BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1996/1997REPORT #:PAP 96-47NAME:ROBERT NOWLIN

for the

PROSPECTORS ASSISTANCE PROGRAM

for

YEOWARD AND CHERRY CREEK AREAS

Vernon Mining Division

COVERING: Frosty I & II Running Bear I & II Silver Lode I & II

.

LOCATION: Lat: 50 10 Long: 118 20 NTS 82L 1W 70 kms. East of Vernon

> ROBERT NOWLIN S.5, C.14, RR#1 CHERRYVILLE, B.C. VOE 2GO JANUARY 22, 1997

TABLE OF CONTENTS

Page No.
INTRODUCTION1
SUMMARY1
LOCATION1
REGIONAL GEOLOGY1
PROPERTY GEOLOGY
SOIL GEOCHEMISTRY (results, follow up)
Frosty I & II
Running Bear I & II3
DAILY SUMMARY
Yeoward Creek Program4
-
SOIL GEOCHEMISTRY-ROCK
Silver Lode I & II6
Trenching6
Results
Conclusions7
DAILY SUMMARY
Silver Lode Program8
-
SUMMARY OF PROSPECTING ACTIVITIES9
DAILY REPORTS10
TECHNICAL REPORT B11

APPENDIXES

MAPS

.

Location	A
Claim Map of Yeoward	
Sample Location Map (Yeoward)	C
Claim Map of Silver Lode	
Sample Location Map (Silver Lode)	
Geological Mapping by Cominco	
(Silver Lode)	F

ASSAY CERTIFICATES

Soil Samples	G
Rock Samples	Н
Recommended Samples Reassayed	

INTRODUCTION

During the course of the summer and fall of 1996, prospecting, soil sampling and trenching was carried out in accordance with grant requirements. Entailed in this report are the results of work completed.

SUMMARY

During 1996, specifically during the period of May 25 to Oct. 23, I completed a partial soil analysis on both Frosty I & II and Running Bear I & II, claims sampled mineralized vein exposures and prospected by dip needle and ground search in and around the Yeoward Creek area. In addition, on the Silver Lode claims approximately 50M of trench was excavated to expose bedrock by a Case 4 WD backhoe. 33 man days of work were performed at this task.

LOCATION

The Frosty, Running Bear and Silver Lode claims are all located in the Monashee Mountains approximately 70 kms. East of Vernon, Access to Frosty I & II is via Hwy. 6 East of Vernon to South Fork, Yeoward Creek logging roads, 5 km. marker.

Running Bear claims are on the same road at km. 7.

Access to Silver Lode I & II is also East of Vernon via Hwy. 6, turning on to North Fork Road (in Cherryville), Currie and Bell Roads to the 18 km. marker. All claims are within 1 1/2 hour drive from Vernon.

REGIONAL GEOLOGY

The Keefer Lake area is located in the SE corner of the Thompson-Shuswap-Okanagan 1:250,000 map sheet by A.V. Okulitch (GSC), 1972-1979. The oldest rocks in the area are quartzites, marbles and schists of the Proterozoic and Paleozoic Shuswap Metamorphic complex, unconformably overlain by fine grained clastics, marbles and greenstones of the Upper Paleozoic,

Thompson Assemblage. These, in turn, are unconformably overlain by finegrained plastics, andesites, marbles and sericite schists of the upper Triassic, Slocan and Nicola Groups. Granodiorites of the Jurassic, Nelson and Valhalla Batholith intrude all the above.

Structurally the area has seen multiphase folding in the Shuswap rocks, at least two phases of folding in the Thompson Assemblage and probably two phases in the Slocan and Nicola Groups.

Faulting occurs throughout the area but no significant offsets have been determined.

Metamorphic grade varies from amphibolite facies for Shuswap rocks, mid to lower greenschist facies for Thompson Assemblage rocks and mid to upper greenschist facies for Slocan and Nicola Group rocks.

PROPERTY GEOLOGY

All rock types on claims conform within the widely held expectants of the Thompson-Nicola Groups. Mineralization is being explored near a steep dipping contact between pyrite enriched reworked greenstones and a shale carbonate sequence.

SOIL GEOCHEMISTRY

FROSTY 1 & 11

At I.P. for Frosty claims a grid measuring 150 M S.W., 150 M N.E. by 500M S.E. along common location line was established. A total of 30 soil samples were collected at 100M intervals along lines spaced at 50M intervals from common claim boundaries. These samples were obtained and sent in at two different intervals to determine if results would warrant its expenditure. Samples were obtained from the "B" horizon where possible, marked and paper bagged, then shipped to ACME ANALYTICAL LABS LTD. in Vancouver for sieving and analysis.

RESULTS

A significant anomaly of arsenic (Ag, Au) at least 300M in length by 100M in breadth was discovered. This anomaly is plotted on sample location map (see Appendix C).

FOLLOW UP

A work approval is currently being requested to allow for the construction of a 300M trail to expose bedrock for sampling purposes of the geochem anomaly.

RUNNING BEAR I & II

A grid measuring 200 M N.W. of I.P. by 400M N.E. was established on claims. A total of 10 soil samples were obtained at 100M square intervals, which were handles in the same manner as those from Frosties.

RESULTS

Although there was slight anomalies of base metals in some samples, gold and silver were generally not found to be significant.

DAILY SUMMARY (Yeoward Creek)

RE: Prospecting and results of Yeoward Creek program daily traverses are plotted on claim map (APPENDIX B).

DAY 1: Traversing the Running Bear Group of claims in a N.E. direction I encountered numerous weathered quartzcarbonate fragments. Under the roots of a blown-down tree I obtained sample no. R-B 2 from an oxidized quartzcarbonate-calcite vein hosted in greenstones to determine if there was any Au anomalies (soil grid sampled on Day 16).

DAY 2: Investigating pyrite enriched greenstones and mineralized quartz boulders on upper end of Yeoward unfortunately was not successful due to heavy glacial till. Since greenstones were observed on road cut and shales in adjacent stream, it was considered necessary to determine if creek would contain potential for placer. On Day 13 I returned and panned creeks in the general area. At panning site no. 2 a small but significant amount of sharply edged gold was found. Since it is assumed this gold hasn't been transported far because of its texture and is within close proximity to possible mineralized contact, this area will be further explored as time permits.

DAY 3: Traversing E.N.E. of Frosty Group of claims I encountered an area of quartz stringers in greenstones with some noticeable chalcopyrite (150M out). Nothing further afield of significance was observed due to heavy till overburden.

DAYS 4 & 5: Both days were used for taking samples and removal of upper road cut material that had sluffed to acquire a better view of the inplaced intermediate volcanics. A sequence of veining formation was consequently observed

from carbonates being exuded out of small fissures in the volcanics to bluish and then mineralized white quartzes. Sample no. F-3 was obtained at this site. Sample no. F-4 was obtained across a 1 meter vein of mineralized quartz-carbonate approximately 100 meters above sample F-4, sample f-8 was a piece of mineralized and relatively unweathered calcite from same vein. All samples were obtained on a shale-greenstone contact permeated by numerous volcanic fingers except sample F-2 which was a quartz vein hosted in greenstones.

DAY 7: I randomly checked for any magnetic anomalies with a dip needle. Only 3 sites with a distinct variance were encountered and plotted on map.

DAY 10: Presumed continuation of aforementioned contact was not observed due to overcapping by greenstones, no mineralization was observed between Frosty and Running Bear claims.

DAY 13: A geological area of similarity to Silver Lode claims was discovered comprising of reworked greenstones enriched with arseneopyrite. Since a float sample of high grade ore similar to the aforementioned mineralization, but with the added benefit of significantly more chalcopyrite, this area deserves further exploration.

DAYS 14, 15, 16 & 31 were spent acquiring soil samples.

SOIL GEOCHEMISTRY

SILVER LODE I & II

After researching past exploratory work performed by Cominco Mines Ltd. covering the Silver Lode claims area (after grant application) it was deemed soil sampling and analysis wasn't necessary since soil geochem was available from past assessment reports; further anomalous soil locations, (from 208 samples) rock sample locations (from 239 samples) were geologically mapped.

TRENCHING

A work approval was applied for and granted (permit no. MX-4-257) for removal of overburden in an area of magnetic anomalies.

Shown on sample location map (Appendix E) is the location of a 40M trench exposing bedrock 75M W. of sample site C 2 & 3. In addition at increments of 25M 2 other holes further W. were also dug. Also one 4M trench was excavated 5M E. of sample location C 2 & 3.

RESULTS

No quartz veining was encountered over the magnetic anomalies at trench site A or other holes W., although slight alterations in shales were noticeably concurrent with shales within close proximity of those at sample site C-2 & 3. Sample no. C-6 was an altered substance found in vein along N. side of hole. Trench A exposed slightly altered shales S. of the black carbonate at sample site C-8. N. of sample site C-8 the softer shales had a distinct bluish colouration, sample no. C-7 was obtained along a 3M stretch. Alterations around exposed vein was assayed to determine if bluish colouration was due to molybdenum (C-2). A vein itself was chip sampled across its 40 centimeter width (C-3). Sample no. C-5 was obtained across a 10 centimeter vein.

CONCLUSIONS

Aerial topographical appearance suggests that this could be the apex of a much larger but partially buried structure. Also a shallow layering of relatively unmineralized shales would conform to the fact Cominco's soil sampling program did not detect an anomaly in the immediate vicinity the unusual magnetic similarities over the highly mineralized veining and the lower grade shales, the similar colouration around the perimeter of vein and the material in trenches, also the similarities of assay results along edges of quartz vein (Assay C-2, APPENDIX E) and what could be mineralized haloing above a possible Au, Ag enriched quartz seam. Additionally, sample no. C-6 could be an exposed weathered alteration of the continuence of highly anomalous veining of site C-2, 3, & 5. Also, due to the adverse weather conditions at the time the excavation was being carried out it was necessary to pull the backhoe out of the area before the potential of sample site C 5 was fully explored. Therefore, it was considered necessary to apply for work approval to core drill at bottom of trench A, and further excavation of sample site C-5. Shoveling material by hand at this site, I uncovered several narrow mineralized veins paralleling one another. Dependent upon outcome, permission was requested for possible bulk sampling of up to 500 tonnes.

DAILY SUMMARY (Silver Lode)

RE: Prospecting and results of Silver Lode program daily traverses are plotted on claim map (see APPENDIX D).

Several days were spent prospecting claims and general areas for geological environments with similarities to that of known values. Unfortunately, hampered by heavy overburden most of this work was confined to road cut exposures.

DAY 6: New road construction along a spur of the old mine trail exposed a sequence of enriched greenstones, shales and hydrothermal shale alterations also hosting several quartz seams, interesting samples were obtained and sent in for analysis. Sample C-9 was a sample of pyrite enriched altered greenstone, sample C-4 was a sugary quartz (textured) hosted in an area of hydrothermally altered shales and c-10 was a sample of a quartz vein hosted in shales.

DAY 8: A dip needle showed readings of a definite pattern of a magnetic anomaly over top of and continuing on strike East and West of exposed quartz vein. After determining the best way of accessing bedrock for testing was by removal of the material above it, a work application was submitted into the areas regional mining office. After conferring with forestry a work permit was obtained. Recorded on the daily work reports are the tasks performed, necessary to conform within W.C.B. and new forestry guidelines.

DAY 19: An area containing several ironized quartz seams was discovered in the proximity of an intermediate type volcanic intrusives. Rather than sampling the highly weathered veining it was determined to be more practical to research old claim titles to see if any soil sampling programs were ever recorded on this property.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

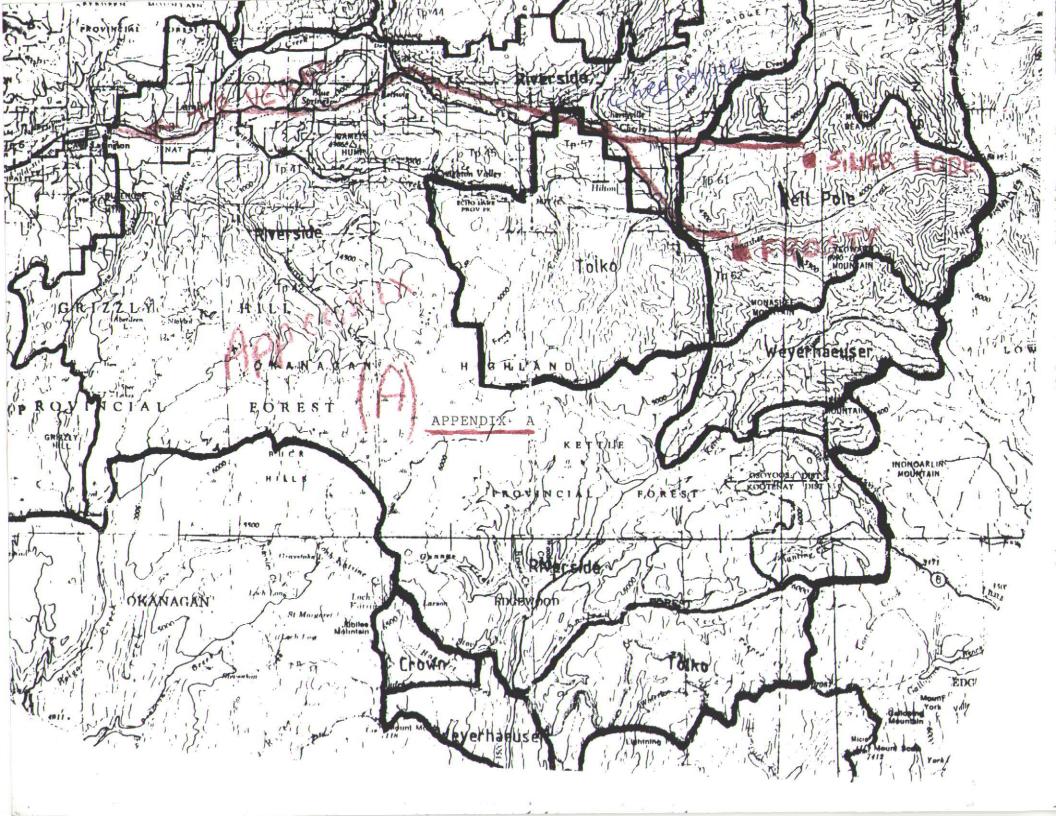
Name ROBERT N	IOWI.IN	Reference Nun	nber	96–97–P101	
LOCATION/COM	MODITIES	-			*
•	d in Part A) YEOWARD CRE	EK	MINF	FILE No. if applica	ible <u>N/A</u>
Location of Project A	Area NTS <u>821, 1W</u>	·	Lat	50 10	Long 118 20
Description of Locat	ion and Access CLAIMS A	RE LOCATED 70 Km	s.E	AST OF VERNON	, VIA Hwy. 6,
SOUTH FORK	, YEOARD CREEK ROADS	. THE FROSTY AND	RUN	NING BEAR GRO	UPS OF CLAIMS
<u>AT' THE 5\$7</u>	Km MARKER, RESPECTI	VELY, ON YEOWARD	CRE	EK ROAD.	
Main Commodities S	Searched For				
Known Mineral Occi	urrences in Project Area	ILVER BELL" was	an ac	ctive mine at	the turn of
the centur	y and is located apr	ox.6 Km. North e	<u>ast c</u>	of this locat	ion. It was
Ag, Au, Pb	deposit.				
WORK PERFOR	RMED REFERE TO TEC	HNICAL REPORT			
1. Conventional	Prospecting (area)			· · · · · · · · · · · · · · · · · · ·	
-	apping (hectares/scale)				
3. Geochemical	(type and no. of samples)				
4. Geophysical (type and line km)			••	
5. Physical Work	(type and amount)				
6,. Drilling (no,.	holes, size, depth in m, total	m)			
7. Other (specify)				
SIGNIFICANT RES			Cl -:	N	
	Pb Cu				
-	ap) Lat <u>50 10</u>	-			
Best assay/sample typ	pe ROCK SAMPLE 7.38				
	906 ppm Cu. (sam	• · · · · · · · · · · · · · · · · · · ·			
Description of minera	alization, host rocks, anomali				~
	CARBONATE VEINING	ALONG AN ALTERE	D GR	EENSTONE, SHA	LE
	CONTACT.				
	<u></u>				

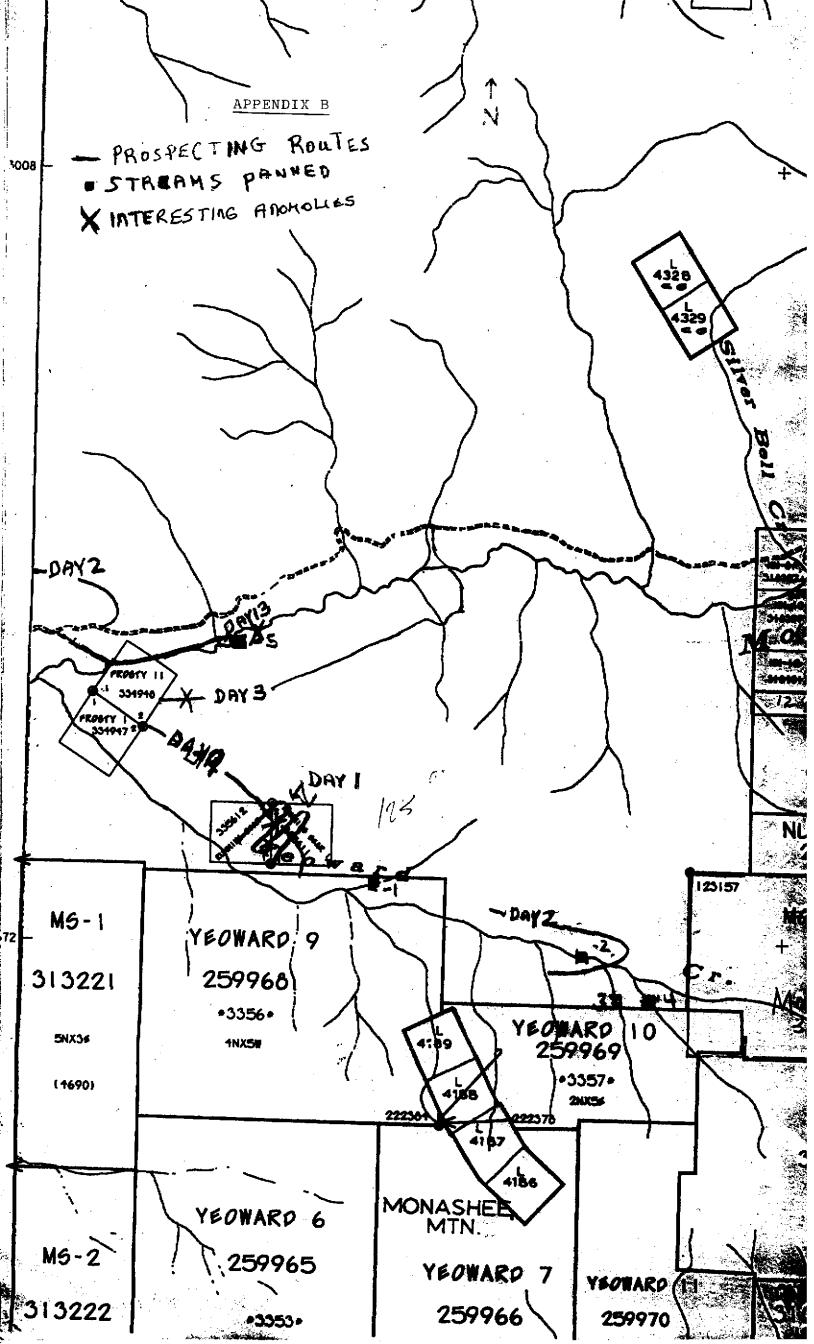
...

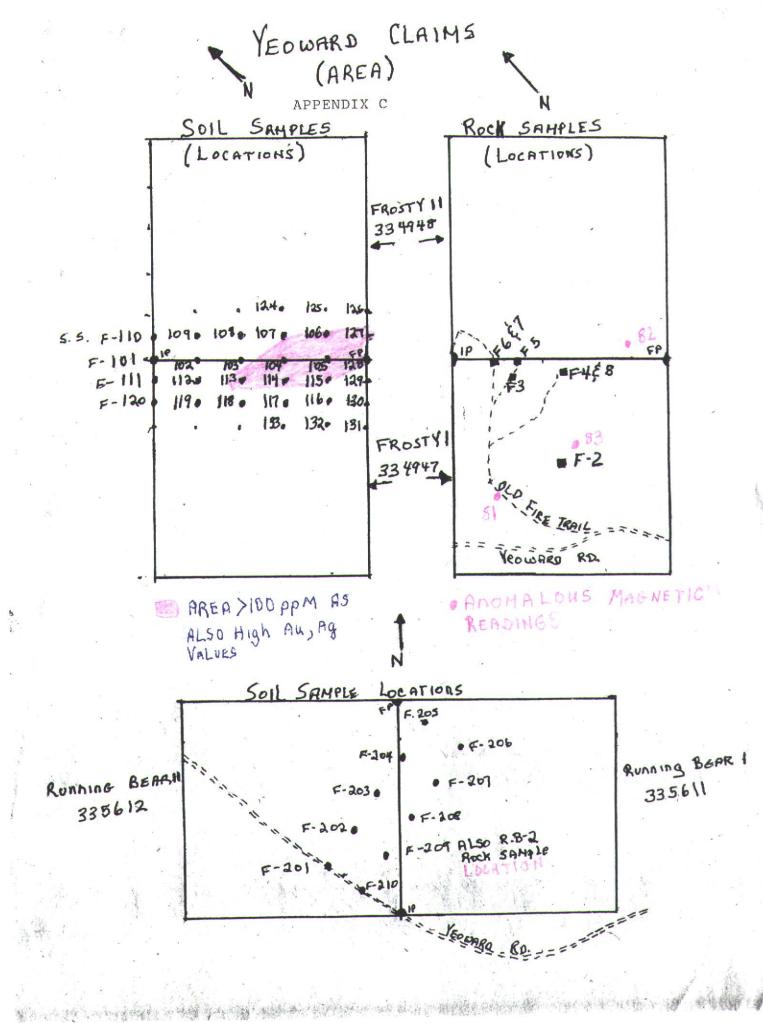
Supporting data must be submitted with this TECHNICAL REPORT

Page 11 (A)

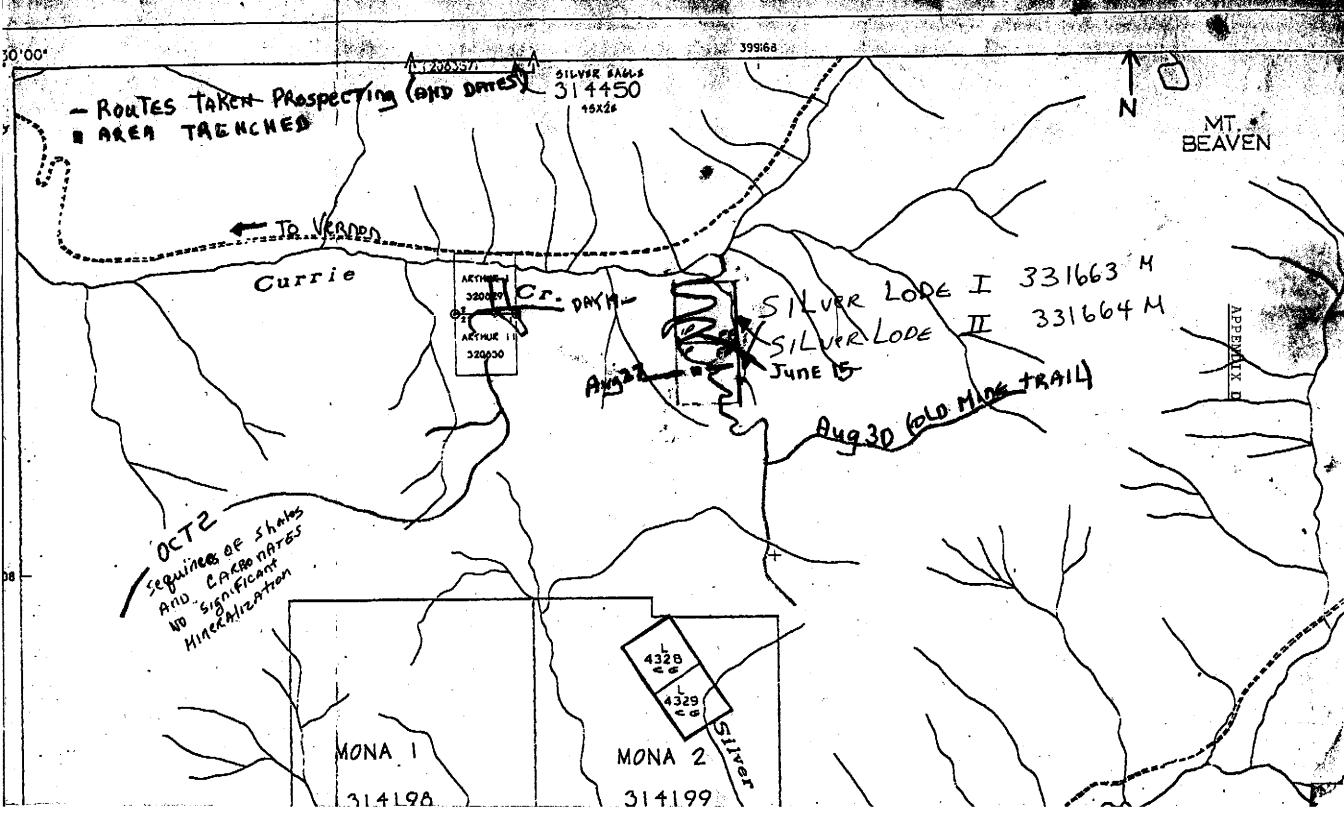
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

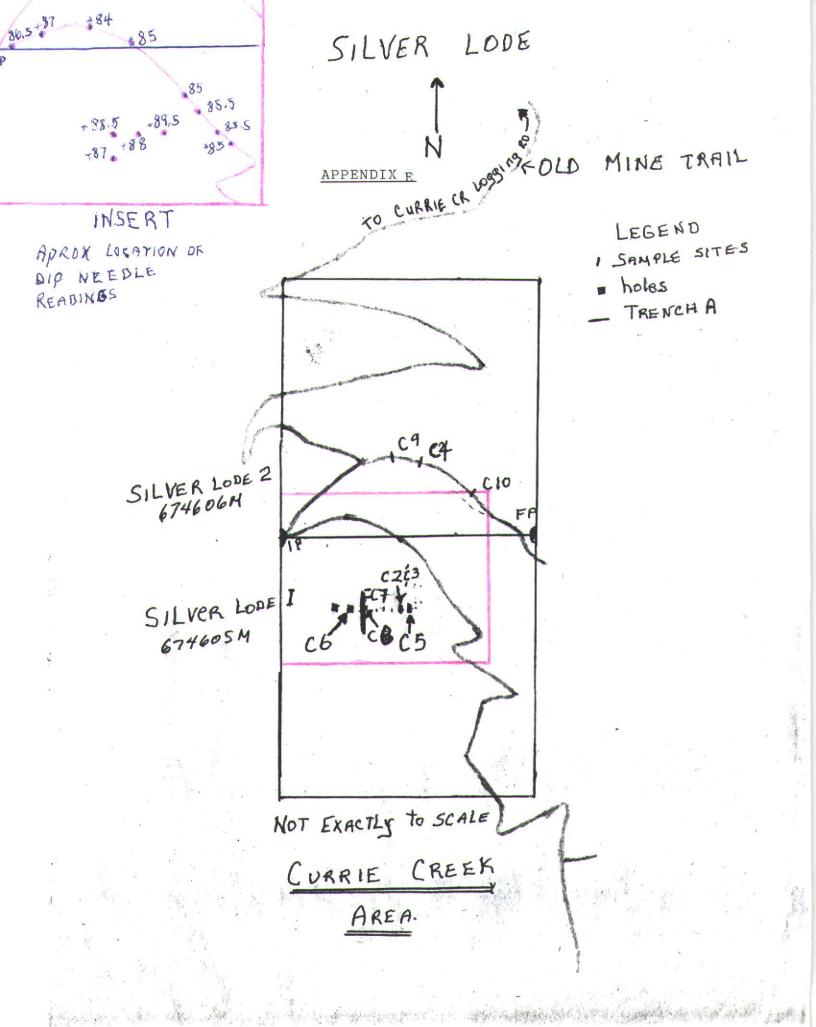

B. TECHNICAL REPORT

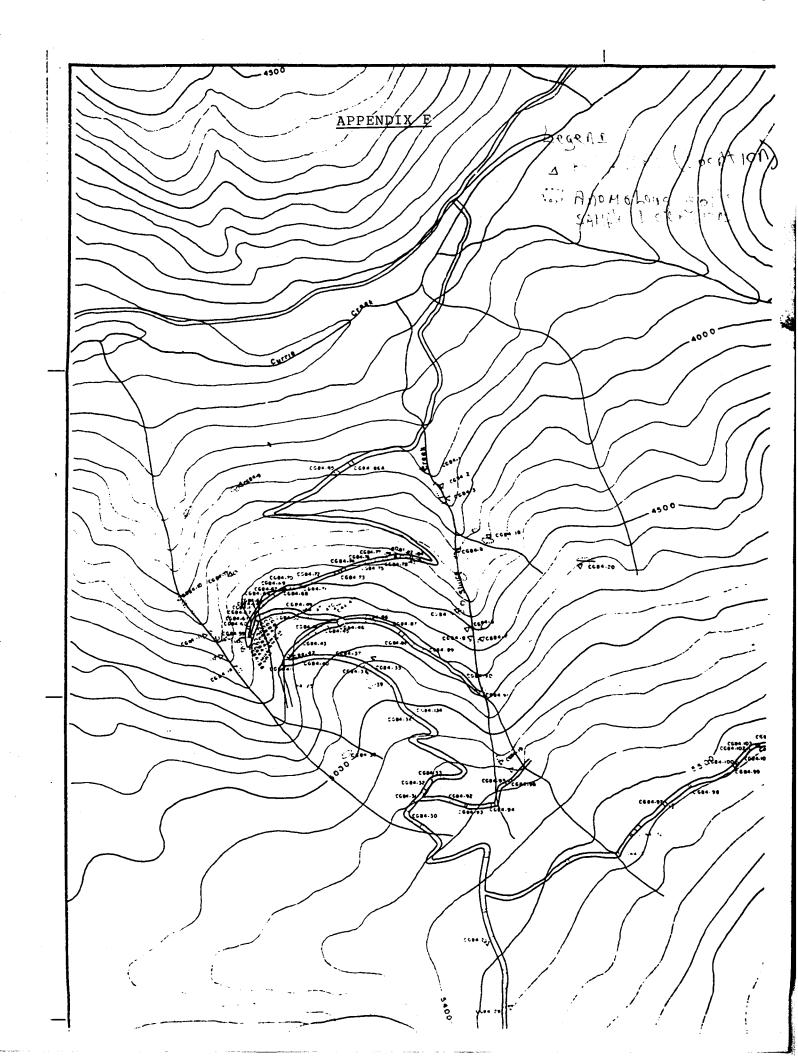

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.


Name ROBERT' NOWLIN Reference Number 96-97-P101
LOCATION/COMMODITIES
Project Area (as listed in Part A) <u>SILVER LODE</u> MINFILE No. if applicable <u>N/A</u>
Location of Project Area NTS <u>821, 111</u> Lat <u>50 10</u> Long <u>118 20</u>
Description of Location and Access CLAIM IS LOCATED 70 Kms. EAST OF VERNON, VIA Hwy, 6,
NORTH FORK, CURRIE, BELL ROADS. THE SILER LODE GROUP OF CLAIMS ARE LOCATED
AT THE 18 Km. MARKER ON BELL Rd.
Main Commodities Searched For All, Aci
Known Mineral Occurrences in Project AreaSILVER_BELL" was an active mine at the turn of
the century and is located aprox. 2 Km. south of this loation. It was a Ag
Au, Pb deposit.
WORK PERFORMED NOTED IN TECHNICAL REPORT 1. Conventional Prospecting (area) aprox. 2 or kms.
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples)
4. Geophysical (type and line km)
5. Physical Work (type and amount)
6, Drilling (no, holes, size, depth in m, total m)
7. Other (specify)
L
SIGNIFICANT RESULTS
Commodities Ac, Au, Pb, Cu, Sb Claim Name SILVER LODE
Location (show on map) Lat <u>50 10</u> Long <u>118 20</u> Elevation <u>1650 M</u> .
Best assay/sample type ROCK CHIP SAMPLE 146.90 oz/t Ag. 2755 ppb Au. 13.66 % Pb
.480 % Sb, .365 % Cu., .08 % Zn. (sample no. C 5)
Description of mineralization, host rocks, anomalies <u>MKNERALIZATION IS HOSTED IN QUARTZ</u>
VEINING ALONG A PYRITE ENRICHED GREENSTONE AND SHALE
CONTACT'.

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the particular subject


Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.





Concerned Bringerson (1998)

ACME	WALY	TICA	L LA	BORA	FORI	88	LTD	•	8	52 B	. HJ	ST	ING	8 97	: .	ANC	ουν	ER	BC	V62		R6		PHO	NR (604) 25	3-3	158	P	AX (604)2	53-1	L716
								G	EOC	HEM	CA.	L J	ЕХТ	RAC	TI	on-	AN/	LY	SIS	3 CI	SRI	IF]	CA	TE										
		AP	PENI	TX	G				F	lor	end	e l	Mac	Dor	a 1	đ	۳i٦	e	± ¢	96-4	119	4		······									З., ^с .	
	na tratili Ma				-		•		-		.s. ,	A C	-14	R.R.	#1,	Cher	ryvi	lle	BC VI	DE 2G	Ō									n n Sjuer	 			
SAMPLE#	Mo	ตัน	Pb							As																						Se Te		Au+
	ppm	ppm	ppm	ppm	ppp	ppm	ppm	ррт	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	X	ppm	%	ppm	%	*	%	bbu k	yom y	obp b	nqq mqx	ppm	ppb
F-101	1.7	15.1	17.8	174.3	345	25	6	856	2.12	51.3	6	3	40	.91	.3	.3	30	.29	. 155	9	14	.28	157	. 10	4 2	2.87	.02	.10	<2 <	<.2 ·	160	.3 <.2	8.3	4
F-102				176.8																												<.3 <.2		
F-103				260.5																												<.3 <.2		
F-104				337.4												.2	29	.30	.072	13	- 14	.33	212	.10	23	3.37	.02	.08	<2 <	<.2	61	.3 <.2	8.9	7
F-107	.8	17.3	14.7	157.7	287	30	8	466	2.30	99.9	<5	2	41	.70	.4	.3	32	.34	.114	11	16	.30	142	.10	43	3.37	.03	.14	<2 <	<.2	40	.5 <.2	6.5	21
F-108	1.5	15.6	17.8	119.5	492	24	7	265	2.48	42.6	<5	3	36	.49	.7	.3	31	. 28	.096	12	18	.32	104	.08	2 2	2.72	.02	.09	<2 <	<.2	4 1 <	<.3 <.2	7.6	5
F-111				161.3													31	.14	.040	13	17	.42	98	.04	<2.1	1.27	.01	.07	<2 <	<.2	12 1	1.1 <.2	3.6	13
F-112				125.8													29	.39	.068	16	18	.50	142	.04	32	2.04	.01	.10	<2 <	<.2	23	.7 <.2	5.1	6
F-113	3.8	50.5	16.4	211.8	543	33	11	285	3.67	301.4	<5	2	22	1.02	1.2																	.8.4		
F-114	1.2	16.6	64.1	179.2	1493	11	8	691	2.84	142.8	<5	4	33	. 89	.9	.3	26	.24	.041	22	12	.57	103	.05	2 2	2.21	.01	.07	<2 <	<.2	32 <	<.3 <.2	6.1	17
F-115				86.4																												.3 <.2		
F-116				147.8																												.5 <.2		
RE F-115				87.0												- 4	31	.43	.091	11	11	. 19	97	.18	3 5	5.43	.03	.06	<2 <	<.2	82 -	<.3 <.2	: 11.0	16
F-117				174.5													27	.35	.074	13	12	.22	173	. 15	53	3.87	.04	,07	<2 <	<.2	53 •	<.3 <.2	9.2	11
F-118	.7	11.1	12.0	67.6	511	14	7	459	2.23	59.5	<5	3	41	.21	<.2	.2	30	.28	.053	14	14	.28	156	.12	<2.3	3.70	.03	.08	<2 •	<.2	21 •	<.3 <.2	8.0	1
F-120	.4	10.1	22.3	72.4	961	14	5	247	2.02	77.9	<5	3	46	.28	.2	.2	29	.36	. 148	14	11	.25	129	.13	33	3.79	.03	.09	<2 ·	<.2	43 •	<.3 <.2	8,7	16
F-203	.6	35.3	7.0	189.2	446	33	15	641	3.04	16.8	<5	2	33	- 64	.2	- 1	56	. 29	. 145	9	30	.94	205	.10	<2.2	2.51	.01	.17	<2 <	<.2	30 <	<.3 <.2	7.0	2
F-204	.7	25.1	23.0	121.6	696	28	9	485	2.37	31.0	<5	1	59	.55	.3	.3	27	.43	.115	10	1Z	.33	215	.11	52	2.98	.03	.10	<2 <	<.2	46	.9 <.2	7.5	1
F-205	1.7	64.0	13.8	193.5	312	73	21	474	3.79	21.8	<5	3	27	.60	1.6	<.1	53	. 19	.056	14	33	.89	218	.10	<2	3.21	-01	.09	<2	.2	58 -	<.3 <.2	9.5	1
F-206	1.7	39.3	5.9	99.4	256	35	11	292	2.93	30.7	<5	3	16	.33	1.3	.2	43	.11	.031	12	32	.88	74	.04	<2 1	1.73	.01	.07	<2 ·	<.2	<10	.5 <.2	4.7	4
F-209	1:3	59.3	20.0	131.6	2264	33	18	567	3.33	47.5	<5	S	56	.66	1.4	<.1	57	.52	.094	11	33	.76	157	.07	2 2	2.47	-01	.13	<2 •	<.2	106	.6 <.2	6.4	7
STANDARD	25.4	129.6	109.9	276.1	1949	33	17	1047	4.36	81.4	22	18	61	2.27	8.8	21.2	78	.72	.109	17	58	1.21	265	.15	26 2	2.43	.05	.69	20 2	2.5	539	.5 2.3	6.9	54
																											100						v.7	

Standard is STANDARD D2/HG-500/AU-S.

ICP - 15 GRAM SAMPLE IS DIGESTED WITH 90 ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 100 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. MO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH MIBK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU, PB, ZN, AS>1500 PPM, Fe>20%. - SAMPLE TYPE: SOIL AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. Samples beginning 'RE' are reject repuns.

DATE RECEIVED: SEP 4 1996 DATE REPORT MAILED: Sept 18/96

ACME A	NALYT	ICAL	LAB	ORAT	ORIE	S L'	TD.		85	2 B.	HA!	3TI	NGS	ST.	VA	NCOU	VER	BC	: v	6A	1R6		Pl	IONE	s (60	4)2	53-	315	58 F	AX (604) 253	3-17:	L6
AA		<u>A</u>	PPEN	IDIX	G			GE	1.01	IEMI .oie	nce	M	acD	ona	ald	6 B. (s)	ile	#	96	-60	75		ATI	2	• .	•••								
SAMPLE#	Mo ppm	Cu ppm	РЬ ррт	Zn ppm	Ag ppb	Ni ppm p	Co ppm	Mn ppm	Fe %	As ppm	U Ippan j	Th pprni	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V PPM	Ca X	P %	La ppm (Cr ppm	Mg %	Ba ppm	ті % р	8 Sport	Al X	Na X	K X	W T PPOM PPD	l H m pp	g Se b ppn	Te pom	Ga ppm	
S.S. 105 S.S. 106 S.S. 124 S.S. 125 S.S. 126	1.7 1.0 1.0	44.8 18.5 11.9	52.3 19.0 18.5	300.0 125.9 84.6 52.4 68.3	1848 450 279	28 19 16	1 3 7	413 319 412	3.73 2.33 2.65	131.3 67.1 7.8	6 13 <5	4 1 <1	37 45 45	.45 .23 .24	1.4 .4 .4	<.1 .1 .2	41 35 37	.42 .43 .42	.023 .075 .095	20 8 11	6 3 20	.73 .25 .28	87 189 161	-04 -15 -14	<2 2 <2 3 16 4	.01 . .36 . .16 .	.01 . .02 . .02 .	.05 .07 .07	<2 <. <2 <. <2 <.	24 29 29	9.8 3.4 2<.3	<.2 .2 .2	8.6 10.3 12.6	27 5 1
S.S. 127 S.S. 128 S.S. 129 S.S. 130 RE S.S. 129	2.1	29.3 12.4 20.5	35.7 33.0 34.3	149.4 151.8 120.8 68.1 122.9	448 888 1604	18 14 13	<1 6 2	305 762 1369	3.21 2.30 2.27	140.1 60.9 80.8	13 <5 9	7 1 <1	19 58 41	.57 .29 .42	1.9 .5 .6	<.1 .1 .2	41 31 30	.19 .46 .46	.034 .091 .089	12 10 11	<1 16 1	.54 .24 .26	85 212 168	.08 .12 .13	<2 2 10 3 <2 3	.42 . .85 . .08 .	.01 . .02 . .03 .	.09 .06 .06	<2 <. 2 <. <2	24 210 29	4 .3 1 <.3 4 1.2	s <.2 s <.2 s .2	12.6 .8 13.5	13 2 6
S.S. 131 S.S. 132 S.S. 133 S.S. F-109 S.S. F-110	1.0 3.6 2.5	12.0 33.4 21.9	18,1 21.6 18,1	110.2 219.5 146.2 101.6 94.2	500 597 293	17 27 32	4 <1 7	1166 290 162	1.67 2.45 2.89	35.9 44.2 74.5	<5 15 <5	1 1 2	38 25 37	1.46 .50 .41	.4 2.4 1.4	.2 .2 .1	23 27 24	.33 .19 .19	.109 .047 .018	7 19 21	10 2 25	.21 .31 .49	160 130 162	.10 .02 .03	62 <21 151	.23 .30 .69	.03 .01 . .01 .	.10 .09 .10	<2 <. <2 <. <2 <.	27 23 24	9.4 21.1 8.9	.2. <.2 <.2	8.3 4.5 4.5	3 7 13
S.S. F-119 S.S. F-201 S.S. F-202 S.S. F-207 S.S. F-208	1.3 .3 5.4	20.0 35.8 112.5	16.6 6.3 16.6	95.3 97.7 128.8 365.2 688.5	574 398 1228	29 26 94	6 10 33	349 262 828	2.59 1.73 6.43	39.6 13.8 18.9	<5 <5 <5	<1 1 <1	18 29 30	45 44 2.12	.8 2. 3.8	.2 <.1 .1	35 31 51	.15 .27 .34	.176 .102 .093	12 5 15	27 14 42	.47 .45 .95	163 101 131	.11 .10 .11	14 2 2 1 33 2	.81 .82 .67	.02 .03 .01	.08 .19 .07	<2 <. <2 <. <2 <.	27 24 210	8 .4 0 <.3 3 2.1	<.2 3 <.2	12.4 5.7 6.5	2 4 3
S.S. F-210 Standard D2	1.0 26.9	57.7 131.9	19.0 102.1	140.5 291.5	988 2196	34 35	15 17	350 1057	3.38 4.45	56.6 64.4	<5 11	<1 17	45 53	.42 2.04	1.2 10.0	.2 20.0	44 77	.30 .70	.098 .108	22 21	35 72	.63 1.23	147 252	. 13 . 13 /	23 3 50 2	.85 .31	.03 .04	. 12 .66	<2 21 2.	28 647	5.5	5.3 52.7	13.0 7.4	6 51

Standard is STANDARD D2/HG-500/AU-S.

ICP - 15 GRAM SAMPLE IS DIGESTED WITH 90 ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K GA AND AL. SOLUTION ANALYSED DIRECTLY BY ICP. NO CU PB ZN AG AS AU CD SB BI TL HG SE TE AND GA ARE EXTRACTED WITH M1BK-ALIQUAT 336 AND ANALYSED BY ICP. ELEVATED DETECTION LIMITS FOR SAMPLES CONTAIN CU,PB,ZN,AS>1500 PPM,Fe>20%. • SAMPLE TYPE: SOIL AU+ - AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. <u>Samples beginning 'RE' are Meruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: NOV 19 1996 DATE REPORT MAILED: NOV 20/96. SIGNED BY D. TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

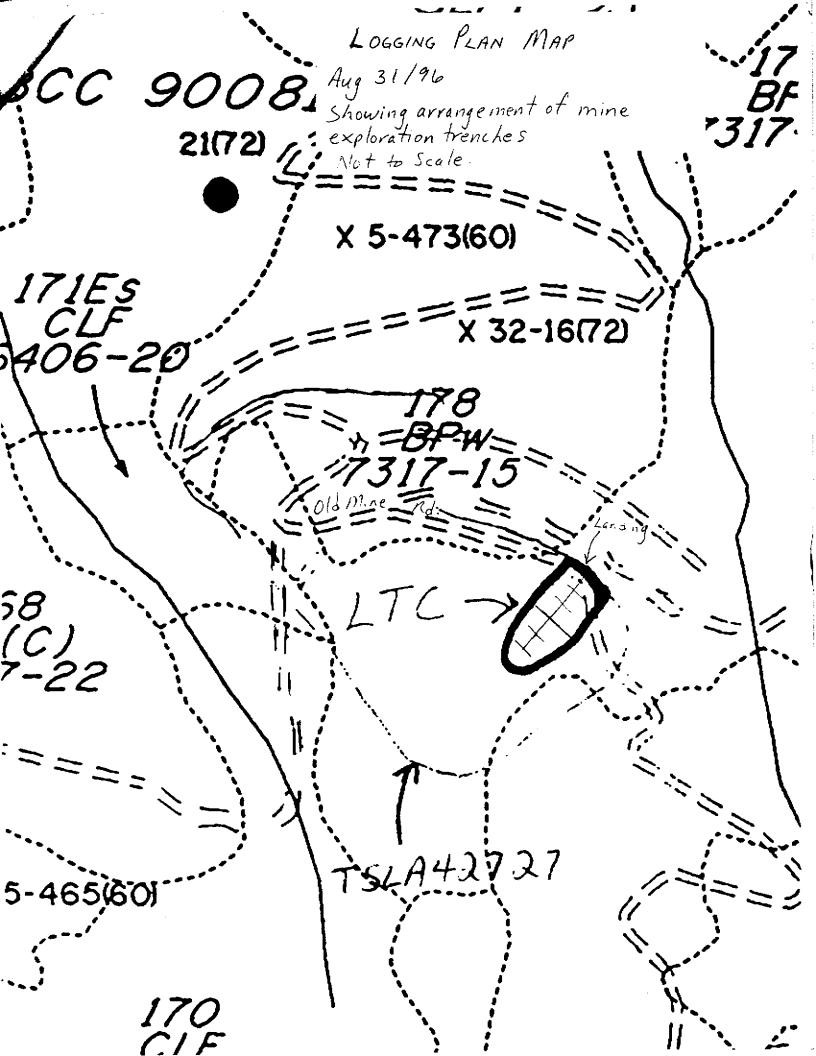
Date 🕮 FA

ACME ANALYTIC	TAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716
**	GEOCHEMICAL ANALYSIS CERTIFICATE
<u>AP</u>	PENDIX H Florence MacDonald File # 96-5512
	S-5 C-14 R.R. #1, Cherryville BC VOE 2G0
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr. Cd Sb Bi V Ca. P La Cr Mg Ba Ti B Al Na K W Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
C-5	6 3923 22363 729 180.5 11 1 99 1.21 102 <5 2 2 16 47.3 4874 125 3 .02 .008 <1 37 .01 15<.01 <3 .07 .04 .02 12 2755
C-6 C-7	29 230 4541 393 176.2 95 11 15013 9.78 23 24 <2 2 260 11.8 180 <2 83 5.29 2.022 82 65 .05 354<.01 <3 1.92 .06 .20 4 87 62 84 107 283 12.3 67 6 261 4.63 107 <5 <2 4 10 1.7 19 <2 34 .03 .060 17 16 .04 152<.01 <3 .86 .04 .19 4 157
C-8	8 16 70 78 1.9 31 6 336 1.48 16 <5 <2 3 10 1.3 3 <2 7 .08 .031 11 23 .07 64<.01 <3 .35 .04 .06 10 2
C-9	<1 6 23 102 1.3 1 2 3616 4.37 188 13 <2 <2 1618 1.2 2 <2 5 17.51 .071 1 4 .92 33<.01 <3 .18 .03 .06 <2 15
C-10	<1 27 590 28 9.2 29 36 144 8.32 330 <5 <2 <2 6 <.2 5 10 1 .05 .002 <1 11 .02 18<.01 <3 .07 .01 .01 4 237
F-6 RE F-6	3 22 27 111 1.8 6 1 172 2.69 22 <5 <2 <8 1.8 3 <2 2 .22 .004 <1 27 .02 27<.01 <3 .09 .01 .01 14 30 2 21 26 106 1.9 5 1 164 2.53 22 <5 <2 <8 1.6 3 <2 2 .21 .004 <1 24 .02 26<.01 <3 .09 .01 .01 13 24
F-7	2 21 26 106 1.9 5 1 164 2.53 22 <5 <2 <2 8 1.6 3 <2 2 .21 .004 <1 24 .02 26<.01 <3 .09 .01 .01 13 24 8 56 46 573 2.4 16 10 319 5.08 97 <5 <2 5 196 2.5 2 <2 79 .66 .078 21 21 .41 266<.01 <3 2.03 .06 .41 <2 22
F-8	<1 906 33111 280 278.7 <1 2 2060 .56 41 12 <2 <2 1110 39.3 153 61 <1 42.08 <.001 <1 4 .04 7<.01 <3 .02 .01<.01 <2 882
T-1	2 1196 20743 99999 215.9 68 31 89 11.15 1578 5 <2 <2 24 5083.8 <2 412 <1 .48 .001 <1 502 .01 2<.01 <3 .02 .03<.01 <2 901
STANDARD C2/AU-R	20 55 42 136 6.8 68 33 1160 4.01 38 19 8 34 50 18.7 16 17 68 .51 .104 38 62 .99 191 .08 25 1.99 .06 .13 10 500
	ED: OCT 24 1996 DATE REPORT MAILED: $NO\sqrt{4/96}$ SIGNED BY

ACME ANALYTICAL	L II	ABOR	ATOR	IES	LTD	•	٤	352	E. H	ASTIN	IGS	ST.	V	ANC	OUVE	CR E	IC	V67	1R6	,	Pl	ION	5(60)4)25	3-3	158	FA	X (60	24):	253-1716
AA API	PEN	IDIX	<u>с н</u>]			IEMIC Ce Ma A C-1	1CD	onz	11	i :		e #	≇ 9	6-2	2580					·	·					
SAMPLE#	Мо ррт		Pb ppm	Zn ppm	-	Ni ppn	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th		Cd ppm		Bi ppm	V ppm	Ca %	P X	La ppm	-	Mg X		⊺i %ipp		LN X			Au** ppb
c-2	154	37	318	167	16.4	50	2	153	2.86	177	9	<2	6	15	<.2	5	4	27	.04	.031	28	6	.04	118<.0	01 <	3.5	8.0	1.18	z	384
C-3 ++-	25	42	1875	62	210.0		<1	61	.66	29	<5	<2	2	8	.6	145	2	10	.05	.002	9	20	.01	40<.0	01 <	3.1	9.0	1.11	6	1300
c-4	13	8	39	32	2.8	12	<1	22	1.42	99	<5	<2	4	8	<.2	<2	2	6	.02	.018	21	6	<.01	24<.0	01 <	3.1	8.0	8.04	<2	35
F-2	10	3555	21	133	27.3	3	11	362			<\$	<2	3	13	3.3	<2	<2	7		.048		12	.19	45<.0	01 <	3.5	7.0	1.12	- 4	169
f-3			7878	970			34		18.67		<5	<2	2		11.8		39	3		.018		6	.05	57<.(01 <	3.1	5.0	1.03	3	700
F-4	2	88	1076	662	57.1	9	23	1403	6.76	14 73 5	<5	<2	5	164	19.8	3	106	11	1.19	. 106	22	10	.18	205<.0	01	3.0	4.0	1.17	4	798
F-5	3	6	17	165	<.3	16	2	402	1.70	27	<5	<2	<2	104	1.5	<2	<2	16	2.97	.043	3	11	.53	45<.1	01 <	3.	8.0	1.07	<2	3
H~ 10	4	230	59	544	10.9	8	1	63	5.57	843	<5	<2	<2	9	19.7	11	23	2	. 15	.002	<1	- 14	.02	13<.0	01 <	з.	15<.0	1 .01	5	290
H-20	1	219	107	665	.7	33	26	652	7.02	7	<5	<2	2	7	4.8	<2	8	89	.37	.061	3	52	2.08	74 .7	23 <	3 2.2	8.0	3.13	2	6
H-21	1	4328	140	1475	15.2	42	51	1085	5.35	34	<5	<2	<2	12	7.7	3	<2	153	.41	.055	12	51	1.99	24 .	11 <	3 1.7	3,0	6.04	<2	10
H-22	<1	42	24	209	.3	22	19	439	5.33	28	<5	<2	<2	18	1.2	<2	<2	36	.77	.033	2	24	1.61	50.2	23 <	3 1.!	i .0	3.13	<2	5
RE H-22	<1	44	20	218	<.3	21	20	434	5.26	31	<5	<2	<2	18	1.3	<2	3	36	.76	.035	3	24	1,59	48 .	23 <	3 1.5	0.0	3.13	<2	2
RB-2	3	39	43	104	1.0		<1	1985	6.01	8	Š	<2	<2	523	1.4	<2	2	20	17.67	<_001	3	7	.25	57<.	01 <	з.;	27 .0	1.04	<2	140
z-1	27	54	13	373	.5	58	7	1542	5.13	36	<5	<2	3	635	15.1	<2	4	37	20.90	.043	5	12	.99	314<.	01 <	σ.	5.0	1.14	<2	<2
STANDARD CZ/AU-R	20	59	42	145					3.91		24	8	36	53	20.3	16	22	72		.095		62	.99	208 .	08 2	27 2.0	03 .0	6.15	13	479

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN JE SK CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AUT SCORE SAMPLES FA/ICP FROM 30 GM SAMPLE.

Samples beginning 'RE' are Provid 'RRE' are Reject Reruns.


SAMPLES H-10, 20, 21, 22 Z-1 werE collected while prospecting other areas not relative to the prospecting grant.

ACME ANAL	YTICAL LABORATO	RIES LTD.	852 E. HA	STINGS ST. V.	ANCOUVER	BC V6A J	RG PH	ONE (604) 253-3	158 FAX(60)4)253-171
A A				ASSAY CEF	TIFICAT	E			n an	
	APPENDIX I		Florence	MacDonald	File #	96-551	2R			
		·		C-14 R.R. #1, C				ىلىدىن ويورد مىلىدىنى .		
			SAMPLE#	Cu F	b Zn	Ag oz/t	Sb			
			C-5	.365 13.6	56 .08	146.90	.480			
	<u> </u>	·								·
		1 GM - SAM	SAMPLE LEACHED IN NPLE TYPE: ROCK PU	N 50 ML AQUA - REG JLP	MA, DILUTE T	D 100 ML, AN	ALYSIS BY ICF	2.		
DATE REC	EIVED: NOV 19 199	% DATE REP	ORT MAILED:	Nov 26/4	/ // SIGNED	BY.		YE, C.LEONG, J.WAN	IG; CERTIFIED B.	.C. ASSAYERS
				. /			/			
										-
										•
									· ,	0
										- r
										`
										٨
										11

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 ASSAY CERTIFICATE APPENDIX I Florence MacDonald File # 96-5512R2 S-5 C-14 R.R. #1, Cherryville BC VOE 2G0 SAMPLE# AG oz/t C-6 F-8 4.94 7.32 7.38 $\overline{RE}F - 8$ 1.000 GM SAMPLE LEACHED IN 30 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SIGNED BY. d. d. toye, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: DEC 2 1996 DATE REPORT MAILED: Data / FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

L

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. -0385 ASSAY CERTIFICATE Florence MacDonald File # 96-2580R APPENDIX I S.S. A. C-14 R.R. #1, Cherryville BC VOE 2G0 AG oz/t SAMPLE# 20.68 1.78 1.78 C-3 F-4 RE F-4 1.000 GM SAMPLE LEACHED IN 30 ML AQUA - REGIA, DILUTE TO 100 ML, ANALYSIS BY ICP. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SIGNED BY DEC 2 1996 DATE REPORT MAILED: .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: Data 🚣 FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

