON

CERTIFICATE

A9636523

(FCS) - JOHNSON, MR. DON

Project: P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 23-OCT-96.

	ŞAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	12 12 12 12	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 2118 2120 2121 2122 2123 2124 2125 2126 2127 2130 2131 2132 2151 2134 2135 2136 2137 2134 2142 2143 2144 2143 2144 2144 2144	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock As ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cd ppm: 32 element, soil & rock Cc ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Ms %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Nn %: 32 element, soil & rock Nn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	FA-AAS ICP-AES	5 0.2 0.01 2 10 0.5 2 0.01 0.5 1 1 0.01 10 0.01 10 2 2 1 1 0.01 10 2 2 1 1 0.01 10 2 2	10000 100.0 15.00 10000 100.0 10000 100.0 10000

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project: Comments: ATTN: DON JOHNSON

Page Number :1-A Total Pages :1 Certificate Date: 23-OCT-96 Invoice No. :19636523 P.O. Number : Account :FCS

CERTIFICATE OF ANALYSIS	A9636523
JERTIFICATE UF ANALTSIS	WADODD

		_			<u>-</u>					CE	RTIFI	CATE	OF A	NAL'	YSIS		49636	523		
SAMPLE	PREP	Au ppb FA+AA	Ag ppm	Al %) As	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
SAS-87 SAS-88 SAS-89 SAS-90 SAS-91	205 226 205 226 205 226 205 226 205 226	< 5 < 5 15	< 0.2 < 0.2 < 0.2 < 7.2 27.2	2.06 1.32 1.45 4.19 3.56	< 2 42 18 46 20	180 1160 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	12.45 1.41 1.69 4.71 5.07	< 0.5 1.0 1.0 91.0 2.0	11 5 6 24 18	22 56 39 87 77	68 1 2 201 75	2.95 2.62 2.89 5.01 3.82	< 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.10 0.14 0.18 0.03 0.04	< 10 40 40 < 10 < 10	1.21 0.70 0.72 2.83 1.74	2350 870 1185 2410 1785
SAS-92 SAS-93 SAS-94 SAS-95 SAS-96	205 226 205 226 205 226 205 226 205 226	< 5 10 < 5	0.2 0.2 0.2 < 0.2 < 0.4	3.85 4.36 3.30 4.51 1.97	4 < 2 2 < 2 < 2	60 120 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	3.75 3.84 2.81 6.90 1.44	0.5 < 0.5 9.0 < 0.5 < 0.5	20 20 28 15 18	61 45 61 54 45	81 97 85 69 105	4.35 4.64 5.62 3.35 2.98	10 10 10 10 10 < 10	< 1 < 1 < 1 < 1	0.01 0.02 0.01 < 0.01 0.07	< 10 < 10 < 10 < 10 < 10	1.87 1.89 2.44 1.20 0.49	705 925 1435 675 115
SAS-97 SAS-98	205 226 205 226	15 10	< 0.2 < 0.2	1.64 1.23	6 42		< 0.5 < 0.5	< 2 < 2	13.90 1.57	< 0.5 1.0	12 5	45 39	50 1	2.67 2.57	< 10 < 10	< 1 < 1	0.03 0.18	< 10 · 40	1.38 0.50	1120 1105
		<u> </u>																		
				-																
												.								•
				,																
			,															•		
·											·									
	1 3																			

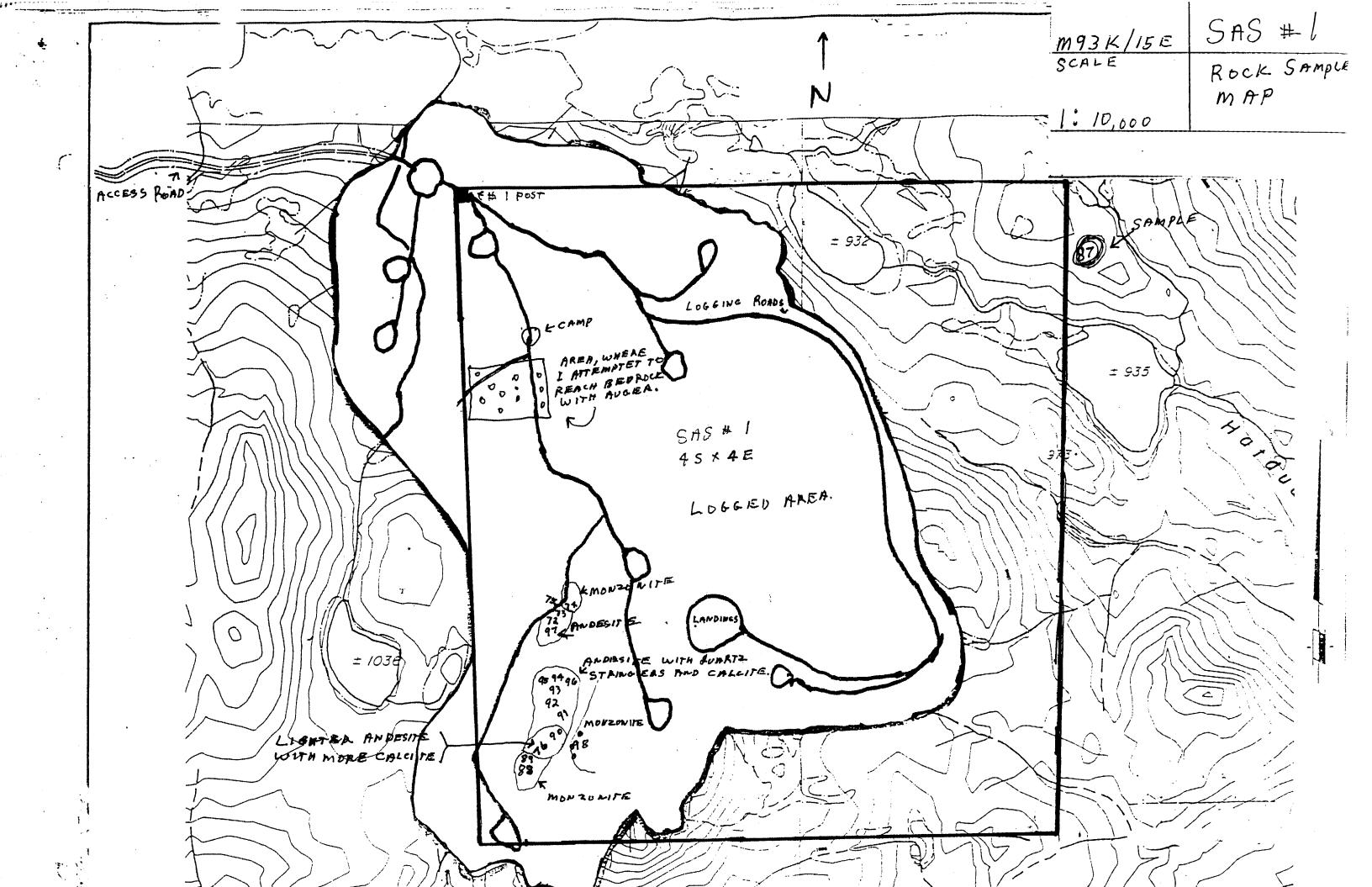
CERTIFICATION:__

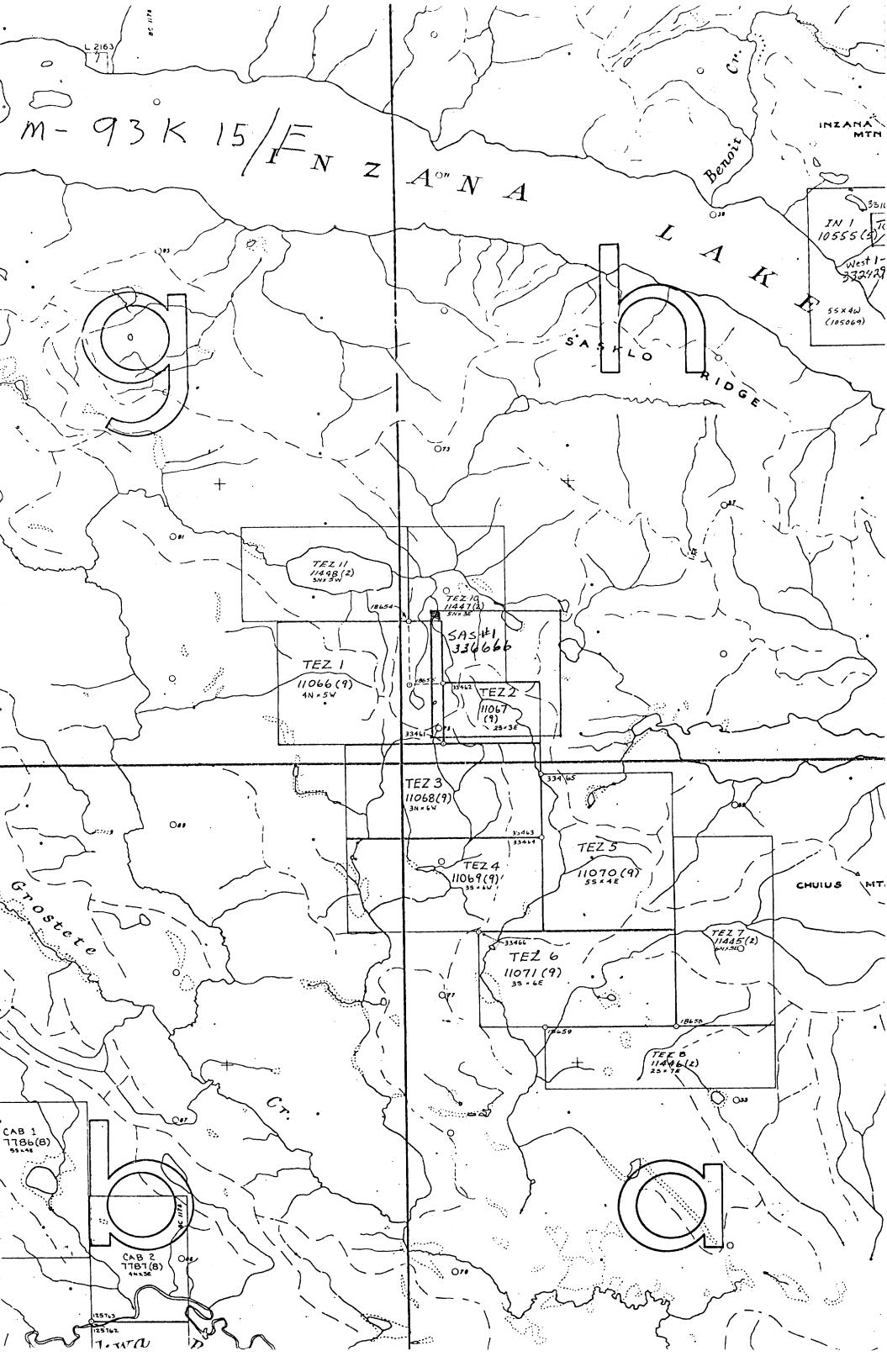
Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC VOJ 1S0


Project : Comments: ATTN: DON JOHNSON


CERTIFICATION:

Page Number :1-B
Total Pages :1
Certificate Date: 23-OCT-96
Invoice No. :19636523
P.O. Number :

: :FCS Account

									ÇE	RTIF	ICATE	OF A	(NAL)	YSIS	A9636523	
SAMPLE	PREP CODE	Ko ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	T1 ppm	U ppm	v ppm	W ppm	Zn ppm		
SAS-87 SAS-88 SAS-89 SAS-90 SAS-91	205 226 205 226 205 226 205 226 205 226 205 226	< 1 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.04	2 3 4 24 14	640 1230 1210 540 410	< 2 12 6 6170 60	< 2 < 2 < 2 8 2	8 3 3 19 8	524 < 0.01 118 < 0.01 99 < 0.01 156 0.24 114 0.20	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	70 48 48 187 134	< 10 < 10 < 10 < 10 < 10	38 94 122 8600 250		
SAS-92 SAS-93 SAS-94 SAS-95 SAS-96	205 226 205 226 205 226 205 226 205 226 205 226	< 1 < 1 < 1	< 0.01 < 0.01 < 0.01 < 0.01 < 0.29	16 14 27 14 25	540 670 650 470 1050	32 74 12 12	< 2 < 2 < 2 < 2 < 2	11 14 15 9	41 0.25 38 0.25 52 0.32 50 0.19 106 0.30	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	172 175 217 155 86	< 10 < 10 < 10 < 10 < 10	96 96 1560 58 36		
SAS-97 SAS-98	205 226 205 226	< 1 1	0.01 0.03	11	310 1380	2 14	< 2	9 3	341 0.15 103 < 0.01	< 10 < 10	< 10 < 10	108 38	< 10 < 10	40 192		
	-															
	·															
				•												
·															•	
	5															

PROSPECTING REPORT FORM (continued) JAN 2 9 1997

If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

supporting data (see section 16) required with this TECHNICAL REPORT.

PROSPECTORS PROBRATE
MEMPH

Reference Number 96/97 P72 Name DON JOHNSON LOCATION/COMMODITIES Project Area (as listed in Part A) FROSER LAKE - JED # MINFILE No. if applicable NTS 93 K/2 W Lat 54° 05' N Long 124° 58' Location of Project Area Description of Location and Access THE CLAIM IS APPS KM5 WEST OF FRASER LAKE. ACCESS CAN BE GAINED BY HIGHWAY 16 AND APRIVATE ROAD. Main Commodities Searched For _ &oLD _ Known Mineral Occurrences in Project Area JED#1 H#S PRODUCED GOLD UHLVES ENDAKO MINES IS APP 9 KMS TO THE WORK PERFORMED 1. Conventional Prospecting (area) 5 KM3 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 9 ROCK SAMPLES 4. Geophysical (type and line km) _____ 5. Physical Work (type and amount) SEVERAL SMALL TAENCH ES WITH PICK. 6,. Drilling (no,. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS Claim Name JED #1 Commodities 1 24° 58' w Elevation 2 500' Location (show on map) Lat _54° - GRAB SAMPLE. Description of mineralization, host rocks, anomalies _____ THE MINERALIZATION CONSISTS OF MINOR CHALLODIRITE, PIRITE, PYRILUSITE IN QUARTZ STRINGERS, IN ANDESITE DYKE. THE DYKE IS TEN FEET WIDE AND. THE LEWATH IS UN KNOWN DUE TO OVERBURDEN. EXPOSED LEWGTH IS APP 100'.

(C

JED#1 - FRASER LAK.

JULY 20 - SEPT 19-96

JED-79 - ANDESITE DYKE - GRAB SAMPLE WITH PIRITE, MINOR CALCUPIRITE AND MALICITE IN QUARTZ STRINGERS.

JED - 80 - THE MAEH ON THE DYKE WHERE I RET CONSISTANT GOLD ASSAYS, SLABED OFF AND WAS WASHED DOWN CREEK. PREVOUSLY THE AVERAGE ASSAY WAS AROUND 20 = 125 OZT. I TOOK A GRAB SAMPLE FROM THREE DIFFERENT SPOTS WHICH ASSAYED 2269 OZT. THIS OUTCAOP SLABE OFF EVERY COUPLE YEARS.

JED# 81-82-83-84 - I WAS DUTE, SURPRISED TO GET SUCH POOR CHIP SAMPLES.

JED# 85 - LARGE BREA OF SOME SORT OF VOLCANIC TUFF, ALOTOF THE ROCK IS FAUT BRECCIA.

JED - 86 - SAME TYPE OF GRAB SAMPLE. IN SAME AREA.

JED - 87 - SOME DRILL CHIPS FROM A WELL; DRILLIED ABOUT A KM TOTHE EAST. I WAS HOPEING TO GET INTO SOME ALTERED MONZONITES UNDER THE VOLCANIC PLOW. (YOUNGER ENDAKO VOLCANICS).

I DID A LOT OF PROSPECT ING IN
THE SURP DUNDING AREA OF JEDEL.

I ALSO HAD A LOCAL GEOLIKIST ON A
DAY TRIP. HE TOOK & VITE A BUNCH
OF SAMPLES AND WAS & VITE
INTERESTED. SOME OF THE SAMPLES
THE FROM A AREA THAT HAPNIT BEEN
TESTED BRFOAR.

I BELIVE THE DYKE IS A FEEDER FROM A MAJOR FALT.

THE GOVERNENT GEOLIGISTS ARE WORKING ON H MAP OF THIS AREA. I'LL GET ONE AS SOON AS ITIS OUT.

I PLAN TO DO SOME DIGING IN THE
AREA OF SAME 85 +86. PREVIOUSLY I
SAW SOME COPPER. CHALCOPINTE) IN
SOME OF THE BRECHA TUFF. THERE IS MONZONTES
UNDER THE VOLCANIC FLOW. PREVIOUSLY I GOT
GARD SAMPLE UP TO .39 OZT AU A COUPLE
ITUNDARD METRS AWAY IN ALTERED MONZONTES

SAMPLE

SAMPLE #82 -JED

SAMPLE #81

SAMPLE #83

SAMPLE #84

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Au

oz/T

0.019

0.001

0.028

< 0.001

PREP

CODE

208 226

208 226

20B 226 20B 226 To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project: JED

Comments: ATTN:DON JOHNSON

Page Number :1 Total Pages :1

Certificate Date: 06-OCT-96 Invoice No. : 19634697

P.O. Number : Account :FCS

CERTIFICATE OF ANALYSIS A9634697

CERTIFICATION: Much Vmh

17478 LAKE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project : Comments:

Page Number :1-A Total Pages :1 Certificate Date: 25-AUG-96 Invoice No. :19628229 P.O. Number :

: :FCS Account

SAMPLE FREE CODE PREP Au pphAn oz/T Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe Ga Eg K La Mg FA+AA FA+AA Ppm 1 Ppm Ppm	1								- -			CI	ERTIF	CATE	OF A	ANAL	YSIS		A9628	8229		
JED-80-CODE 205 226 0.2269 0.2269		SAMPLE		Au pp FA+A	bau oz/I A Fa+aa	Ag A ppm	Al %					Ca \$							Hg Hg			
	-	-77-EXPL -78-CODE JED-79-CODE	205 22 205 22 205 22 205 22	FA+A 6 < 6 < 6 60	5	0.2	2,49	рр м 16	pp∎	• ppm < 0.5	ppm	*	• ppm < 0.5	рр <u>ш</u> 41	ppm 33	ppm 184	*	ppm	ppm	*	ppm	1

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project : Comments:

Page Number :1-B
Total Pages :1
Certificate Date: 25-AUG-96
Invoice No. : 19628229
P.O. Number :
Account : FCS

											CE	RTIF	ICATE	OF A	NAL'	YSIS		\9628229
SAMPLE		REP ODE	Mn ppm	Mo ppm	Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr pp m	Ti %	Tl ppm	p pm	pp≡ V	W ppm	Zn ppm	
77-EXPL	209	5 226 5 226	555 	〈 1	0.07	10	450		< 2	10	39			< 10 	179	< 10	48	
-79-CODE -80-CODE	20: 20:	5 226 5 226 5 226 5 226								· ·				<u>`</u>				
							•											
•			,						•									
		 																
	1																	
	1																	
				ī														
	-																	
		١,																

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers
212 Brooksbank Ave., North Vancouver
British Columbia, Canada V7J 2C1
PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J1S0

A9634698

Comments: ATTN:DON JOHNSON

CERTIFICATE

A9634698

(FCS) - JOHNSON, MR. DON

Project: P.O. # : JED

Samples submitted to our lab in Vancouver, BC. This report was printed on 9-0CT-96.

	SAMI	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	3 3 3 3	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	 .	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Blements for which the nitric-aqua regia digestion is possibly incomplete are: A1, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, w.

ANZ	NI V	TIC A	I DD	COL	DURES
MINE	9 L I		ᆫᇊ	UUE	DUNES

ODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEF LIMIT
983	3	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	3	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	3	Al %: 32 element, soil & rock	ICP- AES	0.01	15.00
2120	3	As ppm: 32 element, soil & rock	ICP- AES	2	10000
2121	3	Ba ppm: 32 element, soil & rock	ICP- AES	10	10000
2122	3	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	3	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	3	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	3	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2126	3	Co ppm: 32 element, soil & rock	ICP-ARS	1	10000
2127 2128	3	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock	ICP- AES ICP- AES	1	10000 10000
2150	3	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	3	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	3	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	3	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	3	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	3	Mg %: 32 element, soil & rock	ICP-ARS	0.01	15.00
2135	3	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	3	Mo ppm: 32 element, soil & rock	ICP-AES	i	10000
2137	3	Na %: 32 element, soil & rock	ICP-ARS	0.01	5.00
2138	3	Ni ppm: 32 element, soil & rock	ICP-ARS	1	10000
2139	3	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	3	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
2141	3	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	3	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	3	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	3	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
2145	3	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	3	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147 2148	3	V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock	ICP-AES ICP-AES	1 10	10000
2149	3	Zn ppm: 32 element, soil & rock	ICP-ARS	2	10000

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project : JED Comments: ATTN:DON JOHNSON

Page Number : 1-A
Total Pages : 1
Certificate Date: 09-OCT-96
Invoice No. : 19634698
P.O. Number :
Account : FCS

FCS

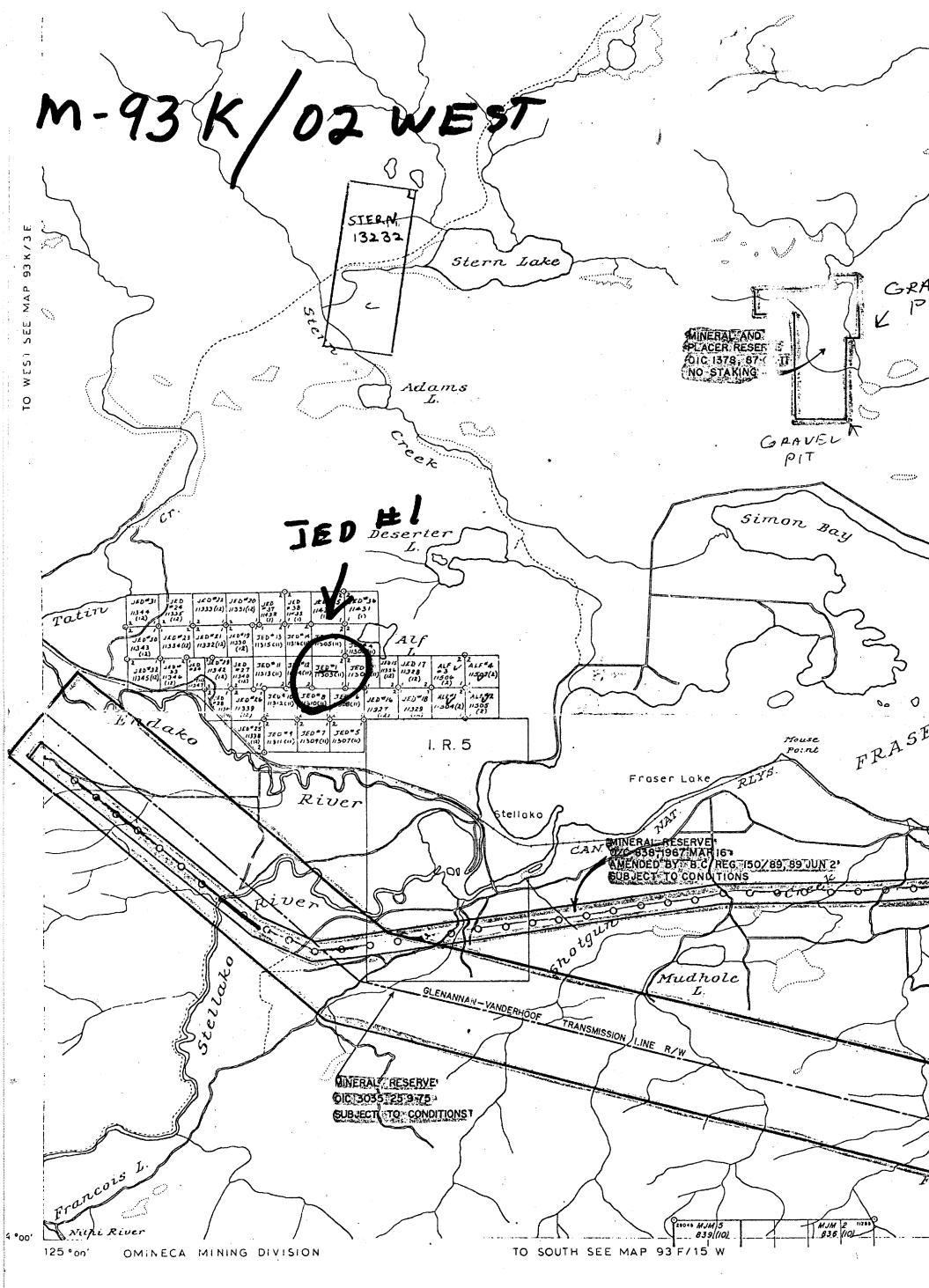
	_									CERTIFICATE OF ANALY						YSIS		4 9634	698		
SAMPLE		EP De	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	M g %	Mn ppm
SAMPLE #85 SAMPLE #86 SAMPLE #87	205 205 205	226 226 226	< 5	< 0.2 < 0.2 < 0.2	0.50 1.21 1.05	< 2 2 < 2	90 80	< 0.5 0.5 < 0.5	< 2 < 2 < 2	0.25	< 0.5 < 0.5 < 0.5	4 3 15	80 42 53	7 93 29	1.79 0.99 3.70	< 10 < 10 < 10	< 1 < 1 < 1	0.31 0.14 0.09	10 10 30	0.43 0.26 1.28	350 95 355
												٠									
·																					
																					;
		ĵ.																			

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON


BOX 93 FRASER LAKE, BC V0J 1S0

Page Number :1-B
Total Pages :1
Certificate Date: 09-OCT-96
Invoice No. :19634698
P.O. Number :
Account :FCS

Project : JED Comments: ATTN:DON JOHNSON

										CE	RTIF	CATE	OF A	NAL	/SIS	A9634698
SAMPLE	PREP	Mo Mo	Na.	Ni mqq	p	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppm	ppm W	Zn ppm	
AMPLE #85 AMPLE #86 AMPLE #87	205 226 205 226 205 226	1 3 1	0.04 0.01 0.15	7 1 33	520 240 2230	< 2 2 < 2	< 2 < 2 < 2	3 2 5	10 38 86	0.10 0.03 0.09	< 10 < 10 < 10	< 10 < 10 < 10	30 17 118	< 10 < 10 < 10	34 40 62	
											-					

CERTIFICATION:

on claims in any area you

DEPARTMENT OF MINES AND PETROLEUM RESOURCES VICTORIA, B.C.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

	3		70
Ц	Ц	P _	72

B. TECHNICAL REPORT

•	One technical	report to	be completed:	for each	project area

Refer to Program Requirements/Regulations, section 15, 16 and 17.

If work was performed on claims a copy of the applicable assessment report may be subspaced by supporting data (see section 16) required with this TECHNICAL REPORT.

JAN 29 (237

<u> </u>	
Name DOW JOHNSON Reference Number 96/97 P	72
LOCATION/COMMODITIES ,	
Project Area (as listed in Part A) CABIN LAKE MINFILE No. if applicable	_
Location of Project Area NTS M 93F / 14E Lat 53 53 Long /	
Description of Location and Access TRE LOCATION IS AUITE 1-44	
ACCESS 18 GAINED VIA FRANCOIS LAKE ROAD T	
<u>.</u>	AEN JU
CABIN LAKE BRANCH.	
Main Commodities Searched For GOLD, SILVER, COPPER, LEA	10, ZIN
Known Mineral Occurrences in Project Area THERE WAS SOME GA	LENA
WITH SILVER UTLUES FOUND IN AREA.	
WORK PERFORMED	
1. Conventional Prospecting (area) 3 SOUARE KMS.	
2. Geological Mapping (hectares/scale)	
3. Geochemical (type and no. of samples) SIX ROCK - GRAB SA	mples
4. Geophysical (type and line km)	<u>,</u>
5. Physical Work (type and amount)	
6,. Drilling (no,. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS	
Commodities COPPER Claim Name	
Location (show on map) Lat 53 53 Long 125 62 Elevation 108	70 M
Best assay/sample type 7% COPPER - GRAB SAMPLE.	
Description of mineralization, host rocks, anomalies	 F 力
DIORITE. THERE SEEMS TO BE A SMALL OUT	
ON HILL SIDE. THERE IS A DECOMPOSED	tunkt 2
<u> VIEW.</u>	

CABIN LAKE

THIS IS A LARGE AREA, AND WOULD THKE A LONG TIME TO PROSPECT.

CABIN - 77 - JUARTZ MATERIAL FROM
DECOMPOSED VIEW. ALOT OF HEMITITE.

CABIN - 78. SILISIFIED ROYALITE WITH HEAVY LYOMINITE.

CABIN-88. HEAVLY MINERALIZED DUARTS VIEN. C'MALCOPIRITE AND MALICITE. THIS OUT CROP IS ON A ROCK BLUFF. AND SEEMS TO BE SHEARED OFF. THE VIEN CUTS THROUGH ALTERED DIORITE.

CABIN -99 - SAMPLE OF MINEARLIZED ALTERED DIDRITE, PIRITE AND MINOR CHALCOPIRITE.

CABIN-115- VOLCANIC BRECKIN WITH ALOT OF LIDMITITE, DUT CROP RUNS FOR JUITE A DISTANCE. CABIN-116 - SAME DUT CROP.

CERTIFICATE OF ANALYSIS iPL 96J1115

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

INTERNATIONAL PLASMA LABURATORY LTD

INTERNATIONAL PLASMA LABORATORY LID										Fa	ax (604) 879 <i>-</i> 7	898
Johnson, Don		1	Samp:	les	1	= Rock	0= Soil	0= Core 0=F	RC Ct 0= Pulp	0=Other	[111516:36:	11:69103096]
Out: Oct 30, 1996 Project: None G	iven		aw Stor			Mon/Dis					Mon=Month	Dis=Discard
In: Oct 29, 1996 Shipper: Don Jo	ohnson	Р	ulp Stor	age:	12N	Mon/Dis					Rtn=Return	Arc=Archive
PO#: Shipment:	ID=C022401	_		_								
Msg: Au(FA/AAS 30g) ICP(AQR)30		$_{\Gamma}$ Analy						· · · · · · · · · · · · · · · · · · ·	······································			_ -
Msg: Rush Order		## Code	Met T	itle l	_imit L	_imit Ur	nits Descrip	tion	Element	##		
Document Distribution -			hod			High	_					
1 Johnson, Don	EN RT CC IN FX		FAAA	Au				AS finish 30g	Gold	0 1		
Box 93	1 2 2 2 1		ICP	Λg	0.1		ppm Ag ICP		Silver	02		
Fraser Lake	DL 3D 5D BT BL	03 711P	ICP	Cu			ppm Cu ICP		Соррет	03		
BC V0J 1S0	0 0 0 1 0		ICP	Рb		20000	ppm Pb ICP		Lead	04		
ATT. Day labrary	DE. 604 (600 - 640)	05 730P	ICP	Žπ	1 2	20000	ppm Zn ICP		Zinc	05		
ATT: Don Johnson	Ph: 604/699-6425 Fx: 604/699-8536	06 703P	TOD.	۸ -	C:	0000	A- TOD	F		o.c		
	LX: 004) 033-8330	06 703P	ICP ICP	As Sb		9999 9999	ppm As ICP ppm Sb ICP	2 bbw	Arsenic	06 07		
		08 732P	ICP	Hg	3	9999	ppm 30 ICP		Antimony	08		
		09 717P	ICP	Mo	1	9999	ppm Mo ICP		Mercury Molydenum	09		
		10 747P	ICP	TI	10	999		10 ppm (Incomple	-	10		
		10 1411	1.01			333	ppii 11 101	to ppin (Tricompre	ce marrian	10		
		11 705P	ICP	Βi	2	999	ppm Bi ICP		Bismuth	11		
		12 707P	ICP	Cd	0.1	100	ppm Cd ICP		Cadmium	12		
		13 710P	ICP	Co	1	999	ppm Co ICP		Cobalt	13		
		14 718P	ICP	Ni	1	999	ppm Ni ICP		Nickel	14		
		15 704P	ICP	Вa	2	9999		(Incomplete Dige	st Barium	15		
		16 727P	ICP	W	5	999		(Incomplete Dige		16		
		17 709P	ICP	Cr	1	9999		(Incomplete Dige		17		
		18 729P	ICP	. V	2	999	ppm V ICP		Vanadium	18		
		19 716P	ICP	Mn	1	9999	ppm Mn ICP	/T 7 . D.	Manganese	19		
		20 713P	ICP	La	2	9999	ppm La ICP	(Incomplete Dige	st Lanthanum	20		
		21 723P	ICP	c.,	,	9999	and Par ICD	/Tanamalaka Disa	at Character	21		
		22 731P	ICP	Sr Zr	1	9999	ppm Zr ICP	(Incomplete Dige	Zircontium	21 22		
		23 736P	ICP	Sc	'n	99	pom Sc ICP		Scandium	23		
		24 726P	ICP			1.00		(Incomplete Dige		24		
		25 701P	ICP	ΑÌ		9.99	Z A1 ICP	(Incomplete Dige	st Aluminum	25		
		20 /4"	10.		0.0.	3.33	75 TCT 101	(Theompiese Bige	So Xiaminan			
		26 708P	ICP	Ca	0.01	9.99	% Ca ICP	(Incomplete Dige	st Calcium	26		
		27 712P	ICP		0.01		% Fe ICP		Iron	27		
		28 715P	ICP		0.01			(Incomplete Dige		28		
		29 720P	ICP			9.99		(Incomplete Dige		29		
		30 722P	ICP	Na	0.01	5.00	% Na ICP	(Incomplete Dige	st Sodium	30		
								_				
		31 719P	ICP	Ρ	0.01	5.00	% P ICP		Phosphorus	31		
		f.										

CERTIFICATE OF ANALYSIS iPL 96J1115

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1

Phone (604) 879-7878

INTERNATIONAL PLASMA LABORATORY LTD. Client: Johnson, Don

iPL: 96J1115

Out: Oct 30, 1996

Fax (604) 879-7898 Section 1 of

Project: None Gi	ven		1 Rock								In	: Oct	29,	1996	•	fm	516:	36:12	2:6910	3096	l	Ce	erti	fied l	BC Ass	ayer:	David	Chiu	لمرس	20
Sample Name	Au	Δα	Cu	DΗ	7n	۸c	SP.	На	Ма	TI	Ri	C4	Co	Ni	Ra	ш	Cr	V	Mn	1 =	Sm	7r (<u>с</u> .	Ti	Δ1	Га	Fe	Mα	K	N-

< 50 < < 8 11 25 192 80 28 172 < 15 4 9 0.06 0.94 0.33 5.19 0.40 0.40 0.11 0.04 Rock Sample 978 8 2.0 1315

CABIN LAKE

Min Limit 2 0.1 2 5 5 3 1 10 2 0.1 1 1 25 Max Recorted* Merthod -- No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

77478 CABIN

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC VOJ 1S0

Project: Comments:

Page Number :1-A Total Pages :1 Certificate Date: 25-AUG-96 Invoice No. :19628229 P.O. Number :

Account :FCS

1	- 									Cl	ERTIF	ICATI	E OF	ANAL	YSIS		A9628	3229		
	Sample	PREP CODE	Au ppbAu oz/T FA+AA FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %		Co ppm		Cu ppm	Fe %	Ga ppm	Hg ppm	K	La pp m	Mg %
	77-EXPL 78-CODE JED-79-CODE JED-80-CODE	205 226 205 226 205 226 205 226	5 (5 6 (5 6 605 7 0.2269		2.49	16	10	< 0.5		2.50	〈 0.5	41	33	184	8.03	< 10 	〈 1 	0.06	< 10	1,30
			Į.																	
ļ	·													,						
	:												-							
	:																			
	·		,																	
		9																		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project : Comments:

Page Number :1-B Total Pages :1 Certificate Date: 25-AUG-96 Invoice No. P.O. Number 19628229

: :FCS Account

												CE	RTIF	ICATE	OF A	NAL'	YSIS	ı	A9628229	
17+78	SAMPLE		EP DE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr PPM	Ti %	Tl ppm	ppm	V.	w ppm	Zn ppm		
CABIN LAKE	77-EXPL 78-CODE TED-79-CODE JED-80-CODE	205 205 205 205	226 226 226 226 226	555 	〈 1	0.07	10 	450 	8	〈 2	10	39 	0.19	< 10 	< 10 	179	< 10 	48		
	,_	<u> </u>																		

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project: JED Comments: ATTN:DON JOHNSON

Page Number :1-A Total Pages :1 Certificate Date: 14-OCT-96 Invoice No. :19634699 Invoice No. P.O. Number

Account :FCS

					.			CERTI	FICATE	FICATE OF ANALYSIS A9634699						
SAMPLE	PREP CODE	Au oz/T FA+AA	Ag ppm AAS	Al % (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm	Co ppm	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	
SAMPLE #88 CARIN LAKE	208 226	0.0019	44.0	3.60	500	< 10	60	2.60	50	180	90	77700	19.15	0.7	0.95	
								!								
															-	
													:			
														<u> </u> 		
												:				
								!								

CERTIFICATION:___

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: JOHNSON, MR. DON

BOX 93 FRASER LAKE, BC V0J 1S0

Project: JED Comments: ATTN:DON JOHNSON

Page Number :1-B
Total Pages :1
Certificate Date: 14-OCT-96
Invoice No. : 19634699
P.O. Number :
Account :FCS

								CERTIFICATE OF ANALYSIS					A9634699								
SAMPLE	PREP CODE	Mn pp (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm	Pb %	Sr ppm	Ti %	V ppm	Zn ppm (ICP)											
SAMPLE #88	208 22	6 11	40 (10	0.55	160	0.010	180	0.15	40	1120											
										()					;						
				·			Ė														
•																					
															•						
														į							
													İ								
•																					
		ĺ																			
	7			1		1]				1	1							

CERTIFICATE OF ANALYSIS iPL 96L1273

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Client: Johnson, Don

14 Rock

iPL: 96L1273

Out: Dec 13, 1996 In: Dec 11, 1996

Page 1 of 1 [127318:28:23:69121396]

Section 1 of 2 Certified BC Assayer: David Chiu

Projec	t: None Given		14 R	łock							In:	Dec 11	, 1996	ì	[127	7318:2	28:2	3:691	2139	96]		Certif	ied	BC	Assay	er: Da	vid Ch	ت الا	7	
Sample			Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg	Мо ррт Ф	T1 Bi		Со	Nii ppm	Ba pom p	₩ ppm	Cr ppm	V Ppm	Mn	La ppm	Sr ppm p	Zr	Sc ppm	Ti %	A1	Ca %	Fe 7	Mg 7	K %
BEN- BEN- BEN- BEN- BEN-	100 101 102 103 104	201 201 201 201 201 201 201 201 201 201	2 < < 9	0.6	11 9 1 3 2	16 9 14 6 3	193 16 52 24 5	7 < 9 9	22 5 <	< < < <	2 3	* *	0.5 0.6 < 0.5	6 9 4	3 2 3	1275 472 154 378 814	< 9 < <	31 48 25 58 51	15	1585 466	4 8	76 16 31 32 25	3 4 2 3	1 5	0.01 0.03 0.01	0.62 0.34 0.46 0.63 0.32	2.28 0.16	3.01 2.24 3.65 2.45 0.93	0.03 0.97 0.25	0.29 0.29 0.24
BEN- BEN- BEN- BEN- BEN-	105 106-A 106-B 107 109		30 336 46 4 7	0.9	4 18 2 10 <	24 13	22 3 107 121	24 39 28 <	_	*	4 2 3	8815 885 885	0.1 0.2 0.2 0.2	1 18	3 2 5	867 446 861 247 274	< < < < < <	70 102 71 23 16		56 87 55 1514 3193	9 4 7 8	27 36 27 8 51	3 3 3 3		80.0	0.30 0.34 0.31 1.68 1.16	0.10 0.07 0.27		0.03 0.02 1.19	0.34 0.33 0.13
BEN- BEN- F.L.S. F.L.S.	110 113 outh- 115 CABIA outh- 116 LAKAI		11 < < 24	< <	12 3 3	8 9 10 21		8 5 < 49	<	< < <	1 8	X	 . 0.2 	5 15	2 12	86 165 791 1493	< < <	16 23 10 15	40 60	1126	15	67 182	2 3 7 5	2 10	0.01 0.04	2.54 1.01 0.75 1.01	3.78 0.76 0.48 0.47	1.94	0.18	0.23 0.19

115 + 116 - CABIN LAKE

1 5 5 3 1 10 2 0.1 1 1 2 5 1 2 1 2 1 1 1 0.01 0.01 0.01 0.01 0.01 Min Limit Max Reported* Mathod -No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 X=Estimate X Max=No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

CERTIFICATE OF ANALYSIS iPL 96L1273

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

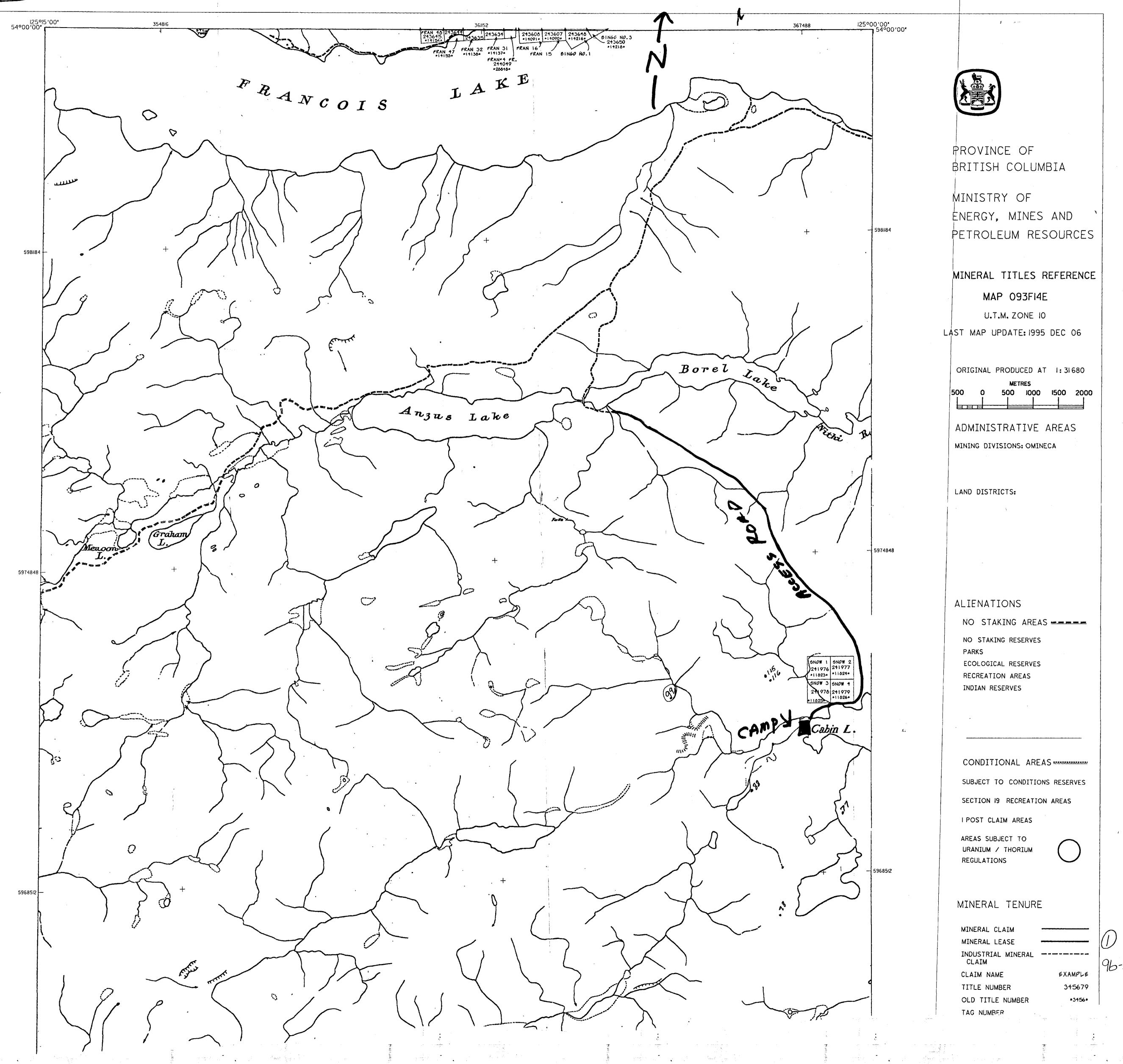
Client: Johnson, Don Project: None Given

14 Rock

iPL: 96L1273

Out: Dec 13, 1996 In: Dec 11, 1996 Page 1 of 1 [127318:28:23:69121396]

Section 2 of 2 Certified BC Assayer: David Chiu


Sample Nam	e	Na Z	P 7
BEN- BEN- BEN-	100 101 102	度 0.03 度 0.01 度 0.02 度 0.02 度 0.01	0.09 0.08 0.09
BEN-	103	Ř 0.02	0.04
	104	Ř 0.01	0.03
BEN-	105	聚 0.02	0.02
BEN-	106-A	聚 0.02	
BEN-	106-B	聚 0.02	
BEN-	107	聚 0.05	
BEN-	109	聚 0.03	
BEN-		度 0.10	0.10
BEN-		配 0.13	0.17
F.L.South-		能 0.06	0.18
F.L.South-		能 0.07	0.18

CABIN LAKE

115 # 116

Min Limit Max Reported* Mathod 0.01 0.01 5.00 5.00 ICP ICP

--No Test Ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate % International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax:604/879-7898

96-33

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

172 JAN 29 1897

PROSE ...

B. TECHNICAL REPORT

One technical report to be completed for each project area.

Refer to Program Requirements/Regulations, section 15, 16 and 17.

• If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name	Don	JOHNSON	R	teference Num	ber 96/	97	P 72
Project An Location o	of Project A		TZI LAA 13 P 15	KE W	MINFILE No. if	applicable _ p ['] N Long	124 46 W
		FEINC - C		\			
Main Com	nmodities Se	earched For _ & o	LD - SI	LYER -	CoppE	۷,	
Low	GOL	rrences in Project Area O , S/LWER NO 093F -	AND CO				
1. Con		MED rospecting (area) pping (hectares/scale) ype and no, of sample					
4. Geo	ophysical (ty	pe and line km) (type and amount)					
6,. Dri	illing (no,. h	oles, size, depth in m,	total m)				i
7	CANT RES	. .		(Claim Name		
		p) Lat <u>53° 46</u> : Gold -		1240	46'n Elev	ation <u>8</u>	00 m
•		ization, host rocks, and			TE WIT		

BENTZI LAKE

THE PURPOSE OF THIS TAIR WAS TO FIND SOME GOLD VALUES IN ROCK SAMPLES.

BEN -100 - ANDESITE PORPHRY AND PIRITES.

BEN-101 - RUSTY ROYALITE - LIONITE

BEN-102 - ROYALITE WITH PIRITES.

BEN - 103 - VOLCANIC ASH WITH HEMITATE

BEN - 104 - ANDESITE PORPHRY.

BEN-105 - FELSIC ROCK

BEN-106A +106B. - ROYALITE TYPE ROCK.

106A - WITH A FAIR AMOUNT OF PIRITE.

106B. - WITH NO PIRITE IN SAMPLE.

BOTH OF THESE GRAB SAMPLES ARE FROM TIME SAME OUT CAOP.

BEN 107. ALTERED ANDESITE.

BEN -109. ALTERED ANDESITE WITH HEMITITE.

BEN -110 - SAME ROCK TYPE AS

BEN - 113 - FELSIC WITH PIRITE,
POSSIBLY VOLCANIC ASM.

ATT: Don Johnson

CERTIFICATE OF ANALYSIS iPL 96L1273

2036 Columbia Street Vancouver, 8.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

Johnson, Don	ı		
Out: Dec 13, 1996	Project:	None Given	
In : Dec 11, 1996	Shipper:	Don Johnson	
PO#:	Shipment:		ID=C022401
Msg: Au(FA/AAS 30g)	ICP(AqR)30)	
Mso:			
Document Dis	stribut	ion	

risg:						17
Document Distribution						
1 Johnson, Don					FΧ	
Box 93	1	2	2	2	1	10
Fraser Lake	DL	30	5D	BT	BL.	0
BC VOJ 1SO	0	0	0	1	0	(
						۱r

Ph: 604/699-6425 Fx:604/

		R	Samp aw St ulp St		03	4= Roc 3Mon/Di 2Mon/Di	s	l≖ S	oil 	0= Core 	0=RC		<u>-</u> -	er 	Mon≔Month	22:69121396] Dis=Discard Arc=Archive
-1	٩n	alv	tica	al S	umma	arv		·								
		Code	Met		Limit	Limit	Units	Des	cript	ion		Element	##			
1,	11	313P	hod FAAA	Αu	Low 2		nnh.	۸.,	CA/AA	S finish 30	اما	Go1d	01			
		721P	ICP	Ag	0.1	100	bbu			3 1 1111511 30	ig	Silver	02			
		711P	ICP	Cu		20000	ppm ppm					Copper	03			
- 1		714P	ICP	Pb		20000	ppm					Lead	03			
		730P	ICP	Zn		20000	bbw					Zinc	05			
	, ,	,	101	211		20000	PPIII		101			21110	00			
		703P	ICP	As	5	9999	ppm			5 ррт		Arsenic	06			
		702P	ICP	Sb	5	9999	ррт					Antimony	07			
		732P	ICP	Hg	3		ppm	Ηg	ICP			Mercury	80			
		717P	ICP	Мо	1	9999	ppm					Molydenum	09			
1	0	747P	ICP	TI	10	999	ppm	Ţ	ICP 1	О ррт (Іпсо	mplete	Thallium	10			
1	11	705P	ICP	Вi	2	999	mqo	Вi	ICP			Bismuth	11			
1	12	707P	ICP	Cd	0.1	100	ppm	Cd	ICP			Cadmium	12			
		710P	ICP	Co	1	999	ppm					Cobalt	13			
1	14	718P	ICP	Νi	1	999	ppm	Νi	ICP			Nickel	14			
1	5	704P	ICP	Ва	2	9999	ppm	Ва	ICP (Incomplete	Digest	Barium	15			
١,	16	727P	ICP	W	5	999	nom	W	TCP (Incomplete	Digest	Tunastea	16			
		709P	ICP	Cr	ĭ	9999				Incomplete			17			
		729P	ICP	v	2				ICP	2.700	o igoco	Vanadium	18			
		716P	ICP	Mn	ī		ppm					Manganese	19			
		713P	ICP	La	2					Incomplete	Digest		20			
5	>1	723P	ICP	Sr	1	9999	nom	Sn	TCP (Incomplete	Dinest	Strontium	21			
		731P	ICP	Zr	i	999	ppm ppm			THOUSING TE DE	Digest	Zirconium	22			
		736P	ICP	Sc.	i	99	- 1		ICP			Scandium	23			
		726P	ICP	Ti	0.01	1.00				Incomplete	Dinest		24			
		701P	ICP	ΑT	0.01					Incomplete			25			
١,	26	708P	ICP	Ca	0.01	9.99	7	Ca	TOD (Incomplete	Nige+	Calcium	26			
		712P	ICP		0.01				ICP	Tricomp rece	Digest	Iron	27			
		715P	ICP	Mg	0.01	9.99				Incomplete	Dinet		28			
- 15	20	720P	ICP	'S		9.99				Incomplete			29			
		722P	ICP	Na		5.00				Incomplete			30			
		719P	ICP	Р	0.01	5.00	_		ICP			Phosphorus	31			

CERTIFICATE OF ANALYSIS iPL 96L1273

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

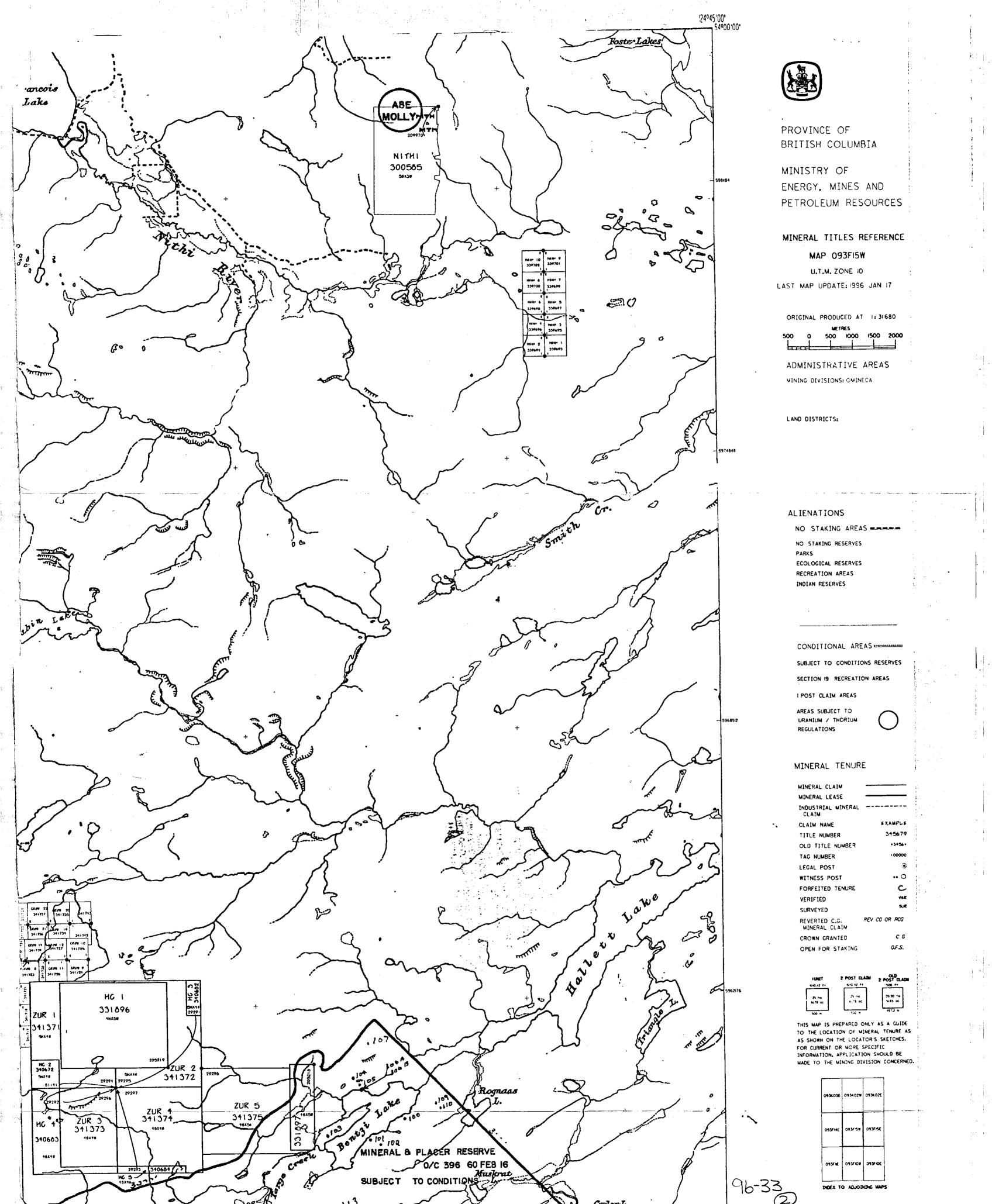
Section 1 of 2 Page 1 of 1 Out: Dec 13, 1996 Certified BC Assayer: David Chiu iPL: 96L1273 [127318:28:23:69121396] Client: Johnson, Don In: Dec 11, 1996 Project: None Given 14 Rock

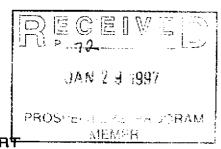
Project: None Given		14 1	U.K													-		_					Sc	: Ti	Αl	Ca	Fe	Mg	K
Sample Name		Au ppb	Ag ppm	Cu ppm	Pb	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm (TT PPM pqq	Bi pm	Cd ppm r			Sa S om ppr	-	Or pm p	V >m	Min L		r Zr m ppn	ррп	n %	Z	<u> </u>		7	Z
BEN- 100 BEN- 101 BEN- 102 BEN- 103 BEN- 104		2 < 9 11	0.6	11 9 1 3	14 6	16 52	< 7 < 9 9	22 5 4	* * * * * * * * * * * * * * * * * * *	2		< <	0.5 0.6 < 0.5	15 6 9 4 2	8 12 3 4 2 1 3 3 2 8	72 54 78		48 25	15 43 1	426 198 585 466 71	4 8 8	6 3 6 3 11 4 12 2 25 3	} 1 - !	0.01	0.62 0.34 0.46 0.63 0.32	0.24 2.28 0.16 0.08	3.01 2.24 3.65 2.45 0.93	0.03 0.97 0.25 0.03	0.29 0.29 0.24 0.27
BEN- 104 BEN- 105 BEN- 106-A BEN- 106-B BEN- 107 BEN- 109		30 336 46 4 7	0.2	4 18 2 10	19 24 13	7 22 3 107 121	24 39 28 <	6 15 7 <	< < < <	1 4 2 3	V V V V V V V V V V V V V V V V V V V		0.1 0.2 0.2	2 1 1 18 24	2 8 5 2	46	< < 1 < <		57 3	56 87 55 1514 3193	4 7 8 8	27 3 36 3 27 3 8 3	3 1	1 < 1 < 5 0.08 6 0.03	1,16	0.10 0.07 0.27 5.74	0.47 6.61 4.06	0.03 0.02 1.19 1.04	0.34 0.33 0.13 0.21
BEN- 110 BEN- 113 F.L.South- 115 F.L.South- 116	180 SE	11 < < 24	< < <	12 3 3	8 9 10 21	172 24 235 41	5 <	<	< < <	3 1 5 5	AAAA	< < <	0.2 < 0.3	25 5 15 7	12 🔮	65 91	< < <		40	1672 557 1126 92	15 44 1	58 57 32 58	3 : 7 1	3 0.01 2 0.01 0 0.04 6 0.06	1.01 0.75	0.76 0.48	1.94 5.32	0.25 0.18 0.19	0.23 0.19

CHBIN LAKE
115
#-110

1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 2 5 1 2 1 2 5 5 3 1 10 2 0.1 1 1 Min Limit Max Reported* ---No Test ins=Insufficient Sample S-Soil R=Rock C-Core L-Silt P-Pulp U-Undefined m-Estimate/1000 X-Estimate X Max-No Estimate International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph:604/879-7878 Fax: 604/879-7898

CERTIFICATE OF ANALYSIS iPL 96L1273


2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898


Section 2 of 2 Page 1 of 1 Out: Dec 13, 1996 In: Dec 11, 1996 iPL: 96L1273 Certified BC Assayer: David Chiu Client: Johnson, Don [127318: 28: 23: 69121396]

Dient: Johnson, Don Poject: None Given	14 R	ock	1PL: 90L1273	In: Dec 11, 1996	[127318:28:23:69121396]	Certified BC Assayer: Dav	id Chiu	
							2	
mple Name	Na Z	P X						··· ·
N- 100	₩ 0.03	0.09						
N_ 101	ĝ 0.01	0.08						
_{N-} 102	Ř 0.02	0.09						
N- 103	Ř 0.02 Ř 0.01	0.03			:			
N- 104					·			
N- 105	₿ 0.02	0.04						
N- 106-A	Ř 0.02	0.02						
N- 106-B	Ř 0.02 Ř 0.05	0.00						
N- 107	₩ 0.03	0.00						
N- 109								
N- 110 N- 113	₿ 0.10	0.10						
N– 113	₹ 0.13	0.17						
L.South- 115	₹ 0.06 ₹ 0.07	0.18						
L.South- 116	Ķ U.U/	U. 10						
4BIN LAKE								
: 1(\$								
£ 116								
							•	
•								
	7							

Min Limit Max Reported* 0.01 0.01 5.00 5.00

---No Test ins=Insufficient Sample S=Soil R=Rock C=Core L=Silt P=Pulp U=Undefined m=Estimate/1000 %=Estimate % Max=No Estimate International Plasma Labitto. 2036 Columbia St. Vancouver BC VSY 3E1 Ph:604/879-7878 Fax:604/879-7898

ASSESSMENT REPORT

FOR THE

1995 PROSPECTING and SOIL GEOCHEMISTRY

ON THE

SAS #1 MINERAL PROPERTY

OMINECAL MINING DIVISION

NTS 93K/ 15E

LATITUDE 54° 53' N

LONGITUDE 124° 36' W

OWNED BY: D. JOHNSON

WORK BY: D. JOHNSON

REPORT BY: D. JOHNSON

MAY 1996

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	i
LIST OF FIGURES AND TABLES	II
LIST OF APPENDICES	II
SUMMARY	1
INTRODUCTION	
i) Location and Access	1
ii) Claim Ownership and Status	4 - 6
iii) Claim History	5
lv) Purpose	5
REGIONAL GEOLOGY	7
LOCAL GEOLOGY	7
PROSPECTING	
i) Procedure	8
ii) Results and Discussion	9
SOIL GEOCHEMISTRY	
i) Procedure	10
ii) Results and Discussion	11
INTERPRETATION AND RECOMMENDATIONS	12
STATEMENT OF EXPENDITURES	13
AUTHOR'S QUALIFICATIONS	14

SUMMARY

The SAS #1 mineral property is located fifty-four kilometres northnorthwest of the town of Fort St. James. The property was staked when spalerite crystals were observed in feldspar porphyry breceantalas rock.

Rio Algom Exploration had most of the SAS #1 claim staked in 1990.

Between July 10 and July 25, and October 1 and October 5, 1995, the claim was prospected.

In July, eighteen rock samples were analyzed for gold and multielement. A grab sample, taken from where a hoe dug a trench in overburden while making a logging road, returned values of 2490ppb gold. The auriferous carbonate sample is believed to have come from altered bed rock, below glacial till.

In October, a soil geochem grid was done over this area. The fifteen samples were analyzed for gold and multi-element. The samples were taken with A-augier and extensions. The purpose was to get through glacial till and to bed rock. Due to rocks in glacial till, bed rock was not reached.

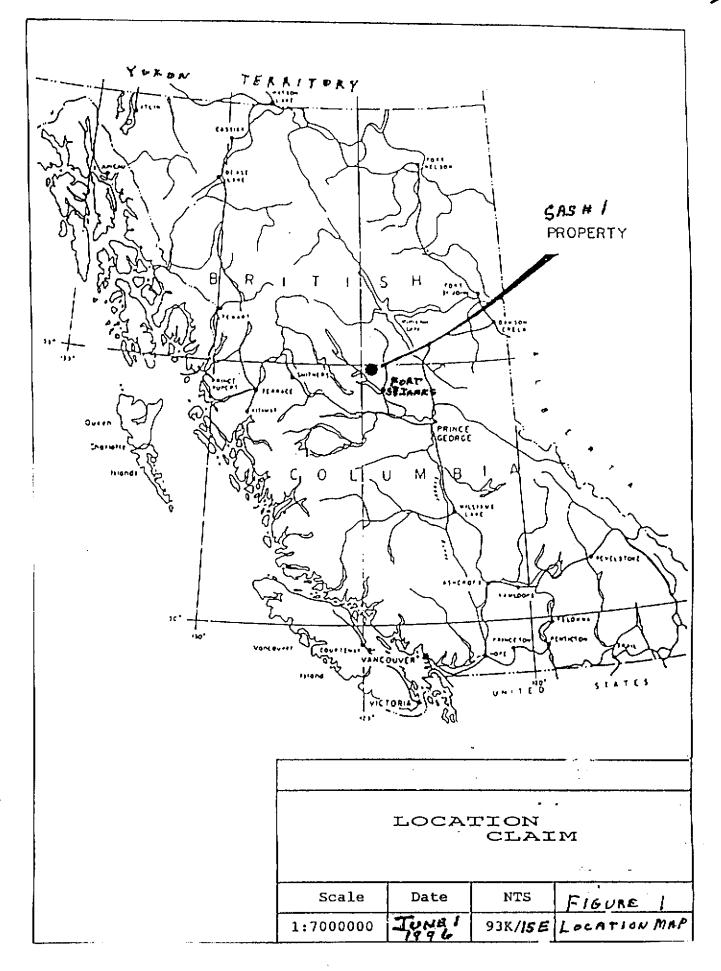
in October, ten rock samples were also taken on the claim. These were analyzed for gold plus multi-element.

Follow-up sampling is planned.

This report documents expenditures of \$4,814.84 on the SAS #1 mineral claim.

INTRODUCTION

I) LOCATION and ACCESS


The SAS #1 mineral property is located fifty-four kilometres northnorthwest of the town of Fort St. James and three kilometres to the west of Hatdudatehi Lake in central British Columbia. The claims lie entirely within the eastern half of the NTS map area 93K/15, and are approximately centred at 54° 53' N Latitude, 124° 36' W Longitude.

Access is gained by travel on the north road from fort St. James.

At forty-six kilometre, turn west on German son Hat Road. By staying on main road until eighty-two kilometre, access to claim will be gained.

The larger portion of the claim covers a large clear cut logging block, with roads and landings. Local cliffs, small guilles and swamps occur locally. A good part of the claim is covered by glacial till.

Part of the claim is forested with a mixture of spruce, balsam, and pine.

ii) CLAIM OWNERSHIP and STATUS

The SAS 31 claim is a 16 unit mineral claim. The claim lies within the Omineca Mining Division mineral titles map sheet 93k/15E.

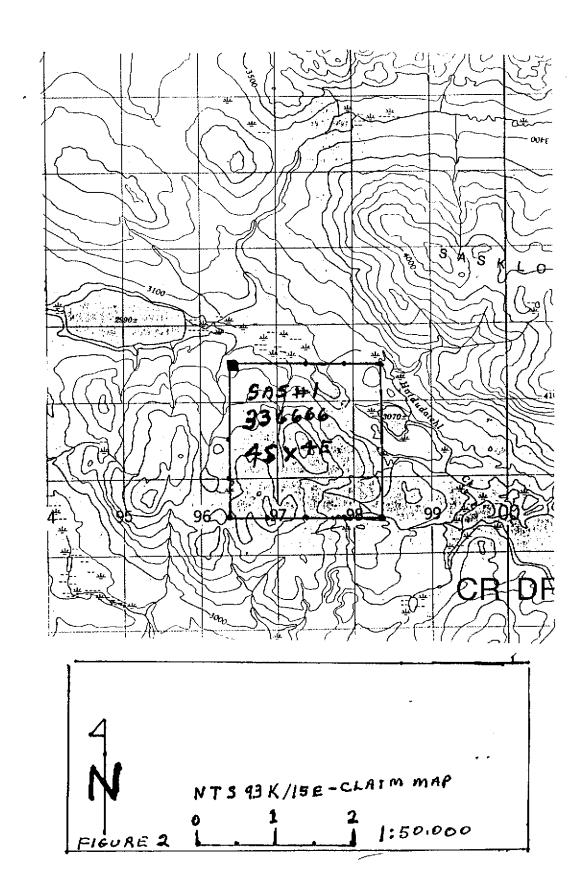
The SAS \$1 claim is wholly owned by Don Johnson of Fraser Lake, BC, and is not subject to any vendor agreements.

For the purpose of recording this assesment work the SAS #1 property is defined as follows:

TABLE 1
CLAIM STATUS - SAS #1

CLAIM	RECORD#	UNITS	RECORDED	EXPIRY
SAS #1	336666	16	JUNE 7, 1995	JUNE 7, 1999
pending ap	proval of this	report.		

III) CLAIM HISTORY


The earliest record of staking in the vicinity of the claim dates back to 1989 when Rlo Algorn Exploration staked five claim groups in the area. One of these covered most of the present SAS #1 property. The earliest exploration focused on porphyry copper, gold mineralization.

Rio Algom did extensive soil geoghemistry.

iv) PURPOSE

In July, a program of prospecting and rock sampling was conducted over the claim to identify and evaluate occurrences of mineralized bed rock.

In October, fifteen samples of multi-element soil geoghemistry were employed. Ten rock samples were also assayed for gold and multi-element.

REGIONAL GEOLOGY

The claim is underlain by upper volcanic rocks of the Takla group. These lithologies lie within Quesnel Trough, a sub-division of the Intermontane Tectonic belt. This narrow belt of sedimentary and volcanic rocks has been traced southward to beyond the Interantional border. To the south, the Lower, Upper Triassic sequences have been assigned to the Nicola Group.

The trough is fault bounded on the west and east. To the west, Quesnel Trough lies in fault contact with paleozoic rocks of the Pinchi Belt. To the east, the boundary between the trough and intermontane Belt is marked by a major shear zone. Large scale tectonic imbrication and mylonitization on both sides of the zone suggest an eastward thrusting of the Intermontane over the Omineca.

Belt (Rees, 1981)

LOCAL GEOLOGY

The property is in part underlain by andesite tuffs and minor flows of the Upper Triassic Takla Group. Tuffacous units range from thin-bedded fine muddy tuffs through massive fine-grained lithic tuffs to Cherty Lapilli tuffs. Minor augite porphyritic flows are present on the property. Sedimentary breccia is also present.

The volcanic rocks are invaded by numberous lobate plutons of the pale grey, medium grained hypipiomorphic, granular monzonite.

Mineralization found in volcanic rocks is mainly pyrite. Rare galena was observed in some andesite.

Low but anomolous silver, lead, zinc and gold values were returned from gossin of intrusive monzonite breccia. This is large.

PROSPECTING

I) PROCEDURE

The entire claim block was prospected along ridges, guilles and claim lines. Rock samples were collected from mineralized and altered outcrops. Notes were kept regarding location, rock type, mineralization, and alteration.

All of the samples were submitted to International Plasma Labs in Vancouver.

ii) RESULTS AND DISCUSSION

The sample locations are plotted on figure 3. A Complete listing of analytical results is presented as Appendix

The best grab sample (in place) is SAS4-62. This sample included gossan and andesite breccla fragments. This was near contact with andesite outcrop and much altered and fragmented intrusive monzonite. The monzonite outcrop is exposed for at least ten metres, then is covered by overburden.

SAS4-62: Au - 92 ppb, Ag - 32.5 ppm, Cu - 175 ppm, PB - 2090 ppm, Zn - 1615 ppm. The Monzonite is also anomalous.

Sample 4-H-42 assayed 2490 ppb Au. This rock was dug up by a hoe. More work will be done this summer, to positively confirm that it is in place.

The source of the Talas rock, with sphalerite crystals, has not yet been found. The rock was a feldspar porphyry breccia with 8576 ppm Zinc.

The source of monzonite talas rock, has not yet been located.

Arsenical pyrite view cutting through monzonite was 391 ppb Au.

Maripozite was also spotted cutting through lapilli tuff.

Anomalous samples can be found over a large area of this claim.

More work will be done.

FIGURES AND TABLES

LIST OF FIGURES	PAGE
Figure 1 - Property Location Map	3
Figure 2 - Claim Location Map	6
Figure 3 - 1995 Completion Map	in pocket
Figure 4 - 1995 Soil Geochemistry - silver	
Figure 5 - 1995 Soil Geochemistry - arsenic	
Figure 6 - 1995 Soil Geochemistry - gold	
Figure 7 - 1995 Soil Geochemistry - copper	
Figure 8 - 1995 Soil Geochemistry - lead	
Figure 9 - 1995 Soil Geochemistry - zinc	
Figure 10 - 1995 Soil Sample Location Map	in pocket
LIST OF TABLES	
Table 1 - Claim Status - SAS #1 Property	4
Table 2 - Statement of Expenditures	13
LIST OF APPENDICES	
APPENDIX I - International Plasma Lab Sample Preparation and Analytical	Procedure
APPENDIX II - Soil Sample Geochemistry	
APPENDIX III - Sample Preparation and Analytical	Procedure
APPENDIX IV - SAS #1 Claim - 1995 Assav Resi	ults

APPENDIX I INTERNATIONAL PLASMA LAB SAMPLE PREPARATION AND ANALYTICAL PROCEDURE

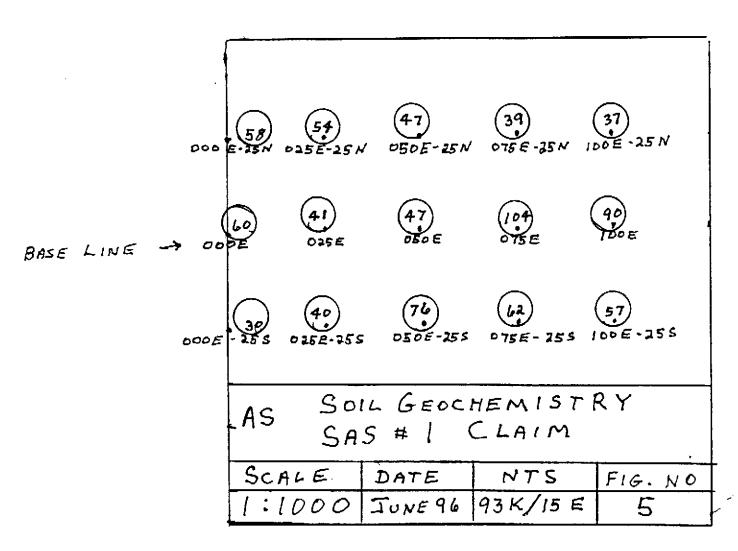
i) SOIL SAMPLE PREPARATION

- samples are hot air dried at 50 degrees centigrade
- minus 80 mesh fraction is selved out for analysis

ii) ROCK SAMPLE PREPARATION

- 250 g sub-sample is pulverized to minus 150 mesh.

iil) ANALYTICAL PROCEDURE

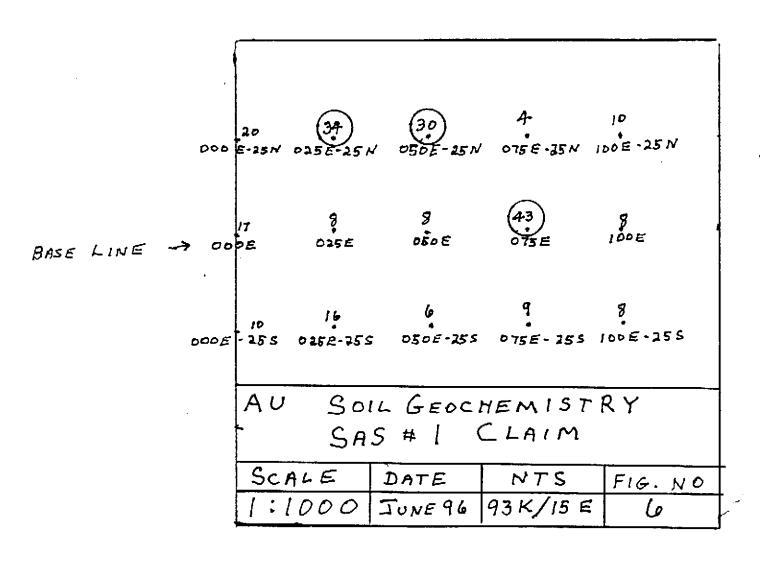

P1302 Au Exploration I (Au + 30 element ICP)
 Au is analysed by fire geochem with AA finish on a 30g sampling(2 - 10000ppb). Values over 10000 ppb are automatically re-split from coarse reject (or pulp, if coarse is not available) re-assayed at 1 assay tonne and gravimetrically finished (reported in OPT) a 330 element ICP Scan from an aqua-regla digestion is included.

BASE LINE -> OOPE SOIL GEOCHEMISTRY SAS # 1 CLAIM SCALE NTS DATE FIG. NO 1:1000 JUNE 96 93K/15 E

LEGEND

Pb, Cu. As. Z.N. AG. ANALYSES IN PPM - AU-PPB

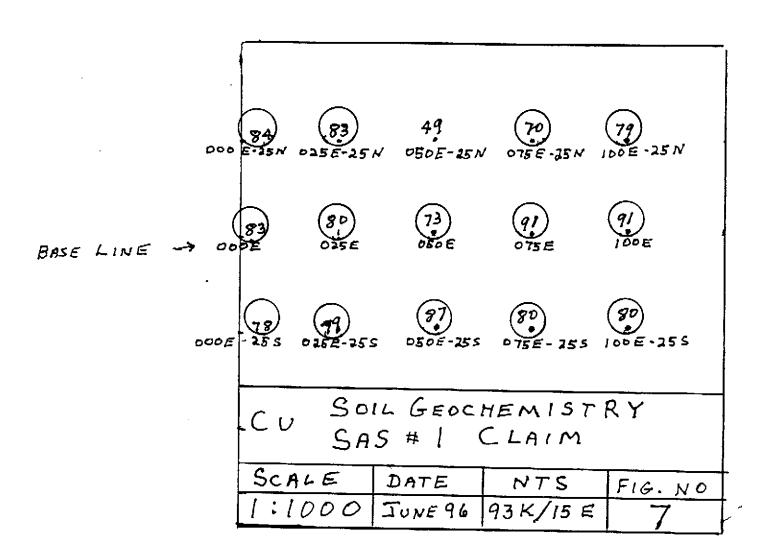
LEGEND


SOIL SAMPLE LOCATION

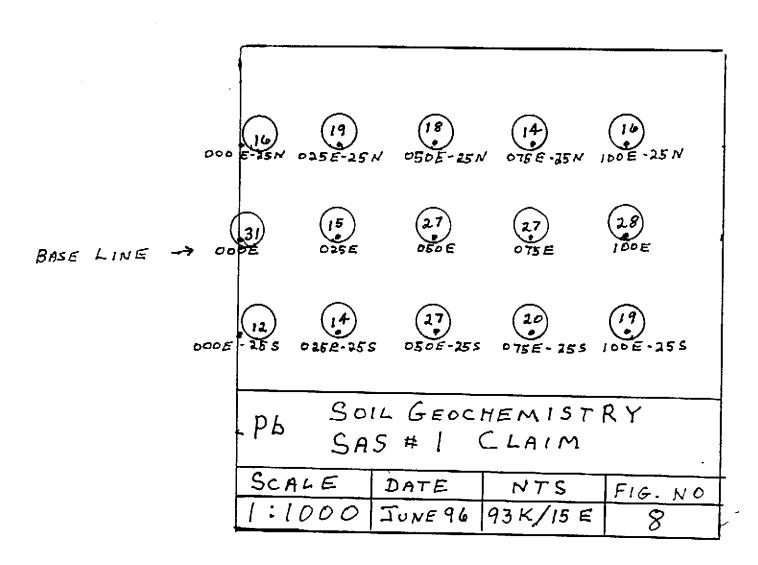
PB, CU, AS. ZN. AG ANALYSES IN PPM - AUPPB

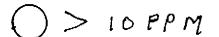
(10-15 PPM

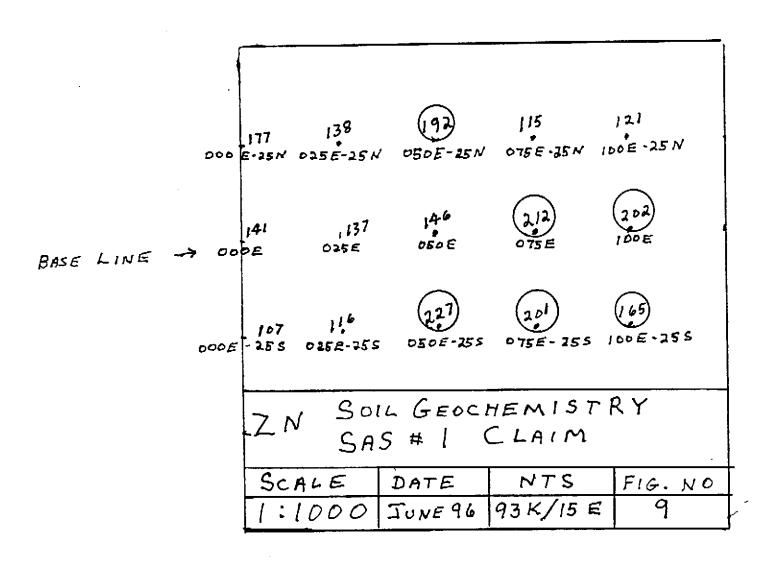
) > 15 PPM

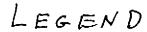


LEGEND >25 PPb


PB, CU, AS. ZN. AG ANALYSES IN PPM - AU PPA


LEGEND


· SOIL SAMPLE LOCATION
Pb. CU. AS. ZN. AG ANALYSES IN PPM - AUPPB



LEGEND

· SOIL SAMPLE LOCATION Pb. Cu, AS. ZN AG ANALYSES IN PPM - AU PPB

· SOIL SAMPLE LOCATION
PD, CU. AS, ZN, AG ANALYSES IN PPM - AUPPD

() 151 - 200 PPM

) > 200 PPM

APPENDIX III SAMPLE PREPARATION AND ANALYTICAL PROCEURE

APPENDIX IV SAS #1 CLAIM - 1995 ASSAY RESULTS

SOIL GEOCHEMISTRY

I) PROCEDURE

A base line was established to cover the auriferous rock dup up by the hoe. A Augier was used with the object of passing through the overburden and to bed rock. Holes were from 1 metrre to three metres. Lines were run at 25 metre invervals, from the base line using a compass and a hip chain for control. Soll sample locations wer marked with flagging tape and labelled with their grid locations. A total of 15 soil samples were collected at 25 metre intervals. Samples were placed in brown kraft envelopes and were sent to International Plasma Labs, Vancouver, BC for preparation and geoghemical analysis. (For analytical procedure, see Appendix I.

ii) RESULTS AND DISCUSSION

Soil geochemistry results for the 1995 soil survey on the SAS #1 property are plotted on figures 4 to 9.

The following threshold anomalous values were determined from the soil data: Ag - 0.3 ppm, As - 10 pm, Au - 25 ppb, Cu -- 60 ppm, Pb - 10 ppm, Zn - 150 ppm. These values are considered to be about average for the soil in this region.

Of the 15 soil samples, three assayed over 25 ppb for gold, four assayed over 0.3 for silver, fourteen assayed over 60 ppm for copper, all of the samples were over 10ppm for lead, six of the samples were over 150 ppm for zinc, and all fifteen of the samples assayed over 10 ppm for arsenic.

INTERPRETATION AND RECOMMENDATIONS

It is believed that anomalous gold values can be found in bed rock below soil grid. Besides three gold values, the magnesium and calcium values are thigher than normal. This could be related to carbonate rocks on bed rock. The auriferous sample dug up by the hoe had 17% calcium and 4% magnesium.

More soil sampling is planned.

AUTHOR'S QUALIFICATIONS

- 1, Don Johnson, do certify that:
- I am a prospector residing on Chowsunket Road, Fraser Lake, BC, V0J 1S0.
- 2. I have taken a prospecting course from a qualified geologist.
- I have worked independently as a part-time prospector for over 10 years.
- 4. I have completed my second year as a recipient of the government prospecting assistance grant. This is under the direction of Vic Preto.
- 5. I did the prospecting in this report.

Respectfully submitted,

Don Johnson

CERTIFICATE OF ANALYSIS iPL 95H1707

2036 Columnia Street Vancouver, Canada V5Y 3ET Phone (604) 879-7878/ Fax (604) 879-7898

Client: Johnson, Don Project: None Given

18 Rock

iPL: 95H1707

Out: Aug 22, 1995 In: Aug 17, 1995

[061716:57:49:59082295]

Page 1 of 1. Section 1 of 1 082295] Certified BC Assayer: David Chiu

Sample Name	Au	-	Cu ppm	Pb ppm	Zn ppm	As pom	Sb	Hg ppm	Мо ррп	T1 ppm	Bi ppm	Cd ppm	Со	Ni ppm	Ва	ppm W	Cr ppm		Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	_	A1	Ca 7	Fe 1	Mg Z	K	Na Z	P Z
1-H -47 2-H -44 3-H -48 4-H -42 5-H -41	R 391 R 20 R 7 R 2490 R 25	0.7 0.3 13.6	107	13 36 14 96 29	29 179 140 4016 218	6877 190 80 3289 37	19 < 5 81	< < < <	4 17 4	V V V V		1.1 0.1 33.2 1.6		24	43 83 52 83 88	< < < <	41 10 70 31 30	84	103 2885 314 2842 202	21 7 6 2 25	20 779 48 621 36	12 4 8 2 7	<	0.08	0.24 1,62 0.33	0.41 17% 0.82 . 17% 0.50	3.77 4.03 7.03	3.57 1.06 4.07	0.09 0.15 0.03	0.02 C 0.03 C 0.01 C).04).08).02
6-H -40 7-H -43 8-H -55 9-H -54 10-H -56	R 10 R 31 R 4 R 25	0.5 < 0.4	6	6 12 4 10 87	119 65 78 78 294	48 21 16 35 31	7 < < 5 <	< < < <	16 6 5 3 4	production of all	< < <	<	8 23 14	29 16	35 99 68 33 71	< < < <	61 56 26 16 17	40 103	172 1441 1345	7 18 8 8 32	84 55 81 177 33	2 14 2 1 6	5 1 8 2 <	0.14	1.47 0.85 0.66 0.52 0.75	0.44 2.95	3.58 2.87 6.10 3.39 2.45	0.68 1.05 0.84	0.29 0.11 0.18	0.08 (0.01 (0.01 (). 13). 10). 12
11-H -57 12-H -58 13-H -59 14-H -45 15-H -60	R 22 R R 2 R R 10	0.1		73	1320 71 20 167 135	~ 76	< 6 < 6	< < < <	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	< < <	0.4 1.2	27 72 20	79 0.12 27	94 34 26 112 49	<	13 83 454 50 36	126 17 141		3	23 48 17 41 232	4 7 1 3 1	1 2 3 4	0.15	0.57 2.24 0.11 2.52 0.66	1.65	2.50 4.28 3.51 3.90 3.40	2.08 16% 1.81	0.09 0.04	0.04 (0.02 (0.06 (0.09 0.01 0.09
16-H -49 17-H -50 18-H -39	Ř 5 Ř 5	0.2	_	<	98 11 102	<	7 12 <	< 5 <	7	·		0.1	57	0.12	65 20 144			19	1101 545 1906	<	90 29 62	2 1 2	2 1 7	<	1.29 0.07 0.82	3.97 1.66 4.61	4.33 2.95 5.86	147	0.02	0.02	<

CERTIFICAT OF ANALYSIS iPL 95J1206

2036 Colui treet Vancouver, B.J. Canada V5Y 3E1 Phone (604) 879-7878

Fax (604) 879-7898

INTERNATIONAL PLASMA LABORATORY LTD

Client: Johnson, Don Project: None Given

15 Soil

iPL: 95J1206

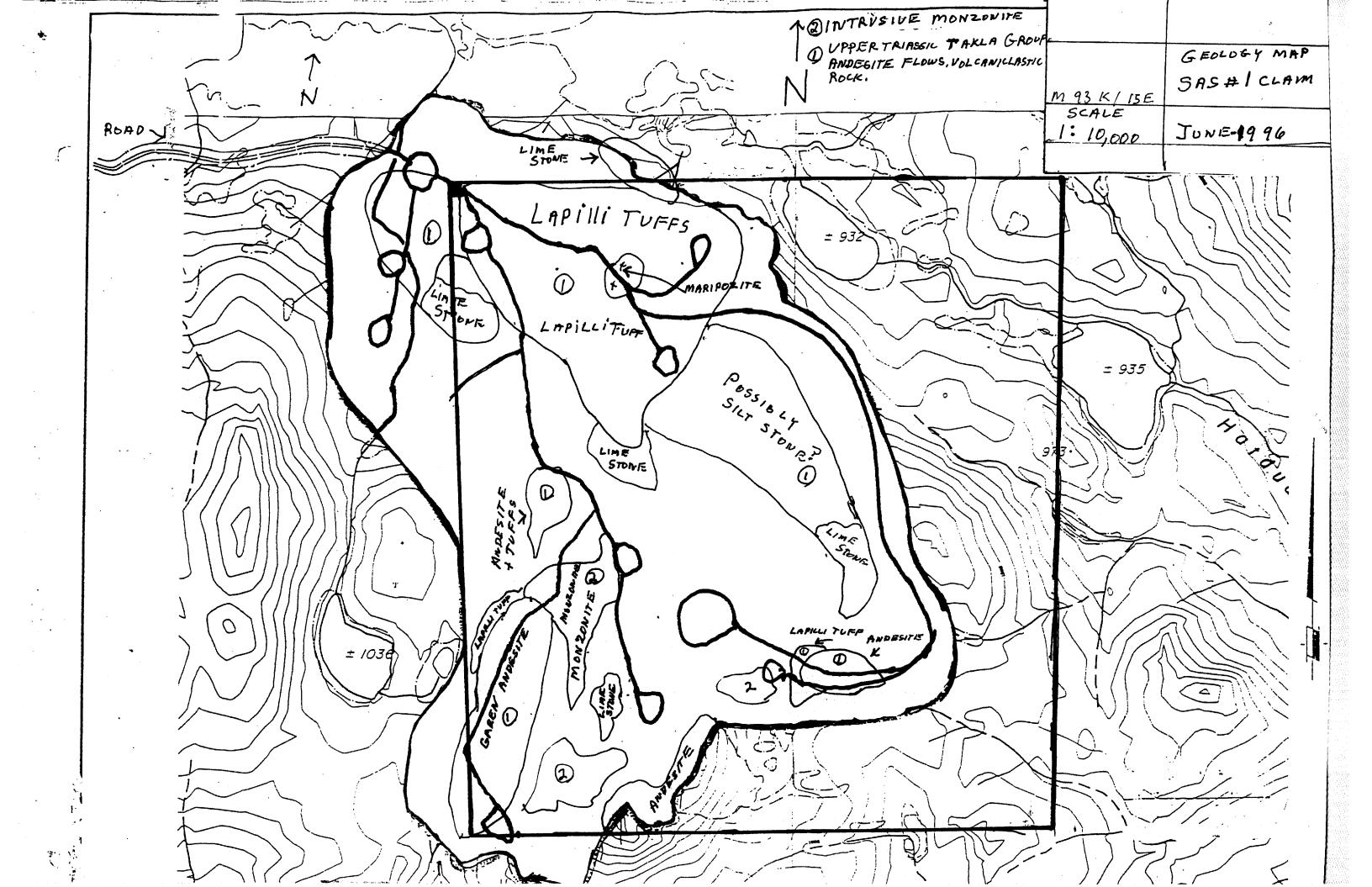
Out: Oct 17, 1995 In: Oct 12, 1995 Page 1 of 1 [087418:17:57:59101795]

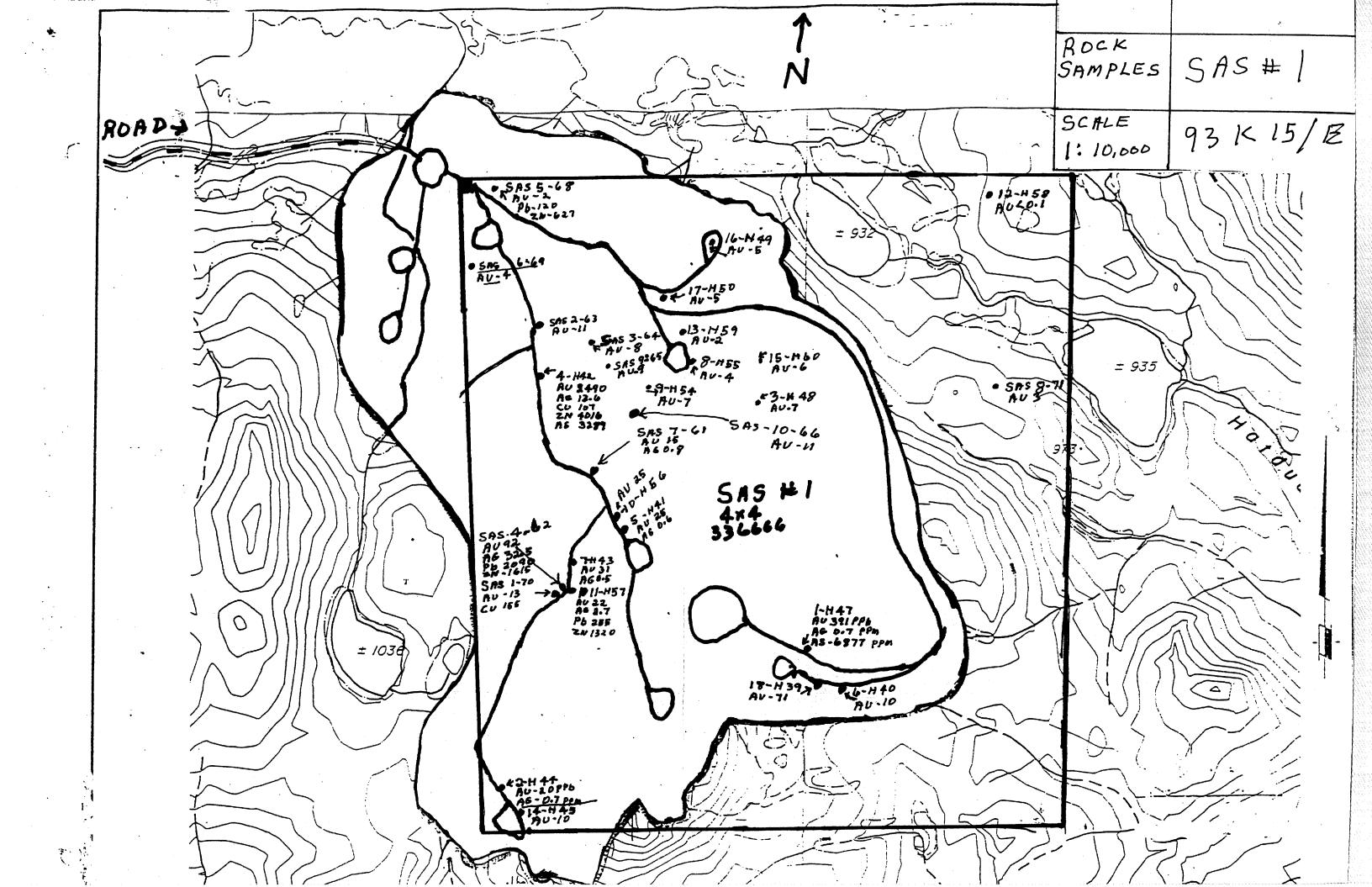
Section 1 of 1

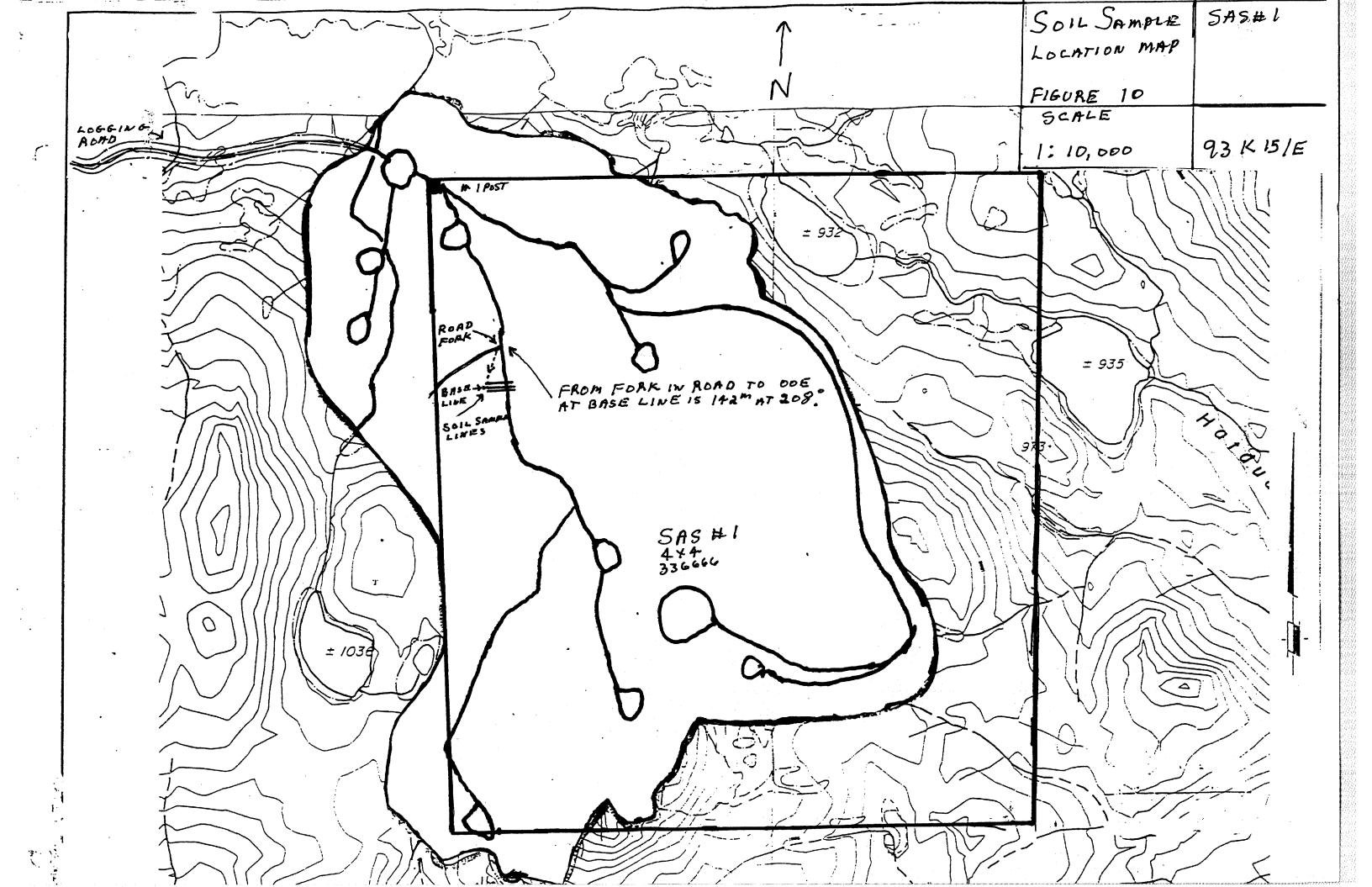
Certified BC Assayer: David Chiu

Sample Name		Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb	Hg ppm	Мо ррт	T1 ppm	Bi ppm	Cd ppm	Со ррп	Ni ppm	Ba ppm	ррпі	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti %	A1	Ca %	Fe %	Mg Z	K Z	Na Z	P Z
-000E	s	17	0.2	83	31	141	60	<	<	4	<	<	0.5	25	91	224	<	75	109	1148	10	66	5	7	0.12	1.87	1.43	4.06	1.44 0	. 12 (0.03	0.09
-000E-25K	š	20	0.2	84	16	177	58	<	<	5	<	<	0.3	25	83	229	<	87	133	1506	13	61	6	7	0.11	2.12	0.79	4.38	1.34 0). 11 Ĉ	0.03	0.10
-000E -25 \$	Ŝ	10	<	78	12	107	30	<	<	3	<	<	1.2	24	87	171	<	68	98	928	8	87	7	6	0.12	1.60	`3.24	3.55	1.37 0). 10 Č	0.03	0.08
-025E	Ś	8	0.1	80	15	137	41	<	<	5	<	<	1.4	24	90	197	<	73	102	918	9	84	7	6	0.12	1.83	2.69	3.77	1.51 0). 13 Ĉ	.04	0.09
-025E-25S	Ŝ	16	0.1	79	14	116	40	<	3	3	<	<	<	25	87	203	<	79	113	927	11	. 60	6	7	0.13	2.07	0.86	4.09	1.28 0	. 12 (0.03	0.09
-025E-25N	S	34	0.2	83	19	138	54	<	<	4	<	<	0.2	25	87	208	<	76	110	783	11	63	7	6	0.12	1.92	1.04	4.04	1.24 0	. 12 (0.03	0.09
-050E	Ś	8	0.3	73	27	146	47	<	<	3	<	<	1.4	22	76	199	<	64	97	912	10	92	7	5	0.11	1.80	2.82	3.66	1.30 0	. 12 (0.03	0.08
`-050E-25S	Ŝ	6	0.5	87	27	227	76	<	<	6	<	<	2.2	23	79	192	<	67	102	1032	11	71	7	5	0.11	1.92	1.82	3.96	1.24 0	.12 (0.04	0.09
-050E-25N	Ű	30	0.4	49	18	192	47	<	<	4	<	<	1.9	18	50	174	<	57	86	673	11	52	2	3	0.10	1.56	0.70	3.27	0.76 0	.07 (0.02	0.05
-075E	Ş	43	0.5	91	27	212	104	<	<	3	<	<	1.4	25	77	226	<	65	108	1073	11	97	9	6	0.12	1.95	2.86	4.15	1.37 0	.15 (0.04	0.10
-075E-25S	S	9	0.3	80	20	201	62	<	<	3	<	<	2.0	23	76	211	<	65	97	948	10	87	7	5	0.11	1.82	3.14	3.75	1.29 0). 13 Č	0.03	0.08
-075E-25N	Ŝ	4	0.2	70	14	115	39	<	<	3	. <	<	0.8	22	76	220	<	71	103	883	10	61	6	6	0.12	1.93	1.33		1.23 0			
-100E	ŝ	8	0.4	91	28	202	90	<	<	4	<	<	0.6	25	81	214	<	76	115		and a contract	58	6		0.12	day and address of a	0.88		1.21 0		of all of all dist	
100E-25S	Ś	8	0.2	80	19	165	57	<	<	4	<	<	0.4	24	87	228	<			1020		65	7	6	0.12	2.01	1.41	4.05	1.33 0	1.12).03 (0.09
-100E-25N	Ŝ	10	0.1	79	16	121	37	<	<	3	<	<	1.2			210	<			1068	after a fine to the state of	68	9		0.13	*******			1.39 0			

iPL . ~1902


or residenced over a 2


No you yay 🧖


NERSONAL PLASMA LABORATORY LTC

Client: Project:				1	10 tkoc	k		iPL	: 95L	1902				: Dec		•		[11	3518:	:04:4		Page 122195			Cert			1 of 1 ssayer:		d Chi			1
Sample N	Name		Au opb	Ag ppm	Cu	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm			Ba ppm	ppm W	Cr ppm	Ppm V	Mn ppm		Sr		Sc ppm	Ti Z	A)	Ca %	Fe	Mg Z	K	Na 7	P 7
SAS 1-7 SAS 2-6 SAS 3-6 SAS 4-6 SAS 5-6	53 - 54 - / 52	Ř	13 11 8 92 3	2.5	155 9 129 175 95	15 44 12 2090 120	120 167 135 1615 627	84 105 84 129 26	16 10 32 5	< < < <	8 5 5 5 5	V V V V	<	0.6 < 1.7 2.8	40	39 68	392 165 94 424 54	< <	24 46 70	15 180 198	3305 1101 2160 4774 2890	32 5 8	10 45	5 1	21	0.01 ×	1.31 2.40	0.64 0.15 0.49	2.46 7.33 10	0.08 0.22 2 1.12	0.25 0.15 0.05	0.01 0.01 0.03	
SAS 6-6 SAS 7-6 SAS 8-7 SAS 9-6 SAS 10-6	51 - 71 - 55-	RRRR	4 15 3 9	0.8 < <	5 77 81 83 63	13 29 5 26 24	92 141 79 164 163	37 14 49 53	< 8 <	< < < <	4 3 4 3 5	V V V V	< < < <	0.5 < < 0.8	7 24 25 23 20	18 43 79	1588 134 112 237 173	< < < < < < <	26 62 69	110	2609 1339 1110	5 4 11	244 328 262 48 87		13 10 10	<]	ate managed by	13% 7.21 0.92	5.58 4.78 4.10	1.93 2.19 1.21	0.16 0.17 0.09	0.03 0.02 0.03	0.09 0.09 0.10

Min Limit 2 0.1 Max Reported* International Plasma Lab Ltd. 2036 Columbia St. Vancouver BC V5Y 3E1 Ph: 604/879-7878 Fax: 604/879-7898

