
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

 PROGRAM YEAR:
 1996/1997

 REPORT #:
 PAP 96-55

 NAME:
 KAAREN SOBY

DOT PROJECT

RECONNAISSANCE SOIL GEOCHEM AND PROSPECTING REPORT

OMINECA MINING DIVISION

BRITISH COLUMBIA

Latitude 54 degrees 52 minutes North Longitude 126 degrees 25 minutes West

For

B.C. PROSPECTORS ASSISTANCE PROGRAM

Reference No. 96/97 P117

KAAREN SOBY

JANUARY 12, 1997

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

	AREN	SOBY		Reference N	umber <u><u></u></u>	197	PIIZ	
LOCATION/ Project Area (a Location of Pro	COMMODI as listed in Pa oject Area	TIES $(\pi A) = 0001$ NTS = 9 Access 0	- PROTE 3 M 1/8	E E	MINFILI Lat_54	E No. if appl 52^{i} N 252^{i} N	icable Long <u>121e</u> K LAKE	
Main Commoc	lities Searche	d For(Lu, Al	L, MO		·····		
Known Minera	il Occurrence	s in Project Ar	ea	Doroth	y,cu	, Mo		
 Conven Geologi Geochei Geophy Physica Drilling 	ical Mapping mical (type a sical (type ar Work (type g (no,, holes,	(hectares/scale nd no. of samp nd line km) and amount) size, depth in r	9, 15 e) les)Scut n, total m)	LSam	pling	,127		<u> </u>
SIGNIFICAN Commodities Location (show Best assay/sam	on map) La	54°		og <u>12(</u>	Claim Nar 25 W	neQc	xt 1	
Description of :	mineralizatio	n, host rocks, a	nomaliesC Sphysi	u, Br cal (P	Coinci bg),	dent Soil	

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

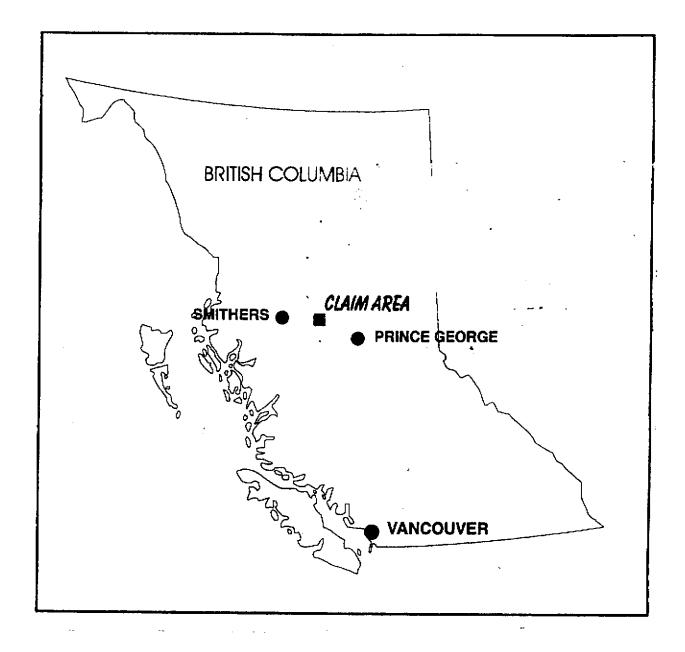
TABLE OF CONTENTS

Location, General Description and Access	1
Claims and Ownership	1
Summary of Work	2
Regional Geology	2
Geology of the Claims Arca	2
Geochemistry	3
Conclusions and Recommendations	3
Statement of Expenditures	4
Statement of Qualifications	5
Bibliography	6
List of Figures	
Figure I, The General Location of the Claims after page 1	
Figure 2, The Claim Map after Figure 1	
Figure 3, Geological Sketch of the Claims Area after page 2	
Figure 4, Sample Locations (in pocket)	
List of Appendices	

- Appendix 1: Rock Sample Descriptions
- Appendix 2: Rock and Soil Sample Analytical Results

THE DOT PROJECT

Location, General Description and Access:


The DOT, SIN, and BIN mineral claims are located to the south cast of Nakinilerak Lake and to the north east of Hearne Hill, east of Babine Lake. The general location is shown in Figure 1 and the claim configuration is shown in Figure 2. The claims are centered at about 55 15' N and 126 08' W on NTS maps 93M 1/E, 8/E. Elevations range from about 2800 feet to about 3700 feet. The topography shows a northwesterly-southeasterly grain, the results of glacial processes.

The claims are accessible from the town of Granisle by means of the Babine Lake barge and main haul logging roads on the East side of Babine Lake. Following the Jinx road to 30K. And the Hautete road to 10K. Onto the Nakinilerak road to 5.5K, the Highland Main Road travels North and traverses the claims. The town of Smithers, .5 hr. By helicopter, to the Southwest is the nearest service centre. Smithers has daily air-service to Vancouver.

Claims and Ownership:

The claims comprise the Dot, Sin, and Bin mineral claims, the details of which are listed below, and are owned 25% Kaaren Soby, 25% Lawrence Hewitt, and 50% by Valley Gold, a private holding company.

CLAIM NAME	RECORD #	# OF UNITS	DUE DATE
DOT - 1	335722	16	7 MAY `97
DOT - 2	335723	1	7 MAY `97
DOT - 3	335724	1	7 MAY `97
DOT - 4	345514	1	16 APRIL `97
DOT - 5	345515	1	16 APRIL `97
DOT - 6	345516	1	16 APRIL `97
DOT - 7	345517	1	16 APRIL `97
SIN - 1	338886	20	6 AUGUST `97
SIN - 2	338887	15	6 AUGUST `97

्य

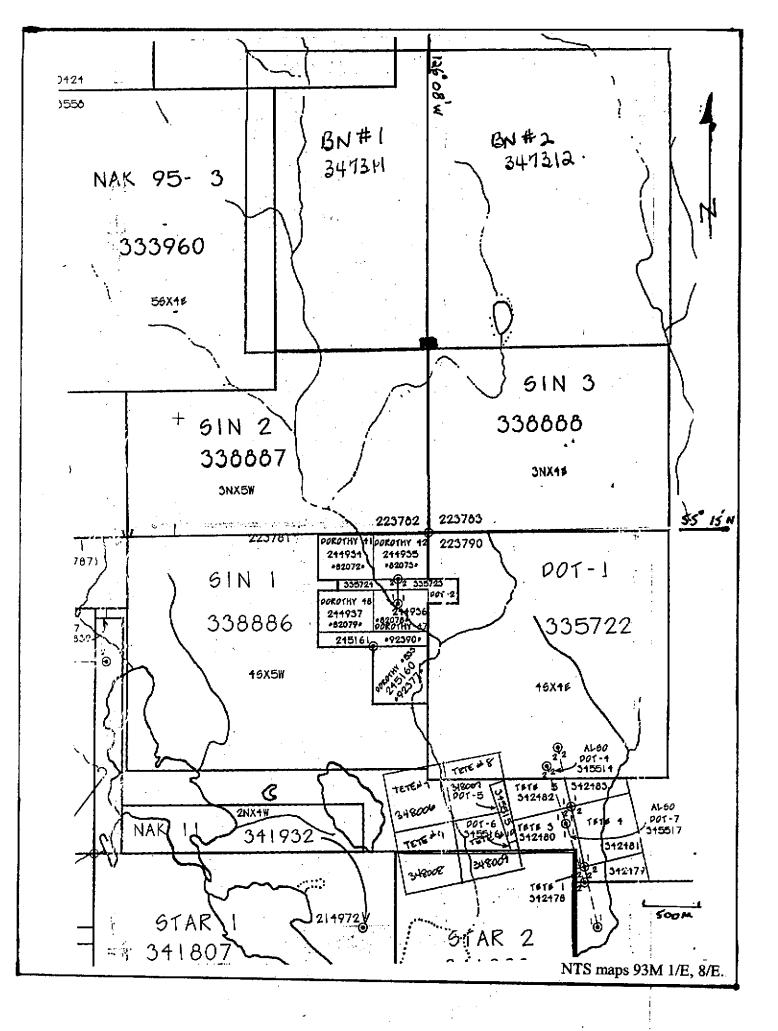


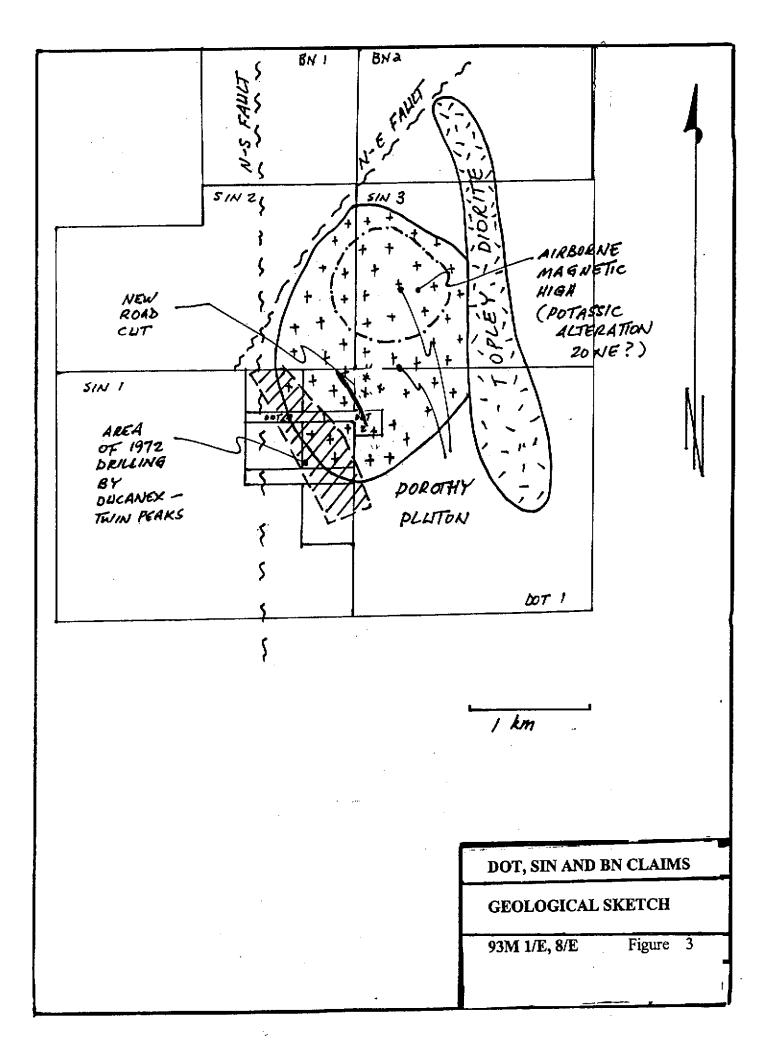
Figure 2 - The Claim Map

SIN - 3	338888	12	8 AUGUST `97
BN - 1	347311	15	13 JUNE `97
BN - 2	347312	20	13 JUNE `97

Summary of Work:

Work in the area was carried out between June 1-6, 8-9, 12-13; and Oct. 2-14 by Kaaren Soby. Robin Day and Lawrence Hewitt worked in the area June 3-5 and Oct. 2-14. The work comprised prospecting, claim staking and soil sampling. Of the rocks collected, 64 were sent for assay. Two types of soil sampling were done; one being the standard "top of C Horizon" and the second, the "top of B Horizon" for the enzyme leach process of analysis. Of the soil samples collected, 127 were submitted. Fifty man days were involved in the project, of which eight man days were committed to Mobe and Demobe.

Regional Geology:


The northern portion of the Babine Region is underlain mainly by volcanic and associated sedimentary rocks of the lower Jurassic Hazelton Group into which felsic rocks of the Babine Igneous Suite (BIS) have been intruded. These plutons can host porphyry copper deposits such as the Bell Copper and the Gransile, both producers that were enriched in Gold. To the East, Triassic Topley Intrusions penetrate an older volcanic suite.

Structurally the region is dominated by the products of brittle deformation as is evidenced by Northwesterly-striking faults and fractures. Northwesterly faults are significant in that they are considered to have controlled the emplacement of BIS intrusions. It is also evident that these faults have undergone some post-intrusion movement.

Geology of the Claims area:

The Dot, Sin and BN claims cover the Dorothy pluton and adjacent area, located in the Northern portion of Babine Lake within the Intermontane Belt, which is composed of a variety of oceanic and island arc assemblages. This belt was accreted to the North American craton in late Triassic to Early Jurassic time.

Babine Lake area biotite feldspar porphyry (BFP) intrusions form a K-rich, calcalkaline, magnetite series igneous suite with alkaline-like trace element chemistry (Ogryslo, et al. 1995). Thin section petrology by Woolverton (1973) indicates that the Dorothy pluton is likely a trachytic variety of BFP which has been subjected to at

least two periods of alteration. This may in part explain the high gold content of calc-alkaline porphyry systems such as at the Bell Mine and is favorable for the possibility of a gold enriched Cu-porphyry system within the Dorothy pluton.

Mineralized samples of BFP collected from a new logging road cutting the Dot claims exhibit variable bornite and chalcopyrite with secondary biotite and sericite. Pyrite content varies from 3-10% and the BFP is weakly calcareous. Black coloured oxides (cupriferous?), rare native copper and cuprite have been observed in hand specimens.

The Dorothy pluton, as seen in the new logging road cut (shown in Figure 3), has a thin leached cap underlain by a 1-2 metre thick limonite-rich zone overlying fresh BFP. Minor native copper adjacent to black copper (?) oxides and rare cuprite suggests that some of the fine-grained copper sulphide identified as bornite may in fact be supergene copper minerals such as chalcocite-covelite-digenite.

Previous drilling in a portion of the claim area, by Ducanex-Twin Peaks, focused on the SW edge of the Dorothy pluton, straddling the intrusive-hornfels contact zone and weak potassic(?) to propylitic alteration zones. This drilling was directed towards a low chargability anomaly.

High grade copper-gold mineralization found in breccia and in massive sulphide float down ice in the 94/95 field seasons suggests the possibility of a mineralized breccia pipe and massive sulphide associated with the Dorothy plutonic porphyry system.

Geochemistry:

A total of 192 samples were submitted for analysis; 127 soils, 64 rock, and 1 silt. 62 rock samples were analyzed by Min-En Labs of North Vancouver using standard ICP methods for 31 elements and geochem. AU-fire assay. The results are included as Appendix 2. Samples submitted for analysis averaged 500 g. These samples were collected along the new road right-of-way and were angular to sub-angular. They were examined for alteration and mineralization, described in the field and submitted for analysis.

Soil samples, shown on Figure 4 (in pocket), were analyzed by Activation Laboratories Ltd., of Ancaster, Ontario, using the Enzyme Leach method. These samples were taken from six reconnaissance lines with samples spaced 100 meters apart.

Conclusions and Recommendations:

The claims are located in the Babine Porphyry Belt, a region of profitable past-producing

copper-gold porphyry deposits.

The area geology to the south and extending onto the claims as interpreted by Bailey, 1995, indicates an environment favourable for copper porphyry deposits. The relatively large area identified as the Dorothy pluton coupled with the existence of a quartz feldspar porphyry intrusive, and recent observations of additional altered and mineralized intrusive demonstrate some geological complexity for the intrusive history over the claim area. On the basis of the interpretation of the complexity in the aeromagnetic survey results over the area of the Dorothy pluton, credence is given to the hypothesized multiple intrusive events and to an extensive area of intense hydrothermal alteration.

Observations of the nature of the mineralization and alteration present in the new logging road cut is evidence of a porphyry-style copper mineralization forming a crescentic to annular halo within the Dorothy pluton and around a barren quartz feldspar porphyry (QFP) core.

It is likely that previous operators interpreted an extensive high chargability anomaly associated with a large portion of the Dorothy pluton as a pyrite halo and as a result it was not drill tested.

The presence of variable copper, moly, zinc and arsenic anomalies coincident with faulting, and geophysical anomalies, combined with the newly exposed bedrock of hydrothermally altered and mineralized BFP bedrock, exposed over a 600m length, and open at both ends, indicates that the claims area warrants more intensive investigation.

STATEMENT OF QUALIFICATIONS

Kaaren Soby, B.A. Actively prospecting for the past eight years. Advanced Prospecting Course, Cowichan Lake - 1988 Petrology for Prospectors, Smithers - 1992 Kamloops - 1993 Smithers - 1994 Biogeochemical Sampling short course, Spokane - 1993

Prospecting Assistants:

Robin Day, B.Sc.

Actively prospecting since receiving his degree in Geology in 1976. Prospecting in Driftcovered and Mountainous Terrain short course, Vancouver - 1994 Ore Deposit Models short course, Vancouver - 1996

Lawrence Hewitt, M.A.

Actively prospecting for the past twelve years. Petrology for Prospectors, Smithers - 1992 Kamloops - 1993 Smithers - 1994

Biogeochemical Sampling short course, Spokane - 1993 Prospecting in Driftcovered and Mountainous Terrain short course, Vancouver - 1994 Enzyme Leach Method for Geochemical Sampling short course, Vancouver - 1995 Ore Deposit Models short course, Vancouver - 1996 **Bibliography:**

Bailey, D.; 1995: Summary Report: The Hautete Porphyry Copper-Gold Prospect, Babine Lake Region, Central British Columbia: Unpublished geological report dated February 26, 1995.

Carter, N.C.; 1976: Regional Setting of Porphyry deposits in west-central British Columbia. In Porphyry Deposits of the Canadian Cordillera (A. Sutherland Brown, ed.) Can. Inst. Of Mining and Metall., Spec. Vol. L5, p 227-238.

Day, Robin; 1966: Notes on the Dot, Sin and BN claims after field work in spring of 1996.

Richards, T. A., 1980: Geological Survey of Canada, Open file #720, 1980.

Richards, T. A., 1990: Geology of the Hazelton Map Area (93M). Geol. Surv. Canada, Open file #2322, 1:250,000.

APPENDIX 1

SAMPLE DESCRIPTIONS

KR-96-0 1	FLOAT-BFP-SILICEOUS-MINOR PYRITE
KR-96-02	FLOAT-BFP-PATCHES OF PYRITE
KR-96-03	FLOAT-BFP-PATCHES OF AND DISSEMINATED PYRITE-CARBONATE AND CHLORITE ALTERATION-SERECITIZED BIOTITE
KR-96-04	FLOAT-BFP-DISSEMINATED PYRITE AND PYRITE ALONG FRACTURES
KR-96-05	FLOAT-BFP-SPARSELY DISSEMINATED PYRITE- TRACE BORNITE?
KR-96-06	FLOAT-BFP-DISSEMINATED PYRRHOTITE AND PYRITE-PERVASIVE CARBONATE ALTERATION
KR-96-07	FLOAT-BFP-TRACE BORNITE?-DISSEMINATED PYRRHOTITE AND PYRITE
KR-96-08	FLOAT-BFP-FINELY DISSEMINATED PYRITE AND MINOR CHALCOPYRITE
KR-96-09	FLOAT-BFP-DISSEMINATED PYRRHOTITE AND PYRITE-PERVASIVE CARBONATE ALTERATION
KR-96-10	FLOAT-BFP-BLEBS OF PYRITE-ALTERED PHENOCRYSTS
KR-96-1 1	FLOAT-BFP-PATCHES OF PYRITE-TRACE BORNITE?
KR-96-12	FLOAT-BFP-DISSEMINATED CHALCOPYRITE AND PYRITE-SOME SERECITIZATION-PERVASIVE CARBONATE ALTERATION-PATCHES OF CHLORITIZATION

KR-96-13	FLOAT-BFP-MINOR DISSEMINATED PYRITE- PATCHES OF CHLORITE-SECONDARY BIOTITE
KR-96-14	FLOAT-QUARTZ, CARBONATE ALTERED BFP? DISSEMINATED PYRITE
KR-96-15	FLOAT-AS ABOVE-SUBANGULAR-PYRITE AND CHALCOPYRITE ALONG FRACTURES
KR-96-16	FLOAT-HORNFELS?-PYRITE ALONG FRACTURES
KR-96-17	FLOAT-BFP-STRONGLY ALTERED-DISSEMINATED PYRITE
KR-96-18	FLOAT-HORNFELS-SCATTERED PATCHES OF PYRITE-MINOR CHALCOPYRITE
KR-96-19	FLOAT-BFP-STRONGLY ALTERED-DISSEMINATED PYRITE-SERECITE AND CHLORITE ALTERING OF PHENOCRYSTS
KR-96-20	FLOAT-BFP-STRONGLY SILICIFIED- DISSEMINATED PYRITE
KR-96-21	FLOAT-BFP-CARBONATE ALTERED WITH ALL CARBONATES WEATHERED OUT-VUGGY QUARTZ CAVITIES-DISSEMINATED PYRITE ALONG SMALL FRACTURES
KR-96-22	FLOAT-HORNFELS-MINOR PYRITE
KR-96-23	FLOAT-BFP-SECONDARY MAGNETITE IN GROUND MASS-DISSEMINATED PYRITE
KR-96-24	FLOAT-BFP-FINELY DISSEMINATED PYRITE
KR-96-25	FLOAT-BFP-DISSEMINATED PYRITE- PROPYLITIZED
KR-96-26	FLOAT-BFP-AS IN KR-96-21
KR-96-27	FLOAT-BFP-WIDELY DISSEMINATED PYRITE- CHALCOPYRITE AND PYRRHOTITE

KR-96-28	FLOAT-BFP-WIDELY SCATTERED PYRITE BLEBS
KR-96-29	FLOAT-BFP-PYRITE IN PATCHES AND DISSEMINATED-MINOR CHALCOPYRITE
KR-96-30	FLOAT-BFP-AMPHIBOLES ALTERED TO CHLORITE- DISSEMINATED PYRITE
KR-96-31	FLOAT -BFP-DISSEMINATED PYRITE-WEAK CARBONATE ALTERATION
KR-96-32	FLOAT-BFP-DISSEMINATED PYRITE-ARGILLIC ALTERATION
KR-96-33	FLOAT-BFP-PATCHES OF PYRITE
KR-96-34	FLOAT-BFP-DISSEMINATED CHALCOPYRITE AND PYRITE-SERECITE ALTERED-SILICIFIED
KR-96-35	FLOAT-HORNFELS-WIDELY DISSEMINATED CHALCOPYRITE AND PYRITE
KR-96-36	FLOAT-BFP-WIDELY DISSEMINATED PYRITE- MINOR CHALCOPYRITE-BIOTITE SERECITIZED
KR-96-37	FLOAT-BFP-FELTED PATCHES OF SECONDARY BIOTITE WITH CHALCOPYRITE AND PYRITE
KR-96-38	FLOAT-APLITE?-WITH SMALL PATCH OF TOURMALINE
KR-96-39	FLOAT-BFP-DISSEMINATED FINE GRAIN PYRITE- MINOR DISSEMINATED CHALCOPYRITE
KR-96-40	FLOAT-BFP-DISSEMINATED CHALCOPYRITE AND PYRITE
KR-96-41	FLOAT-BFP-DISSEMINATED PYRITE-PATCHES OF SECONDARY BIOTITE
KR-96-42	SUBCROP-BFP-PATCHES OF PYRRHOTITE- DISSEMINATED PYRITE-MINOR CHALCOPYRITE- SERECITIZED BIOTITE BOOKS
KR-96-43	SUBCROP-BFP-SILICEOUS, SERECITIZED BIOTITE-

PATCHES OF CHALCOCITE?-DISSEMINATED PYRITE

KR-96-44 SUBCROP-BFP-DARK PATCHES OF PYRITE-MODERATE CARBONATE ALTERATION SUBCROP-BFP-DISSEMINATED AND BLEBS OF KR-96-45 PYRITE-FINE GRAINED MINERAL ALONG FINE FRACTURES-PHENOCRYSTS ALTERED TO PYRITE KR-96-46 SUBCROP-BFP-BORNITE?-2%, CHALCOPYRITE-20%, PYRITE-30% KR-96-47 SUBCROP-BFP-DISSEMINATED PYRITE KR-96-48 SUBCROP-BFP-DISSEMINATED CHALCOPYRITE-**PYRITE-BORNITE?-SERECITIZED BIOTITE BOOKS** SUBCROP-BFP-CARBONATE ALTERATION-KR-96-49 DISSEMINATED PYRITE SUBCROP-BFP-DISSEMINATED AND BLEBS OF KR-96-50 PYRITE-DISSEMINATED PATCHES OF FINE **GRAINED BORNITE?** SUBCROP-BFP-SULFIDES ALONG FINE FACTURES-KR-96-51 WIDELY DISSEMINATED PYRITE BLEBS-MINOR CHALCOPYRITE BLEBS-BORNITE?-SILICIOUS SUBCROP-BFP-BLEBS AND DISSEMINATED PYRITE KR-96-52 AND CHALCOPYRITE-PROPYLITIZED SUBCROP-BFP-DISSEMINATED CHALCOPYRITE KR-96-53 AND PYRITE SUBCROP-BFP-WIDELY DISSEMINATED PYRITE KR-96-54 AND CHALCOPYRITE-BLEBS AND PATCHES OF SAME SUBCROP-BFP-DISSEMINATED AND BLEBS OF KR-96-55 PYRITE KR-96-56 OUTCROP-BFP-STRONGLY ALTERED-SILICIFIED-SERECITIZED-PATCHES AND DISSEMINATED

	PYRITE AND CHALCOPYRITE
KR-96-57	OUTCROP-BFP-RUSTY STAINING AND WEATHERED SURFACE FOR ABOUT 100 M. ALONG DITCH-HEMATITE REPLACED PHENOCRYSTS- ARGILLIC ALTERATION-SERECITIZED-MINOR PYRITE
KR-96-58	SUBCROP-BFP-WIDELY DISSEMINATED PYRITE AND CHALCOPYRITE
KR-96-59	OUTCROP-BFP-SILICEOUS-ORIGINAL TEXTURE OBLITERATED-DISSEMINATED PYRITE
KR-96-60	OUTCROP-BFP-PATCHES AND DISSEMINATED CHALCOPYRITE AND PYRITE
KR-96-61	SUBCROP-BFP-DISSEMINATED PYRITE, CHALCOPYRITE-BORNITE?
KR-96-62	SUBCROP-BFP-DISSEMINATED PYRITE, BLEBS AND PATCHES
KR-96-100	FLOAT-RUSTY-INTERMEDIATE VOLCANIC?- MODERATELY CALCAREOUS-DISSEMINATED PYRITE AND PYRRHOTITE-MODERATELY MAGNETIC
KR-96-101	FLOAT-ALTERED BFP-DISSEMINATED PYRITE
KR-96-102	FLOAT-ALTERED BFP-DISSEMINATED PYRITE- PYRITE ALONG QUARTZ SEAMS-WEAK CARBONATE ALTERATION
KR-96-103	FLOAT-ALTERED BFP-DISSEMINATED PYRITE- MINOR SMALL PATCHES OF CHALCOPYRITE
KR-96-104	FLOAT - SAME AS KR-96-101
KR-96-105	SUBCROP-BFP-DISSEMINATED PYRITE,CHALCOPYRITE -PATCHES OF GREY SULFIDES
KR-96-106	OUTCROP-BFP-DISSEMINATED PYRITE-PATCHES OF CHALCOCITE?-SMALL PATCH OF MALACHITE

WITH CHALCOPYRITE

KR-96-107	FLOAT-DIORITE PORPHYRY-NON MAGNETIC- DISSEMINATED PYRITE-CALCITE PATCHES
KR-96-108	FLOAT-MODERATELY CALCAREOUS TUFF?- SCATTERED QUARTZ FRAGMENTS, CALCITE ALONG SEAMS AND IN PATCHES-MINOR DISSEMINATED PYRITE
KR-96-109	FLOAT-RUSTY-VESICULAR-PUNKY TEXTURE- MASSIVE TOURMALINE WITH PYRITE-CEMENTED WITH QUARTZ
KR-96-110	FLOAT -BFP-GREY SULPHIDES?
KR-96-111	FLOAT-BFP-MINOR PYRITE-SMALL PATCHES OF GREY SULPHIDES
KR-96-112	FLOAT-ALTERED PORPHYRY?-RUSTY- DISSEMINATED PYRITE AND CHALCOPYRITE
KR-96-113	FLOAT-INTERMEDIATE VOLCANICS-PATCHES OF GYPSUM-QUARTZ-MINOR DISSEMINATED PYRITE
KR-96-114	FLOAT-RED/GREEN VOLCANICS-MINOR PYRITE DISSEMINATED AND ALONG SEAMS
KR-96-1 15	FLOAT-INTERMEDIATE VOLCANIC-SILICEOUS- MINOR PYRITE DISSEMINATED AND ALONG SEAMS AND FRACTURES
KR-96-116	FLOAT-SILICIFIED TUFF-MODERATE CARBONATE ALTERATION-DISSEMINATED PYRITE
KR-96-1 17	FLOAT-SILICIFIED GREEN VOLCANICS-MINOR PATCHES OF CARBONATE ALTERATION-MINOR DISSEMINATED PYRITE

APPENDIX 2

SOIL AND ROCK GEOCHEM RESULTS

SAMPLE AS RA RF RI CA CD CO CR - CU AG AL FF GA ĸ 13 MG KN MO NA - 11 P PB SB SN SR TH TI MUMBER PPN X PPH PPM PPM PPM 2 PPN PPH PPM PPM X PPM X PPM 2 PPH PPH 2 PPH PPM PPH PPH PPH PPH PPH KR-96-01 1.02 .1 1.45 114 114 1 32 50 3.73 .13 11 1.04 479 9 -02 16 1200 23 3 57 1 1 KR-96-02 122 43 .5 1.78 66 .1 1 .47 .1 13 133 3.99 .05 15 1.19 338 10 -05 18 1170 1 23 3 26 36 KR-96-03 .1 .97 241 .98 71 56 .1 1 _1 8 2.75 .09 9 219 .03 11 1070 18 2 .80 7 1 67 KR-96-04 .3 .94 61 99 .1 1 .38 .1 -5 36 32 3.01 .06 7 .80 106 9 -03 11 1140 19 Ž 27 -1 -1 29 KR-96-05 .1 1.36 121 114 . 1 1 .65 -1 14 8 3.45 1 .11 14 1.11 308 8 -03 17 1190 1 19 2 KR-96-06 .1 1.34 78 .50 9 32 59 105 .1 .1 3.58 Q .07 13 1.01 335 .03 16 1190 1 20 2 23 36 239 KR-96-07 .5 1.30 51 1.12 164 .1 1 .1 8 3.70 .11 10 .85 346 10 -04 18 1210 1 22 3 57 KR-96-08 1.0 1.11 114 263 11 .32 40 442 2.84 .1 .1 8 1 .33 7 1.34 82 7 .05 18 1210 15 Z 33 - 1 2 KR-96-09 .1 1.19 97 1.24 29 107 3.30 -37 .1 1 .1 .11 11 .85 328 8 .03 13 1160 20 59 1 KR-96-10 10 39 1.2 1.24 105 78 .1 .45 -1 8 518 2.87 1 .10 12 1.34 179 8 .05 14 1200 1 16 2 28 .5 1.31 KR-96-11 110 .1 1 1.19 39 63 .1 8 35 3.31 .10 12 1.01 245 8 -04 15 1140 21 22 1 63 KR-96-12 1.7 1.20 126 27 1.29 40 2.70 310 .1 .1 7 1521 .10 12 1.40 147 8 .03 23 1360 17 1 81 KR-96-13 .6 1.59 109 93 _47 7 29 36 3.61 12 1.16 15 1160 ž 1 .43 0 .1 .1 296 .05 1 21 30 KR-96-14 .1 1.72 67 1 1.96 57 18 11 12 32 1880 .1 .1 6.13 .11 8 286 .20 31 -1 .79 1 4 124 96 134 3.40 KR-96-15 .2 2.23 64 .1 1 .57 .1 11 18 .24 13 1.14 229 10 .13 14 490 27 1 2 118 .1 1.96 59 .18 90 27 147 12.20 .12 KR-96-16 .1 .1 22 2.31 18 .04 32 750 25 103 1 8 18 KR-96-17 .5 1.17 128 265 .91 11 34 39 2.24 10 1.33 217 17 1330 .1 1 .1 . 11 8 .03 15 2 46 1 KR-96-18 38 1 1.34 149 82 7.57 .2 3.36 65 .1 43 .10 22 2.06 451 .17 64 2520 82 .1 16 36 1 6 Ŷ KR-96-19 .1 .48 1 100 .24 19 20 6.72 24 37 11 1120 24 19 .1 1 .1 . 11 4 .41 -02 1 4 89 177 .54 38 KR-96-20 .5 1.02 .1 6 15 2.88 10 1.03 2 1 . 1 .08 117 7 .05 15 1070 1 17 - 64 KR-96-21 1 47 .1 .02 .1 27 75 85 9.93 .04 1 19 4.8 .05 .01 12 :01 18 10 1 44 5 1 KR-96-22 1.6 3.17 177 117 2 2.15 10 36 4.25 .27 29 1.55 39 1830 38 356 13 .1 -1 414 .24 13 4 141 KR-96-23 1.0 .99 77 347 .39 .35 .1 8 43 131 3.01 .43 ŽŌ Ż .1 6 6.88 144 8 .05 12 1060 31 1 379 5 8 .43 KR-96-24 1.1 .97 65 .1 35 153 3.08 .83 112 10 .05 13 1060 21 22 33 6 1 KR-96-25 .4 1.21 92 133 .53 1Ō 50 3.12 .23 8 1.20 10 34 . 1 1 . 1 8 237 -04 17 1170 17 1 31 46 KR-96-26 .10 .1 .04 .1 8 115 8 2.17 .05 1 .02 26 Q .01 6 40 5 6 .36 19 1180 KR-96-27 1.5 1.29 161 316 - 1 11 .1 12 45 295 3.31 1 .62 8 1.46 151 49 -06 1 37 2 41 KR-96-28 1 1.21 53 .6 1.56 122 76 .1 .1 8 114 3.77 1 .09 11 1.34 555 10 .03 19 1250 1 20 3 69 13 11 1.47 252 KR-96-29 1.4 1.16 140 177 .1 10 1.29 .1 67 570 2.63 1 .13 9 .05 23 1290 15 2 -74 1 KR-96-30 2.4 1.24 148 305 .1 21 .48 .1 10 50 824 2.51 1 .26 8 1.47 214 8 .05 24 1280 1 16 2 42 KR-96-31 .9 .97 132 170 .1 .79 7 44 24 1.79 .10 .93 .1 1 8 464 6 -04 14 1110 1 4 38 1 29 .5 1.26 0 KR-96-32 153 149 .1 .31 15 3.33 .09 13 1.24 298 8 .03 16 1170 22 17 1 - 1 1 19 .71 .5 1.39 202 11 36 2.83 .03 KR-96-33 102 ٦. 1 7 .11 14 1.12 355 8 17 1130 .1 2 21 -58 .6 1.07 99 85 1.42 9 36 15 2.81 8 1.07 9 .02 ž KR-96-34 .1 1 .1 ..08 338 15 1080 18 78 1. 1 83 26 5.62 377 KR-96-35 .1 2.32 113 .1 1 1.76 .1 16 .15 26 1.38 689 12 .03 35 2420 1 30 4 50 1 .7 1.13 3.22 .09 99 1 1.03 10 48 29 8 1.07 g KR-96-36 69 .1 306 -03 18 1080 20 55 .1 1 2 94 83 7 43 57 484 10 KR-96-37 .2 1.64 1 .86 4.18 12 1.18 .03 19 1160 .1 .1 -11 1 24 4 39 39 .13 .8 .32 73 .10 2 69 19 KR-96-38 .1 4 .35 8 1 .05 44 2 .04 4 160 7 16 .1 7 1 248 KR-96-39 1.D 1.06 101 .1 7 1.09 .1 6 52 731 3.00 1 .10 11 1.17 161 7 .04 1 19 2 83 50 35 53 227 9 1.0 1.05 84 .45 3.05 .04 9 1.00 2 KR-96-40 .1 1 .1 6 1 .03 14 1170 1 20 29 .9 1.32 115 68 .1 .54 .1 10 43 55 3.89 .08 12 1.07 9 KR-96-41 1 230 .05 16 1180 23 3 31 1 1.18 48 187 5.02 -12 12 1.21 KR-96-42 .9 1.45 79 65 .1 15 844 12 .02 26 1470 25 .1 43 81 1 KR-96-43 1.0 1.05 95 61 1 1.08 13 35 160 4.00 .11 774 .02 18 1230 .1 -1 8 .79 11 72 23 1 262 78 1 1.06 11 3.52 .35 KR-96-44 2.1 .41 .1 -1 31 131 .11 2 884 .02 14 1290 79 39 7 11 2

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5x 4EB

TEL: (604)327-3436 FAX: (604)327-3423

FILE NO: 65-0029-RJ1

PPN PPH PPH

1 184

1 35

1

1 29

1 52

1 46

1 94

1

1

1 46

2 95

1 41

1 36

1

1 29

2

1

1 36

1

1

1

1

1

5

2 36

1 46

1 54

1

1

5 5

1 35

v

56.2

40.2

47.6

58.8

56.0

40.5

72.8

112.6

39.1

- 1

1 149.2

1 37.5

132.3

59.6

56.2

58.5

75.4 1

60.3

62.2 1

42.9

2.0

56.8

1 61.5

1 63.8

2.0

11

- 1

1 62.5

1

1

1 42.8

1 58.4

1 50.5

1 65.4

1

1 61.3

1

1

1 61.9

1

1 27.6

1

1

1 24.0

1

1

1

1

1

1 61.6

1 32.9

1 45.3

1 41.4

1 73.0

1 60.0

1

1 42.4

1 48.1

1 63.1

1 57.4

1 38.2

1 33.0

1 46.4

1

1 39.3

X PPH

1.01

1.04

1.01

1 .01

.01

1.09

1.01

1.06

1 .01

1.09

1 .01

1 .01

1.02

1 .01

1 .10

1 .01

1.01

1.01

1.07

1 .10

1.09

1 .05

1.01

1.15

1 .01

1 .06

1.10

1 .01

1 .01

1 .01

1 .01

1.01

1 .01

1 .01

6 .01

1 .01

1.05

1.06

1 .01

1.01

1 .01

1 .01

1 .01

1.03

1 .01

.02

1 .04

1 .01

1

1

DATE: 96/06/

V ZN Au-fire

PPR

14

2

-5

2

19

31

14

908

16

118

11

15

47

1

1

* rock * (ACT:F3

38

23

34

39

10

32

29

13

2

98

24

23

41

30

31 1

47

25

49 1

44 1

47 1

2 135

1 343

1 281

1 417

1 201

1 82

1 98

1 61

1 391

3 34

4

COMP: HEWITI & ASSOCIATES LTD.

PROJ: DOT

ATTN: Kaaren Soby / Larry Hewitt

.7 1.31

.9 1.36

.9 1.31

1.3 .92

KR-96-45

KR-96-46

KR-96-47

KR-96-48

124

137

146

91

76

47

48

174

. 1

.1

. 1

1

.79

1

1 ,58

4 .75

1 .35 12

11

10

0

.1

.1

.1

. 1

40

44

53 339

49

55

127

3.59

3.54

2.63

131 3.58

12 1.06

11 1.14

14 1.25

8 -90

.10

. 10

.20

.07

1

462

345

186

352

ò

9 .03

11

10

.03

.04

.04

18 1310

17 1250

15 1080

17 1210

23

22

- 7

21

1

2

1

3

2 40

ē

67

49

3 24

MIN-EN LABS - ICP REPORT COMP: HEWITT & ASSOCIATES LID. 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 PROJ: DOT TEL:(604)327-3436 FAX:(604)327-3423 ATTN: Kaaren Soby / Larry Hewitt FE GA % PPM K LI MG MN MD X PPH X PPH PPM SAMPLE AG PPM AL AS BA BE BI % PPH PPM PPM PPM CA CD CO CR CU X PPH PPM PPH PPH P P8 SB SN SR TH TI U V W ZN Au-fire CIR CU

UMBER R-96-49 R-96-50 R-96-51 R-96-52 R-96-53 R-96-53 R-96-55 R-96-56 R-96-56	.7 .5 1.3 1.1 1.8 .1	2 1.41 1.01 .32 1.02 1.08 1.10 .62 .36 .25	1	52	PPH .1 .1 .1 .1 .1 .1 .1 .1	16 11 40 1	1.62 .32 .92 .66 2.58 .88 .09	PPN .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	PPM 7 8 13 10 9 7 13 5	20	144 67 191 814 756 2331 262 70	2 3.37 3.21 3.46 3.98 2.51 2.32 3.40 3.93 2.67	1 1 1 1 1 1 1 1	10	1 9 7 8 4 2 1	x 1.23 1.07 .51 1.10 1.13 1.25 1.23 .13 .02	419 440 721 112 189 150 363 561 534 337	999 620 9 8 7 7 4	.03 .03 .04 .04 .06 .04 .03 .03 .03 .02	17 17 15 17 16 15 15 13 5	PPM 1150 1200 1130 1040 1150 1190 1040 1040 1040 940	19 19 19 1 1 1 1 15	20 18 6 18 16 14 13 8 5 3	3 2 2 3 2 3 2 3 2 1	36 83 65 21 73 36 383 25 5		.01 .05 .08 .03 .01 .01 .01	1 57 1 54 1 34 1 54 1 55 1 56 1 29 1 28 1 22	.7	1 1	55 21 78	2 4 1 26 30 16 5 31 1
2-96-58 2-96-59 2-96-60 2-96-61	.4	.46	48 37 38 1 56	80	<u>.1</u> 1	1	1_41 68 98	.1 .1 .1	79	50 32 48 33 39	465 7 1145 967 715	2.67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.10 .12 .12 .13 .11	5	.71	501 318 425	16 11	.02	11 15 14	1090 1030 1040	1	2 20			1 1	.01 .01 .01	1 37).1 7.5 5.5	1 13	57	19 1 65 63 17
															•					<u> </u>												

18-1996

PPB

FILE NO: 65-0029-RJ3 DATE: 96/06/17 C * * (ACT:F31)

Activation Laboratories Ltd. Work Order: 11874 Report: 11746

• •

•

.

.

Sample description	au PPB
KR-96-109	22
KR-96-200	<5
RS-96-01	16

.

Activation Laboratories Ltd. Work Order No. 11874 Report No. 11746B

SAMPLE	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	Ba	Be	Bi	Ca	Co	Cr	Fe	к	Mg	Na	Р	Sb	Sc	Sn	Sr	Ti	v	w	Y	Zr
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
KR-96-109	-0.2	1.8	21	35	2	23	10	-1 0.0	6	623	8	-1	-10 0	.14	78	5	10.20	0.05	0.02	0.01	164	8	-1	-10	49	-0.01	5	-10	-1	3
K-96-200	0.2	0.8	50	1600	-2	16	11	127 1.6	65	-10	259	-1	-10 0	.46	11	20	3.55	0.05	0.51	0.02	846	-5	4	-10	55	0.02	62	-10	14	1
				1040	-2	14	6	59 1.0)3	-10	227	-1	-10 0	.39	8	16	2.98	0.03	0.38	0.02	594	-5	3	-10	46	0.02	49	-10	9	-1

3, 3

1

• .

.

.

Geologist:Val Pratico

Customer's Job #:-----

Enzyme Leach Job #: 11874 Report#:11746 Customer: Custom

Trace Element Values Are in Parts Per Billion. Ne	ative Values	Equal No	t Detected	at That L		mit.		-11.75-1	v											
Values = 999999 are greater than working range of	instrument.	S.Q.=Tha	t element is	determin	ed SEI	MIQUAN		IVEL	.T. C	7-	<u></u>	Ge	As	Se	Br	Rb	Sr	Y	Zr	
Sample ID: S.Q.I	i S.Q.Be	S.Q.CI	S.Q.SC	S.Q.11	v	MU	CO	111	Сu	Zn	Ga	-1	АЗ 6	-30	78	53	626	7	8	
L4750N 5000E 2		8185	-10	-100	36	1626		35	20	447 2160	2 3	-1	17	-30	153	95	275	3	3	
L4750N 5100E 1		8935	-10	-100	14	4947		20	87		3	-1	10	50	161	71	173	14	7	
L4750N 5200E -1		10180	-10	-100	15	12026		22	462	1289	-		-5	-30	105	80	100	8	10	
L4750N 5300E -1		7586	-10	-100	16	1561	38	21	50	906	2	-1 -1	-5	-30 48	58	30	732	63	40	
L4750N 5400E -1	0 -20	6539	-10-	, -100	102	2518	12	25	86	197	4	-1	20	-30	65	74	690	36	25	
	0 -20	4166	-10 *		87	3688	54	30	39	671	6	-1	13	-30 51	62	33	644	18	17	
Lindenteete	3 -20	3673	-10	-100	86	1381	24	16	27	197	3	-1 -1	14	-30	98	66	515	7	31	
	3-20	13959	-10	-100	117	29621	77	28	47	1195	6	-1	10	-30 -30	90 97	24	891	11	17	
L4750N 5800E -'		7159	-10	-100	69	355	25	21	37	365	2 1	-1 -1	7	-30 -30	102	58	926	44	23	
L4750N 5900E -		6403	-10	-100	74	4822	10	19	29	549	3	-1	11	-30	218	22	563	5	10	
	0 -20	12449	-10	-100	72	5172	31	23	21	588		-1 -1	13	-30	56	83	455	4	12	
L4750N 6100E -	0 -20	3187	-10	-100	86	1082	23	19	24	460	4 2	-1 -1	12	-30	48	39	931	2	4	
L5000N 4800E -	0 -20	5498	-10	-100	72	3934	27	12	17	512	2	-1	13	-30	83	3	632	20	10	
	0 -20	-3000	-10	-100	58	1133	10	16	28	76	2	- i -1	11	-30	60	29	996	12	15	
	6 -20	12165	-10	-100	86	1033	21	18	21	232	2 5	-1	21	-30	63	33	516	7	31	
LOCOULOIDE	9 -20	6379	-10	102	99	4923	47	31	61 26	448 909	12	-1 -1	8	-30	83	27	652	7	56	
	-20	9891	-10	195	129	8681	81	33	20 24	338	3	-1	-5	-30	168	54	882	5	15	
LOODON OFFICE	0 -20	12428	-10	-100	68	7086	28	17	24 18	1123	10	-1	-3	-30	89	55	469	7	34	
	-20	11952	-10	190	112	1669	23	15	24	152	4	-1	13	45	175	13	604	19	14	
200001 00002	0 -20	18635	-10	-100	80	2881	55	· 17 19	24 7	1521	-1	-1	-5	-30	45	78	395	4	3	
	10 -20		-10	-100	22	1801	101		39	629	-1	-1	-5	-30	137	23	519	12		
LOUGH STOODE	3 -20		-10	-100	65	2587	9	12	30	82	4	-1	-5	48	84	19	647	21	_9	
ESZOBIY OBOOL	10 -20		-10	-100	15 58	4454 5249	38		37	896	3	-1	16	-30	46	12	918	5		
ESESSINGTOOL	-20		-10	-100	50 44	5249	19		44	152	2	-1	7	-30	111	12	1076	11	5	
2020011 02002	10 -20		-10 -10	-100 -100	33	3163	35		16	656	2	-1	7	-30	48	93	452	4	7	
2323011 00002	10 -20			152	119	7734	93		26	757	10	-1	19	-30	85	84	693	8	58	
L5250N 3400E	18 -20			-100	. 52	7032	18		44	440	-1	-1	12		159	35	566	8		
2323011 00002	10 -20		-10	-100	104	1685	38		59	298	. 9	-1	20		52	58	791	18	38	
L5250N 3600E	22 -20			-100	66	2654	24		29	348	1	-1	7	-30	122	75	732	6		
2323014 07:002	10 -20			-100	24	6339	27		17	890	1	-1	8		58	101	585	3	6	
E323014 3000E	10 -20 10 -20			-100	58	3694	20		37	774	2	-1	. 15	-30	51	64	992	3	11	
E323011 3300E	10 -20			-100	37	3270	20		69	172	1	-1	. 8		97	69	598	47	35	
2323011 40002	10 -20	-		-100	123	10989	28		301	90	2	-1	13	-30	292	22	2104	127	95	
L323011 4100L	10 -20			-100	34	2077	9		48	52	1	-1	9		59	-1	1007	19	13	
L32301 4173E	10 -20			-100	52	20252	19		45	105	2	-1	15	-30	337	7	963	25	5 20	
E323011 4323E	10 -2			-100	80	7626	52		13	687	5		5	-30	79	37	729	5	5 13	
L5250N 4400E	11 -2		-	-100	63	2162	63		26	663	4	-1	9	58	90	86	496	5	57	
L5250N 4500E	19 -2				88	8782	40		17	928	7	-1	10	-30	87	65	864	5	5 32	
L5250N 4600E	26 -2				126	15739	108		22	1544	13	1	13	-30	61	96	483	9	9 50	
L5250N 4700E	28 -2				165	3989	48		23	1424	18	1	18	-30	78	35	635	11	84	
L5250N 4800E	-20 -2 -10 -2					4102	15		34	181	-1	-1	7	52	69	54	1206	22	2 12	
L5250N 4900E	-10 -2		-			979	4		45	128		-1	15			45	938	43	3 32	
L5250N 5000E	-10 -2					927	g			233	2	-1	15	-30	64	48	884	17	73	
L5250N 5100E	-10 -2					4129	52			582					58	22	841	24	4 47	
L5250N 5200E	-10 -2	-	-			3014	33					-1	. e	5 -30	122	21	517	e	6 5	,
L5250N 5300E	-10 -2	0 11-40	, -10	,50	20															

Sample ID:	S.Q.Li	S.Q.Be	S.Q.CI N.S.	S.Q.Sc	S.Q.Ti	v	Mn	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Rb	Sr	Y	Zr
L5250N 5400E L5250N 5500E	21	-20	11551	-10	121	87	1777	32	31	18	992	6	-1	9	-30	51	49	552	5	15
L5250N 5600E L5250N 5700E	-10	-20	N.S. 8823	-10	-100	86	4141	36	2 9	17	605	3	-1	9	-30	62	15	1098	9.	8
L5250N 5800E	-10	-20	15339	-10	-100	106	957	34	52	36	603	2	-1	7	57	147	57	972	8	22
L5250N 5900E	-10	-20	7069	-10	104	75	605	14	21	33	762	3	-1	8	-30	134	85	708	22	40
L5250N 6000E	-10	-20	8619	-10	-100	58	1216	33	29	26	2172	2	-1	6	61	185	71	663	13	19
L5250N 6100E	13	-20	8421	-10-	, -100	49	1151	35	24	16	701	3	-1	5	-30	78	56	510	6	6
L5250N 6200E	25	-20	8342	-10'	-100	77	1514	72		20	1999	4	-1	8	-30	115	85	401	6	14
L5500N 4600E	11	-20	9780	-10	-100	51	6324	29	15	19	613	3	-1	7	-30	91	17	761	4	-1
L5500N 4700E	-10	-20	7658	-10	-100	88	16159	102	28	25	604	2	-1	16	55	64	69	899	4	17
L5500N 4800E	-10	-20	8034	-10	-100	90	1712	27	41	53	194	3	-1	8	-30	109	47	1037	31	30
L5500N 4900E	-10	-20	4355	-10	-100	35	990	53	29	33	387	3	-1	6	55	92	25	545	6	12
L5500N 5000E	17	-20	7433	-10	198	145	2502	55	34	47	789	10	-1	15	-30	130	44	1243	7	55
L5500N 5100E	-10	-20	6313	-10	-100	49	812	34	41	20	498	2	1	-5	-30	163	88	431	6	25 21
L5500N 5200E	-10	-20	7816	-10	-100	95	5578	29	28	27	97	2	-1 -1	10	58 -30	78 128	42 72	1099 403	33 8	21 6
L5500N 5300E	-10	-20	7233	-10	-100	89 41	9344 837	42 36	10 18	8 24	174 165	-1 -1	-1 -1	-5 7	-30 -30	102	30	403 775	22	4
L5500N 5400E	-10	-20	12573	-10 -10	-100	143	3037	- 36 - 46	26	24 27	622	-1	-1	14	-30	71	33	834	13	30
L5500N 5500E	14 -10	-20 -20	6837 5675	-10	165 -100	81	4909	38	20 21	26	268	2	-1	10	-30	66	62	1116	27	18
L5500N 5600E	-10	-20 -20	9812	-10	-100	58	1604	25	24	20	645	-1	-1	-5	-30	140	43	448	7	9
L5500N 5700E L5500N 5800E	-10	-20	13633	-10	250	143	2694	27	25	33	443	11	-1	14	-30	72	22	671	10	49
L5750N 2500E	-10	-20	13033	-10	-100	91	25925	68	43	21	476	4	-1	15	-30	45	60	1120	3	8
L5750N 2500E	-10	-20	9007	-10	-100	69	993	12	12	18	103	1	-1	10	-30	89	34	1353	5	11
L5750N 2700E	-10	-20	6435	-10	-100	85	6871	46	32	40	410	4	-1	19	-30	65	26	1295	15	15
L5750N 2800E	-10	-20	5723	-10	-100	92	4566	33	19	67	325	4	2	16	-30	63	30	888	4	9
L5750N 2900E	21	-20	6131	-10	168	122	10573	53		67	555	10	-1	20	-30	71	70	1439	16	39
L5750N 3000E	14	-20	6281	-10	142	74	1481	18		49	434	6	-1	15	-30	75	81	1052	10	27
L5750N 3100E	19	-20	4965	-10	146	77	5245	44	58	38	539	5	-1	10	-30	51	150	658	9	51
L5750N 3200E	-10	-20	8117	-10	-100	55	337	20		22	485	2	-1	-5	-30	93	45	849	8	18
L5750N 3300E	-10	-20	6446	-10	-100	· . 51	3141	26	17	39	225	2	-1	18	-30	68	92	1232	5	13
L5750N 3400E	-10	-20	8507	-10	-100	106	3536	31	12	21	226	4	-1	17	-30	98	21	1437	2	3
L5750N 3500E	-10	-20	8344	-10	-100	37	1451	31	19	34	190	-1	-1	7	-30	70	11	1100	17	8
L5750N 3600E	-10	-20	4534	-10	-100	34	4297	15	12	27	96	-1	-1	9	-30	57	41	871	18	12
L5750N 3700E	-10	-20	5576	-10	-100	42	8591	70	16	18	663	2	-1	8	-30	71	42	498	4	5
L5750N 3800E	-10	-20	11287	-10	-100	161	1695	8		43	95	1	1	19	61	91	13	910	25	
L5750N 3900E	-10	-20	6309	-10		89	1116	21		69	264	5	-1	15	-30	80	80	927	19	
L5750N 4000E	19		10677	-10		106	1312	26		59	330	11	3	15	-30	94	52	1008	17	
L5750N 4100E	-10		4940	-10		41	6224	83		19	593	2	-1	-5	65	119	79	179	7	14
L5750N 4200E	-10		9889	-10			16849	62		16	291	2	-1	10	-30	92	65	950	5	
L5750N 4300E	-10		8572				2159	48		28	294	5	-1	10	-30	62	56	957	9	
L5750N 4400E	-10		3982				2991	10		21	83	3	-1	8	-30	120	56	956	36	
L5750N 4500E	17	-	7517	-10			12473	102		65	671	8	-1	15	-30	71	40	1503	32	
L5750N 4600E	-10		4818				1970	29		42	375	1	-1	14	-30	138	25	1428	10	
L5750N 4700E	-10		5695				31523	69		32	732	3	-1	27	-30	43	65	1138	5	
L5750N 4800E	19		3442				1473	38		38	834	13	1	14	-30	108	94	737	9	
L5750N 4900E	11		10385			62	1575	90		30	762	4	1	7	-30	163	36	749	19	
L5750N 5000E	-10		5881	-10			11455	91		36	455	4	-1	6	-30	116	112	1192	20	
L5750N 5100E	-10	-20	4728	-10	-100	94	12945	121	22	20	813	2	-1	-5	-30	121	94	687	13	21

Sample ID:	S.Q.Li	S.Q.Be	S.Q.CI	S.Q.Sc	S.Q.Ti	v	Mn	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Rb	Sr	Y	Zr
L5750N 5200E	12	-20	12364	-10	151	100	10677	28	23	29	1015	3	-1	8	-30	49	23	824	8	24
L5750N 5300E	11	-20	5612	-10	229	132	14710	26	23	28	733	8	-1	13	-30	79	12	605	5	41
L5750N 5400E	-10	-20	6551	-10	-100	90	12908	29	32	34	83	-1	-1	10	-30	105	51	1441	37	36
L5750N 5500E	16	-20	3064	-10	179	122	10196	42	40	28	669	9	-1	12	-30	65	97	1182	8	30
L5750N 5600E	28	-20	9397	-10	236	171	8074	116	41	31	977	15	1	13	68	100	73	856	8	41
L5750N 5700E	-10	-20	27403	-10	-100	85	4381	14	30	29	89	2	-1	6	-30	132	16	1007	33	23
L5750N 5800E	-10	-20	8004	-10	-100	59	5354	18	24	2 9	73	2	-1	8	-30	109	65	1196	37	39
L6250N 2500E	-10	-20	5095	-10	-100	63	2756	11	23	88	106	3	-1	12	-30	92	9	2267	48	26
L6250N 2600E	-10	-20	8054	-10*	-100	80	2412	8	22	52	143	2	2	11	-30	106	64	1571	45	28
L6250N 2700E	-10	-20	4332	-10	-100	88	878	3	10	62	41	1	-1	5	-30	112	5	1169	30	24
L6250N 2800E	15	-20	8768	-10	188	144	5917	46	23	38	785	10	-1	10	-30	102	40	1252	10	54
L6250N 2900E	-10	-20	6973	-10	-100	64	4880	25	20	56	162	1	-1	9	67	93	78	1404	35	16
L6250N 3000E	-10	-20	-3000	-10	-100	43	3787	26	17	15	190	1	-1	-5	68	100	61	949	5	14
L6250N 3100E	-10	-20	7709	-10	-100	60	3412	13	7	41	126	-1	-1	15	-30	167	34	1425	10	11
L6250N 3200E	29	-20	6721	-10	182	133	19931	65	27	39	1295	11	2	18	-30	95	29	499	4	31
L6250N 3300E	38	-20	10733	-10	172	122	47521	126	36	34	1470	9	-1	17	-30	52	38	832	5	38
L6250N 3400E	-10	-20	5834	-10	-100	77	16840	32	19	39	80	2	-1	15	-30	166	7	1231	9	16
L6250N 3500E	61	-20	7335	-10	193	281	3182	62	36	35	1301	11	-1	29	-30	113	37	672	6	47
L6250N 3600E	-10	-20	3984	-10	-100	86	1355	14	16	46	137	-1	-1	12	-30	113	35	1299	28	23
L6250N 3700E	-10	-20	4549	-10	-100	105	1203	16	23	53	156	3	-1	20	71	54	6	1223	24	16
L6250N 3800E	-10	-20	14225	22	-100	68	3255	39	13	43	181	2	-1	7	-30	322	66	1681	76	27
L6250N 3900E	-10	-20	4406	-10	-100	45	8079	41	10	15	353	2	-1	8	-30	89	38	925	8	5
L6250N 4000E	-10	-20	-3000	-10	-100	56	7439	102	. 17	34	306	2	-1	16	-30	73	47	1261	13	13
L6250N 4100E	-10	-20	-3000	-10	-100	88	791	23	36	48	362	2	-1	8	-30	82	106	931	26	30
L6250N 4200E	-10	-20	3673	-10	-100	79	24948	86	38	21	1097	2	-1	7	62	108	89	739	7	7
L6250N 4300E	-10	-20	-3000	-10	-100	121	1071	12	28	35	97	-1	-1	12	-30	64	51	912	20	18
L6250N 4400E	11	-20	-3000	-10	-100	65	8948	113	47	28	662	4	-1	11	-30	87	78	879	6	13
L6250N 4500E	29	-20	4135	-10	120	57	1377	108	67	42	410	3	-1	6	-30	57	94	573	8	22
L6250N 4600E	20	-20	-3000	-10	170	96	2288	110	45	65	694	7	1	12	-30	91	95	1017	12	48
L6250N 4700E	-10	-20	3171	-10	-100	91	14010	66	52	49	201	2	2	13	-30	91	32	620	28	26
L6250N 4800E	-10	-20	-3000	-10	-100	. 79	12461	40		6	243	2	-1	-5	-30	91	63	875	5	4
L6250N 4900E	30	-20	10243	-10	-100	53	18587	132	35	42	994	4	-1	7	-30	147	56	842	18	25
L6250N 5000E	-10	-20	4041	-10	-100	664	6943	15	15	107	180	1	-1	43	-30	71	21	722	32	48

Certified By:

Davis OAma

D. D'Anna, Dipl. T. ICPMS Technical Manager, Actlabs Ltd.

Date: Nov 25 /96

This report shall not be reproduced except in full without the written approval of the laboratory

Enzyme Leach Job #: 11874 Report#:11 Trace Element Values Are in Parts Per Billi Values = 999999 are greater than working r

values - 333333 are greater than working r																										
Sample ID:	Nb	Мо	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm
L4750N 5000E	1	10	-1	-1	-1	-0.2	2.0	-0.2	-1	2	2	26	-1	1494	5	10	3	6	1	-1	1	2	1	-1	-1	-1
L4750N 5100E	-1	6	-1	-1	-1	-0.2	5.7	-0.2	-1	2	-1	49	-1	1174	-		2	3	-1	-1	-1	1	-1	-1	-1	-1
		-								-			•		3	4		-				•				
L4750N 5200E	-1	8	-1	-1	-1	0.3	8.2	-0.2	-1	3	-1	59	-1	435	23	40	5	22	2	1	4	2	3	-1	-1	-1
L4750N 5300E	-1	1	-1	-1	-1	-0.2	4.8	-0.2	-1	-1	-1	62	-1	1869	6	10	2	6	1	-1	2	-1	2	-1	-1	-1
L4750N 5400E	1	7	-1	-1	-1	-0.2	1.4	-0.2	-1	4	-1	26	-1	1174	27	34	10	49	11	4	15	3	11	2	4	-1
L4750N 5500E	2	-1	-1	-1	-1	-0.2	4.8	-0.2	-1	1	-1	44	-1	2758	20	20	7	32	8	2	9	2	8	1	3	-1
	2	-1	-1	•	•				•		•						-				•	~	-	•	-	•
L4750N 5600E	2	•	•	-1	-1	-0.2	0.8	-0.2	-1	2	1	39	-1	783	9	14	4	15	4	1	5	1	3	-1	2	-1
L4750N 5700E	2	-1	-1	-1	-1	-0.2	6.1	-0.2	-1	3	-1	43	1	2637	6	8	2	7	2	-1	2	-1	1	-1	-1	-1
L4750N 5800E	-1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	2	-1	48	-1	816	6	13	2	.9	2	-1	3	1	2	-1	-1	-1
L4750N 5900E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	3	-1	63	-1	587	27	31	9	42	9	2	12	2	10	2	3	-1
L4750N 6000E	-1	-1	-1	-1	-1	-0.2	4.2	-0.2	-1	3	1	63	-1	867	4	6	1	4	2	-1	1	-1	1	-1	-1	-1
	-1	•	•						-	-	-							•	_		•		•		-	
L4750N 6100E	1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	-1	-1	25	-1	1080	2	7	1	3	-1	-1	-1	-1	-1	-1	-1	-1
L5000N 4800E	1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	1	-1	26	-1	1033	2	3	-1	2	-1	-1	-1	-1	-1	-1	-1	-1
L5000N 4900E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	3	-1	38	-1	560	10	9	3	15	3	1	5	1	3	-1	1	-1
L5000N 5000E	1	-1	-1	-1	-1	-0.2	1.7	-0.2	-1	1	-1	38	-1	1319	5	9	2	10	2	-1	3	-1	2	-1	-1	-1
L5000N 5100E		-1	-1	-1	-1	-0.2	2.0	-0.2	-1	2	-1	33	1	566	4	12	2	5	2	-1	2	-1	2	-1	-1	-1
					•				-	~									~	•	~		4	•	•	
L5000N 5300E	4	-1	-1	-1	-1	-0.2	3.9	-0.2	-1	-1	-1	45	-1	1540	6	6	2	5	1	-1	1	-1	1	-1	-1	-1
L5000N 5400E	-1	-1	-1	-1	-1	-0.2	3.2	-0.2	-1	-1	-1	57	-1	1004	4	6	1	5	1	-1	2	-1	1	-1	-1	-1
L5000N 5500E	3	-1	-1	-1	-1	0.3	4.8	-0.2	-1	-1	-1	42	2	1401	4	10	1	4	1	-1	1	-1	1	-1	-1	-1
L5000N 5600E	-1	10	-1	-1	1-1	-0.2	0.5	-0.2	-1	3	-1	84	-1	532	6	13	3	11	2	-1	3	-1	2	-1	1	-1
L5000N 5700AE	-1	-1	-1	-1	-1	-0.2	7.6	-0.2	-1	-1	-1	29	-1	1958	ž	4	1	2	-1	-1	-1	-1	-1	-1	-1	-1
			-1							- 1					_		-1		-		•		-1			
L5000N 5700BE	-1	-1		-1	-1	-0.2	7.3	-0.2	-1	1	-1	59	-1	1303	7	17	2	10	3	-1	3	-1	2	-1	-1	-1
L5250N 3000E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	1	-1	51	-1	1171	14	40	5	21	5	2	6	1	4	-1	2	-1
L5250N 3100E	-1	-1	-1	-1	-1	-0.2	7.6	-0.2	-1	1	-1	32	-1	958	3	9	1	6	-1	-1	2	-1	1	-1	-1	-1
L5250N 3200E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	-1	-1	48	-1	1181	7	17	3	11	2	-1	3	-1	3	-1	-1	-1
L5250N 3300E	-1	-1	-1	-1	-1	-0.2	5.1	-0.2	-1	-1	-1	31	-1	1728	3	7	-1	3	-1	-1	1	-1	-1	-1	-1	-1
L5250N 3400E	3	-1	-1	-1	-1	-0.2	4.2	-0.2	-1	2	-1	51	-1	2324	5	12	1	5	- 1	-1	2	-1	- 1	-1	-	-
	-	•			•						-						-					-1	2		-1	-1
L5250N 3500E	-1	-1	-1	-1	-1	-0.2	6.0	-0.2	-1	-1	-1	65	-1	1086	7	17	3	9	2	-1	2	-1	2	-1	-1	-1
L5250N 3600E	2	-1	-1	-1	-1	-0.2	1.7	-0.2	-1	1	-1	34	1	1355	11	16	4	15	2	1	5	-1	4	-1	1	-1
L5250N 3700E	-1	-1	-1	-1	-1	-0.2	5.1	-0.2	-1	-1	-1	58	-1	1319	5	11	1	6	1	-1	2	-1	1	-1	-1	-1
L5250N 3800E	-1	-1	-1	-1	-1	-0.2	17.8	-0.2	-1	-1	-1	31	-1	1702	2	3	1	4	-1	-1	1	-1	-1	-1	-1	-1
L5250N 3900E	-1	-1	-1	-1	-1	-0.2	18.0	-0.2	-1	1	-1	33	-1	1128	· 3	8	1	4	-1	-1	-1	-1	-1	-1	-1	-1
		-1	-1							3	-1					-		-							•	
L5250N 4000E	-1	•	-	-1	-1	-0.2	3.0	-0.2	-1	-	•	43	-1	1422	23	31	9	43	10	3	13	2	10	2	4	-1
L5250N 4100E	-1	32	-1	-1	-1	-0.2	1.7	-0.2	-1	9	-1	118	-1	2016	52	55	19	87	20	7	28	4	23	4	9	1
L5250N 4175E	-1	-1	-1	-1	-1	-0.2	0.8	-0.2	-1	3	-1	38	-1	512	8	9	3	14	4	-1	4	-1	4	-1	1	-1
L5250N 4325E	-1	20	-1	-1	-1	-0.2	1.7	-0.2	-1	5	-1	158	· -1	662	9	14	3	17	4	1	5	1	4	1	2	-1
L5250N 4400E	-1	-1	-1	-1	-1	-0.2	4.8	-0.2	-1	1	-1	35	-1	1707	3	6	-1	3	.1	-1	1	_1	1	.1	-1	-1
	-1	-1	-1	-1	-1				-1	1	-1		-1			~	1	4	2	-1	2	-1		- 1		
L5250N 4500E	•	•		•	•	-0.2	4.5	-0.2		•	-	45		1655	3	<u>_</u>	•		-		2	-1	1	-1	-1	-1
L5250N 4600E	2	-1	-1	-1	-1	-0.2	7.9	-0.2	-1	1	-1	43	-1	2183	3	7	-1	3	-1	-1	1	-1	-1	-1	-1	-1
L5250N 4700E	4	-1	-1	-1	-1	0.3	7.6	-0.2	1	1	1	40	1	2766	5	5	-1	4	-1	-1	1	-1	2	-1	-1	-1
L5250N 4800E	10	-1	-1	-1	-1	0.3	15.0	-0.2	2	1	1	29	1	1924	5	8	2	3	-1	-1	1	-1	1	-1	-1	-1
L5250N 4900E	-1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	2	1	38	-1	1195	13	22	5	22	4	2	6	-1	,	-1	2	-1
	-					-0.2					-1		•				7				-	•	4			
L5250N 5000E	-1	-1	-1	-1	-1		0.5	-0.2	-1	4	•	54	-1	795	21	23	•	40	8	3	11	2	8	2	4	-1
L5250N 5100E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	1	-1	27	-1	949	10	15	4	16	4	1	5	-1	4	-1	1	-1
L5250N 5200E	3	4	-1	-1	-1	0.3	2.9	-0.2	-1	2	-1	23	1	1452	14	20	6	17	4	1	4	4	4	-1	2	-1
L5250N 5300E	-1	-1	-1	-1	-1	-0.2	1.7	-0.2	-1	1	-1	36	-1	1402	4	7	2	6	1	-1	2	1	1	-1	-1	-1
202001.00002				•	•				•	•	•		•		'	•	-			,	-	'	'			

Sample ID: L5250N 5400E	Nb	Мо	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm
L5250N 5500E	1	-1	-1	-1	-1	-0.2	4.2	-0.2	-1	-1	-1	24	-1	1875	5	5	1	4	1	-1	2	-1	-1	-1	-1	-1
L5250N 5600E	•	-1	- 1	- 1	-1	-0.2	4.2	-0.2	-,	-1	-1	24	-1	1075	5	5	1	4	1	-1	2	-1	-1	-1	-1	-1
L5250N 5700E	-1	-1	-1	-1	-1	-0.2	5.7	-0.2	-1	1	-1	32	-1	836	6	9	3	9	2	-1	3	1	2	-1	-1	-1
L5250N 5800E	-1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	2	2	65	-1	2093	7	14	2	8	2	-1	2	-1	2	-1	-1	-1
L5250N 5900E	1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	3	-1	75	-1	3851	12	24	4	19	4	2	5	1	5	-1	2	-1
L5250N 6000E	-1	-1	-1	-1	-1	-0.2	3.3	-0.2	i	1	-1	72	-1	2867	8	16	3	12	3	1	3	1	3	-1	-1	-1
L5250N 6100E	-1	-1	-1	-1	-1	-0.2	3.0	-0.2	-1	-1	-1	28	-1	1329	3	7	1	5	1	-1	2	-1	1	-1	-1	-1
L5250N 6200E	2	-1	-1	-1	-1	-0.2	2.9	-0.2	-1	1	-1	48	-1	1856	4	7	1	4	1	-1	1	-1	1	-1	-1	-1
L5500N 4600E	-1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	-1	-1	32	-1	1503	3	6	1	4	1	-1	1	-1	1	-1	-1	-1
L5500N 4700E	-1	-1	-1	-1	-1	-0.2	6.1	-0.2	-1	2	-1	32	-1	2528	4	14	1	5	-1	-1	2	-1	1	-1	-1	-1
L5500N 4800E	-1	7	-1	-1	-1	-0.2	1.7	-0.2	-1	3	-1	77	-1	1482	16	30	6	27	7	2	9	1	7	1	3	-1
L5500N 4900E	-1	-1	-1	-1	-1	-0.2	3.3	-0.2	-1	-1	3	36	-1	1282	5	13	2	6	2	-1	2	-1	2	-1	-1	-1
L5500N 5000E	2	-1	-1	-1	-1	0.3	3.6	-0.2	-1	2	-1	73	-1	1807	3	10	1	5	1	-1	1	-1	1	-1	-1	-1
L5500N 5100E	-1	-1	-1	-1	-1	-0.2	3.6	-0.2	-1	1	-1	58	-1	2844	6	9	1	4	-1	-1	1	-1	1	-1	-1	-1
L5500N 5200E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	3	-1	58	-1	893	14	15	5	27	7	2	8	1	5	1	2	-1
L5500N 5300E	-1	-1	-1	-1	-1	-0.2	3.6	-0.2	-1	-1	-1	57	-1	4502	7	8	1	6	1	1	2	-1	1	-1	-1	-1
L5500N 5400E	-1	-1	-1	-1	-1	-0.2	2.6	-0.2	-1	2	-1	43	-1	804	11	15	4	18	4	1	5	-1	5	-1	1	-1
L5500N 5500E	3	-1	-1	-1	-1	-0.2	9.2	-0.2	-1	1	-1	31	-1	1239	7	10	2	12	3	1	4	-1	3	-1	1	-1
L5500N 5600E	-1	-1	-1	-1	-1	-0.2	4.8	-0.2	-1	1	-1	39	-1	1851	13	16	5	24	6	2	7	1	6	1	2	-1
L5500N 5700E	-1	-1	-1	-1	-1	-0.2	7.9	-0.2	-1	-1	-1	60	-1	1280	4	7	2	7	1	-1	2	-1	2	-1	-1	-1
L5500N 5800E	4	-1	-1	-1	-1	-0.2	2. 9	-0.2	-1	2	-1	36	1	1609	11	11	2	9	2	-1	3	-1	3	-1	-1	-1
L5750N 2500E	-1	5	-1	-1	-1	-0.2	3.2	-0.2	-1	2	-1	27	-1	3052	2	6	-1	4	1	-1	1	-1	1	-1	-1	-1
L5750N 2600E	-1	-1	-1	-1	-1	-0.2	0.8	-0.2	-1	-1	-1	38	-1	3883	4	10	1	7	1	-1	2	-1	-1	-1	-1	-1
L5750N 2700E	-1	-1	-1	-1	-1	-0.2	3.9	-0.2	-1	1	-1	36	-1	2718	9	17	3	15	3	2	5	-1	3	-1	1	-1
L5750N 2800E	-1	1	-1	-1	-1	-0.2	1.1	-0.2	-1	1	-1	29	-1	2006	3	8	1	4	2	-1	1	-1	1	-1	-1	-1
L5750N 2900E	2	-1	-1	-1	-1	-0.2	3.6	-0.2	-1	3	-1	31	2	3137	8	23	3	14	5	1	4	-1	3	-1	1	-1
L5750N 3000E	2	-1	-1	-1	-1	-0.2	7.3	-0.2	-1	1	1	39	-1	2262	9	18	2	11	2	1	3	-1	2	-1	-1	-1
L5750N 3100E	2	-1	-1	-1	-1 -1	-0.2	3.9	-0.2	-1	1	-1	30	1	3737	11	27	2	10	2	1	2	-1	2	-1	-1	-1
L5750N 3200E	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1	-0.2	3.3	-0.2	-1	-1	-1 -1	55	-1 -1	2869	6	14	2	9	2	-1	2	-1	2	-1	-1	-1
L5750N 3300E L5750N 3400E	-1	-1 -1	-1	-1	-1	-0.2 -0.2	1.1 2.0	-0.2 -0.2	-1 -1	1	- i -1	49 39	-1 -1	2057 1183	4	11 3	1 -1	6 3	1	-1	3	-1 -1	1 -1	-1	-1	-1
L5750N 3500E	-1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	1	-1	39	-1	1197	2 6	3 8	-1	13	-1 3	-1 1	-1 3	-1 -1	-1	-1 _1	-1 1	-1 -1
L5750N 3600E	-1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	2	-1	36	-1	1674	7	11	2	14	4	4	4	-1	3	-1	1	-1
L5750N 3700E	-1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	-1	-1	26	-1	1613	2	5	-1	3	-1	-1	4	-1	-1	-1	-1	-1 -1
L5750N 3800E	-1	-1	-1	-1	-1	-0.2	0.8	-0.2	-1	5	-1	43	-1	941	9	21	3	17	4	1	5	-1	5	-1 -1	2	-1
L5750N 3900E	2	-1	-1	-1	-1	-0.2	2.6	-0.2	-1	ž	-1	50	1	1588	11	23	4	18	4	2	5	-1	4	1	2	-1
L5750N 4000E	3	-1	-1	-1	-1	0.3	2.3	-0.2	-1	2	-1	50	1	1623	11	24	4	15	3	1	4	-1	4	-1	1	-1
L5750N 4100E	-1	-1	-1	-1	-1	-0.2	6.4	-0.2	-1	-1	-1	52	-1	1386	5	12	2	7	1	-1	2	-1	1	-1	-1	-1
L5750N 4200E	-1	-1	-1	-1	-1	-0.2	3.3	-0.2	-1	-1	1	39	-1	2548	4	9	1	5	2	-1	1	· -1	2	-1	-1	-1
L5750N 4300E	1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	1	-1	36	-1	2457	5	13	2	8	2	-1	2	-1	2	-1	-1	-1
L5750N 4400E	-1	5	-1	-1	-1	-0.2	2.0	-0.2	-1	4	-1	60	-1	823	14	17	8	23	5	1	6	4	5	1	2	-1
L5750N 4500E	2	-1	-1	-1	-1	-0.2	3.6	-0.2	-1	4	-1	44	-1	1577	14	27	7	25	7	2	7	2	5	1	2	-1
L5750N 4600E	1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	4	-1	57	-1	1116	5	11	2	8	2	-1	2	1	2	-1	-1	-1
L5750N 4700E	-1	-1	-1	-1	-1	-0.2	5.5	-0.2	-1	3	-1	35	-1	1527	3	7	1	5	-1	-1	1	-1	1	-1	-1	-1
L5750N 4800E	5	-1	-1	-1	-1	0.3	6.7	-0.2	1	2	1	40	1	1516	4	12	2	5	1	-1	1	-1	2	-1	-1	-1
L5750N 4900E	-1	-1	-1	-1	-1	-0.2	5.5	-0.2	-1	2	-1	69	-1	1228	11	28	4	17	4	1	5	1	5	-1	1	-1
L5750N 5000E	1	-1	-1	-1	-1	-0.2	3.3	-0.2	-1	2	-1	66	-1	3036	12	27	4	18	5	2	5	1	4	-1	2	-1
L5750N 5100E	-1	-1	-1	-1	-1	-0.2	6.1	-0.2	-1	2	-1	77	-1	3484	7	17	3	9	3	1	3	-1	3	-1	1	-1

Sample ID:	Nb	Мо	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Cs	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy		Er	Tm
L5750N 5200E	1	-1	-1	-1	-1	-0.2	3.0	-0.2	-1	4	-1	28	-1	1351	5	8	2	7	1	-1	3	-1	2	-1	-1	-1
L5750N 5300E	2	-1	-1	-1	-1	-0.2	3.6	-0.2	-1	3	-1	32	-1	1826	2	7	1	3	-1	-1	2	-1	1	-1	-1	-1
L5750N 5400E	-1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	3	-1	54	-1	1071	17	24	6	27	7	2	9	1	7	1	3	-1
L5750N 5500E	3	-1	-1	-1	-1	0.3	6.4	-0.2	-1	1	-1	38	-1	1710	7	11	2	8	2	-1	2	-1	2	-1	-1	-1
L5750N 5600E	4	-1	-1	-1	-1	-0.2	6.7	-0.2	-1	-1	-1	37	1	2216	5	13	1	4	1	-1	2	-1	1	-1	-1	-1
L5750N 5700E	-1	10	-1	-1	-1	-0.2	2.3	-0.2	-1	3	-1	49	-1	775	15	24	6	28	6	2	9	1	7	2	2	-1
L5750N 5800E	-1	2	-1	-1	-1	-0.2	1.7	-0.2	-1	3	-1	54	-1	1021	19	40	7	34	8	3	11	1	9	1	3	-1
L6250N 2500E	-1	-1	-1	-1	-1	-0.2	0.5	-0.2	-1	4	1	73	-1	933	22	12	8	37	9	3	11	1	10	2	4	-1
L6250N 2600E	-1	-1	-1	-1	-1	-0.2	-0.2	-0.2	-1	3	-1	74	1	994	22	35	9	38	9	3	12	2	10	1	4	-1
L6250N 2700E	-1	-1	-1	-1	-1	-0.2 *	0.5	-0.2	-1	4	-1	56	-1	304	20	26	6	24	5	2	7	1	5	-1	2	-1
L6250N 2800E	3	-1	-1	-1	-1	-0.2	2.3	-0.2	1	1	-1	43	1	2538	7	11	2	8	1	-1	2	-1	2	-1	-1	-1
L6250N 2900E	-1	-1	-1	-1	-1	-0.2	0.5	-0.2	-1	4	-1	50	2	1082	25	52	8	41	9	2	11	1	8	1	3	-1
L6250N 3000E	-1	-1	-1	-1	-1	-0.2	1.7	-0.2	-1	-1	-1	43	-1	2129	5	10	1	6	2	-1	1	-1	2	-1	-1	-1
L6250N 3100E	-1	2	-1	-1	-1	-0.2	7.9	-0.2	-1	3	-1	46	-1	958	5	9	2	8	1	-1	2	-1	2	-1	-1	-1
L6250N 3200E	6	-1	-1	-1	-1	-0.2	5.2	-0.2	-1	1	-1	38	1	1495	3	7	-1	4	-1	-1	1	-1	-1	-1	-1	-1
L6250N 3300E	2	-1	-1	-1	-1	-0.2	15.1	-0.2	-1	2	1	23	1	3295	2	7	-1	3	-1	-1	1	-1	1	-1	-1	-1
L6250N 3400E	1	4	-1	-1	-1	-0.2	1.1	-0.2	-1	4	1	81	-1	893	5	17	2	7	2	-1	2	-1	2	-1	-1	-1
L6250N 3500E	4	-1	-1	-1	-1	-0.2	7.9	-0.2	-1	2	-1	39	2	1620	2	7	-1	4	-1	-1	1	-1	-1	-1	-1	-1
L6250N 3600E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	3	-1	58	-1	1483	13	11	4	23	5	2	7	1	6	1	2	-1
L6250N 3700E	-1	-1	-1	-1	-1	-0.2	0.8	-0.2	-1	3	-1	37	-1	1200	10	16	3	17	4	2	6	-1	4	-1	2	-1
L6250N 3800E	-1	-1	-1	-1	-1	-0.2	3.2	-0.2	-1	4	-1	129	-1	2360	36	45	13	64	15	4	20	3	17	3	6	-1
L6250N 3900E	-1	-1	-1	-1	-1	-0.2	4.2	-0.2	-1	-1	-1	39	-1	1911	5	11	2	8	2	-1	3	-1	2	-1	-1	-1
L6250N 4000E	-1	-1	-1	-1	7-1	-0.2	3.0	-0.2	-1	2	-1	29	-1	1455	6	13	2	12	2	-1	4	-1	3	-1	-1	-1
L6250N 4100E	1	-1	-1	-1	-1	-0.2	2.3	-0.2	-1	3	-1	76	-1	2734	14	34	6	24	5	2	7	1	5	1	2	-1
L6250N 4200E	-1	-1	-1	-1	-1	-0.2	12.3	-0.2	-1	-1	-1	56	-1	3296	5	12	2	8	1	-1	2	-1	2	-1	-1	-1
L6250N 4300E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	3	-1	32	-1	965	9	15	3	16	3	1	6	-1	4	1	1	-1
L6250N 4400E	-1	-1	-1	-1	-1	-0.2	16.1	-0.2	-1	1	-1	40	-1	2509	4	12	2	6	1	-1	2	-1	2	-1	-1	-1
L6250N 4500E	-1	-1	-1	-1	-1	-0.2	5.2	-0.2	-1	2	-1	25	1	2001	5	14	2	6	2	-1	3	-1	2	,	-1	-1
L6250N 4600E	3	-1	-1	-1	-1	-0.2	4.8	-0.2	-1	2	-1	70	1	2542	7	17	2	11	2	-1	3	-1	3	-1	1	-1
L6250N 4700E	-1	-1	-1	-1	-1	-0.2	2.0	-0.2	-1	3	-1	36	-1	1152	12	30	5	25	5	2	8	1		1	2	-1
L6250N 4800E	-1	-1	-1	-	-1	-0.2	4.5	-0.2		4	-1	42	-1	3508	3	~ ~ ~	1	4	1	-1	1	-1	1	-1	-1	-1
L6250N 4900E	-1	-1	-1		-1	-0.2	6.1	-0.2		1	-1	55	-1	2164	8	23	4	17	4	2	5	-1	4	-1	2	-1 -1
L6250N 5000E	-1	-1	-1	-1	-1	-0.2	1.1	-0.2	-1	6	-1	-10	-1	1834	12	24	4	23	6	2	(1	6	. 1	2	-1

Enzyme Leach Job #: 11874 Report#:11 Trace Element Values Are in Parts Per Billi Values = 999999 are greater than working r

Values = 999999 are greater than working r														
Sample ID:	Yb	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	S.Q.Hg	TI	Pb Bi	Th U
L4750N 5000E	2	2	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	1 -1
L4750N 5100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	76 -1	2 1
L4750N 5200E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	100 -1	2 4
L4750N 5300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	10 -1	-1 1
L4750N 5400E	6	1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	13 -1	3 2
L4750N 5500E	3	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	12 -1	2 2
L4750N 5600E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	6 -1	2 1
L4750N 5700E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	10 -1	3 -1
L4750N 5800E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7 -1	31
L4750N 5900E	3	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	1 -1
L4750N 6000E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	632 -1	2 -1
L4750N 6100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	34 -1	1 -1
L5000N 4800E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	9-1	1 -1
L5000N 4900E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	2 -1
L5000N 5000E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	1 -1
L5000N 5100E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	11 -1	4 1
L5000N 5300E	1	-1	2	1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8 -1	3 -1
L5000N 5400E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	2 -1
L5000N 5500E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	9 -1	2 -1
L5000N 5600E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	1 -1
L5000N 5700AE	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	1 -1
L5000N 5700BE	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	3 -1
L5250N 3000E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7 -1	2 -1
L5250N 3100E	-1	-1	-1	-1	2	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	3 -1
L5250N 3200E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	-1 -1	1 -1
L5250N 3300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	1 -1	-1 -1
L5250N 3400E	-1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8 -1	3 -1
L5250N 3500E L5250N 3600E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7 -1	-1 1
L5250N 3700E	1 -1	-1 -1	2 -1	-1 -1	-1 -1	-0.1	-1	-1	-1 -1	-0.1	-1.0	-1	9 -1	3 1
L5250N 3800E	-1 -1	-1 -1	-1	-1	-1 -1	-0.1 -0.1	-1	-1 -1	-1 -1	-0.1	-1.0	-1	4 -1	1 -1
L5250N 3900E	-1	-1	-1	-1	-1	-0.1	-1 -1	-1 -1	-1 -1	-0.1	-1.0	-1	2 -1	-1 -1
L5250N 4000E	-1	-1	-1	-1	-1	-0.1	-1 -1	-1	-1 -1	-0.1 -0.1	-1.0	-1	4 -1	-1 -1
L5250N 4100E	9	2	3	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0 -1.0	-1 -1	3 -1 4 -1	32 33
L5250N 4175E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	-1 -1	3 3 1 -1
L5250N 4325E	2	-1	-1	-1	2	0.4	-1	-1	-1	-0.1	-1.0	-1	3 -1	-1 -1
L5250N 4400E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	2 -1
L5250N 4500E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	1 -1
L5250N 4600E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	2 -1
L5250N 4700E	-1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	12 -1	2 -1
L5250N 4800E	1	-1	2	2	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	18 -1	3 1
L5250N 4900E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	1 2
L5250N 5000E	4	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	2 3
L5250N 5100E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	-1 -1
L5250N 5200E	4	3	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	12 -1	3 1
L5250N 5300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	-1 -1
	•		•	'	•	9.1	•			3.1	-1.0			

· .

-

Sample ID: L5250N 5400E	Yb	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	S.Q.Hg	ті	Рb	Bi	Th	U
L5250N 5500E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5	-1	1	-1
L5250N 5600E																
L5250N 5700E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	6	-1	2	-1
L5250N 5800E	1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8	-1	3	-1
L5250N 5900E	2	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5	-1	4	2
L5250N 6000E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5	-1	2	1
L5250N 6100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3	-1	2	-1
L5250N 6200E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	2	-1
L5500N 4600E	-1	-1	-1	-1	-1	-0.1	1	-1	-1	-0.1	-1.0	-1	2	-1	-1	-1
L5500N 4700E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	2	-1
L5500N 4800E	2	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	2	1
L5500N 4900E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	2	-1
L5500N 5000E	1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	12	-1	3	2
L5500N 5100E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	2	-1
L5500N 5200E	3	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3	-1	-1	-1
L5500N 5300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3	-1	-1	-1
L5500N 5400E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2	-1	1	-1
L5500N 5500E	1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	2	1
L5500N 5600E	3	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	1	-1
L5500N 5700E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	1	-1
L5500N 5800E	1	-1	2	1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	10	-1	3	-1
L5750N 2500E	-1	-1	-1	-1	1	-0.1	-1	-1	-1	-0.1	-1.0	-1	6	-1	1	-1
L5750N 2600E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	1	-1
L5750N 2700E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5	-1	1	-1
L5750N 2800E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	6	-1	2	-1
L5750N 2900E	1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	3	1
L5750N 3000E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	2	1
L5750N 3100E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	4	1
L5750N 3200E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	3	1
L5750N 3300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	2	-1
L5750N 3400E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	1	-1
L5750N 3500E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2	-1	-1	-1
L5750N 3600E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	-1	-1	1	-1
L5750N 3700E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3	-1	1	-1
L5750N 3800E	2	-1	-1	-1	-1	0.2	-1	-1	-1	-0.1	-1.0	-1	4	-1	1	-1
L5750N 3900E	1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	3	2
L5750N 4000E	2	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	7	-1	3	2
L5750N 4100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		2	-1	2	-1
L5750N 4200E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		7	-1	1	-1
L5750N 4300E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		9	-1	2	-1
L5750N 4400E	5	3	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		5	-1	2	1
L5750N 4500E	4	2	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		8	-1	3	1
L5750N 4600E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		5	-1	3	-1
L5750N 4700E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		10	-1	2	-1
L5750N 4800E	1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		17	-1	4	1
L5750N 4900E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		3	-1	3	-1
L5750N 5000E	2	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0		7	-1	3	2
L5750N 5100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4	-1	2	-1

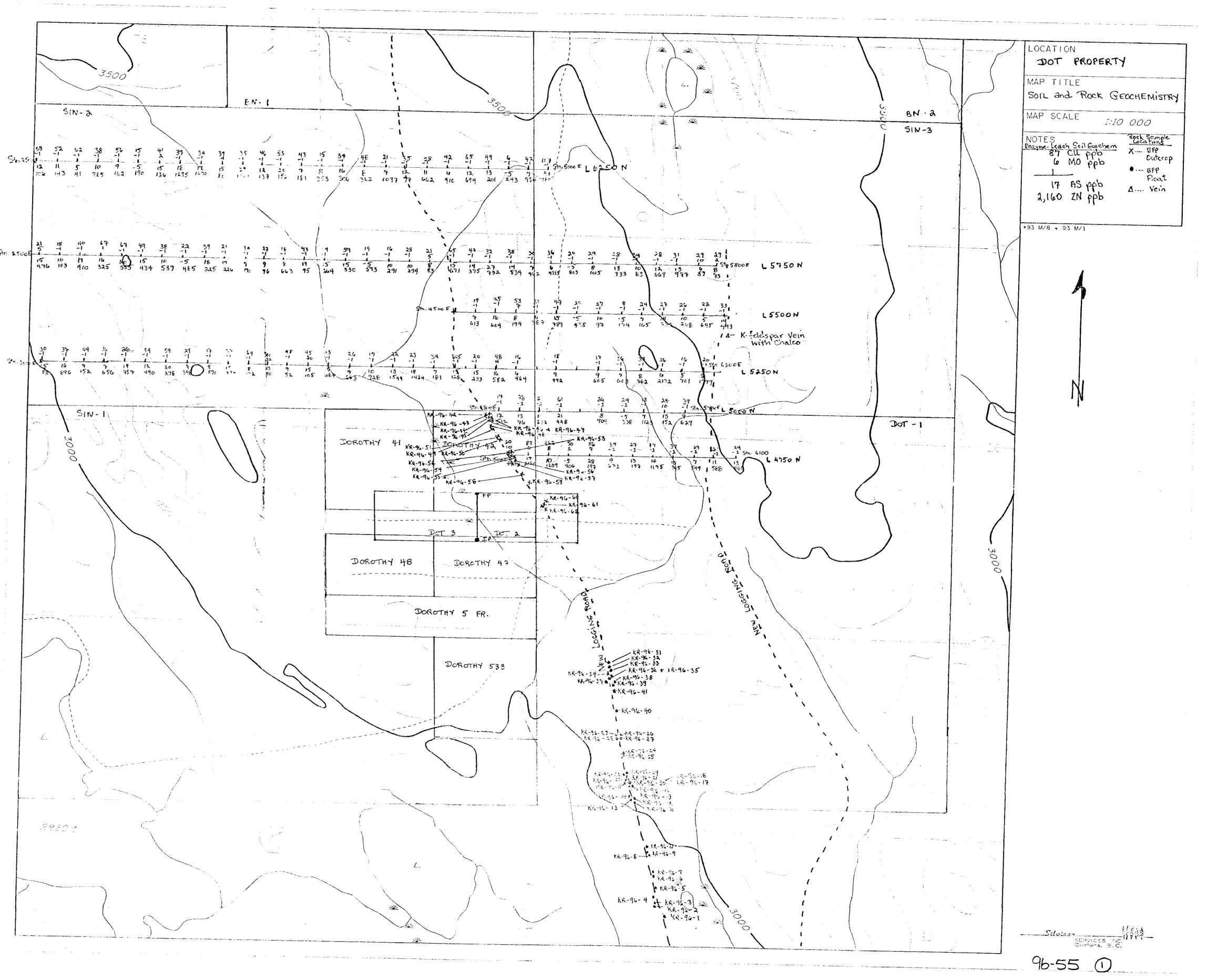
· ·

Sample ID:	Yb	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	S.Q.Hg	τı	Pb Bi	Th U
L5750N 5200E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	9 -1	3 -1
L5750N 5300E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	21 -1	3 -1
L5750N 5400E	3	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	2 1
L5750N 5500E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	9 -1	3 -1
L5750N 5600E	-1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	11 -1	2 -1
L5750N 5700E	3	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	2 2
L5750N 5800E	3	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	-1 -1	2 4
L6250N 2500E	4	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	1 1
L6250N 2600E	4	-1	-1	-1	-1	0.2	-1	-1	-1	-0.1	-1.0	-1	-1 -1	2 2
L6250N 2700E	2	-1	-1	-1	-1	-0.1	•1	-1	-1	-0.1	-1.0	-1	3 -1	1 -1
L6250N 2800E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8 -1	3 -1
L6250N 2900E	3	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	1 -1	1 1
L6250N 3000E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	2 -1
L6250N 3100E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	1 -1	2 -1
L6250N 3200E	-1	-1	1	1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	10 -1	2 -1
L6250N 3300E	-1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8 -1	3 -1
L6250N 3400E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	2 -1
L6250N 3500E	-1	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	9 -1	2 -1
L6250N 3600E	2	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	2 -1
L6250N 3700E	2	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	2 -1	2 -1
L6250N 3800E	6	1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	22
L6250N 3900E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	1 -1
L6250N 4000E	1	-1	-1	-1	-1,	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	-11
L6250N 4100E	2	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	4 -1	2 -1
L6250N 4200E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	1 -1
L6250N 4300E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	3 -1	1 -1
L6250N 4400E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	2 -1
L6250N 4500E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	2 -1
L6250N 4600E	-1	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	8 -1	42
L6250N 4700E	3	-1	1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	14 -1	2 -1
L6250N 4800E	-1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	22 -1	-1 -1
L6250N 4900E	1	-1	-1	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	5 -1	22
L6250N 5000E	3	-1	2	-1	-1	-0.1	-1	-1	-1	-0.1	-1.0	-1	12 -1	14

1	_	<u> </u>					· · · · · · · · · · · · · · · · · · ·
lorthing 4750	Easting 4900		Mo ppb	As ppb	Pb ppb	Zn ppb	Mn ppb
4750		<u>20</u> 87	0	6	5	447	1626
4750	5000		6	17	76	2160	4947
	5100	462	8	10	100	1289	12026
4750	5200	50	1	-5	10	906	1561
4750	5300	86	7	28	13	197	2518
4750	5400	39	-1	9	12	671	3688
4750	5500	27	-1	13	6	197	1381
4750	5600	47	-1	14	10	1195	29621
4750	5700	37	-1	10	7	365	355
4750	5800	29	-1	7	3	549	4822
4750	5900	21	-1	11	632	588	5172
4750	6000	24	-1	13	34	460	1082
5000	4800	17	-1	12	9	512	3934
5000	4900	28	-1	13	5	76	1133
5000	5000	21	-1	11	5	232	1033
5000	5100	61	-1	21	11	448	4923
5000	5300	26	-1	8	8	909	8681
5000	5400	24	-1	-5	4	338	7086
5000	5500	18	-1	7	9	1123	1669
5000	5600	24	10	13	2	152	2881
5000	5700	39	-1	9	4	629	2587
5250	2600	30	-1	-5	7	82	4454
5250	2700	37	-1	16	3	896	5249
5250	2800	44	-1	7	-1	152	5360
5250	2900	16		7	1	656	3163
5250	3000	26	-1	19	8	757	7734
5250	3100	44	-1	12	7	440	7032
5250	3200	59	-1	20	9	298	1685
5250	3300	29	-1	7	4	348	2654
5250	3400	17	-1	8	2	890	
5250	3500	37	-1	15	4		6339
5250	3600	69	-1	8		774	3694
5250	3700	301			3	172	3270
5250	3800	48	<u>32</u> -1	13	4	90	10989
				9	-1	52	2077
5250	3900	45	20	15	3	105	20252
5250	4000	13	-1	5	3	687	7626
5250	4100	26	-1	9	4	663	2162
5250	4200	- 17	-1	10	5	928	8782
5250	4300	22	-1	13	12	1544	15739
5250	4400	23	-1	18	18	1424	3989
5250	4500	34	-1	7	3	181	4102
5250	4600	45	-1	15	2	128	979
5250	4700	20	-1	15	3	233	927
5250	4800	48	4	16	12	582	4129
5250	4900	16	-1	6	4	464	3014
5250	5000			— <u> </u>			
5250	5100	18	-1	9	5	992	1777
5250	5200	····		3	J	372	1/1/
5250	5300	17	-1		E	605	4444
ບຂວບງ	0000	17	- 1	9	6	605	4141

Oot Property	Enzym	e Leach -	Soll Geoch	lem			
Northing	Easting	Cu ppb	Mo ppb	As ppb	Pb ppb	Zn ppb	Mn ppb
5250	5500	33	-1	8	5	762	605
5250	5600	26	-1	6	5	2172	1216
5250	5700	16		5	3	701	1151
5250	58000	20	-1	8	7	1999	1514
5500	4600	19	-1	7	2	613	6324
5500	4700	25	-1	16	7	604	16159
5500	4800	53	7	8	4	194	1712
5500	4900	33	-1	6	4	387	990
5500	5000	47	-1	15	12	789	2502
5500	5100	20	-1	-5	4	498	812
5500	5200	20	-1	10	3	97	5578
5500	5300	8	-1	-5	3	174	9344
		24	-1	-3	2	165	837
5500	5400	24 27	-1	14	2	622	3037
5500	5500		-1		4	268	4909
5500	5600	26		10	4	645	1604
5500	5700	22	-1	-5			
5500	5800	33	-1	14	10	443	2694
5750	2500	21	5	15	6	476	25925
5750	2600	18	-1	10	4	103	-993
5750	2700	40	-1	19	5	410	6871
5750	2800	67	1	16	6	325	4566
5750	2900	67	-1	20	7	555	10573
5750	3000	49	-1	15	4	434	1481
5750	3100	38	-1	10	7	539	5245
5750	3200	22	-1	-5	4	485	337
5750	3300	39	-1	18	7	225	3141
5750	3400	21	-1	17	4	226	3536
5750	3500	34	-1	7	2	190	1451
5750	3600	27	-1	9	-1	96	4297
5750	3700	18	-1	8	3	663	8591
5750	3800	43	-1	19	4	95	1695
5750	3900	69	-1	15	4	264	1116
5750	4000	59	-1	15	7	330	1312
5750	4100	19	-1	-5	2	593	6224
5750	4200	16	-1	10	7	291	16849
5750	4300	28	-1	10	9	294	2159
5750	4400	21	5	8	5	83	2991
5750	4500	65	-1	15	8	671	12473
5750	4600	42	-1	14	5	375	1970
5750	4700	32	-1	27	10	732	31523
5750	4800	38	-1	14	17	834	1473
5750	4900	30	-1	7	3	762	1575
5750	5000	36	-1	6	7	455	11455
5750	5100	20	-1	-5	4	813	12945
5750	5200	29	-1	-5	9	1015	10677
5750	5300	28	-1	13	21	733	14710
5750	5400	34	-1	10	3	83	12908
5750	5500	28	-1	12	9	669	10196
	5600	31	-1	13	11	977	8074
5750 5750	5700	29	10	6	2	89	4381

۴


Dot Proper	ty Enzym	ne Leach -	Soil Geoch	nem			
Northing	Easting	Cu ppb	Mo ppb	As ppb	РЬ ррь	Zn ppb	Mn ppb
5750		29	2	8	-1	73	5354
6250		88	-1	12	2	106	2756
6250	2600	52	-1	11	-1	143	2412
6250		62	-1	5	3	41	878
6250		38	-1	10	8	785	5917
6250	2900	56	-1	9	1	162	4880
6250	3000	15	-1	-5	4	190	3787
6250	3100	41	2	15	1	126	3412
6250	3200	39	-1	18	10	1295	19931
6250	3300	34	-1	17	8	1470	47521
6250	3400	39	4	15	3	80	16840
6250	3500	35	-1	29	9	1301	3182
6250	3600	46	-1	12	2	137	1355
6250	3700	53	-1	20	2	156	1203
6250	3800	43	-1	7	4	181	3255
6250	3900	15	-1	8 、	4	353	8079
6250	4000	34	-1	16	4	306	7439
6250	4100	48	-1	8	4	362	791
6250	4200	21	-1	7	5	1097	24948
6250	4300	35	-1	12	3	97	1071
6250	4400	28	-1	11	5	662	8948
6250	4500	42	-1	6	5	410	1377
6250	4600	65	-1	12	8	694	2288
6250	4700	49	-1	13	14	201	14010
6250	4800	6	-1	-5	22	243	12461
6250	4900	42	-1	7	5	994	18587
6250	5000	107	-1	43	12	180	6943
0200	3000	107		70	16	100	0040
Average		40.8	1.1	11	12.4	528.4	6234.6
Std Dev		48.07	3.88	6.4	57.03	427.89	7160.07
Max Value		462	32	43	632	2172	47521
	4	00	5	17	69	956	13395
Threshold		<u>89</u> 137	9	24	126	1384	20555
	2		9 13	30	120	1812	20555
	3	185	13	30	103	1012	21/10

	ひれた	mo fpm		ZN		cu		4.0		
			14	W.		ppm (ppm MO	AS ppm	ZN A ^{rm}	
KR-96-01	50	9	114	(84	KR-96- 32	7	8	153	31	
KR-96-07	1:3	10	122	35	KR-96-33	15	8	102	54	
KR - 96-03	זר	1	54	38	KR - 96 - 34	377	የ	99	47	Str. 2500E
KR - 96-04	32	9	61	29	KR-96-35	19	12	83	25	
KR - 96 - 05	8	୫	121	5a	KR-94-36	57	9	69	49	
KR - 96 - 06	51	٩	105	46	KR- 96-37	19	10	94	44	
KR - 96 - 07	8.5¶	10	- 51	94	KR- 96-38	731	2	39	5	
100 - 96 - 09	- 4 4 3.	7	i+	23	KR - 96 - 39	53	7	[0]	35	-
KR - 96 - 09	164	8	37	34	KR - 96 - 40	55	9	84	47	
KR - 96 - 10	618	8	105	46	KR-96-41	167	9	115	135	3*n.300
KR - 96-11	35	8	63	95	KR-96-42	160	12	79	343	
KR - 96 - 12	15 N	8	126	39	KR-96-43	131	I	95	281	
KR - 96 - 13	36	٩	109	41	KR - 96- 44	55	ኀ	242	413	
KR - 96- 14	it	<u>ا</u> م	I	36	KR- 96 - 45	127	9	124	201	-
KR - 96 - 15	134	10	96	10	KR - 94 - 46	339	٩	(37	18	
1cm - 96 - 16	147	18	t	29	ER - 96 - 47	131	11	91	61	
KR - 96 - 17	39	8	28	32	KR - 96 - 48	131	10	146	きみ	
KR - 96 - 18	82	16	65	29	KR - 94 - 49	110	9	44	155	
kr = 94 - 19	20	37	ı.	13	KR - 94 - 50	144	9	147	291	
KR - 94 - 20	15	ካ	89	36	KR -94 -51	67	(e	75	278	
KR - 96 - 21	85	19	t	3	Kr - 96 - 52	191	20	121	41	
KR - 94 - 22	356	13	177	98	KR - 96. 53	814	9	120	79	
KR - 96 - 23	131	8	77	24	KR- 96- 54	٦ <i>९</i> ,	8	133	79	
KR - 94 - 24	153	lt	45	23	KR - 94- 55	2331	7	(14		
KR - 94 - 25	8	10	92	41	KR - 96 - 56	262	ኅ	t	80	
KR - 94 - 24	Ę	9	31	4	KR-96-57	70	4	t	27	
KR-96-27	295	41	161	30	KR - 96 - 58	445	4	48	79	
KR - 94 - 28	114	<u>1</u> ¢	122	391	KR - 96-59	7	4	37	137	
18-94 - 29	570	9	140	34	KR - 96-60	1445	the	38	46	
KR - 94 - 30	824	q	148	36	158-96-61	967	11	t	43	
KR- 94 - 31	みち	ŀ	132	46	KR- 96- 62	715	40	56	49	
KR-94-32	15	8	153	3						

÷ -

(

