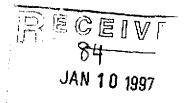
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1996/1997


REPORT #:

PAP 96-40

NAME:

RICHARD LODMELL

Richard Delmar Lodmell 1996 Prospecting Report Ref. No. 96/97 P84 Duffer 1 Claim 92I/10E

PROSPECTORS PROMEMPR

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

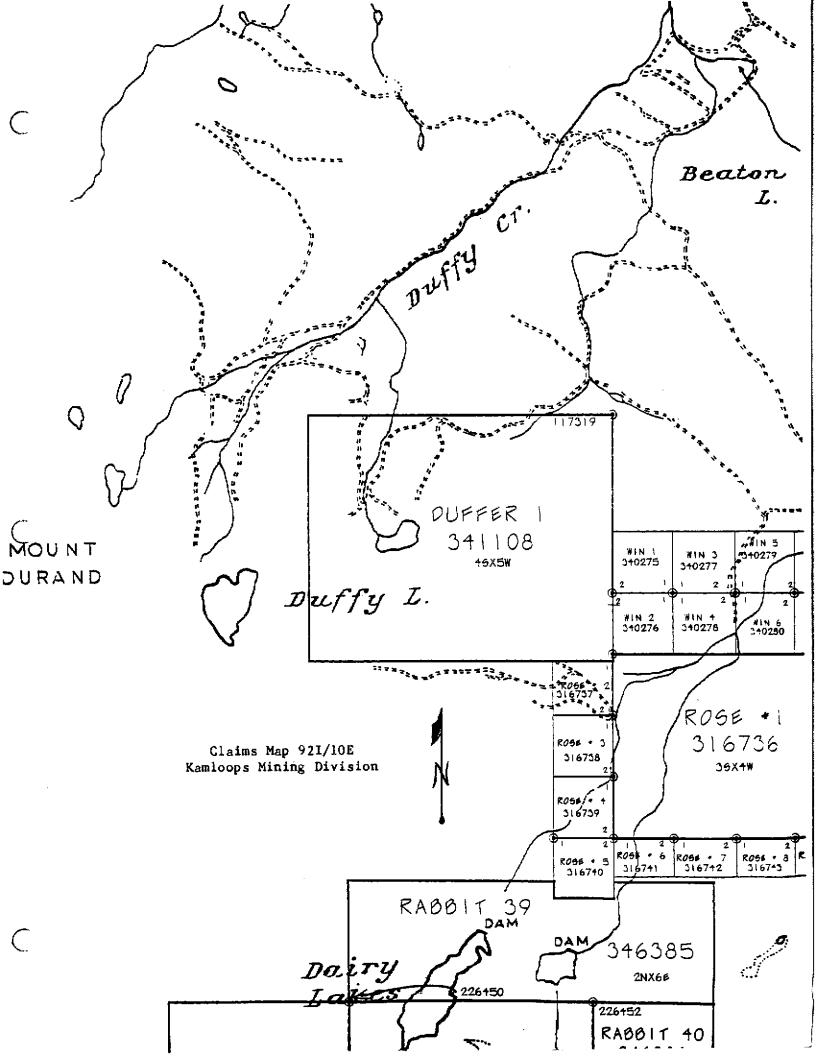
- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

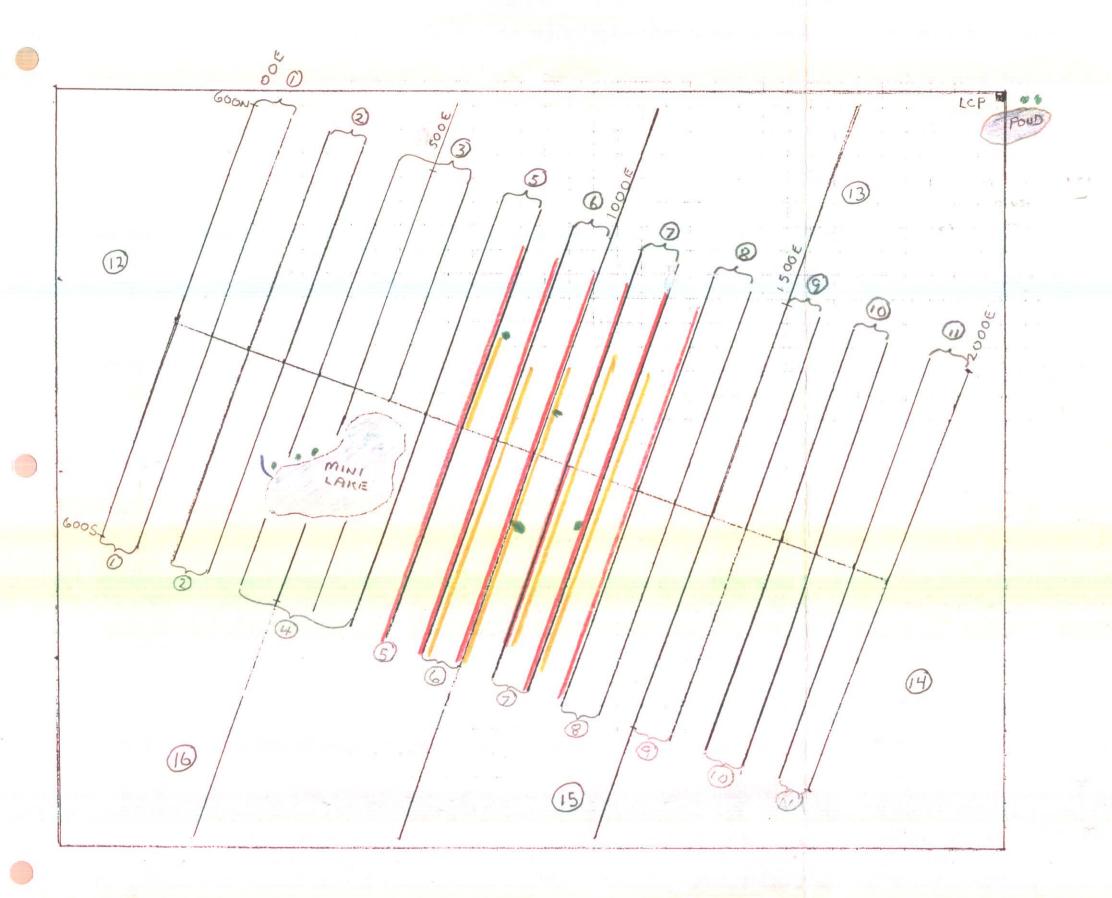
	 	· · · · · · · · · · · · · · · · · · ·				1000			
Name _	Richard 1	Delmar Lodmel	1	Refere	nce Num	iber	96/97 P84		
LOCAT Project A Location Descripti to Du the Re Main Co Known M	TON/COMMO Area (as listed in of Project Area ion of Location ffy Lake Ro oad. ommodities Sear	DDITIES Part A) Duffer NTS and Access Via cad the LCP in the L	1 Claim 92I/10E Highway 1 s 8 Km We Co	West st on pper a	of Kam duffy nd Gol	MINFI Lat 50 Loops Lake	LE No. if applied 39' 30'' to Cherry Road on th	cable Long Creek e Nort	th side of
south	ern edge of	the Iron Ma	sk Bathol	ith.					
1. C 2. G 3. G 4. G 5. Pl 6,. I	eological Mapp eochemical (typ eophysical (typ hysical Work (typ Drilling (no,, ho	DED Dispecting (area) Ding (hectares/scale Ding and no. of samp Dine and line km) Maype and amount) Dies, size, depth in n	b) 500 hect les) 77 soi gnetomete Baselin n, total m)	ares, 1, 9 r r for e for	scale ock, 2 6.6 Km 2 Km	l cm silt and	and 2 veg	etatic 6.6 K	(m
SIGNIF	ICANT RESU	LTS							
							lame		
	_	Lat				_	Elevation		
		zation, host rocks, a		· · · · · · · · · · · · · · · · · · ·					
-								· · · · ·	

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

DUFFER 1 PROSPECTING SUMMARY


A baseline 00E to 2000E with 100 meter picketed stations was constructed for geological, geochemical and geophysical control over the property. (See Duffer I Prospecting Map in this report) The prospecting and mapping of the property commenced at stations 00E and 100E north and south for 600 meters. This area was designated as \bigcirc , the property was investigated in 16 areas as shown from \bigcirc to \bigcirc 16.


The geography of the property is in an area of low rolling hills with easy slopes with limited rock exposures due to heavy overburden.

The outcrop is limited mostly to the south-east portion of the property, areas 10 11 14 and 15 and is of a basaltic nature, similar rock occurs in outcrops in the center of the property at 800E + 300N and 1200E + 300S these samples were chosen for assay as representative of the area with 800E + 300N assaying at 131 ppm for copper, the highest result of this disappointing survey. Samples were chosen from quartz material at Mini Lake, 950E + 575S and 1200E + 300S with barren results. What appears to be a dyke of hard fine grained greenish rock was sampled at 1000E + 375S, 1000E + 375S #2, 1025E + 375S and 1075E + 375S and also proved barren. Silt samples were taken from Mini Lake end from the out-flowing creek as well as a vegetation sample from an alkaline pond that was taken to compare with an alkaline vegetation sample taken from a pond near Afton Mine. None of thes samples show any encouragement.

This property was origionally staked to surround an air magnetometer anomaly, for that reason a geochemical survey was conducted in the center of the property as well as VLF-EM and magnetometer surveys. (see prospecting map)

It was upon the compilation of the results of the geochemical for soils and the geophysical data that further detailed geochemical and geophysical surveys would be conducted. The results of the surveys indicate that there is no reason that this property should be further investigated. The data from the geochemical and geophysical surveys are included in this report, no conturing was done as the results do not give any definition.

DUFFER 1 PROSPECTING MAP

Scale 1 cm = 100 meters

Geophysical Survey
Geochemical Survey
Sample Sites

To: Acme Analytical Laboratory

852 East Hastings Vancouver, B.C.

V6A 1R6

Attention: Clarence Leong - (604) 253-3158

From: Richard Lodmell - (604) 372-1199

Box 1192

Kamloops, B.C.

V2C 6H3

Re: British Columbia Prospectors Assistance Program Reference No. 96/97 P84

Duffer 1 Claim tenure number 341108 geochemical analysis

Dear Clarence,

Please conduct a 32 element I.C.P. analysis on soil samples from these

lines: 800E + 00N to 250N

900E + 600S to 200N

1000E + 600S to 300N

1100E + 525S to 300N

1200E + 550S to 300N (1200E + 300S is a rock sample)

a total of 77 samples.

There are also 9 rock samples that need a 32 element I.C.P. analysis as

well. They are: Mini Lake

800E + 300N

950E + 575S

1000E + 150N

1000E + 375S (2 samples)

1025E + 375S

1075E + 375S

1200E + 300S

Please conduct a 32 element I.C.P. on two vegetation samples, Duffer

pond and Afton pond as well. THERE ARE ALSO 2 SILT SAMPLES, MINI
LAIKE AND DUFFER POND

Thank you.

Yours truly,

Richard Lodmell

CMR AN TICAL LABORATORIES LTD.

852 E. HASTINGS ST. /

COUVER BC VEA 1R6

PHONE (604) 253-3158 FAX (6)

Page 1

AX (6/ \253

GEOCHEMICAL ANALYSIS CERTIFICATE

Richard Lodmell PROJECT DUFFER 1 File # 96-4284
Box 1192, Kemiloops BC V2C 6H3

() ()

SAMPLE#	Mo ppm				Ag ppm		Co ppm			As ppm				Sr ppm	Cd ppm	Sb ppm	Bi ppm	ppm V	Ca %		La ppm			Ва	Ti %	В	Al %	Na %	K %		T (ppm	_	
→ MINI LAKE → 800E 300N 950E 575S ← 1000E 150N ← 1000E 375S	1 1 1 2	58 131 6 5 8	4 6 5	82 55 9	<.3 <.3 <.3 <.3 <.3	17 10	24 6 <1	1157 935 634 71 280	5.73 2.05 .45	<2 3 <2	<5 <5 <5	<2 <2	<2 <2 <2	180 235 5	<.2 .4 <.2	<2 <2 <2	<2 <2	262 39 3	16.60 1.99 4.13 .06 .48	.100 .094	19	25 43 15	1.93	74 86< 21<	.14	11 6	.66 3.09 .87 .27	.27 .06	.08 .16 .15	·	<5	4 1 <1 <1	
1000E 375S #2 1025E 375S RE 1025E 375S 1075E 375S — 1200E 300S	1	99 79 83 18 72	<3 7 9	71 73 50		19 20 4	17 18 2	799 701 737 399 1024	3.04 3.16 1.59	6 9 <2	<5 <5	<2 <2 <2	<2 <2 8	90 166 179 41 37	.5 .5 .2	<2	3 8 2	126 134 26	1.34 2.56 2.73 .53 4.31	.119 .120 .045	3 3 25	81 85 12	1.92	173 173 81	.30 .31 .03	<3 3 4	2.57 2.11 2.21 .99 3.96	.05 .05 .06	.13 .14 .20	√2 √2 2	<5 <5 <5	1 <1	
STANDARD C2	21	61	42	150	6.9	78	36	1250	4.08	42	21	_ 8	37	56	22.0	19	22	77	.55	.109	43	71	1.00	219	.09	29	2.19	.07	. 16	12	< 5	3	

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: P1 ROCK P2 TO P4 SOIL P5 SEDIMENT

Samples beginning 'RE' are Reruns and "RRE' are Reject Reruns.

DATE RECEIVED: SEP 6 1996 DATE REPORT MAILED:

SIGNED BY

..D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

Ministry of Employment and Investment Kamloops, B.C.

Rec'd OCT - 3 1996

age 2

 DAMP! E#																			·														ACHE ANALYTIC	:AL
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	2n ppm	Ag ppm	Ni ppm	Co	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb mag	Bi DOM	V mag	Ca %		La ppm		Mg	Ba ppm	Ti %	В		Na %		ppm ;			<u> </u>	-
800E 250N 800E 200N 800E 150N 800E 100N 800E 50N	1		4 4 <3	88 50 94	.4 .3 <.3	54 22 51	16 8 14	1249 1286 1181	4.03 3.83 2.09 4.14 3.15	2 4 42 2	\$ \$ \$	<2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	54 83 214 68	<.2 <.2	<2 <2 <2 <2	<2 2 2 2	114 105	.82 .84 1.66	.045	9 10 6 11	94 111 28 75	.94 .92 1.03	213 382 402 412	.16 .12 .07	10 6 14 11	2.26 2.30 1.52 2.41	.03 .03 .03	.21 .29 .27	<2 <2 <2 <2	<5 <5 <5	1 2		
800E ON 900E 200N 900E 150N 900E 100N 900E 50N	1 <1	28 64 48 115 32	6 5 6	92 49 59	<.3	59 24 42	17 5 6	1090 559 300	3.27 4.40 1.70 2.33 3.43	<2 3 3	6 <5 <5	<2 <2 <2	<2 <2 <2	80 946 248	.2 .4 .2	<2 <2 <2	4 <2 ≼2	123 52 71	.63 1.03 11.20 1.74 .49	.059	12 6 7	85 25 39	3.78 2.96	360 474 485	.15 .06 .09	14 40 27	1 31	.02 .08 .09	.45 .12 .23	<2 <2 <2	<5 <5 <5	<1 2 1 1		
900E ON 900E 50S 900E 100S 900E 150S 900E 200S	<1 <1 <1	35 43 39	4 3 4	74 79 70	<.3 <.3	44 50 49	11 12 13	984 932	3.37 3.79 3.87 3.92 3.16	3 <2 <2	<5 <5 <5	<2 <2 <2	<2 <2 <2	46 60 56	<.2	<2 <2 <2	2 7	111 108	.66 .83 .74	.052 .053 .069 .048 .040	7 10 11	73 70 73	.76 .81	279 321 283	. 13 . 13 . 15	7 10 11	1.94 1.75 2.21 2.28 1.73	.02 .03	.20 .30 .32	<2 <2	<5 <5	1 <1		
900E 250S RE 900E 250S 900E 300S 900E 350S 900E 400S	<1 1 1	48 29 40	5 5 5	81 82 56	<.3 <.3 <.3	46 35	11 9 13	711 1756 843	3.54 3.51 2.67 3.63 3.07	<2 <2 <2	<5 <5 <5	<2 <2 <2	<5 <5 <5	131 139 94	<.2 .2 <.2	<2 <2	<2 <2	80 75 101	.78 1.95 .74	.031 .030 .070 .059 .066	10 6	61 1 56 81	.65 .90	323 403 249	.12 .11 .14	14 15 8	2.51 2.50 1.51 2.02 1.32	.03 .02 .03	.29 .30 .22	<2 <2 <2	<5 <5 <5	2 2 1 2 <1		
900E 450S 900E 500S 900E 550S 900E 600S 1000E 300N	1	27 50 78 33 32	9 <3 5	143 84 98	<.3 .4 <.3	108 152 45	19 19 11	1643 585 1668		9 2 3	<5 <5 <5	<2 <2 <2	<2 2 <2	115 91 73	.5 .3 <.2	<2 <2	4 <2 <2	101 126 84	.61 1.08 .83 1.00	. 149 . 071 . 041	8 ² 18 2 8	177 1 207 1 66	.72 .00 .24 .59	375 331 453	. 12 . 19 . 13	11 : 8 : 8 :	1.74 3.28 4.23 1.94 1.67	.03 .02 .02	.26 .18 .19	<2 <2 <2	<5 <5 <5	1 1 <1 1		
1000E 250N 1000E 200N 1000E 150N 1000E 100N 1000E 50N	1 1 1	42	<3 3 <3	99 85 67	<.3 <.3	54 52 51	14 14 11	1764 1070 840	4.13 3.34	3 <2 <2	<5 <5 <5	<2 <2 <2	<2 <2 <2	79 57 69	.5	<2 <2 <2	5 4 2	113 92	1.38 .80	.095 .057	8	65 77 72	.78 .80 .83	490 306 256	. 10 . 14 . 12	9 ; 10 ; 8 ;	1.68 2.05 2.47 1.98 1.60	.01 .03 .03	.30 .43 .30	<5 <5 <5	<5 <5	2 1 2 <1 <1		
1000E ON 1000E 50S 1000E 100S 1000E 150S 1000E 200S	1 1 1	26 28 31	ব্য ব্য	61 66 67	<.3 <.3	34 37 28	10 10 10	344 1538 947	2.68 3.44 3.18 2.99 3.14	<2 <2 <2	<5 <5 <5	<2 <2 <2	<2 <2 <2	41 55 63	.3 <.2 .2	<2 <2	<2 <2 <5	102 90 80	.55 .52 .72 .63 .86	.044 .065 .042	5 6 7	70 63 51	.45 .56 .61 .59	196 300 283	. 14 . 12 . 12	6 7 9 -	1.39 1.64 1.54 1.74 1.93	.03 .02 .02	. 14 . 25 . 25	<2 <2	<5 <5 <5			
 STANDARD C2	21	58	35	144	6.8	75	33	1162	4.02	_38	26	8	34	55 2	20.9	15	23	74	.54	.109	42	66	.99	204	.08	29 2	2.13	.06	. 15	11	<5	3		

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

age 3

ACME ANALYTICAL

ACITE THE PERSON IN			•																											AC	ME ANALY	TICAL
SAMPLE#	Mo maja	Сu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm		Cd	Sb ppm	Bi ppm	ppm V	Ca %	P %	La	Cr ppm	Mg %	8a ppm	Ti %	B	Al %	Na %	K %	W	T l ppm	Hg
1000E 250S 1000E 300S	<1 2	34 41	<3 <3		<.3	29	10			2	<5	<2	<2		.2	<2	<2		1.37		6		1.29	188	.10		1.71	.06	.30	<2	 <5	<u></u> <1
1000E 350S	2	39	5	93		42 34		1009 1064		<2 <2	<5 <5	<2 <2	<2		.3	<2	<2	83		.052	7		. 86		. 12		1.76	.03	. 29	<2	<5	<1
1000E 400S	2	30	5		<.3	29		1491		<2 <2	<5	<2 <2	<2 <2	220 138	.2 <. 2	<2 <2	<2 3	53 71	1.00 1.00		6 13			293	.09		1.76	.03	.44	<2	<5	≺1
1000E 450S	1	45	5	50	<.3	56		712		<2	<5	₹2	₹2	96		₹2	Ž	87		.041	10		.63 1.09		.11 .13		2.17 2. 3 6	.02 .04	.26 .29	⊀2 ≺ 2	<5 <5	<1 1
1000E 500S	<1	34	<3	54		25	5			3	<5	<2	<2	1327	<.2	<2	<2	31	20.63	.084	4	21 !	5.07	484	.05	32	1.03	.05	.09	<2	< 5	<1
1000E 550S	1	15	4		<.3	28	9			<2	<5	<2	<2	62	<.2	2	4	70	.51	.024	3		.74		.12		1.77	.04	.16	<2	<5	<1
1000E 600S 1100E 300N	<1 <1	31 18	<3 <3	49 57	<.3 <.3	53 19		657 614		<2	<5 	<2	<2	151	.2	<2	4	78		.029	7	103		241	.12	8 7	2.27	.05	.22	<2	<5	<1
1100E 250N	<1	25	4	137		27		1393		<2 3	<5 <5	<2 <2	<2 <2	43 39	<.2 .2	<2 <2	<2 <2	74 72		.028 .050	4 5		.47 .47	143 305	.13		1.46 1.83	.03 .02	. 14 . 23	<2 <2	<5 <5	<1 <1
1100E 200N	<1	68	<3	173	<.3	167	26	2435	3.61	<2	<5	<2	<2	71	<.2	<2	<2	108	1.13	167	4	140								_	_	`'
100E 150N	1	26	3	102	<.3	25	9	1174	3.22	<2	<5	<2	₹2	58	.4	₹2	<2	84		.044	6	44			.18		3.29 1.97	.02	.09 .25	<2 <2	<5 <5	-1 -<1
100E 100N 100E 50N	1	21		118		22		1553		<2	<5	<2	<2	44		<2	3	69	.60	.051	4			315			1.60	.02	.22	₹2	<5	₹1
1100E 30N	<1 1	31 27	6	69 103	<.3 <.3	30 35		918 2337		<2 2	<5 <5	<2 <2	<2 <2	58 66	<.2 <.2	<2 <2	<2 5	75 87	.65 1.04	.048	7 6				. 12		1.89	.02	.16	<2	<5	<1
E 4400E ON											_					~E	,	67			0	59	.49	455	.12	11	1.58	.03	. 19	< 2	<5	<1
E 1100E ON 100E 50S	<1	29 36	4 ≺3	99 97	<.3 <.3	36 48		2271 1484		<2 <2	<5 <5	<2 <2	<2 <2	67	.2	2	5	82	1.08		5	56		457				.02	. 19	<2	<5	<1
100E 100s	₹1	57	_	156		41		2632		5	<5	<2	<2	66 57	.2 .3	<2 2	4	103 105		.064 .228	9 8	79 57			.13		2.02	.03	.29	<2	<5	<1
100E 150S	1	47	<3	95	<.3	63	18	2146	4.42	<2	< 5	<2	₹2	54	.3	<2		127		.042	11		.93		.12		3.53 2.36	.02 .02	.14 .32	<2 <2	<5 <5	<1 1
100E 200S	<1	57	<3	133	<.3	87	20	1642	4.44	<2	<5	<2	<2	85	<.2	<2		116	1.06			106			.14	10 3		.03	.39	<2	<5	i
100E 250s	<1	41	4	92	<.3	50		1092		<2	<5	<2	<2	54	.4	<2	2	92	.77	.047	8	72	.72	228	.14	8 2	2.43	.03	.37	<2	<5	1
100E 300\$ 100E 350S	<1 1	41 39	<3 6	116 78		44 40		1219 1205		<2	<5	<2 ·2	<2	136	<.2	<2	5	84	1.35		10	62			.12	10 2	2.04		.35	<2	<5	≺ 1
100E 400S	1	44	<3		<.3	51		1008		<2 <2	<5 <5	<2 <2	<2 <2	82 66	<.2 <.2	<2 <2	4 2	78 94	1.03	.065	9 10				.12			.02	.34	<2	<5	1
100E 450s	1	29	7	59	<.3	34		946		< <u>2</u>	<5	₹2	₹2	53	₹.2	<2 <2	<2	90		.046	7	65			. 14 . 14		2.28 1.48	.02 .03	.49 .21	<2 <2	<5 <5	<1 <1
100E 500s	<1	27	<3	53	<.3	30		864		2	<5	<2	<2	78	<.2	2	3	84	.52	.020	8	58	.63	196	.16	5 1	1.56	.03	.18	<2	<5	
100E 525S	<1	41	<3		<.3	35		570		2	<5	<2	<2	738	.4	<2	<2	56	4.31	.051	8		2.92		.08			.19	.23	<2	<5	i
200E 300N 200E 250N	<1 <1	54 34	<3 <3	101	<.3 <.3	30 26		1279 527		<2 <2	<5 <5	<2	<2	65	.2	<2	2	81	1.02		11		1.00		.13	10 3	3.15	.03	.30	<2	< 5	1
200E 200N	< 1	45	<3	88	<.3	38		1844		2	<5	<2 <2	<2 <2	47 56	<.2 .2	<2 <2	2 5	92 135		.043 .038	7 10		.47 .64		.13			.03	.26 .25	<2 <2	<5 <5	1 <1
200E 150N	<1	50	5	125	<.3	31	6	192	2.56	<2	< 5	<2	<2	91	<.2	< 2	<2	61		.050										_		•
200E 100N	<1	30	<3	84	<.3	33		888		2	<5	<2	<2	42	₹.2	<2	4	98		.045	11 7		.81 .62		.14 .15	11 4			.09 .17	<2 <2	<5 <5	2 ≺1
200E 50N	<1	77	<3		<.3	37		741		2	5	<2	<2	284	.4	<2	ż	59	1.80	.081	ģ	41 2			.09	14 2			.18	<2 <2	<5	<1
200E ON 200E 50s	1 <1	18 19	- 5 <3	93 112	<.3	23 24		1548		<2	<5 	<2	<2	49	<.2	<2	3	59		040	4	42	.38	283	.11				. 16	<2	<5	<1
	_ ``	17	43	112	۲.3	24	٥	996	2.00	3	< 5	<2	<2	40	≺.2	<2	6	73	.57	.040	4	49	.54	233	.12	7 1	.31	.45	. 22	<2	< 5	1
TANDARD C2	20	57	34	141	6.6	72	33	1124	3. 93	34	18	8	34	53	19.9	15	19	72	.53	.103	41	65	.96	200	.08	28 2	80.5	.07	. 15	11	<5	2

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ge 4

SAMPLE#					_	Ni ppm				As ppm	_		Th ppm		Cd		Bi Bi	V	Ca %		La ppm			Ва		ppm B	Al %	Na %				Hg
1200E 100S 1200E 150S 1200E 200S not received	<1 <1	33 26	<3 <3	108 116	<.3 <.3	41 31	15 6	1859 221	3.43 2.46	10 12	<5 <5	<2 <2	<2 <2	48 42	<.2 <.2	3 <2	2 1							380 237			1.97 2.08		.23	<2	<5	<1
1200E 250S 1200E 350S	<1 <1	35 35	<3 <3	78 100	<.3 <.3	57 53	15 14	1335 1319	3.70 3.22	11 10	<5 <5	√2 √2	2 <2	46 63					.78 1.10					- 283 275			1.78 1.94					- <1 1
1200E 400S 1200E 450S RE 1200E 450S 1200E 500S 1200E 550S	<1 <1 <1	32 32 32	<3 <3 4	68 67 77	<.3 <.3 <.3	41 39 36	14 13 14	896 879 1088	3.22 3.14 3.00	11 10 13	<5 <5	<2 <2 <2	<2 <2 <2	52 51 62	.2 <.2 <.2 <.2	<2 <2 <2	<2 3 <2	90 87 83	.66 .65	.039 .038 .032	8 8 9	63 61 54	.65 .64 .60	326 317 312 273 180	. 14 . 13 . 16	4 4 <3	1.92 1.68 1.65 1.82 1.40	.03 .02 .03	.29 .29 .27	<2 <2 <2	<5 <5 <5	<1 <1 1
STANDARD C2	19	56	35	135	6.1	72	35	1095	3.74	47	21	9	34	52	20.4	18	21	72	.51	.103	39	62	.93	205	.08					_	_	

Sample type: SOIL. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

age 5

ACHE ANALYTICAL

SAMPLE#	1				Ag ppm				Fe %		U ppm	Au ppm	DDM Th	Sr ppm			Bi ppm	V ppm	Ca %		La ppm	Cr ppm		Ba ppm		В	Al %	Na %	K %		Τl	Hg ppm
POND SEDIMENT CREEK SEDIMENT ALKALINE SEDIMENT AFTON ALKALINE SEDIMENT RE AFTON ALKALINE SEDIMENT	<1 1 2	56	7 6 6	61 39 47	<.3 <.3 <.3 <.3 <.3	48 12 15	11 4 4	677 329 878	2.66 1.18	2 3 9	<5 <5 <5	<2 <2 <2	<2 <2 <2	375 941 1818	.6 .4 .3	<2 <2 <2	<2 <2	66 - 48 - 32	3.84 6.75 4.98 5.89 5.83	. 103 . 204 . 195	8 3 5	47 3 16 7 18 3	3.01 7.12 3.18	286 181 50	.11 .04 .04	19 942 170	1.89 .66 .49	.05	.13 .18 .30 .57	<2 <2 <2	<5 <5	<1 1

Sample type: SEDIMENT. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	800+E	900+E	1000+E	1100+E	1200+E	1300+E
600+S	57103	56611	56674	Swamp	56644	56879
575+S		56641	56579	Swamp	56556	56782
550+S	57023	56708	56654	Swamp	56563	56887
525+S	56986	56695	56656	56671	56584	56610
500+S	56890	56657	56720	56535	56504	56456
475+S	56954	56731	56698	56734	56500	56886
450+S	56846	56783	56657	56649	56495	56541
425+S	56793	56795	56623	56584	56976	56499
400+S	56864	56726	56630	56542	56470	56522
375+S	56697	56715	56714	56554	56380	56341
350+S	56873	56734	56773	56563	56351	56398
325+S	56978	56765	56700	56571	56296	56476
300+8	57103	56692	56718	56546	56908	56388
275+S	57045	56777	56693	56513	56386	56409
250+S	56872	56764	56699	56510	57466	56871
225+S	56987	56793	56741	56330	57762	56978
200+S	56779	56803	56800	56411	56737	56761
175+S	56879	56864	56828	56141	58071	56805
150+S	57203	56 764	56689	56502	5 74 09	56973
125+S	56994	56828	56638	57387	57589	57118
100+S	56749	56720	56659	57352	57142	57095
75+S	56688	56644	56601	56884	57488	56996
50+S	56974	56674	56556	56926	57191	56851
25+8	56453	56649	56487	57041	56802	56656
00+N	56519	56619	56485	56956	56875	56784
25+N	56638	56552	56428	56886	57090	56867
50+N	56600	56454	56410	56870	57142	56606
75+N	56686	56610	56485	5 7176	57269	56498
100+N	56637	56599	56585	5 7186	56929	56781
125+N	56687	56585	56903	57231	56821	56887
150+N	56533	56522	57225	57203	56683	56790
175+N	56714	56569	58119	56912	57717	56801
200+N	56603	56702	57855	57042	57522	56730
225+N	56607	56687	57792	5703 9	57176	56810
250+N	56707	57779	57163	56996	57168	56971
275+N	57621	57451	57069	56679	57407	56993
300+N	59101	57462	57472	56544	57168	56701
325+N	58528	57183	57291	56874	57006	56998
350+N	57489	57155 57450	57282	56959	56873	56703
375+N 400+N	57578	57450 57066	57327	56974	56823	56872
400+N 425+N	57645 57803	57066 ·	57223 57638	57178	57032	56991
425+N	57680	56903 56998	57638	57326 56706	57056 56050	56901 66902
475+N	56976		57622 57715	56786 57090	56958	56803
500+N	56879	57004 56965	57715 57512	57090 57130	56903	56986
DOUTH	20013	30703	57512	57138	56981	56898

NOTE: This survey was conducted by L.Lutjen using a Geometrics G-816 proton magnetometer, serial # 6424. A magnetometer base station was maintained throughout the survey and all readings are in total gammas and corrected for diurnal variations.

Jany D. Fater

	800+E	900+E	1000+E	1100+E	1200+E	1300+E
600+s	51 -6	51 -8	5 4 -5	Swamp	50 -4	49 -5
575+S	52 -7	50 -8	49 -9	Swamp	51 -4	48 -6
550+S	51 -6	49 -6	53 -9	Swamp	49 -4	50 -4
525+S	5 0 -8	50 -7	49 ~9	55 -7	48 -3	51 -5
500+S	53 ~5	50 -1	50 -5	58 <i>-</i> 7	50 ~4	46 -6
475+S	54 -6	54 +4	52 -4	508	50 -4	48 -5
450+S	51 -4	53 -6	55 -2	50 –5	51 -5	50 -4
425+S	52 -2	56 -6	54 -3	47 +2	49 -7	48 -5
400+S	54 -3	53 -2	55 - 2	48 -4	52 -6	50 -3
375+8	51 -4	49 -1	55 -1	50 -4	50 -4	52 -2
350+8	53 -4	55 +0	58 +0	49 -6	49 -4	49 -5
325+8	51 -3	55 -4	56 -7	49 -4	50 -3	48 -5
300+S	56 -2	52 +0	60 -5	49 -1	51 -2	52 -4
275+S	53 ~5 52 -5	52 -3 58 -1	57 -4	48 +0	50 -2	50 +0
250+S 225+S	52 -5 56 -1	58 -1 55 -4	59 -4 61 -3	50 +0 48 +2	51 +0 50 +1	49 -2 52 -2
200+S	56 -1 57 +1	60 -7	58 -2	40 +2 50 +4	50 +0	52 -2 51 -4
175+S	58 -4	58 -8	56 -2 56 -4	50 +5	51 +1	54 -4
150+8	54 -5	60 -8	54 -4	53 +4	55 -4	51 -4
125+S	52 -5	57 -8	53 -5	51 +6	53 -4	52 -3
100+5	51 -2	56 -2	51 -6	55 =6	55 +0	50 +0
75+S	50 -2	57 -2	52 -5	58 +8	51 +2	49 +1
50+8	49 -3	55 -9	51 - 7	58 +4	58 -4	48 +0
25+S	48 -4	53 -10	50 -8	52 -2	57 -4	46 -2
00+5	50 +0	50 -12	49 -8	55 +5	52 -5	49 -1
25+N	51 -2	46 -10	51 -9	59 +2	53 -2	50 +0
50+N	50 +2	51 -3	49 -9	53 -5	55 -5	51 -2
75+N	52 +0	48 -6	48 - 8	5 8 -6	54 -5	5 4 5
100+N	53 -1	46 -6	46 -7	56 -7	58 -2	50 - 2
125+N	55 –2	48 -6	44 -8	55 - 8	56 -4	52 -2
150+N	53 -3	49 -7	43 -6	52 -10	58 -6	51 -3
175+N	51 -5	53 -8	44 -6	50 -9	55 -6	55 -2
200+N	53 -6	51 -9	42 -4	50 -7	55 - 4	51 -1
225+N	51 - 6	50 -7	47 +2	53 -5	56 -2	48 -2
250+N	52 -7	53 -5	48 +4	51 -6	58 -4	46 -6
275+N	53 -8 50 -7	58 -3	50 -1	54 +2 55 -3	59 -6 58 -6	49 -5 48 -5
300+N 325+N	50 - 7 51 - 6	50 -4 485	48 -2 50 -3	55 -2 58 -5	50 -6 52 -8	49 -5
350+N	52 -7	46 -6	50 -3 52 -4	56 -6	53 -7	50 -7
375+N	52 -7 51 -7	49 -7	50 -3	50 -6	54 -8	50 -7 51 -6
400+N	52 -5	51 -8	48 -3	49 -7	53 -9	50 -6
425+N	50 -6	50 -6	49 -2	49 -6	51 -7	48 -7
450+N	48 -5	49 -7	50 -3	50 -7	50 -6	49 -8
475+N	46 -7	46 -6	49 +1	48 -7	51 -6	51 -8
500+N	43 -8	44 -8	51 +0	47 -6	50 -4	49 -7
					tion neima	

NOTE: This survey was conducted by L.Lutjen using a Sabre Mod. 27 VLF/EM, serial # 274, using Annapolis, Md., at 21.4 KHz, as the transmitting station. A reading of (51 -6) indicates a field strength of 50 percent and a tilt angle of -4 degrees.

Land De Cafe