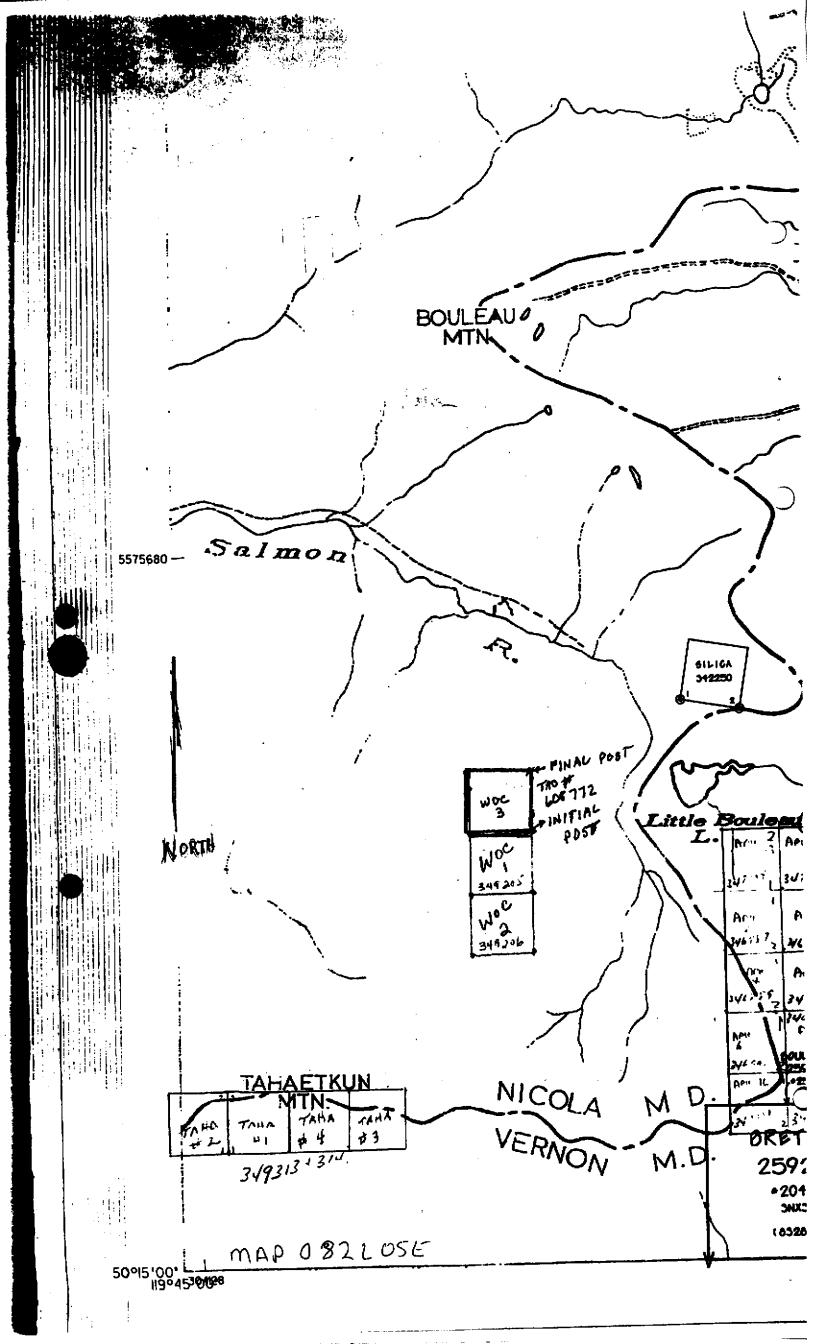
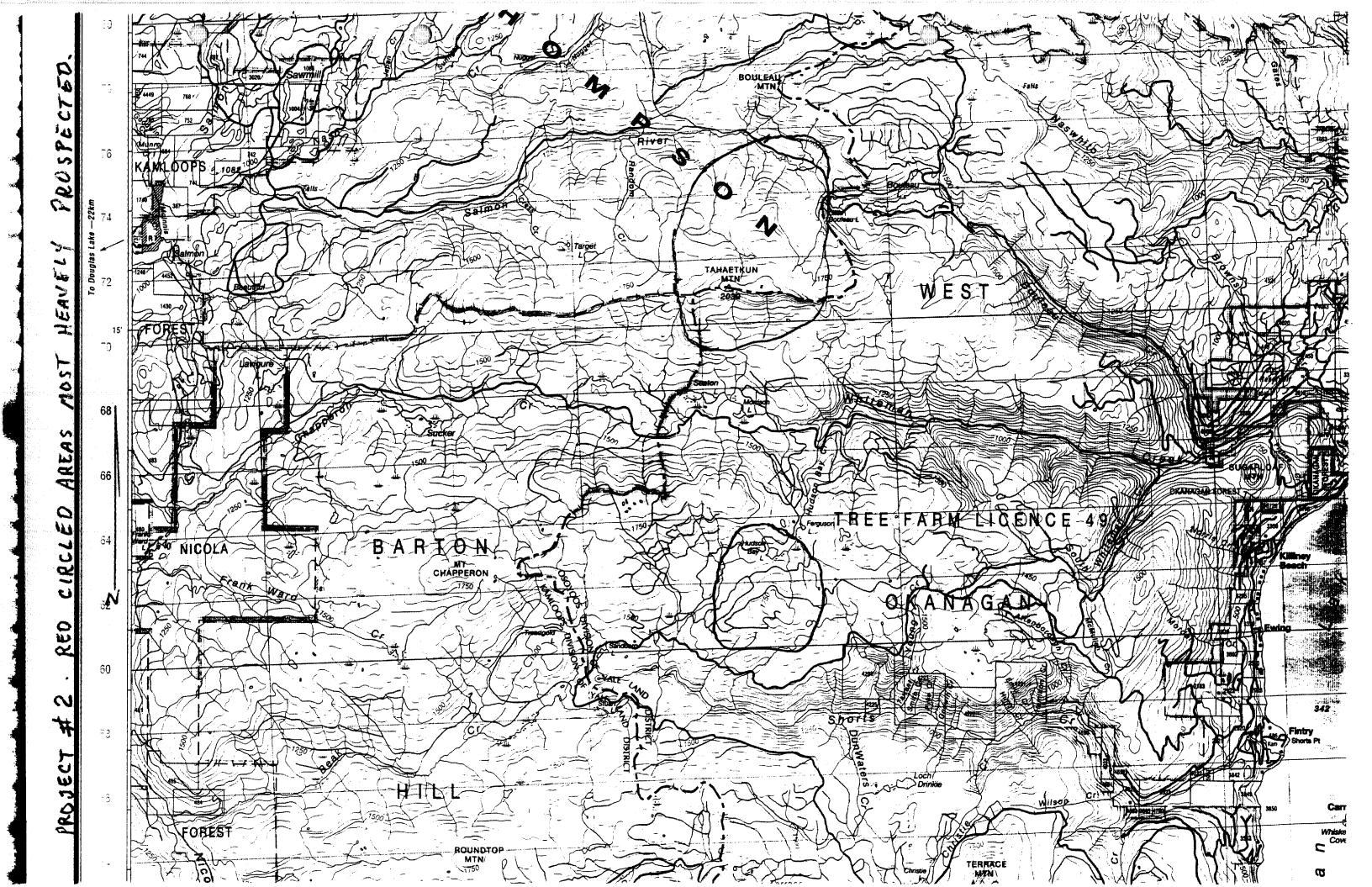
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:


1996/1997


REPORT #:

PAP 96-39

NAME:

FREDERICK NILSEN

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

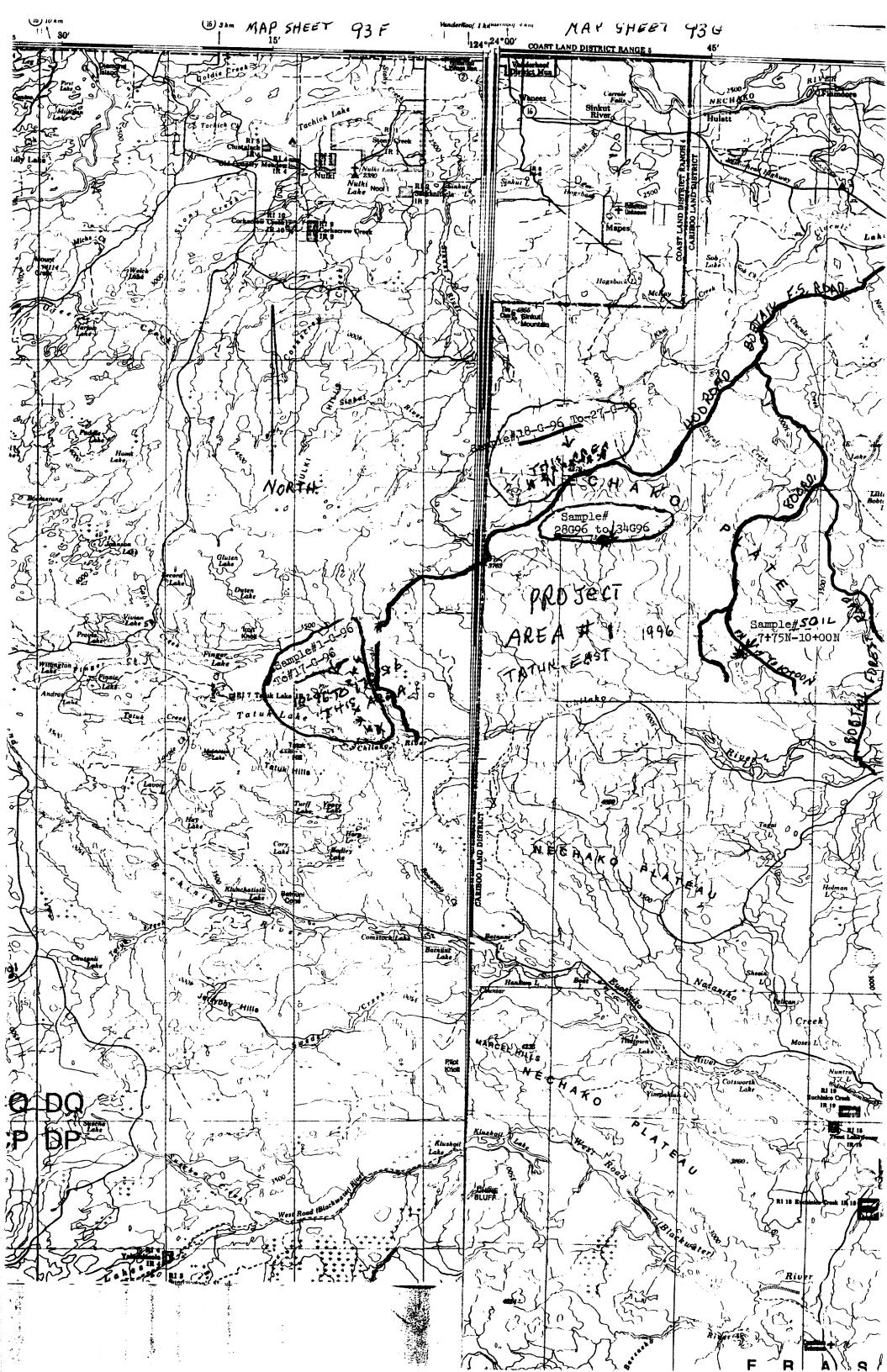
B. TECHNICAL REPORT

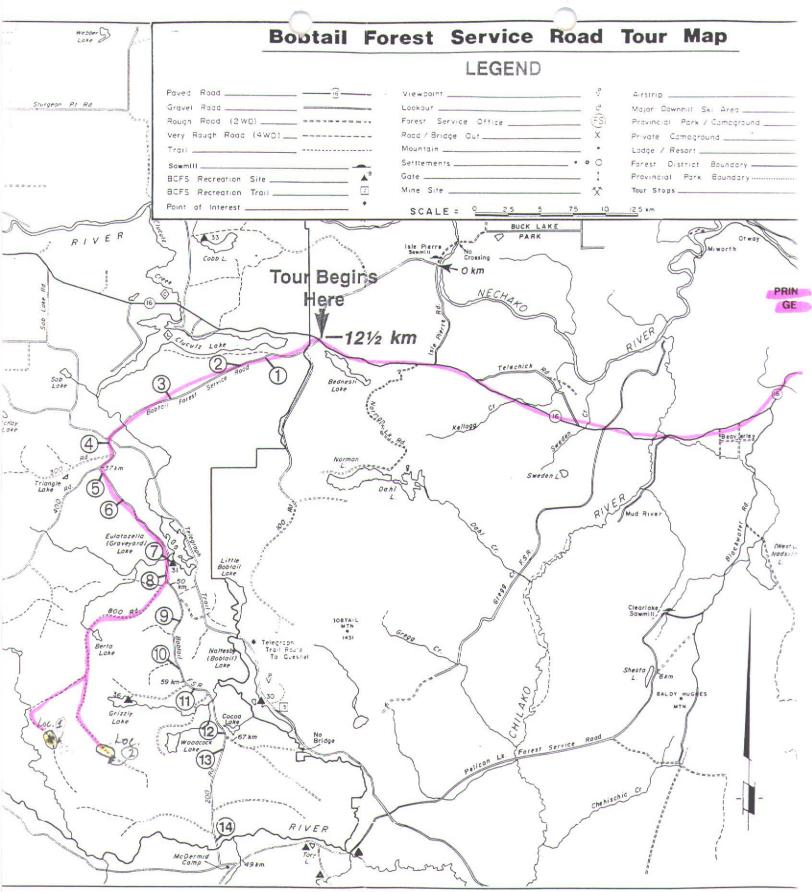
- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Fred Nilsen	Reference Number 96-97-P83
LOCATION/COMMODITE Project Area (as listed in Part A	A) Area number four. MINFILE No. if applicable
Location of Project Area N	TTSNew logged off areas Lat Various Long Various.
Description of Location and A	ccess Prospecting on freshly logged areas in many directions from
	such as the Bowron rdStonebuck rdGregg Creek rd.=Buckhorn rg Creek rdGeorge Creek rdElackwater rdetc.
Main Commodities Searched I	For Gold, silver, lead, zinc, copper, nickel, molybdenite or any other
rineral of value.	
Known Mineral Occurrences i	n Project Area
•	ng (area) Mainly float Prospecting, and sampling rock outcrops
2. Geological Mapping (h	
	no. of samples) Seven soil samples and six rock chip samples.
4. Geophysical (type and	line km) None
	d amount) Float prospecting and checking outcrops, soil samples.
6,. Drilling (no,. holes, siz	e, depth in m, total m) None.
7. Other (specify) Panni	ng any creek that flowed through these new clear cuts.
SIGNIFICANT RESULTS Commodities Discoverd a	small showing of talc. Claim Name None.
Location (show on map) Lat	-79 920E UTM Long 59-50 505N UTM Elevation 3137 feet.
Best assay/sample type Best outcrop was quite sn	sample turned out to be the talc sample, but the well exposed all and the talc had too many inclusions of other minerals.
	host rocks, anomalies Other than the tale none of the other
	cesfull. The talc turned out to be a small lense in Greenstone.
	amples taken had any significant mineralization. No Other

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the *Freedom of Information Act*.




BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Fred Nilsen.	Reference Number 96-97 P83.
LOCATION/COMMODI	TIES
	nrt A) Tatuk Lake East #1 MINFILE No. if applicable
Location of Project Area	NTS93F and 93G. See map.attachedat Long
Description of Location and	Access The area can be reached by way of the Bobtail forest eervice
road that leaves	highway 16 west from Prince George one half kilometer past Bedne
Lake service stat	tion to the left.the 800 and 400 roads branch off from this road
	ed For Gold, silver, copper, lead, zins and molybdenite. the right
Known Mineral Occurrence	es in Project Area _ ^O
Known Mineral Occurrence	es in Project Area
WORK PERFORMED	Coil compling floot progressing outeron sampling
	ecting (area) Soil sampling, float prospecting, outcrop sampling.
2. Geological Mapping	
	and no. of samples) 10 soil samples and 34 rock chip samples for assay.
A Geombusical (tune or	nd line km) ()
4. Geophysical (type ar	Sempling float outcrops soil sampling traversing area.
5. Physical Work (type	and amount) Sampling float, outcrops, soil sampling, traversing area.
5. Physical Work (type 6,. Drilling (no,. holes,	and amount) Sampling float, outcrops, soil sampling, traversing area. size, depth in m, total m) 0
5. Physical Work (type 6,. Drilling (no,. holes,	and amount) Sampling float, outcrops, soil sampling, traversing area.
5. Physical Work (type6. Drilling (no. holes,7. Other (specify)	size, depth in m, total m) O ry panning ant hills in areas of interesting float, no success.
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)	size, depth in m, total m) Ty panning ant hills in areas of interesting float, no success.
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral	size, depth in m, total m) ory panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La	size, depth in m, total m) Ty panning ant hills in areas of interesting float, no success. S Samples with molybdenite. Claim Name
5. Physical Work (type 6., Drilling (no., holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La	size, depth in m, total m) ory panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify) SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La Best assay/sample type Mod	size, depth in m, total m) ry panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name none. Long 123 50 Elevation 3600 ft. lybdenite in granite pegmatite.
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify) SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La Best assay/sample type Description of mineralization	size, depth in m, total m) ory panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La Best assay/sample type Mod Description of mineralization of granite intrus	size, depth in m, total m) ory panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La Best assay/sample type Mod Description of mineralization of granite intrus Best samples are	size, depth in m, total m) ory panning ant hills in areas of interesting float no success. S samples with molybdenite. Claim Name none. Long 123 50 Elevation 3600 ft. lybdenite in granite pegmatite. on, host rocks, anomalies Molybdenite in pegmatite lenses at outer bound sion. 29 32 numbers 26-3-96 to 23-G-96 as shown on attached map of number 1
5. Physical Work (type 6 Drilling (no holes, 7. Other (specify)Tr SIGNIFICANT RESULTS CommoditiesSeveral Location (show on map) La Best assay/sample type Mod Description of mineralization of granite intrus Best samples are	size, depth in m, total m) ory panning ant hills in areas of interesting float, no success. S samples with molybdenite. Claim Name

differences can you see

the Bobtail to continue ne muddy during wet

ıy 4, 1990

trees are over 300 years old. The expectation was that because these trees were firmly rooted, they would not blow down, yet provide enough seed for regeneration.

If you take a look around, you may notice that the area is fairly well stocked but not with Douglas Fir. Lodgepole Pine, Spruce, Subalpine Fir, Aspen and some Douglas Fir now stock the area. Were the seed trees effective?

Other areas also showed the trend that "veteran" seed trees produce little regeneration, yet younger (i.e. 120 yr.) seed trees are prone to windthrow. Recent public opinion has created a

Blowdown Viewpoint

This area was one of the hardest hit areas of the Maj windstorm. In total, the opening that you see (including plogged areas) is 336 ha. 103 ha of this was the direct the 1990 blowdown event. Salvage logging operation immediately and have now been completed. Reference

852 E. HASTINGS ST. VANCE JVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 96-2630 7078 Harvard Crescent, Prince George BC V2N 2V7

I	Мо ррп		Pb Ppm		Ag ppm	Ni ppm	Co	Mn ppm		As ppm	ppm U	Au ppm				Sb ppm		bbw A	Ca %	P %		Cr ppm	_		i B % ppm			К %	ppm W		Hg /	
1-G-96	4	9881	94	1724	65.7	27	<1	103	2.26	24	< 5	<2	<2	2	10.0	<2	<2	6	.04<.		<1	58					.01		<2		1 '	
2-G-96	1	101		1092		3	<1	57	.29	<2	<5	<2	<2	1	18.3	<2	<2	1	.01<.	.001	<1	13	<.01				.01			_		_
3-G-96	,	53				1158	88	4302	3.87	33	<5		<2		.3	<2	<2	14	10.54				12.78					<.01	<2	-	<1	_
4-G-96	1	379	•	1483		10		67	.34	3	<5	<2	<2	3	22.6	<2	<2	1	.05<	.001			.05					<.01	<2	-	<1	_
5-G-96	3	30						1136	3.77	2	<5	₹2	<2	5	.3	<2	<2	21	.09	.004	<1	1091	1.99	67<.0	1 3	.43	·<.01	<.01	<2	<5	1	1
6-G-96	24	80/.	79	284	5.4	203	93	283	11.29	232	<5	<2	<2	8	2.8	3	<2	21	.02	.019	1	222	.05	173<.0	1 <3	. 04	·<.01	.03	<2	_	<1	
7-G-96		248		_	28.3	22	12		3 45			<2		1	38.0	3	344	1	.03<	.001	<1	16	.04	6<.0	11 <3	.01	l<.01	.01	<2	_	<1	
7-6-96	7	142			2.4	22	26		3.51			<2		3		2	11	2	.02	.002	1	12	.01	15<.0	11 <3	.05	.01	.04	2	-	<1	
9-G-96	1	17			_		10		2.10			<2	7	14	<.2	<2	3	3	.09	.031	10	6	.04	38 .0	11 <3	. 25	.01		<2	_	-	-
10-G-96	64	24			<.3		25		3.86			<2	6		<.2		2	62	.52	. 104	9	29	1.03	58 .1	6 <3	1.26	.07	.07	4	<5	<1	3
44 + 57		PO.	<3	107	<.3	256	44	2030	8.29	8	<5	<2	,	65	<.2	<2	<2	185	1.20	.226	25	415	3.38	53 .4	7 <3	2.10	.04	.41	<2	<5	1	2
11-G-96	!	89	· <3										₹2									12	.05	59<.0)1 3	. 25	5 .03	. 13	3	<5	<1	15
12-G-96	1	22	_		<.3	_	_		1.33	-					<.2				.65			11	.05	61<.0	11 4	2/	4 .03	. 13	3	<5	<1	14
RE 12-G-96	17	340		10		6	_	167			15		6		<.2		152		.58			8	.03	32 .0	1 3	37	2 .03	.22	<2	<5	<1	8
13-G-96	7	45	_				6											7		.051		16	.03	10 .0)2 3	70	0.03	.02	1333	22	<1	<1
14-G-96	'	4,2		130	`	47	u	103	1.77				`-	•			_	•	•						_				-	-		
15-G-96	49	163	21	486	1.0	110	22	735	4.81			<2	7	80					2,32								3 .13		_	<5		-1
16-G-96	1	157	7 5	38	<.3	81	19	568				<2				<2								166 .2				1.05		<5 -E		<1
17-G-96	2	48	10	32	< 3	35	17	621	3.34	<2	<5	<2		8										146 .1			B .03			-		-
STANDARD CZ/AU-R	20	60	42	143	6.3	74	37	1171	3.87	42	19	8	34	57	20.2	19	22	72	.53	.094	40	66	.98	200 .0	JY 32	. 4. 0.	3 .06	. 14	12	<5		504

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CLI PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 5 1996 DATE REPORT MAILED: July 13/96 SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fred Nilsen File # 96-5189 7078 Harvard Crescent, Prince George BC V2N 2V7

SAMPLE#			Pb		_		Co	Mn ppm		As	U	Au ppm	Th	Sr nom	Cd ppm	Sb	Bí DOM	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₩ ppm	T l	Hg . ppm		,
18-G-96 19-G-96 20-G-96	303 3 4	22 37 72	25 <3 3	21 75	<.3 <.3	33 1406 14 2055	37 91 4	1103 1021 254	5.36	· -	<5 <5 <5 <5	<2 <2 <2 <2 <2	<2	120 180 10 22	.4 .8 <.2				.14		2 <1 3	46	1.56 11.12 .68 22.46	41· 75	.11 <.01 .20 <.01	<3 <3		.01 .07	.78 <.01 .48 <.01	2	<5 <5 <5 <5	<1 <1 <1 <1	6 1 3 <1	
21-G• 96 22-G- 9 6	3	122 119	29 <3		<.3		38		5.16	<2	< 5	<2		135	.7	<2		193	4.42				4.11	49	.04					_	<5		1	
23-G-96 24-G-96 -5-G-96 G-96 27-G-96	4 3 1 1 7	152 60 81 420 34	7 12 12	58 133	<.3 <.3	23 27 10 23 12		107 2659 1137		<2 <2 <2	\$ \$ \$ \$	<2 <2 <2 <2 <2	4	72 151 154 100 5	.3 <.2 1.2 .6 <.2	<2 <2 <2 <2 <2 <2 <2	4 3 <2 <2 <2	161 18 26 55 2	16.40 5.65	.059	23 <1 <1	23 24 11 17 35	1.83 .15 1.00 2.05	21 43 46	.28 .12 .02 .02 .01	6 <3 <3	2.15	.51 .05	.12	8 <2 3	<5 <5 <5	<1 <1 <1	<1 1 2 5	
28-G-96 29-G-96 30-G-96 RE 30-G-96 31-G-96	1	241 230 227	11 9 8	109 7 8 8 24	<.3 .4 .4 .3 <.3	31 32 31	14	60 42 40	2.85 2.47 2.74 2.70 2.21	4 3 2	6 33 26	<5 <5 <5	4 3 6 5 <2	24 10 10 9 32	.7 <.2 <.2 .2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	31 6 3 2 29	.08 .12 .12	.364 .013 .031 .030	5 1 1 1) 1	39 15 14 13 40	.57 .06 .01 .01	25 22 21	.12 .01 <.01 <.01	<3 <3 <3	.32 .29 .29	.08 .09 .08 .08	.11 .09 .08	6 9	<5 <5	<1 <1 <1	_	
32-G-96 33-G-96 34-GK-96 Standard C2/AU-R	2037 16		8 3	154 5	<.3 <.3 <.3	80 7	28 2			<2 <2	<5 <5	<2 <2 <2 8	6		.3 .5 <.2 19.7	<2 3 <2 18	3 <2	192 5	1.63		9 3 8	170 22	.30 2.13 .03 .97	3 84 3 38	.09 .18 3<.01 7.09	<3 <3	3.68		1.11	5 9	<5 <5 <5	<1 <1	<1 <1 1 462	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/HIBK EXTRACT, GF/AA FINISHED.(10 GM)
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

COMP: GERALD H.KLEIN

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

DATE: 96/10/16

FILE NO: 6V-0806-SJ1

PROJ: (ACT:F31) TEL:(604)327-3436 FAX:(604)327-3423 ATTN: P PB SB SN SR TH TI V W ZN Hg Au-fire GA K LI MG MN MO NA NI CU FE AS BË BI CA X SAMPLE % PPM PPM PPM PPM PPM PPM X PPM PPM PPM PPM PPB PPM PPM PPM PPM % PPM % PPM % PPM PPM % PPM PPM PPM PPM NUMBER PPN 8 .59 256 8 .53 231 6 .77 371 24 .05 40.6 600 16 2.00 .04 7 .01 .31 .1 1.01 45 119 FN 7+75N 23 24 28 27 54 47 3 .04 1 37.6 1 41.9 480 5 1 13 1.78 .03 7 .01 41 36 2 1.03 8 55 138 FN 8+00N 1 .05 333 1 4 48 49 43 8 .01 58 430 60 52 18 2.33 . 1 12 119 FN 8+25N 42.6 47 .04 7 .67 332 7 .01 50 570 .05 15 2.09 .35 10 122 . 1 FN 8+50N .2 .97 1 59.9 4 .05 8 .72 269 8 .01 44 1000 1 .08 21 2.28 66 137 .44 .1 11 .4 1.18 FN 8+75N 2 4 2 10 21 43 25 25 25 24 50 9 .82 9 .72 3 3 1 .06 1 43.3 55 42 50 49 .34 .35 .28 .30 15 2.23 370 8 .01 600 71 77 64 11 97 FN 9+00N .3 1.13 3223 53 510 1 .06 1 43.6 12 17 2.11 . Ŏ5 541 8 .01 .2 1.20 162 FN 9+25N 50 362 40 370 1 .04 1 39.1 39 35 15 1.88 .04 8 .61 7 .01 .2 1.05 .2 .97 FN 9+50N 120 58 35 48 1 .05 1 38.0 .04 8 .55 282 7 .01 330 64 14 1.71 130 FN 9+75N 1 .05 1 39.7 1 47 6 40 .03 8 .67 316 7 .01 440 13 1.86 68 125 . 29 .2 1.05 FN 10+00N 3 3 4 1 39.5 45 58325 32 1,05 7 .01 40 480 4 .03 7 .65 383 53 2 37 .35 38 12 1.92 .2 .98 95 . 1 FNG 20+00E 29 56 31 42 62 30 1 .04 1 50.1 .04 8 .60 535 9 .01 31 370 .31 .51 12 37 17 2.62 .1 1.16 119 FNG 20+33E 80 79 10 1 .03 1 62.3 12 .97 1043 13 .02 540 18 54 49 3.58 . 1 290 FNG 20+50E .1 2.02 47 20 45 1 .05 1 44.1 7 .01 30 280 5 8 .31 33 .03 7 .53 344 .2 1.09 50 122 12 1.88 FNG 20+75E 37 Ź 53 1 52.9 300 4 1 .06 12 49 .06 10 .77 601 10 .01 46 26 2.81 .2 1.57 44 161 .1 FNG 21+00E 7 .02 37 6 .02 36 3 2 34 31 1 .06 40.0 2 35 41 25 20 42 8 .64 260 7 .65 266 580 40 14 1.89 .04 .3 1.05 .3 .96 70 .39 8 125 FNG 21+25E 1 .05 480 1 38.5 .04 38 12 1.81 68 112 FNG 21+50E

44

GEOCHEMICAL ANALYSIS CERTIFICATE

G.H. Klein & Associates File # 96-3124 Box 2059, Prince George BC VZN 2J6

44

SÂMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn	Fe %	As ppm	ppm U	Au ppm	Th ppm	Sr ppm	Cd	Sp ppm	Bi ppm	V ppm	Ca %	P %	La ppm	DDm Cr	Mg %	Ba ppm	Ti 2	ppm B	A! Z	Na %	Х 2	ppm H	Au* ppb
K96 HAN 1 K96 HAN 2 K96 HAN 3 K96 HAN 4 K96 FN 1	10 3 1 1 <1	274 15 5 1 23	<3 4 5 <3 28	34 91 37 36 4	<.3 <.3 <.3	50 26 3 3 73	23 16 3 4 65	310 637 340 365 47	3.01 2.88 1.64 1.53 9.27	<2 <2 3 <2 163	\$ \$ 5 \$ \$	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	47 26 13 12 21	<.2 <.2 <.2 .2	<2 <2 <2 <2 <2	<2 <2 <2 <2 <2	90 51 19 15 7	1.16 .0 .20 .1 .19 .	184 074 053 073 114	6 17 13 13 <1	71 57 5 16 22	.72 .51 .07 .03 .02	113	.16 .01 <.01 <.01 <.01	12 <3 <3 4 16	.72 .84 .71 .57 .24	.12 .05 .03 .03	.18 .10 .15 .17 .12	5 5 5 5	1 2 3 2 14
K96 FN 2 KC' FN 3 ; 96 FN 3 18-96-G 19-96-G	1 <1 <1 141 <1	18 137 149 15 42	<3 <3	3 62 65 31 90	<.3 <.3 .4 <:3	3 133 138 28 18		120 851 890 56 298	.43 5.97 6.21 5.21 3.67	3 <2 <2 388 6	26 <5 <5 29 <5	<2 <2 <2 <2 <2	<2 <2 <2 6 4	12 127 133 202 79	<.2 <.2 <.2 <.2 <.2	<2 <2 3 <2 <2	<2 <2 <2 <2		7.43 . 7.71 . .44 .	049 015 016 136 186	1 2 2 17 38		.09 2.90 3.01 .22 1.17	68 71	.31 .63 .65 .08 .27	28	.57 3.26 3.42 1.43 -99	.04 .12 .13 .11 .23	.01 .08 .09 .22 .19	\$ \$ \$ \$ \$	1 2 3 2 2
JW 96-16D Standard C2/AU-R	1 20	22 63	3 36	281 138	<.3 6.2	89 76			11.21 4.08	7 40	<5 19	<2 7	11 37	22 52	.2 21.3	<2 19	<2 20	18 76		154 099	18 40	_	2.15 1.06		.01 .09		3.13 2.12	.02 .07	.20 .16	<2 11	1 492

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 25 1996 DATE REPORT MAILED: Hug 2 96

SIGNED BY ... D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Sec. 16.