BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1997/1998

REPORT #:

PAP 97-4

NAME:

DAVID WIKLUND

97/28 P 11

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

ame Dave Wiklund	Reference Number <u>97/98 P //</u>	
OCATION/COMMODITIES	082 FSE C3	
	MINFILE No. if applicable 082 F3E09	
ocation of Project Area NTS 82F - 7V	Lat 116.57 Long 49°24'	
escription of Location and Access Con both	sides of Hughes Ck. a atributary	
Midge Ck . Access from Sal	me on the Tye Road to km 35	
n northerly on Laib Role to I	Diana Ck. then enoldly scensin road	
Jain Commodities Searched For April 50	Iver lead Zinc	
7		
nown Mineral Occurrences in Project Area	sconsin Black Douglas Kita +	
WORK PERFORMED	1	
1. Conventional Prospecting (area) WCC	h. see maps stepert	
2. Geological Mapping (hectares/scale) 500	ch. " " "	
3. Geochemical (type and no. of samples) 185	3 Sils - Au plus 28 chment ICP	
4. Geophysical (type and line km)	·	
5. Physical Work (type and amount)	Ines heliport - see ways/report 3 days	
7. Other (specify) all work with 1	reasonable centralis on maps.	
GNIFICANT RESULTS		
ommodities Au, Aq, Fb, Zn	Claim Name <u>D/ /-/9</u>	
ocation (show on map) Lat	Long 49°24' Elevation 1500-1900m	
est assay/sample type zi/5: DIV5 33-	4ACAS, 330W, 1CK. Zn 432Pb	
Du'5 22 —	-75 Au, 545As 3cc9Mn, 222Pb, 387 Zy	
escription of mineralization, host rocks, anomalies	soil is base metal golf silver	
anomalous on claim DI5	and soil is In Mo Ba anemal	
OCATION/COMMODITIES Object Area (as listed in Part A) Hoghes Creek MINFILE No. if applicable \$2.75.6.00 MINFILE No. if applicable \$2.75.00 MINFILE No. if applicable \$2.75.0		
A this zone.		
1 Jane		
<i>,</i> ,		

Supporting data must be submitted with this TECHNICAL REPORT

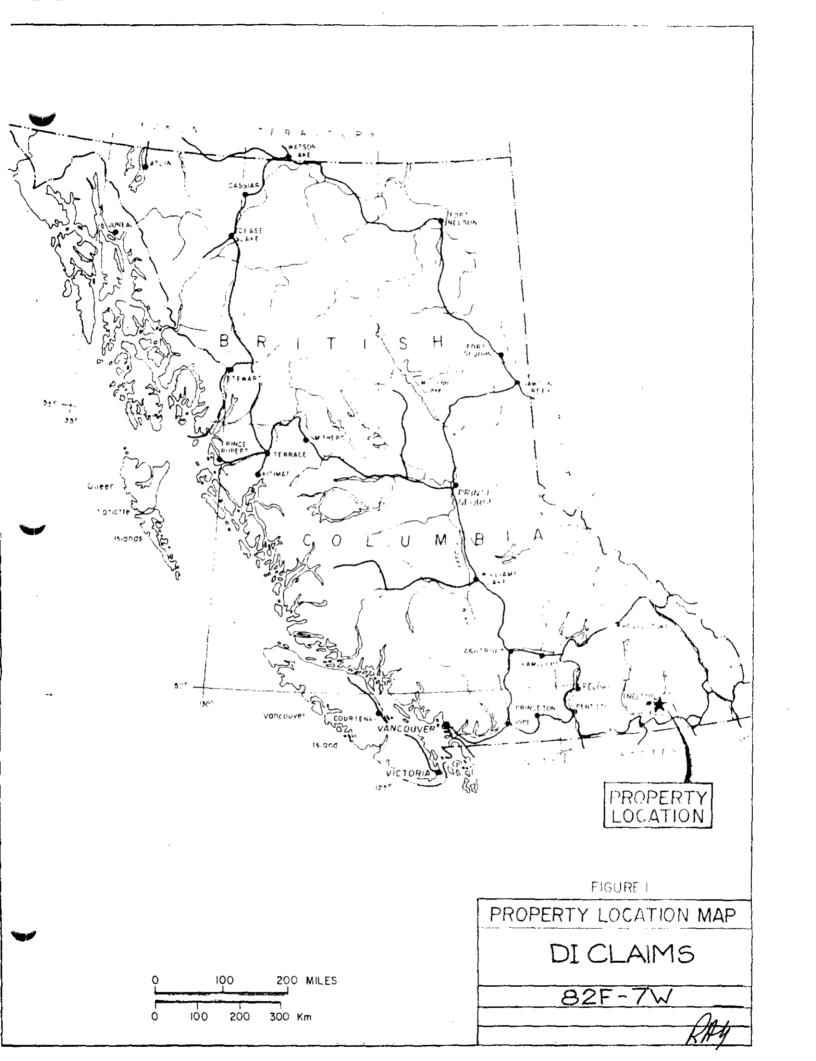
Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

PROSPECTORS ASSISTANCE PROGRAM Ref.No. 97/98 P11 GEOCHEMISTRY AND PROSPECTS D1 1 to 19 CLAIM GROUP

48746-348749,349285-349290,349831&32,358668-358673,358675

NELSON MINING DIVISION 82F-7W 116 57W 49 24N

Claim Owner: Ron Granger


Report for PAP P97/98 P11: Dave Wiklund

Geological Survey Branch

DEC 0 5 1997

119

Recid Dec = /617

TABLE OF CONTENTS

	Page
INTRODUCTION	ĭ
LOCATION, ACCESS, PROJECT AREA	1
HISTORY, P.A.P.	2
LOCATED CLAIMS	2
REGIONAL GEOLOGY, LOCAL GEOLOGY	3
PROSPECTING PROGRAM	4
RESULTS	5
RECOMMENDATIONS	6
RECON PROSPECTING	7
COST STATEMENT	8

MAPS

Figure 1- Location Map	(frontispiece)
Figure 2- Claim Map	(follows page 1)
Figure 3- Topographic Map	(follows page 1)
Figure 4- DI West, soil sample location map	(follows page 2)
Figure 5- DI group, soil sample location map	(follows page 2)
Figure 6- Recon Diana Creek	(follows page 6)
Figure 7- Recon Blazed Creek 7a AntlerCk	(follows page 7)
Figure 8- Recon Campbell Creek	(follows page 7)

INTRODUCTION:

This report is prepared to satisfy the requirements of the Prospector's Assistance Program and the work described is partly funded by Grant No. 97/98 P11.

A reduced version of this report will be used for assessment work credits on the claims DI 1 to 19.

LOCATION:

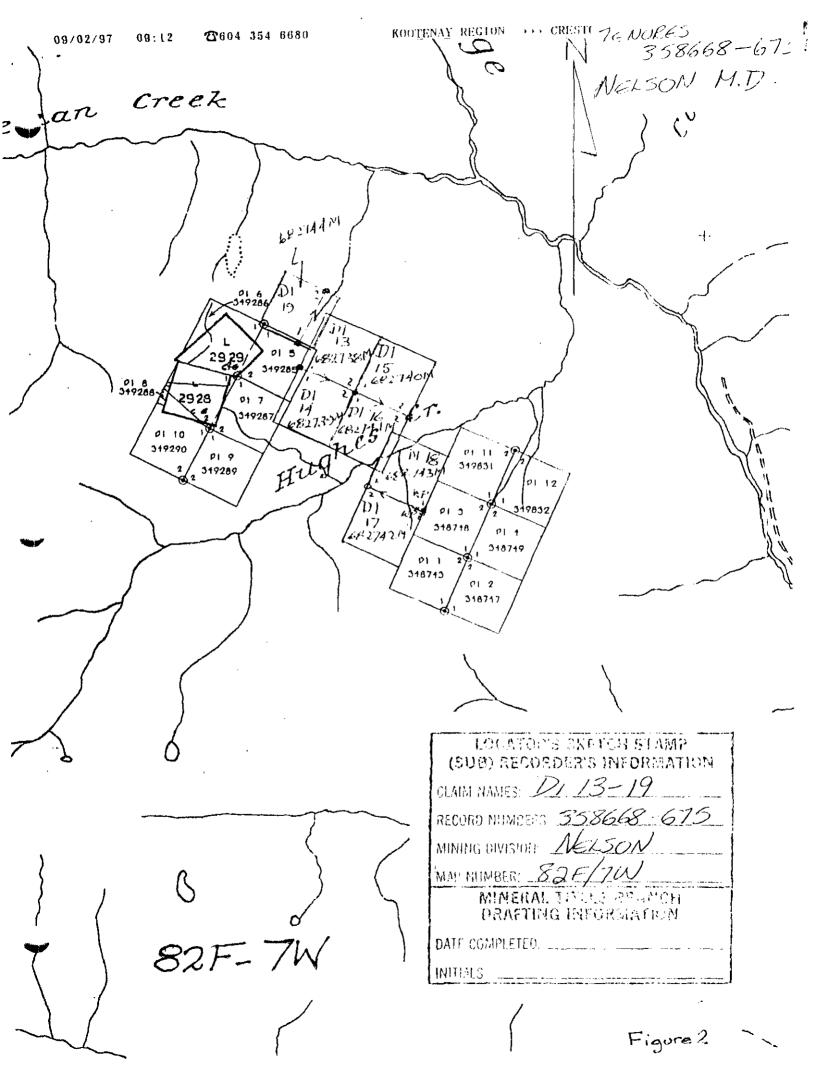
The work area covers part of both sides of Hughes Creek, a north flowing tributary to Midge Creek, in NTS map sheet 82F-7W. The area is partly occupied by two old Crown Granted claims and two groups of six claims located by the author. The area is partly within private property owned by Darkwoods Forestry of Nelson, B.C. who operate the larger area as a tree farm. Mineral Rights are in Crown Domain.

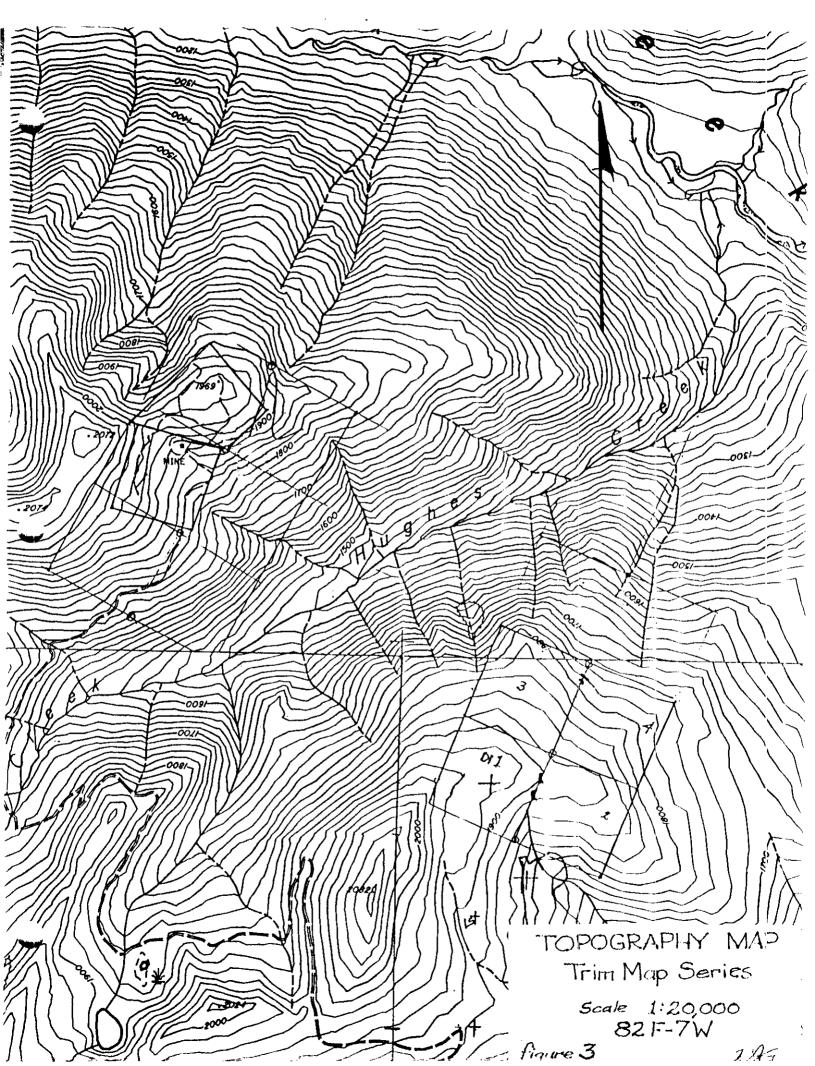
ACCESS:

A good but narrow road from Salmo to Tye, on Kootenay Lake is followed to a point a few kilometers east of the Cultus Creek bridge where the junction with the Laib Creek road leads northerly first to the Diana Creek logging area then on the old Wisconsin Mine road to Hughes Creek. This latter section of road is difficult and is not to be driven casually. The section past the Hughes Creek bridge is presently impassable to vehicles larger than ATV's.

Late in the season a contractor, on behalf of Darkwoods Forestry, started a new road into the Hughes Creek valley and the road is reported to be advanced well down the south slope of the valley as it approaches the upper part of the creek.

The work area is about 25 kilometers southeast of Nelson and 10 kilometers west of Kootenay Lake, in map distances.


PROJECT AREA:


The area hosts one fairly well explored deposit covered by two Crown Grants, owned by a numbered company, known since 1898 as the Wisconsin, plus a lightly explored showing described during the late 1940's as the Black Douglas and now located on the DI 11 claim. Other, smaller, showings are numerous but unexplored.

The Wisconsin deposit, as explored in the past, is located on, and near, the contact between the Irene Formation volcanics and Monk Formation sedimentary schists, both Hadrinian, in close proximity to Cretaceous Drewry Point Intrusives.

Prospecting in the area during 1995 and 1996 by R.Granger and D.Wiklund led to enough new data to convince the prospectors that the mineralization was not as localized as recent theories suggested and that there was a strong likelihood of new discoveries if further exploration was carried out in certain locations. Application for funding support under the Prospector's Assistance Program was made and the support was granted.

The area explored in 1997 adjoins the previous work done on the Wisconsin on the east and southeast with a little detailing to the west.

HISTORY:

In 1894 two claims were staked at the site of Wisconson Mine by the Hennessey brothers and they were brought to Crown Grant in 1899 by purchasers.

A series of operators carried out trenching and sampling followed by extensive underground exploration and development in several openings until 1932 when 1,000 feet of diamond drilling was completed in three holes. New owners continued underground development in 1935 and 1936 including a new lower level reached by a winze and a new level collared about 1,000 feet to the east of No.1 Portal.

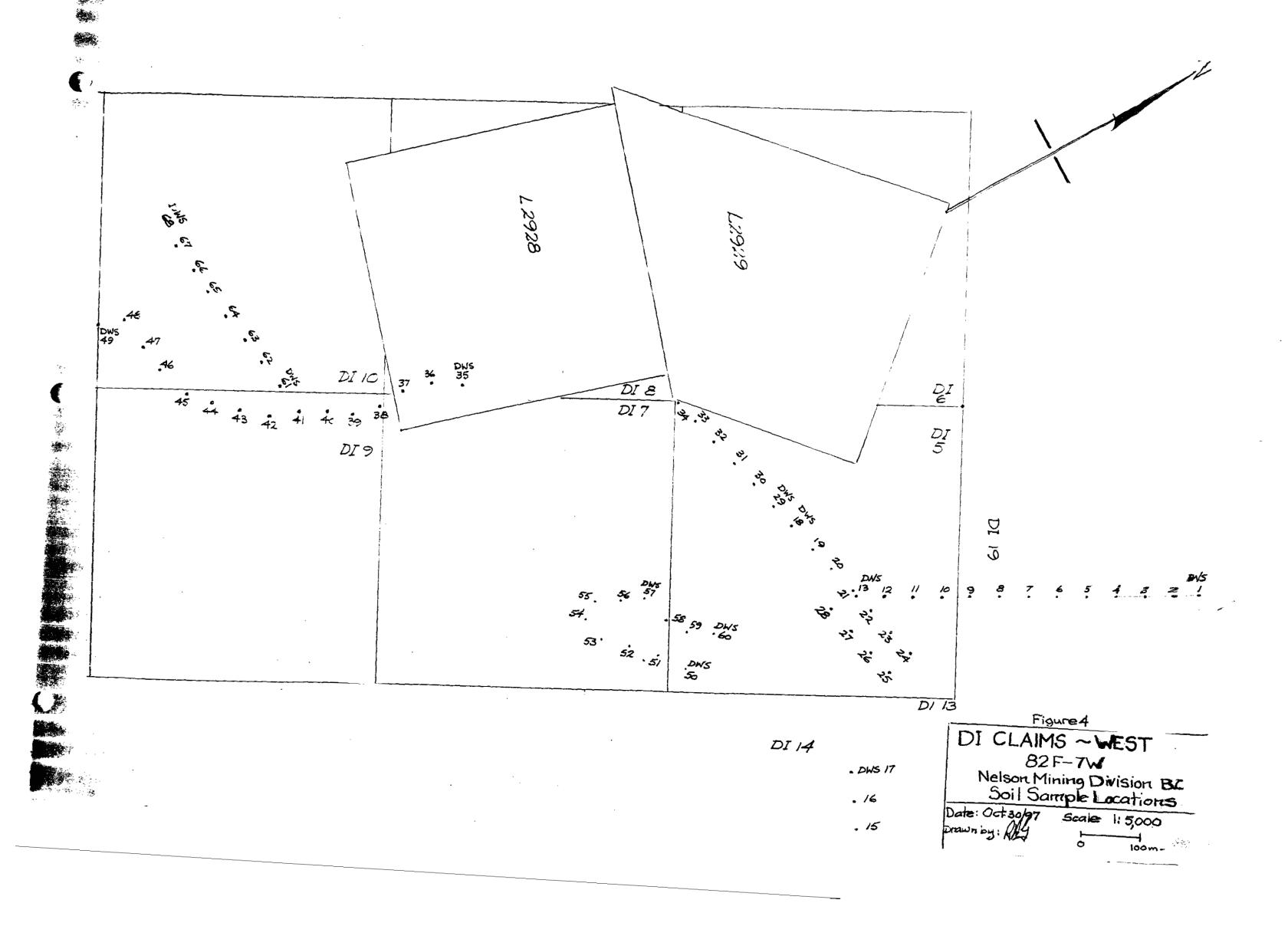
Several mill and smelter tests were carried out in order to find a means of treating the sometimes very elevated arsenic content of the gold ores. This period petered out during the Second World War.

In 1947 a group of prospectors led by the Hamilton brothers built a cabin on the east side of Hughes Creek and in the next two years excavated a large number of shallow surface trenches, a short adit and a 20 foot shaft on their Black Douglas claims. A few elevated gold assays were obtained at depth where some primary sulphide was encountered.

In 1980 and thereafter Esperanza Explorations Ltd. carried out resampling on surface and underground, surface diamond drilling, bulldozer trenching, geophysical surveys and geochemical sampling. Geology gave impetus to the work when an apparent sedex model took shape and BP Selco took an option in 1983 leading to more surveys and diamond drilling in 1984-85. Strato Geological Engineering drilled three holes in early 1988 and Dutch Creek Resources drilled three holes in the same year.

Minfile No. 082FSE036 infers 136,065 tonnes grading 171 grams/T silver and 12 grams/T gold in the Wisconsin deposit.

In 1995 Wiklund and Granger began prospecting in this area having followed the Irene Volcanics north from the border in previous years. In spring 1996 two groups of DI claims were staked to cover areas of interest and reconnaissance geological and geochemical prospecting in concert with float prospecting led to discoveries not included in previous exploratory activity.


PROSPECTORS ASSISTANCE:

A 1997 grant was awarded to Wiklund to carry out grid location, soil sampling and prospecting and Granger received a grant to make geological maps of unmapped areas, to take rock samples of discoveries and to prospect.

LOCATED CLAIMS:

In early 1996 the DI 1 to 4 and DI 11 and 12 claims were located above and east of Hughes Creek and DI 5 to 10 claims were located surrounding and east of the two Crown Grants at the Wisconsin mine site.

In August 1997 and during the P.A.P. project the DI 13 to 19 claims were staked by Brad Granger, agent for Ron Granger, and became part of the program.

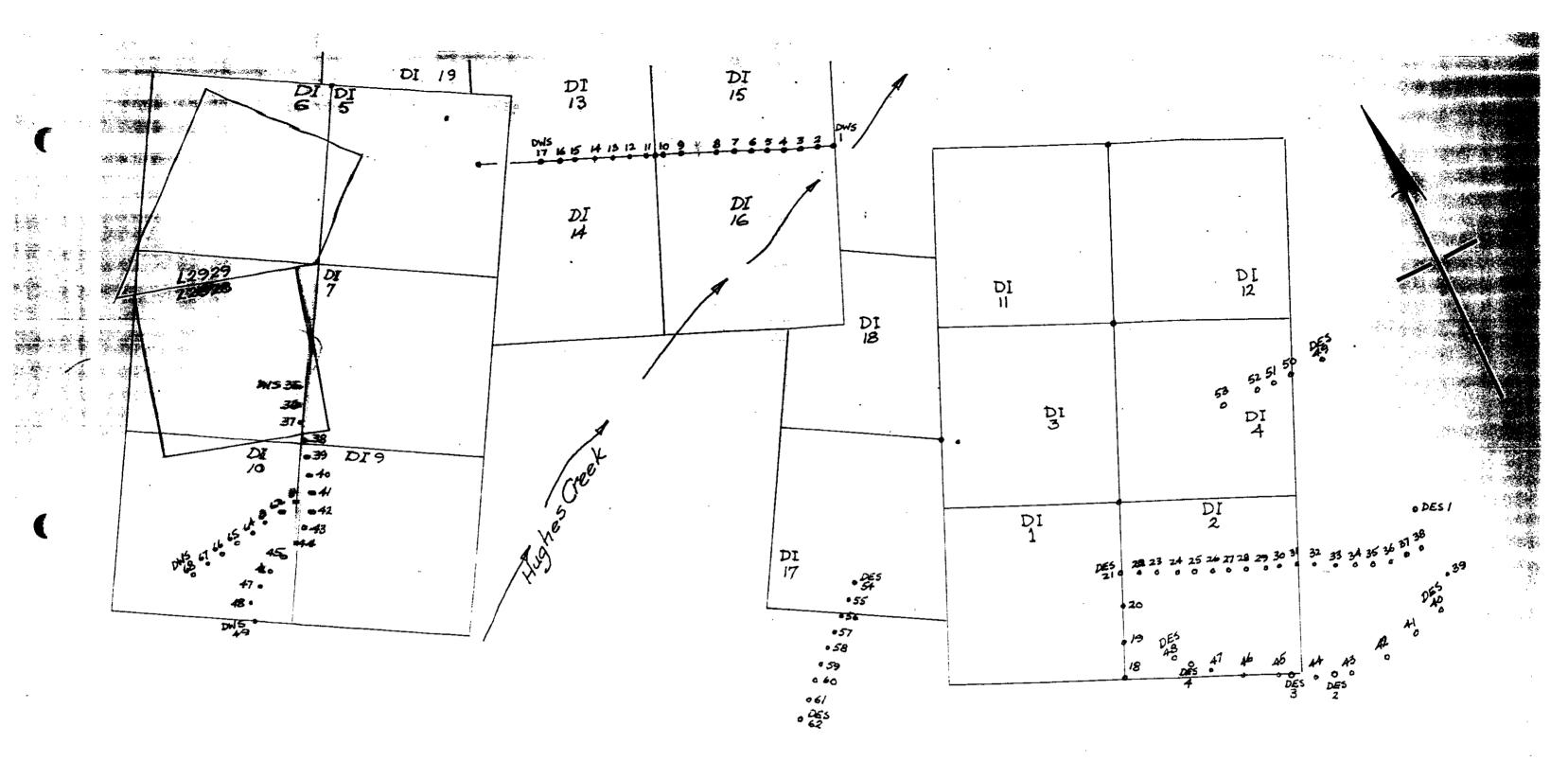


Figure 5

DI CLAIMS ~ Southerly

82 F-7W

Nelson Mining Division

Soil Sample Locations

Date: Octabor Scale 1:10,000

REGIONAL GEOLOGY

In the area of this report the more notable old discoveries were located in proximity to granitic intrusives and close to, or at, the contact between the Irene Volcanics and the Monk Formation schists, e.g. Wisconsin, Iva Fern.

The volcanic rocks rest conformably upon the Toby conglomerate rocks and often have an interlayered contact covering several tens of metres. The Irene varies from rare pillowed lavas to tuffaceous schists. The Monk schists occur as honey coloured, to silver, to black schistose rocks with one well marked, centrally occuring bed of pale, to dark grey, limestone. Cretaceous Drewry Point granodiorite stocks, sills and dikes cut the above formations.

LOCAL GEOLOGY

The granodiorite body to the east of Hughes Creek is a stocksize body where mapped during this program while granodiorite mapped to the west of Hughes Creek consists always of small, elongate bodies from two metres to one hundred metres in width. There are outcrops and areas where it is difficult to decide whether to label the rock as granodiorite, as quartz-sericite gneiss/schist, or as granitized Monk or granitized Irene. In the past various geologists have dealt with this problem by mapping such rock as quartz-sericite schist or quartz-muscovite schist and this, though certainly true, leads to problems in prospecting for new sites of mineralization. The narrow bodies of limestone occuring near the old workings are largely unaltered and appear to be the typical mid-Monk type. Pale schists on each side of these limestones would normally be consigned to the Monk but in this area such schists are also found to envelope elongate bodies of typical Irene volcanic rocks. At this stage our prospecting program is treating such areas as granitization and alteration of Monk schists and Irene volcanics and as prospective zones of a special type as it appears likely that these zones are favourable to deposition of tungsten and other metals, see soil samples DWS 33, 34.

Diana Creek is the name given to the first large stream entering Midge Creek to the south of Hughes Creek. Limestone outcrops occur on the slope to the south of Midge Creek and rocks on the west side of this unit are not typical Monk schists but are schists derived from a conglomerate perhaps 500 metres thick. We suppose that it might be Three Sisters.

Our limited work south of Diana Creek did not encounter the mapped plug but we did encounter several dikes of granodiorite to porphyry in that area.

The dissimilarity in the form of the granodiorite bodies from the north side to the south side of Hughes Creek suggests that a fault along Hughes Creek has moved the north side westerly and down leaving a higher level exposed at the present surface.

PROSPECTING PROGRAM

In 1996 prospecting activities led to the recognition of many small bodies of leucocratic granitic rocks which appeared to be sheet-like in form and related in space to mineral showings. Some exposures were typical granodiorite while others were high in coarse grained quartz and/or pyrite. These observations were made on the west slope of Hughes Creek. Work on the easterly slope indicated a massive body of Drewry Point granodiorite sometimes in proximity to mineralization but sometimes remote. Quartz veining in this eastern area is sometimes enriched in gold and bismuth even when no sulphide is obvious.

Prospectors and geologists in the past had noted that gold values were higher and more consistant below the oxidized surficial zone which sometimes proved to reach depths of 30 metres. These same zones had contained semi-massive to massive sulphides in a quartz-siderite gangue which had decomposed to high manganese wad.

An examination of several of these sites led to the conclusion that most, if not all, of the siderite was ankerite and the manganese content of the wad was understandable. A review of Boyle and Emmons, among others, elicited the information that " where chlorides and H₂SO₄ are present with manganese then gold may mobilize and migrate downward to the zone of reduction where some gold may precipitate; the remainder migrates in the groundwater system and is ultimately lost."

1997 PROGRAM

A tent camp was established a few hundred metres south of the Di 1 claim and the area prospected was accessed by truck and two four wheel drive ATV's.

Forty-six man days of work were performed on the DI 1 to 19 claims and another five days were put in nearby.

The DI 13 to 19 claims were staked under the program and recorded.

Forty-eight rock samples and one hundred and forty-three soil samples were taken on the DI group of claims. Many more soil samples and several rock samples were taken on recon lines nearby. Both rock and soil samples were analysed by 30 element ICP.

Work was performed by Dave Wiklund, Brad Granger and Ron Granger, all holders of Free Miners Certificates issued at Creston, B.C.

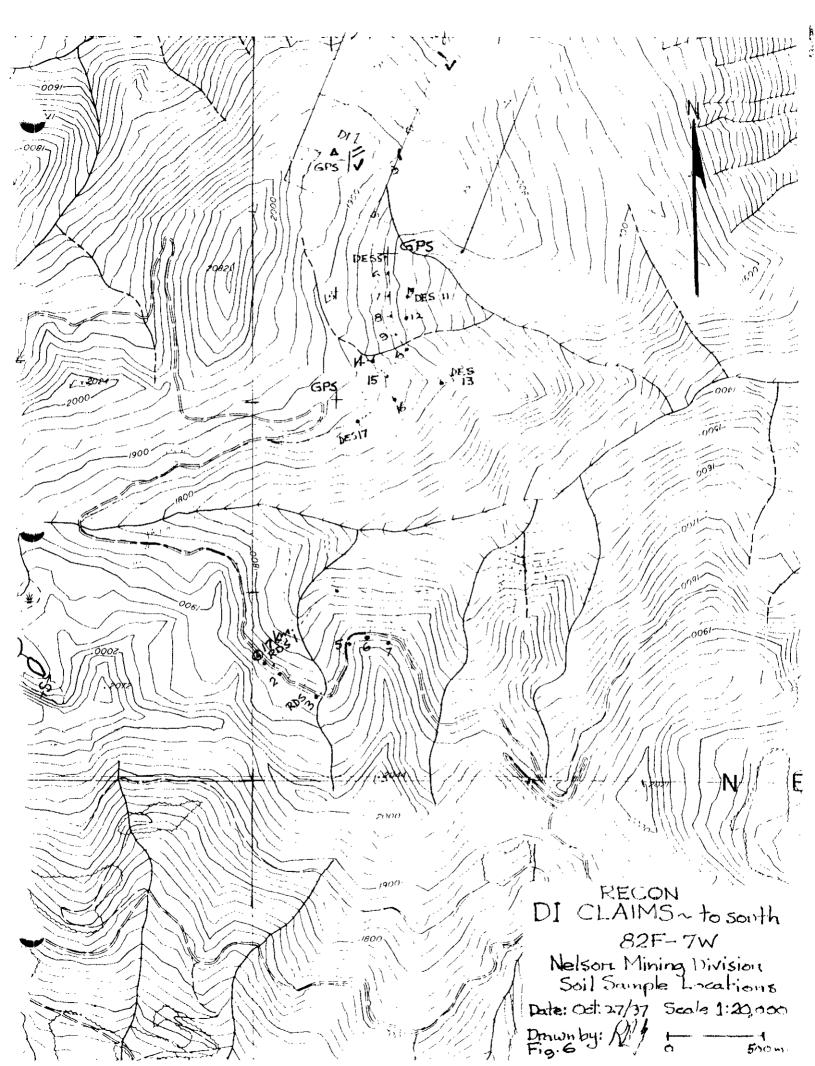
Other work under the PAP was carried out at other sites and is reported seperately. See 7.7

RESULTS

The PAP allowed the partners to identify a number of important factors and to discover several potentially significant new sites as follow;

1) Only the Main Zone and related areas on the Crown Grants show the very high levels of arsenic as recorded in the past. In other areas arsenic is often notable in a geochemical sense but is not present in excessive amounts.

- There appears to be a southerly projection of the Main Zone for a distance exceeding 1000 metres at which point it occurs as several strongly leached veins within an alteration zone in the Irene about 100 metres wide. Zinc assays predominate here with rock samples DWR 5 and 6 giving 4.36% and 2.63% Zn. Soil samples also reflect this zinc content across a broad zone.
- There is some tentative evidence that the Black Douglas Zone extends easterly toward a 1940's era showing called the Kita. A rock sample, #DER 22, was taken in an area of small quartz veining in altered granodiorite at an elevation of 1680 metres. The sampled rocks were pyritic and coloured by manganese and rust. The sample assayed 180ppb Au, 148.5g/T Ag and 135ppm Bi. The results were received too late in the season for follow up work.
- 4) Down the steep slope of Hughes Creek and following the claim line of DI 13 to 16 there are two broad zones of elevated soil geochemistry results, both about two hundred metres across. Both have elevated levels of Ba, Mn and Zn with variable subzones of Au, Ag, Pb and Bi. No outcrops were found during soil sampling.
- 5) High metal values were encountered in rock samples on the west boundary of claim DI 6 most notably 5395 ppm Zn in porphyritic granodiorite. Soil samples taken by Esperanza Mines in the early 1980's partly defined a strong gold anomaly in this area. See DWR 21 and 22.
- Quartz veining in the Monk schists gave largely disappointing results. Earlier samples, taken in 1996, indicated a gold-bismuth type of mineralization in the Monk veins. The broader sampling and prospecting done this season tends to narrow this situation to that part of the Monk between the limestone bed and the Irene rocks in the vicinity of DI 1 and 2 claims. Elevated Au,As and Bi are notable in rock samples DER 3 and 4.
- 7) Gold in soils is a poor indicator for the veins. Silver in soil is moderately reliable as is arsenic, when it is present. Manganese is an excellent indicator for ankerite, which is closely associated with the metallics. The strong bariums north of Hughes Creek have yet to be explained but have suggestive values in associated metals. Sample DER 21 on the Black Douglas vein gave a high silver assay of 3330 g/T., which came as a surprise in light of earlier reported assays.
- The new veins discovered on claims DI 13 and 19 and rock sampled by DNR 1,2 and 3 are far more attractive at surface than the assays suggest. DNR 1 is taken from a three metre width of dark brown to black, completely leached vein matter that origonally had a very high metal content. It appears alike to surficial vein matter at the Wisconsin Main Zone, which was leached to below thirty metres.


RECOMMENDATIONS

The 1997 program has located a number of areas which require further work and the following recommendations are offered;

- 1) Approach mining exploration companies with an Option Agreement for purchase and development of the claims.
- 2) Failing the above make another PAP proposal for the 1998 season for detailed follow-up work on those areas discussed under "Results".

12 Nov.1997 Creston, B.C.

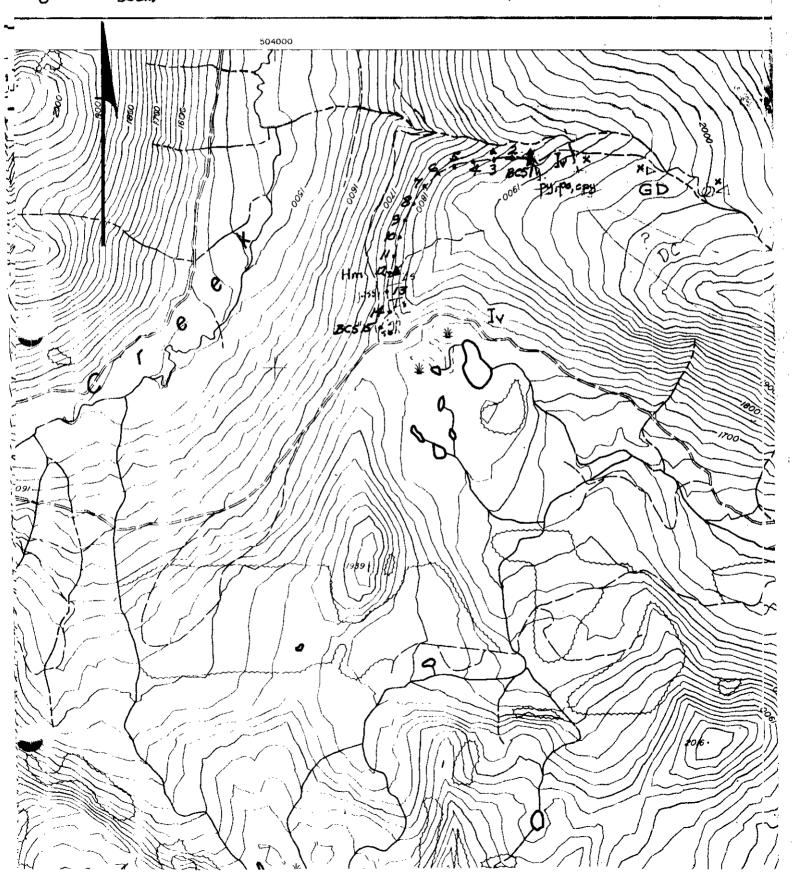
Dave Wiklund

RECONNAISSANCE PROSPECTING

Campbell Creek Area:

Under the PAP proposal a considerable amount of work was anticipated for this area but initial prospecting, investigation of historic workings and initial sampling returns led to a loss of enthusiasm for the project, a FAX message was sent to PAP headquarters advising that we preferred to direct the budget elsewhere and work was terminated. See Figure 8 for results.

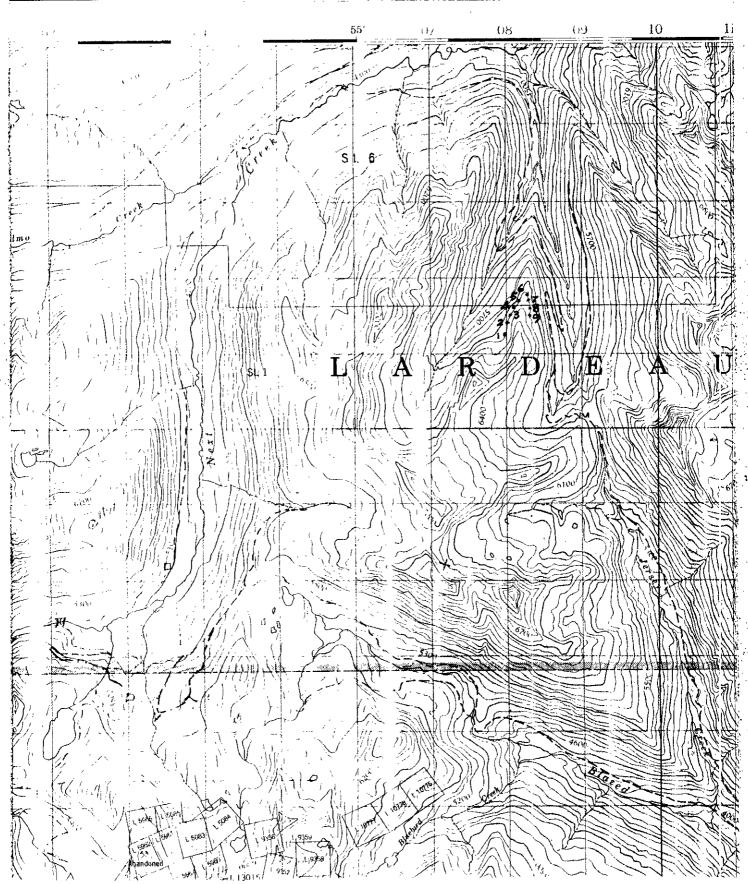
Blazed Creek - Antler Creek Area:

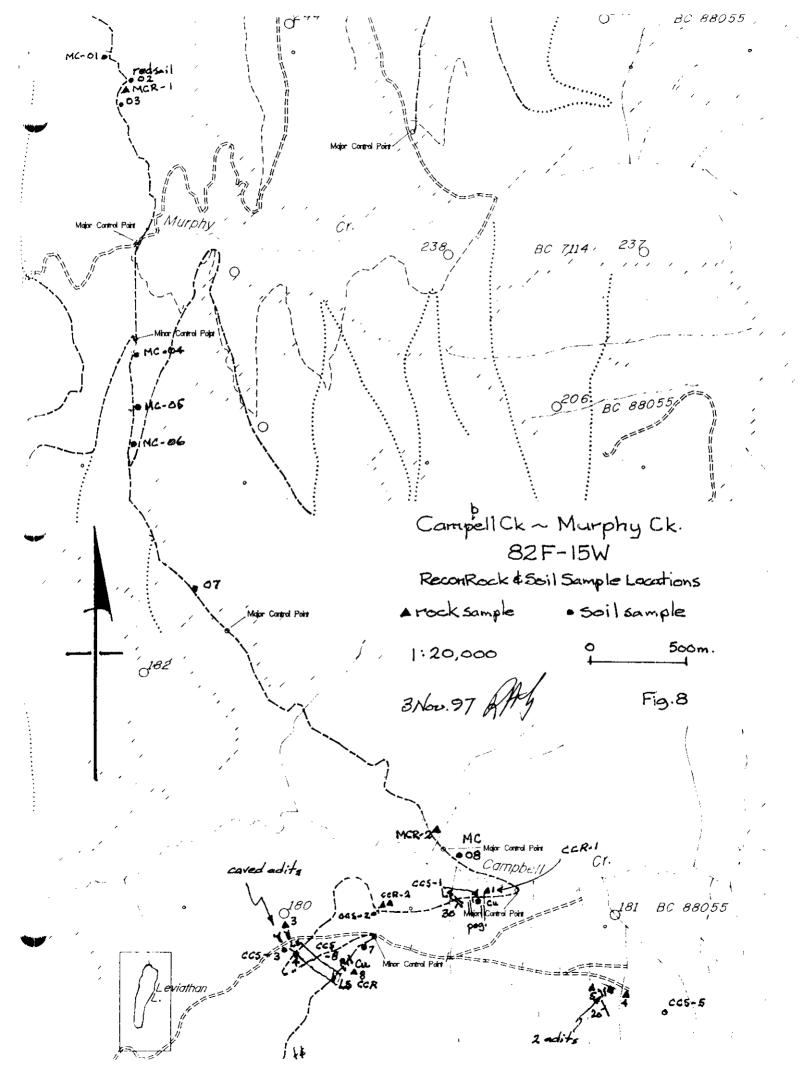

Previous prospecting in this area had shown the presence of quartz veining in circumstances somewhat akin to those prevailing at the DI project.

At Antler Creek further prospecting and sampling disclosed some interesting metal content in small (0.5-2.0 metre) vein zones and larger shears. Soils ACS 1to9 were not encouraging but rock samples ACR 1-5 showed more promise. Some further work seems warranted.

At Blazed Creek a few high sulphide zones were sampled in what appeared to be a very prospective situation in Irene volcanics and Monk schists in proximity to a granitic contact. Soil samples BCS 1-15 and rock samples BCR 1-4 were taken. Results were not encouraging. The Monk limestone unit was encountered and is indicated on the map.

Fig. 7


Blazed Ck. Recon Soil Sample Locations 1:20,000 82F.016



Recon Antler Ck. Soil Locations ACS-1 to 9

Fig. 7a.

1:50 000 82F-2

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 97-883

RON GRANGER RR1, S1, C7 CRESTON, B.C. V0B 1G0

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: RON GRANGER

No. of samples received: 4
Sample type:Soil
PROJECT #: 97 - 2
SHIPMENT #:3

Samples submitted by: Ron Granger

Values in ppm unless otherwise reported

) _{Et #}	. Tag#	Au(ppb)	Αa	A! %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb_	Sb	Sn	Sr	Ti %	U	V	W	<u>Y</u>	Zn
		- 11.1				155	<5	0.16	<1	11	14	28	3.37	<10	0.45	232	<1	0.01	18	1140	12	<5	<20	12	0.13	<10	41	<10	10	75
1	DES 1	5	.		10		_			40	192		6.82	<10	3.58	598	<1	0.01	241	710	<2	30	<20	27	0.25	<10	114	<10	4	68
2	DES 2	Ē	<0.2	3.61	15	510	<5	0.29	<1	43						885		0.01	65	600	<2	<5	<20	26	0.12	<10	182	<10	11	79
3	DES 3	5	<0.2	3.32	15	260	<5	0.26	<1	4 0	5 5	310		<10	1.71							<5	<20	-8	0.09	<10	37	<10	8	67
	DE\$ -	ξ	<0.2	2.10	<₹	7C	<5	0.07	<1	17	20	48	3.81	<10	0.92	314	<1	<0.01	27	490	4	-5	~20	C	0.03	-10	Ο,	110	•	0,
<u>QC I</u>	ATA:																													
Repe	eat: DES 1	5	<0.2	3.32	5	155	<5	0.16	<1	11	14	29	3.39	<10	0.47	232	<1	0.01	16	1130	10	<5	<20	13	0.13	<10	42	<10	10	68
Stan GEO	dard : '97	140	1.2	1.80	65	155	<5	1.82	<1	16	62	78	3.71	<10	0.90	640	<1	0.02	25	620	18	5	<20	56	0,09	<10	72	<10	9	70

df/884 XLS/97 EGO-TECH LABORATORIES LTD.

Krank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

26-Aug-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highwav KAMLOOPS, B.C.

V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-908

RON GRANGER RR1. S1. C7 CRESTON, BC V0B 1G0

ATTENTION: RON GRANGER

No. of samples received: 20

Sample type: SOIL PROJECT #: 97-2 SHIPMENT #:4

Samples submitted by: RON GRANGER

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	λs	Вa	Bi Ca%	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn.	Mo Na %	Ni	P	Pb	Sb Sn	Sr Ti % U	<u> </u>	Y	Zn
1	DES 05	5	<0.2	2.24	<5	115	<5 0.31	<1	17	20	50	3.95	40 1.1	593	<1 <0.01	32	480	6	5 <20	18 0.14 <10	24 <10	84	73
2	DES 06	5	<0.2	3.29	15	65	<5 0.03	<1	7	14	19	3.93	<10 0.2	137	<1 0.01	10	610	16	<5 <20	4 0.08 <10	31 <10	36	58
3	DES 07	5	<0.2	1.13	<5	45	<5 0.08	<1	11	12	18	2.71	20 0.4	270	1 < 0.01	26	290	12	<5 <20	6 0.02 <10	11 <10	27	49
4	DES 08	5	<0.2	1.62	5	55	<5 0.02	<1	10	13	19	3.06	10 0.30	178	1 <0.01	23	500	12	<5 <20	<1 0.02 <10	14 <10	8	69
5	DE\$ 09	5	<0.2	1.79	<5	50	<5 0.01	<1	9	12	22	3.59	20 0.3	201	1 <0.01	22	480	14	<5 <20	<1 0.04 <10	18 <10	13	67
6	DES 10	5	<0.2	1.74	<5	50	<5 0.02	<1	12	13	24	4.13	20 0.3	329	2 < 0.01	18	550	12	<5 <20	<1 0.06 <10	26 <10	21	51
7	DES 11	5	<0.2	1.76	10	60	<5 0.02	<1	11	12	20	3.45	10 0.4	261	2 < 0.01	23	500	12	<5 <20	<1 0.04 <10	17 <10	8	76
3	DES 12	5	<0.2	1.36	5	45	<5 <0.01	<1	9	10	18	3.12	10 0.3	152	2 <0.01	18	330	8	<5 <20	<1 0.02 <10	13 <10	<1	54
9	DES 13	5	<0.2	1.11	<5	60	<5 0.01	<1	3	. 4	25	3.32	20 0.4	3 156	2 < 0.01	29	300	3	<5 <20	<1 0.02 <10	13 <10	.2	52
10	DES 14	5	<0.2	2.02	<5	55	10 0.04	<1	10	22	44	6.87	<10 0.9	155	4 < 0.01	24	570	18	<5 <20	2 0.06 <10	37 <10	<1	64
11	DES 15	5	<0.2	2.86	10	35	<5 0.05	<1	7	7	13	1.84	<10 0.1	155	<1 0.02	5	760	12	<5 <20	3 0.11 <10	25 <10	8	24
12	DES 16	5	<0.2	1.99	15	95	<5 <0.01	<1	16	14	35	4.25	20 0.3	143	3 < 0.01	42	510	16	<5 <20	14 <0.01 <10	13 <10	* *	78
13	DES 17	5	<0.2	3.20	<5	65	5 0.03	<7	15	20	35	4.35	<10 0.6	223	<1 <0.01	27	550	18	<5 <20	<1 0.10 <10	42 10	<~;	77
14	RD\$ 01	5	<0.2	3.22	5	55	5 0.24	<1	20	21	28	3.93	10 0.5	684	<1 0.01	27	500	24	<5 <20	11 0.10 <10	34 <10	24	54
15	RDS 02	ŏ	<0.2	2.75	10	60	<5 J.09	<1	21	37	4 6	5.58	10 1.1	313	5 <0.01	73	560	12	<5 <20	3 3.01 <10	26 <10	32	39
16	RDS 03	õ	<0.2	2.12	<5	75	<5 0.14	<1	16	21	25	4.07	10 0.6	378	2 <0.01	42	500	28	<5 <20	10 0.04 <10	24 <10	:5	75
17	RDS 04	5	<0.2	3.10	<5	95	5 0.08	<1	29	31	65	8.09	<10 1.2	4 676	5 0.01	73	1350	22	<5 <20	7 0.05 <10	33 <10	14	118
18	RDS 05	5	<0.2	2.11	<5	80	⊰ 5 0.∂3	~ .	23		- Ĵ	₫, <i>– .</i>	. 3 3.3	3 333	ù 3.3 i	J→	330	24	<5 <20	3 0.03 <10	<u>22</u> <10	ē	68
19	RDS 06	5	<0.2	4.08	<5	120	<5 0.12	<1	67	38	78	7.95	<10 1.2	2 1413	5 0.01	121	2320	26	<5 <20	23 0.07 <10	44 10	30	99
20	RD\$ 07	5	<0.2	2.58	10	150	<5 0.44	<1	33	55	63	6.24	10 1.7	1021	2 0.01	92	870	24	5 <20	26 0.08 <10	53 <10	85	97

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi Ca%	Cd	Co	Сг	Cu Fe	e %	La Mg %	Mn	Mo N	Va %	Ni	Þ	Pb	Sb	\$n	Sr	Ti %	Ü	V	w	Y	Zn
QC DA	ATA:																						7		====	<u> </u>	<u> </u>	
Repea	et:																											
1	DES 05	5	<0.2	2.23	<5	110	<5 0.30	<1	18	20	50 3.	.95	40 1.16	595	<1 <	:0.01	34	510	8	5	<20	15	0.14	<10	24	<10	83	74
10	DES 14	5	<0.2	2.05	<5	55	<5 0.04	<1	10	23	45 6.		<10 0.93			0.01	26	570	18		<20	1		<10	-	<10	<1	63
19	RDS 06	•	<0.2	4.21	5	130	5 0.13	<1	68	40			<10 1.26			0.01		_	26		<20	24		<10		<10	32	110
Stand	ard:																											
GEO'9	7	145	1.0	1.92	75	165	<5 1.88	<1	20	65	88 4.	.29	<10 0.99	696	<1	3.03	29	730	20	15	<20	65	0.13	<10	83	<10	18	85

df/908 XLS/97

fx: 250-428-9892 cc: Dave Wiklund ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10-Sep-97

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 97-937

RON GRANGER RR1, S1, C7 CRESTON, B.C. V0B 1G0

ATTENTION: RON GRANGER

No. of samples received: 70 Sample type:Soil PROJECT #: 97 - 2 SHIPMENT #:5

Samples submitted by: Ron Granger

Phone: 604-573-5700 Fax : 604-573-4557

values in ppm, unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	DNS 01	<5	1.2	2.89	10	85	<5	0.14	<1	12	8	15	3.11	<10	0.20	798	<1	0.01	5	710	108	<5	<20	6	0.17	<10	57	<10	1	85
2	DNS 02	<5	<0.2	3.51	<5	90	<5	0.12	<1	17	18	64	5.34	<10	0.53	350	<1	0.02	14	1030	18	<5	<20	6	0.25	<10	95	<10	<1	80
3	DNS 03	<5	<0.2	4.11	10	90	<5	0.21	<1	19	10	54	4.99	<10	0.54	318	<1	0.02	9	1010 -	6	<5	<20	8	0.31	<10	104	<10	5	94
4	DNS 04	5	<0.2	4.21	<5	115	15	0.24	<1	25	17	56	7.82	<10	1.42	506	<1	0.02	17	1140	10	<5	<20	6	0.34	<10	167	10	<1	120
5	DNS 05	<5	<c.2< th=""><th>3.99</th><th>15</th><th>105</th><th>5</th><th>0.23</th><th><1</th><th>23</th><th>10</th><th>72</th><th>5.78</th><th><10</th><th>0.76</th><th>482</th><th><1</th><th>0.02</th><th>15</th><th>1070</th><th>10</th><th><5</th><th><20</th><th>10</th><th>C.26</th><th><10</th><th>124</th><th><10</th><th>4</th><th>105</th></c.2<>	3.99	15	105	5	0.23	<1	23	10	72	5.78	<10	0.76	482	<1	0.02	15	1070	10	<5	<20	10	C.26	<10	124	<10	4	105
6	DNS 06	<5	0.4	4.94	20	45	<5	0.07	<1.	9	11	30	3.37	<10	0.13	188	<1	0.02	6	1300	14	<5	<20	6	0.15	<10	42	<10	4	39
7	DNS 07	10	<0.2	2.41	30	70	15	0.10	<1	15	27	35	6.82	<10	0.62	377	<1	0.01	20	930	46	<5	<20	10	0.21	<10	106	<10	<1	133
8	DNS 08	<5	0.6	4.43	15	80	<5	0.08	<1	13	9	35	3.01	<10	0.42	656	<1	0.02	14	1390	10	<5	<20	6	0.20	<10	53	<10	15	88
9	DNS 09	<5	0.4	3.49	15	120	<5	0.14	<1	28	31	84	4.88	<10	0.70	1235	<1	0.02	36	910	18	<5	<20	8	0.16	<10	89	<10	<1	108
10	DNS 10	<5		NO SAM	MPLE																									
11	DNS 11	10	<0.2	3.24	60	110	5	0.16	<1	24	32	43	4.47	<10	0.69	685	<1	0.01	31	710	106	<5	<20	11	0.16	<10	72	<10	5	167
12	DWS 01	5	0.6	3.66	20	360	<5	0.26	<1	7	15	17	3.05	<10	0.34	522	<1	0.02	10	1570	40	<5	<20	24	0.10	<10	42	<10	<1	197
13	DWS 02	<5	<0.2	2.70	15	255	<5	0.20	<1	8	6	19	2.82	<10	0.32	1467	1	0.01	9	2480	44	<5	<20	28	0.06	<10	31	<10	2	145
14	DWS 03	<5	<0.2	2.42	10	195	<5	0.26	<1	10	9	33	2.93	<10	0.41	675	<1	0.01	10	1360	24	<5	<20	27	0.07	<10	4 5	<10	7	134
15	DW\$ 04	5	<0.2	2.87	15	375	<5	0.40	<1	15	9	64	3.09	<10	0.33	2503	<1	0.02	13	3350	24	<5	<20	45	0.18	<10	54	<10	12	189
16	DWS 05	10	0.6	2.48	15	405	10	0.38	<1	13	15	48	3.47	<10	0.52	2354	<1	0.02	12	2470	40	<5	<20	25	0.10	<10	52	<10	7	265
17	DWS 06	5	0.4	2.42	20	375	<5	0.22	<1	7	6	27	2.77	10	0.31	1513	<1	0.01	8	1410	22	<5	<20	22	0.07	<10	31	<10	18	190
18	DWS 07	5	0.6	3.55	25	360	<5	0.28	2	8	6	21	2.47	<10	0.24	2924	<1	0.02	10	3090	30	<5	<20	33	0.14	<10	32	<10	27	325
19	DWS 08	5	<0.2	3.12	20	405	5	0.42	1	6	4	14	2.38	<10	0.28	1452	<1	0.02	6	4030	18	<5	<20	58	0.14	<10	29	<10	15	180
20	DWS 09	5	<0.2	1.72	20	245	<5	0.21	<1	7	8	14	2.59	<10	0.47	690	<1	0.01	8	1490	26	<5	<20	3 3	0.05	<10	32	<10	4	130

E	t#.	Tag#	Au(ppb)	Ag	Al 9	6 As	Ва	Bi	Ca %	Cd	Co	Cr	Çu	Fe %	La	Mg %	Min	Mo	Na %	€t* FN:	P	Pb	S b	Sn	S-	T: %			١.		
===	21	DWS 10	<5	0.6			290	<5	0.19	<1	6	7	9	1.84	<10	Ū, iċ	3201	<1	0.01	8	1310	24	<5	<20	25	0.07	<10	21	<10	5	152
	22	DWS 11	10	1.6		_	_ 52Ω	<5	0.38	2	5	6	19	2.57	20	0.21	4417	<1	0.02	3	2770	58	<5	<20	54	0.07	<10	30	<10	7	211
-		_		0.8			370	-	0.18	2	7	7	11	2.29	<10	0.16	4030	<~;	0.01	9		30	<5	<20	18	0.12	<10	29	<10	11	296
2	.3	DWS 12	10	_			430	10		1	8	8	21		<10	0.46		<1	_	-	2510	74	<5	<20	42	0.10	<10	41	<10	6	334
_	24	DWS 13	10	-						2	Ó	_	_	3.04	<10	ი ვი	908	</th <th>0.01</th> <th></th> <th>4400</th> <th>182</th> <th><f< th=""><th><20</th><th>16</th><th>0.10</th><th><10</th><th></th><th></th><th>Ę</th><th>55⁻⁷</th></f<></th>	0.01		4400	182	<f< th=""><th><20</th><th>16</th><th>0.10</th><th><10</th><th></th><th></th><th>Ę</th><th>55⁻⁷</th></f<>	<20	16	0.10	<10			Ę	55 ⁻⁷
2	25	DWS 14	25	8.0	3 2.5	7 35	195	5	0.15	2	Ÿ	12	22	3.0	- 11	(1.39	HUC	_	û.O.	,		1515	-:	N.20	15	CUE	C 10	39	<10	Ĺ	ee .
5	26	DWS 15	10	0.4	4 0.9	7 25	135	<5	0.14	<1	8	7	15	1.93	<10	0.24	1101	2	<0.01	7	400	28	<5	<20	23	0.04	<10	27	<10	2	70
	27	DWS 16	20	0.6	1.7	3 175	90	<5	0.14	<1	10	15	22	3.0	C	0.31	704		0.01	12	900	84	<5	<20	15	0.06	<10	34	<10	<1	181
_	28	DWS 17	5			SAMPLE																									
	26	DWS 18	20		3.1		90	<5	0.22	<1	36	35	143	5 1	10	0.80	£ 41	<1	0.01	43	1190	102	<5	<20	11	0.16	<ĩû		₹4€	< -	212
			10		5 2.1		120		0.14	<1	16	14	34	3.5 5	ď,	0.34	2514		0.01	19	700	132	<5	<20	10	0.08	<10	40	<10	<1	205
`	30	DWS 19	10	U.	J Z .1	7 240	120	-0	U ,	,		• •			_					,,,			Ū			0.00	,,,				
	31	DWS 20	25	0.8	2.8	0 280	160	<ξ	0.12	**	-	-	10	0.00		2.2	020		0.0	::	.00	:00		25	<u> </u>	2.10	:		-/:	-	222
	32	DWS 21	30		2.2	4 365	405	<5	0.11		14	15	48	3.46	·:10	0.33	2276		0.01	15	1690	188	<5	<20	10	0.09	<10	41	<10	<1	313
		D/WS 32	75								14	1.4	45	5.30	e ()	32.2	3001		0.01	47	4550	222	<5	<20	11	90.0	<10	37	<10	<1	387
	33	E/ 23					105	5 5	0.12	<1			54			0.47	756	-3	0.01	23	1020	204	<5	<20	15	0.08	<10	42	<10	2	288
	34		30				7:5		0.14	·		18	47	3.4t		0.42			0.01	33	800	218	< 5	<20	15	0.06	<10	41	<10	3	258
;	35	DWS 24	15	2.0	2.1	4 2/5		J	0.1-			10	Ji	J.40	•	- '-	040	_	0.01	t	500	210	-5	-20	10	0.00	-10	-1 1	-10	0	250
	36	-											24	2.69		0.25	3884	<1	0.03	11	7.2.1.5	60	<5	<20	54	0 **	<10	37	<10	7	183
			į.			6 tae							35	3 37	٠.	0.44	1384	<1	0.01	21	2400	68	<5	<20	7	0.10	<10	42	<10	12	268
					*						1	. ب	30	3. 6 8	<10	0.37	1060	<1	0.01	21	710	158	<5	<20	16	0.07	<10	40	<10	1	466
	oc oc			-			•		0.11	-1	٠. د	20	47		<10			<1	0.01	24	870	142	<5	<20	11	0.12	<10	45	<10	12	239
			•	•							13	20		4.37	<10	_	44b		0.01	19	1020	12	<5	<20	9	0.12	<10	42	<10	<1	91
	٠.	J = 18			,-	<i>Ξ</i>			. •		10		O,	٦.٥١	- 10	0.0-	740		0.01		.020		-0		Ū	0.12	.,0	-12-	110	- •	٥.
					-	-		ŧ		1	٠.	15	21	4.79	<10	0.43	155	<1	0.01	11	1970	12	<5	<20	3	0.15	<10	56	<10	<1	66
		_ 5 ∠Ü				L		<5	U.U.	ζ.			24	3.67	<10	0.46	402	ج: (0.01	9	840	8	<5	<20	6	0.15	<10	52	<10	2	5 6
	43	DES 21	5				bi			~ 1	15	19	31	3.75	<10	0.66	221	<1	0.02	19	530	14	<5	<20	11	0.19	<10	58	<10	22	61
	4 3			<()			50	<5	U	<1	10	18		4.42	<10	0.59	133	<1	0.01	18	520	12	<5	<20	8	0.12	<10	42	<10	<1	4 7
				- 5.	- ·		55	~ <u>5</u>		<1	12	12		4.02	<10		337	-	0.01	29	490	10	<5	<20	6	0.11	<10	48	<10	4	75
,	45	<u>ರಿಪಿಸಿ ೭</u>				.4 \3	00	•	0.00	-,	,_		02	7.02	- 10	0.0	001	.,	0.01			, ,	ŭ	20		U			10	٠	
	46	DES 24	<5	<0	2 4.1	0 15	45	ر	0.04	<1	8	7	26	3.97	<10	0.14	124	<1	0.02	6	840	8	<5	<20	3	0.16	<10	46	10	2	31
	47	DES 25	<5	<0.3	2 2.8	7 10		<5	0.05	<1	10	13	35	3.69	<10	0.49	189	<1	0.01	14	610	8	<5	<20	8	0.16	<10	48	<10	2	47
		DES 26	5				نن	<5	0.07	<1	7	13	31	5.06	<10	0.64	374	2	0.01	7	770	20	<5	<20	18	0.12	<10	50	<10	<1	4 6
		DES 27	<5			-	155	15		<1	26	25	83		<10	1.67	1846	<1		29	820	16	<5	<20	13	0.23	<10	92	30	9	78
			•				170	10		<1	15	46	54		<10		545		0.02	25	770	10	< 5	<20	46	0.35	<10	146	<10	11	70
;	50	DES 28	<5	<u.< th=""><th>2 2.7</th><th>4 <5</th><th>170</th><th>IU</th><th>Ų. I I</th><th>1</th><th>10</th><th>70</th><th>J-4</th><th>J. / 8</th><th>~10</th><th>1.57</th><th>J40</th><th>-1</th><th>Ų.UŁ</th><th>2.0</th><th>, , ,</th><th>10</th><th>~0</th><th>-20</th><th>-10</th><th>0.00</th><th>- 10</th><th>1-10</th><th>- 10</th><th>4 E</th><th>, ,</th></u.<>	2 2.7	4 <5	170	IU	Ų. I I	1	10	70	J -4	J. / 8	~10	1.57	J40	-1	Ų.UŁ	2.0	, , ,	10	~0	-20	-10	0.00	- 10	1-10	- 10	4 E	, ,
	51	DES 29	<5	0.0	6 2.4	1 85	120	<5	0.14	<1	25	28	131	7.00	<10	0.89	1414	<1	0.01	27	920	14	<5	<20	10	0.15	<10	130	<10	<1	77
		DES 30	<5		2 3.1		75	<5		<1	12	12	44	3.91	<10	0.48	569	<1	0.01	14	750	4	<5	<20	5	0.15	<10	57	<10	<1	71
-		DES 31	<5			_	60	<5		<1	12	13		4.12	<10	0.70	332	<1		29	500	10	<5	<20	8	0.12	<10	50	<10	1	79
-	53					•	75	<5		<1	10	16	38	4.49	<10	0.78	196	<1	0.01	15	450	4	<5	<20	11	0.12	<10	59	<10	<1	52
	54	DES 32	<5					-						_	_			-		11			_	<20			<10	60	12	2	55
	55	DES 33	<5	<0.3	2 1.7	5 <5	80	7	0.06	1	11	13	/د	4.70	<10	0.78	201	<1	0.01	1.1	470	16	<5	~20	12	0.13	~ 10	OU	12	2	25

Ξt#.	Tag #	Au(ppb)	Ag	A. %	As	Ba	Þ,	Ca %	೦೭	೦೦	<u> </u>	೦ಒ	Fes	<u>-</u> £	ໂນຊົ %	โท่เก	Ívio	Na %	Ni	P	Рb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
56	DES 34	5	<0.2	1.99	10	85	<5	0.06	<1	10	13	22	3.92	<10	0.46	514	<1	0.01	9	1090	12	<5	<20	4	0.12	<10	58	<10	<1	54
57	DES 35	5	<0.2	2.55	15	90	5	0.10	<1	11	16	28	4.14	<10	0.53	415	<1	0.01	12	1120	12	<5	<20	4	0.12	<10	52	<10	<1	79
58	DES 36	<5	<0.2	1.72	5	95	<5	0.20	<1	12	15	30	3.80	<10	0.61	41 7	<1	0.01	15	690	24	<5	<20	14	0.11	<10	54	<10	<1	65
59	DES 37	10	<0.2	3.30	10	150	10	0.38	<1	15	18	28	4.55	<10	0.75	731	<1	0.02	19	730	20	<5	<20	36	0.18	<10	57	<10	13	102
60	DES 38	<5	<0.2	3.19	10	185	<5	0.34	<1	14	13	28	4.15	<10	0.72	55 3	<1	0.02	12	1010	16	<5	<20	29	0.21	<10	51	<10	14	83
61	DES 39	< 5	<0.2	4.53	10	255	10	0.42	<1	12	S	18	3.76	<10	0.77	372	<1	0.02	ક	2010	12	<5	<20	41	0.25	<10	38	<10	16	00
61	DES 39	<5	<0.2		20	135	5	0.19	<1	20	33	48	4.77	<10	1.15	305	<1	0.01	31	940	14	<5	<20	17	0.23	<10		10	5	90 77
62 63	DES 40	<5	<0.2		10	95	<5	0.09	<1	17	23		4.54	<10	0.71	679	<1	0.01	22	1370	10	<5	<20	11	0.15	<10	63 62	<10	3	
63	DES 41	\ 5	<0.2		10	95	10	0.03	<1	22	26	86	4.83	<10	1.05	375	<1	0.01	28	680	12	<5	<20	7	0.15	<10	74	10	3 12	88
64 65		_	<0.2		10	110	10	0.11	<1	22	20	36	4.96	<10	0.69	2203	-	0.01	19	800	12	√5 <5	<20	6	0.17	<10	74 72	<10	1∠ <1	63 74
65	DES 43	<5	\ 0.2	2.25	10	110	10	0.11	-1	22	20	30	4.50	~10	0.05	2203	-1	0.01	19	800	12	~5	~20	G	0.13	~10	12	~10	~ I	74
66	DES 44	<5	<0.2	2.52	5	115	<5	0.09	<1	24	26	81	5.33	10	1.05	679	<1	0.01	37	770	10	<5	<20	10	0.15	<10	74	<10	11	76
67	DES 45	<5	<0.2	2.43	5	155	<5	0.21	<1	25	30	46	4.65	<10	0.71	2453	<1	0.01	32	710	10	<5	<20	11	0.14	<10	77	<10	<1	88
68	DES 46	<อิ	<0.2	2.99	<5	220	<5	0.21	<1	40	57	242	6.97	<10	1.39	411	<1	0.02	61	690	6	<5	<20	9	0.23	<10	150	<10	1	88
ວິຣ	DES 47	<5	<0.2	5.34	ıÛ	100	10	6.10	<1	4ú	ŝź	717	5.39	<'₁₺	1.48	435	<',	0.01	45	პმს	12	<5	<2ŭ	Ė	6.26	<10	8ક	16	13	84
70	DES 48	<5	<0.2	2.70	<5	75	<5	0.11	<1	30	26	84	6.27	<10	2.14	603	<1	<0.01	36	450	6	<5	<20	9	0.15	<10	79	<10	9	84
QC_D/																														
Repea		•																												
1	DNS 01	<5	1.4	2.69	10	85	<₹	0.15	<1	12	6	14	3.06	<10	0.19	814	<1	0.01	4	700	120	<5	<20	6	0.17	<10	57	<10	2	83
10	DNS 10	10		NO SAI																										
10	DIMS 08	ξ	<0.2	3.09	1 <i>E</i>	39 <i>E</i>	₹	0.41	<1	7	2	12	2.38	<10	0.28	1475	ζ'	20.0	-	3980	20	<Ё	<20	5-	0.44	-10	30	<10	12	191
28	DWS 17	5	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-
36	DWS 25	<5	1.0	2.64	55	395	<5̄	0.33	2	10	10	24	2.72	<10	0.26	423 6	<1	0.03	12	2420	66	<5	<20	5 5	0.12	<10	39	<10	8	192
45	DES 23	<5		-	_	-	-	-	_	-	_	-	_	_	-	_	-	-	_	-	-	_	_	_	•	-	-	-	-	_
54	DES 32	<5	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	_	-	-	-	_	-	_	-	_	_	_
63	DES 41	<5	<0.2	3.79	15	95	5	0.10	<1	17	24	45	4.53	<10	0.73	665	<1	0.01	22	1320	6	<5	<20	10	0.16	<10	62	<10	3	85
Stand	ard:																													
GEO'S		145	1.2	1.86	60	160	<5	1.79	<1	19	64	84	4.11	<10	0.97	671	<1	0.02	24	660	16	<5	<20	67	0.13	<10	81	<10	10	68
GEO'S	_	145	1.0		65	155	<5	1.76	<1	19	66	83	4.08	<10	0.95	664	<1		24	650	18	<5	<20	64	0.14	<10	80	<10 <10	8	68
0208	•	140	1.0	1.50	00	.00	-0			, 0	-		7.00	5	0.00	-	- 1	J.V2	_7	000	, 0	-5	-2.0	U-f	J. 1.7	-10	00	יוי	U	00

Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

	Et #. Tag #	Au(pp	b)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %_	La	Mg %	Mn	Mo	Na %	Nt	Ρ	Pb	Sp	Sn	Sr	11%	υ	· V	W	Y	∠n
	26 DES5	5	<5	<0.2	2.98	10	105	<5	0.08	<1	21	30	252	5.14	<10	0.89	223	<1	0.02	74	380	20	<5	<20	21	0.12	<10	25	<10	2	76
	27 DES5	6	<5	<0.2	3.07	<5	60	5	0.05	<1	15	19	62	3.98	<10	0.44	193	<1	0.03	29	360	20	<5	<20	6	0.12	<10	30	<10	1	62
	28 DES5	7	<5	0.2	2.81	<5	80	5	0.05	<1	8	18	18	3.16	<10	0.57	157	<1	0.02	9	450	22	<5	<20	5	0.09	<10	30	<10	<1	58
	29 DES5	8	<5	<0.2	2.68	<5	60	<5	0.04	<1	13	17	29	4.18	<10	0.66	179	2	0.02	23	780	18	<5	<20	10	0.06	<10	23	<10	<1	64
	30 DES5	9	<5	<0.2	3.61	10	60	5	0.04	<1	11	17	25	3.91	<10	0.51	190	<1	0.03	18	870	24	<5	<20	5	0.10	<10	31	<10	3	64
	31 DES 6	30	<5	<0.2	1.94	<5	50	<5	0.04	<1	14	16	44	4.36	<10	0.77	269	2	0.02	30	510	22	<5	<20	10	0.08	<10	22	20	<1	71
	32 DES 6	31	<5	<0.2	2.10	<5	50	<5	0.03	<1	14	17	35	3.98	<10	0.76	264	1	0.02	29	450	18	<5	<20	12	0.07	<10	21	<10	<1	66
	33 DES 6	62	<5	<0.2	4.14	10	45	10	0.05	<1	8	18	18	4.47	<10	0.16	135	<1	0.03	9	2120	26	<5	<20	3	0.13	<10	37	<10	<1	39
-	QC DATA:																														
	Repeat:																														
	1 DWS	29	<5	<0.2	3.27	260	95	<5	0.14	<1	46	44	237	5.72	<10	0.97	514	3	0.03	56	1060	114	<5	<20	11	0.14	<10	100	10	<1	214
	10 DWS	38	<5	0.2	2.00	15	125	<5	0.09	<1	13	26	54	5.25	<10	0.64	283	1	0.01	21	490	42	<5	<20	7	0.05	<10	44	<10	<1	185
	19 DNS 1	13	5	2.4	3.07	220	105	<5	0.08	<1	13	12	29	2.80	<10	0.21	1519	<1	0.03	16	1690	144	<5	<20	8	0.11	<10	35	<10	2	295
	28 DES5	7		<0.2	2.88	<5	80	<5	0.04	<1	8	18	18	3.24	<10	0.59	157	<1	0.02	9	470	22	<5	<20	5	0.09	<10	31	<10	<1	58
	Standard:									-																					
	GEO'97	1	20	1.4	1.66	50	155	<5	1.65	<′;	18	54	78	3.93	<10	0.90	660	<1	0.03	23	630	22	<5	<20	54	0.10	<10	72	<10	4	70

df/1059 XLS/97

fax @: 250-428-9892

cc: Dave Wiklund - Creston, BC

ECC-TECH INDOTATIONIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

30-Sep-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 97-1060

RON GRANGER RR1 S1. C7 CRESTON, BC V0B 1G0

ATTENTION: RON GRANGER

No. of samples received: 24 Sample type: SOIL. PROJECT #: 97-2 SHIPMENT #:6

Samples submitted by: RON GRANGER

Et i	#. Tag #	/daa)uA	Ag	A1 %	As	В₽	₿:	Ca %	Сч	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mc	Na %	N:	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Υ	Zn
1	DWS 29	<5	0.2	3.36	260	105	<5	0.15	<1	46	45	242	5.81	<10	0.99	521	2	0.03	55	1040	106	<5	<20	15	0.14	<10	103	<10	<1	216
2	DWS 30	<5	0.6		160	155	<5	0.12	<1	14	18	48	3.16	<10	0 42	927	2	0.03	27	1770	104	<5	<20	12	0.06	<10	38	<10	2	255
3	DWS 31	5	9.8		225	125	5	0.11	<1	16	25	62	3.78	<10	0.58	689	<1	0.03	26	1660	154	<5	<20	11	0.13	<10	43	<10	2	407
4	DWS 32	10	3.8	2.67	325	125	15	80.0	<1	24	54	45	7.10	<10	0.76	2645	3	0.02	49	1200	432	<5	<20	7	0.12	<10	66	<10	<1	964
5	DWS 33	5	3.8	2.85	44C	110	<5	0.12	<1	16	15	76	4.21	<10	0.36	2222	2	0.03	51	1070	354	<5	<20	11	0.09	<10	35	330	3	1016
6	DWS 34	35	4.6	2.41	920	155	<5	0.06	<1	10	15	183	3.72	<10	0.37	1293	<1	0.02	28	620	288	<5	<20	14	0.08	<10	30	150	7	843
7	DWS 35	<5	<0.2	3 10	20	110	<5	0.10	<1	28	64	107	5.64	<10	1.51	472	<1	0.01	45	840	36	<5	<20	7	0.15	<10	128	<10 <10	<1	129
٤	DWS 36	<ξ	<0.2	3.26	15	100	ć>	0.16	<1.	24	39	10€	4.28	<16	0.83	727	<1	0.03	36	870	26	<ξ	<2C	12	0.15	<10	82	20	<1	99
9	DWS 37	<5	<0.2	2.01	<5	55	<5	0.09	<1	16	28	99	3.26	<10	0.62	255	<1	0.01	31	740	28	<5	<20	8	0.08	<10	52	<1C	<1	90
10	DWS 38	<5	0 4	1.99	15	125	<5	0.09	<1	12	26	55	3.23	<10	0 65	282	<1	0.01	20	500	40	<5	<20	7	0.05	<10	4 5	<10	1	186
11	DWS 39	<5	<0.2	1 10	5	45	<5	0.02	<1	6	10	11	1.69	<10	0.24	107	1	< 0.01	ę	260	14	<5	<20	1	0.02	<10	16	<18	<1	44
12	DWS 40	10	<0.1		Ī	Α.	ċ	5.32	*	~			5.			<u>:</u>									:.22		-			
13	DW\$ 41	<5	<0.2	1.01	<5	45	<5	0.02	<1	6	10	9	1.70	<10	0.23	106	1	<0.01	8	230	14	<5	<20	- 2	0.02	<10	15	<10	<1	35
14	DWS 42	<5	<0.2	2.92	15	80	<5	0.06	<1	14	20	63	2.97	<10	0 48	306	<1	0.03	19	840	112	<5	<20	7	0.11	<10	46	<10	2	160
15	DWS 43	< 5	<0.2	3.35	5	90	<5	80.0	<1	25	38	96	4.12	<10	0.80	410	<1	0.03	24	920	36	<5	<20	3	0.16	<10	87	<10	<1	147
16	DWS 44	<5	0.6	3.35	15	170	5	0.14	2	19	17	70	4.29	<10	1.97	333	<1	0.03	30	530	42	<5	<20	12	0.19	<10	66	<10	2	540
17	DWS 45	<5	1.2	1.93	60	145	<5	0.07	<1	21	14	132	3.37	<10	0.38	571	1	0.02	24	500	86	<5	<20	4	0.08	<10	34	<10	<1	497
18	DNS 12	25	3.8	3.01	350	90	10	0.07	<1	12	11	27	2.89	<10	0.21	1431	<1	0.03	11	1850	132	<5	<20	4	0.08	<10	33	<10	<1	234
19	DNS 13	10	2.0	3.05	225	100	10	0.08	<1	13	12	29	2.80	<10	0.20	1499	<1	0.03	14	1690	140	<5	<20	6	0.11	<10	36	<1C	2	294
20	DES49	<5	<0.2	2.58	10	110	5	0.37	<1	17	18	38	4.21	<10	0.62	464	<1	0.03	16	790	32	<5	<20	21	0.11	<10	63	<10	3	85
21	DES50	<5	NO:	SAMPL	Ξ																									
22	DES51	<5	<0.2	3.04	15	85	5	0.18	<1	16	17	46	4.12	<10	0.50	248	<1	0.03	16	610	30	<5	<20	10	0.14	<10	64	<10	<1	66
23	DES52	<5	<0.2	2.83	15	80	<5	0.18	<1	15	19	51	4.14	<10	0 44	315	<1	0.03	15	560	30	<5	<20	7	0.15	<10	68	<10	<1	66
24	DES53	<5	<0.2	2.32	30	85	<5	0.13	<1	14	21	42	4.96	<10	0.64	302	<1	0.03	18	480	26	<5	<20	8	0.10	<10	71	<10	<1	95
25	DES54	<5	<0.2	3.37	10	105	<5	0.15	<1	24	32	161	4.25		1.00 age 1	236	<1	0.03	56	300	24	<5	<20	34	0.12	<10	32	2 0	5	73

15-Oct-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 97-1133

RON GRANGER RR1, S1, C7 CRESTON, BC V0B 1G0

ATTENTION: RON GRANGER

No. of samples received:38
Sample type:SOIL
PROJECT # 97-2
SHIPMENT #, 7
Samples submitted by: RON GRANGER

Values in ppm unless otherwise reported

Et#.	Tag #	Mesh Size Au(ppb)	Ag	A! %	As	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Þ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	BCS 01	<5	<0.2	3.48	5	105	<5	0.21	<1	17	28	67	4.13	<10	0.73	254	<1	0.03	26	1080	22	<5	<20	11	0.16	<10	65	<10	2	62
2	BCS 02	< 5	<0.2	4 46	15	40	<5	0.11	<1	7	16	17	2.84	<10	0.14	114	<1	0.05	7	2090	32	<5		9	0.13	<10	33	<10	3	31
3	BCS 03	<5	<0.2	3.19	16	70	<5	C.11	<1	15	19	35	3.21	<10	0.52	303	<1	0.03	15	790	26	<5	<20	8	0.17	<10	48	<10	5	49
4	BCS 04	<5	<0.2	3.10	10	70	<5	0.11	<1	11	11	19	2.48	<10	0.27	474	<1	0.03	10	820	26	<5	<20	9	0.14	<10	33	<10	5	51
5	BCS 05	<5	<0.2	2.78	15	75	<5	C.18	<1	**	,-	20	9.70	<1.7	5.39	185	<*	30.0	15	730	26	<5	<20	8	0.15	<10	45	<10	5	40
6	BCS 06	<5	<0.2	2.91	10	25	<5	0.12	<1	9	3'	25	1.55	<10	0.15	132	<1	0.04	8	1730	20	<5	<20	7	0.09	<10	18	<10	5	14
-	BCS 07	<5	<0.2	2.59	<5	28	<5	C.16	<1	1-	25	4-	3.62	<10	0.5€	484	<1	0.03	24	1110	20	<€	<20	€	D.15	<10	50	<10	3	46
8	BCS 08	<5	<0.2	3.40	10	115	<5	0.09	<1	25	22	32	3.31	<10	0.49	256	<1	0.03	28	870	30	<5	<20	14	0.17	<10	37	<10	4	56
9	BCS 09	<5	<0.2	3.26	10	100	5	80.0	<1	27	33	49	4.00	<10	0.75	287	<1	0.03	53	670	30	<5	<20	12	0.17	<10	45	<10	3	63
10	BCS 10	< 5	<0.2	3.09	10	105	5	0 16	<1	32	20	23	3.42	<10	0.56	311	<1	0.04	34	510	30	<5	<2C	15	0.15	<10	41	<10	4	81
11	BCS 11	<5	<c.2< td=""><td>2.93</td><td>10</td><td>170</td><td>5</td><td>0.36</td><td><1</td><td>38</td><td>40</td><td>65</td><td>4.82</td><td><10</td><td>0.87</td><td>678</td><td><1</td><td>0.03</td><td>96</td><td>720</td><td>34</td><td><5</td><td><20</td><td>22</td><td>0.17</td><td><10</td><td>49</td><td><10</td><td>6</td><td>95</td></c.2<>	2.93	10	170	5	0.36	<1	38	40	65	4.82	<10	0.87	678	<1	0.03	96	720	34	<5	<20	22	0.17	<10	49	<10	6	95
12	BCS 12	<5	<0.2	3 08	15	115	5	€.2	<1	19	29	32	4.40	<10	0.82	361	<1	0.04	35	1180	30	<5	<20	28	0.13	<10	39	<10	10	75
13	BCS 13	<5	0.2	0.83	<5	60	5	0.33	<1	15	4	49	9.48	<10	0.25	419	14	0.02	15	800	18	<5	<20	10	0.03	<10	12	10	12	38
14	BCS 14	<5	<0.2	2.32	15	115	<5	0.35	<1	19	30	32	4.73	<10	0.81	207	<1	0.03	38	152C	24	<5	<20	24	0.11	<10	31	<10	5	52
15	BCS 15	<5	<0.2	2.90	5	100	<5	C.15	<1	17	30	26	3.98	<10	0.73	399	<1	0.03	30	1350	28	<5	<20	13	0.15	<10	43	<10	4	71
16	DWS 46	<5	0.4	2.17	75	150	<5	G.10	3	17	37	49	3.36	<10	0.58	1155	<1	0.02	45	77C	268	<5	<20	8	0.08	<10	33	<10	1	1568
17	DWS 47	<5	<0.2	1.83	35	120	<5	0.05	<1	11	17	15	2.49	<10	0.31	387	<1	0.02	20	450	42	<5	<20	8	0.06	<10	25	<10	4	170
18	DWS 48	<5	0.2	2.39	25	110	<5	0.04	<1	10	14	10	2 47	<10	0.24	365	<1	0.02	14	650	42	<5	<20	6	80.0	<10	27	<10	2	164
19	DWS 49	<5	<0.2	0.98	<5	55	<5	0.01	<1	6	12	5	1.50	<10	0.24	333	<1	0.02	11	310	10	<5	<20	2	0.02	<10	14	<10	<1	30
20	DWS 50	<5	0.2	2.15	25	100	<5	0.05	<1	8	11	9	2.39	<10	0.14	658	<1	0.02	8	1260	28	<5	<20	6	0.06	<10	25	<10	1	85
21	DWS 51	<5	0.2	4.60	25	90	5	0.07	<1	8	7	9	2 14	<10	80.0	677	<1	0.04	9	1640	42	<5	<20	9	0.17	<10	26	<10	4	67
22	DWS 52	<5	0.4	1.82	25	100	5	0.06	<1	6	10	7	1.93	<10	0.19	179	<1	0.02	10	640	30	<5	<20	8	0.05	<10	22	<10	<1	87
23	DWS 53	<5	0.4	1.78	40	95	<5	0.04	<1	8	14	9	2.22	<10	0.26	182	<1	0.02	11	52C	28	<5	<20	6	0.05	<10	25	<10	<1	75
24	DWS 54	<5	8.0	2.18	35	85	<5	0.05	<1	10	11	10	2.31	<10	0 17	605	<1	0.03	10	1050	40	<5	<20	7	0.08	<10	27	<10	1	142
25	DWS 55	<5	0.4	1.7€	50	60	<5	0.03	< ;	10	18	7	2.92	<10	0.16	389	1	0.02	11	850	36	<5	<20	5	0.05	<10	25	<10	<1	108

RON GRANGER ICP CERTIFICATE OF ANALYSIS AK 97-1133

ECO-TECH LABORATORIES LTD

Et #.	Tag #	Mesh Size	Au(ppb)	Ag	AI %	As	Ba	Bi C	Sa %	Cd	Co	Cr	Си	Fe %	La	Mg %	Mn	Мо	Na %.	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U.	V	W	Υ	Zn
26	DWS 56	42 mesr	< 5	0.4	2.07	20	90	<5	0.05	<1	9	5	8	2.05	<10	0.15	273	<1	0.02	9	660	28	<5	<20	8	0.06	<10	23 <	<10	<1	81
27	DWS 57	42 mesh	<5	1.0	1.86	20	90	<5	0.03	<1	7	7	7	1.90	<10	0.12	554	<1	0.02	8	510	24	<5	<20	7	0.07	<10	21 <	<10	1	74
28	DWS 58	42 mesh	<5	1.6	2.51	20	75	<5	0.07	<1	8	5	11	1.74	<10	0.15	672	<1	0.02	8	620	36	<5	<20	14	0.09	<10	20 <	<10	2	80
29	DWS 59	42 mesr	<₹	14	2.78	4 5	120	5	90.0	< 1	13	18	33	3.59	<10	0.26	472	<1	0.03	14	850	54	<5	<20	έ	0 12	<10	49 <	<10	<1	137
30	DWS 60	42 mesr	< 5	0.8	2.80	25	100	<5	0.11	<1	14	15	20	2.74	<10	0.22	1412	<1	0.03	13	2140	40	<5	<20	5	0.10	<10	36 ≺	<10	1	131
31	DWS 61	42 mesh	<5	0.2	1.65	10	60	<5	0.03	<1	11	21	29	3.35	<10	0.34	305	1	0.03	14	640	26	<5	<20	4	0.07	<10	52 •	<10	<1	64
20	Drvie SI	të mës-	<₹	* 4	1 5 -	15	70	<5	0.01	<*	9	18	10	2.16	<10	0.31	214	1	0.02	20	3 9 0	30	<5	<20	3	0.02	<10	18 4	<10	<1	102
3 3	DWS 63	42 mesn	<5	0.4	0.93	ē	40	<5 <	0.01	<1	6	11	4	1.89	<10	0.20	153	<1	0.02	8	630	18	<5	<20	1	0.03	<10	16 •	<10	<1	51
34	DWS 64	42 mesir	<5	0.2	1.51	15	75	<5	0.09	<1	9	15	6	2.91	<10	0.16	122	1	0.02	10	440	30	<5	<20	9	0.06	<10	24	<10	<1	158
35	DWS 65	42 mesr	<5	2.2	1.94	25	80	<5	0.03	<1	8	11	9	2 12	<10	0.16	148	<1	0.02	13	410	40	<5	<20	4	0.06	<10	23 •	<10	1	128
36	DWS 66	42 mesr	<5	0.4	2 17	15	65		0.02	<1	8	12	7	2 45	<10	0.09	217	<1	0.03	9	320	36	<5	<20	5	0.09	<10		<10	<1	64
37	DWS 67	42 mesh	<5	0.2	1.91	10	45	5	0.02	<1	7	13	6	2.31	<10	0 11	87	<1	0.02	8	1120	22	<5	<20	3	0.07	<10	20 -	<10	<1	90
38	DWS 68	42 mesh	<5	0.2	1.86	15	80	<5	0.04	<1	15	20	17	3.29	<10	0.31	1150	1	0.05	23	410	30	<5	<20	۷	0.06	<10	32	<10	<1	83
QC DATA: Repeat:																															
1	BCS 01		<5	<0.2	3 47	10	105	<5	0.17	<1	16	27	65	4.12	<10	0.72	246	<1	0.03	28	1110	28	<5	<20	10	0.17	<10	64 •	<10	2	61
10	BCS 10		<5	<0.2	3.04	10	100	5	0.17	<1	31	20	23	3.36	<10	0.55	309	<1	0.03	35	500	28	<5	<20	14	0.15	<10	40 -	<10	4	80
19	DWS 49		<5	<0.2	0.99	<5	55	<5	0.01	<1	6	12	5	1.51	<10	0.24	333	<1	0.03	11	320	12	<5	<20	2	0.02	<10	14 -	<10	<1	33
28	DWS 58	42 Mesr	<5	1.6	2.53	20	80	<5	0.07	<1	8	5	12	1.73	<10	0.15	655	<1	0.03	6	590	34	<5	<20	17	0.09	<10	21	<10	2	75
3€	DWS 66	42 mesr	-	04	2.10	15	60	<5	0.02	<1	8	12	7	2.47	<10	0.09	213	<1	0.03	8	310	36	<5	<20	3	0.09	<10	25 •	<10	<1	6E
Standard:																															
GEO'97			120	14	1.69	65	155	<5	1.76	<1	20	61	75	4.34	<10	0.98	686	< 1	0.04	24	670	20	<5	<20	54	0.11	<10		<10	5	81
GEO'97			120	1.4	1.80	70	150	<5	1.74	<1	19	59	74	4.31	<10	0.96	674	<1	0.03	22	670	22	<5	<20	53	0.11	<10	74	20	4	75

df/1128 XLS/97

cc: Dave Wikiuna - Creston, BC

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T

B.C Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Iran: Canada Hwy., R.R. #2, Kamleops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ANALYSIS AK 97-851

RON GRANGER RR1, SITE 1, COMP.7 CRESTON, BC V0B 1G0 21-Aug-97

ATTENTION: RON GRANGER

No. of samples received: 9 Sample type: SOILS PROJECT#: 97-2 SHIPMENT#: 2

Samples submitted by: RON GRANGER

		Au	
ET#.	Tag #	(ppb)	
1	ACS - 1	<5	
2	ACS - 2	<5	
3	ACS - 3	< 5	
4	ACS - 4	<5	
5	ACS - 5	<5	
6	ACS - 6	<5	
7	ACS - 7	<5	
8	ACS - 8	5	•
9	ACS - 9	<5	

QC DATA:

Standard:

GEO 97

155

ECO-TECH LABORATORIES LTD.

XLS/97

cc: Dave Wiklund - Creston, BC

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 97-827

RON GRANGER

RR1, S-1, C-7 CRESTON, E.C. V0B 1G0

ATTENTION: RON GRANGER

No. of samples received:8 Sample type:Soil PROJECT #: 97-1 SHIPMENT #:1

Samples submitted by: Ron Granger

Phone: 604-573-5700 Fax : 604-573-4557

MANULUCPE, B.C.

V2C 6T4

Values in ppm unless otherwise reported

J	Et #.	Tag #	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Tì %	U	V	W	Y	Zn
•	1	MC - 01	<5	<0.2	0.67	<5	35	<5	0.09	<1	5	9	9	1.56	20	0.18	100	<1	0.01	8	590	10	<5	<20	6	0.07	<10	14	<10	18	18
	2	MC - 02	<5	1.6	1.98	<5	420	10	0.31	1	21	24	81	>10	10	0.44 >	10000	20	0.01	72	480	18	<5	<20	53	0.15	<10	38	30	172	76
	3	MC - 03	<5	<0.2	2.73	10	95	<5	0.10	<1	22	29	35	3.80	<10	0.61	271	1	<0.01	60	1310	24	10	<20	12	0.16	<10	42	<10	20	91
	4	MC - 04	<5	<0.2	1.78	5	150	<5	0.10	<1	10	12	7	2.00	<10	0.22	123	<1	0.01	18	410	16	<5	<20	10	0.15	<10	23	<10	17	62
	5	MC - 05	<5	<0.2	2.52	5	95		0.13	<1	16	19	23	2.88	20		175	<1	0.01	38	700	2 6	5	<20	12		<10	30	<10	54	79
	6	MC - 06	<5	<0.2	3.90	10	120	10	0.11	<1	22	17	20	3.25		0.33	200	<1	0.02	34	1300	30	<5	<20	9	0.25	10	35	<10	61	66
	7	MC - 07	<5	<0.2	1.60	<5	160	5		<1	18	18	17	2.60	10	0.37	153	<1	0.01	25	470	16	<5	<20	12	0.16	<10	28	<10	25	56
	8	MC - 08	<5	<0.2	0.31	5	4 0	< 5	0.23	<1	18	3	55	2.39	20	0.05	107	8	<0.01	17	1220	24	<5	<20	19	0.02	<10	5	<10	71	18
	QC DA Repea		<5	<0.2	0.69	< 5	3£	< 5	20.0	<*	ξ	ç	S	1. 5 8	20	C.18	103	<1	0.01	ç	630	12	< 5	<20	5	80.0	<10	14	<10	17	19
	Standa	ırd:																													
	GEO'9	ſ	-	1.4	1.95	65	165	<5	1.91	<1	20	67	85	4.24	<10	0.98	696	<1	0.03	29	690	22	25	<20	73	0.16	<10	87	<10	23	71

df/827 XLS/97 ECO-TECH LABORATORIES LTD.

B.C. Certified Assayer

212 Brockstonk Ave. North Vinteravor Ballst Colombia, Criada 77J 2C 1950 NC 604-984-022; FAX, 904-984-023;

TO VVIKLUMD DAVE

HRIJST C7 CRESTON BC VOB 1G0

Project Contracts: ACM: D WIKLUND

Pilige Trumber 11-B Treta Pilips 1 Commissio Dato 05-0011-97 Invoice No. 144-779540 P.O. Number Account

CERTIFICATE	OF ANALYSIS	A9729540
-------------	-------------	----------

,											a.			7 (3 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	, were the second	
Sample PSCRIPTION	1000 1888). - - -	Na S	As ppn	ppu 2	25 8 4 9	Sb ppa	рБ <u>а</u> 24.	5.r 29m	77 m	Ti Per	ppa ppa	ppm V	pp	Zn ppm	T. Secretary of the Sec
1	201 202 201 202 201 202 201 202 201 202	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9,43 3,82 9,01 9,07 9,03	13 25 11 11 57	3120 5110 370 290 700	2: 2: 3: 3: 4: 5:	* 2 * 2 * 2 * 3	\$	12 59 50 23	14.5 71.6 10.9 10.9 21.6	10 10 10 10 18 10 10	10 10 10 10 10	35 29 4 8 8	· 10 · 10 · 10 · 10 · 10	86 96 28 568 60	
(18-0 (18-7 (18-8	201 252 201 202 201 202	1 4 ·	0.01	29 21 13	15.70 17.0 230	6 93 159	· () () 2	2 3 1	4 t 179 60	0.13 0.01 0.03	0; v 1d 0	2 10 2 10 2 14	228 3 4	< L0 < 10 < 10	74 132 336	•
														* * *		•
	The state of the s		† :									· ·				!
			,													
																1
The second secon			1										- 1,000 - 1,00			;
;				·											+ <i>2</i>	:
			:							•						
į																

TESC

113 4 1 (8 1 $1 \le 4$. . . S - ' +

Chemex Labs Ltd.

An appear Charmers, Consistentials of the patient Association

212 Brooksbank Av. 1998. Valendrich British Colombie Carkela V72 20: PHK/JE 504-804-0201 FAX 601-994-018

TO WIRELE PLANT

GRUSTON BUILDING V90 TG0

 $F \mapsto A^{-1}$

COUNTY ACTH D WIKEUND

Papelinarray FA Confidence 1 (1998) Confidence (1998) Confidence

										CE	RTIFIC	9729540								
SANTLE	PREP	An ppp IA-AA	ÀĢ	41	as Ppe	ाज्य स्थ	rc Fpm	PPA P1	Ca L	(d) pper	h b ir Co	b bs . Cx	Cu. ppm	Fe 3	Ga ppm	B g	k t	ra Sins	4;	MD 3-180
CKIPPION	COPT	15-709	bbm		7.5				0.48	· ñ	<u> </u>	33.5	44	2.78	< 10	·]	0.39	4 10	9.64	15 15
: !	201 202 201 262 201 202 201 202	10	1 0 2 1 0 2 1 0 2 1 0 6	1 67 4.02 4.03 1.42) 2 - 2	5 (6) 5 (6) 48 5 28 2 28	6.5 6.5 6.5		0 17 11 90 3.25 6.47	0. - 0.1 - 1.5	14	シ き ・7	18 14 112 48	3.07 4.09 9.09 2.34	< 10 < 10 < 10 < 10	2	9.79 0.05 0.75 0.39	10	5 61 3 31 5 6 6 1 6 6	1.85 225 215
6 A 8	201, 202 201, 202 201, 202 201, 202	ή,	9,2 9,2 110 110	2.12 6.47 6.47 6.16	· · · · · · · · · · · · · · · · · · ·	18.7 136 70	0.1 6.5 0.1	2 2	0.16	7. 0 5 6. 5 7 7. 0 5	3 - 3	84 5	48 149 13	6.79 9.51 9.72	< 10 < 10 < 10	; ; 2	0,32 0,14 0,17	* 10 * 10 * 17	1,40 4,22 4,80	223 7860 2070

This is a rescan of the last two pages of illegible assays - could not recover more.

Chemex Labs Ltd.

CERTIFICATE OF ANALYSIS

A9729540

SAMPLE	FREP CODE					790	pjyh	& buy	Man M	2p ppm
	201 202 201 202 201 202 201 202 201 202							15 29 4 8 18	< 10 < 10 < 10 < 10 < 10	96 28 568 60
	241 202 241 402							228	£ 10 £ 10 £ 10	74 132 330

This is a scan of last two pages of assays - could not recover more - original faded.

SAMPLE

DESCRIPTION

PREP AU ppm CODE

201 201 201 201 201 201

201 202

Chemex Labs Ltd.

CE	RTIFIC	CATE	OF A	NAL	/SIS	A	9729	540
		ESTING.	CU	Fe %	GG ppm	Her ppm		
			44 18 14 112 48	2.78 1.07 4.09 9.00 2.34	<10 <10 <10 <10 <10			